
DCE 1.2.2 Application Development Guide—Core
Components

OSF® DCE Product Documentation

The Open Group

Copyright © The Open Group 1997

All Rights Reserved

The information contained within this document is subject to change without notice.

This documentation and the software to which it relates are derived in part from copyrighted materials supplied by Digital Equipment
Corporation, Hewlett-Packard Company, Hitachi, Ltd., International Business Machines, Massachusetts Institute of Technology, Siemens
Nixdorf Informationssysteme AG, Transarc Corporation, and The Regents of the University of California.

THE OPEN GROUP MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

The Open Group shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or consequential damages in
connection with the furnishing, performance, or use of this material.

OSF® DCE Product Documentation:

DCE 1.2.2 Application Development Guide—Core Components, (Volume 1)
ISBN 1–85912–192–6
Document Number F203A

DCE 1.2.2 Application Development Guide—Core Components, (Volume 2)
ISBN 1–85912–154–3
Document Number F203B

Published in the U.K. by The Open Group, 1997.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:
OGPubs@opengroup.org

OTHER NOTICES

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE USED
AND COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE
COPYRIGHT NOTICE. TITLE TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH THE OPEN GROUP
OR ITS LICENSORS.

Security components of DCE may include code from M.I.T.’s Kerberos program. Export of this software from the United States of America is
assumed to require a specific license from the United States Government. It is the responsibility of any person or organization contemplating
export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify and distribute this software and its documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice appear in all copies and that both the copyright notice and this permission
notice appear in supporting documentation, and that the name of M.I.T. not be used in advertising or publicity pertaining to distribution of
the software without specific written permission. M.I.T. makes no representations about the suitability of this software for any purpose. It is
provided “as is” without express or implied warranty.

FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED SOFTWARE

These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this computer software, the rights of
the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19 of the FARS Computer Software-Restricted
Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B)
of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer software is submitted with "restricted rights."
Use, duplication or disclosure is subject to the restrictions as set forth in NASA FAR SUP 18-52.227-79 (April 1985) "Commercial Computer
Software-Restricted Rights (April 1985)." If the contract contains the Clause at 18-52.227-74 "Rights in Data General" then the "Alternate
III" clause applies.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract.

Unpublished - All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

Contents

Preface . xxv

The Open Group xxv

The Development of Product Standards. xxvi

Open Group Publications xxvii

Versions and Issues of Specifications. xxix

Corrigenda. xxix

Ordering Information xxix

This Book xxx

Audience xxx

Applicability xxx

Purpose. xxx

Document Usage xxx

Related Documents. xxxi

Typographic and Keying Conventions. xxxii

Problem Reporting. xxxiii

Pathnames of Directories and Files in DCE
Documentation. xxxiii

Trademarks. xxxiv

Part 1. DCE Facilities

Chapter 1. Introduction to DCE Facilities. 3

Chapter 2. DCE Host Services. 7

2.1 Types of Applications 8

DCE 1.2.2 Application Development Guide—Core Components i

Contents

2.2 Issues of Distributed Applications. 9

2.3 Managing a Host’s Endpoint Map. 10

2.4 Binding to dced’s Services. 11
2.4.1 Host Service Naming in Applications. 12
2.4.2 The dced Program Maintains Entry Lists. . . . 13
2.4.3 Reading All of a Host Service’s Data. 15
2.4.4 Managing Individual dced Entries. 18

2.5 Managing Hostdata on a Remote Host. 22
2.5.1 Kinds of Hostdata Stored. 22
2.5.2 Adding New Hostdata. 23
2.5.3 Modifying Hostdata 25
2.5.4 Running Programs Automatically When

Hostdata Changes. 26

2.6 Controlling Servers Remotely. 29
2.6.1 Two States of Server Management:

Configuration and Execution. 29
2.6.2 Configuring Servers 30
2.6.3 Starting and Stopping Servers. 34
2.6.4 Enabling and Disabling Services of a Server. . . 36

2.7 Validating the Security Server. 37

2.8 Managing Server Key Tables 38

2.9 Sample dced Application 41
2.9.1 Running the Program. 41
2.9.2 greet_dced.idl. 43
2.9.3 greet_dced_server.c 44
2.9.4 greet_dced_manager.c. 47
2.9.5 greet_dced_client.c. 48
2.9.6 util.c 50
2.9.7 util.h 50
2.9.8 greet_dced.install. 51
2.9.9 greet_dced.delete. 53
2.9.10 Makefile 53

Chapter 3. DCE Application Messaging 55

3.1 DCE and Messages. 56

3.2 DCE Messaging Interface Usage. 57
3.2.1 A Simple DCE Messaging Example. 57
3.2.2 The DCE Message Interface and sams Input and

Output Files 62

3.3 DCE Messaging Routines. 64

ii DCE 1.2.2 Application Development Guide—Core Components

Contents

3.3.1 Message Output Routines. 66
3.3.2 Message Retrieval Routines. 69
3.3.3 Message Table Routines. 71
3.3.4 DCE XPG4 Routines. 73

Chapter 4. Using the DCE Serviceability Application Interface. 77

4.1 Overview 78
4.1.1 How Programs Use Serviceability. 79
4.1.2 Simple Serviceability Interface Tutorial 80
4.1.3 Serviceability Input and Output Files. 92

4.2 Integrating Serviceability into a Server. 94
4.2.1 Serviceability Strategy. 95
4.2.2 Components and Subcomponents. 95
4.2.3 Identifying Event Points 96

4.3 Application Use of Serviceability 97
4.3.1 Basic Server Calls. 97
4.3.2 Extended Format Notation for Message Text. . . 102
4.3.3 Specifying Message Severity. 103
4.3.4 How to Route Messages. 105
4.3.5 Table of Message Processing Specifiers. . . . 111
4.3.6 Logging and Log Reading. 111
4.3.7 Message Action Attributes. 113
4.3.8 Suppressing the Serviceability Message Prolog. . . 113
4.3.9 Serviceability Use of the __FILE__ Macro. . . . 114
4.3.10 Forcing Use of the In-Memory Message Table. . . 115
4.3.11 Dynamically Filtering Messages Before Output. . . 116
4.3.12 Using Serviceability for Debug Messages. . . . 120
4.3.13 Performance Costs of Serviceability Debugging. . 127
4.3.14 Using the Remote Serviceability Interface. . . . 128

Chapter 5. The DCE Backing Store 139

5.1 Data in a Backing Store. 140

5.2 Using a Backing Store. 140

5.3 Header for Data. 140

5.4 The User Interface. 141

5.5 The IDL Encoding Services. 142
5.5.1 Encoding and Decoding in the Backing Store. . . 142
5.5.2 Conformant Arrays Not Allowed. 143

5.6 The Backing Store Routines. 144
5.6.1 Opening a Backing Store. 145

DCE 1.2.2 Application Development Guide—Core Components iii

Contents

5.6.2 Closing a Backing Store. 145
5.6.3 Storing or Retrieving Data. 145
5.6.4 Freeing Data. 146
5.6.5 Making or Retrieving Headers. 147
5.6.6 Performing Iteration 147
5.6.7 Deleting Items from a Backing Store. 148
5.6.8 Locking and Unlocking a Backing Store. . . . 148

5.7 Example of Backing Store Use. 149

Part 2. DCE Threads

Chapter 6. Introduction to Multithreaded Programming. 155

6.1 Advantages of Using Threads. 156

6.2 Software Models for Multithreaded Programming. . . . 156
6.2.1 Boss/Worker Model 157
6.2.2 Work Crew Model. 157
6.2.3 Pipelining Model 158
6.2.4 Combinations of Models. 158

6.3 Potential Disadvantages of Multithreaded Programming. . . 159

Chapter 7. Thread Concepts and Operations. 161

7.1 Thread Operations. 162
7.1.1 Starting a Thread. 162
7.1.2 Terminating a Thread. 163
7.1.3 Waiting for a Thread to Terminate. 163
7.1.4 Deleting a Thread. 164

7.2 New Primitives. 164

7.3 Attributes Objects 165
7.3.1 Creating an Attributes Object. 165
7.3.2 Deleting an Attributes Object. 165
7.3.3 Thread Attributes. 166
7.3.4 Mutex Attributes 168
7.3.5 Condition Variable Attributes. 169

7.4 Synchronization Objects. 169
7.4.1 Mutexes 169
7.4.2 Condition Variables 172
7.4.3 Other Synchronization Methods. 176

7.5 One-Time Initialization Routines 176

7.6 Thread-Specific Data 177

iv DCE 1.2.2 Application Development Guide—Core Components

Contents

7.7 Thread Cancellation. 178

7.8 Thread Scheduling. 179

Chapter 8. Programming with Threads. 183

8.1 Calling UNIX Services. 184
8.1.1 Jacket Routines 184
8.1.2 Blocking System Calls. 187
8.1.3 Calling fork() in a Multithreaded Environment. . . 187

8.2 Using Signals 189
8.2.1 Types of Signals 189
8.2.2 DCE Threads Signal Handling. 191
8.2.3 Alternatives to Using Signals. 192

8.3 Nonthreaded Libraries. 194
8.3.1 Working with Nonthreaded Software. 194
8.3.2 Making Nonthreaded Code Thread-Reentrant. . . 195

8.4 Avoiding Nonreentrant Software. 195
8.4.1 Global Lock 195
8.4.2 Thread-Specific Storage. 196

8.5 Avoiding Priority Inversion. 196

8.6 Using Synchronization Objects. 197
8.6.1 Race Conditions 197
8.6.2 Deadlocks. 198

8.7 Signaling a Condition Variable. 198

Chapter 9. Using the DCE Threads Exception-Returning Interface. 201

9.1 Syntax for C 202

9.2 Invoking the Exception-Returning Interface. 204

9.3 Operations on Exceptions. 205
9.3.1 Declaring and Initializing an Exception Object. . . 205
9.3.2 Raising an Exception. 206
9.3.3 Defining a Region of Code over Which

Exceptions Are Caught. 206
9.3.4 Catching a Particular Exception or All

Exceptions. 207
9.3.5 Defining Epilogue Actions for a Block. 207
9.3.6 Importing a System-Defined Error Status into

the Program as an Exception. 208

9.4 Rules and Conventions for Modular Use of Exceptions. . . 208

9.5 DCE Threads Exceptions and Definitions. 211

DCE 1.2.2 Application Development Guide—Core Components v

Contents

Chapter 10. DCE Threads Example. 215

10.1 Details of Program Logic and Implementation. 215

10.2 DCE Threads Example Body. 217

Part 3. DCE Remote Procedure Call

Chapter 11. Developing a Simple RPC Application. 227

11.1 The Remote Procedure Call Model. 228
11.1.1 RPC Application Code. 230
11.1.2 Stubs. 231
11.1.3 The RPC Runtime. 233
11.1.4 RPC Application Components That Work

Together 233
11.1.5 Overview of DCE RPC Development Tasks. . . 235

11.2 Writing an Interface Definition. 237
11.2.1 RPC Interfaces That Represent Services. . . . 239
11.2.2 Generating an Interface UUID. 240
11.2.3 Naming the Interface. 242
11.2.4 Specifying Interface Attributes. 242
11.2.5 Import Declarations 243
11.2.6 Constant Declarations. 243
11.2.7 Type Declarations. 244
11.2.8 Operation Declarations. 245

11.3 Running the IDL Compiler. 246

11.4 Writing the Client Code. 247

11.5 Writing the Server Code 249
11.5.1 The greet_server.c Source Code. 250
11.5.2 The greet_manager.c Source Code. 253

11.6 Building the greet Programs. 254

11.7 Running the greet Programs. 255

Chapter 12. RPC Fundamentals. 257

12.1 Universal Unique Identifiers. 259

12.2 Communications Protocols. 260

12.3 Binding Information. 261
12.3.1 Server Binding Information 262
12.3.2 Defining a Compatible Server. 263
12.3.3 How Clients Obtain Server Binding Information. . 265
12.3.4 Client Binding Information for Servers. 268

vi DCE 1.2.2 Application Development Guide—Core Components

Contents

12.4 Endpoints 269
12.4.1 Well-Known Endpoints 270
12.4.2 Dynamic Endpoints 270

12.5 Execution Semantics 272

12.6 Communications Failures 273

12.7 Scaling Applications 274

12.8 RPC Objects 275

Chapter 13. Basic RPC Routine Usage. 277

13.1 Overview of the RPC Routines. 277
13.1.1 Basic Operations of RPC Communications. . . . 278
13.1.2 Basic Operations of the NSI. 278
13.1.3 Basic Operations of Authenticated RPCs. . . . 279

13.2 Server Initialization Using the RPC Routines. 280
13.2.1 Assigning Types to Objects 282
13.2.2 Registering Interfaces. 284
13.2.3 Selecting RPC Protocol Sequences. 285
13.2.4 Obtaining a List of Server Binding Handles. . . 286
13.2.5 Registering Endpoints. 286
13.2.6 Making Binding Information Accessible to

Clients. 287
13.2.7 Listening for Calls. 289

13.3 How Clients Find Servers. 290
13.3.1 Searching a Namespace. 290
13.3.2 Using String Bindings to Obtain Binding

Information 293

Chapter 14. RPC and Other DCE Components. 295

14.1 Threads of Execution in RPC Applications. 296
14.1.1 Remote Procedure Call Threads. 298
14.1.2 Cancels 301
14.1.3 Multithreaded RPC Applications. 302

14.2 Security and RPC: Using Authenticated Remote
Procedure Calls. 305
14.2.1 Authentication 306
14.2.2 Authorization. 308
14.2.3 Authenticated RPC Routines. 310
14.2.4 Using RPC Within a Single Thread 312

14.3 Directory Services and RPC: Using the Namespace. . . . 314
14.3.1 NSI Directory Service Entries. 314

DCE 1.2.2 Application Development Guide—Core Components vii

Contents

14.3.2 Searching the Namespace for Binding
Information 331

14.3.3 Strategies for Using Directory Service Entries. . . 342
14.3.4 The Service Model for Defining Servers. . . . 347
14.3.5 The Resource Model for Defining Servers. . . . 352

Chapter 15. Developing Applications that Use Distributed Objects. 363

15.1 IDL and the Class Hierarchy of a DCE Application. . . . 364
15.1.1 Specifying a C++ Class via an IDL Interface. . . 364
15.1.2 IDL-Generated Classes as Part of Your Hierarchy. . 367

15.2 Servers that Manage Distributed Objects. 368
15.2.1 Initializing Object-Oriented Servers 369
15.2.2 Implementing Distributed-Dynamic Objects. . . 370
15.2.3 Implementing Static Member Functions. . . . 372
15.2.4 When Function Parameters Are Remote Objects. . 375
15.2.5 Naming Objects 377

15.3 Clients That Use Distributed Objects. 387
15.3.1 Creating Remote-Dynamic Objects. 387
15.3.2 Creating Client-Local Objects. 390
15.3.3 Location Transparency of Local and Remote

Objects 391
15.3.4 Finding Known Remote Objects. 396

15.4 Multiple Interfaces and Interface Inheritance. 400
15.4.1 Implementing Multiple Managers. 404
15.4.2 Using Objects that Support Multiple Interfaces. . . 407

15.5 Passing C++ Objects as DCE RPC Parameters. 411
15.5.1 Representation. 414
15.5.2 Delegation. 417

15.6 Integrating C and C++ Clients and Servers. 419
15.6.1 Writing a C++ Client for C Servers 419
15.6.2 Writing a C Client for C++ Servers 421

Chapter 16. Writing Internationalized RPC Applications. 423

16.1 Character Sets, Code Sets, and Code Set Conversion. . . 424

16.2 Remote Procedure Call with Character/Code Set
Interoperability 425

16.3 Building an Application for Character and Code Set
Interoperability 431
16.3.1 Writing the Interface Definition File 432
16.3.2 Writing the Attribute Configuration File 434

viii DCE 1.2.2 Application Development Guide—Core Components

Contents

16.3.3 Writing the Stub Support Routines. 436
16.3.4 Writing the Server Code. 442
16.3.5 Writing the Client Code 451
16.3.6 Writing the Evaluation Routine 457

Chapter 17. Topics in RPC Application Development. 473

17.1 Memory Management. 474
17.1.1 Using the Memory Management Defaults. . . . 475
17.1.2 Using rpc_ss_allocate and rpc_ss_free. 475
17.1.3 Using Your Own Allocation and Free Routines. . . 477
17.1.4 Using Thread Handles in Memory Management. . 478

17.2 Guidelines for Error Handling. 479
17.2.1 Exceptions. 480
17.2.2 The fault_status Attribute. 481
17.2.3 The comm_status Attribute 482
17.2.4 Determining Which Method to Use for Handling

Exceptions. 482
17.2.5 Examples of Error Handling. 483

17.3 Context Handles 486
17.3.1 Context Handles in the Interface. 487
17.3.2 Context Handles in a Server Manager. 489
17.3.3 Context Rundown. 500
17.3.4 Binding and Security Information. 502

17.4 Pipes 504
17.4.1 Input Pipes 505
17.4.2 Output Pipes. 508
17.4.3 Pipe Summary. 512

17.5 Nested Calls and Callbacks. 513

17.6 Routing Remote Procedure Calls. 516
17.6.1 Obtaining an Endpoint. 518
17.6.2 Buffering Call Requests 523
17.6.3 Queuing Incoming Calls 524
17.6.4 Selecting a Manager. 527

17.7 Creating Portable Data via the IDL Encoding Services. . . 529
17.7.1 Memory Management. 530
17.7.2 Buffering Styles 531
17.7.3 IDL Encoding Services Handles. 532
17.7.4 Programming Example. 534
17.7.5 Performing Multiple Operations on a Single

Handle. 542
17.7.6 Determining the Identity of an Encoding. . . . 542

DCE 1.2.2 Application Development Guide—Core Components ix

Contents

Chapter 18. Interface Definition Language. 543

18.1 The Interface Definition Language File. 543

18.2 Syntax Notation Conventions 544
18.2.1 Typography 544
18.2.2 Special Symbols. 544

18.3 IDL Lexical Elements 545
18.3.1 Identifiers. 545
18.3.2 Keywords. 545
18.3.3 Punctuation Characters. 546
18.3.4 Whitespace 546
18.3.5 Case Sensitivity 547

18.4 IDL Versus C 547
18.4.1 Declarations 547
18.4.2 Data Types 548
18.4.3 Attributes. 548

18.5 Interface Definition Structure 548
18.5.1 Interface Definition Header 549
18.5.2 Interface Definition Body. 549

18.6 Overview of IDL Attributes. 550

18.7 Interface Definition Header Attributes. 551
18.7.1 The uuid Attribute. 552
18.7.2 The version Attribute. 553
18.7.3 The endpoint Attribute. 554
18.7.4 The exceptions Attribute. 555
18.7.5 The pointer_default Attribute. 556
18.7.6 The local Attribute. 557
18.7.7 Rules for Using Interface Definition Header

Attributes 557
18.7.8 Examples of Interface Definition Header

Attributes 558

18.8 Import Declarations. 558

18.9 Constant Declarations. 559
18.9.1 Integer Constants. 560
18.9.2 Boolean Constants. 560
18.9.3 Character Constants. 560
18.9.4 String Constants. 561
18.9.5 NULL Constants 561

18.10 Type Declarations. 561
18.10.1 Type Attributes 562
18.10.2 Base Type Specifiers. 562

x DCE 1.2.2 Application Development Guide—Core Components

Contents

18.10.3 Constructed Type Specifiers. 563
18.10.4 Predefined Type Specifiers. 564
18.10.5 Type Declarator 564

18.11 Operation Declarations. 565
18.11.1 Operation Attributes 566
18.11.2 Operation Attributes: Execution Semantics. . . . 566
18.11.3 Operation Attributes: Memory Management. . . 567

18.12 Parameter Declarations. 567

18.13 Basic Data Types 569
18.13.1 Integer Types. 569
18.13.2 Floating-Point Types. 570
18.13.3 The char Type. 570
18.13.4 The boolean Type. 571
18.13.5 The byte Type. 571
18.13.6 The void Type. 571
18.13.7 The handle_t Type. 572
18.13.8 The error_status_t Type. 572
18.13.9 International Characters. 573

18.14 Constructed Data Types. 574
18.14.1 Structures. 574
18.14.2 Unions. 576
18.14.3 Enumeration 580
18.14.4 Pipes. 581
18.14.5 Arrays. 585
18.14.6 Strings. 596
18.14.7 Pointers 597
18.14.8 Customized Handles. 618
18.14.9 Context Handles. 619

18.15 IDL Support for C++ 628
18.15.1 The idl-generated Class Hierarchy. 629
18.15.2 The Interface Inheritance Operator. 631
18.15.3 The static Keyword for Operations. 632
18.15.4 The C++ Reference Operator (&) on Parameters. . 633
18.15.5 Functions Generated by IDL. 633

18.16 Associating a Data Type with a Transmitted Type. . . . 639

18.17 IDL Grammar Synopsis. 642

Chapter 19. Attribute Configuration Language. 653

19.1 Syntax Notation Conventions 653

19.2 Attribute Configuration File. 654

DCE 1.2.2 Application Development Guide—Core Components xi

Contents

19.2.1 Naming the ACF. 654
19.2.2 Compiling the ACF 654
19.2.3 ACF Features. 654

19.3 Structure 655
19.3.1 ACF Interface Header. 656
19.3.2 ACF Interface Body 657
19.3.3 The include Statement and the C++ Attributes

cstub and sstub 658
19.3.4 The auto_handle Attribute. 659
19.3.5 The explicit_handle Attribute. 661
19.3.6 The implicit_handle Attribute. 663
19.3.7 The client_memory Attribute. 664
19.3.8 The comm_status and fault_status Attributes. . . 665
19.3.9 The code and nocode Attributes. 669
19.3.10 The represent_as Attribute. 671
19.3.11 The enable_allocate Attribute. 674
19.3.12 The heap Attribute. 675
19.3.13 The extern_exceptions Attribute. 676
19.3.14 The encode and decode Attributes. 678
19.3.15 The cs_char Attribute. 680
19.3.16 The cs_stag, cs_drtag, and cs_rtag Attributes. . . 686
19.3.17 The cs_tag_rtn Attribute. 688
19.3.18 The binding_callout Attribute. 690
19.3.19 The C++ Attributes cxx_new, cxx_static,

cxx_lookup, and cxx_delegate. 693

19.4 Summary of Attributes. 696

19.5 Attribute Configuration Language. 697

Part 4. DCE Distributed Time Service

Chapter 20. Introduction to the Distributed Time Service API. 707

20.1 DTS Time Representation. 708
20.1.1 Absolute Time Representation. 708
20.1.2 Relative Time Representation. 711

20.2 Time Structures. 713
20.2.1 The utc Structure. 714
20.2.2 The tm Structure. 715
20.2.3 The timespec Structure. 716
20.2.4 The reltimespec Structure. 716

20.3 DTS API Header Files. 717

20.4 DTS API Routine Functions. 717

xii DCE 1.2.2 Application Development Guide—Core Components

Contents

Chapter 21. Time-Provider Interface. 721

21.1 General TPI Control Flow. 722
21.1.1 ContactProvider Procedure. 725
21.1.2 ServerRequestProviderTime Procedure. 726

21.2 Time-Provider Process IDL File. 726

21.3 Initializing the Time-Provider Process. 731

21.4 Time-Provider Algorithm 733

21.5 DTS Synchronization Algorithm. 734

21.6 Running the Time-Provider Process. 735

21.7 Sources of Additional Information. 735

Chapter 22. DTS API Routines Programming Example. 737

Part 5. DCE Security Service

Chapter 23. Overview of Security. 743

23.1 Purpose and Organization of the Security Chapters. . . . 743

23.2 About Authenticated RPC. 744

23.3 About the GSSAPI. 744

23.4 UNIX System Security and DCE Security. 745

23.5 What Authentication and Authorization Mean. 746

23.6 Authentication, Authorization, and Data Protection in
Brief 747

23.7 Summary of DCE Security Services and Facilities. . . . 750
23.7.1 Interfaces to the Security Server. 751
23.7.2 Interfaces to the Login Facility. 753
23.7.3 Interfaces to the Extended Registry Attribute

Facility 753
23.7.4 Interfaces to the Extended Privilege Attribute

Facility 754
23.7.5 Interfaces to the Key Management Facility. . . . 754
23.7.6 Interfaces to the ID Map Facility. 754
23.7.7 Interfaces to the Access Control List Facility. . . 754
23.7.8 DCE Implementations of UNIX System Program

Interfaces 755
23.7.9 Interfaces to the Password Management Facility. . 755

23.8 Relationships Between the DCE Security Service and
DCE Applications 755

DCE 1.2.2 Application Development Guide—Core Components xiii

Contents

23.9 DTS, the Cell Namespace, and Security. 756
23.9.1 DTS and Security. 756
23.9.2 The Cell Namespace and the Security

Namespace 757

Chapter 24. Authentication. 759

24.1 Background Concepts. 759
24.1.1 Principals. 760
24.1.2 The Shared-Secret Authentication Protocol. . . . 761
24.1.3 Cells and Realms. 761
24.1.4 Protection Levels. 762
24.1.5 Data Encryption Mechanisms. 764

24.2 A Walkthrough of Shared-Secret Authentication Protocols. . 764
24.2.1 Authenticating a User. 765
24.2.2 Authenticating an Application. 787

24.3 Intercell Authentication. 795
24.3.1 KDS Surrogates 795
24.3.2 Intercell Authentication by Trust Peers. 797

Chapter 25. Authorization 799

25.1 DCE Authorization. 799
25.1.1 Object Types and ACL Types. 800
25.1.2 ACL Manager Types. 801
25.1.3 Access Control Lists. 802
25.1.4 ACL Entries 802
25.1.5 Access Checking. 807
25.1.6 Examples of ACL Checking 808

25.2 Name-Based Authorization. 812

Chapter 26. GSSAPI Credentials 813

26.1 Using Default Credentials. 814
26.1.1 Initiating a Security Context 815
26.1.2 Accepting a Security Context. 815

26.2 Creating New Credential Handles. 816
26.2.1 Initiating a Security Context with New

Credential Handles. 816
26.2.2 Accepting a Security Context Using New

Credential Handles. 816

26.3 Delegating Credentials. 817

xiv DCE 1.2.2 Application Development Guide—Core Components

Contents

26.3.1 Initiating a Security Context to Delegate
Credentials 817

26.3.2 Accepting a Security Context with Delegated
Credentials 817

Chapter 27. The Extended Privilege Attribute API. 819

27.1 Identities of Principals in Delegation 820
27.1.1 ACL Entry Types for Delegation. 821
27.1.2 ACL Checking for Delegation. 822

27.2 Calls to Establish Delegation Chains. 823
27.2.1 Types of Delegation 823
27.2.2 Target and Delegate Restrictions. 824
27.2.3 Optional and Required Restrictions. 826
27.2.4 Compatibility Between Version 1.1 and

Pre-Version 1.1 Servers and Clients. 827

27.3 Calls to Extract Privilege Attribute Information. 828

27.4 Disabling Delegation 830

27.5 Setting Extended Attributes. 830

Chapter 28. The Registry API. 831

28.1 Binding to a Registry Site. 831

28.2 The Registry Database. 833
28.2.1 Creating and Maintaining PGO Items. 834
28.2.2 Creating and Maintaining Accounts 836
28.2.3 Registry Properties and Policies. 837
28.2.4 Routines to Return UNIX Structures. 839
28.2.5 Miscellaneous Registry Routines. 839

Chapter 29. The Extended Attribute API. 841

29.1 The ERA API 842
29.1.1 Attribute Schema. 843
29.1.2 Attribute Types and Instances. 843
29.1.3 Attribute Type Components 843

29.2 Calls to Manipulate Schema Entries. 851
29.2.1 The sec_attr_schema_entry_t Data Type. . . . 851
29.2.2 Creating and Managing Schema Entries. . . . 853
29.2.3 Reading Schema Entries. 856
29.2.4 Reading the ACL Manager Types. 858

29.3 Calls to Manipulate Attribute Instances. 858
29.3.1 The sec_attr_t Data Type. 858

DCE 1.2.2 Application Development Guide—Core Components xv

Contents

29.3.2 Creating and Managing Attribute Instances. . . . 859
29.3.3 Reading Attribute Instances. 861

29.4 The Attribute Trigger Facility 865
29.4.1 Defining an Attribute Trigger/Attribute

Association 865
29.4.2 Trigger Binding 867
29.4.3 Access Control on Attributes with Triggers. . . . 869

29.5 Calls that Access Attribute Triggers. 869
29.5.1 Using sec_attr_trig_cursor_t with

sec_attr_trig_query() 869
29.5.2 The sec_rgy_attr_trig_query() and

sec_rgy_attr_trig_update() Calls 870
29.5.3 The priv_attr_triq_query() Call. 871

29.6 The DCE Attribute API. 871

29.7 Macros to Aid Extended Attribute Programming. 873
29.7.1 Macros to Access Binding Fields. 873
29.7.2 Macros to Access Schema Entry Fields. . . . 874
29.7.3 Macros to Access Attribute Instance Fields. . . . 876
29.7.4 Binding Data Structure Size Calculation Macros. . 878
29.7.5 Schema Entry Data Structure Size Calculation

Macros 878
29.7.6 Attribute Instance Data Structure Size

Calculation Macros 879
29.7.7 Binding Semantic Check Macros. 880
29.7.8 Schema Entry Semantic Check Macros. 881
29.7.9 Attribute Instance Semantic Check Macros. . . . 882
29.7.10 Schema Entry Flag Set and Unset Macros. . . . 882
29.7.11 Schema Trigger Entry Flag Check Macros. . . . 883

29.8 Utilities to Use with Extended Attribute Calls. 884

Chapter 30. The Login API. 885

30.1 Establishing Login Contexts. 886
30.1.1 Validating the Login Context and Certifying the

Security Server 887
30.1.2 Validating the Login Context Without Certifying

the Security Server. 888
30.1.3 Example of a System Login Program. 888

30.2 Context Inheritance. 889
30.2.1 The Initial Context. 889
30.2.2 Private Contexts 890

30.3 Handling Expired Certificates of Identity 890

xvi DCE 1.2.2 Application Development Guide—Core Components

Contents

30.4 Importing and Exporting Contexts. 891

30.5 Changing a Groupset 892

30.6 Miscellaneous Login API Functions. 893
30.6.1 Getting the Current Context 893
30.6.2 Getting Information from a Login Context. . . . 893
30.6.3 Getting Password and Group Information for

Local Process Identities 893
30.6.4 Releasing and Purging a Context. 894

Chapter 31. The Key Management API. 895

31.1 Retrieving a Key 896

31.2 Changing a Key. 896

31.3 Automatic Key Management 898

31.4 Deleting Expired Keys. 898

31.5 Deleting a Compromised Key. 898

Chapter 32. The Access Control List APIs. 901

32.1 The Client-Side API 902
32.1.1 Binding to an ACL 903
32.1.2 ACL Editors and Browsers. 903
32.1.3 Errors. 904

32.2 Guidelines for Constructing ACL Managers. 904

32.3 Extended Naming of Protected Objects. 905
32.3.1 The ACL Network Interface 907
32.3.2 The ACL Library 908

Chapter 33. The ID Map API 917

Chapter 34. DCE Audit Service. 919

34.1 Features of the DCE Audit Service. 919

34.2 Components of the DCE Audit Service. 920

34.3 DCE Audit Service Concepts. 920
34.3.1 Audit Clients 920
34.3.2 Code Point 921
34.3.3 Events. 921
34.3.4 Event Class 924
34.3.5 Event Class Number. 925
34.3.6 Filters. 925

DCE 1.2.2 Application Development Guide—Core Components xvii

Contents

34.3.7 Audit Records. 926
34.3.8 Audit Trail File 927

34.4 Administration and Programming in DCE Audit. 927
34.4.1 Programmer Tasks. 927
34.4.2 Administrator Tasks 930

Chapter 35. Using the Audit API Functions. 933

35.1 Adding Audit Capability to Distributed Applications. . . . 933
35.1.1 Opening the Audit Trail 934
35.1.2 Initializing the Audit Records. 935
35.1.3 Adding Event-Specific Information. 936
35.1.4 Committing an Audit Record. 937
35.1.5 Closing an Audit Trail File. 938

35.2 Writing Audit Trail Analysis and Examination Tools . . . 939
35.2.1 Opening an Audit Trail File for Reading. . . . 939
35.2.2 Reading the Desired Audit Records into a Buffer. . 940
35.2.3 Transforming the Audit Record into Readable

Text 941
35.2.4 Discarding the Audit Record. 942
35.2.5 Closing the Audit Trail File 942

Chapter 36. The Password Management API. 943

36.1 The Client-Side API 944

36.2 The Password Management Network Interface. 947

Chapter 37. The DCE Certification Service. 949

37.1 Who Needs to Use the Certification API?. 950

37.2 Overview of DCE Certification. 951
37.2.1 Use of Public Keys 952
37.2.2 Contents of Certificates 954
37.2.3 Component Parts of the DCE Certification API. . . 955
37.2.4 High Level Certification API 958
37.2.5 Policy Models. 959

37.3 Implementing and Registering a Cryptographic Module. . . 961
37.3.1 Contents of a Cryptographic Module. 961
37.3.2 Accessing a Registered Cryptographic Module. . . 962
37.3.3 Signature Algorithms Provided by DCE

Certification 963
37.3.4 Registering a Cryptographic Module. 963

37.4 Implementing and Registering a Policy Module. 964

xviii DCE 1.2.2 Application Development Guide—Core Components

Contents

37.4.1 Policy Modules Provided with DCE Certification. . 964

37.5 The Low Level Certificate Manipulation API 966
37.5.1 Policy Module Implementation. 967
37.5.2 Accessing a Registered Policy Module. 968
37.5.3 Registering a Policy Module. 969
37.5.4 Registering the module. 970

Index Index–1

DCE 1.2.2 Application Development Guide—Core Components xix

Contents

List of Figures

Figure 2–1. The dced Entry Lists 14

Figure 2–2. Structure of an Entry. 15

Figure 2–3. Accessing Hostdata. 19

Figure 3–1. sams and DCE Messages. 63

Figure 4–1. Serviceability and DCE Applications. 93

Figure 6–1. Work Crew Model. 157

Figure 6–2. Pipelining Model 158

Figure 7–1. Thread State Transitions. 162

Figure 7–2. Only One Thread Can Lock a Mutex. 170

Figure 7–3. Thread A Waits on Condition Ready, Then Wakes Up and Proceeds. . 173

Figure 7–4. Thread B Signals Condition Ready. 174

Figure 7–5. Thread A Wakes Up and Proceeds. 175

Figure 7–6. Flow with SCHED_FIFO Scheduling. 180

Figure 7–7. Flow with SCHED_RR Scheduling. 181

Figure 7–8. Flow with SCHED_OTHER Scheduling. 181

Figure 11–1. The Parts of an RPC Application. 231

Figure 11–2. Marshalling and Unmarshalling Between ASCII and EBCDIC Data. . 232

Figure 11–3. Interrelationships During a Remote Procedure Call. 234

Figure 11–4. Generating Stubs. 236

Figure 11–5. Building a Simple Client and Server. 237

Figure 11–6. Role of RPC Interfaces. 240

Figure 12–1. A Binding. 261

Figure 12–2. Information Used to Identify a Compatible Server. 265

Figure 12–3. Client Binding Information Resulting from a Remote Procedure
Call 269

xx DCE 1.2.2 Application Development Guide—Core Components

Contents

Figure 13–1. Manager Types. 283

Figure 13–2. Exporting Server Binding Information. 288

Figure 13–3. Importing Server Binding Information. 292

Figure 14–1. Local Application Thread During a Procedure Call. 297

Figure 14–2. Server Application Thread and Multiple Call Threads. 298

Figure 14–3. Execution Phases of an RPC Thread. 299

Figure 14–4. Concurrent Call Threads Executing in Shared Address Space. . . 300

Figure 14–5. Phases of a Cancel in an RPC Thread. 301

Figure 14–6. A Multithreaded RPC Application Acting as Both Server and
Client 304

Figure 14–7. NSI Attributes. 316

Figure 14–8. Parts of a Global Name. 319

Figure 14–9. Possible Information in a Server Entry. 321

Figure 14–10. Possible Mappings of a Group. 322

Figure 14–11. Possible Mappings of a Profile. 325

Figure 14–12. The import_next, lookup_next Search Algorithm in a Single Entry. . 335

Figure 14–13. Priorities Assigned on Proximity of Members. 346

Figure 14–14. Service Model: Interchangeable Instances on Two Hosts. 348

Figure 14–15. Service Model: Interchangeable Instances on One Host. 349

Figure 14–16. Service Model: Distinct Instances on One Host. 352

Figure 14–17. Resource Model: A System-Specific Application. 356

Figure 14–18. Resource Model: A Single Server Entry for Each Server. . . . 358

Figure 14–19. Resource Model: A Separate Server Entry for Each Object. . . . 360

Figure 15–1. Servers Need the Client Stub to Access Client-Local Objects. . . 376

Figure 15–2. Clients Use the Server Stub. 393

Figure 15–3. Multiple Interfaces and Inheritance. 401

Figure 15–4. Clients Do Not Know About Server Implementations. 408

Figure 17–1. Phases of a Nested RPC Call. 514

Figure 17–2. Phases of a Nested RPC Call to Client Address Space. 515

Figure 17–3. Steps in Routing Remote Procedure Calls. 517

Figure 17–4. Mapping Information and Corresponding Endpoint Map Elements. . 519

Figure 17–5. Decisions for Looking Up an Endpoint. 521

DCE 1.2.2 Application Development Guide—Core Components xxi

Contents

Figure 17–6. A Request Buffer at Full Capacity. 524

Figure 17–7. Stages of Call Routing by a Server Process. 526

Figure 17–8. Decisions for Selecting a Manager. 529

Figure 20–1. ISO Format for Time Displays. 709

Figure 20–2. Variations to the ISO Time Format. 710

Figure 20–3. Full Syntax for a Relative Time. 711

Figure 20–4. Syntax for Representing a Duration. 712

Figure 20–5. DTS API Routines Shown by Functional Grouping. 718

Figure 21–1. DTS/Time-Provider RPC Calling Sequence. 724

Figure 23–1. Shared-Secret Authentication and DCE Authorization in Brief. . . 749

Figure 23–2. DCE Security and the DCE Application Environment. 756

Figure 24–1. Conventions Used in Authentication Walkthrough Illustrations. . . 765

Figure 24–2. Client Initiation of Private Key Acquisition. 772

Figure 24–3. Client Acquisition of Private Key from PKSS. 774

Figure 24–4. Client Acquires TGT Using Third-Party Protocol. 776

Figure 24–5. Client Acquires TGT Using the DCE Version 1.0 Protocol. . . . 781

Figure 24–6. Client Acquires PTGT. 785

Figure 24–7. Client Sets Authentication and Authorization Information. . . . 788

Figure 24–8. Client Principal Makes Application Request. 790

Figure 24–9. Application Server Responds to Client’s Request. 792

Figure 25–1. Derivation of ACL Defaults. 801

Figure 29–1. The sec_attr_schema_entry_t Data Type. 853

Figure 29–2. The sec_attr_t Data Type. 859

Figure 29–3. The sec_attr_bind_info_t Data Type. 867

Figure 32–1. ACL Program Interfaces 902

Figure 32–2. Protection with Extended Naming. 906

Figure 34–1. Event Number Formats. 923

Figure 34–2. Overview of the DCE Audit Service 932

Figure 36–1. Use of Password Management Facility APIs. 944

Figure 37–1. How Public Keys Work: Part 1. 952

Figure 37–2. How Public Keys Work: Part 2. 952

Figure 37–3. The Essential Parts of a Certificate. 955

xxii DCE 1.2.2 Application Development Guide—Core Components

Contents

Figure 37–4. Certification API Organization. 957

Figure 37–5. A Certificate Chain. 960

DCE 1.2.2 Application Development Guide—Core Components xxiii

Contents

List of Tables

Table 2–1. API Routines for Remote Server Management. 30

Table 4–1. Serviceability Message Severities. 103

Table 4–2. Serviceability Message Processing Specifiers. 111

Table 4–3. Remote Operations by Application Servers. 129

Table 7–1. Sample Thread Properties. 180

Table 8–1. Signals for Which Handlers Are Not Provided. 191

Table 9–1. DCE Threads Exceptions. 211

Table 11–1. Basic Tasks of an RPC Application. 229

Table 12–1. Execution Semantics for DCE RPC Calls. 272

Table 13–1. Basic Runtime Routines. 279

Table 14–1. NSI next Operations 330

Table 16–1. Tasks of an Internationalized RPC Application. 426

Table 18–1. IDL Attributes. 550

Table 18–2. Base Data Type Specifiers. 562

Table 19–1. Summary of the ACF Attributes. 696

Table 20–1. Absolute Time Structures. 714

Table 20–2. Relative Time Structures. 714

Table 26–1. Credential Types 814

Table 29–1. Encodings and Required Data Types. 854

xxiv DCE 1.2.2 Application Development Guide—Core Components

Preface

The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers
and suppliers of technology. Its mission is to cause the development of a viable global
information infrastructure that is ubiquitous, trusted, reliable, and as easy-to-use as the
telephone. The essential functionality embedded in this infrastructure is what we term
the IT DialTone. The Open Group creates an environment where all elements involved
in technology development can cooperate to deliver less costly and more flexible IT
solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the
Open Software Foundation (founded in 1988), The Open Group is supported by most
of the world’s largest user organizations, information systems vendors, and software
suppliers. By combining the strengths of open systems specifications and a proven
branding scheme with collaborative technology development and advanced research,
The Open Group is well positioned to meet its new mission, as well as to assist
user organizations, vendors, and suppliers in the development and implementation
of products supporting the adoption and proliferation of systems which conform to
standard specifications.

DCE 1.2.2 Application Development Guide—Core Components xxv

Preface

With more than 200 member companies, The Open Group helps the IT industry to
advance technologically while managing the change caused by innovation. It does this
by:

• consolidating, prioritizing, and communicating customer requirements to vendors

• conducting research and development with industry, academia, and government
agencies to deliver innovation and economy through projects associated with its
Research Institute

• managing cost-effective development efforts that accelerate consistent multi-
vendor deployment of technology in response to customer requirements

• adopting, integrating, and publishing industry standard specifications that provide
an essential set of blueprints for building open information systems and integrating
new technology as it becomes available

• licensing and promoting the Open Brand, represented by the “X” mark, that
designates vendor products which conform to Open Group Product Standards

• promoting the benefits of IT DialTone to customers, vendors, and the public.

The Open Group operates in all phases of the open systems technology lifecycle
including innovation, market adoption, product development, and proliferation.
Presently, it focuses on seven strategic areas: open systems application platform
development, architecture, distributed systems management, interoperability,
distributed computing environment, security, and the information superhighway. The
Open Group is also responsible for the management of the UNIX trademark on
behalf of the industry.

The Development of Product Standards

This process includes the identification of requirements for open systems and, now, the
IT DialTone, development of CAE and Preliminary Specifications through an industry
consensus review and adoption procedure (in parallel with formal standards work),
and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to
which a vendor may register a product. There are currently two forms of Product

xxvi DCE 1.2.2 Application Development Guide—Core Components

Preface

Standard, namely the Profile Definition and the Component Definition, although these
will eventually be merged into one.

The “X” mark is used by vendors to demonstrate that their products conform to
the relevant Product Standard. By use of the Open Brand they guarantee, through
the X/Open Trade Mark License Agreement (TMLA), to maintain their products in
conformance with the Product Standard so that the product works, will continue to
work, and that any problems will be fixed by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part
of which is focused on specification development and product documentation, but
which also includes Guides, Snapshots, Technical Studies, Branding and Testing
documentation, industry surveys, and business titles.

There are several types of specification:

CAE Specifications
CAE (Common Applications Environment) Specifications are the stable
specifications that form the basis for our Product Standards, which
are used to develop X/Open branded systems. These specifications are
intended to be used widely within the industry for product development
and procurement purposes.

Anyone developing products that implement a CAE Specification can
enjoy the benefits of a single, widely supported industry standard.
Where appropriate, they can demonstrate product compliance through
the Open Brand. CAE Specifications are published as soon as they
are developed, so enabling vendors to proceed with development of
conformant products without delay.

Preliminary Specifications
Preliminary Specifications usually address an emerging area of
technology and consequently are not yet supported by multiple
sources of stable conformant implementations. They are published
for the purpose of validation through implementation of products. A
Preliminary Specification is not a draft specification; rather, it is as

DCE 1.2.2 Application Development Guide—Core Components xxvii

Preface

stable as can be achieved, through applying The Open Group’s rigorous
development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued
by formal standards organizations, and developers are encouraged to
develop products on the basis of them. However, experience through
implementation work may result in significant (possibly upwardly
incompatible) changes before its progression to becoming a CAE
Specification. While the intent is to progress Preliminary Specifications
to corresponding CAE Specifications, the ability to do so depends on
consensus among Open Group members.

Consortium and Technology Specifications
The Open Group publishes specifications on behalf of industry consortia.
For example, it publishes the NMF SPIRIT procurement specifications
on behalf of the Network Management Forum. It also publishes
Technology Specifications relating to OSF/1, DCE, OSF/Motif, and
CDE.

Technology Specifications (formerly AES Specifications) are often
candidates for consensus review, and may be adopted as CAE
Specifications, in which case the relevant Technology Specification is
superseded by a CAE Specification.

In addition, The Open Group publishes:

Product Documentation
This includes product documentation—programmer’s guides, user
manuals, and so on—relating to the Prestructured Technology Projects
(PSTs), such as DCE and CDE. It also includes the Single UNIX
Documentation, designed for use as common product documentation
for the whole industry.

Guides
These provide information that is useful in the evaluation, procurement,
development, or management of open systems, particularly those that
relate to the CAE Specifications. The Open Group Guides are advisory,
not normative, and should not be referenced for purposes of specifying
or claiming conformance to a Product Standard.

Technical Studies
Technical Studies present results of analyses performed on subjects of
interest in areas relevant to The Open Group’s Technical Program. They

xxviii DCE 1.2.2 Application Development Guide—Core Components

Preface

are intended to communicate the findings to the outside world so as
to stimulate discussion and activity in other bodies and the industry in
general.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new
developments and associated international standards. To distinguish between revised
specifications which are fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained
in the previous publication of that title, but additions/extensions are included. As
such, it replaces the previous publication.

• A new Issue indicates there is substantive change to the definitive information
contained in the previous publication of that title, and there may also be additions/
extensions. As such, both previous and new documents are maintained as current
publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda
information is published on the World-Wide Web athttp://www.opengroup.org/public/
pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available
on the World-Wide Web athttp://www.opengroup.org/public/pubs.

DCE 1.2.2 Application Development Guide—Core Components xxix

Preface

This Book

The DCE 1.2.2 Application Development Guideprovides information about how to
program the application programming interfaces (APIs) provided for each OSF

®

Distributed Computing Environment (DCE) component.

Audience

This guide is written for application programmers with UNIX operating system and
C language experience who want to develop and write applications to run on DCE.

Applicability

This revision applies to the OSF
®

DCE Release 1.2.2 offering and related updates.
See your software license for details.

Purpose

The purpose of this guide is to assist programmers in developing applications that
use DCE. After reading this guide, you should be able to program the Application
Programming Interfaces provided for each DCE component.

Document Usage

The DCE 1.2.2 Application Development Guideconsists of three books, as follows:

• DCE 1.2.2 Application Development—Introduction and Style Guide
Document Number F202, ISBN 1–85912– 187–X

• DCE 1.2.2 Application Development Guide—Core Components

xxx DCE 1.2.2 Application Development Guide—Core Components

Preface

— Volume 1
Document Number F203A, ISBN 1–85912–192–6

Part 1. DCE Facilities

Part 2. DCE Threads

Part 3. DCE Remote Procedure Call

— Volume 2
Document Number F203B, ISBN 1–85912–154–3

Part 4. DCE Distributed Time Service

Part 5. DCE Security Service

• DCE 1.2.2 Application Development Guide—Directory Services
Document Number F204, ISBN 1–85912–197–7

— Part 1. DCE Directory Service

— Part 2. CDS Application Programming

— Part 3. GDS Application Programming

— Part 4. XDS/XOM Supplementary Information

Related Documents

For additional information about the Distributed Computing Environment, refer to the
following documents:

• DCE 1.2.2 Introduction to OSF DCE
Document Number F201, ISBN 1–85912–182–9

• DCE 1.2.2 Command Reference
Document Number F212, ISBN 1–85912–138–1

• DCE 1.2.2 Application Development Reference
Document Number F205A, ISBN 1–85912–103–9 (Volume 1)
Document Number F205B, ISBN 1–85912–108–X (Volume 2)
Document Number F205C, ISBN 1–85912–159–4 (Volume 3)

• DCE 1.2.2 Administration Guide—Introduction
Document Number F207, ISBN 1–85912–113–6

DCE 1.2.2 Application Development Guide—Core Components xxxi

Preface

• DCE 1.2.2 Administration Guide—Core Components
Document Number F208, ISBN 1–85912–118–7

• DCE 1.2.2 DFS Administration Guide and Reference
Document Number F209A, ISBN 1–85912–123–3 (Volume 1)
Document Number F209B, ISBN 1–85912–128–4 (Volume 2)

• DCE 1.2.2 GDS Administration Guide and Reference
Document Number F211, ISBN 1–85912–133–0

• DCE 1.2.2 File-Access Administration Guide and Reference
Document Number F216, ISBN 1–85912–158–6

• DCE 1.2.2 File-Access User’s Guide
Document Number F217, ISBN 1–85912–163–3

• DCE 1.2.2 Problem Determination Guide
Document Number F213A, ISBN 1–85912–143–8 (Volume 1)
Document Number F213B, ISBN 1–85912–148–9 (Volume 2)

• DCE 1.2.2 Testing Guide
Document Number F215, ISBN 1–85912–153–5

• DCE 1.2.2 File-Access FVT User’s Guide
Document Number F210, ISBN 1–85912–189–6

• DCE 1.2.2 Release Notes
Document Number F218, ISBN 1–85912–168–3

Typographic and Keying Conventions

This guide uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must use
literally, such as commands, options, and pathnames.

Italic Italic words or characters represent variable values that you must supply.
Italic type is also used to introduce a new DCE term.

Constant width
Examples and information that the system displays appear in
constant width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

xxxii DCE 1.2.2 Application Development Guide—Core Components

Preface

{ } Braces enclose a list from which y ou must choose an item in format
and syntax descriptions.

| A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

... Horizontal ellipsis points indicate that you can repeat the preceding item
one or more times.

This guide uses the following keying conventions:

<Ctrl- x> or ^x
The notation<Ctrl- x > or ^x followed by the name of a key indicates
a control character sequence. For example,<Ctrl-C> means that you
hold down the control key while pressing<C>.

<Return> The notation<Return> refers to the key on your terminal or workstation
that is labeled with the word Return or Enter, or with a left arrow.

Problem Reporting

If you have any problems with the software or vendor-supplied documentation, contact
your software vendor’s customer service department. Comments relating to this Open
Group document, however, should be sent to the addresses provided on the copyright
page.

Pathnames of Directories and Files in DCE
Documentation

For a list of the pathnames for directories and files referred to in this guide, see the
DCE 1.2.2 Administration Guide—IntroductionandDCE 1.2.2 Testing Guide.

DCE 1.2.2 Application Development Guide—Core Components xxxiii

Preface

Trademarks

Motif ®, OSF/1®, and UNIX® are registered trademarks and the IT DialTone
TM

, The
Open Group

TM

, and the “X Device”
TM

are trademarks of The Open Group.

DEC, DIGITAL, and ULTRIX are registered trademarks of Digital Equipment
Corporation.

DECstation 3100 and DECnet are trademarks of Digital Equipment Corporation.

HP, Hewlett-Packard, and LaserJet are trademarks of Hewlett-Packard Company.

Network Computing System and PasswdEtc are registered trademarks of Hewlett-
Packard Company.

AFS, Episode, and Transarc are registered trademarks of the Transarc Corporation.

DFS is a trademark of the Transarc Corporation.

Episode is a registered trademark of the Transarc Corporation.

Ethernet is a registered trademark of Xerox Corporation.

AIX and RISC System/6000 are registered trademarks of International Business
Machines Corporation.

IBM is a registered trademark of International Business Machines Corporation.

DIR-X is a trademark of Siemens Nixdorf Informationssysteme AG.

MX300i is a trademark of Siemens Nixdorf Informationssysteme AG.

NFS, Network File System, SunOS and Sun Microsystems are trademarks of Sun
Microsystems, Inc.

PostScript is a trademark of Adobe Systems Incorporated.

Microsoft, MS-DOS, and Windows are registered trademarks of Microsoft Corp.

xxxiv DCE 1.2.2 Application Development Guide—Core Components

Preface

NetWare is a registered trademark of Novell, Inc.

DCE 1.2.2 Application Development Guide—Core Components xxxv

Part 1
DCE Facilities

Chapter 1
Introduction to DCE Facilities

By now you are aware that DCE consists of a number of major components, each of
which addresses some necessary aspect of distributed computing: DCE Threads make
programs more efficient by allowing parallel execution of portions of code, remote
procedure calls (RPCs) hide network details from applications, the DCE Time Service
gives consistent time to widely scattered cells and hosts, the DCE Security Service
gives programs assurances that users and other programs are who they say they are and
that they are authorized to do what they are supposed to do, and the DCE Directory
Service helps clients find servers and other resources. For most applications, a DCE
component is not used by itself, but the components all work together to create a very
useful and powerful environment.

The more you understand DCE and its components, the more you’ll realize that a strict
division by component is not always clear. The document set for DCE is organized
by component mostly for the convenience of people trying to explain and understand
DCE, but applications often contain a blend of aspects of all the components. This
is why it often seems like the information you need to do your work is scattered
across many chapters or volumes, and why advanced or unusual features seem to be
described along-side basic or typical tasks. DCE also has some special facilities that
just do not fit neatly into any one discussion of a DCE component, and these are

DCE 1.2.2 Application Development Guide—Core Components 3

DCE Facilities

the facilities we describe in this first part of theDCE 1.2.2 Application Development
Guide—Core Components.

You should read theDCE 1.2.2 Application Development—Introduction and Style
Guide prior to using the DCE facilities described here, and you may want to skip
to other parts of this guide before learning details about the DCE facilities.

Most DCE facilities are already used by one or more major components of DCE to
accomplish some feature they require; others are standalone facilities intended to make
developing distributed applications easier. These facilities are described separately here
so that you can use them for your own applications too. The DCE facilities include
the following:

• Host Services

Host services give remote access to several kinds of data and functionality with
respect to each DCE host and its servers. Each host runs a DCE host daemon
(dced) as the interface to the host services. In many cases,dced automatically
maintains the data and performs the functions. Some of the data that you can access
(and maintain) remotely includes the host name, the host’s cell name, configuration
and execution data for all servers on the host, and a database of endpoints (server
addresses) through which running servers can be contacted. Some of the functions
that you can remotely perform include starting and stopping servers.

• Application Message Service

This service provides a convenient way to manage readable character strings
of information that are usually displayed to application users. The service uses
message catalogs to maintain message text and explanations separate from the
program so that language, cultural, or other site-specific issues are easily managed
for applications. The message text can also be in memory during program
execution for more efficient programs.

• Serviceability

Serviceability is another kind of message text service with functionality beyond
just the display of general-purpose text. Serviceability is typically used for
message text about a server’s activity. Messages can be displayed through standard
output or standard error, or they can be routed to log files. The serviceability
facility maintains message text in catalogs (or memory) just as the application
message service does; but, in addition to the text and its explanation, additional
attributes specify subcomponents (program modules), message severity, the action
users or programs should take, and the debug level.

4 DCE 1.2.2 Application Development Guide—Core Components

Introduction to DCE Facilities

• Backing Store Database Service

You use a backing store to maintain typed data between invocations of
applications. For example, you could store application-specific configuration data
in a backing store, and then, when the application restarts, it could read the
previous configuration from the backing store. Data is stored and retrieved by a
Universal Unique Identifier (UUID) or character string key, and each record (or
data item) may have a standard header if you wish.

As DCE has developed and improved, useful facilities such as serviceability have
been added to make DCE easier and more useful. For example, serviceability makes
a distributed application much easier to develop. With it, you can log and distinguish
debug messages from complex applications involving multiple clients, servers, and
threads. Although the major components are required to make DCE work, this kind
of facility is not required.

Some solutions developed to implement a major component’s feature can also prove
useful to your applications. For example, the security component must have a way to
maintain access control lists (ACLs). While the backing store was developed to handle
this kind of task, you can use this facility to store your own application-specific data
across invocations.

This first part of theDCE 1.2.2 Application Development Guide—Core Components
describes how you might put these useful facilities to work in your applications.

DCE 1.2.2 Application Development Guide—Core Components 5

Chapter 2
DCE Host Services

Every DCE host must maintain certain kinds of data about itself and the servers it
provides. For example, each host stores configuration data about its DCE environment,
and it also stores data about servers registered and running on the host. In addition,
each host needs some services to not only manage this data but also to administer the
host and DCE servers. For example, a service that can start and stop specific servers
has obvious value. The DCE host services consist of the following:

• Endpoint Mapper

The endpoint mapper service enables a client to find servers on a particular host
and the services and objects provided by those services. This service maintains on
each host an endpoint map that contains a mapping of port addresses (endpoints)
to servers, the services servers provide, and the objects servers manage.

• Hostdata Management

The hostdata management service stores and controls access to such data as the
host’s cell name, the host name, and the cell alias names, among other things.

• Server Management

DCE 1.2.2 Application Development Guide—Core Components 7

DCE Facilities

The server management service can start and stop specified servers on a host,
enable or disable specific services provided by a server, and manage configuration
and execution data about these servers.

• Security Validation

The security validation service maintains a login context for the host’s identity
of itself, maintains the host principal’s keys, and ensures applications (especially
login programs) that the DCE security daemon (secd) is genuine.

• Key Table Management

A server uses private keys for its security instead of human-entered passwords.
The key table management service can be used to manage the keys stored in key
tables on a server’s host.

Of course, in a distributed environment, these data and services must be easily yet
securely accessible from other hosts. The DCE host daemon (dced) is a continuously
running program on each host that provides access to the host services either locally
on that host or remotely from another host.

2.1 Types of Applications

Although applications may need some aspect of these host services (control over which
services are enabled for a particular server, for example), typical servers do not have
to do any special coding for them. This reduces the size and complexity of server
code and keeps the details of administration out of applications. It also removes the
burden of server administration so you can concentrate on the application’s business
functionality.

System administrators will appreciate this development model too because it is unlikely
that many servers implementing their own administrative mechanisms will all behave
in the same manner. Administrators commonly use the DCE control program,dcecp,
to access the host services (viadced) of any host in their distributed environment
(provided the user has the appropriate permissions). The DCE control program also
uses a script language for more sophisticated administration. See theDCE 1.2.2
Administration Guide—Core Componentsfor more on usingdcecp to access the host
services.

8 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

Although dcecp commands offer an administrator a great deal of control over DCE
hosts and servers, a set of APIs are also supplied for application developers who need
to access the DCE host services from an application rather than from scripts or the
operating system’s command line.

Typical business applications do not use the APIs of these services, but amanagement
applicationmight. A management application is a client or server that manages other
servers or some aspect of the distributed environment. (Thedced program is itself a
management application that is built into DCE.) Some other types of applications that
might use these API include

• Applications that control other servers for load balancing or server redundancy.

• An application that uses a graphical user interface (GUI) instead of the command-
line interface provided bydcecp.

• An application that needs to monitor a server’s current state. For example, an
application may need to make sure a particular server or one of its services is
available.

2.2 Issues of Distributed Applications

The most important aspect ofdced is that it gives system administrators the ability to
remotely manage services, servers, endpoints, and even objects on any host in DCE.
This eliminates the frustrating and tedious task of logging into many different hosts
to manage them. This also allows for scalability because it is impractical to manage
a large system by logging into all its hosts.

The features ofdced are greatly enhanced when used remotely. Of course, an
administrator can usedced to locally manage a host’s services, butdced’s real power
is in remotely managing system and application server configurations, key tables,
server startup, login configurations, and cell information.

Security becomes a major issue when it comes to remote services. With the power
of dced’s services anddcecp, it is important that only authorized principals can use
them. Thedced program controls access to its various objects by using ACLs. Server
keys are security-sensitive data that must be seldom transmitted over the network.
All key table data is encrypted when it is transmitted for secure remote key table
management.

DCE 1.2.2 Application Development Guide—Core Components 9

DCE Facilities

Finally, the remote capabilities ofdced give you real-time status of processes and
services in DCE.

2.3 Managing a Host’s Endpoint Map

Each DCE host has an endpoint map that contains a mapping of servers to endpoints.
Each endpoint map server entry is associated with an array of services (interfaces)
provided by the server, and each service is associated with an array of objects supported
by the service.

When a typical server calls thedce_server_register()routine, the RPC runtime
generates the endpoints on which the server will listen for calls and then usesdced’s
endpoint mapper service of the local host to register the endpoints. Later, when a
typical client makes a remote procedure call, its RPC runtime uses the server host’s
endpoint mapper service to find the server. When the typical server shuts down, it
calls thedce_server_unregister()routine to remove its endpoints from the endpoint
map so that clients do not later try to bind to it.

Applications can also use the lower-levelrpc_ep_register() and associated RPC
routines. Because the endpoint map is essential for RPCs to work, endpoints are
fully described in Chapter 12 and the endpoint map structure is described with respect
to routing of RPCs in Chapter 16.

The endpoint map is for the most part maintained automatically bydced. For example,
it periodically removes stale endpoints so that the RPC runtime will not try to complete
a binding for a client to a server that is no longer running. However, administrative
applications may find it necessary to peruse a remote endpoint map and even remove
specific endpoints from a local host’s endpoint map.

To read the elements of a remote endpoint map, applications use a loop with the
set of routinesrpc_mgmt_ep_elt_inq_begin(), rpc_mgmt_ep_elt_inq_next(), and
rpc_mgmt_ep_elt_inq_done(). The inquiry can return all elements until the list is
exhausted, or the inquiry can be restricted to return elements for the following:

• Elements matching an interface identifier (UUID and version number)

• Elements matching an object UUID

• Elements matching both an interface identifier and object UUID

10 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

Administrators can manage the endpoint map by usingdcecpwith theendpoint object.

You can use thedced_server_disable_if()routine to mark as disabled all the endpoints
for a specific interface. This will prevent any new RPCs with partial bindings
from binding to the server for this interface, but not prevent clients from using
the interface if they already have a full binding with these endpoints. You can use
the dced_server_enable_if()routine to reenable previously disabled interfaces. In an
extreme situation, you could permanently remove endpoints directly from the local
endpoint map by calling therpc_mgmt_ep_unregister()routine. This function cannot
be done remotely for security reasons.

2.4 Binding to dced’s Services

When you write a program that uses a host service, you begin by creating adced
binding to the service on a particular host. Bindings are relationships between clients
and servers that allow them to communicate. Adced binding is a specific kind of
binding that not only gives your application a binding to thedced1 server but also
associates the binding with a specific host service on that server.

In general, an application follows these basic steps to use a host service:

1. Establish a binding to the service on the desired host. For example, your
application can establish a binding to the host data management service on another
host.

2. Obtain one or moredced entries for that service. For example, your application
can obtain thehostdata entry that identifies the host’s cell name, among other
things. This step is valid for the following services:

• hostdata management

• server management

• key table management

1. Applications must establish a binding to each host service used. However, the endpoint
mapper service uses a different binding mechanism and API from the other host services.
This is due to the fact that the endpoint mapper service already existed within the very large
RPC API in earlier versions of DCE, prior to the development ofdced.

DCE 1.2.2 Application Development Guide—Core Components 11

DCE Facilities

Depending on the service and function desired, this step may or may not be
necessary. For example, the security validation service does not store data, so
dced maintains no entries for this service.

3. Access (read or write) the actual data for the entries obtained or perform other
functions appropriate for the service. For example, if your application reads the
hostdata management service’s cell name entry, the API accessesdced which
may actually read the data from a file. For another example, if your application
established a binding to the security validation service, it could validate the
security daemon.

4. Release the resources obtained in step 2.

5. Free the binding established in step 1.

Applications bind to a host service by using thedced_binding_create() or
dced_binding_from_rpc_binding() routine. The first routine establishes adced
binding to a service on a host specified in a service name, and the second routine
establishes adced binding to a service on a host for which the application
already has a binding. Both of the routines return adced binding handle of type
dced_binding_handle_t, which is used as an input parameter to all otherdced API
routines.

2.4.1 Host Service Naming in Applications

Applications include a host service name as input to thedced binding routine
dced_binding_create(). A host service name is a string that may include a host name,
or a cell and host name. The following key words in the host service name refer to a
specific DCE host service:

hostdata Refers to configuration data of the hostdata management service.

srvrconf Refers to the static server configuration portion of the server
management service. This refers to the management of a DCE-installed
server.

srvrexec Refers to the dynamic server execution portion of the server management
service. This refers to the management of a running DCE-installed
server.

secval Refers to the security validation service.

12 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

keytab Refers to the private key data of the key table management service.

The following examples show service names and the locations of the hosts in the
namespace:

service The host is local, the same as the application’s.

service@hosts/host
The host is in the local namespace.

/.:/hosts/host/config/ service
The complete specification forservice@hosts/hostwhere the host is in
the local namespace.

/.../cell/hosts/host/config/ service
The host is in the global namespace.

Because thedced_binding_from_rpc_binding() routine already knows which host
to bind to from an RPC binding input parameter, it uses one of the global variables
defined for each service (instead of a string) to specify whichdced service to use.

2.4.2 The dced Program Maintains Entry Lists

One dced service’s data is very different from another’s (for example, server
configuration data versus key table data), but you manipulate the data in a similar
way. This is because it is a simpler and more efficient design to implement a few API
routines that can handle more than one kind of data rather than many routines that
do essentially the same thing but on a different service’s data. An added benefit is a
flexible API that can handle your own application’s data and new kinds of DCE data
in the future.

To separate the actual data from the API implementation, adced service maintains a
list of all data items in anentry list. Entry lists containentriesthat describe the name
and location of each item of data, but they do not contain the actual data. With this
mechanism,dcedcan obtain and manipulate data very efficiently, without concern for
the implementation and location of the actual data. It also supports well the model
that administrators commonly need when accessing data: scan a list, select an item,
and use the data.

DCE 1.2.2 Application Development Guide—Core Components 13

DCE Facilities

The dced program maintains entry lists for thehostdata, srvrconf, srvrexec, and
keytab services. Thesecvalservice does not need an entry list because it does not
maintain any data, but functions are performed to set its state.

There is a special relationship betweensrvrconf andsrvrexecentries. In order fordced
to control the start of a server, the server must have asrvrconf entry associated with
server configuration data. Whendced starts a server, it generates from thesrvrconf
entry and data asrvrexecentry and associates the new entry with the running server’s
state.

Figure 2-1 shows the entry lists maintained bydced.

Figure 2–1. The dced Entry Lists

....

...

...

...

...

.

.

.

Server Management Entry Lists

.

.

.

..

srvrexec entry listsrvrconf entry list

Server Configuration Entry Server Execution Entry

keytab entry list

Key Table Entry

hostdata entry list

Host Data Entry

dced

14 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

Although an entry can be associated with many different kinds of data items, all entries
have the same structure, shown in Figure 2-2.

Figure 2–2. Structure of an Entry

Entry UUID, Name, Description, Storage Tag

Each entry is adced_entry_t data structure. Each member of this data structure is
described as follows:

id An entry UUID is necessary to uniquely identify the data item. Some
data items have well-known UUIDs (the same UUID for the particular
item on all hosts). The data type isuuid_t.

name Each data item is identified with a name, to which applications refer.
The name need only be unique within an entry list because the entry
UUID guarantees the entry’s uniqueness. Some item names are well-
known and defined in header files. The data type isdced_string_t.

description This is a human-readable description of the data item. Its data type is
dced_string_t.

storage_tag The storage tag locates the actual data. Each serviceknows how to
interpret this tag to find the data. For example, some data is stored in
a file, the name of which is contained in the storage tag. Other data is
stored in memory and the storage tag contains a pointer to the memory
location. The data type isdced_string_t.

2.4.3 Reading All of a Host Service’s Data

Suppose you want to display host service data in an application that has a graphical
user interface. Thedcecp commands may not be adequate to display data for this
application. The following example shows how to obtain the entire set of data for
each host service:

dced_binding_handle_t dced_bh;

dced_string_t host_service;

DCE 1.2.2 Application Development Guide—Core Components 15

DCE Facilities

void *data_list;

unsigned32 count;

dced_service_type_t service_type;

error_status_t status;

.

.

.

while(user_selects(&host_service, &service_type)){ /*application*/

/*specific*/

dced_binding_create(host_service,

dced_c_binding_syntax_default,

&dced_bh,

&status);

if(status == error_status_ok) {

dced_object_read_all(dced_bh, &count, &data_list, &status);

if(status == error_status_ok) {

display(service_type, count, data_list); /* application*/

/* specific*/

dced_objects_release(dced_bh, count, data_list, &status);

}

dced_binding_free(dced_bh, &status);

}

}

user_selects()
This is an example of an application-specific routine that constructs the
complete service name from host and service name information. Data
is stored and retrievable for thehostdata, srvrconf, srvrexecD, and
keytab services. No data is stored for thesecvalservice.

dced_binding_create()
Output from thedced_binding_createroutine includes adced binding
handle whose data type isdced_binding_handle_t. If an application
already has an RPC binding handle to a server on the host desired, it
can use thedced_binding_from_rpc_binding() routine to bind todced
and one of its host services on that host. (Applications also use these
routines to bind to thesecvalservice to perform other functions.)

16 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

dced_object_read_all()
Applications use thedced_object_read_all()routine to read data for
all the objects in an entry list. The output includes the address of an
allocated buffer of data and a count of the number of objects the buffer
contains. The data type in the buffer depends on the service used.

display() This is an application-specific routine that displays the data. Before the
data is displayed, it must be interpreted depending on the service. The
hostdatadata is an array ofsec_attr_tdata structures, thesrvrconf and
srvrexec data are arrays ofserver_t structures, and thekeytab data is
an array ofdced_key_list_tstructures. The following code fragments
show the data type for each service:

void display(

dced_service_type_t service_type, /* dced service type */

int count, /* count of the number of data items */

void *data) /* obtained from dced_object_read{_all}()*/

{

sec_attr_t *host_data;

server_t *servers;

dced_key_list_t *keytab_data;

.

.

.

switch(service_type) {

case dced_e_service_type_hostdata:

host_data = (sec_attr_t *)data;

. . .

case dced_e_service_type_srvrconf:

servers = (server_t *)data;

. . .

case dced_e_service_type_srvrexec:

servers = (server_t *)data;

. . .

case dced_e_service_type_keytab:

keytab_data = (dced_key_list_t *)data;

. . .

default:

/* No other dced service types have data to read. */

DCE 1.2.2 Application Development Guide—Core Components 17

DCE Facilities

break;

}

return;

}

dced_objects_release()
Each call to the dced_object_read_all() routine requires a
corresponding call todced_objects_release()to release the resources
allocated.

dced_binding_free()
Each call to thedced_binding_create()routine requires a corresponding
call to dced_binding_free() to release the resources for the binding
allocated.

2.4.4 Managing Individual dced Entries

Figure 2-3 shows examples of individualdced entries and the locations of associated
data. The data item name or its UUID is used to find an entry, and then the storage
tag is used to find the data.

18 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

Figure 2–3. Accessing Hostdata

UUID . . . file location

data

data

data

data

dced

Local Host’s Disk

DCE Host

hostdata entry

srvrexec entry

srvrconf entry

keytab entry

UUID . . . file location

UUID . . . object location

UUID . . . object location

The data for eachhostdata item is stored in a file on disk. Thedced program uses
the UUID to find the entry in thehostdata entry list. The entry’s storage tag is then
used to find the data. Forhostdata, the tag contains a filename in OSF’s reference
implementation. The data returned for one entry is an array of strings in asec_attr_t
structure.

The server management data is stored in memory. Thedced program uses UUIDs
(maintained in the entry lists bydced) to find an entry. The location of the data in

DCE 1.2.2 Application Development Guide—Core Components 19

DCE Facilities

memory is indicated by the storage tag. The data returned for one entry is a structure
of server data (server_t). All data for thesrvrconf andsrvrexec entries are accessed
from memory for fast retrieval, but thesrvrconf data is also stored on disk for use
when a host needs to reboot.

Eachkeytab entry stores its data in a file on disk. However, like the server management
entries, thekeytab entries use server names and corresponding UUIDs (maintained
by dced) to identify each entry. The storage tag contains the name of the key table
file. The data returned for one entry is a list of keys of typedced_key_list_t.

The following example shows how to obtain and manage individual entries for the
hostdata, srvrconf, srvrexec, or keytab services:

handle_t rpc_bh;

dced_binding_handle_t dced_bh;

dced_entry_list_t entries;

unsigned32 i;

dced_service_type_t service_type;

void *data;

error_status_t status;

.

.

.

dced_binding_from_rpc_binding(service_type, rpc_bh, &dced_bh, &status);

if(status != error_status_ok)

return;

dced_list_get(dced_bh, &entries, &status);

if(status == error_status_ok) {

for(i=0; i<entries.count; i++) {

if(select_entry(entries.list[i].name)) {/* application specific */

dced_object_read(dced_bh, &(entries.list[i].id), &data, &status);

if(status == error_status_ok) {

display(service_type, 1, &data); /* application specific */

dced_objects_release(dced_bh, 1, data, &status);

}

}

}

dced_list_release(dced_bh, &entries, &status);

}

20 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

dced_binding_free(dced_bh, &status);

Each routine is described as follows:

dced_binding_from_rpc_binding()
Thedced_binding_from_rpc_binding() routine returns adcedbinding
handle whose data type isdced_binding_handle_t. This binding handle
is used in all subsequentdced API routines to access the service.
The host is determined from the RPC binding handle,rpc_bh, and the
service_typeis selected from the following list:

• dced_e_service_type_hostdata

• dced_e_service_type_srvrconf

• dced_e_service_type_srvrexec

• dced_e_service_type_keytab

dced_list_get()
Applications use thedced_list_get() routine to get a service’s entire
list of names. Using thedced_list_get()routine gives your application
great flexibility when manipulating entries in an entry list. If you
prefer, your application can use thedced_entry_cursor_initialize(),
dced_entry_get_next(), and dced_entry_cursor_release() set of
routines to obtain individual entries, one at a time.

select_entry()
This is an application-specific routine that selects which entry to use
based on the entry name.

dced_object_read()
The default attribute fordced_object_read()is to return an array of
strings. Thehostdata andkeytab services have other read routines that
allow you to specify binary data.

display() This is an example of an application-specific routine that simply displays
the server configuration data read. Depending on the service, a different
data structure is used. For thehostdata service, asec_attr_t is used.
For thesrvrconf andsrvrexecservicesserver_t structures are used. For
the keytab service, adced_key_list_tstructure is used.

DCE 1.2.2 Application Development Guide—Core Components 21

DCE Facilities

dced_objects_release()
After your application is finished with the data read with the
dced_object_read()routine, free the buffer of allocated data by using
the dced_objects_release()routine.

dced_list_release()
Each call to thedced_list_get()routine requires a corresponding call to
dced_list_release()to release the resources allocated for the entry list.

dced_binding_free()
Each call to thedced_binding_from_rpc_binding() routine requires a
corresponding call todced_binding_free() to release the resources of
the allocated binding.

2.5 Managing Hostdata on a Remote Host

Administrators typically use thedcecp hostdataobject to remotely manage the data
of the hostdata service. However, application developers can use thedced API for
their own management applications or ifdcecpdoes not handle a task in the desired
way, such as for a browser of hostdata that uses a graphical user interface.

2.5.1 Kinds of Hostdata Stored

Each hostdata item is stored in a file, anddced has a UUID associated with each.
The standard data items include the following well-known names:

cell_name The name of the cell to which your host belongs is stored.

cell_aliases When the cell name changes, the old names are designated as cell aliases.

dce_cf.db The DCE configuration data file is stored.

host_name The host name is stored.

pe_site The location of the security server is stored.

post_processors
The post_processorsfile contains UUID-program pairs for which the
UUIDs represent otherhostdataitems. If changes occur to an associated
hostdata item, the system runs the program.

22 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

svc_routing The default routing file for serviceability messages is stored.

Depending on your DCE provider, additional items may exist. In addition to the well-
knownhostdata items, applications can also add their own. The well-knownhostdata
items have well-known UUIDs defined in the file/usr/include/dce/dced_data.h, but
you can use thedced_inq_uuid() routine to obtain any UUID associated with any
name known todced.

2.5.2 Adding New Hostdata

In addition to modifying existing hostdata, you can add your own data by using the
hostdata API. For example, suppose you want to add a printer to a host and make the
configuration file part of that host’sdced data. The following example shows how to
do this:

dced_binding_handle_t dced_bh;

error_status_t status;

dced_entry_t entry;

dced_attr_list_t data;

int num_attr, str_size;

sec_attr_enc_str_array_t *attr_array;

.

.

.

dced_binding_create(dced_c_service_hostdata,

dced_c_binding_syntax_default,

&dced_bh,

&status);

/*Create Entry Data */

uuid_create(&(entry.id), &status);

entry.name = (dced_string_t)("NEWERprinter");

entry.description = (dced_string_t)("Configuration for a new printer.");

entry.storage_tag = (dced_string_t)("/etc/NEWprinter");

/* Create the Attributes, one for this example */

data.count = 1;

num_attr = 1;

DCE 1.2.2 Application Development Guide—Core Components 23

DCE Facilities

data.list = (sec_attr_t *)malloc(data.count * sizeof(sec_attr_t));

(data.list)->attr_id = dced_g_uuid_fileattr;

(data.list)->attr_value.attr_encoding = sec_attr_enc_printstring_array;

str_size = sizeof(sec_attr_enc_str_array_t) +

num_attr * sizeof(sec_attr_enc_printstring_p_t);

attr_array = (sec_attr_enc_str_array_t *)malloc(str_size);

(data.list)->attr_value.tagged_union.string_array = attr_array;

attr_array->num_strings = num_attr;

attr_array->strings[0] =

(dced_string_t)("New printer configuration data");

dced_hostdata_create(dced_bh, &entry, &data, &status);

dced_binding_free(dced_bh, &status);

The description of this example is as follows:

dced_binding_create()
This routine creates adced binding to a dced service. The binding
handle created is used in all subsequent calls to appropriatedced
API routines. By using thedced_c_server_hostdatavalue for the first
parameter, we are using thehostdata service on the local host.

Create Entry Data
Prior to creating ahostdata entry, we have to set its values. These
include the name and UUID thatdcedwill use to identify the new data,
a description of the entry, and a filename with the full pathname of
where the actual data will reside.

Create the Attributes
The data stored is of typesec_attr_t. This data type is a very flexible
one that can store many different kinds of data. In this example, we set
the file to have one attribute, printable string information. This example
has only one string of data. You can also establish binary data for the
file.

dced_hostdata_create()
This routine takes the binding handle, entry, and new data as input; it
creates the file with the new data and returns a status code.

24 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

If the printer configuration file already exists on the host, but you want
to now make it accessible todced, use thedce_entry_add() routine
instead ofdced_hostdata_create().

dced_binding_free()
Each call to thedced_binding_create()routine requires a corresponding
call to dced_binding_free()to release the binding resources allocated.

Use thedced_hostdata_delete()routine to delete application-specifichostdata items
and their entries. For example, the printer installed in the example is easily removed
with this routine. If you are only taking the printer out of service for a short time, use
the dced_entry_remove()routine to remove thedcedentry but not the data file itself.
When the printer is later ready again, use thedced_entry_add()routine to reinstall it.

Do not delete the well-knownhostdata items or remove their entries.

2.5.3 Modifying Hostdata

Changing hostdata cannot only change the way the host works but it also affects
other files and processes on the host. Therefore, care should be taken when changing
hostdata. Deleting the well-knownhostdata entries can cause even more serious
operational problems for the host.

The current as well as earlier versions of DCE provide configuration routines that use
a dce_cf.db file for data. When hostdata changes,dced also makes the appropriate
changes to this file so that thedce_cf* routines continue to work correctly. This is
one reason thehostdata items are established as well-known names with well-known
UUIDs so thatdced knows which values to monitor.

Management applications use thedced_hostdata_read()routine to obtain the data for
an entry referred to by an entry UUID. To modify an entry’s actual data, applications
use thedced_hostdata_write()routine. This routine replaces the old data with the new
data for thehostdata entry represented by the entry UUID. Thehostdata entry must
already exist because this routine will not create it. Use thedced_hostdata_create()
routine to create newhostdata entries.

DCE 1.2.2 Application Development Guide—Core Components 25

DCE Facilities

2.5.4 Running Programs Automatically When Hostdata Changes

The following example shows how to use thepost_processorsfeature of the well-
known hostdata to causedced to automatically run a program if anotherhostdata
entry changes. In this example, thepost_processorsfile is read, and data is added for
theNEWERprinterhostdata entry created in an earlier example. The data is placed in
a dced_attr_list_t structure and written back to thepost_processors hostdataentry.

dced_binding_handle_t dced_bh;

uuid_t entry_uuid;

sec_attr_t *data_ptr;

error_status_t status;

int i, num_strings, str_size;

sec_attr_enc_str_array_t *attr_array;

unsigned_char_t *string_uuid, temp_string[200];

dced_attr_list_t attr_list;

dced_binding_create(dced_c_service_hostdata,

dced_c_binding_syntax_default,

&dced_bh,

&status);

dced_hostdata_read(dced_bh,

&dced_g_uuid_hostdata_post_proc,

&dced_g_uuid_fileattr,

&data_ptr,

&status);

/* Create New Array and Copy Old Data into it */

num_strings =

data_ptr->attr_value.tagged_union.string_array->num_strings + 1;

str_size = sizeof(sec_attr_enc_str_array_t) +

num_strings * sizeof(sec_attr_enc_printstring_p_t);

attr_array = (sec_attr_enc_str_array_t *)malloc(str_size);

attr_array->num_strings = num_strings;

for(i=0; i<(num_strings-1); i++) {

attr_array->strings[i] =

data_ptr->attr_value.tagged_union.string_array->strings[i];

}

26 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

dced_inq_id(dced_bh, "NEWERprinter", &entry_uuid, &status);

uuid_to_string(&entry_uuid, &string_uuid, &status);

sprintf(temp_string, "%s %s", string_uuid, "/path/and/program/to/run");

attr_array->strings[num_strings-1] = (dced_string_t)(temp_string);

data_ptr->attr_value.tagged_union.string_array = attr_array;

attr_list.count = 1;

attr_list.list =

(sec_attr_t *)malloc(attr_list.count * sizeof(sec_attr_t));

attr_list.list = data_ptr;

dced_hostdata_write(dced_bh,

&dced_g_uuid_hostdata_post_proc,

&attr_list,

&status);

dced_objects_release(dced_bh, 1, (void*)(data_ptr), &status);

dced_binding_free(dced_bh, &status);

The description of this example is as follows:

dced_binding_create()
This routine creates adcedbinding to thehostdataservice on a specified
host. The binding handle created is used in all subsequent calls to
appropriatedcedAPI routines. Thedced_c_service_hostdataargument
is a constant string that is the well-known name of thehostdataservice.
When this string is used by itself, it refers to the service on the local
host.

dced_hostdata_read()
This routine reads thehostdata item referred to by the entry UUID.
In this example, the global variabledced_g_uuid_hostdata_post_proc
represents the UUID for the well-knownpost_processorsfile. The
second parameter specifies an attribute for the data. Attributes describe
how the data is to be interpreted. In this example, we know the data to
be read is plain text, so we use the global variabledced_g_uuid_fileattr
to specify plain text rather than binary data (dced_g_uuid_binfileattr).

DCE 1.2.2 Application Development Guide—Core Components 27

DCE Facilities

Create a New Array
The next few lines copy the existing array of print strings into a new
array that has additional space allocated for the new data.

dced_inq_id()
This routine acquires the UUIDdced that maintains for a known entry
name. In this example, we need the UUID for theNEWERprinter
hostdata entry so that it can be included in the data stored back in the
post_processorsfile.

uuid_to_string()
This routine returns the string representation of a UUID. Each line in
the post_processorsfile contains a string UUID and a program name
for dced to run if thehostdata entry referred to by the UUID changes.
The next few lines create a new string containing the string UUID and
a program name, adds the new string to the new array, and reassigns the
new array to the old data pointer.

dced_hostdata_write()
Since hostdata could have more than one attribute associated with each
entry, the data must be inserted in an attribute list data structure before
the dced_hostdata_write() routine is called. In the case of the well-
known post_processorshostdataobject, the attribute is for a plain text
file. The dced_hostdata_write()routine replaces the old data with the
new data for thehostdata entry represented by the entry UUID.

dced_objects_release()
Each call to thedced_hostdata_read()routine requires a corresponding
call to dced_objects_release()to release the resources allocated.

dced_binding_free()
Each call to thedced_binding_create()routine requires a corresponding
call to dced_binding_free()to release the resources allocated.

Thepost_processorsdata for thisdcednow contains an additional string with a UUID
and program name. If thehostdataitem represented by the UUID forNEWERprinter
is changed,dced automatically runs the program.

28 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

2.6 Controlling Servers Remotely

Both applications developers and system administrators may want servers to have
certain support services and control functionality. For example, servers may need
mechanisms to store operational data, and they may need to start or stop in various
ways. Thedced program provides these support and control mechanisms for servers.

Servers are typically configured by an administrator using thedcecp serverobject in
a script after the server is installed on the host. In addition to configuring the server,
this script would commonly include other tasks like create an account and assign a
principal name for the server, modify the ACLs and key table files (keytabs) to control
access to the server and its resources, and export the server binding information to
the Cell Directory Service (CDS) so that clients can find a server that will start
dynamically later.

After a server is configured, whether it runs as a persistent daemon or an on-demand
(dynamic) process, administrators would again usedcecp if they need to control
or modify its behavior. Although server management is typically an administrator’s
task, you may want a management application to perform these tasks, including the
following:

• Configure a server to describe how it can be invoked

• Start a server based on configuration data

• Stop a running server

• Disable a specific service provided by a running server

• Enable a specific service for a running server

• Modify a server’s configuration

• Delete a server’s configuration, effectively removing the server fromdced’s
control

2.6.1 Two States of Server Management: Configuration and
Execution

If all servers ran as persistent processes,dced could maintain data about each server
in a single (albeit complex) data structure. However, due to the fact that some servers

DCE 1.2.2 Application Development Guide—Core Components 29

DCE Facilities

may run on demand, it is a more flexible design to have two sets of data: one that
describes the default configuration to start the server, and one that describes the
executing (running) server. Earlier in this chapter when we describeddced service
naming, we definedsrvrconf and srvrexec objects to name the two portions of the
server management service.

Table 2-1 lists the routines that applications can use to control servers. It also shows
the valid object names to use when establishing adced binding prior to using the
routine.

Table 2–1. API Routines for Remote Server Management

API Routine Service Name for Binding

dced_server_create() srvrconf

dced_server_start() srvrconf

dced_server_disable_if() srvrexec

dced_server_enable_if() srvrexec

dced_server_stop() srvrexec

dced_object_read() srvrexec or srvrconf

dced_object_read_all() srvrexec or srvrconf

dced_server_modify_attributes() srvrconf

dced_server_delete() srvrconf

2.6.2 Configuring Servers

Although administrators commonly usedcecp to configure servers remotely,
management applications can usedced API routines to configure a new server
remotely by creating server configuration data, changing a remote server’s
configuration, and deleting a server’s configuration data.

30 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

2.6.2.1 Configuring a New DCE Server

Management applications use thedced_server_create()routine to add a new server
to a host. After a server is configured, it can be remotely controlled by modifying
its configuration attributes, starting and stopping it, enabling or disabling the RPC
interfaces it supports, and deleting its configuration.

Configuring the server involves describing the server for DCE by allocating and filling
in a server_t data structure, as shown in the following example. Note that not all
server_t fields are assigned values in this example.

int i;

dced_binding_handle_t dced_bh;

server_t conf, exec;

dced_string_t server_name;

uuid_t srvrconf_id, srvrexec_id;

dced_attr_list_t attr_list;

error_status_t status;

static service_t nil_service;

.

.

.

dced_binding_create("srvrconf@hosts/somehost",

dced_c_binding_syntax_default,

&dced_bh,

&status);

dced_inq_id(dced_bh, server_name, &srvrconf_id, &status);

if(status == error_status_ok) {

puts("Configuration already exists for this server.");

dced_binding_free(dced_bh, &status);

return;

}

/* ___________setup a server_t structure ________________*/

uuid_create(&(conf.id), &status);

conf.name = server_name;

conf.entryname = (dced_string_t)"/.:/greeter";

conf.services.count = 1;

DCE 1.2.2 Application Development Guide—Core Components 31

DCE Facilities

/* ___service_t structures represent each interface supported ___*/

conf.services.list =

(service_t *)malloc(conf.services.count * sizeof(service_t));

for(i=0; i<conf.services.count; i++) {

rpc_if_inq_id(greetif_v1_0_c_ifspec,

&(conf.services.list[i].ifspec),

&status);

conf.services.list[i] = nil_service;

conf.services.list[i].ifname = (dced_string_t)"greet";

conf.services.list[i].annotation =

(dced_string_t)"The greet application";

conf.services.list[i].flags = 0;

}

/* ______________server_fixedattr_t structure _______________*/

conf.fixed.startupflags =

server_c_startup_explicit | server_c_startup_on_failure;

conf.fixed.flags = 0;

conf.fixed.program = (dced_string_t)"/server/path/and/program/name";

dced_server_create(dced_bh, &conf, &status);

dced_binding_free(dced_bh, &status);

dced_binding_create()
To configure a server, the application must first create adced binding
to thesrvrconf portion of the server management service on a specified
host. The binding handle created is used in all subsequent calls to
appropriate dced API routines.

dced_inq_id()
This routine returns the UUID thatdcedassociates with the name input.
Each configured server has an associated UUID used bydcedto identify
it. In this example, we won’t try to create a configuration for a server
that already exists.

Set Up aserver_t Structure for the Server
Theserver_t structure contains all the information DCE uses to specify
a server.

32 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

Set Upservice_tStructures for Each Interface
Each service that the server supports is represented by aservice_tdata
structure that contains the interface specification, among other things.
In this example the client stub for the interface was compiled with
the program so that the interface specification (greetif_v1_0_c_ifspec)
could be obtained without building the structure from scratch.

Set Up aserver_fixedattr_t Structure
Other fixed attributes required for all servers describe how the server
can start, the program name and pathname for the server so thatdced
knows which program to start, and the program’s arguments, among
other things.

dced_server_create()
This routine uses the filled-inserver_t structure to create asrvrconf
entry fordced. The data is stored in memory for quick access whenever
the server is started.

dced_binding_free()
Each call to thedced_binding_create()routine requires a corresponding
call to dced_binding_free()to release the binding resources allocated.

2.6.2.2 Modifying a Server’s Configuration Attributes

The data for configuring servers includes arrays of attributes. For flexibility,dced
is implemented using the extensible and dynamic data structures developed for the
DCE security registry attributes. This extended registry attribute (ERA) schema gives
vendors the flexibility to modify the attributes appropriate for configuring servers on
various systems. The use and modification of these data structures are described in
Chapter 28.

Applications commonly use dced_server_modify_attributes() after the
dced_server_create() routine to change the default configuration attributes
(the attributes field of a server_t structure) for a remote server. Adced_attr_list_t
data structure is input that contains an array ofsec_attr_t data structures and a count
of the number in the array.

DCE 1.2.2 Application Development Guide—Core Components 33

DCE Facilities

2.6.2.3 Deleting a DCE Server

Management applications usedced_server_delete()to delete a server’s configuration
data and entry in its hostsdced. Although this does not delete the actual server program
from the host, it removes it from DCE control.

2.6.3 Starting and Stopping Servers

A server typically runs as persistent process or is started on demand when a client
makes a remote procedure call to it. Management applications can start remote servers
by using thedced_server_start()routine. This is asrvrconf routine that takes as input
server configuration data in the form of an attribute list.

Once a server has started, it tends to remain running until an administrator or
management application stops it, but some applications may stop themselves if, for
example, they do not detect activity within a specified time. To stop remote servers,
applications can use thedced_server_stop()routine.

The following example shows how an application starts or stops a server:

dced_binding_handle_t dced_bh, conf_bh, exec_bh;

server_t conf, exec;

dced_string_t server_name;

uuid_t srvrconf_id, srvrexec_id;

error_status_t status;

.

.

.

/* Toggle the Starting or Stopping of a Server */

dced_binding_create("srvrconf@hosts/somehost",

dced_c_binding_syntax_default,

&conf_bh,

&status);

dced_binding_create("srvrexec@hosts/somehost",

dced_c_binding_syntax_default,

&exec_bh,

34 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

&status);

dced_inq_id(exec_bh, server_name, &srvrexec_id, &status);

if(status != error_status_ok) {

puts("Server is NOT running.");

dced_inq_id(conf_bh, server_name, &srvrconf_id, &status);

dced_server_start(conf_bh, &srvrconf_id, NULL, &srvrexec_id, &status);

}

else {

puts("Server is RUNNING.");

dced_server_stop(exec_bh, &srvrexec_id, srvrexec_stop_rpc, &status);

}

dced_binding_free(conf_bh, &status);

dced_binding_free(exec_bh, &status);

dced_binding_create()
These routines createdced bindings to thesrvrconf and srvrexec
portions of the server management service on a specified host. The
binding handles created are used in all subsequent calls to appropriate
dced API routines.

dced_inq_id()
This routine returns the UUID thatdced associates with the name
input. Each name used to identify an object of each service has a
UUID. If dced maintains a UUID for asrvrexec object, the server
is running. However, it is possible that the server is in an in-between
state as it is starting up or shutting down. For a more robust check
as to whether the server is running, use thedced_object_read()
routine to read theserver_t structure for thesrvrexec object. If the
exec_data.tagged_union.running_data.instanceUUID is the same as the
srvrconf UUID (srvrconf_id), the server is running.

dced_server_start()
This routine starts the server viadced. The srvrconf binding handle
and UUID are input. For special server configurations, you can start a
server with a specific list of attributes, but a value of NULL in the third
parameter uses the attributes of the server configuration data. You can
input asrvrexec UUID for dced to use, or allow it to generate one for
you.

DCE 1.2.2 Application Development Guide—Core Components 35

DCE Facilities

dced_server_stop()
This routine stops a running server identified by itssrvrexec
UUID. The cleanest stop method is to causedced to use the
rpc_mgmt_server_stop_listening() routine so that all outstanding
remote procedure calls complete before the server stops.

dced_binding_free()
Each call to thedced_binding_create()routine requires a corresponding
call to dced_binding_free()to release the binding resources allocated.

2.6.4 Enabling and Disabling Services of a Server

Most servers have all their services enabled to process all requests. However, a server
may need to enable or disable services to synchronize them, for example. For another
example, an administrator (or management application) may need to disable or enable
services to perform orderly startup or shutdown of a server.

Each service provided by a server is implemented as a set of procedures. DCE uses an
interface definition to define a service and its procedures, and application code refers
to the interface when controlling the service.

When a server starts, it initializes itself by registering with the RPC runtime and the
dced process on its host by using thedce_server_register()routine. This enables
all services (interfaces) that the server can support. The server can then disable and
reenable services (in whatever order it requires) by using thedce_server_disable_if()
anddce_server_enable_if()routines.

To control the services of remote servers, management applications use the
dced_server_disable_if() and dced_server_enable_if() routines. These routines
work on the srvrexec object. When a service (interface) is disabled, a client that
already knows about the service (through a binding handle to this interface and
server) will no longer work because the interface is unregistered with the RPC
runtime. If you wish to have clients that already know about the server and service
work, but wish to prohibit any new clients from finding the server and service, you
can userpc_mgmt_ep_unregister() to remove from the endpoint map the server
address information with respect to the service. This routine does not affect the RPC
runtime.

36 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

2.7 Validating the Security Server

The security validation service (secval) has the following major functions:

• It maintains a login context for the host’s self-identity which includes periodic
changes to the host’s key (password).

• It validates and certifies to applications, usually login programs, that the DCE
security daemon (secd) is legitimate.

Clients (including remote clients, local servers, host logins, and administrators) all
need the security validation service to make sure that thesecd) process being used
by the host is legitimate. The security validation service establishes the link in a trust
chain between applications andsecdso that applications can trust the DCE security
mechanism.

An application can trust its host’s security validation service because they are on the
same host, but an application has no way to convince itself thatsecd, presumably on
another host, is genuine. However, if the application trusts another principal (in this
case, the security validation service), which in turn trustssecd, then the trust chain
now extends from the application tosecd.

Typically, a login program accesses the security validation service when it uses the
DCE Security Service’s login API, described in Chapter 29. Administrators access the
secvalservice by using thedcecp secvalobject. However, suppose you are writing a
security monitoring application to watch for and respond to security attacks. After the
application binds to thesecvalservice, it can call thedced_secval_validate()routine
to verify that thesecdprocess is legitimate.

Applications can also use thedced_secval_start()and dced_secval_stop()routines
to start and stop the security validation service on a given host.

For example, during configuration of a host, thedcedprogram can start with or without
the security validation service. Later when security is configured, a management
application can startsecval by using thedced_secval_start()routine. For another
example, suppose our security monitoring application mentioned earlier suspects an
attack. The application can calldced_secval_stop()to stop the security validation
service without stopping the entiredced. This makes the login environment more
restrictive.

DCE 1.2.2 Application Development Guide—Core Components 37

DCE Facilities

2.8 Managing Server Key Tables

Keys for servers are analogous to passwords for human users. Keys also play a
major role in authenticated remote procedure calls. Keys have some similarities with
passwords. For example, server keys and user passwords have to follow the same
change policy (or a more stringent one) for a given host or cell. This means that,
just as a user has to periodically come up with a new password, a server has to
periodically generate a new key. It is easy to see that a human user protects a password
by memorizing it. But a server memorizes a key by storing it in a file called akey
table.

It is more complex for a server to change keys than it is for a human user to change
a password. For example, a human user needs to only remember the latest password,
but a server may need to maintain a history of its keys by using version numbers
so that currently active clients do not have difficulty completing a remote procedure
call. When a client prepares to make authenticated remote procedure calls, it obtains
a ticket to talk with the server. (The security registry of the authentication service
encrypts this ticket by using the server’s key, and later the server decrypts the ticket
when it receives the remote procedure call.)

Timing can become an issue when a client makes a remote procedure call because
tickets have a limited lifetime before they expire, and servers must also change their
keys on a regular basis. Assuming the client possesses a valid ticket, suppose that,
by the time the client makes the call, the server has generated a new key. If a server
maintains versions of its keys, the client can still complete the call. Authentication is
described in detail in Chapter 23.

A key table usually contains keys stored by one server, and it must be located on the
same host as that server. However, a key table can hold keys for a set of related servers,
as long as all the servers reside on the same host. Servers usually maintain their own
keys, and Chapter 30 describes the API they use. Administrators can remotely manage
key tables and the keys in the tables by using thedcecpkeytabobject. This section
describes the API routines that management applications can use to manage the key
tables and keys of other servers on the network.

38 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

Suppose you discover that a server or an entire host’s security has been compromised.
Applications can use thedced_keytab_change_key()routine to change a key table’s
key. The following example shows how to reset the key for all key tables on a specified
host:

dced_binding_handle_t dced_bh;

dced_entry_list_t entries;

unsigned32 i;

error_status_t status;

dced_key_t key;

dced_binding_create("keytab@hosts/somehost",

dced_c_binding_syntax_default,

&dced_bh,

&status);

dced_binding_set_auth_info(dced_bh,

rpc_c_protect_level_default,

rpc_c_authn_default,

NULL,

rpc_c_authz_dce,

&status);

dced_list_get(dced_bh, &entries, &status);

for(i=0; i<entries.count; i++) {

generate_new_key(&key); /* application specific */

dced_keytab_change_key(dced_bh, &entries.list[i].id, &key, &status);

}

dced_list_release(dced_bh, &entries, &status);

dced_binding_free(dced_bh, &status);

dced_binding_create()
This routine creates adcedbinding to adcedservice on a specified host.
The binding handle created is used in all subsequent calls to appropriate
dced API routines. Thekeytab portion of the first argument represents
the well-known name of the keytab service. When this string is used by
itself, it refers to the service on the local host.

DCE 1.2.2 Application Development Guide—Core Components 39

DCE Facilities

dced_binding_set_auth_info()
Accessing keytab data requires authenticated remote procedure calls.
The dced_binding_set_auth_info()routine sets authentication for the
dced binding handle,dced_bh.

dced_list_get()
Applications use thedced_list_get()routine to get a service’s entire list
of names.

generate_new_key()
This application-specific routine generates the new key and
fills in a dced_key_t data structure. This routine could use the
sec_key_mgmt_gen_rand_key()routine to randomly generate a new
key.

dced_keytab_change_key()
The dced_keytab_change_key()routine tries to change the principal’s
key in the security service’s registry first. If that is successful, it changes
the key in the key table.

dced_list_release()
Each call to thedced_list_get()routine requires a corresponding call to
dced_list_release()to release the resources allocated for the entry list.

dced_binding_free()
Each call to thedced_binding_create()routine requires a corresponding
call to dced_binding_free()to release the resources allocated for adced
binding handle.

For more detailed key table management, applications can peruse a key table’s list
of keys by using thedced_keytab_initialize_cursor(), dced_keytab_get_next_key(),
anddced_keytab_release_cursor()routines. Reading key table data remotely presents
a greater security risk because data is sent over the network. For remote access, these
routines actually get all the keys during one remote procedure call to be more efficient
and to minimize the time keys are being sent over the network.

Earlier in this section we described how to change the key of a key table with the
dced_keytab_change_key()routine. The key table management service also provides
the routinesdced_keytab_add_key()anddced_keytab_remove_key()to control key
modification in even greater detail.

40 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

Finally, you can create a new key table by usingdced_keytab_create(), or you can
delete an existing key table by usingdced_keytab_delete().

2.9 Sample dced Application

The following sections contain the complete source code, Makefile, anddcecp
installation scripts for a simple DCE application that uses some of thedced server
management facilities.

The greet_dced application is an adaptation of thegreet application described in
Section 3.10.1 of theDCE 1.2.2 Introduction to OSF DCE. The greet_dcedserver is
registered and executed viadced.

Once started,greet_dced’s behavior is identical to that ofgreet. The client side of the
application sends a greeting to the server side of the application. The server prints the
client’s greeting and sends a return greeting back to the client. The client prints the
server’s reply and terminates. (Note that the server does not catch signals, so when
it is stopped it does not clean up its namespace or registry entries; this must be done
manually.)

2.9.1 Running the Program

To run greet_dced, do the following:

1. Build the program by invoking themake command.

2. Change theuid and gid values in greet_dced.install according to your
preferences. If you do change them, make sure that you chown thekeytab file
to the sameuid in Step 4 below.

3. As cell_admin, do:

dcecp greet_dced.install

This creates a server principal and account with the password ‘‘secret’’, creates
a CDS directory and changes permissions on it (so that the server principal has
rights to create its server entry), creates akeytab entry and creates asrvrconf

DCE 1.2.2 Application Development Guide—Core Components 41

DCE Facilities

entry. It handles errors, so if something fails (e.g. if the user already exists) the
program will still run to completion.

4. As root, do:

chownyour_user_namegreet_dced.ktab

This is necessary because the form of thechown command ingreet_dced.install
will fail—it is present there only as a reminder. If you use a differentuid in the
script, change it here as well.

5. As cell_admin, do:

dcecp -c server start greeter_dced

6. Wait a few moments and check/tmp/srv.out to make sure the server has started.

7. Start the client as follows:

./greet_dced_client /.:/subsys/my_company/greet_dced/greeter_dced_entry

After you are done, you can get rid of everything as follows:

1. As cell_admin, stop the server:

dcecp -c server stop greeter_dced -method soft

2. As cell_admin, run the delete script:

dcecp greet_dced.delete

The program has the following limitations:

• The server does not catch signals, so when it is stopped it does not clean up
anything.

• The dce_server_sec_begin() routine logs in using the server principal and keytab
specified in thesrvrconf file. It also starts a thread to manage the server’s key.
However, it doesnot start a thread to refresh the server’s login context. That still
needs to be done by the application writer, using the same method that was used
in DCE 1.0.x:

42 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

create a thread to run the following:

loop

find out when the login context expires

do a pthread_delay_np for

(expiration time - current time - 10 minutes)

sec_login_refresh_identity() ;

sec_key_mgmt_get_key() ;

sec_login_validate_identity() ;

sec_key_mgmt_free_key() ;

end loop

2.9.2 greet_dced.idl

Following are the contents of thegreet_dced.idlfile.

/*

* greet_dced.idl

*

* The "greet_dced" interface.

*/

[uuid(3d6ead56-06e3-11ca-8dd1-826901beabcd),

version(1.0)]

interface greet_dcedif

{

const long int REPLY_SIZE = 100;

void greet_dced(

[in] handle_t h,

[in, string] char client_greeting[],

[out, string] char server_reply[REPLY_SIZE]

);

}

DCE 1.2.2 Application Development Guide—Core Components 43

DCE Facilities

2.9.3 greet_dced_server.c

Following are the contents of thegreet_dced_server.cfile, which contains the
greet_dcedserver setup and cleanup routines. This is where the server’s interaction
with dced takes place.

/* greet_dced_server_dce.c

* Main program (initialization) for "greet_dced" server.

* NEW SERVER for DCE 1.1.

*/

#include <stdio.h>

#include <dce/dced.h>

#include "greet_dced.h"

#include "util.h"

char invocation_instructions[] = "Usage:\n\

1. Invoke the dcecp program: dcecp\n\

dcecp>\n\

2. Start the server:\n\

dcecp> server start greeter_dced\n\

3. If dced cannot find a matching server object,

create server configuration:\n\

dcecp> source greet_dced.install\n\

dcecp> server start greeter_dced\n\

4. exit dcecp.\n\

dcecp> exit";

FILE * out = NULL;

boolean32 rpc_mgmt_authorize (rpc_binding_handle_t client_bn,

unsigned32 op_no,

unsigned32 *st);

int main(

int argc,

char *argv[]

)

44 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

{

server_t *server_conf;

dce_server_register_data_t register_data[1];

dce_server_handle_t server_handle;

error_status_t status;

/* if we are a daemon stderr is missing */

out = fopen ("/tmp/srv.out" , "w");

/* otherwise just use

out = stderr;

*/

fprintf(out, "Server start\n"); fflush(out);

/******** Get the server’s configuration from the local dced ******/

fprintf(out, "dce_server_inq_server() call\n");

fflush(out);

dce_server_inq_server(&server_conf, &status);

fprintf(out, "dce_server_inq_server() return\n");

fflush(out);

if(status != error_status_ok) { /* Describe startup via dcecp */

/* and dced */

fprintf(out, "%s\n", invocation_instructions);

fflush(out);

ERROR_CHECK(status, "Cannot get server configuration structure");

}

/********** login and manage key *******************************/

fprintf(out, "dce_server_sec_begin() call\n");

fflush(out);

dce_server_sec_begin

(dce_server_c_login|dce_server_c_manage_key, &status);

fprintf(out, "dce_server_sec_begin() return\n");

fflush(out);

if (status != error_status_ok) {

fprintf(out, "Failed in dce_server_sec_begin()\n");

fflush(out);

ERROR_CHECK(status, "Cannot sec_begin");

}

DCE 1.2.2 Application Development Guide—Core Components 45

DCE Facilities

/********** Only the protocol sequences we want ****************/

fprintf(out, "dce_server_use_protseq() call\n");

fflush(out);

dce_server_use_protseq(NULL, (idl_char *)"ncadg_ip_udp", &status);

fprintf(out, "dce_server_use_protseq() return\n");

fflush(out);

if (status != error_status_ok) {

fprintf(out, "Failed to specify protocol sequence\n");

fflush(out);

ERROR_CHECK(status, "Cannot specify protocol sequence");

}

/******* Fill in rest of registration data structures ***********/

register_data[0].ifhandle = greet_dcedif_v1_0_s_ifspec;

register_data[0].epv = NULL; /* use default entry point vector */

register_data[0].num_types = 0;

register_data[0].types = NULL;

/************************** Register the Server *****************/

fprintf(out, "dce_server_register() call\n");

fflush(out);

dce_server_register(

dce_server_c_ns_export,/*flag says register server with CDS */

server_conf,

register_data,

&server_handle,

&status

);

fprintf(out, "dce_server_register() return\n");

fflush(out);

if (status != error_status_ok) {

fprintf(out, "Failed dce_server_register. Error %d\n", status);

fflush(out);

ERROR_CHECK(status, "Can’t register server with DCE");

}

/******************* Listen for remote procedure calls **********/

fprintf(out, "Listening...\n"); fflush(out);

rpc_server_listen(rpc_c_listen_max_calls_default, &status);

46 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

fprintf(out, "Returned from listening...\n");

fflush(out);

if (status != rpc_s_ok) {

fprintf(out, "Failed rpc_server_listen\n");

fflush(out);

ERROR_CHECK(status, "Can’t start listening for calls");

}

/************************ Unregister from DCE *******************/

fprintf(out, "dce_server_unregister call\n");

fflush(out);

dce_server_unregister(&server_handle, &status);

fprintf(out, "dce_server_unregister return\n");

fflush(out);

if (status != error_status_ok) {

fprintf(out, "Failed dce_server_unregister\n");

fflush(out);

ERROR_CHECK(status, "Can’t unregister server from DCE");

}

fprintf(out, "dce_server_sec_done call\n");

fflush(out);

dce_server_sec_done(&status);

fprintf(out, "dce_server_sec_done return\n");

fflush(out);

if (status != error_status_ok) {

fprintf(out, "Failed dce_server_sec_done\n");

fflush(out);

ERROR_CHECK(status, "Can’t do sec_done");

}

}

2.9.4 greet_dced_manager.c

Following are the contents of thegreet_dced_manager.cfile, which contains the
implementation of thegreet_dcedinterface.

DCE 1.2.2 Application Development Guide—Core Components 47

DCE Facilities

/*

* greet_dced_manager.c

*

* Implementation of "greet_dced" interface.

*/

#include <stdio.h>

#include "greet_dced.h"

void

greet_dced(

handle_t h,

idl_char *client_greeting,

idl_char *server_reply

)

{

printf("The client says: %s\n", client_greeting);

strcpy(server_reply, "Hi, client!");

}

2.9.5 greet_dced_client.c

Following are the contents of thegreet_dced_client.cfile.

/*

* greet_dced_client.c

*

* Client of "greet_dced" interface.

*/

#include <stdio.h>

#include <dce/nbase.h>

#include <dce/rpc.h>

#include "greet_dced.h"

#include "util.h"

48 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

int

main(

int argc,

char *argv[]

)

{

rpc_ns_handle_t import_context;

handle_t binding_h;

error_status_t status;

idl_char reply[REPLY_SIZE];

if (argc < 2) {

fprintf(stderr, "usage: greet_dced_client <CDS pathname>\n");

exit(1);

}

/*

* Start importing servers using the name specified

* on the command line.

*/

rpc_ns_binding_import_begin(

rpc_c_ns_syntax_default, (unsigned_char_p_t) argv[1],

greet_dcedif_v1_0_c_ifspec, NULL, &import_context, &status);

ERROR_CHECK(status, "Can’t begin import");

/*

* Import the first server (we could interate here,

* but we’ll just take the first one).

*/

rpc_ns_binding_import_next(import_context, &binding_h, &status);

ERROR_CHECK(status, "Can’t import");

/*

* Make the remote call.

*/

greet_dced(binding_h, (idl_char *) "hello, server", reply);

printf("The Greet Server said: %s\n", reply);

}

DCE 1.2.2 Application Development Guide—Core Components 49

DCE Facilities

2.9.6 util.c

Following are the contents of theutil.c file, which contains the error message handling
routines for thegreet_dcedserver and client.

/*

* util.c

*

* Utility routine(s) shared by "greet_dced" client

* and server programs.

*/

#include <stdio.h>

#include <dce/nbase.h>

#include <dce/dce_error.h>

void

error_exit(

error_status_t status,

char *text

)

{

unsigned char error_text[100];

int dummy;

dce_error_inq_text(status, error_text, &dummy);

fprintf(stderr, "Error: %s - %s\n", text, error_text);

exit(1);

}

2.9.7 util.h

Following are the contents of theutil.h file, which contains declarations used in the
util.c file.

50 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

/*

* util.h

*

* Declarations of utility routine(s) shared by "greet_dced" client

* and server programs.

*/

#define ERROR_CHECK(status, text) if (status != error_status_ok) \

error_exit(status, text)

void

error_exit(

error_status_t status,

char *text

);

2.9.8 greet_dced.install

Following are the contents of thegreet_dced.installfile, which is thedcecp install
script for thegreet_dcedserver.

set dir /users/ your_user_name/src/dce/greet_dced/greet_dced

set cds_dir /.:/subsys/my_company/greet_dced

Unix and group id of the server process owner

has to own the keytab file as well

set uid 1265

set gid 1000

add a PGO for the server

set cmd "user create greet_dced_server -group servers \

-o osf -password secret -mypwd -dce-"

if {[catch $cmd msg] != 0} {

echo "user create:" $msg

}

create a directory in CDS and give access to the server

DCE 1.2.2 Application Development Guide—Core Components 51

DCE Facilities

this will fail if any directory in the chain is not already there

set cmd "directory create $cds_dir"

if {[catch $cmd msg] != 0} {

echo "directory create: " $msg

}

set cmd "acl modify $cds_dir -add {user greet_dced_server rwdit}"

if {[catch $cmd msg] != 0} {

echo "acl modify: " $msg

}

create a keytab for the server

set cmd "keytab create greet_dced.ktab \

-storage $dir/greet_dced.ktab \

-data {greet_dced_server plain 1 secret}"

if {[catch $cmd msg] != 0} {

echo "keytab create: " $msg

}

dced create the keytab file with root as its owner

so we have to chown it, but

this may require root permission, so it’s likely to fail.

set cmd "exec chown $uid $dir/greet_dced.ktab"

if {[catch $cmd msg] != 0} {

echo "chown: " $msg

}

create the srvrconf object

set cmd "server create greeter_dced \

-program $dir/greet_dced_server \

-entryname $cds_dir/greeter_dced_entry \

-keytabs [attrlist getvalues [keytab show greet_dced.ktab]\

-type uuid]\

-principals {greet_dced_server} \

-starton explicit \

-directory $dir/exec_dir \

-services { {ifname greet_dced} \

{interface {3d6ead56-06e3-11ca-8dd1-826901beabcd 1.0}}} \

-uid $uid -gid $gid"

if {[catch $cmd msg] != 0} {

52 DCE 1.2.2 Application Development Guide—Core Components

DCE Host Services

echo "server create: " $msg

}

2.9.9 greet_dced.delete

Following are the contents ofgreet_dced.delete, which contains thedcecp cleanup
script for thegreet_dcedserver.

set dir /users/ your_user_name/src/dce/greet_dced/greet_dced

set cds_dir /.:/subsys/my_company/greet_dced

catch "server delete greeter_dced"

catch "keytab delete greet_dced.ktab"

catch "directory delete $cds_dir -tree"

catch "user delete greet_dced_server"

2.9.10 Makefile

Following are the contents of thegreet_dcedMakefile.

###

#

Makefile: A generic makefile suitable for building the greet_dced

application.

#

-77 cols-

##

DCEROOT = /opt/dcelocal

CC = /bin/c89

IDL = idl

LIBDIRS = -L${DCEROOT}/usr/lib

LIBS = -ldce -lc_r

DCE 1.2.2 Application Development Guide—Core Components 53

DCE Facilities

LIBALL = ${LIBDIRS} ${LIBS}

INCDIRS = -I. -I${DCEROOT}/share/include

CFLAGS = -g ${INCDIRS} -D_SHARED_LIBRARIES -D__hppa -Dhp9000s800 \

-Dhp9000s700 -D__hp9000s800 -D__hp9000s700 -DHPUX -D__hpux \

-Dunix +DA1.1 -D_HPUX_SOURCE

IDLFLAGS = -v ${INCDIRS} -cc_cmd "${CC} ${CFLAGS} -c"

all: greet_dced_client greet_dced_server

greet_dced.h greet_dced_cstub.o greet_dced_sstub.o: greet_dced.idl

${IDL} ${IDLFLAGS} greet_dced.idl

greet_dced_client: greet_dced.h greet_dced_client.o util.o \

greet_dced_cstub.o

${CC} -o greet_dced_client greet_dced_client.o \

greet_dced_cstub.o util.o ${LIBALL}

greet_dced_server: greet_dced.h greet_dced_server.o \

greet_dced_manager.o util.o greet_dced_sstub.o

${CC} -o greet_dced_server greet_dced_server.o \

greet_dced_manager.o greet_dced_sstub.o util.o ${LIBALL}

greet_dced_client.c greet_dced_server.c util.c: util.h

greet_dced_manager.c greet_dced_client.c greet_dced_server.c:

greet_dced.h

clobber:

rm -f greet_dced.h greet_dced_client greet_dced_client.o \

greet_dced_cstub.o greet_dced_manager.o greet_dced_server \

greet_dced_server.o greet_dced_server_dce.o \

greet_dced_sstub.o server_struct.o greet_dced_server_dce util.o

54 DCE 1.2.2 Application Development Guide—Core Components

Chapter 3
DCE Application Messaging

Message generation by distributed programs can be divided into two broad kinds:

• Normal (often user-prompted, client-generated) messages

• Server event messages, containing information about server activity, either normal
or extraordinary

Similarly, DCE makes available to applications two messaging APIs:

• The DCE messaging interface

• The DCE serviceability interface

The DCE serviceability interface is designed specifically to route messages of the
second type; it is described in Chapter 4. Messages in the first category are output
using the DCE general-purpose application messaging routines, which are the subjects
of this chapter.

Although the two interfaces, broadly speaking, do the same general thing (that is, write
messages), their functionality was designed to serve different needs, both of which

DCE 1.2.2 Application Development Guide—Core Components 55

DCE Facilities

occur in most distributed applications. Nevertheless, either interface can be used more
or less exclusively of the other, if desired.

3.1 DCE and Messages

A messageis a readable character string conveying information about some aspect of a
program’s state or activity to a human audience. Messages may be purely informational
or they may be intended to be responded to (that is, be interactive). Prompts, error
displays, warnings, logs, announcements and program responses are all various kinds
of message.

DCE applications can simply use the standard output routines (such asprintf() ,
sprintf() , and so on) for messaging. However, DCE provides two message interfaces
that automatically and transparently take care of many of the special problems that
distributed application messaging can give rise to. These interfaces are used by the
DCE components themselves to implement their messaging.

Both of the DCE message facilities use XPG4 message catalog files (see theX/Open
Portability Guide) to hold message text. The message catalogs are generated by a
DCE utility (called sams) during the application development process, and must be
installed in the correct platform-dependent location in order for the DCE messaging
library routines to be able to find them (and, consequently, the messages) at runtime.

The main purpose of message catalogs is to allow programs’ message text to be stored
and organized (separately from the programs themselves) in a culture- or nationality-
specific way. This enables programs to switch their I/O styles and contents to the form
appropriate to the geographical location (locale) they are running in, simply by using
the appropriate catalog. Thus, it is essential to compose catalogs in such a way that
each one contains message text appropriate only to a single (same) locale.

Questions such as the proper use of locales, proper language style for messages,
where catalogs should be installed, and so on, all fall under the broad topic of
internationalization, and are not discussed in this chapter. The other important aspect
of internationalization, namely character and code set compatibility, is discussed in
detail in Chapter 16.

56 DCE 1.2.2 Application Development Guide—Core Components

DCE Application Messaging

3.2 DCE Messaging Interface Usage

Use of the DCE messaging API is very straightforward. In the application code itself,
all that is usually required is simply to call one of the output routines, passing it the
ID of the message to be output. The messages themselves must first be defined in
a text file which must then be processed by the DCEsams (symbols and message
strings) utility, which generates the message catalog file along with other C source
files that contain code necessary to facilitate the additional layer of functionality that
DCE has added to the XPG4 message catalog mechanism.

3.2.1 A Simple DCE Messaging Example

The following subsections describe all the steps and code necessary to compile an
application that uses the DCE messaging API to print the familiar ‘‘Hello World’’
message.

3.2.1.1 Defining the Message

For our example, we will define asamsfile with the minimum contents necessary to
print the one brief message we want to display. (Additional information on the use of
samscan be found in thesams(1dce)reference page, which contains comprehensive
descriptions of all aspects of the utility.)

Each line in asamsfile consists of a simpleheaderandvaluecombination. Theheader
indicates the meaning of the value being specified, andvalue is the value itself. A
samsfile for messaging use is normally made up of three parts (although only two
parts are needed for the short example in this chapter). The first part consists of a
minimum of one line that specifies the name of thecomponent(that is, the application)
that is to use the messages that will be generated from the file.

Each invocation ofsams to process a separate.samsinput file produces a complete
set of output files that can be used by the DCE messaging routines to print or log
messages as required. These sets of output files are organized by DCEcomponent.
(In DCE itself, these components are identical to the DCE components: RPC, DTS,
and so on; for applications, the categorization of components is determined by the

DCE 1.2.2 Application Development Guide—Core Components 57

DCE Facilities

developer.) Each set of output files will have names in which the component name
(also determined by the developer) appears.

The component name that you specify at the top of asams file must consist of a
three-character (no more, no less) string. For the ‘‘Hello World’’ program we will use
the component namehel:

Part I of simple sams message file...

component hel

The hel string will be used to identify all the files and data structures thatsamswill
generate from the file.

The second (and final) part of asamsfile for DCE messaging consists of a series of
records that specify the messages themselves. Each record is delimited by thestart
and end keywords. Within each record, a series of keywords identifies the various
information that each message consists of or has associated with it.

Our file will contain only one message, the text of which is to be ‘‘Hello World’’.
The record that specifies it is as follows:

start

code hello_msg

text "Hello World"

action "None required"

explanation "Greeting message for sample messaging program"

end

The keywords specified have the following meanings:

code Identifies the message.

text Specifies the text of the message itself.

explanation Describes the meaning of the message. The text following this keyword
is used to generate the documentation of the component’s messages.

58 DCE 1.2.2 Application Development Guide—Core Components

DCE Application Messaging

action Describes any action(s) that should be taken in response to the message.
The text following this keyword is used to generate the documentation
of the component’s messages.

3.2.1.2 Processing the.samsFile

The entiresamsfile for the hello program is as follows:

Part I

component hel

Part II

start

code hello_msg

text "Hello World"

action "None required"

explanation "Greeting message for sample messaging program"

end

We create the file with these contents and name ithel.sams.

A samsfile containing DCE messaging API message definitions (in other words, a
sams file not containing definitions for DCE serviceability API messages) should be
compiled by invokingsamsas follows:

sams -o thmcsams_filename

where:

-o Introduces output flags as follows:

t Specifies that a file containing source code to generate an
in-memory message table be output bysams.

h Specifies that a header file defining codes for the message
numbers be output bysams.

DCE 1.2.2 Application Development Guide—Core Components 59

DCE Facilities

m Specifies that a.msg file be output bysams.

c Specifies thatsams call gencat (with the .msg file as
input) to produce a message catalog.

Running the command as shown will result in four files being output:

dcehel.cat XPG4 message catalog file created bygencat. If you wish to use the
message catalog, you must install it yourself.

dcehel.msg Message input file forgencat.

dcehelmsg.cCode defining the in-memory table of message texts. By using this table
you can avoid depending on extracting message texts from the message
catalog.

dcehelmsg.hHeader file containing definitions fordcehelmsg.c.

The header file should be included in the program source code. Thedcehelmsg.c
module should be compiled and linked with the program object module. The message
catalog should be installed in the correct platform-dependent location.

All that remains now is to create a simple C program that calls a DCE messaging
routine to output the ‘‘Hello World’’ message.

3.2.1.3 Program Source

The complete source code forhello.c is as follows:

#include <dce/dce_svc.h>

#include "dcehelmsg.h"

int

main(

int argc,

char *argv[])

{

dce_printf(hello_msg);

60 DCE 1.2.2 Application Development Guide—Core Components

DCE Application Messaging

}

To build the application, you simply

• Process thehel.samsfile with the samscommand.

• Build and link hello from the following modules:

— dcehelmsg.c

— hello.c

When executed, the program will print the following:

Hello World

This is the text of thehello_msgmessage as defined in thehel.samsfile.

3.2.1.4 DCE Messaging and Message Catalogs

The reader may be wondering why, in the previous example, it was not necessary to
explicitly open the message catalog before making the call to retrieve and print the
message itself. The answer is thatdce_printf() takes care of this step implicitly. It
is able to find the message catalog because the catalog’s name is generated from the
component field in the first part of thesams file. Of course, for this to work, the
message catalog must be installed in the correct system-defined location before the
application is run.

An application may even dispense with the use of installed message catalogs altogether,
and use in-memory message tables instead. The necessary code to declare thesamsfile
messages as arrays in program memory is contained in thedcecmpmsg.cfile generated
with the sams -o toption. To initialize the table before using it the application must
also call thedce_msg_define_msg_table()routine, described in Section 3.3.3. The
message routines will, when called, attempt to use the application’s message catalog;
but if it cannot be found, the in-memory table will be used instead.

DCE 1.2.2 Application Development Guide—Core Components 61

DCE Facilities

3.2.2 The DCE Message Interface and sams Input and Output Files

Figure 3-1 shows the relationship of the various files, both source andsamsoutput,
that go to make up DCE application code that uses the DCE messaging API.

The two parallelogram-shaped objects represent the files that must be created by the
developer (you).

Rectangular objects with solid lines represent files that are generated bysams; the two
ovals represent executable utilities: one issams, the othergencat(which is implicitly
run by samswhen message catalogs are generated).

The large rectangular object in dashed lines representslibdce , which contains the
DCE message API library.

This illustration makes no attempt to show how a DCE application that uses DCE
messaging should be compiled and linked, nor how it runs. It is merely a static map
of the general place of DCE application messaging in DCE development.

62 DCE 1.2.2 Application Development Guide—Core Components

DCE Application Messaging

Figure 3–1. sams and DCE Messages

(doc)

dcehelmsg.idx

dcehelmsg.sml

)sams
(executed by

gencat

libdce

dce_printf(hello_msg);

dcehelmsg.h

dcehelmsg.c

sams

dcehel.msg

dcehel.cat

dcehelmsg.man

hel.sams

(doc)

(doc)

(message catalog)

(DCE library)

hello.c

The samsoutput filenames are made up of the following pieces:

tech_name+ comp_name+ part_name + extension

where:

tech_name Is the technology name (optionally specified at the top of thehel.sams
file); by defaultdce.

comp_name Is the component name (specified at the top of thehel.samsfile); in this
case,hel.

DCE 1.2.2 Application Development Guide—Core Components 63

DCE Facilities

part_name Is a substring identifying the particular file; for example,svc or msg,
and so on. This piece of the name is omitted from the message catalog
filenames (in our example,dcehel.msganddcehel.cat).

extension Is the file extension (preceded by a. (dot) character).

The files dcehelmsg.man(generated bysams -p d hel.sams)and dcehelmsg.sml
(generated bysams -p p hel.sams), which are shown in Figure 3-1, were not generated
by the following command:

sams -o thmc hel.sams

They could have been generated by executing this command:

sams -o dp hel.sams

These are automatically generated documentation files (their nature and purpose were
previously described) that have nothing to do with the operation of the interface itself.

A definitive description ofsamsand the contents ofsamsfiles can be found in the
sams(1dce)reference page.

3.3 DCE Messaging Routines

There are several different DCE messaging routines. It is possible for an application
to accomplish all of its messaging tasks with only one or two of these routines
(dce_printf() and dce_error_inq_text()); additional routines allow applications to
perform manipulations on message tables, open and close message catalogs explicitly,
retrieve messages without printing them, and so on. The complete list of routines is
as follows:

• Message output routines

These routines retrieve and output a specified message. If necessary, the message
catalog is opened.

— dce_printf()

64 DCE 1.2.2 Application Development Guide—Core Components

DCE Application Messaging

— dce_fprintf()

— dce_sprintf()

— dce_pgm_printf()

— dce_pgm_sprintf()

— dce_pgm_fprintf()

• Message retrieval routines

These routines retrieve a specified message. If necessary, the message catalog is
opened.

— dce_msg_get_msg()

— dce_msg_get()

— dce_msg_get_default_msg()

— dce_error_inq_text()

• Message table routines

Miscellaneous routines for manipulating in-memory message tables.

— dce_msg_define_msg_table()

— dce_msg_translate_table()

• DCE XPG4 routines

DCE versions of the XPG messaging routinescatopen(), catgets(), andcatclose().

— dce_msg_cat_open()

— dce_msg_cat_get_msg()

— dce_msg_get_cat_msg()

— dce_msg_cat_close()

Generally speaking, routines that retrieve or print messages will first try to get a
message from the message catalog file (the routines deduce the correct message catalog
from the message ID that is passed to them). Routines will look for the catalog in the
current locale’s system-specific location for correctly installed message catalogs.

If the message catalog cannot be found, and an in-memory message table has been
defined, the message will be retrieved from there.

DCE 1.2.2 Application Development Guide—Core Components 65

DCE Facilities

The only exception to this message-finding algorithm occurs with
dce_msg_get_default_msg(), which always attempts to retrieve the in-memory
message only.

The following sections describe each of the DCE messaging routines in detail.
Complete reference pages for the routines can be found in theDCE 1.2.2 Application
Development Reference.

3.3.1 Message Output Routines

The six message output routines in this group essentially reproduce the functionality
of printf() , fprintf() , andsprintf() , with the difference being that they operate on a
specified message rather than on a string variable. The routines can be called without
any special preparation (but see the descriptions of the threedce_pgm_routines).

dce_fprintf()
Retrieves the message text associated with the specified message ID,
and prints the message and its arguments on the specified stream. The
message is printedwithout a concluding newline; if a newline is desired
at the end of the message, then it should be coded (as\n) in the message
definition in thesamsfile.

The routine determines the correct message catalog and, if necessary,
opens it. If the message catalog is inaccessible, and the message exists in
an in-memory table, then this message (the default message) is printed.
If for any reason the message cannot be retrieved, an error message is
printed.

dce_printf() Performs adce_fprintf() of the specified message to standard output.

dce_sprintf()
Retrieves the message text associated with the specified message ID,
and writes the message and its arguments into an allocated string
(which should be freed by the caller). The routine determines the correct
message catalog and, if necessary, opens it. If the message catalog is
inaccessible, and the message exists in an in-memory table, then this
message (the default message) is printed. If for any reason the message
cannot be retrieved, an error message is printed.

For example, assume that the following message is defined in an
application’ssamsfile:

66 DCE 1.2.2 Application Development Guide—Core Components

DCE Application Messaging

start

code arg_msg

text "This message has exactly %d not %d argument(s)"

action "None required"

explanation "Test message with format arguments"

end

The following code fragment shows howdce_sprintf() might be called
to write the message (with some argument values) into a string:

unsigned char *my_msg;

my_msg = dce_sprintf(arg_msg, 2, 8);

/* Process my_msg as appropriate... */

free(my_msg);

Of course,dce_printf() could also be called to print the message and
arguments:

dce_printf(arg_msg, 2, 8);

dce_pgm_printf()
Equivalent todce_printf(), except that it prefixes the program name to
the message (in the standard style of DCE error messages), whereas
dce_printf() does not. This allows clients (which do not usually use
the serviceability interface) to produce error (or other) messages that
automatically include the originating application’s name. The message
is printed with a concluding newline.

Note that the client should calldce_svc_set_progname()first to set the
desired application name. Otherwise, the default program name will be

PID# nnnn

DCE 1.2.2 Application Development Guide—Core Components 67

DCE Facilities

wherennnn is the process ID of the application making the call.

dce_pgm_sprintf()
Equivalent to dce_sprintf(), except that it prefixes the program
name to the string (in the standard style of DCE error messages),
whereas dce_sprintf() does not. Note that the client must call
dce_svc_set_progname()first to set the desired application name.

Otherwise, the default name is

PID# nnnn

wherennnn is the process ID of the application making the call.

dce_pgm_fprintf()
Equivalent todce_fprintf() , except that it prefixes the program name
to the string (in the standard style of DCE error messages), whereas
dce_fprintf() does not. The message is printed with a concluding
newline.

Note that the client must calldce_svc_set_progname()first to set the
desired application name. Otherwise, the default name is

PID# nnnn

wherennnn is the process ID of the application making the call.

dce_error_inq_text()
Opens a message catalog, extracts a message identified by a message
ID, and places the message in the space pointed to by thetextparameter.
If the message catalog is inaccessible, and there is a default message in
memory, the default message is copied into the space passed. If neither
the catalog nor the default message is available, a status code is placed in
the status output parameter and the message is returned as a hexadecimal
number; the routine always returns a printable message.

This routine existed in prior releases of DCE and has been modified for
DCE Version 1.1 to use the default message arrays. Programs prior to
Version 1.1 that use the routine do not need to be modified.

68 DCE 1.2.2 Application Development Guide—Core Components

DCE Application Messaging

For example, assume that the following message is defined in an
application’ssamsfile:

start

code error_msg

text "Error: %s"

action ""

explanation "DCE error status message"

end

The following code fragment shows howdce_error_inq_text() could
be used to retrieve the error status received from a DCE routine:

dce_error_string_t error_string;

unsigned32 status;

int error_inq_status;

uuid_t type_uuid, obj_uuid;

<. . .>

rpc_object_set_type(&obj_uuid, &type_uuid, &status);

if (status != rpc_s_ok)

{

dce_error_inq_text(status, error_string, \

&error_inq_status);

dce_printf(error_msg, error_string);

}

3.3.2 Message Retrieval Routines

The following three routines retrieve messages, but do not print them.

dce_msg_get_msg()
Retrieves a message (identified by a global message ID) from a message
catalog, and returns a pointer to amalloc()’d space containing the

DCE 1.2.2 Application Development Guide—Core Components 69

DCE Facilities

message. The routine determines the correct message catalog and opens
it. If the message catalog is inaccessible, and the message exists in an
in-memory table, then this message (the default message) is returned
in the allocated space. If neither the catalog nor the default message is
available, an error status code is placed in the status output parameter.

The following code fragment shows howdce_msg_get_msg()might be
called to retrieve the ‘‘Hello World’’ message defined in the example
program earlier in this chapter:

#include <dce/dce.h>

#include <dce/dce_msg.h>

#include "dcehelmsg.h"

unsigned char *my_msg;

unsigned32 status;

<. . .>

my_msg = dce_msg_get_msg(hello_msg, &status);

printf("Message is: %s\n", my_msg);

free(my_msg);

dce_msg_get()
This is a convenience form ofdce_msg_get_msg(). If it fails, it does
not pass back or return a status code, but instead fails with an assertion
error, that is, aborts the calling process.

The following code fragment shows how the routine might be called to
retrieve the ‘‘Hello World’’ message defined in the example program
earlier in this chapter:

#include <dce/dce.h>

#include <dce/dce_msg.h>

#include "dcehelmsg.h"

unsigned char *my_msg;

70 DCE 1.2.2 Application Development Guide—Core Components

DCE Application Messaging

<. . .>

my_msg = dce_msg_get(hello_msg);

printf("Message is: %s\n", my_msg);

free(my_msg);

dce_msg_get_default_msg()
Retrieves a message (identified by a global message ID) from an in-
memory message table and returns a pointer to static space containing
the message retrieved. If the default message is not available, an error
status code is placed in the status output parameter.

The following code fragment shows howdce_msg_get_default_msg()
might be called to retrieve the in-memory copy of the ‘‘Hello World’’
message defined in the example program earlier in this chapter:

#include <dce/dce.h>

#include <dce/dce_msg.h>

#include "dcehelmsg.h"

unsigned char *my_msg;

unsigned32 status;

<. . .>

my_msg = dce_msg_get_default_msg(hello_msg, &status);

printf("Message is: %s\n", my_msg);

Note that, in order for this call to be successful,
dce_msg_define_msg_table()must first have been called to set
the table up in memory. For an example of how this is done, see the
following section.

3.3.3 Message Table Routines

The two routines in this group are intended to be used to perform manipulations on
the in-memory message table.

DCE 1.2.2 Application Development Guide—Core Components 71

DCE Facilities

The in-memory table is implemented with code generated bysamsand contained in
the dcecmpmsg.cmodule (wherecmp is the component name of the application, as
specified in thecomponent field in part I of thesamsfile). This file must then be
compiled and linked with the application, anddce_msg_define_msg_table()is called
at runtime to set up the table.

Note that, even if an in-memory table is defined, the DCE messaging routines still
will always attempt first to extract the specified message from the message catalog,
and only if unsuccessful will they revert to the in-memory table. The exception to this
rule isdce_msg_get_default_msg(), which always attempts to retrieve the in-memory
message only.

dce_msg_define_msg_table()
Installs a default in-memory message table accessible to DCE messaging
routines. This routine is intended to be used by programs that load all
messages from a catalog into memory in order to avoid file access
overhead on message retrieval.

The following code fragment shows howdce_msg_define_msg_table()
might be called to set up an in-memory message table consisting of the
contents of the messages defined inhel.samsearlier in this chapter:

#include <dce/dce.h>

#include <dce/dce_msg.h>

#include "dcehelmsg.h"

unsigned32 status;

<. . .>

dce_msg_define_msg_table(hel_msg_table,

sizeof(hel_msg_table) / sizeof(hel_msg_table[0]),

&status);

dce_msg_translate_table()
Makes a new copy of the specified in-memory message table (that
is, updates the table with the contents of a message table, which has
changed because of a change in locale).

72 DCE 1.2.2 Application Development Guide—Core Components

DCE Application Messaging

Note that this routine will fail if the message catalog is not installed or
if LANG is not properly set, since the update depends on accessing the
contents of the message catalog (unlike the initial table setup, which is
done from the code in thedcecmpmsg.cfile).

The following code fragment shows howdce_msg_translate_table()
might be called to translate the in-memory table that was set up by the
call to dce_msg_define_msg_table()in the previous example:

#include <dce/dce.h>

#include <dce/dce_msg.h>

#include <locale.h>

#include "dcehelmsg.h"

char *loc_return;

unsigned32 status;

<. . .>

loc_return = setlocale(LC_MESSAGES, "C");

dce_msg_translate_table(hel_msg_table,

sizeof(hel_msg_table) / sizeof(hel_msg_table[0]),

&status);

3.3.4 DCE XPG4 Routines

The four routines in this group provide DCE versions of functionality of the XPG
messaging routinescatopen(), catgets(), andcatclose().

dce_msg_cat_open()
(DCE abstraction overcatopen()) Opens a message catalog identified
by a message ID. The routine returns a handle to the open catalog
from which messages will be extracted. This routine is intended for
use by applications (such as user interface programs) that display many
messages from a particular catalog.

The routine will fail if the message catalog is not installed or ifLANG
is not properly set.

DCE 1.2.2 Application Development Guide—Core Components 73

DCE Facilities

The following code fragment shows howdce_msg_cat_open()might
be called to open the message catalog containing the ‘‘Hello World’’
message defined for the example application earlier in this chapter:

#include <dce/dce.h>

#include <dce/dce_msg.h>

#include "dcehelmsg.h"

dce_msg_cat_handle_t hel_msg_handle;

unsigned32 status;

<. . .>

hel_msg_handle = dce_msg_cat_open(hello_msg, &status);

dce_msg_cat_get_msg()
(DCE abstraction overcatgets()) Retrieves a message from an open
catalog. If the message is not available, returns NULL.

The routine will fail if the message catalog is not installed or ifLANG
is not properly set.

The following code fragment shows howdce_msg_cat_get_msg()might
be called to retrieve the ‘‘Hello World’’ message. Note that the message
catalog must first be opened.

#include <dce/dce.h>

#include <dce/dce_msg.h>

#include "dcehelmsg.h"

dce_msg_cat_handle_t hel_msg_handle;

unsigned32 status;

unsigned_char_t *msg;

<. . .>

hel_msg_handle = dce_msg_cat_open(hello_msg, &status);

74 DCE 1.2.2 Application Development Guide—Core Components

DCE Application Messaging

msg = (unsigned_char_t *)dce_msg_cat_get_msg(hel_msg_handle,

hello_msg,

&status);

printf("Message from dce_msg_cat_get_msg == %s\n", msg);

dce_msg_get_cat_msg()
Convenience form of previous routine. Opens a message catalog, extracts
a message identified by a global message ID, and returns a pointer
to malloc()’d space containing the message. If the message catalog is
inaccessible, returns an error.

The routine will fail if the message catalog is not installed or ifLANG
is not properly set.

The following code fragment shows howdce_msg_get_cat_msg()might
be called to retrieve the ‘‘Hello World’’ message:

#include <dce/dce.h>

#include <dce/dce_msg.h>

#include "dcehelmsg.h"

unsigned32 status;

unsigned_char_t *msg;

<. . .>

msg = dce_msg_get_cat_msg(hello_msg, &status);

printf("Message from dce_msg_get_cat_msg == %s\n", msg);

dce_msg_cat_close()
(DCE abstraction overcatclose()) Closes the catalog specified byhandle.

The following code fragment shows howdce_msg_cat_close()might
be called to close the message catalog containing the ‘‘Hello World’’
message:

DCE 1.2.2 Application Development Guide—Core Components 75

DCE Facilities

#include <dce/dce.h>

#include <dce/dce_msg.h>

#include "dcehelmsg.h"

dce_msg_cat_handle_t hel_msg_handle;

unsigned32 status;

<. . .>

dce_msg_cat_close(hel_msg_handle, &status);

76 DCE 1.2.2 Application Development Guide—Core Components

Chapter 4
Using the DCE Serviceability
Application Interface

DCE serviceability was originally developed simply as a way of standardizing server
messages. The goal of its design was to make sure that all situations requiring human
intervention that can be encountered by a server are documented and identified (both
by the server when reporting them, and by the documentation when explaining them)
in a standard coordinated way so that system administrators can easily determine the
proper corrective action to take in response. Both the server message text and the
relevant documentation are derived from the same source (that is, a.samsinput file),
which minimizes the possibility of any discrepancies appearing between the two.

The serviceability component is used by the DCE components (RPC, DTS, Security,
and so on) for their server messaging, and it is made available as an API for use
by DCE application programmers who wish to standardize their applications’ server
messaging. (The DCE components are required to use the serviceability routines, but
applications are not.)

DCE 1.2.2 Application Development Guide—Core Components 77

DCE Facilities

4.1 Overview

Serviceability uses XPG4 message catalogs to hold message text, but it adds an
additional layer to the XPG4 functionality. The message catalogs and other required
data (and documentation) files are generated by a utility calledsams (symbols and
message strings). Its input is a text file that establishes some organizational information
about the program that is to use the messages, followed by a series of specifications
of the messages themselves.

Each message specification contains, along with the message text itself, a detailed
explanation of the situation in which the message will be displayed, together with a
description of the action required, where applicable, to correct the situation. Part of the
output ofsamsthus consists of automatic documentation of all the messages writable
via the serviceability API. This output was used as the basis of the contents of the
DCE 1.2.2 Problem Determination Guidefor the DCE component server messages.

Messages also have one or moreattributes specified in thesams input file. The
attributes fall into three broad categories: those that indicate messageseverity, those
that specify messagerouting, and those that specify someaction (usually some form
of program exit) that should be taken immediately after the message is written. The
effect of the presence of a severity attribute is to cause the message text to contain a
severity-identifying string when displayed or written. The effect of the presence of a
routing attribute is to cause the message to be routed by default to one of a couple of
standard destinations (more flexible routing is available dynamically). The effect of
the presence of an action attribute is to cause the program to terminate execution in
one of three ways as soon as the message has been written or displayed, or to cause
a special short form of the message to be generated.

The serviceability API can also be used by DCE applications. The advantage in using
it consists mainly in the following:

• It allows all application messaging to be routed uniformly, on the basis of the
severity of the message and the functional part of the program originating the
message.

• It allows application messages to be made self-documenting.

Serviceability also contains facilities for debug messaging, which can be compiled in
or out of executables and which can be activated and routed by component at nine
different levels.

78 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

4.1.1 How Programs Use Serviceability

The DCE serviceability mechanism uses XPG4 message catalogs to hold message
text. Additional files contain the messages’ associated documentation and other extra
information used by the mechanism. All of these files, including the message catalog,
are generated in a single step by running the DCEsamsutility. The input to sams
is a singlesams file that is written by the developer, and which contains all the
necessary information (text, documentation, additional information) for each message.
The message catalogs and associated information generated bysamsare then accessed
wheneverdce_svc_printf()or one of the other serviceability routines is called to print
or log a message.

Thus, the result of converting a program to use serviceability will essentially be
that all printf() , fprintf() , and other such routines will be replaced by calls to
dce_svc_printf() or one of the related serviceability routines. For example, a line
of code such as the first one that follows would be replaced by the second:

fprintf(stderr, "File %s not found\n", filename);

dce_svc_printf(DCE_SVC(cmp_svc_handle, ""), cmp_s_server, \

svc_c_sev_error, cmp_s_file_not_found, filename);

where the constantscmp_s_server and cmp_s_file_not_found were generated by
sams, and identify the server subcomponent of the application and the message to
be written, respectively. Thecmp_svc_handleconstant is the application’s handle to
its serviceability message tables and other necessary data;cmp_s_serveris actually an
index to a subtable within this dynamically generated area, andcmp_s_file_not_found
is the index of the message text within the subtable.

By convention,cmp is a three-character code identifying the application as a whole;
serviceability uses it to group all of an application’s message and table data together.
Specifyingsvc_c_sev_errorgives the message the severity of error; the significance
of severity in serviceability will be explained in the following sections.DCE_SVC()
is a macro that helps simplify the coding ofdce_svc_printf() calls; as will be seen,
another macro mechanism can be used to make the calls much simpler still.

DCE 1.2.2 Application Development Guide—Core Components 79

DCE Facilities

4.1.2 Simple Serviceability Interface Tutorial

In this section, we’ll see how to go about creating a simple C program that uses the
serviceability interface to print the familiar ‘‘Hello World’’ message.

All that is necessary to do this is to replace the first call that follows with something
like the second:

printf("Hello World\n");

dce_svc_printf(hello_world_message);

However, making thedce_svc_printf() call requires the following preliminary steps:

1. Defining the message in asamsfile.

2. Processing thesams file to obtain a set of files that contain code used by the
serviceability routines.

3. Coding some serviceability initialization calls into the C program itself.

4. Coding thedce_svc_printf() call.

The next several sections describe each of these steps.

4.1.2.1 Defining the Message

In order to print any message through the serviceability interface, we must first define
the message in asamsfile and process the file with thesamsutility. For thehello_svc
program, we will define asams file with the bare minimum contents necessary.
Additional information on the use ofsamscan be found in thesams(1dce)reference
page.

Each line in asamsfile consists of a simpleheaderandvaluecombination. Theheader
indicates the meaning of the value being specified, andvalue is the value itself. A
samsfile for serviceability use is made up of three parts. The first part consists of a
minimum of one line that specifies the name of thecomponent(that is, the application)
that is to use the messages that will be generated from the file.

80 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

The component name that you specify at the top of asams file must consist of a
three-character (no more, no less) string. For the ‘‘Hello World’’ program, we will
use the component namehel:

Part I of simple sams file ...

component hel

The hel string will be used to identify all the files and data structures thatsamswill
generate from the file.

The second part of thesams file contains some additional serviceability-specific
information about the message data structures that will be generated. (This information
is necessary if thesamsfile is intended for serviceability use becausesams is also
used to generate message files for general, nonserviceability use.)

This part of the file specifies the names of the serviceabilitytable and the
serviceabilityhandle. It also contains a list of the component’ssubcomponents. A
subcomponent consists of a distinct functional module of executing code. For example,
most distributed applications would have a basic server subcomponent, a reference
monitor subcomponent that would handle authorization decisions, and one or more
subcomponents that would contain the application’s particular functionality.

The serviceability interface finds a component’s messages in one or more subtables,
each one associated with a subcomponent. When the message is displayed or written,
the associated subcomponent name is written in a field of the message. This allows
messages to be distinguished during routing or other processing on the basis of the
subcomponent with which they are associated.

Following is what the second part of our simplified samplesams file looks like.
We call the serviceability tablehel_svc_table, and we call the serviceability handle
hel_svc_handle. Although we have used the three-letter component codehel in these
names, we were under no obligation to do so; we could have named the table and
the handle anything we wanted. (We will need to know both of these names when we
make the call in the application to initialize the interface in preparation for displaying
messages.)

A component must have at least one subcomponent specified in itssams file.
Subcomponents are specified in this part simply by supplying theirtable index, their
name, and theirdescriptive idin a series of separate lines, one per subcomponent and

DCE 1.2.2 Application Development Guide—Core Components 81

DCE Facilities

each one beginning with thesub-componentkeyword, between a set ofstart andend
keywords:

Part II

serviceability table hel_svc_table handle hel_svc_handle

start

subcomponent hel_s_main "main" hel_i_svc_main

end

In our example,

hel_s_main is the table index name for the subcomponent. Serviceability routines
need this name in order to locate and print any of the subcomponent’s
messages.

main is the name of the subcomponent, specified in quotes.

hel_i_svc_main
is a name that will be used (later on in the file) to identify a message
that describes the subcomponent.

(Note thatsamsassigns values to all of these indexes automatically.)

The third (and final) part of thesamsfile consists of a series of records that specify
the messages themselves. Each record is delimited by thestart and end keywords.
Within each record, a series of keywords identifies the various information that each
message consists of or has associated with it.

Our file will contain only one message, the text of which is to be ‘‘Hello World’’.
The record that specifies it is as follows:

Part III

start

code hel_s_hello

subcomponent hel_s_main

attributes "svc_c_sev_notice | svc_c_route_stderr"

text "Hello World"

explanation "A short informational greeting"

action "None required."

82 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

end

The keywords specified have the following meanings:

start Marks the beginning of a message definition. This keyword can
optionally be followed by various values.

• A number following the keyword specifies that the ID that is
generated bysams for the message should be based on (number
multiplied by 100). This allows the ID numbers of messages that
belong to the same subcomponent of an application to be in the same
numerical subseries (collection), even if additional messages for
subcomponents have to be added later on. If each subcomponent’s
first message isstarted with a collection number that allows
for enough extra ID space in the previous subcomponent to
accommodate a reasonable number of future additional definitions,
then each subcomponent’s ID series will be able to maintain its
unbroken series.

As mentioned, the default size of acollection number is 100. Thus,
the following collection specification is interpreted as ‘‘200’’:

start 2

To change the defaultcollection size, specify

collection size dddd

(wheredddd is thecollection size you desire) in a separate line in
Part 1 of thesamsfile.

code Identifies the message.

sub-component
Identifies the subcomponent that will use the message. (This must also
have been defined in Part II of thesamsfile.)

attributes Specifies various things about the message: what kind of message it
is, how it is to be routed, and so on. Multiple attributes are specified
by ORing their values together. In the example shown, the message

DCE 1.2.2 Application Development Guide—Core Components 83

DCE Facilities

has theseverity attribute svc_c_sev_notice, and therouting attribute
svc_c_route_stderr; the latter forces the message to be routed tostderr
whenever it is written by a serviceability routine.

text Specifies the text of the message itself.

explanation Describes the meaning of the message. The text following this keyword
is used to generate the documentation of the component’s messages.

action Describes any action(s) that should be taken in response to the message.
The text following this keyword is used to generate the documentation
of the component’s messages.

Not all the possible keywords are illustrated in our example, and, of those illustrated,
only codeandtext are required in all circumstances. In the example,explanation and
action have been specified because it is simpler at this point to do so than to leave
them out, andattributes and sub-componenthave been specified for reasons that
will be made clear later on.

This final part of thesamsfile also contains a series of one or more records that specify
messages identifying each of the subcomponents themselves. Since our application has
only one subcomponent, it contains only one such subcomponent-identifying message:

Part IIIa

Messages for serviceability table

start !intable undocumented

code hel_i_svc_main

text "hello_svc main"

end

The keywords have the same meanings as they did in the ‘‘Hello World’’ message.
A couple of flags have been specified after thestart keyword. The first will cause
the message tonot be generated in the message table, and the second means that
the message does not need anyexplanation or action text associated with it. By
specifyingundocumented(with intable, to cause the message to actually be generated
even though it was to be undocumented) for the ‘‘Hello’’ message, we could have
eliminated theexplanation andaction keywords there also.

84 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

4.1.2.2 Processing thesamsFile

The entiresamsfile for the hello_svcprogram is as follows:

Part I

component hel

table hel_msg_table

Part II

serviceability table hel_svc_table handle hel_svc_handle

start

subcomponent hel_s_main "main" hel_i_svc_main

end

Part III

start

code hel_s_hello

subcomponent hel_s_main

attributes "svc_c_sev_notice | svc_c_route_stderr"

text "Hello World"

explanation "?"

action "None required."

end

Part IIIa

start !intable undocumented

code hel_i_svc_main

text "hello_svc main"

end

We create the file with these contents and name ithel.sams. It can be processed with
the simple command that follows:

sams hel.sams

Running the command as shown will result in ten files being created:

DCE 1.2.2 Application Development Guide—Core Components 85

DCE Facilities

dcehel.cat XPG4 message catalog file created bygencat. If you wish to use the
message catalog, you must install it yourself. Its proper location is
platform dependent.

dcehel.msg Message input file forgencat.

dcehelmac.h
Definesconvenience macrosfor use with the serviceability interface to
write serviceability messages.

dcehelmsg.cCode defining the in-memory table of message texts. By using this table,
you can avoid depending on extracting message texts from the message
catalog.

dcehelmsg.hHeader file containing definitions fordcehelmsg.c.

dcehelmsg.sml
Code for a DCE 1.2.2 Problem Determination Guidesubsection
documenting the messages.

dcehelmsg.man
Code for a reference page subsection documenting the messages.

dcehelmsg.idx
Code for building an index for theDCE 1.2.2 Problem Determination
Guidesubsection.

dcehelsvc.c Code defining the serviceability table. (This is a separate table containing
the serviceability subcomponent identifying messages specified at the
end of thesamsfile.)

dcehelsvc.h Header file containing definitions fordcehelsvc.c.

Of these files, only the following are needed for thehello_svcprogram:

dcehelmac.h
Contains convenience macro code.

dcehelmsg.cContains in-memory message table code.

dcehelmsg.hContains definitions for in-memory message table code.

dcehelsvc.c Contains serviceability message table code.

dcehelsvc.h Contains definitions for serviceability message table code.

86 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

The three header files should be included into the program source code. The
dcehelmsg.canddcehelsvc.cmodules should be compiled and linked with the program
object module.

All that remains now is to create a simple C program that calls the necessary
serviceability routines to output the ‘‘Hello World’’ message.

4.1.2.3 Coding the Serviceability Calls

The bare minimum required to initialize the serviceability interface and use it to
display our message is

• Call dce_svc_register() to get a serviceability handle that we can pass to
serviceability message routines.

• Call dce_msg_define_msg_table()to set up the in-memory message table.

• Call dce_svc_printf() to print the message.

To call dce_svc_register(), you must declare the serviceability handle that you defined
in hel.sams:

#include "dcehelsvc.h"

<. . .>

dce_svc_handle_t hel_svc_handle;

unsigned32 status;

<. . .>

hel_svc_handle = dce_svc_register(hel_svc_table, \

(idl_char*)"hel", &status);

if (status != svc_s_ok)

{

printf("dce_svc_register failed\n");

exit(1);

}

DCE 1.2.2 Application Development Guide—Core Components 87

DCE Facilities

This call is the only initialization we need if we have installed our message catalog and
are willing to depend on the message(s) being extracted from there. However, if we
wish to have the messages available in program memory (and thus not depend on the
catalog’s being correctly installed), then we have to calldce_msg_define_msg_table()
to initialize the in-memory table, as follows:

#include <dce/dce_msg.h>

#include "dcehelmsg.h"

<. . .>

dce_msg_define_msg_table(hel_msg_table,

sizeof(hel_msg_table) / sizeof(hel_msg_table[0]),

&status);

if (status != svc_s_ok)

{

printf("dce_svc_define_msg_table failed\n");

exit(1);

}

Now we can calldce_svc_printf() to print the message, as follows:

#include "dcehelmac.h"

<. . .>

dce_svc_printf(HEL_S_HELLO_MSG);

Note the argumentHEL_S_HELLO_MSG , which we did not define in thehel.sams
file. HEL_S_HELLO_MSG is, in fact, a macro that was generated bysams from
our definition for thehel_s_hellomessage, as you can see from the following code:

start

code hel_s_hello

subcomponent hel_s_main

attributes "svc_c_sev_notice | svc_c_route_stderr"

88 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

text "Hello World"

explanation "?"

action "None required."

end

The macro automatically generates the long argument list that must be passed to
dce_svc_printf() to get it to print the message. The code for this convenience macro
is contained indcehelmac.h.

A convenience macro is generated for every message in asams file that has both
sub-component and attributes specified. The macro’s name is formed from the
uppercase version of itscode value (as specified in thesams file), with the string
_MSG appended.

The complete source code forhello_svc.cis as follows:

#include <dce/dce.h>

#include <stdio.h>

#include <stdlib.h>

#include <stddef.h>

#include <dce/utctypes.h>

#include <pthread.h>

#include <dce/dce_msg.h>

#include "hel_svc.h"

#include <dce/dcesvcmsg.h>

#include "dcehelmsg.h"

#include "dcehelsvc.h"

#include "dcehelmac.h"

int main(int argc,

char *argv[])

{

dce_svc_handle_t hel_svc_handle;

unsigned32 status;

hel_svc_handle = dce_svc_register(hel_svc_table, \

(idl_char*)"hel", &status);

DCE 1.2.2 Application Development Guide—Core Components 89

DCE Facilities

if (status != svc_s_ok)

{

printf("dce_svc_register failed\n");

exit(1);

}

dce_msg_define_msg_table(hel_msg_table,

sizeof(hel_msg_table) / sizeof(hel_msg_table[0]),

&status);

if (status != svc_s_ok)

printf("dce_svc_define_msg_table failed \

-- will use catalogs\n");

dce_svc_printf(HEL_S_HELLO_MSG);

}

4.1.2.4 Building and Running the Program

To build the application, you simply perform these steps:

1. Process thehel.samsfile with the samscommand

2. Build and linkhello_svcfrom the following modules:

• dcehelmsg.c

• dcehelsvc.c

• hello_svc.c

4.1.2.5 Fields of a Serviceability Message

When executed, the program will print a message similar to the following:

1994-04-05-20:13:34.500+00:00I----- PID#9467 \

NOTICE hel main hello_svc.c 47 0xa444e208

90 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

Hello World

This message is made up of the following fields:

time inaccuracy process_ID severity component subcomponent src_file src_line thread_ID text

Where the field names have the following meanings:

time The time that the message was written, in ISO format:

CCYY-MM-DD-hh:mm:ss.fff[+|-]II:ii

Where the digit groups represent:

CCYY Century and year

MM Month

DD Day

hh Hour

mm Minutes

ss Seconds

fff Fractions of second

II:ii Time inaccuracy expressed in hours and minutes

The final groups represent a time differential factor (expressed in
hours and minutes), followed by an inaccuracy component. For further
information on time format, see Chapter 20.

process_ID The process ID of the program that wrote the message (PID#9467 in
the example). Ifdce_svc_set_progname()had been called to establish
the application’s program name, that name would appear in this field
instead of the process ID. See Section 4.3.1 for further information.

severity The severity level of the message (NOTICE in the example).

DCE 1.2.2 Application Development Guide—Core Components 91

DCE Facilities

component The component name of the program that wrote the message (hel in the
example).

subcomponent
The subcomponent that wrote the message (main in the example; note
that this program has only one subcomponent).

src_file The name of the C source file in which thedce_svc_printf() call was
executed.

src_line The line number, in the source file, at which thedce_svc_printf() call
is located.

thread_ID The thread ID of the thread that wrote the message, expressed as a
hexadecimal number (0xa444e208in the example).

text The text of the message (Hello World in the example).

4.1.3 Serviceability Input and Output Files

Figure 4-1 shows the relationship of the various files, both source andsamsoutput,
that go to make up thehello_svcapplication.

The two parallelogram-shaped objects represent the files that must be created by the
developer (you).

Rectangular objects with solid lines represent files that are generated bysams; the
two ovals represent programs: one issams, the othergencat (which is implicitly run
by samswhen message catalogs are generated).

The large rectangular object in dashed lines representslibdce , which contains the
serviceability library.

The diagram makes no attempt to show howhello_svc.citself is compiled and linked,
nor how it runs. It is just a static map of the general place of serviceability in DCE
development.

92 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

Figure 4–1. Serviceability and DCE Applications

dcehelmsg.idx

dcehelmsg.sml

dcehelmsg.man

dcehel.cat

sams)

gencat
(executed by

dcehel.msg

sams

hel.sams

libdce

dce_svc_printf(HEL_S_HELLO_MSG);

hello_svc.c

dcehelmsg.h

dcehelmsg.c

dcehelsvc.c

dcehelsvc.h

dcehelmac.h

(DCE library)

(message catalog)

(doc)

(doc)

(doc)

The samsoutput filenames are constructed as follows:

tech_name.comp_name.part_name.extension

where:

tech_name Is the technology name (optionally specified at the top of thehel.sams
file); by default it isdce.

comp_name Is the component name (specified at the top of thehel.samsfile); in this
case,hel.

DCE 1.2.2 Application Development Guide—Core Components 93

DCE Facilities

part_name Is a substring identifying the particular file; for example,svc or msg,
and so on. This piece of the name is omitted from the message catalog
filenames (in our example,dcehel.msganddcehel.cat).

extension Is the file extension (preceded by a. (dot) character).

Because we executed the simplest form of thesams command (that is, without
specifying any output flags), the full repertory ofsamsoutput files was created, even
though the following files were not needed for our application:

• dcehel.msganddcehel.cat

The file dcehel.msgis input to gencat when it is invoked bysams to create
dcehel.cat, the message catalog. (Although our example application used in-
memory tables, the serviceability routines always attempt to use the message
catalog first.)

• dcehelmsg.mananddcehelmsg.sgm

These are automatically generated documentation files (their nature and purpose
were previously described) that have nothing to do with the operation of the
interface itself.

The many additional features of serviceability will be described in the following
sections. A definitive description ofsamsand the contents ofsamsfiles can be found
on thesams(1dce)reference page.

4.2 Integrating Serviceability into a Server

The purpose of the preceding tutorial was simply to give a brief taste of what it
feels like to use the interface. The main task involved in using serviceability does not,
however, lie in mastering the mechanics of the interface, but rather in understanding the
purpose of handling server messages in this way, and then applying this understanding
in order to develop an effective and serviceable messaging strategy for one’s own
application.

94 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

4.2.1 Serviceability Strategy

The serviceability mechanism is designed to be used mainly for server informational
and error messaging—that is, for messages that are of interest to those who are
concerned with server maintenance and administration (in the broadest sense of these
terms). The essential idea of the mechanism is that all server events that are significant
for maintaining or restoring normal operation should be reported in messages that are
made to be self-documenting so that (provided all significant events have been correctly
identified and reported) users and administrators will by definition always be able to
learn what action they should take whenever anything out of the ordinary occurs.
User-prompted, interactive, client-generated messaging should be handled through the
DCE messaging interface, which is described in Chapter 3.

It follows that serviceability is not just an interface; it is partly a state of mind. The
first thing that a developer who wishes to use serviceability should do is examine his
or her server code with a view to identifying all theevent pointsthat should be covered
by serviceability calls. Once these have been determined, thesamsfile (containing the
message definitions) should be written; the last step will be to insert the messaging
calls into the code.

4.2.2 Components and Subcomponents

The very first step in incorporating serviceability into a server is to analyze it into
functionally discrete modules (calledsubcomponents), each of which will usually be
associated with a separate set of messages.

The program itself is regarded as the component. The main significance of
subcomponents is that each one uses a separate part of the message table generated
by sams, and every message is identified both by component and by subcomponent;
message routing and the level of debug messaging can be specified separately by
subcomponent.

DCE 1.2.2 Application Development Guide—Core Components 95

DCE Facilities

4.2.3 Identifying Event Points

Once you have established the subcomponent organization of the server application,
you can begin the work of identifying all the points in the server code at which events
occur or can occur that require serviceability messaging.

Following is a list of the events and kinds of events that should be reported through
the serviceability interface:

• Server startup

Servers should report when they are started, when they have completed their
initialization, and when they are ready to perform work. They should also indicate
when they are going offline.

• Server exit

All fatal exits should be reported as fatal errors, using thesvc_c_sev_fatalseverity
attribute in a call todce_svc_printf(). In other words,exit() or abort() should
not be called directly; this ensures that all such fatal errors will be logged. For an
explanation of severity level attributes, see Section 4.3.1.

• Other fatal errors

Errors that make it impossible to proceed should be detected as close as possible
to the point where the actual failure occurred. This class of error includes such
impossible conditions as failure to successfully allocate memory, failure to open
a configuration file for reading, failure to open a log file for writing, and so on.

• Impaired efficiency

Conditions that may indicate system-level malfunction or poor performance should
be reported as warnings. An example of such a situation (from one of the DCE
components) would be the RPC runtime detecting that it is having to make an
excessive number of retransmits.

• Significant routine activity

Routine administrative actions should be reported as informational (
svc_c_sev_notice) messages. Such activity includes creation, modification and
deletion of tickets, threads, files, sockets, RPC endpoints, or other objects;
message transfer, including name lookup, binding, and forwarding; directory
maintenance (including caching, advertising, skulking, and replication); and
database maintenance (including replication or synchronization).

96 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

• Data input syntax errors

Routines that process data that could have been entered from a keyboard should fail
gracefully (and not core dump, for example) if the data is syntactically incorrect.
Serviceability can be used to report this kind of failure.

Once you have identified the points in your code that should be reported with
serviceability messaging, the next step is to define the messages themselves (in the
samsfile) and code the serviceability calls. The serviceability features ofsamsfiles
were described previously; the following sections describe the various parts of the
serviceability interface itself.

Using the serviceability interface to report errors ensures that the error codes used
will be unique within DCE.

4.3 Application Use of Serviceability

The following subsections describe in detail the various elements of the serviceability
API and what you can do with them.

Complete reference pages for all the serviceability routines can be found in theDCE
1.2.2 Application Development Reference.

4.3.1 Basic Server Calls

The basic serviceability routines are the following:

• DCE_SVC_DEFINE_HANDLE()

This is a macro that can be used instead ofdce_svc_register()to register a table
(it does this by means of a global variable created at compile time). It could have
been used in thehello_svc.ccode as follows, with exactly the same results as
from usingdce_svc_register():

DCE_SVC_DEFINE_HANDLE(hel_svc_handle, hel_svc_table, "hel");

/* handle | | */

DCE 1.2.2 Application Development Guide—Core Components 97

DCE Facilities

/* table | */

/* component name */

Note that eitherDCE_SVC_DEFINE_HANDLE() or dce_svc_register()mustbe
called before the interface can be used.

• dce_svc_register()

This is the function call for registering a serviceability message table. Either it
or DCE_SVC_DEFINE_HANDLE() must be called before any routines can be
called to display or log messages. An example of its use can be seen in the
illustratedhello_svc.ccode.

• dce_svc_unregister()

This is the function call for destroying a serviceability handle. Calling it closes
any open message routes and frees all allocated resources associated with the
handle. However, it is not usually necessary to call this routine since the normal
process exit will perform the required cleanup.

The routine could have been called at the end of thehello_svc.capplication as
follows:

dce_svc_unregister(hel_svc_handle, &status);

where hel_svc_handle is the serviceability handle that was originally
returned by the call to dce_svc_register(), or filled in by the
DCE_SVC_DEFINE_HANDLE() call.

• dce_svc_set_progname()

This function sets the application’sprogram name, which is included in all
messages. In this way, multiple programs can write messages to the same file
and the messages will remain distinguishable.

For example, this routine could have been called in thehello_svc.c code, as
follows:

dce_svc_set_progname("hello_program", &status);

98 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

The message printed by the program would, as a result, have looked like the
following:

1994-04-05-20:13:34.500+00:00I----- hello_program \

NOTICE hel main ...

Hello World

instead of looking like this:

1994-04-05-20:13:34.500+00:00I----- PID#9467 NOTICE hel main ...

Hello World

where the default process ID information has been replaced by the string
hello_program in the first example. The second example shows what the message
looks like if the routine is not called. ThePID# nnnnvalue is the value returned
by getpid().

This call isoptional.

• dce_svc_printf()

This is the normal call for writing or displaying serviceability messages. It cannot
be called with a literal text argument; instead, the message text and other necessary
information must be pre-specified in a file that is processed by thesamsutility,
which in turn outputs sets of tables from which the messages are extracted for
output. The tutorial in Section 4.1.2 provides a brief example of how this is done.

There are two main ways in which to call the routine. If a message has been
defined in thesamsfile with both sub-componentandattributes specified, then
the samsoutput will include a convenience macro for the message that can be
passed as the single argument todce_svc_printf(), for example:

dce_svc_printf(HEL_S_HELLO_MSG);

DCE 1.2.2 Application Development Guide—Core Components 99

DCE Facilities

The convenience macro’s name will be generated from the uppercase version of
the message’scode value (as specified in thesamsfile), with the string_MSG
appended.

If a convenience macro is not generated, or if you want to override some of the
message’s attributes at the time of output, then you must call the routine in its
long form. For thehel_s_hellomessage, such a form of the call might look as
follows:

dce_svc_printf(DCE_SVC(hel_svc_handle, ""), hel_s_main,\

svc_c_sev_error | svc_c_route_stderr, hel_s_hello);

DCE_SVC() is a macro that must be passed as the first argument to
dce_svc_printf() if a convenience macro is not being used. It takes two
arguments:

— The caller’s serviceability handle

— A format string for the message that is to be output

The format string is for use with messages that have been coded with argument
specifiers. Thehel_s_hello message had no argument specifiers, so an empty
string is passed here toDCE_SVC. For an example of printing a message with
arguments, see the end of this subsection.

The remaining arguments passed todce_svc_printf() are as follows:

— Subcomponent table index

This symbol was declared in thesub-componentlist coded in Part II of the
samsfile; its value is used to index into the subtable of messages in which
the desired message is located.

— Message attribute(s)

This argument consists of one or more attributes to be applied to the message
that is to be printed. Note that youmustspecify at least a severity here (for
a list of message severity values, see Section 4.3.3). Multiple attributes are
ORed together, as shown in the example.

There are four categories of message attributes:

routing The available routing attribute constants are

• svc_c_route_stderr

100 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

• svc_c_route_nolog

However, most routing is done either by passing specially
formatted strings todce_svc_routing() or by environment
variable values. See Section 4.3.4 for more detailed information.

severity The available severity attribute constants are

• svc_c_sev_fatal

• svc_c_sev_error

• svc_c_sev_warning

• svc_c_sev_notice

• svc_c_sev_notice_verbose

For more detailed information, see Section 4.3.3.

action The available message action attribute constants are

• svc_c_action_abort

• svc_c_action_exit_bad

• svc_c_action_exit_ok

• svc_c_action_brief

For more detailed information, see Section 4.3.7.

debug level Nine different debug levels can be specified. For more detailed
information, see Section 4.3.12.

— message ID

This argument consists of the message’scode, as declared in thesamsfile.

As an example of how to use format specifiers in messages, consider the following
sams file fragment, in which we define a second message for thehello_svc.c
application:

start

code hel_s_testmessage

text "This message has exactly %d not %d argument(s)"

explanation "This message is to show how to pass arguments"

action "None required."

DCE 1.2.2 Application Development Guide—Core Components 101

DCE Facilities

end

The message could be printed by a call like the following:

dce_svc_printf(DCE_SVC(hel_svc_handle, "%d%d"), hel_s_main,\

svc_c_sev_notice | svc_c_route_stderr,\

hel_s_testmessage, 2, 7);

Note the format specifiers passed in the format string toDCE_SVC, and the
argument values passed at the end of the argument list. This call would cause the
following message to be printed:

1994-04-06-20:06:33.113+00:00I----- hello \

NOTICE hel main hello_svc.c line_nr 0xa444e208

This message has exactly 2 not 7 argument(s)

4.3.2 Extended Format Notation for Message Text

A slightly extended notation allows you to define message texts in thesamsfile that
will (if desired) have format specifiers in their application code forms (that is, in the
.c and.msgfiles output bysams), but which will be replaced by some specified string
constant in the message texts that are generated for documentation use (that is, in the
.sml and .man files).

The notation consists in surrounding the format specifier and alternative constant with
< and > (angle bracket) characters, and separating the two with a | (vertical bar). (You
can use a preceding \ (backslash) to escape these symbols.) For example, the following
message text field:

text Can’t open input file %s for reading

102 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

would become something like the following:

text Can’t open input file <%s|filename> for reading

This message text definition, when processed bysams, would generate a format string
with %s in the .c and message files, but this format specifier would be replaced by
the stringfilenamein the .sml and .man file versions.

4.3.3 Specifying Message Severity

Production (that is, nondebug) serviceability messages are categorized by theirseverity
level, which implies various important things about the kind of situation that causes
the message to be printed. Every message’s severity is stated in the text of the
message itself (for example,NOTICE in the examples given previously shows that
the messages are informational notices), and the serviceability routines can route and
process messages differently on the basis of their severity levels.

Severity levels are attached to messages either when the messages are defined (in the
samsfile) or when the messages are written (by specifying an argument to the routine
writing the message). These severity levels can then be used at runtime as the basis
on which to route the messages (the way this is done will be explained in the next
section).

Thus, each severity level is represented by aconstantby which it is specified in
program code, and anameby which it is referred to in routing files and environment
variables. Each level’s name and constant is shown, together with an explanation, in
Table 4-1.

Table 4–1. Serviceability Message Severities

Name Specifier Meaning

FATAL svc_c_sev_fatal A fatal error has
occurred; the program is
about to exit.

ERROR svc_c_sev_error An error has occurred.

DCE 1.2.2 Application Development Guide—Core Components 103

DCE Facilities

WARNING svc_c_sec_warning An error has been
detected; the program is
continuing execution.

NOTICE svc_c_sev_notice A nonerror event has
occurred; this message is
an informational notice of
it.

NOTICE_VERBOSE svc_c_sev_notice_verbose A nonerror event has
occurred; this message is
a verbose informational
notice of it.

Detailed explanations of the levels are as follows:

FATAL Fatal error exit: An unrecoverable error (such as database corruption)
has occurred which will probably require manual intervention to be
corrected. The program usually terminates immediately after such an
error.

ERROR Error detected: An unexpected event that is nonterminal (such as a
timeout), or is correctable by human intervention, has occurred. The
program will continue operation, although some functions or services
may no longer be available. This severity level may also be used to
indicate that a particular request or action could not be completed.

WARNING Correctible error: An error occurred that was automatically corrected
(for example, a configuration file was not found, and default values
were used instead). This severity level may also be used to indicate a
condition thatmaybe an error if the effects are undesirable (for example,
removing all files as a side effect of removing a nonempty directory),
or to indicate a condition which, if not corrected, will eventually result
in an error (for example, a printer’s running low on paper).

NOTICE Informational notice: A significant routine major event has occurred; for
example, a server has started.

NOTICE_VERBOSE
Verbose information notice: A significant routine event has occurred;
for example, a directory entry was removed.

104 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

Note that debug messages are identified as such by their own set of levels; see Section
4.3.12 for more information.

4.3.4 How to Route Messages

Serviceability messages can be written to any of the normal output destinations.
Routing for serviceability messages can be specified in any of three different ways (in
ascending order of precedence):

1. By the contents of a routing file

2. By the contents of a routing environment variable

3. By calling the dce_svc_routing() routine (often as part of processing an
application’s command-line arguments)

Additional routing (that is, in addition to whatever routing has been specified by the
means described) of a message to standard error can be performed in either of the
following two ways:

• By specifying the routing as one of the message’sattributes (in the samsfile
definition of the message)

• By specifying the attribute in the call todce_svc_printf() (or other serviceability
output routine) to generate the message

Routinga message actually consists of specifying two things:

• How the message should be processed (the form it should be put in)

• Where the message should be sent (its destination)

The two specifications are sometimes closely interrelated, and sometimes specifying
a certain destination implies that the message must be put into a certain form. This
fact allows certain combinations of processing and destination to be abbreviated.

In the following sections, each of the ways to route serviceability messages is
described.

Note that debug messages are routed by a similar, but slightly different, technique.
For a full description, see Section 4.3.12.

DCE 1.2.2 Application Development Guide—Core Components 105

DCE Facilities

4.3.4.1 Using a Routing File

If a file calleddce-local-path/svc/routing exists, the contents of the file (if in the proper
format) will be used to determine the routing of messages written via serviceability
routines.

The value of dce-local-path is usually /opt/dcelocal; the default location of the
serviceability routing file is usually/opt/dcelocal/svc/routing. However, a different
location for the file can be specified by setting the value of the environment variable
DCE_SVC_ROUTING_FILE to the complete desired pathname.

The routing file consists of formatted strings specifying the routing desired for the
various kinds of messages (based on message severity). Each string consists of three
fields as follows:

sev:out_form:dest[;out_form:dest. . .] [GOESTO:{sev| comp}]

where:

sev Specifies the severity level of the message, and must be one of the
following:

• FATAL

• ERROR

• WARNING

• NOTICE

• NOTICE_VERBOSE

The meanings of these severity levels are explained in detail in Section
4.3.3.

out_form (output form) Specifies how the messages of a given severity level should
be processed, and must be one of the following:

BINFILE Write these messages as binary log entries.

TEXTFILE Write these messages as human-readable text.

FILE Equivalent toTEXTFILE .

106 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

DISCARD Do not record messages of this severity level.

STDOUT Write these messages as human-readable text to standard
output.

STDERR Write these messages as human-readable text to standard
error.

Files written asBINFILE s can be read and manipulated with a set
of log file functions, or with thesvcdumplog command. For further
information, see Section 4.3.6.

The out_formspecifier may be followed by a two-number specifier of
the form:

.gens.count

where:

gens Is an integer that specifies the number of files (that is,
generations) that should be kept.

count Is an integer specifying how many entries (that is,
messages) should be written to each file.

The multiple files are named by appending a dot to the simple specified
name, followed by the current generation number. When the number
of entries in a file reaches the maximum specified bycount, the file
is closed, the generation number is incremented, and the next file is
opened. When the maximum generation number files have been created
and filled, the generation number is reset to 1, and a new file with that
number is created and written to (thus overwriting the already-existing
file with the same name), and so on, as long as messages are being
written. Thus the files wrap around to their beginning, and the total
number of log files never exceedsgens, although messages continue to
be written as long as the program continues writing them.

dest (destination) Specifies where the message should be sent and is a
pathname. The field can be left blank if theout_form specified is
DISCARD, STDOUT, or STDERR. The field can also contain a%ld
string in the filename which, when the file is written, will be replaced
by the process ID of the program that wrote the message(s). Filenames
may not contain colons, semicolons, or periods.

DCE 1.2.2 Application Development Guide—Core Components 107

DCE Facilities

Multiple routings for the same severity level can be specified by simply adding the
additional desired routings as semicolon-separated strings in the following format:

out_form:dest

For example, consider the following:

FATAL:TEXTFILE:/dev/console

WARNING:DISCARD:--

NOTICE:BINFILE.50.100:/tmp/log%ld;STDERR:-

These strings specify that

• Fatal error messages should be sent to the console.

• Warnings should be discarded.

• Notices should be written both to standard error and as binary entries in files
located in the/tmp directory. No more than 50 files should be written, and there
should be no more than 100 messages written to each file. The files will have
names of the form

/tmp/logprocess_id.nn

whereprocess_idis the process ID of the program originating the messages, and
nn is the generation number of the file.

The GOESTO specifier allows messages for the severity whose routing specification
it appears in to be routed to the same destination (and in the same output form) as
those for the other, specified, severity level (or component name). For example, the
following specification:

WARNING:STDERR:;GOESTO:FATAL

FATAL:STDERR:;FILE:/tmp/foo

108 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

means thatWARNING messages should show up in three places: twice tostderr,
and then once to the file/tmp/foo.

Note that aGOESTO specification should be the last element in a multidestination
route specification.

4.3.4.2 Routing by Environment Variable

Serviceability message routing can also be specified by the contents of certain
environment variables. If environment variables are used, the routes they specify will
override any conflicting routings specified by a routing file.

The routings are specified (on the basis of severity level) by putting the desired routing
instructions in the following environment variables:

• SVC_FATAL

• SVC_ERROR

• SVC_WARNING

• SVC_NOTICE

• SVC_NOTICE_VERBOSE

Each variable should contain a single string in the following format:

out_form:dest;[out_form:dest. . .] [GOESTO:{sev| comp}]

whereout_formand desthave the same meanings and form as described in Section
4.3.4.1. Multiple routings can be specified with semicolon-separated additional strings
specifying the additional routes, as shown.

4.3.4.3 Callingdce_svc_routing()to Set Routing

Message routing can be set up by the application itself, by calling the routine
dce_svc_routing()and passing to it a string formatted in the same way as a line

DCE 1.2.2 Application Development Guide—Core Components 109

DCE Facilities

of text from a routing file. The routine must be called separately for each severity
level. When routing is specified this way, the routings so specified will override any
conflicting routings specified by environment variable or routing file (as described in
the preceding sections). This is especially useful for setting routes from command-line
arguments.

For example, to set routing in this way for thehello_svc.capplication described
previously, use the following code:

unsigned_char_t *my_route = "NOTICE:STDOUT:-;TEXTFILE:/tmp/my_log";

unsigned_char_t *error_route = "ERROR:TEXTFILE:/tmp/errors_%ld";

dce_svc_routing(my_route, &status);

if (status != svc_s_ok)

{

printf("dce_svc_routing failed\n");

exit(1);

}

dce_svc_routing(error_route, &status);

if (status != svc_s_ok)

{

printf("dce_svc_routing failed\n");

exit(1);

}

4.3.4.4 Additional Routing by Attribute

Limited additional routing for messages can be specified by attribute, either in
the message definition itself in thesams file or as part of the argument list to
dce_svc_printf(). Two routing attribute specifiers are available:

svc_c_route_stderr
Route the message to standard error.

svc_c_route_nolog
Discard the message.

110 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

Note also thesvc_c_action_briefattribute, which is described in Section 4.3.7.

4.3.5 Table of Message Processing Specifiers

As was seen, message processing can be specified either by text strings (read from an
environment variable or routing file, or passed to a routine) or, to a limited degree,
by attribute in the message definition or when the message is output. Table 4-2 shows
all the available types of serviceability message processing; thenameby which it
is specified in strings, and theattribute (where it exists) by which it is specified in
message definitions and calls are both given, along with the meaning of each.

Table 4–2. Serviceability Message Processing Specifiers

Name Attribute Meaning

BINFILE Write binary log entry.

TEXTFILE Write human-readable text.

FILE Equivalent toTEXTFILE .

DISCARD svc_c_route_nolog Do not record.

STDOUT Write human-readable text
to standard output.

STDERR svc_c_route_stderr Write human-readable text
to standard error.

GOESTO Route messages in same
way as named level or
component.

4.3.6 Logging and Log Reading

The serviceability interface includes a set of functions for reading and manipulating
log files written asBINFILE s (see Section 4.3.4.1).

dce_svc_log_open()
Opens a log file for reading.

DCE 1.2.2 Application Development Guide—Core Components 111

DCE Facilities

dce_svc_log_get()
Reads the next entry from a log file. It returns the contents thereof in
the form of a filled-inprolog structure to which it returns a pointer (see
below for a description of the structure fields).

dce_svc_log_rewind()
Returns log processing back to the first message in the log file.

dce_svc_log_close()
Closes the open log file.

The contents of the logprolog structure (defined indce/svclog.h) are as follows:

int version Version number of the interface that generated the message.

utc_t t Pointer to an opaque binary timestamp containing the time at which the
message was written. The opaque timestamp can be converted to atm
structure by calling one of the DCE DTSutc_xxx () routines.

unsigned32 attributes
Message attributes, ORed together (a bit flag).

unsigned32 message_index
Index number of message in message table (for example,hel_s_hello
in the example at the beginning of this chapter).

pthread_t thread_id
ID of application thread that caused the message to be written.

char *argtypes
The format-specifier string for the message.

int argtypes_size
The number of format specifiers for the message.

char *fac_name
The component or subcomponent (‘‘facility’’) name string.

char *message_text
Message text string.

char *progname
Program name string, set by the application’s call to
dce_svc_set_progname().

112 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

char *file
Filename string identifying file from which entry was read.

int line
Line number infile from where the message was printed.

int file_size
Length of filename string.

4.3.7 Message Action Attributes

Routing and severity attributes affect what happens to the messages they are applied
to, and nothing else. However, there is an additional set of attributes that, when applied
to a message, mainly affectwhat happens to the programafter the message is sent:

svc_c_action_abort
Causes the program to abort (with core dump) as soon as the message
is output.

svc_c_action_exit_bad
Causes the program to exit (with failure status) as soon as the message
is output.

svc_c_action_exit_ok
Causes the program to exit (with successful status) as soon as the
message is output.

svc_c_action_brief
Suppresses the standardprolog of the message. The prolog of a
serviceability includes all the nonmessage information that is output
before the message text itself. The prologs of all messages can be
suppressed by setting theSVC_BRIEF environment variable; see the
next section.

4.3.8 Suppressing the Serviceability Message Prolog

You can suppress the prolog (nonmessage text) part of all serviceability messages
generated by an application by setting the value of theSVC_BRIEF environment
variable to 1.

DCE 1.2.2 Application Development Guide—Core Components 113

DCE Facilities

The prolog of a serviceability consists of all the nonmessage information that is output
before the message text itself. For example, examine the following message:

1994-04-05-20:13:34.500+00:00I----- PID#9467 \

NOTICE hel main hello_svc.c line_nr 0xa444e208

Hello World

In this example, the first line is the message prolog, and the second line is the message
text. If the message were generated with theSVC_BRIEF environment variable set
to 1, the message would appear as follows:

Hello World

Prologs of separate messages can be suppressed selectively through the use of the
svc_c_action_briefattribute; see the previous section.

4.3.9 Serviceability Use of the __FILE__ Macro

Whenever a serviceability message is generated, information identifying the source
file and line at which the invoked routine was called is included in the message
information. This information appears in the text-form nonerror messages, and it is
also written into the binary form serviceability logs (when binary logs are specified).
The information also appears in the text form of messages announcing error situations.
For example:

1994-07-20-11:11:09.906-04:00I----- sample_server FATAL \

smp server sample_server.c 2851 0xa44b0c18

server_renew_identity(): login context has not been certified \

(dce / sec)

114 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

(The preprocessor variableDCE_SVC_WANT__FILE__ (in dce/dce_svc.h) will be
defined or undefined depending on whether or not the serviceability component has
been set up on your system to include the filename and line number information in
serviceability messages.)

The serviceability routines receive the source file information from
DCE_SVC__FILE__, which, by default, is defined to be the C preprocessor
macro __FILE__. However, if you desire to avoid these macro expansions in your
application code, you can redefine the symbol to be some kind of variable. For
example:

#define DCE_SVC__FILE__ myfile

#include <dce/dce.h>

static char myfile[] = __FILE__;

4.3.10 Forcing Use of the In-Memory Message Table

As described elsewhere in this chapter, thedce_msg_define_msg_table()routine can
be called by an application to initialize an in-memory copy of its message table,
thus freeing the application from depending on its message catalog’s being properly
installed for its serviceability messages to be properly generated.

However, the serviceability routines will still, by default, attempt first to retrieve a
specified message from the message catalog, even if an in-memory table has been
initialized; only if the message catalog cannot be found will the in-memory table be
used.

You can change the default behavior of the serviceability routines by setting the
SVC_NOXPGCAT environment variable to 1 (or any nonzero value). This will force
the routines to always go to the in-memory table for the specified message; they will
never look for the message catalog.

DCE 1.2.2 Application Development Guide—Core Components 115

DCE Facilities

4.3.11 Dynamically Filtering Messages Before Output

The serviceability interface provides for a hook into the message-output mechanism
that allows applications to decide at the time of messaging whether the given message
should be output or not. The application defines its own routine to perform whatever
checking is desired, and installs the routine with a call todce_svc_define_filter().

In addition, an application that installs such a message-filtering routine can also
define and install a routine that can be called remotely to alter the operation
of the filter routine. The remote-control routine is installed by the same call to
dce_svc_define_filter().

The two routines must have the following signatures. The yes/no routine you define
and install is as follows:

booleanyour_filter_routine(

dce_svc_prolog_tprolog,

va_list args)

The filter remote-control call is as follows:

void your_filter_remote_control(

idl_long_int arg_size;

idl_byte *arg;

error_status_t *status)

Once installed, the filter routine will be automatically invoked every time a
serviceability routine is called to output a message. The filter receives aprolog
argument that contains all the pertinent information about the message. If the filter
returns TRUE, the message is output per the original serviceability call. If the filter
returns FALSE, the message is not output. The information in theprolog allows such
decisions to be made on the basis of severity level, subcomponent, message index,
and so on. Its fields are as follows:

dce_svc_handle_thandle
Serviceability handle of the application writing the message.

116 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

int version
Version number of the interface that generated the message.

utc_t t
Pointer to an opaque binary timestamp containing the time at which the
message was written. The opaque timestamp can be converted to atm
structure by calling one of the DCE DTSutc_...() routines.

const char *argtypes
The format-specifier string for the message.

unsigned32 table_index
samsfile in Section 4.1.2.1.

unsigned32 attributes
Message attributes, ORed together.

unsigned32 message_index
Index number of the message in the message table (for example,
hel_s_helloin the example at the beginning of this chapter).

char *format
Format argument values for the message.

const char *file
Filename string identifying the file to which the message is to be output.

char progname[dce_svc_c_progname_buffsize]
Program name string, set by the application’s call to
dce_svc_set_progname().

int line
Line number infile from where the message was printed.

pthread_t thread_id
ID of the application thread that is causing the message to be output.

The filter remote control routine is part of the remote serviceability interface, which
is described in detail in Section 4.3.14. Its operation is simple. If filter remote control
is desired, the filter routine should be coded so that its operation can be switched to
the various desired alternatives by the values of static variables to which it has access.
These variables are also accessible to the remote control routine, and can be changed
by it. The filter routine receives an argument string (which it uses to set the variables)
whose contents are entirely application defined.

DCE 1.2.2 Application Development Guide—Core Components 117

DCE Facilities

The following code fragments show a skeleton filter that can be added to the
hello_svc.cexample at the beginning of this chapter:

#include <stdarg.h>

#include <dce/svcfilter.h>

<. . .>

/*****

* Filter routine-- once installed, this routine will be called

* automatically every time a serviceability

* routine (in our case, dce_svc_printf()) is

* called to write a message.

*****/

boolean hel_filter(dce_svc_prolog_t prolog,

va_list args)

{

/* Code could be inserted here to test the values of static

variables that would control the operation of the filter,

and which could be altered by calling the filter control

routine below. */

printf("The progname is %s\n", prolog->progname);

if (prolog->attributes | svc_c_sev_notice)

printf("This is a Notice-type message\n");

switch (prolog->table_index)

{

case hel_s_main:

printf("Main subcomponent\n");

break;

default:

printf("Error\n");

break;

}

118 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

/* The routine returns 1, thus permitting the output

operation to go ahead; if 0 were returned here, the

operation would be suppressed ... */

return 1;

}

/*****

* Filter Control routine-- this routine is normally called

* through the remote interface.

*****/

void hel_filter_control(idl_long_int arg_size,

idl_byte *arg,

error_status_t *status)

{

/* Code would be inserted here to interpret the arg passed

and, on the basis of that, change the value(s) of one

or more static variables that control the operation of

hel_filter() */

}

/*****

* install_filters-- calls dce_svc_define_filter() to install

* the above 2 routines. Note that this must

* be done after dce_svc_register() is

* called, not before.

*****/

void install_filters()

{

unsigned32 status;

dce_svc_define_filter(hel_svc_handle, hel_filter, \

hel_filter_control, &status);

}

DCE 1.2.2 Application Development Guide—Core Components 119

DCE Facilities

4.3.12 Using Serviceability for Debug Messages

Apart from the dce_svc_printf() routine for writing production serviceability
messages, the interface provides several macros that can be used for debug messaging
in a server. The advantages in using these macros in debugging are the following:

• All of the debug messaging code can easily be compiled in or out of the executable
by changing the value of a compilation switch.

• Nine levels of debug messaging are provided for; the active level of debug
messaging can be controlled through the remote serviceability interface or by
a value passed to the server at startup.

• One of the macros allows message text to be specified in the call itself, rather
than extracting it by message ID from the message table.

The debug serviceability messaging routines are the following:

• DCE_SVC_LOG()

Outputs a message specified by the message ID. The main differences between
using this routine and usingdce_svc_printf() to write a message are (1) that
DCE_SVC_LOG() generates recordsonly in binary format, and (2) the macro
can be compiled out of the executable by turning off debugging.

Suppose the following message had been defined in thehel.samsfile for the
example application at the beginning of this chapter:

start

code hel_s_debug_message_1

subcomponent hel_s_main

attributes "svc_c_debug3 | svc_c_route_stderr"

text "This is a level 1 test debug message"

explanation "Debug level 3 test"

action "None required."

end

The following call in hello_svc.cwould have written this message as a binary
record to the specified route, provided that debug level 3 had been activated:

120 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

DCE_SVC_LOG((HEL_S_DEBUG_MESSAGE_1_MSG));

Note the use of the double parentheses. This is made necessary by the fact that
it is a macro that takes a variable number of arguments. Note also the use of
the convenience macro form of the message. A full form of the call, with all
arguments explicitly specified, would have been as follows:

DCE_SVC_LOG((DCE_SVC(hel_svc_handle, ""), \

hel_s_main, svc_c_debug3, hel_s_debug_message_1));

/* | | | */

/* table_index | | */

/* debug level | */

/* message ID */

Debug messages, like normal serviceability messages, can also contain format
specifiers and argument lists.

• DCE_SVC_DEBUG()

Outputs a message whose text is specified in the call. For example, the following
call could have appeared inhello_svc.c:

DCE_SVC_DEBUG((hel_svc_handle, \

/* | */

/* handle */

/* */

hel_s_main, svc_c_debug2, "A Debug Level %d message", 2));

/* | | | | */

/* table_index | | | */

/* debug level | | */

/* message text | */

/* argument */

Note here too the use of the double parentheses.

Note also thatDCE_SVC_DEBUG cannot be used with the convenience macro
forms of serviceability messages.

DCE 1.2.2 Application Development Guide—Core Components 121

DCE Facilities

• DCE_SVC_DEBUG_ATLEAST()

Tests the active debug level for a subcomponent. Returns TRUE if the debug
level (set by callingdce_svc_debug_set_levels(); see Section 4.3.12.1) is not less
than the specified level; otherwise returns FALSE. For example, the following call
would return TRUE if the debug level for thehel_s_mainsubcomponent of the
hello_svcapplication had been set tosvc_c_debug2or any higher value:

DCE_SVC_DEBUG_ATLEAST(hel_svc_handle, hel_s_main, svc_c_debug2);

This macro can be used to test the active debug level and avoid calling a debug
output routine if the level of its message is disabled at the time of the call (disabling
the level does not stop any routines from being executed; it only suppresses the
output messages at that level). See Section 4.3.13 for more information.

• DCE_SVC_DEBUG_IS()

Tests the active debug level for a subcomponent. Returns TRUE if the debug level
is the same as that specified in the call; otherwise returns FALSE. For example,
the following call would return TRUE only if the debug level forhel_s_mainhad
been set tosvc_c_debug2:

DCE_SVC_DEBUG_IS(hel_svc_handle, hel_s_main, svc_c_debug2);

• dce_assert()

Evaluates anint expression passed to it and, if the expression evaluates to 0 (that
is, if the expression is false), automatically callsdce_svc_printf()with parameters
that will cause a message with a severity level ofsvc_c_sev_fatal(that is, fatal)
and an action attribute ofsvc_c_action_abortto be printed that will identify the
following:

— The expression

— The source file in which the assertion failed

— The line at which the assertion failed

For example, the following call will cause the failed expression (namely, the
string) to be printed and the program to be aborted.

122 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

dce_assert(hel_svc_handle, ("Test diagnostic message" == NULL))

A NULL can be substituted for the serviceability handle as the first argument.

It is very important that debug messages not be used for errors that can occur during
ordinary operation. This is because the debug messaging code can be omitted when
compiling for production.

4.3.12.1 Setting Debug Levels

Nine serviceability debug message levels are available. The precise meaning of each
level for an application is left to the developer; but the general intention is that
ascending to a higher level (for example, fromsvc_c_debug2to svc_c_debug3) should
increase the level of information detail.

Setting debug messaging at a certain level means that all levels up to and including
the specified level are enabled. For example, if the debug level is set atsvc_c_debug4,
then thesvc_c_debug1, svc_c_debug2, andsvc_c_debug3levels are enabled as well.

A message can have a debug level attached to it in either of two ways:

• The debug level can be specified as one of theattributes in the message’s
definition in thesamsfile.

• If DCE_SVC_DEBUG() or DCE_SVC_LOG() is used to output the message,
the debug level is specified in the call.

The debug level can be set by callingdce_svc_debug_set_levels()and passing to it a
specially formatted string (the debug level is also set when debug routing is specified;
see the next section for further information). Levels can be separately specified for
subcomponents. For example, suppose two subcomponents (rather than one) had been
defined in thesamsfile for the hello_svcapplication at the beginning of this chapter,
as follows:

Part II

serviceability table hel_svc_table handle hel_svc_handle

start

DCE 1.2.2 Application Development Guide—Core Components 123

DCE Facilities

subcomponent hel_s_main "main" hel_i_svc_main

subcomponent hel_s_utils "utils" hel_i_svc_utils

end

The following string would, when passed todce_svc_debug_set_levels(), set the debug
level for themain subcomponent to besvc_c_debug1, and the debug level for the
utils subcomponent to besvc_c_debug4:

unsigned_char_t *levels = "hel:main.1,utils.4";

The general format for the debug level specifier string is as follows:

component:sub_comp.level,sub_comp.level,. . .

where:

component Is the three-character component code for the program.

sub_comp.level
Is a subcomponent name, followed (after a dot) by a debug level
(expressed as a single digit from 1 to 9). Note that multiple
subcomponent/level pairs can be specified in the string.

If there are multiple subcomponents, and it is desired to set the debug level to be
the same for all of them, then the following form will do this (where the* (asterisk)
specifies all subcomponents).

component:*. level

The string can be passed todce_svc_debug_set_levels()as follows:

dce_svc_debug_set_levels(levels, &status);

wherelevels is a string declared similarly to the example shown earlier in this section.

124 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

The nine serviceability debug message level specifiers are as follows:

• svc_c_debug1

• svc_c_debug2

• svc_c_debug3

• svc_c_debug4

• svc_c_debug5

• svc_c_debug6

• svc_c_debug7

• svc_c_debug8

• svc_c_debug9

4.3.12.2 Routing Debug Messages

Routing for serviceability debug messages can be specified in any of four ways:

• By calling thedce_svc_debug_routing()routine

• By the contents of theSVC_CMP _DBG environment variable (whereCMP is
the three-character serviceability name of the component, in uppercase)

• By the contents of the routing filedce-local-path/svc/routing

• By one of the message’sattributes (as coded in thesamsfile)

In all but the last method, the routing is specified by the contents of a specially
formatted string that is either included in the value of the environment variable, is
part of the contents of the routing file, or is passed to thedce_svc_debug_routing()
routine.

The general format for the debug routing specifier string is

component:sub_comp.level,. . .:out_form:dest[out_form:dest. . .] [GOESTO:{sev| comp}]

DCE 1.2.2 Application Development Guide—Core Components 125

DCE Facilities

where:

component Specifies the component name.

sub_comp.level
Specifies a subcomponent name, followed (after a dot) by a debug
level (expressed as a single digit from 1 to 9). Note that multiple
subcomponent/level pairs can be specified in the string.

The meanings of the remaining elements of the string are the same as those for the
identically named elements in Section 4.3.4.

Multiple routings for the same group of subcomponents can be specified by adding
semicolon-separated strings of the following format:

out_form:dest

to the specification, in a form analogous to that followed for specifying production
(nondebug) message routes, shown previously.

The following string would, when passed todce_svc_debug_routing(), set the debug
level and routing for allhel subcomponents:

unsigned_char_t *debug_routes = \

"hel:*.4:TEXTFILE:/tmp/hel_debug_log_%ld;STDERR:-";

A debug level ofsvc_c_debug4is specified, and all debug messages of that level or
lower will be written both to standard error and in text form to the following file:

/tmp/hel_debug_log_process_ID

whereprocess_IDis the process ID of the program writing the messages.

The specification string could be passed todce_svc_debug_routing()as follows:

126 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

dce_svc_debug_routing(debug_routes, &status);

To specify the same routing by environment variable, the string following value should
be assigned toSVC_CMP _DBG:

hel:*.4:TEXTFILE:/tmp/hel_debug_log_%ld;STDERR:-

The same string information could also be inserted into theSVC_ CMP environment
variable or into the contents of the routing file.

Debug routing by attribute (as specified in thesamsfile) is done in the same way as
routing for normal messages. See Section 4.3.4.4.

4.3.13 Performance Costs of Serviceability Debugging

If serviceability debugging routines are used in an application, one of three different
things can happen to any given debugging routine at runtime:

• The routine is called, and its output is generated (because the debug level
associated with the message has been enabled).

• The routine is called, but its output is not generated (because the debug level
associated with the message has been disabled).

• The routine call is not present in the application code because serviceability
debugging has been compiled out (DCE_DEBUG was not defined when the
application was compiled).

Note that, even if a certain debug level has been disabled, any routine or macro call to
output a message with that level will still be executed unless other steps are taken to
prevent this. The performance cost associated with such smothered calls will usually
be insignificant, but situations can occur in which this will not be so.

For example, developers should understand the implications of supplying function calls
as arguments to serviceability debug output routines (such asDCE_SVC_DEBUG).
If the debug code is compiled in (that is, ifDCE_DEBUG is defined), then the
parameterized function calls will always be executed because the output routine itself
will still be called—even though it will produce no output.

DCE 1.2.2 Application Development Guide—Core Components 127

DCE Facilities

In situations like this, the desirable course of action is simply to not call the output
routine at all if the currently set debug level has turned it into a no-op. This can be
done by using theDCE_SVC_DEBUG_ATLEAST macro to check the current level,
as shown in the following example:

if (DCE_SVC_DEBUG_ATLEAST(hel_svc_handle, hel_s_main, svc_c_debug3))

{

DCE_SVC_DEBUG((

hel_svc_handle,

hel_s_main,

svc_c_debug3,

" a_function_call() return value is: %s",

a_function_call(parm, status)));

}

The normal performance cost of a serviceability logging operation normally amounts
to one mutex lock and (usually) one file lock access per operation.

4.3.14 Using the Remote Serviceability Interface

Serviceability is primarily a mechanism intended to be used by servers. Like other
server functionality, it should be remotely controllable by properly authorized entities.
This allows such things as message routing and debug levels to be adjusted without
having to restart the server.

The standard remote serviceability interface is defined in the file/usr/include/dce/
service.idl.

An application server using serviceability is responsible for providing routines that
implement the operations defined inservice.idl. However, implementing the operations
themselves is a simple matter of calling library routines that actually perform them.
The job of the application implementation is mainly to check the authorization of
the remote caller and then either reject the request (if authorization is found to be
insufficient) or call the appropriate library routine to perform the operation.

Table 4-3 lists such remote operations.

128 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

Table 4–3. Remote Operations by Application Servers

Server Implementation Library Routine Purpose

com_svc_set_route() dce_svc_routing() Remotely sets serviceability
message routing.

com_svc_set_dbg_route() dce_svc_debug_routing() Remotely sets serviceability
debug message routing.

com_svc_set_dbg_levels() dce_svc_debug_set_levels() Remotely sets serviceability
debug message levels.

com_svc_inq_components() dce_svc_components() Returns a listing of all
components that have been
registered with the
dce_svc_register()routine.

com_svc_inq_table() dce_svc_table() Returns the message table
registered with a given
component.

com_svc_inq_routings() dce_svc_routings() Returns a list of routings in
effect for a component.

com_svc_filter_control() dce_svc_filter() Remotely controls the
behavior of the serviceability
message filtering routine (if
one exists).

com_svc_inq_stats() dce_svc_inq_stats() Returns operating statistics.

4.3.14.1 Basic Steps in Setting Up the Remote Interface

To make the interface available, the developer must do the following:

1. Coding steps

• Define the server implementation routines for the remote operations.

• Initialize the serviceability interface manager entry point vector (manager
EPV) with the implementation routines.

2. Build steps

DCE 1.2.2 Application Development Guide—Core Components 129

DCE Facilities

• Process theservice.idl file to produce the following:

— Client stub

This will be linked into the client object. The client itself can contain
calls to the remote routines, expressed by their interface names.

— Server stub

This will be linked into the server object (just as its own stub(s) are) to
produce the server executable. Note that the server stub is generated with
the -no_mepv IDL option, which allows the implementation routines to
be named anything that suits the developer. This is why the EPV must
be explicitly initialized with the implementation routines’ addresses.

3. Runtime steps

• At server startup:

The binding handles that the server receives from the RPC runtime, and
which it then registers both with the Name Server Interface (NSI) and the
endpoint mapper under its own interface, must also be registered to the
endpoint mapper with the serviceability interface. Note that serversdo not
explicitly register the serviceability interface with the NSI. Instead, they
use their existing namespace entries without change. Theydo register the
serviceability interface with their endpoint mapper.

• For a client application:

To call one of a server’s remote serviceability routines, the client must import
a binding handle using a NULL UUID; this operation will yield a plain handle.
The client can then pass this handle to the desired remote serviceability routine
and make the call. The server’s host endpoint mapper will recognize the
incoming serviceability UUID in the RPC, and will send the RPC on to one
of the registered endpoints.

The following code fragments illustrate how to define, export, and access the
serviceability remote interface.

4.3.14.2 Implementing the Remote Routines

The following code fragments show in skeletal form how an application’s remote
serviceability routines should be implemented. The pseudo-code references to access

130 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

tests are calls to the application’s ACL manager to assess the caller’s authorization.
For information on implementing an ACL manager, see the security chapters of the
DCE 1.2.2 Application Development—Introduction and Style Guideand theDCE 1.2.2
Administration Guide—Core Components.

#include <dce/dce.h>

#include <dce/dce_msg.h>

#include <dce/dcesvcmsg.h>

#include <dce/svcremote.h>

struct serviceability_v1_0_epv_t dce_svc_epv;

/*****

*

* hel_svc_set_route -- remote call-in to set routing.

*

*****/

static void

hel_svc_set_route(

handle_t h,

idl_byte where[],

error_status_t *st

)

{

if (! your_test_write_access(h))

*st = no_authorization_error;

else

dce_svc_routing(where, st);

}

/*****

*

* hel_svc_set_dbg_route -- remote call-in to set debug routing.

*

*****/

static void

hel_svc_set_dbg_route(

DCE 1.2.2 Application Development Guide—Core Components 131

DCE Facilities

handle_t h,

idl_byte where[],

error_status_t *st

)

{

if (! your_test_write_access(h))

*st = no_authorization_error;

else

dce_svc_debug_routing(where, st);

}

<. . .>

/*****

*

* hel_svc_inq_stats -- remote request for operating statistics.

*

*****/

static void

hel_svc_inq_stats(

handle_t h,

dce_svc_stats_t *stats,

error_status_t *st

)

{

if (! your_test_access(h))

*st = no_authorization_error;

else

/* operation is currently not implemented in library... */

*st = svc_s_no_stats;

}

/* */

/* The table of slots is created by IDL from the service.idl */

/* file, src/dce/utils/svc/service.idl, the output of which */

/* is service.h. It’s then the job of the application that */

132 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

/* wishes to offer the remote operations to fill in the table */

/* with the implementations’ entry points. That’s what’s being */

/* done below. Typically the application simply interposes an */

/* appropriate ACL check between the entry into an */

/* implementation and the subsequent call to the "real" */

/* operation as implemented in the serviceability library. */

/* */

serviceability_v1_0_epv_t dce_svc_epv = {

hel_svc_set_route,

hel_svc_set_dbg_route,

hel_svc_set_dbg_levels,

hel_svc_inq_components,

hel_svc_inq_table,

hel_svc_inq_routings,

hel_svc_filter_ctl,

hel_svc_inq_stats

};

4.3.14.3 Registering and Exporting the Remote Interface

The following code fragments show how the remote serviceability interface could be
exported and registered by ahello_svcserver. Note that only the steps that are closely
or directly related to exporting and registering the server’s and the serviceability remote
interface are shown. For a full example of how to get a DCE server application up and
running, see theDCE 1.2.2 Application Development—Introduction and Style Guide.

The steps shown are the following:

1. Register interfaces with the RPC runtime

2. Request binding handles for the server interface from the RPC runtime

3. Request binding handles for the serviceabilty interface from the RPC runtime

4. Register both sets of binding handles with the endpoint map

5. Export both sets of binding handles to the namespace

Note that (for brevity’s sake) status return checks have been omitted from this code.

DCE 1.2.2 Application Development Guide—Core Components 133

DCE Facilities

<. . .>

/* Register server interface/type_uuid/epv associations */

/* with rpc runtime. */

rpc_server_register_if(timop_v1_0_s_ifspec, &type_uuid,

(rpc_mgr_epv_t)&manager_epv, &status);

/* Register serviceability remote interface with rpc */

/* runtime ... */

rpc_server_register_if(serviceability_v1_0_s_ifspec, &type_uuid,

(rpc_mgr_epv_t)&dce_svc_epv, &status);

<. . .>

/* Tell rpc runtime we want to use all supported protocol */

/* sequences. */

rpc_server_use_all_protseqs(MAX_CONC_CALLS_PROTSEQ, &status);

/* Get server binding handles ... */

rpc_server_inq_bindings(&hello_bind_vector_p, &status);

/* Get binding handles for serviceability remote */

/* interface ... */

rpc_server_inq_bindings(&svc_bind_vector_p, &status);

<. . .>

/* Register endpoints with server interface ... */

rpc_ep_register(hello_v1_0_s_ifspec, hello_bind_vector_p,

(uuid_vector_t *)&obj_uuid_vec,

(unsigned_char_t *)"hello server, version 1.0",

&status);

/* Register endpoints with serviceability interface ... */

rpc_ep_register(serviceability_v1_0_s_ifspec, svc_bind_vector_p,

(uuid_vector_t *)&obj_uuid_vec,

(unsigned_char_t *)"Hello SVC",

&status);

/* Export server interface binding info to the namespace. */

134 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

rpc_ns_binding_export(rpc_c_ns_syntax_dce, server_name,

hello_v1_0_s_ifspec, hello_bind_vector_p,

(uuid_vector_t *)&obj_uuid_vec, &status);

4.3.14.4 Importing and Accessing the Remote Interface

The following code fragments are intended to give an idea how a client might import
both thehello_svcserver’s interface and its exported serviceability interface.

Note that (for brevity’s sake) status return checks have been omitted from this code.

/* Import binding info from namespace. */

for (server_num = 0; server_num < nservers; server_num++)

{

/* Begin the binding import loop. */

rpc_ns_binding_import_begin(rpc_c_ns_syntax_dce,

server_name[server_num], hello_v1_0_c_ifspec,

&obj_uuid, &import_context, &status);

/* Begin the svc binding import loop. */

rpc_ns_binding_import_begin(rpc_c_ns_syntax_dce,

server_name[server_num], NULL,

&obj_uuid, &svc_import_context, &status);

/* Import bindings one at a time. */

while (1)

{

rpc_ns_binding_import_next(import_context,

&bind_handle[server_num], &status);

rpc_ns_binding_import_next(svc_import_context,

&svc_bind_handle[server_num], &status);

/* Select, say, the first binding over UDP. */

rpc_binding_to_string_binding(bind_handle[server_num],

DCE 1.2.2 Application Development Guide—Core Components 135

DCE Facilities

&string_binding, &status);

rpc_binding_to_string_binding(svc_bind_handle[server_num],

&svc_string_binding, &status);

rpc_string_binding_parse(string_binding, NULL,

&protseq, NULL, NULL, NULL, &status);

rpc_string_binding_parse(svc_string_binding, NULL,

&svc_protseq, NULL, NULL, NULL, &status);

rpc_string_free(&string_binding, &status);

ret = strcmp((char *)protseq, "ncadg_ip_udp");

rpc_string_free(&protseq, &status);

rpc_string_free(&svc_string_binding, &status);

svc_ret = strcmp((char *)svc_protseq, "ncadg_ip_udp");

rpc_string_free(&svc_protseq, &status);

if ((svc_ret == 0) || (ret == 0))

{

break;

}

}

/* End the binding import loop. */

rpc_ns_binding_import_done(&import_context, &status);

rpc_ns_binding_import_done(&svc_import_context, &status);

}

/* Annotate binding handles for security. */

for (server_num = 0; server_num < nservers; server_num += 1)

rpc_binding_set_auth_info(bind_handle[server_num],

SERVER_PRINC_NAME, rpc_c_protect_level_pkt_integ,

rpc_c_authn_dce_secret, NULL /*default login context*/,

rpc_c_authz_name, &status);

for (server_num = 0; server_num < nservers; server_num += 1)

136 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Serviceability Application Interface

rpc_binding_set_auth_info(svc_bind_handle[server_num],

SERVER_PRINC_NAME, rpc_c_protect_level_pkt_integ,

rpc_c_authn_dce_secret, NULL /*default login context*/,

rpc_c_authz_name, &status);

DCE 1.2.2 Application Development Guide—Core Components 137

Chapter 5
The DCE Backing Store

This chapter describes thebacking store librarythat DCE provides for the convenience
of programmers who are writing DCE servers. A backing store is apersistent database
or persistent object storefrom which typed data can be stored and retrieved by a key.

Note: Sometimes the backing store is called adatabase. For instance, the associated
IDL file is dce/database.idl, and the name of the backing store routines begin
with dce_db_. The backing store is, however, not a full-fledged database in
the conventional sense, and it has no support for SQL or for any other query
system.

Servers generally need to manage several objects. Good design often requires that the
state of the objects be maintained over sequential instances of a particular server. For
example, the ACLs used by a server should not need to be recalculated each time the
system is rebooted. The backing store interface provides a way to store, into a file, any
data that can be described with IDL so that it can persist across instances of software
that run from time to time. For example, the ACL library uses the backing store library.
The backing store routines can be used in servers, in clients or in standalone programs
that do not involve remote procedure calls (RPCs). Backing store data should not be
used for sharing data between processes.

DCE 1.2.2 Application Development Guide—Core Components 139

DCE Facilities

5.1 Data in a Backing Store

The backing store interface provides the applications programmer with the capability
for tagged storage and retrieval of typed data. The tag (or retrieval key) can be either
a UUID or a standard C string. For a specific backing store, the data type must be
specified at compile time and is established through the IDL encoding services. Each
backing store can contain only a single data type.

Each data item(which may also be called adata object, or a data record) consists
of the data stored in a single call to a storage routine. The storage routines
are dce_db_store(), dce_db_store_by_name(), and dce_db_store_by_uuid().
Optionally, data items may have standard headers. If a backing store has been created
to use headers, then every data item has the header.

A program can have more than one backing store open at the same time.

5.2 Using a Backing Store

Although the backing store library is a generalized service, you are encouraged to use
it in a particular, standardized way. You should use the header and the recommended
IDL interface format that are described in the following sections. Standardized use
will ease the transition to later developments in DCE.

5.3 Header for Data

An optional standard header is available for data objects or items in the backing store.
If it is employed, then the backing store library automatically maintains thecreated,
modified, and modified_count fields, as shown in the following IDL description,
taken from thedce/database.idlfile:

/* The standard header for each "object" in the database. */

typedef struct dce_db_dataheader_s_t {

uuid_t uuid;

140 DCE 1.2.2 Application Development Guide—Core Components

The DCE Backing Store

uuid_t owner_id;

uuid_t group_id;

uuid_t acl_uuid;

uuid_t def_object_acl;

uuid_t def_container_acl;

unsigned32 ref_count;

/* The following fields are updated by the library */

utc_t created;

utc_t modified;

unsigned32 modified_count;

} dce_db_dataheader_t;

typedef enum {

dce_db_header_std,

dce_db_header_acl_uuid,

dce_db_header_none

} dce_db_header_type_t;

typedef union switch (dce_db_header_type_t type) tagged_union {

case dce_db_header_none: /* none */ ;

case dce_db_header_std: dce_db_dataheader_t h;

case dce_db_header_acl_uuid: uuid_t acl_uuid;

} dce_db_header_t;

void dce_db_header_convert(

[in] handle_t h,

[in,out] dce_db_header_t *data,

[out] error_status_t *st

);

The acl_uuid field is intended for use as a UUID retrieval key in a server’s ACL
database.

5.4 The User Interface

The recommended, standardized backing store IDL interface for a server looks like
the following, whereXXX is the server name:

DCE 1.2.2 Application Development Guide—Core Components 141

DCE Facilities

interface XXX_convert

{

import "dce/database.idl"

typedef XXX_data_s_t {

dce_db_header_t header; /* Header must be first! */

/* (server-specific data goes here) */

} XXX_data_t;

void XXX_data_convert(

[in] handle_t h,

[in, out] XXX_data_t *data

[out] error_status_t *st

);

}

It should be compiled with the following Attribute Configuration File (ACF), which
instructs theidl compiler to write the data conversion routine into theXXX_cstub.c
file:

interface XXX

{

[encode, decode] XXX_data_convert([comm_status] st);

}

5.5 The IDL Encoding Services

When remote procedure call sends data between a client and a server, it serializes the
user’s data structures by using the IDL encoding services, described in Chapter 16 of
this book.

5.5.1 Encoding and Decoding in the Backing Store

The backing store uses this same serialization scheme for encoding and decoding,
informally called pickling, when storing data structures to disk. The IDL compiler,

142 DCE 1.2.2 Application Development Guide—Core Components

The DCE Backing Store

idl , writes the routine that encodes and decodes the data. This routine is passed to
dce_db_open(), remembered in the handle, and used by the following store and fetch
routines:

• dce_db_fetch()

• dce_db_fetch_by_name()

• dce_db_fetch_by_uuid()

• dce_db_header_fetch()

• dce_db_store()

• dce_db_store_by_name()

• dce_db_store_by_uuid()

5.5.2 Conformant Arrays Not Allowed

You cannot use conformant arrays in objects stored to a backing store. This is because
the IDL-generated code that encodes (pickles) the structure has no way to predict or
detect the size of the array. When the object is fetched, there will likely be insufficient
space provided for the structure, and the array’s data will destroy whatever is in
memory after the structure.

To illustrate the problem more clearly, here is an example. An IDL file has a
conformant array,na, as an object in astruct:

typedef struct {

unsigned32 length;

[size_is(length)]

unsigned32 numbers[];

} num_array_t

typedef struct {

char *name;

num_array_t na;

} my_type_t;

The idl compiler turns the IDL specification into the following.h file contents:

DCE 1.2.2 Application Development Guide—Core Components 143

DCE Facilities

typedef struct {

unsigned32 length;

unsigned32 numbers[1];

} num_array_t

typedef struct {

idl_char *name;

num_array_t na;

} my_type_t;

When the object is fetched, and the array length is greater than the 1 (one) assumed in
the .h file, the decoding operation destroys whatever followsmy_struct in memory:

my_type_t my_struct;

dce_db_fetch(dbh, key, &my_struct, &st);

The correct method is to use a pointer to the array, not the array itself, in the IDL
file. For example:

typedef struct {

char *name;

num_array_t *na;

} my_type_t;

5.6 The Backing Store Routines

Many of the backing store routines appear in three versions: plain, by name, and by
UUID. The plain version will work with backing stores that were created to be indexed
either by name, or by UUID; the restricted versions accept only the matching type. It
is advantageous to use the restricted versions when they are appropriate because they
provide type checking by the compiler, as well as visual clarity of purpose.

The backing store operations described in the following sections are supported.

144 DCE 1.2.2 Application Development Guide—Core Components

The DCE Backing Store

5.6.1 Opening a Backing Store

The dce_db_open()routine creates a new backing store or opens an existing one.
The backing store is identified by a filename. There are flags to permit the following
choices:

• Create a new backing store or open an existing one.

• Create a new backing store indexed by name or UUID. (The choice depends upon
the server’s purpose.) This index is called thebacking store key.

• Open an existing backing store read/write or read-only.

• Use the standard header or not.

Every backing store is created with one of the two possible index schemes, by name
or by UUID, and you cannot subsequently open it for use with the other scheme.
Also, once a backing store has been created with (or without) standard headers, you
cannot subsequently open it the other way.

The routine returns a handle by which subsequent operations identify the backing
store.

The following conventions for filenames are recommended:

xxx.acl ACL storage.

xxx.db Backing store filename.

5.6.2 Closing a Backing Store

The dce_db_close()routine frees the handle. It closes any open files and releases all
other resources associated with the backing store.

5.6.3 Storing or Retrieving Data

The following routines store data into a backing store:

DCE 1.2.2 Application Development Guide—Core Components 145

DCE Facilities

dce_db_store()
This routine can store into a backing store that is indexed by name
or by UUID. The key’s type must match the flag that was used in
dce_db_open().

dce_db_store_by_name()
This routine can store only into a backing store that is indexed by name.

dce_db_store_by_uuid()
This routine can store only into a backing store that is indexed by UUID.

To retrieve data from a backing store, use the appropriate one of the following routines:

dce_db_fetch()
This routine can retrieve data from a backing store that is indexed by
name or by UUID. The key’s type must match the flag that was used
in dce_db_open().

dce_db_fetch_by_name()
This routine can retrieve data only from a backing store that is indexed
by name.

dce_db_fetch_by_uuid()
This routine can retrieve data only from a backing store that is indexed
by UUID.

When storing or retrieving data, a function that was specified at open time converts
between native format and on-disk (serialized) format. This function is generated from
the IDL file by the IDL compiler.

5.6.4 Freeing Data

When fetching data, the encoding services allocate memory for the data structures that
are returned. These services accept a structure and userpc_sm_allocate()to provide
additional memory needed to hold the data.

The backing store library does not know what memory has been allocated and,
therefore, cannot free it. For fetch calls that are made from a server stub, this is not a
problem because the memory is freed automatically when the server call terminates.
For fetch calls that are made from a nonserver, the programmer is responsible for
freeing the memory.

146 DCE 1.2.2 Application Development Guide—Core Components

The DCE Backing Store

Programs that call the fetch or store routines, such asdce_db_fetch(), outside of a
server operation (for instance, if a server does some backing store initialization, or in
a standalone program) must callrpc_sm_enable_allocate()first.

5.6.5 Making or Retrieving Headers

Thedce_db_std_header_init()routine initializes a standard backing store header from
the values the caller provides in its arguments. It places the values into the header
only and does not write into the backing store file. Thedce_db_header_fetch()routine
retrieves the header of an object in the backing store.

5.6.6 Performing Iteration

The following routines iteratively traverse all of the keys (name or UUID) in a backing
store. The order of retrieval of the keys is indeterminate; they are not sorted, nor
are they necessarily returned in the order in which they were originally stored. It is
strongly recommended to use the locking and unlocking routines,dce_db_lock()and
dce_db_unlock(), whenever performing iteration.

dce_db_iter_start()
This routine prepares for the start of iteration.

dce_db_iter_next()
This routine returns the key for the next item from a backing store that is
indexed by name or by UUID. Thedb_s_no_morestatus code indicates
that there are no more items.

dce_db_iter_next_by_name()
This routine returns the key for the next item only from a backing store
that is indexed by name. Again,db_s_no_moreindicates that no items
remain.

dce_db_iter_next_by_uuid()
This routine returns the key for the next item only from a backing store
that is indexed by UUID. Again,db_s_no_moreindicates that no items
remain.

DCE 1.2.2 Application Development Guide—Core Components 147

DCE Facilities

dce_db_iter_done()
This routine is counterpart todce_db_iter_start() and should be called
when iteration is done.

dce_db_inq_count()
This routine returns the number of items in a backing store.

5.6.7 Deleting Items from a Backing Store

The following routines delete an item from a backing store.

dce_db_delete()
This routine deletes an item from a backing store that is indexed by
name or by UUID. The key’s type must match the flag that was used
in dce_db_open().

dce_db_delete_by_name()
This routine deletes an item only from a backing store that is indexed
by name.

dce_db_delete_by_uuid()
This routine deletes an item only from a backing store that is indexed
by UUID.

To delete an entire backing store, ensure that the data file is not open, and remove it.
There is only one file.

5.6.8 Locking and Unlocking a Backing Store

The dce_db_lock()and dce_db_unlock()routines lock and unlock a backing store.
If a backing store is already locked,dce_db_lock()provides an indication. A lock is
associated with an open backing store’s handle. The storage routines,dce_db_store(),
dce_db_store_by_name(), anddce_db_store_by_uuid(), all acquire the lock before
updating. Explicit use of locking is appropriate in some circumstances; for example,
when reading or writing pairs (or multiples) of closely associated items in a backing
store, or when using iteration.

148 DCE 1.2.2 Application Development Guide—Core Components

The DCE Backing Store

The locks are advisory. It is possible to write a backing store even if it is locked so,
if you want to rely upon the locks, you must always check them.

5.7 Example of Backing Store Use

For a full example of backing store use, see theDCE 1.2.2 Application Development—
Introduction and Style Guide.

The following brief example shows a portion of a server that manages an office
telephone directory. Following are the relevant structures, defined in an IDL file:

typedef struct phone_record_s_t {

[string,ptr] char *name;

[string,ptr] char *email;

[string,ptr] char *phone;

[string,ptr] char *office;

} phone_record_t;

typedef struct phone_record_array_s_t {

unsigned32 count;

[ptr,size_is(count)] phone_record_t *entry;

} phone_record_array_t;

typedef struct phone_data_s_t {

dce_db_header_t h;

phone_record_t ph;

} phone_data_t;

/*

* The following routine returns the entire contents of the

* directory from the backing store by using the iteration

* routines. First, the portion of the IDL file that

* defines the routine’s RPC format:

*/

[idempotent] void entire_phone_book(

[in] handle_t h,

DCE 1.2.2 Application Development Guide—Core Components 149

DCE Facilities

[out] phone_record_array_t *e_array,

[out] error_status_t *st

);

Next the routine itself, written in C:

/* global variables */

dce_db_handle__t db_h; /* handle to phonebook backing store */

/* Other routines are not shown here, including the routine

* that opened the backing store.

*/

void

entire_phone_book(

/* [in] */ handle_t h, /* For RPC, but not used

* here. An ACL check

* would use it. */

/* [out] */ phone_record_array_t *e_array,

/* [out] */ error_status_t *st

)

{

uuid_t *dbkey;

phone_data_t pd;

unsigned32 i;

error_status_t st2;

*st = error_status_ok;

/* Lock before starting work, so that the backing

* store does not change until after all the info

* has been returned.

*/

dce_db_lock(db_h, st);

/* Count the entries so enough storage can be allocated */

e_array->count = 0;

dce_db_inq_count(db_h, &e_array->count, st);

if (*st != error_status_ok) {

dce_fprintf(stderr, *st); /* or some other treatment */

150 DCE 1.2.2 Application Development Guide—Core Components

The DCE Backing Store

dce_db_unlock(db_h, st);

return;

}

if (e_array->count == 0) { /* No items, nothing to do */

dce_db_unlock(db_h, st);

return;

}

/* Allocate the space for the output. */

e_array->entry = rpc_sm_allocate(

e_array->count*sizeof(e_array->entry[0]),st);

if (*st != rpc_s_ok) {

dce_fprintf(stderr, *st); /* or some other treatment */

return

}

dce_db_iter_start(db_h, st);

i = 0;

while (TRUE) {

/* Get the next key. */

dce_db_iter_next(db_h, &dbkey, st);

/* break when we’ve scanned the entire backing store */

if (*st == db_s_no_more) break;

/* Get the data associated with the next key. */

dce_db_fetch_by_uuid(db_h, dbkey, (void *)&pd, st);

if (*st != error_status_ok) {

dce_fprintf(stderr, *st);

/* Don’t forget to stop iterating and unlock after

* an error. */

dce_db_iter_done(db_h, &st2);

dce_db_unlock(db_h, &st2);

return;

}

/* Stick the item into the array to be returned

* when done. */

e_array->entry[i].name = strdup(pd.ph.name);

e_array->entry[i].email = strdup(pd.ph.email);

e_array->entry[i].phone = strdup(pd.ph.phone);

e_array->entry[i].office = strdup(pd.ph.office);

i++;

/* The use of strdup() above is illustrative, but it

* is not correct within a server, because the

DCE 1.2.2 Application Development Guide—Core Components 151

DCE Facilities

* allocated memory is never freed. Correct code

* would involve the use of rpc_sm_allocate().

*/

}

/* The iteration is finished. */

dce_db_iter_done(db_h, st);

dce_db_unlock(db_h, st);

}

152 DCE 1.2.2 Application Development Guide—Core Components

Part 2
DCE Threads

Chapter 6
Introduction to Multithreaded
Programming

DCE Threads is a user-level (nonkernel) threads package based on the pthreads
interface specified by POSIX in 1003.4a, Draft 4. This chapter introduces
multithreaded programming, which is the division of a program into multiple threads
(parts) that execute concurrently. In addition, this chapter describes four software
models that improve multithreaded programming performance.

A thread is a single sequential flow of control within a program. It is the active
execution of a designated routine, including any nested routine invocations. Within a
single thread, there is a single point of execution. Most traditional programs consist
of a single thread.

Threads are lightweight processes that share a single address space. Each thread shares
all the resources of the originating process, including signal handlers and descriptors.
Each thread has its own thread identifier, scheduling policy and priority,errno value,
thread-specific data bindings, and the required system resources to support a flow of
control.

DCE 1.2.2 Application Development Guide—Core Components 155

DCE Threads

6.1 Advantages of Using Threads

With a threads package, a programmer can create multiple threads within a process.
Threads execute concurrently and, within a multithreaded process, there are at any
time multiple points of execution. Threads execute within a single address space.
Multithreaded programming offers the following advantages:

• Performance

Threads improve the performance (throughput, computational speed,
responsiveness, or some combination of these) of a program. Multiple threads
are useful in a multiprocessor system where threads run concurrently on separate
processors. In addition, multiple threads also improve program performance on
single processor systems by permitting the overlap of input and output or other
slow operations with computational operations.

You can think of threads as executing simultaneously, regardless of the number
of processors present. You cannot make any assumptions about the start or
finish times of threads or the sequence in which they execute, unless explicitly
synchronized.

• Shared Resources

An advantage of using multiple threads over using separate processes is that the
former share a single address space, all open files, and other resources.

• Potential Simplicity

Multiple threads can reduce the complexity of some applications that are inherently
suited for threads.

6.2 Software Models for Multithreaded Programming

The following subsections describe four software models for which multithreaded
programming is especially well suited:

• Boss/worker model

• Work crew model

• Pipelining model

• Combinations of models

156 DCE 1.2.2 Application Development Guide—Core Components

Introduction to Multithreaded Programming

6.2.1 Boss/Worker Model

In a boss/worker model of program design, one thread functions as the boss because it
assigns tasks to worker threads. Each worker performs a different type of task until it
is finished, at which point the worker interrupts the boss to indicate that it is ready to
receive another task. Alternatively, the boss polls workers periodically to see whether
or not each worker is ready to receive another task.

A variation of the boss/worker model is the work queue model. The boss places tasks
in a queue, and workers check the queue and take tasks to perform. An example of
the work queue model in an office environment is a secretarial typing pool. The office
manager puts documents to be typed in a basket, and typists take documents from the
basket to work on.

6.2.2 Work Crew Model

In the work crew model, multiple threads work together on a single task. The task is
divided into pieces that are performed in parallel, and each thread performs one piece.
An example of a work crew is a group of people cleaning a house. Each person cleans
certain rooms or performs certain types of work (washing floors, polishing furniture,
and so forth), and each works independently. Figure 6-1 shows a task performed by
three threads in a work crew model.

Figure 6–1. Work Crew Model

Thread A

Thread B

Thread C

(Time)

TASK

Setup Cleanup

DCE 1.2.2 Application Development Guide—Core Components 157

DCE Threads

6.2.3 Pipelining Model

In the pipelining model, a task is divided into steps. The steps must be performed in
sequence to produce a single instance of the desired output, and the work done in each
step (except for the first and last) is based on the preceding step and is a prerequisite
for the work in the next step. However, the program is designed to produce multiple
instances of the desired output, and the steps are designed to operate in a parallel time
frame so that each step is kept busy.

An example of the pipelining model is an automobile assembly line. Each step or
stage in the assembly line is continually busy receiving the product of the previous
stage’s work, performing its assigned work, and passing the product along to the next
stage. A car needs a body before it can be painted, but at any one time numerous cars
are receiving bodies, and then numerous cars are being painted.

In a multithreaded program using the pipelining model, each thread represents a step
in the task. Figure 6-2 shows a task performed by three threads in a pipelining model.

Figure 6–2. Pipelining Model

(Time)

TASK

Thread A Thread B Thread C

6.2.4 Combinations of Models

You may find it appropriate to combine the software models in a single program if
your task is complex. For example, a program could be designed using the pipelining
model, but one or more steps could be handled by a work crew. In addition, tasks

158 DCE 1.2.2 Application Development Guide—Core Components

Introduction to Multithreaded Programming

could be assigned to a work crew by taking a task from a work queue and deciding
(based on the task characteristics) which threads are needed for the work crew.

6.3 Potential Disadvantages of Multithreaded
Programming

When you design and code a multithreaded program, consider the following problems
and accommodate or eliminate each problem as appropriate:

• Potential Complexity

The level of expertise required for designing, coding, and maintaining
multithreaded programs may be higher than for most single-threaded programs
because multithreaded programs may need shared access to resources, mutexes,
and condition variables. Weigh the potential benefits against the complexity and
its associated risks.

• Nonreentrant Software

If a thread calls a routine or library that is not reentrant, use the global locking
mechanism to prevent the nonreentrant routines from modifying a variable that
another thread modifies. Chapter 8 discusses nonreentrant software in more detail.

Note: A multithreaded program must be reentrant; that is, it must allow multiple
threads to execute at the same time. Therefore, be sure that your compiler
generates reentrant code before you do any design or coding work for
multithreading. (Many C, Ada, Pascal, and BLISS compilers generate
reentrant code by default.)

If your program is nonreentrant, any thread synchronization techniques
that you use are not guaranteed to be effective.

• Priority Inversion

Priority inversion prevents high-priority threads from executing when
interdependencies exist among three or more threads. Chapter 8 discusses priority
inversion in more detail.

• Race Conditions

A type of programming error called arace conditioncauses unpredictable and
erroneous program behavior. Chapter 8 discusses race conditions in more detail.

DCE 1.2.2 Application Development Guide—Core Components 159

DCE Threads

• Deadlocks

A type of programming error called adeadlockcauses two or more threads to be
blocked from executing. Chapter 8 discusses deadlocks in more detail.

• Blocking Calls

Certain system or library calls may cause an entire process to block while waiting
for the call to complete, thus causing all other threads to stop executing. Chapter
8 discusses blocking in more detail.

160 DCE 1.2.2 Application Development Guide—Core Components

Chapter 7
Thread Concepts and Operations

This chapter discusses concepts and techniques related to DCE Threads. The following
topics are covered:

• Thread operations

• New primitives

• Attributes objects

• Synchronization objects

• One-time initialization code

• Thread-specific data

• Thread cancellation

• Thread scheduling

For detailed information on the multithreading routines referred to in this chapter,
see the reference page for that routine in theDCE 1.2.2 Application Development
Reference.

DCE 1.2.2 Application Development Guide—Core Components 161

DCE Threads

7.1 Thread Operations

A thread changes states as it runs, waits to synchronize, or is ready to be run. A thread
is in one of the following states:

• Waiting

The thread is not eligible to execute because it is synchronizing with another
thread or with an external event.

• Ready

The thread is eligible to be executed by a processor.

• Running

The thread is currently being executed by a processor.

• Terminated

The thread has completed all of its work.

Figure 7-1 shows the transitions between states for a typical thread implementation.

Figure 7–1. Thread State Transitions

Waiting Ready Running Terminated

The operations that you can perform include starting, waiting for, terminating, and
deleting threads.

7.1.1 Starting a Thread

To start a thread, create it using thepthread_create() routine. This routine creates
the thread, assigns specified or default attributes, and starts execution of the function
you specified as the thread’s start routine. A unique identifier (handle) for that thread
is returned from thepthread_create() routine.

162 DCE 1.2.2 Application Development Guide—Core Components

Thread Concepts and Operations

7.1.2 Terminating a Thread

A thread exists until it terminates and thepthread_detach() routine is called for the
thread. Thepthread_detach() routine can be called for a thread before or after it
terminates. If the thread terminates beforepthread_detach() is called for it, then the
thread continues to exist and can be synchronized (joined) until it is detached. Thus,
the object (thread) can be detached by any thread that has access to a handle to the
object.

Note thatpthread_detach() must be called to release the memory allocated for the
thread objects so that this storage does not build up and cause the process to run out
of memory. For example, after a thread returns from a call to join, it detaches the
joined-to thread if no other threads join with it. Similarly, if a thread has no other
threads joining with it, it detaches itself so that its thread object is deallocated as soon
as it terminates.

A thread terminates for any of the following reasons:

• The thread returns from its start routine; this is the usual case.

• The thread calls thepthread_exit() routine.

Thepthread_exit() routine terminates the calling thread and returns a status value,
indicating the thread’s exit status to any potential joiners.

• The thread is canceled by a call to thepthread_cancel()routine.

The pthread_cancel() routine requests termination of a specified thread if
cancellation is permitted. (See Section 7.7 for more information on canceling
threads and controlling whether or not cancellation is permitted.)

• An error occurs in the thread.

Examples of errors that cause thread termination are programming errors,
segmentation faults, or unhandled exceptions.

7.1.3 Waiting for a Thread to Terminate

A thread waits for the termination of another thread by calling thepthread_join()
routine. Execution in the current thread is suspended until the specified thread

DCE 1.2.2 Application Development Guide—Core Components 163

DCE Threads

terminates. If multiple threads call this routine and specify the same thread, all threads
resume execution when the specified thread terminates.

If you specify the current thread with thepthread_join() routine, a deadlock results.

Do not confusepthread_join() with other routines that cause waits and that
are related to the use of a particular multithreading feature. For example, use
pthread_cond_wait() or pthread_cond_timedwait() to wait for a condition variable
to be signaled or broadcast.

7.1.4 Deleting a Thread

A thread is automatically deleted after it terminates; that is, no explicit deletion
operation is required. Usepthread_detach()to free the storage of a terminated thread.
Usepthread_cancel()to request that a running thread terminate itself.

If the thread has not yet terminated, thepthread_detach() routine marks the thread
for deletion, and its storage is reclaimed immediately when the thread terminates. A
thread cannot be joined or canceled after thepthread_detach() routine is called for
the thread, even if the thread has not yet terminated.

If a thread that is not detached terminates, its storage remains so that other threads
can join with it. Storage is reclaimed when the thread is eventually detached.

7.2 New Primitives

Routines implemented by DCE Threads that are not specified by Draft 4 of the POSIX
1003.4a standard are indicated by an_np suffix to the name. These routines have
not been incorporated into the POSIX standard, and as such are extensions to that
document. The routines are fully portable.

164 DCE 1.2.2 Application Development Guide—Core Components

Thread Concepts and Operations

7.3 Attributes Objects

An attributes object is used to describe the behavior of threads, mutexes, and condition
variables. This description consists of the individual attribute values that are used to
create an attributes object. Whether an attribute is valid depends on whether it describes
threads, mutexes, or condition variables.

When you create an object, you can accept the default attributes for that object, or
you can specify an attributes object that contains individual attributes that you have
set. For a thread, you can also change one or more attributes after thread execution
starts; for example, calling thepthread_setprio() routine to change the priority that
you specified with thepthread_attr_setprio() routine.

The following subsections describe how to create and delete attributes objects and
describe the individual attributes that you can specify for different objects.

7.3.1 Creating an Attributes Object

To create an attributes object, use one of the following routines, depending on the
type of object to which the attributes apply:

• The pthread_attr_create() routine for thread attributes objects

• The pthread_condattr_create()routine for condition variable attributes objects

• The pthread_mutexattr_create() routine for mutex attributes objects

These routines create an attributes object containing default values for the individual
attributes. To modify any attribute values in an attributes object, use one of the set
routines described in the following subsections.

Creating an attributes object or changing the values in an attributes object does not
affect the attributes of objects previously created.

7.3.2 Deleting an Attributes Object

To delete an attributes object, use one of the following routines:

DCE 1.2.2 Application Development Guide—Core Components 165

DCE Threads

• The pthread_attr_delete() routine for thread attributes objects

• The pthread_condattr_delete()routine for condition variable attributes objects

• The pthread_mutexattr_delete() routine for mutex attributes objects

Deleting an attributes object does not affect the attributes of objects previously created.

7.3.3 Thread Attributes

A thread attributes object allows you to specify values for thread attributes other than
the defaults when you create a thread with thepthread_create() routine. To use a
thread attributes object, perform the following steps:

1. Create a thread attributes object by calling the routinepthread_attr_create().

2. Call the routines discussed in the following subsections to set the individual
attributes of the thread attributes object.

3. Create a new thread by calling thepthread_create() routine and specifying the
identifier of the thread attributes object.

You have control over the following attributes of a new thread:

• Scheduling policy attribute

• Scheduling priority attribute

• Inherit scheduling attribute

• Stacksize attribute

7.3.3.1 Scheduling Policy Attribute

The scheduling policy attribute describes the overall scheduling policy of the threads
in your application. A thread has one of the following scheduling policies:

• SCHED_FIFO (First In, First Out)

The highest-priority thread runs until it blocks. If there is more than one thread
with the same priority, and that priority is the highest among other threads, the
first thread to begin running continues until it blocks.

166 DCE 1.2.2 Application Development Guide—Core Components

Thread Concepts and Operations

• SCHED_RR (Round Robin)

The highest-priority thread runs until it blocks; however, threads of equal priority,
if that priority is the highest among other threads, are timesliced. (Timeslicing is a
mechanism that ensures that every thread is allowed time to execute by preempting
running threads at fixed intervals.)

• SCHED_OTHER, SCHED_FG_NP(Default)

All threads are timesliced.SCHED_OTHER and SCHED_FG_NP do the
same thing; however,SCHED_FG_NP is simply more precise terminology. The
FG stands forforeground and theNP for new primitive. All threads running
under theSCHED_OTHER and SCHED_FG_NPpolicy, regardless of priority,
receive some scheduling. Therefore, no thread is completely denied execution
time. However,SCHED_OTHER and SCHED_FG_NP threads can be denied
execution time bySCHED_FIFO or SCHED_RR threads.

• SCHED_BG_NP (Background)

Like SCHED_OTHER and SCHED_FG_NP, SCHED_BG_NP ensures
that all threads, regardless of priority, receive some scheduling. However,
SCHED_BG_NP can be denied execution by theSCHED_FIFO or
SCHED_RR policies. TheBG stands forbackground.

The following two methods are used to set the scheduling policy attribute:

• Set the scheduling policy attribute in the attributes object, which establishes
the scheduling policy of a new thread when it is created. To do this, call the
pthread_attr_setsched()routine.

• Change the scheduling policy of an existing thread (and, at the same time, the
scheduling priority) by calling thepthread_setscheduler()routine.

Section 7.8 describes and shows the effect of scheduling policy on thread scheduling.

7.3.3.2 Scheduling Priority Attribute

The scheduling priority attribute specifies the execution of a thread. This attribute is
expressed relative to other threads on a continuum of minimum to maximum for each
scheduling policy. A thread’s priority falls within one of the following ranges, which
are implementation defined:

DCE 1.2.2 Application Development Guide—Core Components 167

DCE Threads

• PRI_FIFO_MIN to PRI_FIFO_MAX

• PRI_RR_MIN to PRI_RR_MAX

• PRI_OTHER_MIN to PRI_OTHER_MAX

• PRI_FG_MIN_NP to PRI_FG_MAX_NP

• PRI_BG_MIN_NP to PRI_BG_MAX_NP

The following two methods are used to set the scheduling priority attribute:

• Set the scheduling priority attribute in the attributes object, which establishes
the execution priority of a new thread when it is created. To do this, call the
pthread_attr_setprio() routine.

• Change the scheduling priority attribute of an existing thread by calling the
pthread_setprio() routine. (Call thepthread_setscheduler()routine to change
both the scheduling priority and scheduling policy of an existing thread.)

7.3.3.3 Inherit Scheduling Attribute

The inherit scheduling attribute specifies whether a newly created thread inherits
the scheduling attributes (scheduling priority and policy) of the creating thread (the
default), or uses the scheduling attributes stored in the attributes object. Set this
attribute by calling the routinepthread_attr_setinheritsched().

7.3.3.4 Stacksize Attribute

The stacksize attribute is the minimum size (in bytes) of the memory required for a
thread’s stack. The default value is machine dependent. Set this attribute by calling
the pthread_attr_setstacksize()routine.

7.3.4 Mutex Attributes

A mutex attributes object allows you to specify values for mutex attributes other than
the defaults when you create a mutex with the routinepthread_mutex_init().

168 DCE 1.2.2 Application Development Guide—Core Components

Thread Concepts and Operations

The mutex type attribute specifies whether a mutex is fast, recursive, or nonrecursive.
Set the mutex type attribute by calling the routinepthread_mutexattr_setkind_np().
(Any routine with the_np suffix is a new primitive; see Section 7.2.) If you do not
use a mutex attributes object to select a mutex type, calling thepthread_mutex_init()
routine creates a fast mutex by default.

7.3.5 Condition Variable Attributes

Currently, attributes affecting condition variables are not defined. You cannot change
any attributes in the condition variable attributes object.

Section 7.4.2 describes the purpose and uses of condition variables.

7.4 Synchronization Objects

In a multithreaded program, you must use synchronization objects whenever there
is a possibility of corruption of shared data or conflicting scheduling of threads that
have mutual scheduling dependencies. The following subsections discuss two kinds
of synchronization objects: mutexes and condition variables.

7.4.1 Mutexes

A mutex (mutual exclusion) is an object that multiple threads use to ensure the integrity
of a shared resource that they access, most commonly shared data. A mutex has two
states: locked and unlocked. For each piece of shared data, all threads accessing that
data must use the same mutex; each thread locks the mutex before it accesses the
shared data and unlocks the mutex when it is finished accessing that data. If the
mutex is locked by another thread, the thread requesting the lock is blocked when
it tries to lock the mutex if you callpthread_mutex_lock() (see Figure 7-2). The
blocked thread continues and is not blocked if you callpthread_mutex_trylock().

DCE 1.2.2 Application Development Guide—Core Components 169

DCE Threads

Figure 7–2. Only One Thread Can Lock a Mutex

Thread B

var

mutex_var
lock block

Thread A

access

Each mutex must be initialized. (To initialize mutexes as part of the program’s
one-time initialization code, see Section 7.5.) To initialize a mutex, use the
pthread_mutex_init() routine. This routine allows you to specify an attributes object,
which allows you to specify the mutex type. The following are types of mutexes:

• A fast mutex (the default) is locked only once by a thread. If the thread tries
to lock the mutex again without first unlocking it, the thread waits for itself to
release the first lock and deadlocks on itself.

This type of mutex is calledfast because it can be locked and unlocked more
rapidly than a recursive mutex. It is the most efficient form of mutex.

• A recursive mutex can be locked more than once by a given thread without causing
a deadlock. The thread must call thepthread_mutex_unlock() routine the same
number of times that it called thepthread_mutex_lock() routine before another
thread can lock the mutex. Recursive mutexes have the notion of a mutex owner.
When a thread successfully locks a recursive mutex, it owns that mutex and the
lock count is set to 1. Any other thread attempting to lock the mutex blocks
until the mutex becomes unlocked. If the owner of the mutex attempts to lock
the mutex again, the lock count is incremented, and the thread continues running.
When an owner unlocks a recursive mutex, the lock count is decremented. The
mutex remains locked and owned until the count reaches 0 (zero). It is an error
for any thread other than the owner to attempt to unlock the mutex.

170 DCE 1.2.2 Application Development Guide—Core Components

Thread Concepts and Operations

A recursive mutex is useful if a thread needs exclusive access to a piece of data,
and it needs to call another routine (or itself) that needs exclusive access to the
data. A recursive mutex allows nested attempts to lock the mutex to succeed rather
than deadlock.

This type of mutex requires more careful programming. Never use a recursive
mutex with condition variables because the implicit unlock performed for a
pthread_cond_wait()or pthread_cond_timedwait()may not actually release the
mutex. In that case, no other thread can satisfy the condition of the predicate.

• A nonrecursive mutex is locked only once by a thread, like a fast mutex. If the
thread tries to lock the mutex again without first unlocking it, the thread receives
an error. Thus, nonrecursive mutexes are more informative than fast mutexes
because fast mutexes block in such a case, leaving it up to you to determine why
the thread no longer executes. Also, if someone other than the owner tries to
unlock a nonrecursive mutex, an error is returned.

To lock a mutex, use one of the following routines, depending on what you want to
happen if the mutex is locked:

• The pthread_mutex_lock() routine

If the mutex is locked, the thread waits for the mutex to become available.

• The pthread_mutex_trylock() routine

If the mutex is locked, the thread continues without waiting for the mutex to
become available. The thread immediately checks the return status to see if the
lock was successful, and then takes whatever action is appropriate if it was not.

When a thread is finished accessing a piece of shared data, it unlocks the associated
mutex by calling thepthread_mutex_unlock() routine.

If another thread is waiting on the mutex, its execution is unblocked. If more than
one thread is waiting on the mutex, the scheduling policy and the thread scheduling
priority determine which thread acquires the mutex.

You can delete a mutex and reclaim its storage by calling the
pthread_mutex_destroy() routine. Use this routine only after the mutex is
no longer needed by any thread. Mutexes are automatically deleted when the program
terminates.

DCE 1.2.2 Application Development Guide—Core Components 171

DCE Threads

7.4.2 Condition Variables

A condition variable allows a thread to block its own execution until some shared
data reaches a particular state. Cooperating threads check the shared data and wait
on the condition variable. For example, one thread in a program produces work-to-
do packets and another thread consumes these packets (does the work). If the work
queue is empty when the consumer thread checks it, that thread waits on a work-to-do
condition variable. When the producer thread puts a packet on the queue, it signals
the work-to-do condition variable.

A condition variable is used to wait for a shared resource to assume some specific state
(a predicate). A mutex, on the other hand, is used to reserve some shared resource
while the resource is being manipulated. For example, a thread A may need to wait
for a thread B to finish a task X before thread A proceeds to execute a task Y. Thread
B can tell thread A that it has finished task X by using a variable they both have
access to, a condition variable. When thread A is ready to execute task Y, it looks at
the condition variable to see if thread B is finished (see Figure 7-3).

172 DCE 1.2.2 Application Development Guide—Core Components

Thread Concepts and Operations

Figure 7–3. Thread A Waits on Condition Ready, Then Wakes Up and Proceeds

wait
thread)

(transparent to

System activity YES

NO

(unlock)

(lock)

proceed

and unlock

lock

Thread A

predicate
read

wait

mutex_ready

ready

mutex_ready

First, thread A locks the mutex namedmutex_ready that is associated with the
condition variable. Then it reads the predicate associated with the condition variable
namedready. If the predicate indicates that thread B has finished task X, then thread
A can unlock the mutex and proceed with task Y. If the condition variable predicate
indicated that thread B has not yet finished task X, however, then thread A waits
for the condition variable to change. Thread A calls thewait primitive. Waiting on
the condition variable automatically unlocks the mutex, allowing thread B to lock the
mutex when it has finished task X (see Figure 7-4).

DCE 1.2.2 Application Development Guide—Core Components 173

DCE Threads

Figure 7–4. Thread B Signals Condition Ready

Signal

unlock

write

mutex_ready

ready=
YES

mutex_ready

X

lock

Thread B

Thread B updates the predicate namedready associated with the condition variable
to the state thread A is waiting for. It also executes a signal on the condition variable
while holding the mutexmutex_ready.

174 DCE 1.2.2 Application Development Guide—Core Components

Thread Concepts and Operations

Figure 7–5. Thread A Wakes Up and Proceeds

Thread B

var

mutex_var
lock block

Thread A

access

Thread A wakes up, verifies that the condition variable is in the correct state, and
proceeds to execute task Y (see Figure 7-3).

Note that, although the condition variable is used for explicit communications among
threads, the communications are anonymous. Thread B does not necessarily know that
thread A is waiting on the condition variable that thread B signals. And thread A does
not know that it was thread B that woke it up from its wait on the condition variable.

Use thepthread_cond_init() routine to create a condition variable. To create condition
variables as part of the program’s one-time initialization code, see Section 7.5.

Use thepthread_cond_wait() routine to cause a thread to wait until the condition is
signaled or broadcast. This routine specifies a condition variable and a mutex that you
have locked. (If you have not locked the mutex, the results ofpthread_cond_wait()
are unpredictable.) This routine unlocks the mutex and causes the calling thread to
wait on the condition variable until another thread calls one of the following routines:

• The pthread_cond_signal() routine to wake one thread that is waiting on the
condition variable

• The pthread_cond_broadcast()routine to wake all threads that are waiting on a
condition variable

DCE 1.2.2 Application Development Guide—Core Components 175

DCE Threads

If you want to limit the time that a thread waits for a condition to be signaled
or broadcast, use thepthread_cond_timedwait() routine. This routine specifies the
condition variable, mutex, and absolute time at which the wait should expire if the
condition variable is not signaled or broadcast.

You can delete a condition variable and reclaim its storage by calling the
pthread_cond_destroy()routine. Use this routine only after the condition variable is
no longer needed by any thread. Condition variables are automatically deleted when
the program terminates.

7.4.3 Other Synchronization Methods

There is another synchronization method that is not anonymous: thejoin primitive.
This allows a thread to wait for another specific thread to complete its execution. When
the second thread is finished, the first thread unblocks and continues its execution.
Unlike mutexes and condition variables, thejoin primitive is not associated with any
particular shared data.

7.5 One-Time Initialization Routines

You probably have one or more routines that must be executedbefore any thread
executes code in your application, but must be executedonly onceregardless of the
sequence in which threads start executing. For example, you may want to create
mutexes and condition variables (each of which must be created only once) in an
initialization routine. Multiple threads can call thepthread_once() routine, or the
pthread_once()routine can be called multiple times in the same thread, resulting in
only one call to the specified routine.

Use thepthread_once()routine to ensure that your application initialization routine
is executed only a single time, that is, by the first thread that tries to initialize the
application. This routine is the only way to guarantee that one-time initialization is
performed in a multithreaded environment on a given platform. Thepthread_once()
routine is of particular use for runtime libraries, which are often called for the first
time after multiple threads are created.

176 DCE 1.2.2 Application Development Guide—Core Components

Thread Concepts and Operations

Refer to thethr_intro(3thr) reference page for a list of the DCE Threads routines
which, when called, implicitly perform any necessary initialization of the threads
package. Any application that uses DCE Threads must call one of these routines
before calling any other threads routines.

7.6 Thread-Specific Data

The thread-specific data interfaces allow each thread to associate an arbitrary value
with a shared key value created by the program.

Thread-specific data is like a global variable in which each thread can keep its own
value, but is accessible to the thread anywhere in the program.

Use the following routines to create and access thread-specific data:

• The pthread_keycreate()routine to create a unique key value

• The pthread_setspecific()routine to associate data with a key

• The pthread_getspecific()routine to obtain the data associated with a key

The pthread_keycreate()routine generates a unique key value that is shared by all
threads in the process. This key is the identifier of a piece of thread-specific data. Each
thread uses the same key value to assign or retrieve a thread-specific value. This keeps
your data separate from other thread-specific data. One call to thepthread_keycreate()
routine creates a cell in all threads. Call this routine to specify a routine to be called
to destroy the context value associated with this key when the thread terminates.

The pthread_setspecific()routine associates the address of some data with a specific
key. Multiple threads associate different data (by specifying different addresses) with
the same key. For example, each thread points to a different block of dynamically
allocated memory that it has reserved.

Thepthread_getspecific()routine obtains the address of the thread-specific data value
associated with a specified key. Use this routine to locate the data associated with the
current thread’s context.

DCE 1.2.2 Application Development Guide—Core Components 177

DCE Threads

7.7 Thread Cancellation

Canceling is a mechanism by which one thread terminates another thread (or itself).
When you request that a thread be canceled, you are requesting that it terminate as
soon as possible. However, the target thread can control how quickly it terminates by
controlling its general cancelability and its asynchronous cancelability.

The following is a list of the pthread calls that are cancellation points:

• The pthread_setasynccancel()routine

• The pthread_testcancel()routine

• The pthread_delay_np()routine

• The pthread_join() routine

• The pthread_cond_wait() routine

• The pthread_cond_timedwait() routine

General cancelability is enabled by default. A thread is canceled only at specific
places in the program; for example, when a call to thepthread_cond_wait() routine
is made. If general cancelability is enabled, request the delivery of any pending cancel
request by using thepthread_testcancel()routine. This routine allows you to permit
cancellation to occur at places where it may not otherwise be permitted under general
cancelability, and it is especially useful within very long loops to ensure that cancel
requests are noticed within a reasonable time.

If you disable general cancelability, the thread cannot be terminated by any cancel
request. Disabling general cancelability means that a thread could wait indefinitely if
it does not come to a normal conclusion. Therefore, be careful about disabling general
cancelability.

Asynchronous cancelability, when it is enabled, allows cancels to be delivered to
the enabling thread at any time, not only at those times that are permitted when just
general cancelability is enabled. Thus, use asynchronous cancellation primarily during
long processes that do not have specific places for cancel requests. Asynchronous
cancelability is disabled by default. Disable asynchronous cancelability when calling
threads routines or any other runtime library routines that are not explicitly documented
as cancel-safe.

178 DCE 1.2.2 Application Development Guide—Core Components

Thread Concepts and Operations

Note: If general cancelability is disabled, the thread cannot be canceled, regardless
of whether asynchronous cancelability is enabled or disabled. The setting
of asynchronous cancelability is relevant only when general cancelability is
enabled.

Use the following routines to control the canceling of threads:

• The pthread_setcancel()routine to enable and disable general cancelability

• The pthread_testcancel()routine to request delivery of a pending cancel to the
current thread

• The pthread_setasynccancel()routine to enable and disable asynchronous
cancelability

• The pthread_cancel()routine to request that a thread be canceled

7.8 Thread Scheduling

Threads are scheduled according to their scheduling priority and how the scheduling
policy treats those priorities. To understand the discussion in this section, you must
understand the concepts in the following sections of this chapter:

• Section 7.3.3.1 discusses scheduling policies, including the way in which each
policy handles thread scheduling priority.

• Section 7.3.3.2 discusses thread scheduling priorities.

• Section 7.3.3.3 discusses inheritance of scheduling attributes by created threads.

To specify the minimum or maximum priority, use the appropriate symbol; for
example,PRI_OTHER_MIN or PRI_OTHER_MAX . To specify a value between
the minimum and maximum priority, use an appropriate arithmetic expression.

For example, to specify a priority midway between the minimum and maximum for
the default scheduling policy, specify the following concept using your programming
language’s syntax:

pri_other_mid = (PRI_OTHER_MIN + PRI_OTHER_MAX)/2

DCE 1.2.2 Application Development Guide—Core Components 179

DCE Threads

If your expression results in a value outside the range of minimum to maximum, an
error results when you use it. Priority values are integers.

To show results of the different scheduling policies, consider the following example: a
program has four threads, called threads A, B, C, and D. For each scheduling policy,
three scheduling priorities have been defined: minimum, middle, and maximum. The
threads have the priorities shown in Table 7-1.

Table 7–1. Sample Thread Properties

Thread Priority

A Minimum

B Middle

C Middle

D Maximum

Figures 7-6 through 7-8 show execution flows, depending on whether the threads use
the SCHED_FIFO, SCHED_RR, or SCHED_OTHER (default) scheduling policy.
Assume that all waiting threads are ready to execute when the current thread waits or
terminates and that no higher-priority thread is awakened while a thread is executing
(during the flow shown in each figure).

Figure 7-6 shows a flow withSCHED_FIFO (First In, First Out) scheduling.

Figure 7–6. Flow with SCHED_FIFO Scheduling

D B C A

Thread D executes until it waits or terminates, then Thread B starts because it has
been waiting longer than Thread C and it executes until it waits or terminates, then
Thread C executes until it waits or terminates, then Thread A executes.

Figure 7-7 shows a flow withSCHED_RR (Round Robin) scheduling.

180 DCE 1.2.2 Application Development Guide—Core Components

Thread Concepts and Operations

Figure 7–7. Flow with SCHED_RR Scheduling

D B C B C A

All four threads are timesliced. Threads with higher priority are generally scheduled
when more than one thread is ready to run; however, to ensure fairness, all threads
are given some time. The effective priority of threads may be modified over time by
the scheduler, depending on the use of processor resources.

Thread D executes until it waits or terminates, then threads B and C are timesliced
because they both have middle priority, then thread A executes.

Figure 7-8 shows a flow withSCHED_OTHER (default) scheduling.

Figure 7–8. Flow with SCHED_OTHER Scheduling

D B C A B C

Thread D executes until it waits or terminates; then threads B, C, and A are timesliced,
even though thread A has a lower priority than the other two. Thread A receives less
execution time than thread B or C if either is ready to execute as often as thread A is.
However, the default scheduling policy protects thread A against being blocked from
executing indefinitely.

Because low-priority threads eventually run, the default scheduling policy protects
against the problem of priority inversion discussed in Chapter 8.

DCE 1.2.2 Application Development Guide—Core Components 181

Chapter 8
Programming with Threads

This chapter discusses issues you face when writing a multithreaded program and how
to deal with those issues.

The topics discussed in this chapter are as follows:

• Calling UNIX services

• Using signals

• Nonthreaded libraries

• Avoiding nonreentrant software

• Avoiding priority inversion

• Using synchronization objects

• Signaling a condition variable

DCE 1.2.2 Application Development Guide—Core Components 183

DCE Threads

8.1 Calling UNIX Services

On a UNIX system that does not have kernel support for threads, making system and
library calls from within a multithreaded program raises the following issues:

• System calls may not be thread-reentrant.

• If a system call blocks, it blocks the entire process instead of blocking the calling
thread only.

8.1.1 Jacket Routines

To resolve the previous two issues, DCE Threads provides jacket routines for a number
of UNIX system calls. Threads call the jacket routine instead of the UNIX system
service; this allows DCE Threads to take action on behalf of the thread before or
after calling the system service. For example, the jacket routines ensure that only one
thread calls any particular service at a time to avoid problems with system calls that
are not thread-reentrant.

Jacket routines are provided for UNIX input and output system calls (documented in
any UNIX programmer’s manual) and thefork() andsigaction()system calls. Jackets
are not provided for any other UNIX system calls or for any of the C runtime library
services. See/usr/include/dce/cma_ux.hfor the full list of jacket routines.

8.1.1.1 Input and Output Jacket Routines

Jacket routines are provided for routines that perform input and output operations.
Examples of these operations are as follows:

• Open or create files, pipe symbols, and sockets

• Send and receive messages on sockets

• Read and write files and pipe symbols

Jacket routines are provided for Input/Output services so that DCE Threads can
determine when to issue or block the service call based on the results of theselect()
system call. For these UNIX services, DCE Threads can determine whether issuing

184 DCE 1.2.2 Application Development Guide—Core Components

Programming with Threads

the system call causes the process to block. If the system call causes the process to
block, DCE Threads blocks only the calling thread and schedules another thread to
run in its place.

Periodically, DCE Threads checks whether the original calling thread can issue its
operation without blocking the process. When the thread runs without blocking the
process, that thread is placed back into the queue of ready threads and, at its turn,
the thread resumes execution and issues the system call. Therefore, the jacket routines
provide thread-synchronous I/O operations where otherwise the system calls block the
entire process.

8.1.1.2 Thefork() Jacket Routine

Jackets are provided for thefork() system call. A specific thread environment must
exist in the forked process when it resumes (begins) execution. These jacket routines
allow code to be executed in the context of the new process before the user code
resumes execution in it.

8.1.1.3 Theatfork() Routine

The atfork() routine allows an application or library to ensure predicted behavior
when thefork() routine is used in a multithreaded environment. Using thefork()
routine from a threaded application or from an application that uses threaded libraries
can result in unpredictable behavior. For example, one thread has a mutex locked, and
the state covered by that mutex is inconsistent while another thread calls thefork()
routine. In the child process, the mutex will be in the locked state, and it cannot
be unlocked because only the forking thread exists in the child process. Having the
child reinitialize the mutex is unsatisfactory because this approach does not resolve
the question of how to correct the inconsistent state in the child.

The atfork() routine provides a way for threaded applications or libraries to protect
themselves when afork() occurs. Theatfork() routine allows you to set up routines
that will run at the following times:

• Prior to thefork() in the parent process

• After the fork() in the child process

DCE 1.2.2 Application Development Guide—Core Components 185

DCE Threads

• After the fork() in the parent process

Within these routines, you can ensure that all mutexes are locked prior to thefork()
and that they are unlocked after thefork() , thereby protecting any data or resources
associated with the mutexes. You can register any number of sets ofatfork() routines;
that is, any number of libraries or user programs can set upatfork() routines and they
will all execute atfork() time.

Note: Using theatfork() routine can potentially cause a deadlock if two applications
or libraries call into one another using calls that require locking. Specifically,
when these component’s routines use theatfork() routine to run prior to the
fork in the parent process, a deadlock may occur when these routines are
executing.

8.1.1.4 Using the Jacketed System Calls

You do not have to rename your system calls to take advantage of the jacket routines.
Macros put the jacket routines into place when you compile your program; these
macros rename the jacketed system calls to the name of the DCE Threads jacket
routine. Thus, a reference to the DCE Threads jacket routine is compiled into your
code instead of a reference to the system call. When the code is executed, it calls the
jacket routine, which then calls the system on your code’s behalf.

If you do not wish to use any of the jacket routines, you can add the following line
to your program before any of the thread header files:

#define _CMA_NOWRAPPERS_

By adding this definition, you prevent the jacket routines from being substituted for
the real routines.

If you wish to use most of the jackets but do not wish to use a specific jacket, you
can undefine a specific jacket by adding the following directive after the thread header
files:

186 DCE 1.2.2 Application Development Guide—Core Components

Programming with Threads

#undef routine_name

For example, to not use the fork jacket, you can add the following:

#undef fork

8.1.2 Blocking System Calls

DCE Threads provides jacket routines that make certain system calls thread-
synchronous. If calling one of these jacketed system calls would normally block the
process, the jacket routine ensures that only the calling thread is blocked and that the
process remains available to execute other threads. Examples of jacketed system calls
include read(), write() , open(), socket(), send(), andrecv().

If a thread makes a call to any of the other nonjacketed blocking system calls (or if
it calls one of the jacketed system calls without going through the jacket), then when
the system call blocks the thread, it blocks the whole process, preventing any other
threads in the process from executing. Examples of nonjacketed system calls include
wait(), sigpause(), msgsnd(), msgrcv(), andsemop().

Some care must be used when calling nonjacketed blocking system calls from a
multithreaded program. Other threads in the program may not be able to tolerate not
running for an extended period of time while the process blocks for the system call. If
your program must make use of such system calls, the calling thread should specify a
nonblocking or polling option to the system call. If the call is not successful, then the
calling thread should retry; however, to prevent the retry code from becoming a hot
loop, a yield or delay function call should be inserted into the path. This gives other
threads in the program a chance to run between poll attempts.

8.1.3 Calling fork() in a Multithreaded Environment

The fork() system call creates an exact duplicate of the address space from which it is
called, resulting in two address spaces executing the same code. Problems can occur
if the forking address space has multiple threads executing at the time of thefork() .
When multithreading is a result of library invocation, threads are not necessarily aware

DCE 1.2.2 Application Development Guide—Core Components 187

DCE Threads

of each other’s presence, purpose, actions, and so on. Suppose that one of the other
threads (any thread other than the one doing thefork()) has the job of deducting
money from your checking account. Clearly, you do not want this to happen twice as
a result of some other thread’s decision to callfork() .

Because of these types of problems, which in general are problems of threads
modifying persistent state, POSIX defined the behavior offork() in the presence
of threads to propagate only the forking thread. This solves the problem of improper
changes being made to persistent state. However, it causes other problems, as discussed
in the next paragraph.

In the POSIX model, only the forking thread is propagated. All the other threads
are eliminated without any form of notice; no cancels are sent and no handlers are
run. However, all the other portions of the address space are cloned, including all the
mutex state. If the other thread has a mutex locked, the mutex will be locked in the
child process, but the lock owner will not exist to unlock it. Therefore, the resource
protected by the lock will be permanently unavailable.

The fact that there may be mutexes outstanding only becomes a problem if your code
attempts to lock a mutex that could be locked by another thread at the time of the
fork() . This means that you cannot call outside of your own code between the call to
fork() and the call toexec(). Note that a call tomalloc(), for example, is a call outside
of the currently executing application program and may have a mutex outstanding. The
following code obeys these guidelines and is therefore safe:

fork ();

a = 1+2; /* some inline processing */

exec();

Similarly, if your code calls some of your own code that does not make any calls
outside of your code and does not lock any mutexes that could possibly be locked in
another thread, then your code is safe.

One solution to the problem of callingfork() in a multithreaded environment exists.
(Note that this method will not work for server application code or any other
application code that is invoked by a callback from a library.) Before an application
performs afork() followed by something other thanexec(), it must cancel all of the
other threads. After it joins the canceled threads, it can safelyfork() because it is the
only thread in existence. This means that libraries that create threads must establish

188 DCE 1.2.2 Application Development Guide—Core Components

Programming with Threads

cancel handlers that propagate the cancel to the created threads and join them. The
application should save enough state so that the threads can be recreated and restarted
after thefork() processing completes.

8.2 Using Signals

The following subsections cover three topics: types of signals, DCE Threads signal
handling, and alternatives to using signals.

8.2.1 Types of Signals

Signals are delivered as a result of some event. UNIX signals are grouped into the
following four categories of pairs that are orthogonal to each other:

• Terminating and synchronous

• Terminating and asynchronous

• Nonterminating and synchronous

• Nonterminating and asynchronous

The action that DCE Threads takes when a particular signal is delivered depends on
the characteristics of that signal.

8.2.1.1 Terminating Signals

Terminating signals result in the termination of the process by default. Whether a
particular signal is terminating or not is independent of whether it is synchronously
or asynchronously delivered.

8.2.1.2 Nonterminating Signals

Nonterminating signals do not result in the termination of the process by default.

DCE 1.2.2 Application Development Guide—Core Components 189

DCE Threads

Nonterminating signals represent events that can be either internal or external to
the process. The process may require notification or ignore these events. When a
nonterminating asynchronous signal is delivered to the process, DCE Threads awakens
any threads that are waiting for the signal. This is the only action that DCE Threads
takes because, by default, the signal has no effect.

8.2.1.3 Synchronous Signals

Synchronous signals are the result of an event that occurs inside a process and are
delivered synchronously with respect to that event. For example, if a floating-point
calculation results in an overflow, then aSIGFPE (floating-point exception signal)
is delivered to the process immediately following the instruction that resulted in the
overflow.

The default behavior of DCE Threads in DCE Version 1.0.2 when a synchronous
terminating signal occurs is to dump core; that is, to not handle the signal. This
differs from the behavior prior to DCE Version 1.0.2, in which such a signal would
be turned into an exception and propagated out to whatever process was the original
owner of the thread (namely the client, even though the exception might have occurred
in the server). Therefore, if an application using DCE Threads wants to handle such
signals, it must now set up a signal handler to do so by callingsigaction(). Note that
the new DCE Threads behavior is in fact similar to the default behavior of most UNIX
programs.

Synchronous, terminating signals represent an error that has occurred in the currently
executing thread.

8.2.1.4 Asynchronous Signals

Asynchronous signals are the result of an event that is external to the process and are
delivered at any point in a thread’s execution when such an event occurs. For example,
when a user running a program types the interrupt character at the terminal (generally
<Ctrl-C>), a SIGINT (interrupt signal) is delivered to the process.

Asynchronous, terminating signals represent an occurrence of an event that is external
to the process and, if unhandled, results in the termination of the process. When an

190 DCE 1.2.2 Application Development Guide—Core Components

Programming with Threads

asynchronous terminating signal is delivered, DCE Threads catches it and checks to
see if any threads are waiting for it. If threads are waiting, they are awakened, and
the signal is considered handled and is dismissed. If there are no waiting threads,
then DCE Threads causes the process to be terminated as if the signal had not been
handled.

8.2.2 DCE Threads Signal Handling

DCE Threads provides the POSIXsigwait() service to allow threads to perform
activities similar to signal handling without having to deal with signals directly. It
also provides a jacket forsigaction() that allows each thread to have its own handler
for synchronous signals.

In order to provide these mechanisms, DCE Threads installs signal handlers for most
of the UNIX signals during initialization.

DCE Threads do not provide handlers for several UNIX signals. Those signals and
the reasons why handlers are not provided are shown in Table 8-1.

Table 8–1. Signals for Which Handlers Are Not Provided

Signal Reason Handler Is Not Provided

SIGKILL andSIGSTOP These signals cannot be caught by user
mode code.

SIGTRAP Catching this signal interferes with
debugging.

SIGTSTP andSIGQUIT These signals are caught only while a
thread has issued asigwait() call because
their default actions are otherwise valuable.

DCE 1.2.2 Application Development Guide—Core Components 191

DCE Threads

8.2.2.1 The POSIXsigwait() Service

The DCE Threads implementation of the POSIXsigwait() service allows any thread
to block until one of a specified set of signals is delivered. A thread waits for any of
the asynchronous signals, except forSIGKILL andSIGSTOP.

A thread cannot wait for a synchronous signal. This is because synchronous signals
are the result of an error during the execution of a thread; if the thread is waiting for
a signal, then it is not executing. Therefore, a synchronous signal cannot occur for a
particular thread while it is waiting, and so the thread waits forever. POSIX stipulates
that the thread must block the signals (using the UNIX system servicesigprocmask())
it waits for before callingsigwait().

8.2.2.2 The POSIXsigaction() Service

The DCE Threads implementation of the POSIXsigaction() service allows for per-
thread handlers to be installed for catching synchronous signals. Thesigaction()
routine modifies behavior only for individual threads and works only for synchronous
signals. Setting the signal action toSIG_DFL for a specific signal will restore the
thread’s default behavior for that signal. Attempting to set a signal action for an
asynchronous signal is an error.

8.2.2.3 Theitimer VTALARM

DCE Threads installs a handler for theitimer VTALARM . Therefore,VTALARM
is unavailable for use by other applications.

8.2.3 Alternatives to Using Signals

Avoid using UNIX signals in multithreaded programs. DCE Threads provides
alternatives to signal handling. These alternatives are discussed in more detail in
Sections 8.6 and 8.7.

192 DCE 1.2.2 Application Development Guide—Core Components

Programming with Threads

Note: In order to implement these alternatives, DCE Threads must install its own
signal handlers. These are installed when DCE Threads initializes itself,
typically on the first thread-function call. At this time, any existing signal
handlers are replaced.

Following are several reasons for avoiding signals:

• They cannot be used in a modular way in a multithreaded program.

• They are unnecessary when used as an asynchronous programming technique in
a multithreaded program.

• There are almost no threads services available at signal level.

• There is no reliable, portable way to modify predicates.

• The signal-handler interface is unsuitable for use with threads. (For example, there
is one signal action per signal per process, there is one signal mask per process,
andsigpause()blocks the whole process.)

In a multithreaded program, signals cannot be used in a modular way because, on
most current UNIX implementations, signals are inherently a process construct. There
is only one instantiation of each signal and of each signal handler routine for all of
the threads in an application. If one thread handles a particular signal in one way,
and a different thread handles the same signal in a different way, then the thread that
installs its signal handler last handles the signal. This applies only to asynchronously
generated signals; synchronous signals can be handled on a per-thread basis using the
DCE Threadssigaction() jacket.

Do not use asynchronous programming techniques in conjunction with threads,
particularly those that increase parallelism such as using timer signals and I/O signals.
These techniques can be complicated. They are also unnecessary because threads
provide a mechanism for parallel execution that is simpler and less prone to error
where concurrence can be of value. Furthermore, most of the threads routines are
not supported for use in interrupt routines (such as signal handlers), and portions of
runtime libraries cannot be used reliably inside a signal handler.

DCE 1.2.2 Application Development Guide—Core Components 193

DCE Threads

8.3 Nonthreaded Libraries

As programming with threads becomes common practice, you need to ensure that
threaded code and nonthreaded code (code that is not designed to work with threads)
work properly together in the same application. For example, you may write a new
application that uses threads (for example, an RPC server), and link it with a library
that does not use threads (and is thus not thread-safe). In such a situation you can do
one of the following:

• Work with the nonthreaded software.

• Change the nonthreaded software to be thread-safe.

8.3.1 Working with Nonthreaded Software

Thread-safe code is code that works properly in a threaded environment. To work with
nonthread-safe code, associate the global lock with all calls to such code.

You can implement the lock on the side of the routine user or the routine provider.
For example, you can implement the lock on the side of the routine user if you write
a new application like an RPC server that uses threads, and you link it with a library
that does not. Or, if you have access to the nonthreaded code, the locks can be placed
on the side of the routine provider, within the actual routine. Implement the locks as
follows:

1. Associate one lock, a global lock, with execution of such code.

2. Require all of your threads to lock prior to execution of nonthreaded code.

3. Perform an unlock when execution is complete.

By using the global lock, you ensure that only one thread executes in outside libraries,
which may call each other, and in unknown code. Using a single global lock is safer
than using multiple local locks because it is difficult to be aware of everything a
library may be doing or of the interactions that library can have with other libraries.

194 DCE 1.2.2 Application Development Guide—Core Components

Programming with Threads

8.3.2 Making Nonthreaded Code Thread-Reentrant

Thread-reentrant code is code that works properly while multiple threads execute it
concurrently. Thread-reentrant code is thread-safe, but thread-safe code may not be
thread-reentrant. Document your code as being thread-safe or thread-reentrant.

More work is involved in making code thread-reentrant than in making code thread-
safe. To make code thread-reentrant, do the following:

1. Use proper locking protocols to access global or static variables.

2. Use proper locking protocols when you use code that is not thread-safe.

3. Store thread-specific data on the stack or heap.

4. Ensure that the compiler produces thread-reentrant code.

5. Document your code as being thread-reentrant.

8.4 Avoiding Nonreentrant Software

The following subsections discuss two methods to help you avoid the pitfalls of
nonreentrant software. These methods are as follows:

• Global lock

• Thread-specific storage

8.4.1 Global Lock

Use a global lock, which has the characteristics of a recursive mutex, instead of a
regular mutex when calling routines that you think are nonreentrant. (When in doubt,
assume the code is nonreentrant.)

The pthread_lock_global_np() routine is a locking protocol that is used to call
nonreentrant routines, often found in existing library packages that were not designed
to run in a multithreaded environment.

DCE 1.2.2 Application Development Guide—Core Components 195

DCE Threads

The way to call a library function that is not reentrant from a multithreaded program
is to protect the function with a mutex. If every function that calls a library locks a
particular mutex before the call and releases the mutex after the call, then the function
completes without interference. However, this is difficult to do successfully because
the function may be called by many libraries. A global lock solves this problem by
providing a universal lock. Any code that calls any nonreentrant function uses the
same lock.

To lock a global lock, call thepthread_lock_global_np()routine. To unlock a global
lock, call thepthread_unlock_global_np() routine.

Note: Many COBOL and FORTRAN compilers generate inherently nonreentrant
code. Many C, Ada, Pascal, and BLISS compilers generate reentrant code by
default. It is possible to write nonreentrant code in the reentrant languages by
not following a locking protocol.

8.4.2 Thread-Specific Storage

To avoid nonreentrancy when writing new software, avoid using global variables to
store data that is thread-specific data.

Alternatively, allocate thread-specific data on the stack or heap and explicitly pass its
address to called routines.

8.5 Avoiding Priority Inversion

Priority inversion occurs when interaction among three or more threads blocks the
highest-priority thread from executing. For example, a high-priority thread waits for
a resource locked by a low-priority thread, and the low-priority thread waits while
a middle-priority thread executes. The high-priority thread is made to wait while a
thread of lower priority (the middle-priority thread) executes.

To avoid priority inversion, associate a priority with each resource and force any
thread using that object to first raise its priority to that associated with the object. This
method of avoiding priority inversion is not a complete solution because all threads

196 DCE 1.2.2 Application Development Guide—Core Components

Programming with Threads

will then block at the same ceiling priority and be unblocked in FIFO order rather
than by their actual priority.

The SCHED_OTHER (default) scheduling policy prevents priority inversion from
causing a complete blockage of the high-priority thread because the low-priority thread
is permitted to execute and release the resource. TheSCHED_FIFO andSCHED_RR
policies, however, do not force resumption of the low-priority thread if the middle-
priority thread executes indefinitely.

8.6 Using Synchronization Objects

The following subsections discuss the use of mutexes to prevent two potential
problems: race conditions and deadlocks. Also discussed is why you should signal
a condition variable with the associated mutex locked.

8.6.1 Race Conditions

A race condition occurs when two or more threads perform an operation, and the
result of the operation depends on unpredictable timing factors; specifically, when
each thread executes and waits and when each thread completes the operation.

An example of a race condition is as follows:

1. Both A and B are executing (X = X + 1).

2. A reads the value of X (for example, X = 5).

3. B comes in and reads the value of X and increments it (making X = 6).

4. A gets rescheduled and now increments X. Based on its earlier read operation, A
thinks (X+1 = 5+1 = 6). X is now 6. It should be 7 because it was incremented
once by A and once by B.

To avoid race conditions, ensure that any variable modified by more than one thread
has only one mutex associated with it. Do not assume that a simple add operation
can be completed without allowing another thread to execute. Such operations are
generally not portable, especially to multiprocessor systems. If it is possible for two
threads to share a data point, use a mutex.

DCE 1.2.2 Application Development Guide—Core Components 197

DCE Threads

8.6.2 Deadlocks

A deadlock occurs when one or more threads are permanently blocked from executing
because each thread waits on a resource held by another thread in the deadlock. A
thread can also deadlock on itself.

The following is one technique for avoiding deadlocks:

1. Associate a sequence number with each mutex.

2. Lock mutexes in sequence.

3. Do not attempt to lock a mutex with a sequence number lower than that of a
mutex the thread already holds.

Another technique, which is useful when a thread needs to lock the same mutex more
than once before unlocking it, is to use a recursive mutex. This technique prevents a
thread from deadlocking on itself.

8.7 Signaling a Condition Variable

When you are signaling a condition variable and that signal may cause the condition
variable to be deleted, it is recommended that you signal or broadcast with the mutex
locked.

The recommended coding for signaling a condition variable appears at the end of this
chapter. The following two C code fragments show coding that isnot recommended.
The following C code fragment is executed by a releasing thread:

pthread_mutex_lock (m);

/* Change shared variables to allow */

/* another thread to proceed */

pthread_mutex_unlock (m); <---- Point A

pthread_cond_signal (cv); <---- Statement 1

The following C code fragment is executed by a potentially blocking thread:

198 DCE 1.2.2 Application Development Guide—Core Components

Programming with Threads

pthread_mutex_lock (m);

while (!predicate ...

pthread_cond_wait (cv, m);

pthread_mutex_unlock (m);

Note: It is possible for a potentially blocking thread to be running atPoint A while
another thread is interrupted. The potentially blocking thread can then see the
predicate true and therefore not become blocked on the condition variable.

Signaling a condition variable without first locking a mutex is not a problem. However,
if the released thread deletes the condition variable without any further synchronization
at Point A, then the releasing thread will fail when it attempts to executeStatement 1
because the condition variable no longer exists.

This problem occurs when the releasing thread is a worker thread and the waiting
thread is the boss thread, and the last worker thread tells the boss thread to delete the
variables that are being shared by boss and worker.

The following C code fragment shows therecommendedcoding for signaling a
condition variable while the mutex is locked:

pthread_mutex_lock (m);

/* Change shared variables to allow */

/* some other thread to proceed */

pthread_cond_signal (cv); <---- Statement 1

pthread_mutex_unlock (m);

DCE 1.2.2 Application Development Guide—Core Components 199

Chapter 9
Using the DCE Threads
Exception-Returning Interface

DCE Threads provides the following two ways to obtain information about the status
of a threads routine:

• The routine returns a status value to the thread.

• The routine raises an exception.

Before you write a multithreaded program, you must choose only one of the preceding
two methods of receiving status. These two methods cannot be used together in the
same code module.

The POSIX P1003.4a (pthreads) draft standard specifies that errors be reported to the
thread by setting the external variableerrno to an error code and returning a function
value of−1. The threads reference pages document this status-value-returning interface
(see theDCE 1.2.2 Application Development Reference). However, an alternative to
status values is provided by DCE Threads in the exception-returning interface.

DCE 1.2.2 Application Development Guide—Core Components 201

DCE Threads

This chapter introduces and provides conventions for the modular use of the exception-
returning interface to DCE Threads.

9.1 Syntax for C

Access to exceptions from the C language is defined by the macros in the
exc_handling.hfile. The exc_handling.hheader file is included automatically when
you includepthread_exc.h(see Section 9.2).

The following example shows the syntax for handling exceptions:

TRY

try_block

[CATCH (exception_name)

handler_block]...

[CATCH_ALL

handler_block]

ENDTRY

A try_block or a handler_block is a sequence of statements, the first of which may
be declarations, as in a normal block. If an exception is raised in thetry_block , the
catch clauses are evaluated in order to see if any one matches the current exception.

The CATCH or CATCH_ALL clauses absorb an exception; that is, they catch an
exception propagating out of thetry_block , and direct execution into the associated
handler_block. Propagation of the exception, by default, then ends. Within the lexical
scope of a handler, it is possible to explicitly cause propagation of the same exception
to resume (this is calledreraising the exception), or it is possible to raise some new
exception.

The RERAISE statement is allowed in any handler statements and causes the current
exception to be reraised. Propagation of the caught exception resumes.

The RAISE (exception_name) statement is allowed anywhere and causes a particular
exception to start propagating. For example:

202 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Threads Exception-Returning Interface

TRY

sort(); /* Call a function that may raise an exception.

* An exception is accomplished by longjumping

* out of some nested routine back to the TRY

* clause. Any output parameters or return

* values of the called routine are therefore

* indeterminate.

*/

CATCH (pthread_cancel_e)

printf("Alerted while sorting\n"); RERAISE;

CATCH_ALL

printf("Some other exception while sorting\n"); RERAISE;

ENDTRY

In the preceding example, if thepthread_cancel_eexception propagates out of the
function call, the firstprintf is executed. If any other exception propagates out of
sort, the secondprintf is executed. In either situation, propagation of the exception
resumes because of theRERAISE statement. (If the code is unable to fully recover
from the error, or does not understand the error, it needs to do what it did in the
previous example and further propagate the error to its callers.)

The following shows the syntax for an epilogue:

TRY try_block

[FINALLY final_block]

ENDTRY

The final_block is executed whether thetry_block executes to completion without
raising an exception, or if an exception is raised in thetry_block . If an exception is
raised in thetry_block , propagation of the exception is resumed after executing the
final_block.

Note that aCATCH_ALL handler andRERAISE could be used to do this, but the
epilogue code would then have to be duplicated in two places, as follows:

DCE 1.2.2 Application Development Guide—Core Components 203

DCE Threads

TRY

try_block

CATCH_ALL

final_block

RERAISE;

ENDTRY

{ final_block }

A FINALLY statement has exactly this meaning, but avoids code duplication.

Note: The behavior ofFINALLY along with theCATCH or CATCH_ALL clauses
is undefined. Donot combine them for the sametry_block .

Another example of theFINALLY statement is as follows:

pthread__mutex_lock (some_object.mutex);

some_object.num_waiters = some_object.num_waiters + 1;

TRY

while (! some_object.data_available)

pthread_cond_wait (some_object.condition);

/* The code to act on the data_available goes here */

FINALLY

some_object.num_waiters = some_object.num_waiters - 1;

pthread_mutex_unlock (some_object.mutex);

ENDTRY

In the preceding example, the call topthread_cond_wait() could raise the
pthread_cancel_eexception. Thefinal_block ensures that the shared data associated
with the lock is correct for the next thread that acquires the mutex.

9.2 Invoking the Exception-Returning Interface

To use the exception-returning interface, replace the first statement that follows with
the second:

204 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Threads Exception-Returning Interface

#include <pthread.h>

#include <pthread_exc.h>

9.3 Operations on Exceptions

An exception is an object that describes an error condition. Operations on exception
objects allow errors to be reported and handled. If an exception is handled properly,
the program can recover from errors. For example, if an exception is raised from a
parity error while reading a tape, the recovery action may be to retry 100 times before
giving up.

The DCE Threads exception-returning interface allows you to perform the following
operations on exceptions:

• Declare and initialize an exception object

• Raise an exception

• Define a region of code over which exceptions are caught

• Catch a particular exception or all exceptions

• Define epilogue actions for a block

• Import a system-defined error status into the program as an exception

These operations are discussed in the following subsections.

9.3.1 Declaring and Initializing an Exception Object

Declaring and initializing an exception object documents that a program reports or
handles a particular error. Having the error expressed as an exception object provides
future extensibility as well as portability. Following is an example of declaring and
initializing an exception object:

EXCEPTION parity_error; /* Declare it */

EXCEPTION_INIT (parity_error); /* Initialize it */

DCE 1.2.2 Application Development Guide—Core Components 205

DCE Threads

9.3.2 Raising an Exception

Raising an exception reports an error, not by returning a value, but by propagating an
exception. Propagation involves searching all active scopes for code written to handle
the error or code written to perform scope-completion actions in case of any error,
and then causing that code to execute. If a scope does not define a handler or epilogue
block, then the scope is simply torn down as the exception propagates through the
stack. This is sometimes referred to asunwinding the stack. DCE Threads exceptions
are terminating; there is no option to make execution resume at the point of the error.
(Execution resumes at the point where the exception was caught.)

If an exception is unhandled, the entire application process is terminated. Aborting the
process, rather than just the faulting thread, provides clean termination at the point of
error. This prevents the disappearance of the faulting thread from causing problems at
some later point.

An example of raising an exception is as follows:

RAISE (parity_error);

9.3.3 Defining a Region of Code over Which Exceptions Are
Caught

Defining a region of code over which exceptions are caught allows you to call functions
that can raise an exception and specify the recovery action.

Following is an example of defining an exception-handling region (without indicating
any recovery actions):

TRY {

read_tape ();

}

ENDTRY;

206 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Threads Exception-Returning Interface

9.3.4 Catching a Particular Exception or All Exceptions

It is possible to discriminate among errors and perform different actions for each error.

Following is an example of catching a particular exception and specifying the recovery
action (in this case, a message). The exception is reraised (passed to its callers) after
catching the exception and executing the recovery action:

TRY {

read_tape ();

}

CATCH (parity_error) {

printf ("Oops, parity error, program terminating\n");

printf ("Try cleaning the heads!\n");

RERAISE;

}

ENDTRY

9.3.5 Defining Epilogue Actions for a Block

A FINALLY mechanism is provided so that multithreaded programs can restore
invariants as certain scopes are unwound; for example, restoring shared data to a
correct state and releasing locks. This is often the ideal way to define, in one place,
the cleanup activities for normal or abnormal exit from a block that has changed some
invariant.

Following is an example of specifying an invariant action whether or not there is an
error:

lock_tape_drive (t);

TRY

TRY

read_tape ();

CATCH (parity_error)

printf ("Oops, parity error, program terminating\n");

DCE 1.2.2 Application Development Guide—Core Components 207

DCE Threads

printf ("Try cleaning the heads!\n");

RERAISE;

ENDTRY

/* Control gets here only if no exception is raised */

/* ... Now we can use the data off the tape */

FINALLY

/* Control gets here normally, or if any exception is */

raised unlock_tape_drive (t);

ENDTRY

9.3.6 Importing a System-Defined Error Status into the Program
as an Exception

Most systems define error messages by integer-sized status values. Each status value
corresponds to some error message text that should be expressed in the user’s own
language. The capability to import a status value as an exception permits the DCE
Threads exception-returning interface to raise or handle system-defined errors as well
as programmer-defined exceptions.

An example of importing an error status into an exception is as follows:

exc_set_status (&parity_error, EPARITY);

The parity_error exception can then be raised and handled like any other exception.

9.4 Rules and Conventions for Modular Use of
Exceptions

The following rules ensure that exceptions are used in a modular way so that
independent software components can be written without requiring knowledge of each
other:

• Use unique names for exceptions.

208 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Threads Exception-Returning Interface

A naming convention makes sure that the names for exceptions that are declared
EXTERN from different modules do not clash. The following convention is
recommended:

<facility-prefix>_<error_name>_e

For example,pthread_cancel_e.

• Avoid putting code in aTRY routine that belongs before it.

The TRY only guards statements for which the statements in theFINALLY ,
CATCH , or CATCH_ALL clauses are always valid.

A common misuse ofTRY is to put code in thetry_block that needs to be placed
beforeTRY . An example of this misuse is as follows:

TRY

handle = open_file (file_name);

/* Statements that may raise an exception here */

FINALLY

close (handle);

ENDTRY

The precedingFINALLY code assumes that no exception is raised byopen_file.
This is because the code accesses an invalid identifier in theFINALLY part if
open_file is modified to raise an exception. The preceding example needs to be
rewritten as follows:

handle = open_file (file_name);

TRY

{

/* Statements that may raise an exception here */

}

FINALLY

close (handle);

ENDTRY

DCE 1.2.2 Application Development Guide—Core Components 209

DCE Threads

The code that opens the file belongs prior toTRY , and the code that closes the
file belongs in theFINALLY statement. (Ifopen_file raises exceptions, it may
need a separatetry_block .)

• Raise exceptions to their proper scope.

Write functions that propagate exceptions to their callers so that the function does
not modify any persistent process state before raising the exception. A call to the
matchingclosecall is required only if theopen_fileoperation is successful in the
current scope.

If open_file raises an exception, the identifier will not be written, soopen_file
must not require thatclosebe called whenopen_file raises an exception; that is,
open_fileshould not be part of theTRY clause because that meanscloseis called
if open_file fails, and you cannot close an unopened file.

• Do not place aRETURN or nonlocalGOTO betweenTRY andENDTRY .

It is invalid to useRETURN or GOTO, or to leave by any other means, aTRY ,
CATCH , CATCH_ALL , or FINALLY block. Special code is generated by the
ENDTRY macro, and it must be executed.

• Use the ANSI C volatile attribute.

Variables that are read or written by exception-handling code must be declared
with the ANSI C volatile attribute. Run your tests with the optimize compiler
option to ensure that the compiler thoroughly tests your exception-handling code.

• Reraise exceptions that are not fully handled.

You need to reraise any exception that you catch, unless your handler performs the
complete recovery action for the error. This rule permits an unhandled exception
to propagate to some final default handler that prints an error message to terminate
the offending thread. (An unhandled exception is an exception for which recovery
is incomplete.)

A corollary of this rule is thatCATCH_ALL handlers must reraise the exception
because they may catch any exception, and usually cannot do recovery actions
that are proper for every exception.

Following this convention is important so that you also do not absorb a cancel or
thread-exit request. These are mapped into exceptions so that exception handling
has the full power to handle all exceptional conditions from access violations to
thread exit. (In some applications, it is important to be able to catch these to work

210 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Threads Exception-Returning Interface

around an erroneously written library package, for example, or to provide a fully
fault-tolerant thread.)

• Declare only static exceptions.

For compatibility with C++, you need to only declare static exceptions.

9.5 DCE Threads Exceptions and Definitions

Table 9-1 lists the DCE Threads exceptions and briefly explains the meaning of
each exception. Exception names beginning withpthread_ are raised as the result
of something happening internal to the DCE Threads facility and are not meant to be
raised by your code. Exceptions beginning withexc_ are generic and belong to the
exception facility, the underlying system, or both. The pthread-specific extensions are
listed followed by the generic extensions, each in alphabetical order.

Table 9–1. DCE Threads Exceptions

Exception Definition

pthread_badparam_e An improper parameter was used.

pthread_cancel_e A thread cancellation is in progress.

pthread_defer_q_full_e No space is currently available to process
an interrupt request.

pthread_existence_e The object referenced does not exist.

pthread_in_use_e The object referenced is already in use.

pthread_nostackmem_e No space is currently available to create a
new stack.

pthread_notstack_e The current stack was not created by DCE
Threads.

pthread_signal_q_full_e Unable to process condition signal from
interrupt level.

pthread_stackovf_e An attempted stack overflow was detected.

pthread_unimp_e This is an unimplemented feature.

DCE 1.2.2 Application Development Guide—Core Components 211

DCE Threads

Exception Definition

pthread_use_error_e The requested operation is improperly
invoked.

exc_decovf_e An unhandled decimal overflow trap
exception occurred.

exc_exquota_e The operation failed due to an insufficient
quota.

exc_fltdiv_e An unhandled floating-point division by
zero trap exception occurred.

exc_fltovf_e An unhandled floating-point overflow trap
exception occurred.

exc_fltund_e An unhandled floating-point underflow trap
exception occurred.

exc_illaddr_e The data or object could not be referenced.

exc_insfmem_e There is insufficient virtual memory for the
requested operation.

exc_intdiv_e An unhandled integer divide by zero trap
exception occurred.

exc_intovf_e An unhandled integer overflow trap
exception occurred.

exc_nopriv_e There is insufficient privilege for the
requested operation.

exc_privinst_e An unhandled privileged instruction fault
exception occurred.

exc_resaddr_e An unhandled reserved addressing fault
exception occurred.

exc_resoper_e An unhandled reserved operand fault
exception occurred.

exc_SIGBUS_e An unhandled bus error signal occurred.

exc_SIGEMT_e An unhandled EMT trap signal occurred.

exc_SIGFPE_e An unhandled floating-point exception
signal occurred.

212 DCE 1.2.2 Application Development Guide—Core Components

Using the DCE Threads Exception-Returning Interface

Exception Definition

exc_SIGILL_e An unhandled illegal instruction signal
occurred.

exc_SIGIOT_e An unhandled IOT trap signal occurred.

exc_SIGPIPE_e An unhandled broken pipe signal occurred.

exc_SIGSEGV_e An unhandled segmentation violation signal
occurred.

exc_SIGSYS_e An unhandled bad system call signal
occurred.

exc_SIGTRAP_e An unhandled trace or breakpoint trap
signal occurred.

exc_SIGXCPU_e An unhandled CPU time limit exceeded
signal occurred.

exc_SIGXFSZ_e An unhandled file-size limit exceeded
signal occurred.

exc_subrng_e An unhandled subscript out-of-range trap
exception occurred.

exc_uninitexc_e An uninitialized exception was raised.

DCE 1.2.2 Application Development Guide—Core Components 213

Chapter 10
DCE Threads Example

The example in this chapter shows the use of DCE Threads in a C program that
performs a prime number search. The program finds a specified number of prime
numbers, then sorts and displays these numbers. Several threads participate in the
search: each thread takes a number (the next one to be checked), sees if it is a prime,
records it if it is prime, and then takes another number, and so on.

This program shows the work crew model of programming (see Chapter 6). The
workers (threads) increment a number (current_num) to get their next work
assignment, which in this case is the same task as before, but with a different number
to check for a prime. As a whole, the worker threads are responsible for finding a
specified number of prime numbers, at which point their work is completed.

10.1 Details of Program Logic and Implementation

The number of workers to be used and the requested number of prime numbers to
be found are defined constants. A macro is used to check for bad status (bad status
returns a value of−1), and to print a given string and the associated error value upon

DCE 1.2.2 Application Development Guide—Core Components 215

DCE Threads

bad status. Data to be accessed by all threads (mutexes, condition variables, and so
forth) are declared as global items.

Worker threads execute the prime search routine, which begins by synchronizing with
the boss (or parent) thread by using a predicate and a condition variable. Always
enclose a condition wait in a predicate loop to prevent a thread from continuing if
it receives a spurious wakeup. The lock associated with the condition variable must
be held by the thread when the condition wait call is made. The lock is implicitly
released within the condition wait call and acquired again when the thread resumes.
The same mutex must be used for all operations performed on a specific condition
variable.

After the parent sets the predicate and broadcasts, the workers begin finding prime
numbers until canceled by a fellow worker who has found the last requested prime
number. Upon each iteration, the workers increment the current number to be worked
on and take the new value as their work item. A mutex is locked and unlocked around
getting the next work item. The purpose of the mutex is to ensure the atomicity of this
operation and the visibility of the new value across all threads. This type of locking
protocol needs to be performed on all global data to ensure its visibility and protect
its integrity.

Each worker thread then determines if its current work item (a number) is prime by
trying to divide numbers into it. If the number proves to be nondivisible, it is put
on the list of primes. Cancels are explicitly turned off while working with the list of
primes in order to better control any cancels that do occur. The list and its current
count are protected by locks, which also protect the cancellation process of all other
worker threads upon finding the last requested prime. While still under the prime list
lock, the current worker checks to see if it has found the last requested prime, and if
so unsets a predicate and cancels all other worker threads. Cancels are then reenabled.
The canceling thread falls out of the work loop as a result of the predicate that it
unsets.

The parent thread’s flow of execution is as follows: set up the environment, create
worker threads, broadcast to them that they can start, join each thread as it finishes,
and sort and print the list of primes.

• Setting up of the environment requires initializing mutexes and the one condition
variable used in the example.

• Creation of worker threads is straightforward and utilizes the default attributes
(pthread_attr_default). Note again that locking is performed around the predicate

216 DCE 1.2.2 Application Development Guide—Core Components

DCE Threads Example

on which the condition variable wait loops. In this case, the locking is simply done
for visibility and is not related to the broadcast function.

• As the parent joins each of the returning worker threads, it receives an exit value
from them that indicates whether a thread exited normally or not. In this case the
exit values on all but one of the worker threads are−1, indicating that they were
canceled.

• The list is then sorted to ensure that the prime numbers are in order from lowest
to highest.

The following pthread routines are used in this example:

• pthread_cancel()

• pthread_cond_broadcast()

• pthread_cond_init()

• pthread_cond_wait()

• pthread_create()

• pthread_detach()

• pthread_exit()

• pthread_join()

• pthread_mutex_init()

• pthread_mutex_lock()

• pthread_mutex_unlock()

• pthread_setcancel()

• pthread_testcancel()

10.2 DCE Threads Example Body

The following is the DCE Threads example.

DCE 1.2.2 Application Development Guide—Core Components 217

DCE Threads

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

/*

* Constants used by the example.

*/

#define workers 5 /* Threads to perform prime check*/

#define request 110 /* Number of primes to find */

/*

* Macros

*/

#define check(status,string) \

if (status == -1) perror (string)

/*

* Global data

*/

pthread_mutex_t prime_list; /* Mutex for use in accessing the prime */

pthread_mutex_t current_mutex;/* Mutex associated with current number */

pthread_mutex_t cond_mutex; /* Mutex used for ensuring CV integrity */

pthread_cond_t cond_var; /* Condition variable for thread start */

int current_num= -1;/* Next number to be checked, start odd */

int thread_hold= 1; /* Number associated w/condition state */

int count=0; /* Prime numbers count;/index to primes */

int primes[request];/* Store primes; synchronize access */

pthread_t threads[workers]; /* Array of worker threads */

/*

* Worker thread routine.

*

* Worker threads start with this routine, which begins with a condition

* wait designed to synchronize the workers and the parent. Each worker

* thread then takes a turn taking a number for which it will determine

* whether or not it is prime.

*

*/

void

prime_search (pthread_addr_t arg)

{

div_t div_results; /* DIV results: quot and rem */

int numerator; /* Used for determining primeness */

int denominator; /* Used for determining primeness */

218 DCE 1.2.2 Application Development Guide—Core Components

DCE Threads Example

int cut_off; /* Number being checked div 2 */

int notifiee; /* Used during a cancellation */

int prime; /* Flag used to indicate primeness */

int my_number; /* Worker thread identifier */

int status; /* Hold status from pthread calls */

int not_done=1; /* Work loop predicate */

my_number = (int)arg;

/*

* Synchronize threads and the parent using a condition variable,

* for which the predicate (thread_hold) will be set by the parent.

*/

status = pthread_mutex_lock (&cond_mutex);

check(status,"1:Mutex_lock bad status\n");

while (thread_hold) {

status = pthread_cond_wait (&cond_var, &cond_mutex);

check(status,"3:Cond_wait bad status\n");

}

status = pthread_mutex_unlock (&cond_mutex);

check(status,"4:Mutex_unlock bad status\n");

/*

* Perform checks on ever larger integers until the requested

* number of primes is found.

*/

while (not_done) {

/* cancellation point */

pthread_testcancel ();

/* Get next integer to be checked */

status = pthread_mutex_lock (¤t_mutex);

check(status,"6:Mutex_lock bad status\n");

current_num = current_num + 2; /* Skip even numbers */

numerator = current_num;

status = pthread_mutex_unlock (¤t_mutex);

check(status,"9:Mutex_unlock bad status\n");

DCE 1.2.2 Application Development Guide—Core Components 219

DCE Threads

/* Only need to divide in half of number to verify not prime */

cut_off = numerator/2 + 1;

prime = 1;

/* Check for prime; exit if something evenly divides */

for (denominator = 2; ((denominator < cut_off) && (prime));

denominator++) {

prime = numerator % denominator;

}

if (prime != 0) {

/* Explicitly turn off all cancels */

pthread_setcancel(CANCEL_OFF);

/*

* Lock a mutex and add this prime number to the list. Also,

* if this fulfills the request, cancel all other threads.

*/

status = pthread_mutex_lock (&prime_list);

check(status,"10:Mutex_lock bad status\n");

if (count < request) {

primes[count] = numerator;

count++;

}

else if (count == request) {

not_done = 0;

count++;

for (notifiee = 0; notifiee < workers; notifiee++) {

if (notifiee != my_number) {

status = pthread_cancel (threads[notifiee]);

check(status,"12:Cancel bad status\n");

}

}

}

status = pthread_mutex_unlock (&prime_list);

check(status,"13:Mutex_unlock bad status\n");

/* Reenable cancels */

220 DCE 1.2.2 Application Development Guide—Core Components

DCE Threads Example

pthread_setcancel(CANCEL_ON);

}

pthread_testcancel ();

}

pthread_exit (my_number);

}

main()

{

int worker_num; /* Counter used when indexing workers */

int exit_value; /* Individual worker’s return status */

int list; /* Used to print list of found primes */

int status; /* Hold status from pthread calls */

int index1; /* Used in sorting prime numbers */

int index2; /* Used in sorting prime numbers */

int temp; /* Used in a swap; part of sort */

int not_done; /* Indicates swap made in sort */

* Create mutexes

*/

status = pthread_mutex_init (&prime_list, pthread_mutexattr_default);

check(status,"15:Mutex_init bad status\n");

status = pthread_mutex_init (&cond_mutex, pthread_mutexattr_default);

check(status,"16:Mutex_init bad status\n");

status = pthread_mutex_init (¤t_mutex, pthread_mutexattr_default);

check(status,"17:Mutex_init bad status\n");

/*

* Create condition variable

*/

status = pthread_cond_init (&cond_var, pthread_condattr_default);

check(status,"45:Cond_init bad status\n");

/*

* Create the worker threads.

*/

for (worker_num = 0; worker_num < workers; worker_num++) {

status = pthread_create (

&threads[worker_num],

pthread_attr_default,

prime_search,

DCE 1.2.2 Application Development Guide—Core Components 221

DCE Threads

(pthread_addr_t)worker_num);

check(status,"19:Pthread_create bad status\n");

}

/*

* Set the predicate thread_hold to zero, and broadcast on the

* condition variable that the worker threads may proceed.

*/

status = pthread_mutex_lock (&cond_mutex);

check(status,"20:Mutex_lock bad status\n");

thread_hold = 0;

status = pthread_cond_broadcast (&cond_var);

check(status,"20.5:cond_broadcast bad status\n");

status = pthread_mutex_unlock (&cond_mutex);

check(status,"21:Mutex_unlock bad status\n");

/*

* Join each of the worker threads inorder to obtain their

* summation totals, and to ensure each has completed

* successfully.

*

* Mark thread storage free to be reclaimed upon termination by

* detaching it.

*/

for (worker_num = 0; worker_num < workers; worker_num++) {

status = pthread_join (

threads[worker_num],

&exit_value);

check(status,"23:Pthread_join bad status\n");

if (exit_value == worker_num) printf("thread terminated normally\n");

status = pthread_detach (&threads[worker_num]);

check(status,"25:Pthread_detach bad status\n");

}

/*

222 DCE 1.2.2 Application Development Guide—Core Components

DCE Threads Example

* Take the list of prime numbers found by the worker threads and

* sort them from lowest value to highest. The worker threads work

* concurrently; there is no guarantee that the prime numbers

* will be found in order. Therefore, a sort is performed.

*/

not_done = 1;

for (index1 = 1; ((index1 < request) && (not_done)); index1++) {

for (index2 = 0; index2 < index1; index2++) {

if (primes[index1] < primes[index2]) {

temp = primes[index2];

primes[index2] = primes[index1];

primes[index1] = temp;

not_done = 0;

}

}

}

/*

* Print out the list of prime numbers that the worker threads

* found.

*/

printf ("The list of %d primes follows:\n", request);

printf("%d",primes[0]);

for (list = 1; list < request; list++) {

printf (", %d", primes[list]);

}

printf ("\n");

}

DCE 1.2.2 Application Development Guide—Core Components 223

Part 3
DCE Remote Procedure Call

Chapter 11
Developing a Simple RPC Application

This chapter first explains how to write an interface definition in the DCE RPC
Interface Definition Language (IDL) and illustrates the basic features of IDL. As
an example, we present an interface definition forgreet, a very simple application
that prints greetings from a client and a remote server. The remainder of the chapter
describes how to develop, build, and run thegreet client and server programs.

TheDCE 1.2.2 Application Development—Introduction and Style Guidedescribes how
to develop a DCE application by using many of the features of DCE. The following
chapters use the termremote procedure call application(RPC application) to mean
essentially the same thing, except in this context an RPC application concentrates on
the features of the RPC technology, glossing over other DCE issues such as security,
threads, and messaging. Since the RPC mechanism is the root technology for all DCE
applications, the basic development approach is the same.

DCE 1.2.2 Application Development Guide—Core Components 227

DCE Remote Procedure Call

11.1 The Remote Procedure Call Model

A remote procedure call executes a procedure located in a separate address space
from the calling code. The RPC model is a well-tested, industry-wide framework for
distributing applications. The RPC model is derived from the programming model of
local procedure calls and takes advantage of the fact that every procedure contains
a procedure declaration. The procedure declaration defines the interface between the
calling code and the called procedure. The procedure declaration defines the call
syntax and parameters of the procedure. All calls to a procedure must conform to the
procedure declaration.

Applications that use remote procedure calls look and behave much like local
applications. However, an RPC application is divided into two parts: a server, which
offers one or more sets of remote procedures, and a client, which makes remote
procedure calls to RPC servers. A server and its clients generally reside on separate
systems and communicate over a network. RPC applications depend on the RPC
runtime to control network communications for them. The DCE RPC runtime supports
additional tasks, such as finding servers for clients and managing servers.

A distributes application uses dispersed computing resources such as CPUs, databases,
devices, and services. The following are examples:

• A calendar-management application that allows authorized users to access the
personal calendars of other users.

• A graphics application that processes data on central CPUs and displays the results
on workstations.

• A manufacturing application that shares information about assembly components
among design, inventory, scheduling, and accounting programs located on different
computers.

DCE RPC meets the basic requirements of a distributed application, including

• Clients finding the appropriate servers

• Data conversion for operating in a heterogeneous environment

• Network communications

Distributed applications include tasks such as managing communications, finding
servers, providing security, and so forth. A standalone distributed application needs to

228 DCE 1.2.2 Application Development Guide—Core Components

Developing a Simple RPC Application

perform all of these tasks itself. Without a convenient mechanism for these distributed
computing tasks, writing distributed applications is difficult, expensive, and error-
prone.

DCE RPC software provides the code, called stubs, and the RPC runtime that perform
distributed computing tasks for your applications. This code and the runtime libraries
are linked with client and server application code to form an RPC application.

Table 11-1 shows the basic tasks for the client and server of a distributed application.
Calling the procedure and executing the remote procedure, shown in bold text, are
performed by your application code (just as in a local application) but here they
are in the client and server address spaces. For the other tasks, some are performed
automatically by the stubs and RPC runtime, while others are performed by the RPC
runtime via API calls in your application.

Table 11–1. Basic Tasks of an RPC Application

Client Tasks Server Tasks

1. Select network protocols.

2. Register RPC interfaces.

3. Register endpoints in endpoint map.

4. Advertise RPC interfaces and
objects in the namespace.

5. Listen for calls.

6. Find compatible servers that offer
the procedures.

7. Call the remote procedure.

8. Establish a binding with the server.

9. Convert input arguments into
network data.

10. Transmit arguments to the server’s
runtime.

11. Receive a call.

DCE 1.2.2 Application Development Guide—Core Components 229

DCE Remote Procedure Call

Client Tasks Server Tasks

12. Disassemble network data and
convert input arguments into local
data.

13. Locate and invoke the called
procedure.

14. Execute the remote procedure.

15. Convert the output arguments and
return value into network data.

16. Transmit results to the client’s
runtime.

17. Receive results.

18. Disassemble network data and
convert output arguments into local
data.

19. Return results and control to calling
code.

11.1.1 RPC Application Code

An RPC server or client contains application code, one or more RPC stubs, and
the RPC runtime. RPC application code is the code written for a specific RPC
application by the application developer. Application code implements and calls remote
procedures, and also calls any RPC runtime routines the application needs. An RPC
stub is an interface-specific code module that uses an RPC interface to pass and receive
arguments. A server and a client contain complementary stubs for each RPC interface
they share. The DCE RPC runtime manages communications for RPC applications.
In addition, the DCE RPC runtime supports an application programming interface
(API) used by RPC application code to enable RPC applications to set up their
communications, manipulate information about servers, and perform optional tasks
such as remotely managing servers and accessing security information.

230 DCE 1.2.2 Application Development Guide—Core Components

Developing a Simple RPC Application

Figure 11-1 shows the relationship of application code, stubs, and the RPC runtime in
the server and client portions of an RPC application. The arrows show the direction
calls are made by pointing to the called code.

Figure 11–1. The Parts of an RPC Application

RPC Interface

Application

RPC ServerRPC Client

RPC Runtime

Server Stub

Remote Procedures

Client Stub

Calling Code

Runtime calls Runtime calls

RPC Runtime

by RPC
Mechanisms

Code Provided

Code

RPC application code differs for servers and clients. Minimally, server application
code contains the remote procedures that implement one RPC interface, and the
corresponding client contains calls to those remote procedures.

11.1.2 Stubs

The stub performs basic support functions for remote procedure calls. For instance,
stubs prepare input and output arguments for transmission between systems with
different forms of data representation. The stubs use the RPC runtime to handle the
transmission between the client and server. The client stub can also use the runtime
to find servers for the client.

When a client application calls a remote procedure, the client stub first prepares
the input arguments for transmission. The process for preparing arguments for
transmission is known asmarshalling. Marshalling converts call arguments into a byte-

DCE 1.2.2 Application Development Guide—Core Components 231

DCE Remote Procedure Call

stream format and packages them for transmission. Upon receiving call arguments, a
stub unmarshalls them. Unmarshalling is the process by which a stub disassembles
incoming network data and converts it into application data by using a format that
the local system understands. Marshalling and unmarshalling both occur twice for
each remote procedure call; that is, the client stub marshalls input arguments and
unmarshalls output arguments, and the server stub unmarshalls input arguments and
marshalls output arguments. Marshalling and unmarshalling permit client and server
systems to use different data representations for equivalent data. For example, the client
system can use ASCII characters and the server system can use EBCDIC characters,
as shown in Figure 11-2.

Figure 11–2. Marshalling and Unmarshalling Between ASCII and EBCDIC Data

unmarshalling

marshalling

marshalling

unmarshalling

Server stub

Input argument

Output argument

Client stub

Remote procedure call

EBCDIC

EBCDIC

Byte−stream format

ASCII

ASCII

The DCE IDL compiler (a tool for DCE application development) generates stubs by
compiling an RPC interface definition written by application developers. The compiler
generates marshalling and unmarshalling routines for platform-independent IDL data
types.

To build the client for an RPC application, a developer links client application code
with the client stubs of all the RPC interfaces the application uses. To build the server,
the developer links the server application code with the corresponding server stubs.

232 DCE 1.2.2 Application Development Guide—Core Components

Developing a Simple RPC Application

11.1.3 The RPC Runtime

In addition to one or more RPC stubs, every RPC server and RPC client is linked
with a copy of the RPC runtime. Runtime operations perform tasks such as controlling
communications between clients and servers and finding servers for clients on request.
An interface’s client and server stubs exchange arguments through their local RPC
runtimes. The client runtime transmits remote procedure calls to the server. The server
runtime receives the calls and dispatches each call to the appropriate server stub. The
server runtime sends the call results to the client runtime. The DCE RPC runtime
supports the RPC API used by RPC application code to call runtime routines.

Server application code must also contain server initialization code that calls RPC
runtime routines when the server is starting up and shutting down. Client application
code can also call RPC runtime routines. Server and client application code can also
contain calls to RPC stub-support routines. Stub-support routines allow applications
to manage programming tasks such as allocating and freeing memory.

11.1.4 RPC Application Components That Work Together

Figure 11-3 shows the roles of application code, RPC stubs, and RPC runtimes during
a remote procedure call.

DCE 1.2.2 Application Development Guide—Core Components 233

DCE Remote Procedure Call

Figure 11–3. Interrelationships During a Remote Procedure Call

Calling Code Remote Procedures

Input arguments

4

RPC Runtime

Server StubClient Stub

RPC Runtime

RPC Client RPC Server

2

3 7

6

1

8

5

Output arguments/return value

The following steps describe the interrelationships of the components of RPC
applications, as shown in Figure 11-3:

1. The client’s application code invokes a remote procedure call, passing the input
arguments to the stub for the particular RPC interface.

2. The client’s stub marshalls the input arguments and dispatches the call to the
client’s RPC runtime.

3. The client’s RPC runtime transmits the input arguments to the server’s RPC
runtime, which dispatches the call to the server stub for the RPC interface of the
called procedure.

4. The server’s stub unmarshalls the input arguments and passes them to the called
remote procedure.

234 DCE 1.2.2 Application Development Guide—Core Components

Developing a Simple RPC Application

5. The procedure executes and then returns any results (output arguments or a return
value or both) to the server’s stub.

6. The server’s stub marshalls the results and returns them to the server’s RPC
runtime.

7. The server’s RPC runtime transmits the results to the client’s RPC runtime, which
dispatches them to the correct client stub.

8. The client’s stub unmarshalls output arguments and returns them to the calling
code.

11.1.5 Overview of DCE RPC Development Tasks

The tasks involved in developing an RPC application resemble those involved in
developing a local application. As an RPC developer, you perform the following basic
tasks:

1. Design your application, deciding what procedures you need, which will be remote
procedures, and how the remote procedures will be grouped into RPC interfaces.

2. Use the Universal Unique Identifier (UUID) generator to generate a UUID for
each new interface.

3. Use the IDL to describe the RPC interfaces for the planned data types and remote
procedures.

4. Use the DCE IDL compiler to generate the client and server stubs. (The IDL
compiler can invoke the C compiler to create the stub object code.) Figure 11-4
illustrates this task.

DCE 1.2.2 Application Development Guide—Core Components 235

DCE Remote Procedure Call

Figure 11–4. Generating Stubs

Server
stub

Client
stub

IDL Compiler

Interface
definition
file

Note: Optionally, instead of generating stub object code (which is not portable),
the IDL compiler can generate the stubs as ANSI C compliant source
code.

5. Write or modify application code by using a compatible programming language,
that is, a language that can be linked with C and can invoke C procedures, so the
application code works with the stubs.

Application code includes several kinds of code, as follows:

a. Remote procedure calls

b. Remote procedure implementations

c. Initialization code (calls to RPC stub-support or runtime routines)

d. Any non-RPC code your application requires

6. Generate object code from application code.

7. Create an executable client and server from the object files. Figure 11-5 illustrates
this task.

For the client, link object code of the client stub(s) and the client application with
the RPC runtime and any other needed runtime libraries.

236 DCE 1.2.2 Application Development Guide—Core Components

Developing a Simple RPC Application

For the server, link object code for the server stub(s), the initialization routines,
and the set(s) of remote procedures with the RPC runtime and any other needed
runtime libraries.

8. After initial testing, distribute the new application by separately installing the
server and client executable images on systems on the network.

Figure 11–5. Building a Simple Client and Server

RPC and

libraries

other DCE
runtime

Client
stub

Calling
code stub

Server Server
initialization
code

Remote
procedure
code

RPC and

libraries

other DCE
runtime

Server

Linker Linker

Client

11.2 Writing an Interface Definition

Traditionally, calling code and called procedures share the same address space. In an
RPC application, the calling code and the called remote procedures are not linked;
rather, they communicate indirectly through an RPC interface. An RPC interface is a
logical grouping of operations, data types, and constants that serves as a contract for
a set of remote procedures. DCE RPC interfaces are compiled from formal interface
definitions written by application developers using IDL.

The first step in developing a distributed application is to write an interface definition
file in IDL. The IDL compiler, idl , uses the interface definition to generate a header
file, a client stub file, and a server stub file. The IDL compiler produces header files
in C and can produce stubs as C source files or as object files.

For some applications, you may also need to write an Attribute Configuration File
(ACF) to accompany the interface definition. If an ACF exists, the IDL compiler
interprets the ACF when it compiles the interface definition. Information in the ACF
is used to modify the code that the compiler generates. (Thegreet example does not
require an ACF.)

DCE 1.2.2 Application Development Guide—Core Components 237

DCE Remote Procedure Call

The remainder of this section briefly explains how to create an interface definition and
gives simple examples of each kind of IDL declaration. For a detailed description of
IDL, see Chapter 18. For information on the IDL compiler, see theidl(1rpc) reference
page.

An IDL interface definition consists of a header and a body. The following example
shows the interface definition for thegreet application:

/*

* greet.idl

*

* The "greet" interface.

*/

[uuid(3d6ead56-06e3-11ca-8dd1-826901beabcd),

version(1.0)]

interface greetif

{

const long int REPLY_SIZE = 100;

void greet(

[in] handle_t h,

[in, string] char client_greeting[],

[out, string] char server_reply[REPLY_SIZE]

);

}

The header of each RPC interface contains a UUID, which is a hexadecimal number
that uniquely identifies an entity. A UUID that identifies an RPC interface is known
as aninterface UUID. The interface UUID ensures that the interface can be uniquely
identified across all possible network configurations. In addition to an interface UUID,
each RPC interface contains major and minor version numbers. Together, the interface
UUID and version numbers form an interface identifier that identifies an instance of
an RPC interface across systems and through time.

The interface body can contain the following constructs:

• Import declarations (not shown)

238 DCE 1.2.2 Application Development Guide—Core Components

Developing a Simple RPC Application

• Constant declarations (REPLY_SIZE)

• Data type declarations (not shown)

• Operation declarations (void greet(...);)

IDL declarations resemble declarations in ANSI C. IDL is purely a declarative
language, so, in some ways, an IDL interface definition is like a C header file.
However, an IDL interface definition must specify the extra information that is needed
by the remote procedure call mechanism. Most of this information is expressed via
IDL attributes. IDL attributes can apply to types, to type members, to operations, to
operation parameters, or to an interface as a whole. An attribute is represented in
[] (brackets) before the item to which it applies. In thegreet.idl example, the[in,
string] attributes associated with theclient_greetingarray means the parameter is for
input only and that the array of characters has the properties of strings.

A comment can be inserted at any place in an interface definition where whitespace
is permitted. IDL comments, like C comments, begin with/* (a slash and an asterisk)
and end with*/ (an asterisk and a slash).

11.2.1 RPC Interfaces That Represent Services

The simplest RPC application uses only one RPC interface. However, an application
can use multiple RPC interfaces, and, frequently, an integral set of RPC interfaces
work together as an RPC service. An RPC server is a logical grouping of one or
more RPC interfaces. For example, you can write a calendar server that contains
only a personal calendar interface or a calendar server that contains additional RPC
interfaces such as a scheduling interface for meetings.

Different servers can share one or more RPC interfaces. For example, an
administrative-support application can include an RPC interface from a calendar
service.

An RPC interface exists independently of specific applications. Each RPC interface
can be implemented by any set of procedures that conforms to the interface definition.
The operations of an interface are exactly the same for all implementations of the
same version of the interface. This makes it possible for clients from different
implementations to call the same interface, and servers from different implementations
to offer the same interface.

DCE 1.2.2 Application Development Guide—Core Components 239

DCE Remote Procedure Call

Figure 11-6 shows the role of RPC interfaces in remote procedure calls. This client
contains calling code that makes two remote procedure calls. The first is a remote
procedure call to Procedure A. The second is a remote procedure call to Procedure B.

Figure 11–6. Role of RPC Interfaces

Statistics Server

Procedure B

Procedure A

Database Server

A()

A()

B()

Client

RPC Interfaces

B()

Clients can use any practical combination of RPC interfaces, whether offered by the
same or different servers. For this example, using a database access interface, a client
on a graphics workstation can call a remote procedure on a database server to fetch
data from a central database. Then, using a statistics interface, the client can call a
procedure on another server on a parallel processor to analyze the data from the central
database and return the results to the client for display.

11.2.2 Generating an Interface UUID

The first step in building an RPC application is to generate a skeletal interface
definition file and a UUID for the interface. Every interface in an RPC application
must have a UUID. When you define a new interface, you must generate a new UUID
for it.

240 DCE 1.2.2 Application Development Guide—Core Components

Developing a Simple RPC Application

Typically, you runuuidgen with the -i option, which produces a skeletal interface
definition file and includes the generated UUID for the interface. For example, the
following command creates a filechess.idl:

uuidgen -i > chess.idl

The contents of the file are as follows:

[

uuid(443f4b20-a100-11c9-baed-08001e0218cb),

version(1)

]

interface INTERFACENAME {

}

The first part of the skeletal definition is the header, which specifies a UUID, a version
number, and a name for the interface. The last part of the definition is{ } (an empty
pair of braces); import, constant, type, and operation declarations go between these
braces.

By convention, the names of interface definition files end with the suffix.idl . The
IDL compiler constructs names for its output files based on the interface definition
filename and uses the following default suffixes:

• .h for header files

• _cstub.o for client stub files

• _sstub.ofor server stub files

For example, compilation of achess.idl interface definition file would produce a
chess.hheader file, achess_cstub.oclient stub file, and achess_sstub.oserver stub
file. (The IDL compiler creates C language intermediate files and by default invokes
the C compiler to produce object files, but it can also retain the C language files.)

For more information on the UUID generator, see theuuidgen(1rpc) reference page.

DCE 1.2.2 Application Development Guide—Core Components 241

DCE Remote Procedure Call

11.2.3 Naming the Interface

After you have useduuidgen to generate a skeletal interface definition, replace the
dummy stringINTERFACENAME with the name of your interface.

By convention, the name of an interface definition file is the same as the name of
the interface it defines, with the suffix.idl appended. For example, the definition
for a bank interface would reside in abank.idl interface definition file, and, if the
application required an ACF, its name would bebank.acf.

The IDL compiler incorporates the interface name in identifiers it constructs for various
data structures and data types in the.h file, so the length of an interface name can be
at most 17 characters. (Most IDL identifiers have a maximum length of 31 characters.)

11.2.4 Specifying Interface Attributes

Interface attributes are defined within[] (brackets) in the header of the interface
definition. The definition for any remote interface needs to specify theuuid and
version interface attributes, so these are included in the skeletal definition thatuuidgen
produces.

If an interface is exported by servers on well-known endpoints, these endpoints must
be specified via theendpoint attribute. Interfaces that use dynamic endpoints do not
have this attribute. (A well-known endpoint is a stable address on the host, while a
dynamic endpoint is an address that the RPC runtime requests when the server is
started.)

The interface definition language can be used to specify procedure prototypes for any
application, even if the procedures are never used remotely. If all of the procedures of
an interface are called only locally and never remotely, the interface can be given the
local attribute. Since local calls do not have any network overhead, thelocal attribute
causes the compiler to generate only a header file, not stubs, for the interface.

242 DCE 1.2.2 Application Development Guide—Core Components

Developing a Simple RPC Application

11.2.5 Import Declarations

The IDL import declaration specifies another interface definition whose types and
constants are used by the importing interface. (Similar to theinclude declaration in
C.)

The import declaration allows you to collect declarations for types and constants
that are used by several interfaces into one common file. For example, if you are
defining two database interfaces nameddblookup anddbupdate, and these interfaces
have many data types and constants in common, you can declare those data types
and constants in adbcommon.idl file and import this file in thedblookup.idl and
dbupdate.idl interface definitions. For example:

import "dbcommon.idl";

By default, the IDL compiler resolves relative pathnames of imported files by looking
first in the current working directory and then in the system IDL directory. The-I
option of the IDL compiler allows you to specify additional directories to search.
You can thereby avoid putting absolute pathnames in your interface definitions. For
example, if an imported file has the absolute pathname/dbproject/src/dbconstants.idl,
then the IDL compiler option-I/dbproject/src allows you to import the file by its leaf
name,dbconstants.idl.

11.2.6 Constant Declarations

The IDL const declaration allows you to declare integer, Boolean, character, string,
and null pointer constants, some of which are shown in the following examples:

const short TEN = 10;

const boolean VRAI = TRUE;

const char* JSB = "Johann Sebastian Bach";

DCE 1.2.2 Application Development Guide—Core Components 243

DCE Remote Procedure Call

11.2.7 Type Declarations

To support application development in a variety of languages and to support the special
needs of distributed applications, IDL provides an extensive set of data types, including
the following:

• Simple types, such as integers, floating-pointing numbers, characters, Booleans,
and the primitive binding-handle typehandle_t (usually equivalent to
rpc_binding_handle_t)

• Predefined types, including ISO international character types and the error status
type error_status_t

• Constructed types, such as strings, structures, unions, arrays, pointers, and pipes

The IDL typedef declaration lets you give a name to any types you construct.

The general form of a type declaration is

typedef [type_attribute,...] type_specifier type_declarator,... ;

where the bracketed list of type attributes is optional. Thetype_specifierspecifies a
simple type, a constructed type, a predefined type, or a type previously named in the
interface. Eachtype_declaratoris a name for the type being defined. As in C, arrays
and pointers are declared by thetype_declaratorconstructs[] (brackets) and* (an
asterisk).

The following type declaration uses the IDL’s simple data type,long (a 32-bit data
type), to define theinteger32 integer type:

typedef long integer32;

The type_specifierconstructs for structures and unions permit the application of
attributes to members. In the following example, one member of a structure is a
conformant array (an array without a fixed upper bound), and thesize_isattribute
names another member of the structure that at runtime provides information about the
size of the array:

244 DCE 1.2.2 Application Development Guide—Core Components

Developing a Simple RPC Application

typedef struct {

long dsize;

[size_is(dsize)] float darray[];

} dataset;

11.2.8 Operation Declarations

Operation declarations specify the signature of each operation in the interface,
including the operation name, the type of data returned, and the types of all parameters
passed (if any) in a call.

The general form of an operation declaration is

[operation_attribute, ...] type_specifier operation_identifier([parameter_declaration, ...]);

where the bracketed list of operation attributes is optional. Among the possible
attributes of an operation areidempotent, broadcast, and maybe, which specify
semantics to be applied by the RPC runtime mechanism when the operation is
called. If an operation when called once can safely be executed more than once, the
IDL declaration of the operation may specify theidempotent attribute; idempotent
semantics allow remote procedure calls to execute more efficiently by letting the
underlying RPC mechanism retry the procedure if it deems it necessary.

The type_specifierspecifies the type of data returned by the operation.

Theoperation_identifiernames the operation. Although operation names are arbitrary,
a common convention is to use the name of an interface as a prefix for the names of
its operations. For example, abank interface may have operations namedbank_open,
bank_close, bank_deposit, bank_withdraw , andbank_balance.

Eachparameter_declarationin an operation declaration declares a parameter of the
operation. Aparameter_declarationtakes the following form:

[parameter_attribute, ...] type_specifier parameter_declarator

DCE 1.2.2 Application Development Guide—Core Components 245

DCE Remote Procedure Call

Every parameter attribute must have at least one of the parameter attributesin or
out to specify whether the parameter is passed as an input, as an output, or in both
directions. Thetype_specifierandparameter_declaratorspecify the type and name of
the parameter.

Output parameters must be passed by reference and therefore must be declared as
pointers via the pointer operator* (an asterisk) or an array.

If you want an interface to always use explicit binding handles, the first parameter of
each operation declaration must be a binding handle, as in the following example:

void greet(

[in] handle_t h,

[in, string] char client_greeting[],

[out, string] char server_reply[REPLY_SIZE]

);

However, if you want applications to use the ACF feature of an implicit binding
handle (or even an automatic binding handle) for some or all procedures, operation
declarations must not have binding handle parameters in the interface definition:

void greet_no_handle(

[in, string] char client_greeting[],

[out, string] char server_reply[REPLY_SIZE]

);

This form of operation declaration is the most flexible because applications can always
specify explicit, implicit, or automatic binding handles through an ACF.

11.3 Running the IDL Compiler

After you have written an interface definition, run the IDL compiler to generate header
and stub files. The compiler offers many options that, for example, allow you to choose
what C compiler or C preprocessor commands are run, what directories are searched

246 DCE 1.2.2 Application Development Guide—Core Components

Developing a Simple RPC Application

for imported files, which of the possible output files are generated, and how the output
files are named.

The greet.idl interface definition can be compiled by the following command:

idl greet.idl

This compilation produces a header file (greet.h), a client stub file (greet_cstub.o),
and a server stub file (greet_sstub.o. For complete information on running the IDL
compiler, see theidl(1rpc) reference page.

11.4 Writing the Client Code

This section describes the client program for thegreet application, whose interface
definition was shown earlier in this chapter.

The client performs the following major steps:

1. It checks the command-line arguments for an entry name to use for its search in
the namespace.

2. It calls rpc_ns_binding_import_begin() to start the search in the namespace.

3. It calls rpc_ns_binding_import_next() to obtain a binding to a server.

4. It calls thegreet remote procedure with a string greeting.

5. It prints the reply from the server.

The greet_client.cmodule is as follows:

/*

* greet_client.c

*

* Client of "greet" interface.

*/

DCE 1.2.2 Application Development Guide—Core Components 247

DCE Remote Procedure Call

#include <stdio.h>

#include <dce/rpc.h>

#include "greet.h"

#include "util.h"

int

main(

int argc,

char *argv[]

)

{

rpc_ns_handle_t import_context;

handle_t binding_h;

error_status_t status;

idl_char reply[REPLY_SIZE];

if (argc < 2) {

fprintf(stderr, "usage: greet_client <CDS pathname>\n");

exit(1);

}

/*

* Start importing servers using the name specified

* on the command line.

*/

rpc_ns_binding_import_begin(

rpc_c_ns_syntax_default, (unsigned_char_p_t) argv[1],

greetif_v1_0_c_ifspec, NULL, &import_context, &status);

ERROR_CHECK(status, "Can’t begin import");

/*

* Import the first server (we could iterate here,

* but we’ll just take the first one).

*/

rpc_ns_binding_import_next(import_context, &binding_h, &status);

ERROR_CHECK(status, "Can’t import");

/*

* Make the remote call.

*/

greet(binding_h, (idl_char *) "hello, server", reply);

248 DCE 1.2.2 Application Development Guide—Core Components

Developing a Simple RPC Application

printf("The Greet Server said: %s\n", reply);

}

The module first includesgreet.h, the header file for thegreet interface generated by
the IDL compiler.

In this example, after each call to an RPC runtime routine, the client program calls
the application-specificERROR_CHECK macro. If the status from the RPC runtime
routine is noterror_status_ok, dce_error_inq_text() is called and the error message
is printed.

As specified in thegreet.idl interface definition, thegreet application uses explicit
handles. The client therefore passes a binding handle of typehandle_t as the first
parameter of thegreet procedure. At runtime, when the client makes its first remote
procedure call, the handle is only partially bound because the client does not know
the particular endpoint on which the server is listening; for delivery of its requests to
the server endpoint, the client depends on the endpoint mapping service of thedced
process on the server host.

11.5 Writing the Server Code

The following subsections describe the server program for thegreet application. The
greet_serverprogram takes one argument and is invoked as follows:

greet_serverCDS_pathname

The greet_serverprogram uses the input argument to establish an entry for itself in
the DCE CDS namespace.

The greet server program has two user-written modules:

• The greet_server.cmodule contains the servermain function and performs the
initialization and registration required to export thegreet interface.

• Thegreet_manager.cmodule contains the code that actually implements thegreet
operation.

DCE 1.2.2 Application Development Guide—Core Components 249

DCE Remote Procedure Call

11.5.1 The greet_server.c Source Code

Most applications should use the DCE convenience routines for server initialization
routines (routines that begin withdce_server_) to prepare servers to listen for remote
procedure calls. These routines are simple to use, prepare a server so thatdced
can manage it, and they allow enough flexibility to do most typical initializations.
However, for detailed control, applications can also use the lower-level RPC API to
do server initialization. In this chapter, we describe how to use the RPC API for server
initialization.

In this section, thegreet_server.cmodule is described and shown in successive pieces.

11.5.1.1 Includingidl -Generated Headers

Like greet_client.c, thegreet_server.cmodule includesgreet.hso that constants, data
types, and procedure prototypes are available in the application. For example:

/*

* greet_server.c

*

* Main program (initialization) for "greet" server.

*/

#include <stdio.h>

#include <dce/dce_error.h>

#include <dce/rpc.h>

#include "greet.h"

#include "util.h"

int

main(

int argc,

char *argv[]

)

{

250 DCE 1.2.2 Application Development Guide—Core Components

Developing a Simple RPC Application

unsigned32 status;

rpc_binding_vector_t *binding_vector;

if (argc < 2) {

fprintf(stderr, "usage: greet_server <CDS pathname>\n");

exit(1);

}

11.5.1.2 Registering the Interface

The server callsrpc_server_register_if(), supplying its interface specifier (defined in
greet.h), to register each interface with the RPC runtime:

/*

* Register interface with RPC runtime.

*/

rpc_server_register_if(greetif_v1_0_s_ifspec, NULL, NULL,

&status);

ERROR_CHECK(status, "Can’t register interface");

11.5.1.3 Selecting Protocol Sequences

The server callsrpc_server_use_all_protseqs()to obtain endpoints on which to listen
for remote procedure calls:

/*

* Use all protocol sequences that are available.

*/

rpc_server_use_all_protseqs(rpc_c_protseq_max_reqs_default,

&status);

ERROR_CHECK(status, "Can’t use protocol sequences");

DCE 1.2.2 Application Development Guide—Core Components 251

DCE Remote Procedure Call

11.5.1.4 Obtaining the Server’s Binding Handles

To obtain a vector of binding handles that it can use when registering endpoints, the
server callsrpc_server_inq_bindings():

/*

* Get the binding handles generated by the runtime.

*/

rpc_server_inq_bindings(&binding_vector, &status);

ERROR_CHECK(status, "Can’t get bindings for server");

11.5.1.5 Registering Endpoints

A call to rpc_ep_register() registers the server endpoints in the endpoint mapper
service of the localdced:

/*

* Register assigned endpoints with endpoint mapper.

*/

rpc_ep_register(

greetif_v1_0_s_ifspec, binding_vector, NULL,

(unsigned_char_p_t) "greet server version 1.0", &status);

ERROR_CHECK(status, "Can’t register with endpoint map");

11.5.1.6 Exporting to CDS

To advertise itself to clients, the server callsrpc_ns_binding_export(). The server
entry for the namespace is obtained from the argument input when the server is
invoked (argv[1]).

/*

* Export ourselves into the CDS namespace.

252 DCE 1.2.2 Application Development Guide—Core Components

Developing a Simple RPC Application

*/

rpc_ns_binding_export(

rpc_c_ns_syntax_default, (unsigned_char_p_t) argv[1],

greetif_v1_0_s_ifspec, binding_vector, NULL, &status);

ERROR_CHECK(status, "Can’t export into CDS namespace");

11.5.1.7 Listening for Calls

To begin listening for remote procedure call requests, the server calls
rpc_server_listen().

/*

* Start listening for calls.

*/

printf("Listening...\n");

rpc_server_listen(rpc_c_listen_max_calls_default, &status);

ERROR_CHECK(status, "Can’t start listening for calls");

11.5.2 The greet_manager.c Source Code

The greet_manager.cmodule includesgreet.h and it also defines the routinegreet,
as follows:

/*

* greet_manager.c

*

* Implementation of "greet" interface.

*/

#include <stdio.h>

#include "greet.h"

DCE 1.2.2 Application Development Guide—Core Components 253

DCE Remote Procedure Call

void

greet(

handle_t h,

idl_char *client_greeting,

idl_char *server_reply

)

{

printf("The client says: %s\n", client_greeting);

strcpy(server_reply, "Hi, client!");

}

11.6 Building the greet Programs

The client side of thegreet application is thegreet_client program, which is built
from the following:

• The user-writtengreet_client.cclient module

• The IDL-compiler-generatedgreet_cstub.oclient stub module

• The user-writtenutil.c module containing the error-checking routine

• DCE libraries

The server side of thegreet application is thegreet_serverprogram, which is built
from the following:

• The user-writtengreet_server.cserver module

• The user-writtengreet_manager.cmanager module

• The user-writtenutil.c module containing the error-checking routine

• The IDL-compiler-generatedgreet_sstub.oserver stub module

• DCE libraries

These programs can be built bymake with a makefile such as the following:

254 DCE 1.2.2 Application Development Guide—Core Components

Developing a Simple RPC Application

DCEROOT = /opt/dcelocal

CC = /bin/cc

IDL = idl

LIBDIRS = -L${DCEROOT}/usr/lib

LIBS = -ldce

LIBALL = ${LIBDIRS} ${LIBS}

INCDIRS = -I. -I${DCEROOT}/share/include

CFLAGS = -g ${INCDIRS}

IDLFLAGS = -v ${INCDIRS} -cc_cmd "${CC} ${CFLAGS} -c"

all: greet_client greet_server

greet.h greet_cstub.o greet_sstub.o: greet.idl

${IDL} ${IDLFLAGS} greet.idl

greet_client: greet.h greet_client.o util.o greet_cstub.o

${CC} -o greet_client greet_client.o greet_cstub.o util.o \

${LIBALL}

greet_server: greet.h greet_server.o greet_manager.o util.o \

greet_sstub.o

${CC} -o greet_server greet_server.o greet_manager.o \

greet_sstub.o util.o ${LIBALL}

greet_client.c greet_server.c util.c: util.h

greet_manager.c greet_client.c greet_server.c: greet.h

11.7 Running the greet Programs

Running thegreet application involves starting the server program and then running
the client program. Before starting the server program, you need write access to the
CDS namespace and you need to ensure that thedcedprocess is running on the server
host. For more information, see thedced(8dce)reference page.

You start the server program by using a CDS entry such as the following:

DCE 1.2.2 Application Development Guide—Core Components 255

DCE Remote Procedure Call

greet_server /.:/greet_entry

Listening...

You start the client on another host (or even the same host) by using the same CDS
entry as follows:

greet_client /.:/greet_entry

The following message is printed on the server’s host:

The client says: hello, server

The following reply is printed on the client’s host:

The Greet Server said: Hi, client!

The server program can be terminated at any time by a signal, which on many systems
can be generated by<Ctrl-C> .

When applications such asgreet execute, many errors can occur that have nothing to
do with your own code. In general, errors that occur when a remote procedure call
executes are reported as exceptions. For example, exceptions that the client side of
greet_client could raise if the server suddenly and unexpectedly halts include (but are
not limited to)rpc_x_comm_failure andrpc_x_call_timeout. Other ways to respond
to these errors are available through thecomm_statusand fault_status attributes in
an interface definition or attribute configuration file. Explanations of these attributes
appear in Chapter 19. Also, see Chapter 17, which explains the guidelines for error
handling.

In addition, Part 2 of this guide contains information about the macros (such as those
specified byTRY , CATCH , and ENDTRY statements) for exception handling. If
an exception occurs that the client application does not handle, it causes the client to
terminate with an error message. The client’s termination could include a core dump or
other system-dependent error-reporting method. Detailed explanations of RPC status
codes and RPC exceptions are in theDCE 1.2.2 Problem Determination Guide.

256 DCE 1.2.2 Application Development Guide—Core Components

Chapter 12
RPC Fundamentals

DCE RPC provides a call environment that behaves essentially like a local call
environment. However, some special requirements are imposed on remote procedure
calls by the remoteness of calling code to the called procedure. Therefore, a remote
procedure call may not always behave exactly like a local procedure call.

This chapter discusses the following topics:

• Universal unique identifiers

• Communications protocols

• Binding information

• Endpoints

• Execution semantics

• Communication failures

• Scaling applications

• RPC Objects

DCE 1.2.2 Application Development Guide—Core Components 257

DCE Remote Procedure Call

Distributed applications have the following implications:

• Client/server relationship—binding

Like a local procedure call, a remote procedure call depends on a static relationship
between the calling code and the called procedure. In a local application, this
relationship is established by linking the calling and called code. Linking gives
the calling code access to the address of each procedure to be called. Enabling a
remote procedure call to go to the right procedure requires a similar relationship
(called a binding) between a client and a server. A binding is a temporary
relationship that depends on a communications link between the client and server
RPC runtimes. A client establishes a binding over a specific protocol sequence to
a specific host system and endpoint.

• Independent address spaces

The calling code and called remote procedure reside in different address spaces,
generally on separate systems. The calling and called code cannot share global
variables or other global program state such as open files. All data shared
between the caller and the called remote procedure must be specified as procedure
parameters in the IDL specification. Unlike a local procedure call that commonly
uses the call-by-reference passing mechanism for input/output parameters, remote
procedure calls with input/output parameters have copy-in/copy-out semantics due
to the differing address spaces of the calling and called code. These two passing
mechanisms are only slightly different, and most procedure calls are not sensitive
to the differences between call-by-reference and copy-in/copy-out semantics.

• Independent failure

Distributing a calling program and the called procedures to physically separate
machines increases the complexity of procedure calls. Remoteness introduces
issues such as a remote system crash, communications failures, naming and
binding issues, security problems, and protocol incompatibilities. Such issues can
require error handling that is unnecessary for local procedure calls. Also, as with
local procedure calls, remote procedure calls are subject to execution errors that
arise from the procedure call itself.

258 DCE 1.2.2 Application Development Guide—Core Components

RPC Fundamentals

12.1 Universal Unique Identifiers

Each UUID contains information, including a timestamp and a host identifier.
Applications use UUIDs to identify many kinds of entities. DCE RPC identifies several
uses of UUIDs, according to the kind of entities each identifies:

• Interface UUID

A UUID that identifies a specific RPC interface. An interface UUID is declared in
an RPC interface definition (an IDL file) and is a required element of the interface.
For example:

uuid(2fac8900-31f8-11ca-b331-08002b13d56d),

• Object UUID

A UUID that identifies an entity for an application; for example, a resource, a
service, or a particular instance of a server. An application defines an RPC object
by associating the object with its own UUID known as anobject UUID . The
object UUID exists independently of the object, unlike an interface UUID. A
server usually generates UUIDs for its objects as part of initialization. A given
object UUID is meaningful only while a server is offering the corresponding RPC
object to clients.

To distinguish a specific use of an object UUID, a UUID is sometimes labeled
for the entity it identifies. For example, an object UUID that is used to identify a
particular instance of a server is known as aninstance UUID.

• Type UUID

A UUID that identifies a set of RPC objects and an associated manager (the set
of remote procedures that implements an RPC interface for objects of that type).
This is often called amanager type UUID.

Servers can create object and type UUIDs by calling theuuid_create() routine.

DCE 1.2.2 Application Development Guide—Core Components 259

DCE Remote Procedure Call

12.2 Communications Protocols

A communications link depends on a set of communications protocols. A
communications protocol is a clearly defined set of operational rules and procedures
for communications.

Communications protocols include a transport protocol (from the Transport Layer of
the OSI network architecture) such as the Transmission Control Protocol (TCP) or the
User Datagram Protocol (UDP); and the corresponding network protocol (from the
OSI Network Layer) such as the Internet Protocol (IP).

For an RPC client and server to communicate, their RPC runtimes must use at least
one identical communications protocol, including a common RPC protocol, transport
protocol, and network protocol. An RPC protocol is a communications protocol that
supports the semantics of the DCE RPC API and runs over specific combinations
of transport and network protocols. DCE RPC provides two RPC protocols: the
connectionless RPC protocol and the connection-oriented RPC protocol.

• Connectionless (Datagram) RPC protocol

This protocol runs over a connectionless transport protocol such as UDP. The
connectionless protocol supports broadcast calls.

• Connection-oriented RPC protocol

This protocol runs over a connection-oriented transport protocol such as TCP.

Each binding uses a single RPC protocol and a single pair of transport and network
protocols. Only certain combinations of communications protocols are functionally
valid (are actually useful for interoperation); for instance, the RPC connectionless
protocol cannot run over connection-oriented transport protocols such as TCP. DCE
RPC supports the following combinations of communications protocols (as provided
by OSF):

• RPC connection-oriented protocol over the Internet Protocol Suite, Transmission
Control Protocol (TCP/IP)

• RPC connectionless protocol over the Internet Protocol Suite, User Datagram
Protocol (UDP/IP)

260 DCE 1.2.2 Application Development Guide—Core Components

RPC Fundamentals

12.3 Binding Information

Binding information includes a set of information that identifies a server to a client or
a client to a server. Each instance of binding information contains all or part of a single
address. The RPC runtime maintains binding information for RPC servers and clients.
To make a specific instance of locally maintained binding information available to a
given server or client, the runtime creates a local reference known as abinding handle.
Servers and clients use binding handles to refer to binding information in runtime calls
or remote procedure calls. A server obtains a complete list of its binding handles from
its RPC runtime. A client obtains one binding handle at a time from its RPC runtime.
Figure 12-1 illustrates a binding.

Figure 12–1. A Binding

Network
 address

Network

Server’s systemClient’s system

Server
Endpoint

ClientClient
RPC & comm. protocols

Binding information includes the following components:

• Protocol sequence

A valid combination of communications protocols presented by the runtime as a
character string. Each protocol sequence includes a network protocol, a transport
protocol, and an RPC protocol that works with them.

An RPC server tells the runtime which protocol sequences to use when listening
for calls to the server, and its binding information contains those protocol
sequences.

• Network addressing information

Includes the network address and the endpoint of a server.

— The network address identifies a specific host system on a network. The
format of the address depends on the network protocol portion of the protocol
sequence.

DCE 1.2.2 Application Development Guide—Core Components 261

DCE Remote Procedure Call

— The endpoint acts as the address of a specific server instance within the host
system. The format of the endpoint depends on the transport protocol portion
of the protocol sequence. For each protocol sequence a server instance uses, it
requires a unique endpoint. A given endpoint can be used by only one server
per system, assigned by the local system on a first-come, first-served basis.

• Transfer Syntax

The server’s RPC runtime must use a transfer syntax that matches one used by
the client’s RPC runtime. A transfer syntax is a set of encoding rules used for
the network transmission of data and the conversion to and from different local
data representations. A shared transfer syntax enables communications between
systems that represent local data differently. DCE RPC currently uses a single
transfer syntax, Network Data Representation (NDR). NDR encodes data into a
byte stream for transmission over a network. A transfer syntax such as NDR
enables machines with different formats to exchange data successfully. (The
DCE RPC communications protocols support the negotiation of transfer syntax.
However, at present, the outcome of a transfer-syntax negotiation is always NDR.)

• RPC protocol version numbers

The client and server runtimes must use compatible versions of the RPC protocol
specified by the client in the protocol sequence. The major version number of the
RPC protocol used by the server must equal the specified major version number.
The minor version number of the RPC protocol used by the server must be greater
than or equal to the specified minor version number.

12.3.1 Server Binding Information

Binding information for a server is known asserver binding information. A binding
handle that refers to server binding information is known as aserver binding handle.
The use of server binding handles differs on servers and clients.

12.3.1.1 Server Binding On a Server

Servers use a list of server binding handles. Each represents one way to establish a
binding with the server. Before exporting binding information to a namespace, a server
tells the RPC runtime which RPC protocol sequences to use for the RPC interfaces the

262 DCE 1.2.2 Application Development Guide—Core Components

RPC Fundamentals

server supports. For each protocol sequence, the server runtime creates one or more
server binding handles. Each server binding handle refers to binding information for
a single potential binding, including a protocol sequence, a network (host) address, an
endpoint (server address), a transfer syntax, and an RPC protocol version number.

12.3.1.2 Server Binding On a Client

A client uses a single server binding handle that refers to the server binding information
the client needs for making one or more remote procedure calls to a given server.
Server binding information on a client contains binding information for one potential
binding.

On a client, server binding information always includes a protocol sequence and the
network address of the server’s host system. However, sometimes a client obtains
binding information that lacks an endpoint, resulting in a partially bound binding
handle. A partially bound binding handle corresponds to a system, but not to a
particular server instance. When a client makes a remote procedure call using a
partially bound binding handle, the client runtime gets an endpoint either from the
interface specification (if one a well-known endpoint is specified) or from the endpoint
map on the server’s system. Bindings almost never use well-known endpoints. Adding
the endpoint to the server binding information results in a fully bound binding handle,
which contains an endpoint and corresponds to a specific server instance. Note clients
can get a partially bound handle even if a server is not running.

12.3.2 Defining a Compatible Server

Compatible binding information identifies a server whose communications capabilities
(RPC protocol and protocol version, network and transport protocols, and transfer
syntax) are compatible with those of the client. Compatible binding information is
sufficient for establishing a binding. However, binding information is insufficient for
ensuring that the binding is to a compatible server.

The additional information required that a client imposes on the RPC runtime includes
an RPC interface identifier and an object UUID, as follows:

• Interface identifier

DCE 1.2.2 Application Development Guide—Core Components 263

DCE Remote Procedure Call

The interface UUID and version numbers of an RPC interface:

— Interface UUID: The interface UUID, unlike the interface name, clearly
identifies the RPC interface across time and space.

— Interface version number: The combined major and minor version numbers
identify one generation of an interface.

Version numbers allow multiple versions of an RPC interface to coexist. Strict
rules govern valid changes to an interface and determine whether different
versions of an interface are compatible. For a description of these rules, see
Chapter 18 on IDL syntax and usage.

The runtime uses the version number of an RPC interface to decide whether
the version offered by a given server is compatible with the version requested
by a client. The offered and requested interface are compatible under the
following conditions:

The interface requested by the client and the interface offered by the
server have the same major version number.

The interface requested by the client has a minor version number less
than or equal to that of the interface offered by the server.

• Object UUID

A UUID that identifies a particular object.

An object is a distinct computing resource, such as a particular database, a specific
RPC service that a remote procedure can access, and so on; for example, personal
calendars may be RPC objects to a calendar service. Accessing an object requires
including its object UUID with the binding information used for establishing a
binding. A client can request a specific RPC object when requesting new binding
information, or the client can ask the runtime to associate an object UUID with
binding information the client already has available.

Sometimes the object UUID is the nil UUID; when calling an RPC runtime
routine, you can represent the nil UUID by specifying NULL. In this case, the
object UUID does not represent any object. Often, however, the object UUID
represents a specific RPC object and is a non-nil value. To create a non-nil object
UUID, a server calls theuuid_create() routine, which returns a UUID that the
server then associates with a particular object.

If a client requests a non-nil object UUID, the client runtime uses that UUID as
one of the criteria for a compatible server. When searching the namespace for

264 DCE 1.2.2 Application Development Guide—Core Components

RPC Fundamentals

server binding information, the client runtime looks for the requested interface
identifier and object UUID. The endpoint map service uses this same information
to help find a compatible server.

Figure 12-2 illustrates the aspects of a server and its system that are identified by the
client’s server binding information, requested interface identifier, and requested object
UUID.

Figure 12–2. Information Used to Identify a Compatible Server

System

Server

Interface

Object

Interface UUID & version numbers

Object UUID

Network
Protocol sequence Network

 address

Endpoint

Comm. protocols

12.3.3 How Clients Obtain Server Binding Information

When a client initiates a series of related remote procedure calls, the RPC runtime
tries to establish a binding, which requires the address of a compatible server. An RPC
client can use compatible binding information obtained from either a namespace or
from a string representation of the binding information. Using the namespace is the
most common approach.

Establishing a binding also involves requesting an endpoint from the endpoint mapper
of the server’s system.

DCE 1.2.2 Application Development Guide—Core Components 265

DCE Remote Procedure Call

12.3.3.1 Binding Information in a Namespace

Usually, a server exports binding information for one or more of its interface identifiers
and its object UUIDs, if any, to an entry in a namespace. The namespace is provided
by a directory service such as the DCE Cell Directory Service (CDS). The namespace
entry to which a server exports binding information is known as aserver entry.

To learn about a server that offers a given RPC interface and object, if any, a client
can import binding information from a server entry belonging to that server. A client
can delegate the finding of servers from the namespace to a stub. In this case, if a
binding is accidentally broken, the RPC runtime automatically tries to establish a new
binding with a compatible server.

Advantages of using a directory service to obtain binding information include the
following:

• It is convenient for large RPC environments. Initial overhead of understanding
and configuring a directory service is balanced by easier management over time.

• Management of data in a directory service is more automated.

• It is effective in dynamic end-user environments.

• Binding information is stored in a named server entry. Data can be dynamic.
Servers can automatically place their binding information in the namespace.
Changes in binding information are made once by a server or administrator and
then propagated automatically by the directory service to the replicas of the data.

• There is centralized administration of data in a namespace. Sophisticated access
control is possible.

• It supports searching for and choosing services based on an interface identifier
and object UUID. Clients access data by specifying an entry name. Groups and
profiles in directory service entries provide search paths for importing binding
information.

12.3.3.2 Binding Information in Strings

Occasionally, a client can receive binding information in the form of a string (also
known as astring binding). The client can receive a string binding (or the information
to compose a string binding) from many sources; for example, an application-specific

266 DCE 1.2.2 Application Development Guide—Core Components

RPC Fundamentals

environment variable, a file, or the application user. The client must call the RPC
runtime to convert a string binding to a binding handle. The runtime returns this
binding handle to the client to use for remote procedure calls.

String representations of binding information have several possible components. The
binding information includes an RPC protocol sequence, a network address, and an
endpoint. The protocol sequence is mandatory; the endpoint is optional; and for a
server on the client’s system, the network address is optional. Also, a string binding
optionally associates an object UUID with the binding information.

The string bindings have the following format:

obj-uuid@rpc-protocol-seq:network-addr[endpoint,option-name=opt-value...]

or

obj-uuid@rpc-protocol-seq:network-addr[endpoint=endpoint,option-name=opt-value...]

The following example string binding contains all possible components:

b07122e2-83df-11c9-be29-08002b1110fa@ncacn_ip_tcp:130.105.1.1.123[2001]

The following example string binding contains only the protocol sequence and network
address:

ncacn_ip_tcp:130.105.1.1.123

For more information about the string binding format, see the RPC introduction
reference page,rpc_intro(3rpc) .

DCE 1.2.2 Application Development Guide—Core Components 267

DCE Remote Procedure Call

String bindings are useful in small environments; for example, when developing and
testing an application. However, string bindings are inappropriate as the principal way
of providing binding information to clients. Applications should use the directory
service to advertise binding information.

12.3.4 Client Binding Information for Servers

When making a remote procedure call, the client runtime provides information about
the client to the server runtime. This information, known asclient binding information,
includes the following information:

• The address where the call originated (network address and endpoint)

• The RPC protocol used by the client for the call

• The object UUID that a client requests

• The client authentication information (if present)

The server runtime maintains the client binding information and makes it available
to the server application by a client binding handle. Figure 12-3 illustrates the
relationships between what a client supplies when establishing a binding and the
corresponding client binding information.

268 DCE 1.2.2 Application Development Guide—Core Components

RPC Fundamentals

Figure 12–3. Client Binding Information Resulting from a Remote Procedure Call

 = Contributes to client binding information

Key:

Server’s systemClient’s system

Server

Object

Client

Network
 address

Endpoint

Network

Protocols

 authorization
 client

 information

Client
binding handle

 information
 binding
 Client

2

3

Object
 UUID code

Appl.

Runtime

1

 = Refers to client binding information

The callouts in the figure refer to the following:

1. The requested object UUID, which may be the nil UUID

2. Client authentication information, which is optional

3. The address from which the client is making the remote procedure call, which
the communications protocols supply to the server

A server application can use the client binding handle to ask the RPC runtime about
the object UUID requested by a client or about the client’s authentication information.

12.4 Endpoints

An endpoint is the address of a specific server instance on a host system. Two kinds
of endpoints exist: well-known endpoints and dynamic endpoints.

DCE 1.2.2 Application Development Guide—Core Components 269

DCE Remote Procedure Call

12.4.1 Well-Known Endpoints

A well-known endpoint is a preassigned stable address that a server uses every time it
runs. Well-known endpoints typically are assigned by a central authority responsible
for a transport protocol; for example, the Internet Assigned Numbers Authority assigns
endpoint values for the IP family of protocols. If you use well-known endpoints for a
server, you should register them with the appropriate authority.

Well-known endpoints can be declared for an interface (in the interface declaration)
or for a server instance, as follows:

• Any interface definition can be associated with one or more endpoints, along
with the RPC protocol sequence corresponding to each endpoint (theendpoint
attribute).

When compiling an interface, the IDL compiler stores each combination of
endpoint and protocol sequence in the interface specification. If a call is made
using binding information that lacks an endpoint, the RPC runtime automatically
looks in the interface specification for a well-known endpoint specified for
the protocol sequence obtained from the binding information. If the interface
specification contains an appropriate endpoint, the runtime adds it to the binding
information.

• Alternatively, server-specific, well-known endpoints can be defined in server
application code. When asking the runtime to use a given protocol sequence,
the server supplies the corresponding endpoints to the RPC runtime. On a given
system, each endpoint can be used by only one server at a time. If server
application code contains a hardcoded endpoint or the server’s installers always
specify the same well-known endpoint, only one instance of the server can run
per system.

When a server exports its binding information to a namespace server entry, the export
operation includes any well-known endpoints within the server binding information
stored in the server entry.

12.4.2 Dynamic Endpoints

A dynamic endpoint is requested and assigned at runtime. For some transport
protocols, the number of endpoints is limited; for example, TCP/IP and UDP/IP use

270 DCE 1.2.2 Application Development Guide—Core Components

RPC Fundamentals

a 16-bit number for endpoints, which allows 65,535 endpoints. When the supply of
endpoints for a transport protocol is limited, the protocol ensures an adequate supply
of endpoints by limiting the portion that can be reserved as well-known endpoints.
A transport, on request, dynamically makes its remaining endpoints available on a
first-come, first-served basis to specific processes such as RPC server instances.

When a server requests dynamic endpoints, the server’s RPC runtime asks the
operating system for a unique dynamic endpoint for each protocol sequence the
server is using. For a given protocol sequence, the local implementation of the
corresponding transport protocol provides the requested endpoints. When an RPC
server with dynamic endpoints stops listening, its dynamic endpoints are released.

Because of the transient nature of dynamic endpoints, the NSI of the RPC API does
not export them to a namespace; however, NSI does export the rest of the server’s
binding information. References to expired endpoints would remain indefinitely in
server entries, causing clients to import and try, unsuccessfully, to establish bindings
to nonexistent endpoints. Therefore, the export operation removes dynamic endpoints
before adding binding information to a server entry; the exported server address
contains only network addressing information. The import operation returns a partially
bound binding handle. The client makes its first remote procedure call with the partially
bound handle, and the endpoint mapper service on the server’s system resolves the
binding handle with the endpoint of a compatible server. To make dynamic endpoints
available to clients that are using partially bound binding handles, a server must register
its dynamic endpoints in the local endpoint map.

By using object UUIDs, a server can ensure that a client that imports a partially bound
handle obtains one of a particular server’s endpoints. This requires that the server do
the following:

1. Specify a list of one or more object UUIDs that are unique to the server.

2. Export the list of object UUIDs.

3. Supply the list of object UUIDs to the endpoint map service when registering
endpoints.

4. If the server provides different managers that implement an interface for different
types of objects, the server must specify the type of each object.

To request binding information for a particular server, a client specifies one of the
server’s object UUIDs, which is then associated with the server binding information
the client uses for making a remote procedure call.

DCE 1.2.2 Application Development Guide—Core Components 271

DCE Remote Procedure Call

Note: If a client requests the nil object UUID when importing from a server entry
containing object UUIDs, the client runtime selects one of those object UUIDs
and associates it with the imported server binding information. This object
UUID guarantees that the call goes to the server that exported the binding
information and object UUID to the server entry.

12.5 Execution Semantics

Execution semantics identify the ability of a procedure to execute more than once
during a given remote procedure call. The communications environment that underlies
remote procedure calls affects their reliability. A communications link can break
for a variety of reasons such as a server termination, a remote system crash, a
network failure, and so forth; all invocations of remote procedures risk disruption
due to communications failures. However, some procedures are more sensitive to such
failures, and their impact depends partly on how reinvoking an operation affects its
results.

To maximize valid outcomes for its operations, the operation declarations of an RPC
interface definition indicate the effect of multiple invocations on the outcome of the
operations.

Table 12-1 summarizes the execution semantics for DCE RPC calls.

Table 12–1. Execution Semantics for DCE RPC Calls

Semantics Meaning

at-most-once The operation must execute either once, partially, or not at all; for
example, adding or deleting an appointment from a calendar can
useat-most-oncesemantics. This is the default execution
semantics for remote procedure calls.

idempotent The operation can execute more than once; executing more than
once using the same input arguments produces identical outcomes
without undesirable side effects; for example, an operation that
reads a block of an immutable file isidempotent. DCE RPC
supportsmaybe semantics andbroadcast semantics as special
forms of idempotent operations.

272 DCE 1.2.2 Application Development Guide—Core Components

RPC Fundamentals

Semantics Meaning

maybe The caller neither requires nor receives any response or fault
indication for an operation, even though there is no guarantee that
the operation completed. An operation withmaybe semantics is
implicitly idempotent and must lack output parameters.

broadcast The operation is always broadcast to one server on each host
system on the local network, rather than delivered to a specific
server, and one reply is returned to the client. An operation with
broadcast semantics is implicitlyidempotent.

The broadcast capabilities of RPC runtime have a number of distinct limitations:

• Not all systems and networks support broadcasting. In particular, broadcasting is
not supported by the RPC connection-oriented protocol.

• Broadcasts are limited to hosts on the local network.

• Broadcasts make inefficient use of network bandwidth and processor cycles.

• The RPC runtime library does not supportat-most-oncesemantics for broadcast
operations; it appliesidempotent semantics to all such operations.

• The input arguments for broadcast calls are limited to 944 bytes.

12.6 Communications Failures

If a server detects a communications failure during a remote procedure call, the server
runtime attempts to terminate the now orphaned call by sending a cancel to the called
procedure. Acancelis a mechanism by which a client thread of execution notifies a
server thread of execution (the to be canceled thread) to terminate as soon as possible.
A cancel sent by the RPC runtime after a communications failure initiates orderly
termination for a remote procedure call. (For a brief discussion of how cancels work
with remote procedure calls, see the discussions with respect to Threads.)

Applications that use context handles to establish a client context require a context
rundown procedure to enable the server to clean up client context when it is no longer
needed. The name of the context rundown procedure is determined from the type
name of the context handle declared in the interface definition; this ensures that the
stub knows about the procedure in the server application code. If a communications

DCE 1.2.2 Application Development Guide—Core Components 273

DCE Remote Procedure Call

link with a client is lost while a server is maintaining context for the client, the RPC
runtime will inform the server to invoke the context rundown procedure. For a more
thorough discussion of context handles see Chapter 17 .

12.7 Scaling Applications

Unlike local applications, RPC applications require network resources, which are
possible bottlenecks to scaling an RPC application. RPC clients and servers require
network resources that are not required by local programs. The main network resources
to consider are network bandwidth, endpoints, network descriptors (the identifiers
of potential network channels such as UNIX sockets), kernel buffers and, for a
connection-oriented transport, the connections. Also, RPC applications place extra
demands on system resources such as memory buffers, various quotas, and the CPU.

The number of remote procedure calls that a server can support depends on various
factors, such as the following:

• The resources of the server and the network

• The requirements of each call

• The number of calls that can be concurrently offered at some level of service

• The performance requirements

An accurate analysis of the requirements of a given server involves detailed work
load and resource characterization and modeling techniques. Although measurement
of live configurations under load will offer the best information, general guidelines
apply. You should consider the connection, buffering, bandwidth, and CPU resources
as the most likely RPC bottlenecks to scaling. Use these application requirements to
scale resources.

Many system implementations limit the number of network connections per process.
This limit provides an upper bound on the number of clients that can be served
concurrently using the connection-oriented protocol. Some UNIX based systems
set this limit at 64. However, except for applications that use context handles, the
connection-oriented RPC runtime allows pooling of connections. Pooling permits
simultaneously supporting more clients than the maximum number of connections,
provided they do not all make calls at the same instant and occasionally can wait
briefly.

274 DCE 1.2.2 Application Development Guide—Core Components

RPC Fundamentals

12.8 RPC Objects

DCE RPC enables clients to find servers that offer specific RPC objects. An RPC object
is an entity that an RPC server defines and identifies to its clients. Frequently, an RPC
object is a distinct computing resource such as a particular database, directory, device,
process, or processor. Identifying a resource as an RPC object enables an application
to ensure that clients can use an RPC interface to operate on that resource. An RPC
object can also be an abstraction that is meaningful to an application such as a service
or the location of a server.

RPC objects are defined by application code. The RPC runtime provides substantial
flexibility to applications about whether, when, and how they use RPC objects. RPC
applications generally use RPC objects to enable clients to find and access a specific
server. When servers are completely interchangeable, using RPC objects may be
unnecessary. However, when clients need to distinguish between two servers that
offer the same RPC interface, RPC objects are essential. If the servers offer distinct
computing resources, each server can identify itself by treating its resources as RPC
objects. Alternatively, each server can establish itself as an RPC object that is distinct
from other instances of the same server.

RPC objects also enable a single server to distinguish among alternative
implementations of an RPC interface, as long as each implementation operates on
a distinct type of object. To offer multiple implementations of an RPC interface, a
server must identify RPC objects, classify them into types, and associate each type
with a specific implementation.

The set of remote procedures that implements an RPC interface for a given type
of object is known as amanager. The tasks performed by a manager depend on
the type of object on which the manager operates. For example, one manager of a
queue-management interface may operate on print queues, while another manager may
operate on batch queues.

DCE 1.2.2 Application Development Guide—Core Components 275

Chapter 13
Basic RPC Routine Usage

This chapter introduces a number of basic DCE RPC routines for directory service,
communications, and authentication operations and discusses major usage issues
important for developing DCE RPC applications.

This chapter discusses the following topics:

• Overview of basic runtime routines

• Server initialization tasks

• How clients find servers

13.1 Overview of the RPC Routines

This section summarizes the major concerns of RPC communications, name service
interface (NSI) usage, and authenticated RPCs.

DCE 1.2.2 Application Development Guide—Core Components 277

DCE Remote Procedure Call

13.1.1 Basic Operations of RPC Communications

The DCE RPC runtime provides the following communications operations for RPC
applications:

• Managing communications for RPC applications

As part of server initialization, a server sets up its communications capabilities by
a series of calls to the RPC runtime. These runtime calls register the server’s RPC
interfaces, tell the RPC runtime what combination of communications protocols
to use for the server, and register the endpoints of the server for each of its
interfaces. After completing these and any other initialization tasks, the server
tells the runtime to begin listening for incoming calls.

• Managing binding information

A variety of communications operations allow servers to access and manipulate
binding information. In addition, a set of communications operations enables
applications to manipulate string representations of binding information (string
bindings).

13.1.2 Basic Operations of the NSI

The NSI routines perform operations on a namespace for RPC applications. The
fundamental operations include the following:

• Creating and deleting entries in namespaces

• Exporting

A server uses the NSI export operation to place binding information associated
with its RPC interfaces and objects into the namespace used by the RPC
application.

• Importing

Clients can search for exported binding information associated with an interface
and object by using the NSI import operation or lookup operation. These two
operations are collectively referred to as theNSI search operations.

• Unexporting

278 DCE 1.2.2 Application Development Guide—Core Components

Basic RPC Routine Usage

The unexport operation enables a server to remove some or all of its binding
information from a server entry.

• Managing information in a namespace

Applications use the NSI interface to place information about server entries into
a namespace and to inquire about and manage that information.

13.1.3 Basic Operations of Authenticated RPCs

The authenticated RPC routines provide a mechanism for establishing secure
communications between clients and servers.

To engage in authenticated RPC, a client and server must agree on the authentication
service to be used. The server’s responsibility is to register its principal name and the
authentication service to be supported with the RPC runtime. The client’s responsibility
is to establish the authentication service, a given protection level, and an authorization
service for the server binding handle. The protection level determines the degree
of protection applied to individual messages between the client and server. The
authorization service determines the form in which the client’s credentials will be
presented to the server (for access checking).

Once authenticated RPC has been established between a client and server, the
client issues remote procedure calls in the usual fashion, with all authentication and
protection being handled by the DCE Security Service and the RPC runtime.

Table 13-1 relates several of the RPC runtime operations just discussed with specific
routines or sets of routines.

Table 13–1. Basic Runtime Routines

Description of Operation Usage Routine Name(s)

Communications Routines

Set the type of an RPC object with
the RPC runtime

Server rpc_object_set_type()

Register RPC interfaces Server rpc_server_register_if()

DCE 1.2.2 Application Development Guide—Core Components 279

DCE Remote Procedure Call

Description of Operation Usage Routine Name(s)

Select RPC protocol sequences Server rpc_network_inq_protseqs(),
rpc_server_use_*protseq*_...()

Obtain server binding handles Server rpc_server_inq_bindings()

Register endpoints Server rpc_ep_register(),
rpc_ep_register_no_replace()

Unregister endpoints Server rpc_ep_unregister()

Listen for calls Server rpc_server_listen()

Manipulate string representations of
binding information (string bindings)

Client rpc_binding_from_string_binding()

Client, Server rpc_binding_to_string_binding(),
rpc_string_binding_compose(),
rpc_string_binding_parse()

Change the RPC object in server
binding information

Client rpc_binding_set_object()

Convert a client binding handle to a
server binding handle

Server rpc_binding_server_from_client()

Name Service Interface Routines

Export binding information to a
namespace

Server rpc_ns_binding_export()

Search a namespace for binding
information

Client rpc_ns_binding_import_...(),
rpc_ns_binding_lookup_...(),
rpc_ns_binding_select()

Authentication Routines

Authentication and authorization Server, Client rpc_*auth...()

13.2 Server Initialization Using the RPC Routines

Before a server can receive any remote procedure calls, it should usually initialize itself
by calling thedce_server_register()routine so that the server is properly recognized
by DCE. However, servers can instead use a series of the lower-level RPC runtime

280 DCE 1.2.2 Application Development Guide—Core Components

Basic RPC Routine Usage

routines. The server initialization code, written by the application developer, varies
among servers. However, every server must set up its communications capabilities,
which usually involves most of the following tasks:

1. Assigning types to objects

2. Registering at least one interface

3. Specifying which protocol sequences the server will use

4. Obtaining a list of references to a server’s binding information (a list of binding
handles)

5. Registering endpoints

6. Exporting binding information to a server entry or entries in the namespace

7. Listening for remote procedure calls

8. Performing cleanup tasks including unregistering endpoints

The following pseudocode illustrates the calls a server makes to accomplish these
basic initialization tasks:

/* Initialization tasks */

rpc_object_set_type(...);

rpc_server_register_if(...);

rpc_server_use_all_protseqs(...);

rpc_server_inq_bindings(...);

rpc_ep_register(...);

rpc_ns_binding_export(...);

rpc_server_listen(...);

/* Cleanup tasks */

rpc_ep_unregister(...);

DCE 1.2.2 Application Development Guide—Core Components 281

DCE Remote Procedure Call

13.2.1 Assigning Types to Objects

An object typeis a mechanism for associating a set of RPC objects and the manager
whose remote procedures implement an RPC interface for those objects. Object types
allow an application to cluster objects, such as computing resources, according to
any relevant criteria. For example, a single accounting interface can be implemented
to operate on accounting databases that contain equivalent information but that are
formatted differently; each database format represents a distinct type.

To simultaneously offer alternative implementations of an RPC interface for different
types of objects, a server uses alternative managers. Servers that implement each
of their interfaces with only one manager can usually avoid the tasks associated
with assigning object types. However, when a server offers multiple managers, each
manager must be dedicated to operating on a separate type of object. In this case, a
server must classify some or all of its objects into types; for example, a calendar
application that specifies one non-nil type UUID for departmental calendars and
another non-nil type UUID for personal calendars.

By default, objects have the nil type. Only a server that implements different managers
for different objects or sets of objects needs to type classify its RPC objects. To type
classify an object, a server associates the object UUID of the object with a single type
UUID by calling therpc_object_set_type()procedure separately for each object. To
create a UUID, a server calls theuuid_create() routine.

The exact implementation of a manager can vary with the type of object on which each
manager operates. For example, a queue-management interface may be implemented
to manage print queues as objects in one case and to manage batch queues as objects
in another. Figure 13-1 illustrates the use of type UUIDs to identify two types of
managers.

282 DCE 1.2.2 Application Development Guide—Core Components

Basic RPC Routine Usage

Figure 13–1. Manager Types

4086B9D4−FB6C−11C9−B09A−08002B0F4528

E5E46D28−FB6A−11C9−881D−08002B0F4528

Type UUID:

Type UUID:

Procedure get_sum

Procedure get_sums

Procedure get_sums

Procedure get_sum

 (operates on objects of first type)Manager A

Manager B (operates on objects of second type)

When the server receives an incoming call that specifies an object UUID, the server
dispatches the call to the manager for the type to which the object belongs. For
information on how a type is used to select a manager for an incoming call, see
Chapter 17.

DCE 1.2.2 Application Development Guide—Core Components 283

DCE Remote Procedure Call

13.2.2 Registering Interfaces

A server calls therpc_server_register_if() routine to tell the RPC runtime about a
specific RPC interface. Registering an interface informs the runtime that the server
is offering that interface and makes it available to clients. A server can register any
number of interfaces with the RPC runtime by calling therpc_server_register_if()
routine once for each set of procedures, or manager, that implements an interface.

To offer more than one manager for an interface, a server must register each manager
separately.

When registering an interface, the server provides the following information:

• Interface specification

This is a reference to information about an RPC interface as offered by its server
stub. The DCE IDL compiler generates an interface specification as part of the stub
code. For a specific version of an interface, all managers use the same interface
specification. Information in an interface specification that concerns application
developers includes the following:

— The interface identifier (UUID and major and minor version numbers)

— The supported transfer syntaxes

— A list of any well-known endpoints (and their associated protocol sequences)
specified in the interface definition (.idl) file

— The interface’s default manager entry point vector (manager EPV), if present

A default manager EPV, constructed using the operation names of the interface
definition, is typically generated for stubs by the DCE IDL compiler (the--
no_mepvcompiler option suppresses this feature).

• A type UUID for the manager

Each implementation of an interface, a manager, is represented by a type UUID.

• A manager EPV for the interface

A server can register a given interface more than once by specifying a different
type UUID and manager EPV each time it callsrpc_server_register_if().

A manager EPV is a list of the addresses (the entry points of the remote procedures
provided by the manager) that represent the location of each remote procedure

284 DCE 1.2.2 Application Development Guide—Core Components

Basic RPC Routine Usage

implementation. A manager EPV must contain exactly one entry point for each
procedure defined in the interface definition.

The server can use the default manager EPV only once, and only for a manager
that uses the procedure names as they are declared in the interface definition. For
any additional manager of the RPC interface, (and if the server needs to rename
the implemented procedures), the server must create and register a unique manager
EPV. Also, each manager must be associated with a distinct type UUID.

13.2.3 Selecting RPC Protocol Sequences

A server can inquire about whether the local RPC runtime supports a specific protocol
sequence by using therpc_network_is_protseq_valid() routine. The server can also
use therpc_network_inq_protseqs()routine to ask the RPC runtime for a list of all
protocol sequences supported by both the RPC runtime and the operating system.

To prepare to receive remote procedure calls, a server uses
rpc_server_use_all_protseqs() or rpc_server_use_protseq() calls to tell the
RPC runtime to use at least one protocol sequence. For each protocol combination,
the RPC runtime creates one or more binding handles with dynamic endpoints on
which the server will listen for remote procedure calls. The server then can use a list
of these binding handles to register dynamic endpoints in the endpoint map and to
export its binding information (except the endpoints) to the name service.

As an option, an interface can contain one or more well-known endpoints,
each of which is accompanied by a protocol sequence. A server uses
the rpc_server_use_all_protseqs_if(), rpc_server_use_protseq_if(), or
rpc_server_use_protseq_ep(), to notify the RPC runtime about which protocol
sequence and well-known endpoint combinations will be used.

A server can use any protocol sequence declared in an interface endpoint declaration,
or the server can ignore the endpoint declarations, as long as it registers at least one
endpoint.

DCE 1.2.2 Application Development Guide—Core Components 285

DCE Remote Procedure Call

13.2.4 Obtaining a List of Server Binding Handles

After a server passes to the RPC runtime the protocol sequences over which it will
listen for remote procedure calls, the RPC runtime constructs server binding handles.
Each binding handle refers to a complement of binding information that defines one
potential binding; that is, a specific RPC protocol sequence, RPC protocol major
version, network address, endpoint, and transfer syntax that an RPC client can use to
establish a binding with an RPC server.

Before registering endpoints or exporting binding information, a server must
obtain a list of its binding handles from the RPC runtime by using the
rpc_server_inq_bindings() routine. The server passes this list back to the runtime
as an argument when registering endpoints and exporting binding information.

13.2.5 Registering Endpoints

Servers can use well-known or dynamic endpoints with any protocol sequence.

When a server asks the runtime to use a dynamic endpoint with a protocol sequence,
the runtime asks the operating system to generate the endpoint. To use the dynamic
endpoints, a server must register the server’s binding information, including the
endpoints, by using therpc_ep_register() routine. For each combination of RPC
interface identifier, object UUID, and binding information that the server offers, the
endpoint mapper service creates an element in the local endpoint map.

A server does not necessarily need to register well-known endpoints; however, by
registering well-known endpoints, the server ensures that clients can always obtain
them. Registration also makes the endpoints accessible to administrators, who can use
the DCE control program,dcecp, to show the map elements of an endpoint map by
using theendpoint showoperation.

Servers can remove map elements from a local endpoint map by using the
rpc_ep_unregister() routine. Servers should unregister endpoints after they stop
listening.

286 DCE 1.2.2 Application Development Guide—Core Components

Basic RPC Routine Usage

13.2.6 Making Binding Information Accessible to Clients

A server needs to make its binding information accessible to clients. Usually, a server
uses the NSI export operation to place its binding information into a server entry.
However, it is also possible for servers to make string bindings accessible to clients.
In any case, the server obtains its binding information from the runtime by first using
the rpc_server_inq_bindings()routine to ask for a list of binding handles.

13.2.6.1 Using String Bindings to Provide Binding Information

While implementing and debugging a server program you may temporarily want to
communicate binding information to clients by using string bindings. This allows a
server to establish a client/server relationship without registering endpoints in the local
endpoint map or exporting binding information to a namespace.

The server can convert into a string each binding handle in the list obtained from the
rpc_server_inq_bindings() call by calling rpc_binding_to_string_binding(). The
resulting string binding is always fully bound. The server then makes some or all
of its string bindings available to clients somehow; for example, by placing the string
bindings in a file to be read by clients or users or both.

13.2.6.2 Exporting Binding Information

Servers can export binding information (and interface identifiers) or objects or
both by calling therpc_ns_binding_export() routine. To export binding information
associated with a given RPC interface, a server uses an interface handle. The interface
handle is created by the IDL compiler as a reference to information about the interface
that the compiler stores in an interface specification.

To refer to binding information, the application code obtains a list of server binding
handles from the RPC runtime and passes the list to the export operation. The list
contains binding handles for all the protocol sequence and endpoint combinations that
the server has requested; it does this by calling the use-protocol-sequence operations.
However, the server can remove any of those binding handles from the list before
exporting it. This enables a server to export the binding information associated with
a subset of its binding handles.

DCE 1.2.2 Application Development Guide—Core Components 287

DCE Remote Procedure Call

To export object UUIDs, a server application must provide a list of object UUIDs
for the RPC objects it offers. The server can generate these object UUIDs itself or
obtain them from some application-specific source such as an object-UUID database.
All object UUIDs in a given server entry are associated with every interface UUID
and server address in the entry.

Figure 13-2 illustrates how server binding handles in the application code refer to
server binding information in the runtime, which is exported to the name service.

Figure 13–2. Exporting Server Binding Information

Server

Application

Runtime

1

2

server
binding handle

server
binding handle

Server
binding handle

binding
information

Server

Server entry

binding
information

Server

3

Exporting

 = Reference to binding information

A server entry must belong exclusively to a server running on a given host. If there are
identical, interchangeable instances of a server on the host, they can share a single set
of server entries. However, if clients need to distinguish between coexisting instances

288 DCE 1.2.2 Application Development Guide—Core Components

Basic RPC Routine Usage

of a server (for example, when each offers a different RPC object), each instance
requires its own server entry.

Note: CDS databases are subject to access control. To access entries in a CDS
database, you need access control list (ACL) permissions. Depending on
the NSI operation, you need ACL permissions to the parent directory, the
CDS object entry, or both. If you need ACL permissions, see your CDS
administrator.

The ACL permissions are as follows:

• To create an entry, you needinsert permission to the parent directory.

• To read an entry, you needread permission to the CDS object entry.

• To write to an entry, you needwrite permission to the CDS object entry.

• To delete an entry, you needdeletepermission either to the CDS object entry or
to the parent directory.

• To test an entry, you need eithertest permission orread permission to the CDS
object entry.

Note thatwrite permission does not implyread permission.

13.2.7 Listening for Calls

When a server is ready to accept remote procedure calls, it initiates listening,
specifying the maximum number of calls it can execute concurrently; it does this
by calling the rpc_server_listen() routine. If a server allows concurrent calls, its
remote procedures are responsible for concurrency control. If executing a set of remote
procedures concurrently requires concurrency control and a server lacks this control,
the server must allow only one call at a time.

Under normal circumstances, therpc_server_listen() routine does not return but
the RPC runtime continues listening for new remote procedure calls to the server’s
registered interfaces until one of the following events occurs:

• Any of the server’s procedures makes a local management call to stop a server
from listening for future remote procedure calls.

DCE 1.2.2 Application Development Guide—Core Components 289

DCE Remote Procedure Call

• For applications whose servers enable clients to stop servers from listening, a
client makes a remote management call to stop a server from listening for future
remote procedure calls.

On receipt of a stop listening request, the RPC runtime stops accepting new remote
procedure calls for all registered interfaces. However, currently executing calls are
allowed to complete. After all executing calls complete, the listen operation stops
listening and returns control to the server. Servers should unregister endpoints after
they stop listening.

13.3 How Clients Find Servers

A client runtime can obtain server binding information from a namespace.
Alternatively, a client can obtain server binding information in string format from an
application-specific source such as a file. Runtime routines enable client applications
to obtain server binding handles that refer to server binding information obtained
from either source.

13.3.1 Searching a Namespace

To obtain binding information from a namespace, a client can do one of the following:

• The client must call the import routinesrpc_ns_binding_import_begin(),
rpc_ns_binding_import_next(), and rpc_ns_binding_import_done() to obtain
a binding handle for a compatible server.

• The client must call the lookup routinesrpc_ns_binding_lookup_begin(),
rpc_ns_binding_lookup_next(), and rpc_ns_binding_lookup_done()to obtain
a list of binding handles for a compatible server. Select a binding handle from
the list by calling either of the following:

— The NSI select routinerpc_ns_binding_select(), which selects a binding
handle at random

— A user-defined select routine, which implements an application-specific
selection algorithm

290 DCE 1.2.2 Application Development Guide—Core Components

Basic RPC Routine Usage

• The client must use the automatic method of binding management to make the
client stub transparently manage binding information.

In this case, the application code lacks any calls to the NSI interface. However,
the automatic method does require the client to identify the directory service entry
at which to begin the search for binding information. The client must specify the
starting entry name as the value of the NSI-definedRPC_DEFAULT_ENTRY
environment variable.

An NSI import or lookup operation searches server entries for a compatible server. On
finding such a server entry, the search operation copies the server binding information
associated with the requested interface and an object UUID. The search operation
then creates a randomly ordered list of server binding handles to refer to the potential
bindings represented by the binding information.

Figure 13-3 illustrates the use of a server binding handle to refer to server binding
information selected by an import operation.

DCE 1.2.2 Application Development Guide—Core Components 291

DCE Remote Procedure Call

Figure 13–3. Importing Server Binding Information

 = Reference to binding information

Client

Application

Runtime

Importing

Server entry

3

2

1

binding
information

Server

binding
information

Server

Server
binding handle

The callouts in the figure refer to the following operations:

1. The import operation looks up binding information of a server that is compatible
with the client.

The import operation finds a server entry based on the specified interface identifier,
and then looks at the list of object UUIDs. If the importing client specifies a non-
nil object UUID, the import operation looks for and returns that object UUID. If
the client specifies the nil object UUID and the server entry contains any object
UUIDs, the import operation selects and returns one UUID at random. If the entry
lacks any object UUIDs, the import operation returns the nil UUID.

2. The import operation fetches the compatible binding information and creates a
binding handle for each potential binding represented in the binding information.

292 DCE 1.2.2 Application Development Guide—Core Components

Basic RPC Routine Usage

3. The import operation then selects a binding handle at random and passes it to the
client application.

13.3.2 Using String Bindings to Obtain Binding Information

To use a string binding, a client starts with either an existing string binding or
with the components of the binding information. Donot hardcode string bindings
into application code. Rather, specify them at runtime using a command argument,
environment variable, file, or other means. The simplest way to specify a string binding
is for a user to supply a string binding manually to a client. However, this manual
approach is awkward for users who must know how to obtain and manipulate the
string bindings. Also, if binding information changes, the users are responsible for
updating any string bindings used by their clients. Reducing manual intervention in
the use of string bindings requires that an application provide its own mechanisms
for storing, maintaining, and accessing binding information. In contrast, a directory
service such as CDS provides these mechanisms automatically to applications that
store binding information in a namespace.

Regardless of how a client obtains a string binding, before establishing a binding, the
client must ask the RPC runtime for a binding handle that refers to the server binding
information depicted in the string binding. The client converts the string binding into
a server binding handle by calling therpc_binding_from_string_binding() routine.

The following pseudocode lists the calls for composing a string binding and for using
it to obtain a server binding handle:

rpc_string_binding_compose(...);

rpc_binding_from_string_binding(...);

.

.

.

rpc_string_free(...);

DCE 1.2.2 Application Development Guide—Core Components 293

Chapter 14
RPC and Other DCE Components

This chapter discusses aspects of the internal behavior of remote procedure calls that
are significant for advanced RPC programmers, including the following topics:

• Threads of execution in RPC applications

• Authenticated remote procedure calls

• Using the Name Service Interface

DCE RPC is a fully integrated part of the distributed computing environment. The
communications capabilities of DCE RPC are used by clients and servers of other
DCE components. In turn, RPC uses services provided by DCE Threads, the DCE
Security Service, and the DCE Cell Directory Service.

A thread is a single sequential flow of control with one point of execution on a single
processor at any instant. Multiple threads can coexist in a single process. DCE RPC
uses threads internally for its own operations. DCE RPC also provides an environment
where RPC applications can use thread services.

The DCE RPC runtime provides RPC applications with a programming interface to
the security service. The RPC authentication interface enables RPC clients and servers

DCE 1.2.2 Application Development Guide—Core Components 295

DCE Remote Procedure Call

to mutually authenticate (that is, prove the identity of) each other. An authenticated
remote procedure call provides client authorization information and authentication
information to servers. Authorization information includes the credentials a client has
and the identities a client is associated with at the time of a call. By comparing client
authorization information to access control lists, a server can find out whether a client
is eligible to use a requested remote procedure. Client authentication information
identifies a client to a server.

To help RPC clients find RPC servers, RPC applications typically use a namespace.
A namespace is a collection of information about applications, systems, and any other
relevant computing resources. A namespace is maintained by a directory service such
as CDS. DCE RPC provides a Name Service Interface (NSI) that is independent of
any particular directory service.

NSI communicates with supported directory services for both RPC applications and
the RPC control program. NSI insulates RPC applications from the intricacies of
using a directory service. An RPC server uses NSI to store information about itself
in a namespace, and a client uses NSI to access information about a server that meets
the client’s requirements for a specific RPC interface and object, among other things.
The client uses this information to establish a relationship, known as abinding, with
the server.

14.1 Threads of Execution in RPC Applications

Each remote procedure call occurs in an execution context called athread. A thread is
a single sequential flow of control with one point of execution on a single processor
at any instant. A thread created and managed by application code is anapplication
thread.

Traditional processing occurs exclusively within local application threads. Local
application threads execute within the confines of one address space on a local system
and pass control exclusively among local code segments, as illustrated in Figure 14-1.

296 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

Figure 14–1. Local Application Thread During a Procedure Call

Traditional application

Called
 procedure

Calling
 code

local application thread

Single address space

RPC applications also use application threads to issue both remote procedure calls
and runtime calls, as follows:

• An RPC client contains one or more client application threads; that is, a thread
that executes client application code that makes one or more remote procedure
calls.

• A DCE RPC server uses one server application thread to execute the server
application code that listens for incoming calls.

In addition, for executing called remote procedures, an RPC server uses one or more
call threads that the RPC runtime provides. As part of initiating listening, the server
application thread specifies the maximum number of concurrent calls it will execute.
The maximum number of call threads in multithreaded applications depends on the
design of the application. The RPC runtime creates the same number of call threads
in the server process.

The number of call threads is significant to application code. When using only one call
execution thread, application code does not have to protect itself against concurrent
resource use. When using more than one call thread, application code must protect
itself against concurrent resource use.

DCE 1.2.2 Application Development Guide—Core Components 297

DCE Remote Procedure Call

Figure 14-2 shows a multithreaded server with a maximum of four concurrently
executing calls. Of the four call threads for the server, only one is currently in use;
the other three threads are available for executing calls.

Figure 14–2. Server Application Thread and Multiple Call Threads

Single address space

Server

 application thread
The server

remote procedures

 executing in
Remote procedure

 call thread

 call threads
Available

Maximum concurrent calls = 4

 (listening for calls)

14.1.1 Remote Procedure Call Threads

In distributed processing, a call extends to and from client and server address spaces.
Therefore, when a client application thread calls a remote procedure, it becomes part
of a logical thread of execution known as anRPC thread. An RPC thread is a logical
construct that encompasses the various phases of a remote procedure call as it extends
across actual threads of execution and the network. After making a remote procedure
call, the calling client application thread becomes part of the RPC thread. Usually, the
RPC thread maintains execution control until the call returns.

The RPC thread of a successful remote procedure call moves through the execution
phases illustrated in Figure 14-3.

298 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

Figure 14–3. Execution Phases of an RPC Thread

 application
 thread

Called
 remote
 procedure

Remote procedure call
Server

Calling
 code

Client

Client

 Call thread

 RPC thread

1 2

3

45

 RPC thread

The execution phases of an RPC thread in the preceding figure include the following
operations:

1. The RPC thread begins in the client process, as a client application thread makes
a remote procedure call to its stub; at this point, the client thread becomes part
of the RPC thread.

2. The RPC thread extends across the network to the server address space.

3. The RPC thread extends into a call thread, where the remote procedure executes.
While a called remote procedure is executing, the call thread becomes part of the
RPC thread. When the call finishes executing, the call thread ceases being part
of the RPC thread.

4. The RPC thread then retracts across the network to the client.

5. When the RPC thread arrives at the calling client application thread, the remote
procedure call returns any call results and the client application thread ceases to
be part of the RPC thread.

Figure 14-4 shows a server executing remote procedures in its two call threads, while
the server application thread listens.

DCE 1.2.2 Application Development Guide—Core Components 299

DCE Remote Procedure Call

Figure 14–4. Concurrent Call Threads Executing in Shared Address Space

Calling
 code

Concurrent remote procedure calls

Called
 remote
 procedure

 Call thread

Client

Server

Calling
 code

Called
 remote
 procedure

Client

 Call thread

Maximum concurrent calls = 2

A client application
 thread

A client application
 thread

 thread
The server application

 address
Single

 space

 RPC thread

 RPC thread

Note: Although a remote procedure can be viewed logically as executing within the
exclusive control of an RPC thread, some parallel activity does occur in both
the client and server.

An RPC server can concurrently execute as many remote procedure calls as it has call
threads. When a server is using all of its call threads, the server application thread
continues listening for incoming remote procedure calls. While waiting for a call thread
to become available, DCE RPC server runtimes can queue incoming calls. Queuing
incoming calls avoids remote procedure calls failing during short-term congestion. The
queue capacity for incoming calls is implementation dependent; most implementations
offer a small queue capacity. The queuing of incoming calls is discussed in Chapter
17, under the topic of the routing of incoming calls.

300 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

14.1.2 Cancels

DCE RPC uses and supports the synchronous cancel capability provided by POSIX
threads (pthreads). Acancelis a mechanism by which a thread informs another thread
(the canceled thread) to terminate as soon as possible. Cancels operate on the RPC
thread exactly as they would on a local thread, except for an application-specified,
cancel-timeout period. A cancel-timeout period is an optional value that limits the
amount of time the canceled RPC thread has before it releases control.

During a remote procedure call, if its thread is canceled and the cancel-timeout
period expires before the call returns, the calling thread regains control and the call is
orphaned at the server. An orphaned call may continue to execute in the call thread.
However, the call thread is no longer part of the RPC thread, and the orphaned call
is unable to return results to the client.

A client application thread can cancel any other client application thread in the same
process (it is possible, but unlikely, for a thread to cancel itself.) While executing
as part of an RPC thread, a call thread can be canceled only by a client application
thread.

A cancel goes through several phases. Figure 14-5 shows where each of these phases
occur.

Figure 14–5. Phases of a Cancel in an RPC Thread

 application
 thread

Server

Client

Client

 Call thread

 RPC thread RPC thread
Called
 remote
 procedure

Calling
 code

3

1 2

The phases of a cancel in the preceding figure include the following:

DCE 1.2.2 Application Development Guide—Core Components 301

DCE Remote Procedure Call

1. A cancel that becomes pending at the client application thread at the start of or
during a remote procedure call becomes pending for the entire RPC thread. Thus,
while still part of the RPC thread, the call thread also has this cancel pending.

2. If the call thread of an RPC thread makes a cancelable call when cancels are not
deferred and a cancel is pending, the cancel exception is raised.

3. The RPC thread returns to the canceled client application thread with one of the
following outcomes:

• If a cancel exception has not been taken, the RPC thread returns normal call
results (output arguments, return value, or both) with a pending cancel.

• If the remote procedure is using an exception handler, a cancel exception can
be handled. The procedure resumes, and the RPC thread returns normal call
results without pending any cancel.

• If the remote procedure failed to handle a raised cancel exception, the RPC
thread returns with the cancel exception still raised. This is returned as a fault.

• If the cancel-timeout period expires, the RPC thread returns either a cancel-
timeout exception or status code, depending on how the application sets up
its error handling. This is true for all cases where any abnormal termination
is returned.

14.1.3 Multithreaded RPC Applications

DCE RPC provides an environment for RPC applications that create multiple
application threads (multithreaded applications). The application threads of a
multithreaded application share a common address space and much of the common
environment. If a multithreaded application must be thread-safe (guarantee that
multiple threads can execute simultaneously and correctly), the application
is responsible for its own concurrency control. Concurrency control involves
programming techniques such as controlling access to code that can share a data
structure or other resource to prevent conflicting overlapping access by separate
threads.

A multithreaded RPC application can have diverse activities going on simultaneously.
A multithreaded client can make concurrent remote procedure calls and a
multithreaded server can handle concurrent remote procedure calls. Using multiple
threads allows an RPC client or server to support local application threads that

302 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

continue processing independently of remote procedure calls. Also, multithreading
enables the server application thread and the client application threads of an RPC
application to share a single address space as a joint client/server instance. A
multithreaded RPC application can also create local application threads that are
uninvolved in the RPC activity of the application.

Figure 14-6 shows an address space where application threads are executing
concurrently.

The application threads in Figure 14-6 are performing the following activities:

• The server application thread is listening for calls.

• A call thread is available to execute an incoming remote procedure call.

• One client application thread has separated from an RPC thread and another is
currently part of an RPC thread.

• A local application thread is engaging in non-RPC activity.

DCE 1.2.2 Application Development Guide—Core Components 303

DCE Remote Procedure Call

Figure 14–6. A Multithreaded RPC Application Acting as Both Server and Client

A call thread

Single address space

A local application thread

Multithreaded RPC application

 (engaged in non−RPC activity)

Calling
 code

Called
 remote
 procedure

 Call thread
A client application

 thread

Remote server

Called
 remote
 procedure

 Call thread
A client application

 thread

 RPC thread

Remote server

Calling
 code

Concurrent remote procedure calls

 RPC thread

The server application
 thread (listening)

(available)

304 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

14.2 Security and RPC: Using Authenticated Remote
Procedure Calls

DCE RPC supports authenticated communications between clients and servers.
Authenticated RPC works with the authentication and authorization services provided
by the DCE Security Service.

On the application level, a server makes itself available for authenticated
communications by registering its principal name and the authentication service that
it supports with the RPC runtime. The server principal name is the name used to
identify the server as a principal to the registry service provided by the security
service. In practice, this name is usually the same as the name that the server uses to
register itself with the DCE Directory Service.

A client must establish the authentication service, protection level, and authorization
service that it wishes to use in its communications with a server. The client identifies
the intended server by means of the principal name that the server has registered
with the RPC runtime. Once the required authentication, protection, and authorization
parameters have been established for the server binding handle, the client issues remote
procedure calls to the server as it normally does.

The security service, in conjunction with the RPC runtime, assumes responsibility for
the following:

• Authenticating the client and server in accordance with the requested
authentication service

• Applying the requested level of protection to communications between the client
and server

• Providing client authorization data to the server in a form determined by the
requested authorization service

Note: For a detailed discussion of authentication within the context of DCE security,
refer to Chapter 24 of this guide.

DCE 1.2.2 Application Development Guide—Core Components 305

DCE Remote Procedure Call

14.2.1 Authentication

When a client establishes authenticated RPC, it must indicate the authentication service
that it wants to use. The possible values are the following:

rpc_c_authn_none
No authentication

rpc_c_authn_dce_secret
DCE shared-secret key authentication

rpc_c_authn_dce_public
DCE public key authentication

rpc_c_authn_default
DCE default authentication service

The valuerpc_c_authn_noneis used to turn off authentication already established
for a binding handle. The default authentication is DCE shared-secret (also known as
private key) authentication.

Before a client and server can engage in authenticated RPC, they must ‘‘agree’’
on which authentication service to use. Specifically, the server must register the
‘‘agreed on’’ authentication service with the RPC runtime, along with the server’s
principal name. For its part, the client must select the same service for the server’s
binding handle. The client indicates the appropriate server by supplying the server’s
principal name. If the client does not know the server’s name, it can use the
rpc_mgmt_inq_server_princ_name()routine to determine the name.

14.2.1.1 Cross-Cell Authentication

A client can engage in authenticated RPC with a target server that is in the client’s cell
or in a foreign cell. In the case of cross-cell authentication, DCE security performs
the necessary additional steps on behalf of the client.

To establish authenticated RPC with a foreign server, a client must supply the fully
qualified principal name of the server. A fully qualified name includes the name of
the cell as well as the name of the principal and takes the following form:

306 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

/.../ cell_name/ principal_name

14.2.1.2 Protection Levels

When a client establishes authenticated RPC, it can specify the level of protection
to be applied to its communications with the server. The protection level determines
how much of client/server messages are encrypted. As a rule, the more restrictive the
protection level, the greater the impact on performance. Different levels are provided
so that applications can control the protection versus performance tradeoffs.

Note that the protection level is entirely a client responsibility. When a server registers
its supported authentication service with the RPC runtime, it does not specify any
protection information for that service. However, the server can include the protection
level used for a particular operation when deciding if the caller is authorized to perform
the operation.

Authenticated RPC supports the following protection levels:

rpc_c_protect_level_default
Uses the default protection level for the specified authentication service.

rpc_c_protect_level_none
There is no protection level.

rpc_c_protect_level_connect
Performs protection only when the client establishes a relationship with
the server. This level performs an encrypted handshake when the client
first communicates with the server. Encryption or decryption is not
performed on the data sent between the client and server. The fact that
the handshake succeeds indicates that the client is active on the network.

rpc_c_protect_level_call
Performs protection only at the beginning of each remote procedure call
when the server receives the request. This level attaches a verifier to
each client call and server response.

This level does not apply to remote procedure calls made over a
connection-based protocol sequence; that is,ncacn_ip_tcp. If this level
is specified and the binding handle uses a connection-based protocol
sequence, the routine uses therpc_c_protect_level_pkt level instead.

DCE 1.2.2 Application Development Guide—Core Components 307

DCE Remote Procedure Call

rpc_c_protect_level_pkt
Ensures that all data received is from the expected client. This level
attaches a verifier to each message.

rpc_c_protect_level_pkt_integrity
Ensures and verifies that none of the data transferred between client and
server has been modified. This level computes a cryptographic checksum
of each message to verify that none of the data transferred between the
client and server has been modified in transit.

This is the highest protection level that is guaranteed to be present in
the RPC runtime.

rpc_c_protect_level_pkt_privacy
Performs protection as specified by all of the previous levels and also
encrypts each remote procedure call argument and return values. This
level encrypts all user data in each call.

This is the highest protection level, but it may not be available in the
RPC runtime.

If a client wants to use the default protection level but does not know what this level
is, it can use therpc_mgmt_inq_dflt_protect_level() routine to determine what the
default level is.

14.2.2 Authorization

Authorization is the process of checking a client’s permissions to an object that is
controlled by the server. Access checking is entirely a server responsibility and involves
matching the client’s credentials against the permissions associated with the object. A
client’s credentials consist of the principal ID and group memberships contained in
the client’s network login context.

Authenticated RPC supports the following options for making client authorization
information available to servers for access checking:

rpc_c_authz_none
No authorization information is provided to the server, usually because
the server does not perform access checking.

308 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

rpc_c_authz_name
Only the client principal name is provided to the server. The server can
then perform authorization based on the provided name. This form of
authorization is sometimes referred to asname-basedauthorization.

rpc_c_authz_dce
The client’s credentials (DCE Privilege Attribute Certificate or PAC)
is provided to the server with each remote procedure call that is made
using the binding parameter. The server performs authorization by using
the client credentials. Generally, access is checked against DCE ACLs.

When a client establishes authenticated RPC, it must indicate which authorization
option it wants to use.

It is the server’s responsibility to implement the type of authorization appropriate
for the objects that it controls. When the server callsrpc_binding_inq_auth_caller()
to return information about an authenticated client, it gets back either the client’s
principal name or a pointer to the data structure that contains the client’s credentials.
The value that is returned depends on which type of authorization the client specified
on its call to establish authenticated RPC with that server.

Each server is responsible for implementing its own access checking by means of
ACL managers. When a server receives a client request for an object, the server
invokes the ACL manager appropriate for that type of object and passes the manager
the client’s authorization data. The manager compares the client authorization data to
the permissions associated with the object and either refuses or permits the requested
operation. In the case of certified (PAC-based) authorization, servers must implement
access checking by using the ACL facility provided by the DCE Security Service.

An ACL management API (dce_acl*) is also available.

14.2.2.1 Name-Based Authorization

Name-based authorization (rpc_c_authz_name) provides a server with the client’s
principal name. The server call torpc_binding_inq_auth_caller() retrieves the name
from the binding handle associated with the client and returns it as a character string.

It is not recommended that names be used for authorization. To perform access
checking using client principal names, the names must be stored in the access lists

DCE 1.2.2 Application Development Guide—Core Components 309

DCE Remote Procedure Call

associated with the protected objects. Each time a name is changed, the change must
be propagated through all the access lists in which the name is defined.

14.2.2.2 DCE Authorization

DCE authorization (rpc_c_authz_dce) provides a server with the client’s credentials.

Credentials offer a trusted mechanism for conveying client authorization data to
authenticated servers. The security service generates a client’s credentials in a tamper-
proof manner. When a server receives a client credentials, it knows that the credentials
has been certified by DCE security.

Credentials are designed to be used with the DCE ACL facility. The ACL facility
provides an editor and a set of API routines that support the implementation of access
control lists and the managers to control them.

14.2.3 Authenticated RPC Routines

Authenticated RPC is implemented as a set of related RPC routines. Some of the
routines are for use by clients, some are for use by servers and their managers, and
some are for use by both clients and servers. The authenticated RPC routines are as
follows:

rpc_binding_set_auth_info()
A client calls this routine to establish an authentication service,
protection level, and authorization service for a server binding handle.
The client identifies the server by supplying the server’s principal name.
The RPC runtime, in conjunction with the security service, applies
the authentication service and protection level to all subsequent remote
procedure calls made using the binding handle.

rpc_binding_inq_auth_info()
A client calls this routine to return the authentication service, protection
level, and authorization service that are in effect for a specified server
binding handle. This routine also returns the principal name of the server
associated with the binding handle.

310 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

rpc_mgmt_inq_dflt_protect_level()
A client or a server calls this routine to learn the default protection level
that is in force for a given authentication service.

rpc_mgmt_inq_server_princ_name()
A client, a server, or a server manager can call this routine to return
the principal name that a server has registered with the RPC runtime
via the rpc_server_register_auth_info()routine. A client can identify
the desired server by supplying a server binding handle and the
authentication service associated with the registered principal name.

rpc_server_register_auth_info()
A server calls this routine to register an authentication service that it
wants to support and the server principal name to be associated with the
registered service. The server can also optionally supply the address of
a key retrieval routine to be called by the security service as part of the
client authentication process. The routine is a user-supplied function
whose purpose is to provide the server’s key to the DCE security
runtime.

Note that the server registers only an authentication service. It does not
establish a protection level or an authorization service. These are the
responsibilities of the client.

rpc_binding_inq_auth_caller()
A server calls this routine to return the authentication service, protection
level, and authorization service that is associated with the binding handle
of an authenticated client. This call also returns the server principal name
specified by the client on its call torpc_binding_set_auth_info().

rpc_mgmt_set_authorization_fn()
A server calls this routine to establish a user-supplied
authorization function to validate remote client calls to the
server’s management routines. For example, the user function can
call rpc_binding_inq_auth_caller() to return authentication and
authorization information about the calling client. The RPC runtime
calls the user-supplied function whenever it receives a client request to
execute one of the following server management routines:

• rpc_mgmt_inq_if_ids()

• rpc_mgmt_inq_server_princ_name()

• rpc_mgmt_inq_stats()

DCE 1.2.2 Application Development Guide—Core Components 311

DCE Remote Procedure Call

• rpc_mgmt_is_server_listening()

• rpc_mgmt_stop_server_listening()

When an unauthenticated client calls a server that has specified authentication, the RPC
runtime will not perform any authentication, andthe call will reach the application
manager code. It is up to the manager to decide how to deal with the unauthenticated
call.

Typically, servers and clients establish authentication as follows:

• The server specifies an authentication service for a principal identity under
which it runs by callingrpc_server_register_auth_info(). The authentication
service is specified by theauthn_svcparameter of this call. Currently, servers
may specify either DCE secret key authentication (by supplying either
rpc_c_authn_dce_secretor rpc_c_authn_default) or no authentication (by
supplyingrpc_c_authn_none). The specified authentication service will be used
if it is also requested by the client.

• The client sets authentication for a binding handle by calling
rpc_binding_set_auth_info(). The choices are also currently either DCE
secret key or no authentication. Client calls made on the binding handle attempt
to use the specified authentication service.

• The server manager code callsrpc_binding_inq_auth_caller() to extract any
authorization information from the client binding for the call.

14.2.4 Using RPC Within a Single Thread

The default behavior for an application client is to be single-threaded. This means that
only one thread, the main thread, exists in the client process. All application and RPC
runtime execution takes place within this single thread. This behavior applies only
to clients that use the User Datagram Protocol (UDP). If another protocol sequence
is used for RPC transport, the RPC runtime will spawn several threads and revert to
multithreaded behavior.

Single-threaded behavior, compared to multithreaded client behavior, provides several
benefits to application developers:

• Debugging is easier. Using advanced thread-aware debuggers and following code
execution through multiple thread context switches are unnecessary. The same

312 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

debugging techniques and tools used to debug standard applications can be used
to debug an RPC client.

• Usage of system resources is lower. The DCE Threads runtime is not initialized
in single-threaded mode. This means startup time will be faster, less memory will
be used, and performance will improve because context switching does not take
place.

• Linking libraries that are not thread-safe into DCE applications is less dangerous.
Some third-party libraries depend on default behavior from certain operating
system functions. However, in a multithreaded process this behavior is defined
differently. Examples of this include signal handling, I/O, andfork , and exec
functions. When an application client is single-threaded, the default behavior for
these functions is guaranteed, and without risk when using libraries that are not
thread-safe.

If any application-level threads are created in the RPC client, the single-threaded
process immediately reverts to multithreaded behavior. This means that both the RPC
runtime and DCE Threads runtime will be initialized and create several runtime-level
threads, and the benefits described for a single-threaded client will no longer apply.
Once the client becomes multithreaded, it remains so even if all of the user-level
threads have terminated.

Existing applications can take advantage of single-threaded mode without requiring
changes to the code. As long as the client is using the UDP protocol sequence and has
not performed apthread_createcall, single-threaded behavior automatically remains;
applications can continue to make pthread API calls and remain in single-threaded
mode. If, for example, the application creates mutex variables, and even locks or
unlocks these variables, these calls will behave correctly and not cause the process
to become multithreaded. However, after the firstpthread_create call takes place in
the client application, it becomes multithreaded and all previously initialized pthreads
primitives will function as expected in a multithreaded environment.

To implement single-threaded behavior, the DCE Threads library performs its
initialization in two phases:

• Phase 1 occurs when the first pthread API call is made. This initializes mutexes,
condition variables, and attributes.

• Phase 2 occurs when the firstpthread_create call is made. This initializes the
remaining DCE Threads functionality, including thread management, context
switching, the creation of a null background thread, and all of the multithreaded

DCE 1.2.2 Application Development Guide—Core Components 313

DCE Remote Procedure Call

operating system behavior as described in the chapter on multithreaded
programming.

14.3 Directory Services and RPC: Using the Namespace

This section discusses how the DCE RPC NSI configures directory service entries and
how RPC applications can use those entries. The following topics are included:

• Directory service entries defined by NSI

Describes the kinds of directory service entries NSI defines.

• Searching the namespace

Describes how the namespace is searched when a client requests binding
information.

• Strategies for using directory service entries

Outlines strategies for using each kind of entry.

• The service model

Describes the service model for defining RPC servers and introduces NSI usage
models intended to guide application developers in assessing how to best use NSI
for a given application.

• The resource model

Describes the resource model for defining RPC servers.

14.3.1 NSI Directory Service Entries

To store information about RPC servers, interfaces, and objects, NSI defines the
following directory service entries in the namespace: server entries, groups, and
profiles. These directory service entries are CDS objects.

• A server entry is a directory service entry that stores binding information and
object UUIDs for an RPC server.

• A group is a directory service entry that corresponds to one or more RPC servers
that offer one or more RPC interfaces, type of RPC object, or both in common.

314 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

• A profile is a directory service entry that defines search paths in a namespace for
a server that offers a particular RPC interface and object.

The use of server entries, groups, and profiles determines how clients view servers.
A server describes itself to its clients by exporting binding information associated
with interfaces and objects to one or more server entries. A group corresponds to
servers that offer a given interface, service, or object. Profiles enable clients to access
alternative directory service entries when searching for an interface or object. Used
together, groups and profiles offer sophisticated ways for RPC applications to maintain
and use directory service data.

14.3.1.1 NSI Attributes

Usually, the distinct server entries, groups, and profiles concepts are adequate for
using NSI. However, the way NSI stores RPC information allows you to combine
server entries, groups, and profiles into a single directory service entry. To store
information about RPC applications in a directory service entry, the RPC directory
service interface defines several RPC-specific directory service attributes, or NSI
attributes. NSI attributes contain information about RPC applications in a directory
service entry. The NSI attributes are as follows:

• NSI binding attribute

The binding attribute stores binding information and interface identifiers (interface
UUID and version numbers) exported to the server entry. This attribute identifies
a directory service entry as a server entry.

• NSI object attribute

The object attribute stores a list of one or more object UUIDs. Whenever a server
exports any object UUIDs to a server entry, the server entry contains an object
attribute as well as a binding attribute. When a client imports from that entry,
the import operation returns an object UUID from the list stored in the object
attribute.

• NSI group attribute

The group attribute stores the entry names of the members of a single group. This
attribute identifies a directory service entry as an RPC group.

• NSI profile attribute

DCE 1.2.2 Application Development Guide—Core Components 315

DCE Remote Procedure Call

The profile attribute stores a set of profile elements. This attribute identifies a
directory service entry as an RPC profile.

Figure 14-7 represents the correspondence between NSI attributes and the different
directory service entries: server entries, groups, and profiles.

Figure 14–7. NSI Attributes

NSI attributes

Key:

= Basic attribute that defines an NSI name service entry

= Optional attribute

Server entry

Group

Profile

Object attribute

Binding attribute

Group attribute

Profile attribute

Any directory service entry can contain any combination of the four NSI attributes.
However, to facilitate administrating directory service entries, avoid creating binding,
group, and profile attributes in the same entry. Instead, use distinct directory service
entries for server entries, groups, and profiles. The object attribute, in contrast, is
designed as an adjunct to another NSI attribute, especially the binding attribute.

When implementing the resource model or when used to distinguish server instances,
a server entry contains an object attribute as well as a binding attribute. On finding
a server entry whose binding attribute contains compatible binding information, an
NSI search operation also looks in the entry for an object attribute. For groups whose

316 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

membership is selected according to a shared object or set of objects, it may be useful
to export those objects to the group. In this case, the directory service entry of the
group contains both group and object attributes. For reading the object UUIDs in the
NSI object attribute in any directory service entry, NSI provides a set of object inquiry
operations, called using therpc_ns_entry_object_inq_{ begin,next,done} () routines.

Using separate entries facilitates administration of the namespace; for example, by
enabling entry names to specifically describe their contents. Keeping server entries,
profiles, and groups separate allows clear references to each of them.

Note: In addition to any NSI attributes, a directory service entry contains other
kinds of directory service attributes. Every entry in a namespace contains
standard attributes created by the directory service. NSI operations rely on
some standard attributes to identify and use an entry.

14.3.1.2 Structure of Entry Names

Each entry in a namespace is identified by a unique global name comprising a cell
name and a cell-relative name.

A cell is a group of users, systems, and resources that share common DCE services.
A cell configuration includes at least one cell directory server and one security server.
A cell’s size can range from one system to thousands of systems. A host is assigned
to its cell by a DCE configuration file. For information on cells, see theDCE 1.2.2
Administration Guide.

The following is an example of a global name:

/.../C=US/O=uw/OU=MadCity/LandS/anthro/Stats_host_2

The parts of a global name are as follows:

• Cell name (using X.500 name syntax):

/.../C=US/O=uw/OU=MadCity

DCE 1.2.2 Application Development Guide—Core Components 317

DCE Remote Procedure Call

The symbol/... begins a cell name. The letters before the= (equal signs) are
abbreviations for Country (C), Organization (O), and Organization Unit (OU).
For entries in the local cell, the cell name can be represented by a/.: prefix, in
place of the actual cell name; for example:

/.:/LandS/anthro/Stats_host_2

The / (slash) to the right of the cell name represents the root of the cell directory
(the cell root).

For NSI operations on entries in the local cell, you can omit the cell name.

• Cell-relative name (using DCE name syntax):

Each directory service entry requires a cell-relative name, which contains a
directory pathname and a leaf name.

— A directory pathname follows the cell name and indicates the hierarchical
relationship of the entry to the cell root.

The directory pathname contains the names of any subdirectories in the path;
each subdirectory name begins with a/ (slash), as follows: /sub-dir-a-name/
sub-dir-b-name/sub-dir-c-name

Directory pathnames are created by directory service administrators. If an
appropriate directory pathname does not exist, ask your directory service
administrator to extend an existing pathname or create a new pathname. In a
directory pathname, the name of a subdirectory should reflect its relationship
to its parent directory (the directory that contains the subdirectory).

— A leaf name identifies the specific entry.

The leaf name constitutes the right-hand part of a global name, beginning
with the rightmost/ (slash).

For example,/.:/LandS/anthro/Cal_host_4, where/.:/ represents the cell name,/
LandS/anthro is the directory pathname, and/Cal_host_4is the leaf name. If the
directory service entry is located at the cell root, the leaf name directly follows
the cell name; for example,/.:/cell-profile .

Note: When NSI is used with CDS, the cell-relative name is a CDS name.

Figure 14-8 shows the parts of a global name.

318 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

Figure 14–8. Parts of a Global Name

Directory pathname Leaf name

Org_codeCountry_code Location Subdir_a Subdir_b Subdir_c Name_service_entry

Cell name Cell−relative name

/.../C= /O= /OU= / / / /

14.3.1.3 Server Entries

NSI enables any RPC server with the necessary directory service permissions to create
and maintain its own server entries in the namespace. A server can use as many server
entries as it needs to advertise combinations of its RPC interfaces and objects.

Each server entry must correspond to a single server (or a group of interchangeable
server instances) on a given system. Interchangeable server instances are instances of
the same server running on the same system that offer the same RPC objects (if any).
Only interchangeable server instances can share a server entry.

Each server entry must contain binding information. Every combination of protocol
sequence and network addressing information represents a potential binding. The
network addressing information can contain a network address, but lacks an endpoint,
making the address partially bound.

A server entry can also contain a list of object UUIDs exported by the server. Each
of the object UUIDs corresponds to an object offered by the server. In a given server
entry, each interface identifier is associated with every object UUID, but with only the
binding information exported with the interface.

Figure 14-9 represents a server entry. This server entry was created by two calls to
the rpc_ns_binding_export() routine. The first call created the first column of the
top half of the figure. The routine’sbinding_vecparameter had three elements, each
of which is paired with the routine’sif_handleparameter. The vertical ellipsis points
under the last box indicate that more elements in the routine’sbinding_vecparameter
would have resulted in more interface UUID/binding information pairs in the first
column.

DCE 1.2.2 Application Development Guide—Core Components 319

DCE Remote Procedure Call

Similarly, the second call to therpc_ns_binding_export() routine created the second
column of the top half of the figure. The routine’sbinding_vecparameter had two
elements, each of which is paired with the routine’sif_handleparameter. For example,
the first element could have contained binding information with thencacn_ip_tcp
protocol sequence, and the second element could have contained binding information
with the ncadg_ip_udp protocol sequence. As in the first column, more elements
in the routine’sbinding_vecparameter would have resulted in more interface UUID/
binding information pairs.

Third and subsequent calls to therpc_ns_binding_export()routine would create more
columns; the two pairs of horizontal ellipsis points indicate this expansion.

Finally, note that therpc_ns_binding_export() routine optionally takes a vector of
object UUIDs. The four object UUIDs in the bottom half of the figure came from the
two calls to the routine, or from another call to the routine with no interface UUID/
version and with no binding information, but with object UUIDs. The object UUIDs
are associated with no particular binding. Instead, they are associated with all the
bindings. Third and subsequent calls to the routine could create more object UUIDs;
the vertical ellipsis points indicate this expansion.

Note: To distinguish among RPC objects when using the CDS ACL editor, export
the RPC objects to separate directory service entries.

320 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

Figure 14–9. Possible Information in a Server Entry

Interface UUID/version pair 1
with binding information 1

Interface UUID/version pair 1
with binding information 2

Interface UUID/version pair 1
with binding information 3

Interface UUID/version pair 2
with binding information 1

Interface UUID/version pair 2
with binding information 3

Object UUID 2

Object UUID 3

Object UUID 4

Object UUID 1

One Server Entry

Bindings

Objects

14.3.1.4 Groups

Administrators or users of RPC applications can organize searches of a namespace
for binding information by having clients use an RPC group as the starting point
for NSI search operations. A group provides NSI search operations (import_next
or lookup_next operations) with access to the server entries of different servers that

DCE 1.2.2 Application Development Guide—Core Components 321

DCE Remote Procedure Call

offer a common RPC interface or object. A group contains names of one or more
server entries, other groups, or both. Since a group can contain group names, groups
can be nested. Each server entry or group named in a group is a member of the group.
A group’s members must offer one or more RPC interfaces, the type of RPC object,
or both in common.

Figure 14-10 shows an example of the kinds of members a group can contain and
how those members correspond to database entries.

Figure 14–10. Possible Mappings of a Group

Binding information
Interface identifiers
Object UUIDs

Member name

Group A:

Member name

Member name

Group B:
Server entry 3:

Server entry 4:

Server entry 1:

Server entry 2:

Server entry 5:

 = Member of Group A

Key:

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

 Binding information
 Interface identifiers
 Object UUIDs

 Binding information
 Interface identifiers
 Object UUIDs

 Member name

 Member name

The members of Group A are Server Entry 1, Server Entry 2, and Group B. The
members of the nested group, Group B, are Server Entry 3 and Server Entry 4. An
additional server entry that advertises the common interface or object, Server Entry 5,
is omitted from either group.

322 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

14.3.1.5 Profiles

Administrators or users of RPC applications can organize searches of a namespace
for binding information by having clients use an RPC profile as the starting point for
NSI search operations. A profile is an entry in a namespace that contains a collection
of profile elements. A profile element is a database record that corresponds to a single
RPC interface and that refers to a server entry, group, or profile. Each profile element
contains the following information:

• Interface identifier

This field is the key to the profile. The interface identifier consists of the interface
UUID and the interface version numbers.

• Member name

The entry name of one of the following kinds of directory service entries:

— A server entry for a server offering the requested RPC interface

— A group corresponding to the requested RPC interface

— A profile

• Priority value

The priority value (0 is the highest priority; 7 is the lowest priority) is designated
by the creator of a profile element to help determine the order for using the
element NSI search operations to select among like-priority elements at random.

• Annotation string

The annotation string enables you to identify the purpose of the profile element.
The annotation can be any textual information; for example, an interface name
associated with the interface identifier or a description of a service or resource
associated with a group.

Unlike the interface identifier field, the annotation string is not a search key.

Optionally, a profile can contain one default profile element. A default profile element
is the element that an NSI search operation uses when a search using the other elements
of a profile finds no compatible binding information; for example, when the current
profile lacks any element corresponding to the requested interface. A default profile
element contains the nil interface identifier, a priority of 0, the entry name of a default
profile, and an optional annotation.

DCE 1.2.2 Application Development Guide—Core Components 323

DCE Remote Procedure Call

A default profile is a backup profile, referred to by a default profile element in another
profile. A profile designated as a default profile should be a comprehensive profile
maintained by an administrator for a major set of users, such as the members of an
organization or the owners of computer accounts on a local area network (LAN).

A default profile must not create circular dependencies between profiles; for example,
when a public profile refers to an application’s profile, the application’s profile must
not specify that public profile as a default profile.

Figure 14-11 shows an example of the kinds of elements a profile can contain and
how those elements correspond to database entries.

324 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

Figure 14–11. Possible Mappings of a Profile

Profile A:

Default profile

Interface version
member name
priority
annotation

Interface UUID

Profile element:

Interface version
member name
priority
annotation

Interface UUID

Profile element:

Interface version
member name
priority
annotation

Interface UUID

Profile element:

Interface version
member name
priority
annotation

Interface UUID

element:
Binding information
Interface identifiers
Object UUIDs

= Member in element

Key:

Profile A of

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

Binding information
Interface identifiers
Object UUIDs

annotation
priority
member name
Interface version

 Profile element:

Interface version
member name
priority
annotation

Interface UUID

annotation
priority
member name
Interface version
Interface UUID

 Profile element:

Interface UUID

 Profile element:

 Member name

 Member name

Server entry:Server entry:

Group:

Server entry:

Default profile:

Server entry:

 Binding information
 Interface identifiers
 Object UUIDs

 Binding information
 Interface identifiers
 Object UUIDs

Server entry:

Server entry:

Server entry:

NSI search operations use a profile to construct an NSI search path. When an NSI
search operation reads a profile, the operation dynamically constructs its NSI search
path from the set of elements that correspond to a common RPC interface.

A profile element is used only once per NSI search path. The construction of NSI
search paths depends partly on the priority rankings of the elements. A search
operation uses higher-priority elements before lower-priority elements. Elements of
equal priority are used in random order, permitting some variation in the NSI search

DCE 1.2.2 Application Development Guide—Core Components 325

DCE Remote Procedure Call

paths between searches for a given interface. If nondefault profile elements do not
satisfy a search, the search path extends to the default profile element, if any.

Profiles meet the needs of particular individuals, systems, LANs, sites, organizations,
and so forth, with minimal configuration management. The administrator of a profile
can set up NSI search paths that reflect the preferences of the profile’s user or users.
The profile administrator can set up profile elements that refer (directly or indirectly)
to only a subset of the server entries that offer a given RPC interface. Also, the
administrator can assign different search priorities to the elements for an interface.

14.3.1.6 Guidelines for Constructing Names of Directory Service
Entries

A global name includes both a cell name and a cell-relative name composed of a
directory pathname and a leaf name. The cell name is assigned to a cell root at
its creation. When you specify only a cell-relative name to an NSI operation, NSI
automatically expands the name into a global name by inserting the local cell name.
When returning the name of a directory service entry, a group member, or a member
in a profile element, NSI operations return global names.

The directory pathname and leaf name uniquely identify a directory service entry. The
leaf name should somehow describe the entry; for example, by identifying its owner
or its contents. The remainder of this section contains guidelines for choosing leaf
names.

Note: Directory pathnames and leaf names are case sensitive.

Use the following guidelines for constructing names:

• Naming a server entry

For a server entry that advertises an RPC interface or service offered by a
server, the leaf name must distinguish the entry from the equivalent entries of
other servers. When a single server instance runs on a host, you can ensure a
unique name by combining the name of the service, interface (from the interface
definition), or the system name for the server’s host system.

For example, consider two servers, one offering a calendar service on hostJULES,
and one on hostVERNE.

326 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

The server onJULES uses the following leaf name:

calendar_JULES

The server onVERNE uses the following leaf name:

calendar_VERNE

For servers that perform tasks on or for a specific system, an alternative approach
is to create server entries in a system-specific host directory within the namespace.
Each host directory takes the name of the host to which it corresponds. Because
the directory name identifies the system, the leaf name of the server entry name
does not need to include the host name, for example:

/.:/LandS/host_1/Process_control

To construct names for the server entries used by distinctive server instances on
a single host, you can construct unique server entry names by combining the
following information: the name of the server’s service, interface, or object; the
system name of the server’s host system; and a reusable instance identifier such
as an integer.

For example, the following leaf names distinguish two instances of a calendar
service on theJULES system:

calendar_JULES_01

calendar_JULES_02

Avoid automatically generating entry names for the server entries
of server instances; for example, by using unique data such as a
timestamp (calendar_verne_15OCT91_21:25:32) or a process identifier
(calendar_jules_208004D6). When a server incorporates such unique data
into its server entry names, each server instance creates a separate server entry,
causing many server entries. When a server instance stops running, it leaves an

DCE 1.2.2 Application Development Guide—Core Components 327

DCE Remote Procedure Call

obsolete server entry that is not reused. The creation of a new entry whenever a
server instance starts may impair performance.

A server can use multiple server entries to advertise different combinations of
interfaces and objects. For example, a server can create a separate server entry for
a specific object, and the associated interfaces. The name of such a server entry
should correspond to a well-known name for the object. For example, consider a
server that offers a horticulture bulletin board known to users ashorticulture_bb .
The server exports thehorticulture_bb object, binding information, and the
associated bulletin-board interface to a server entry whose leaf name identifies
the object, as follows:

horticulture_bb

Note: An RPC server that uses RPC authentication can choose identical names
for its principal name and its server entry. Use of identical names permits a
client that calls therpc_binding_set_auth_info()routine to automatically
determine a server’s principal name. (The client will assume the principal
name to be the same as the server’s entry name.) If a server uses different
principal and server entry names, users must explicitly supply the principal
name. For an explanation of principal names, see Part 5 of this guide.

• Naming a group

The leaf name of a group should indicate the interface, service, or object that
determines membership in the group. For example, for a group whose members
are selected because they advertise an interface namedStatistics, the following is
an effective leaf name:

Statistics

For a group whose members advertise laser printer print queues as objects, the
following is an effective leaf name:

laser-printer

• Naming a profile

328 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

The leaf name of a profile should indicate the profile users; for example, for a
profile that serves the members of an accounting department, the following is an
effective leaf name:

accounting_profile

The following text describes the NSIbegin, next, anddone operations. NSI accesses
a variety of search and inquire operations that read NSI attributes in directory
service entries. An NSI attribute is an RPC-defined attribute of a directory service
entry used by the DCE RPC directory service interface. An NSI attribute stores
one of the following: binding information, object UUIDs, a group, or a profile.
Reading information from any attribute involves an equivalent set of search or inquire
operations; that is, an integral set ofbegin, next, and done operations. An RPC
application uses these operations as follows:

1. The application creates a directory service handle (a reference to the context of
the ensuing series ofnext operations) by calling an NSIbegin operation.

2. The application calls the NSInext operation corresponding to thebegin operation
one or more times. Eachnext operation returns another value or list of values
from the target RPC directory service attribute. For example, animport_next
operation returns binding information from a binding attribute and an object from
an object attribute.

3. The application deletes the directory service handle by calling the corresponding
NSI done operation.

Note: Search and inquire operations are also accessible interactively from within the
RPC control program.

Table 14-1 lists the NSInext operations used by RPC applications.

DCE 1.2.2 Application Development Guide—Core Components 329

DCE Remote Procedure Call

Table 14–1. NSI next Operations

Search Operation Attributes Traversed

rpc_ns_binding_import_next() Searches for binding and object
attributes of a compatible server; reads
any NSI attribute in a search path.
Returns a binding handle that refers to
a potential binding for a compatible
server, and also to a single object
UUID.

rpc_ns_binding_lookup_next() Searches for binding and object
attributes of a compatible server; reads
any NSI attribute in a search path.
Returns a list of binding handles, each
of which refers to a potential binding
for a compatible server, and also to a
single object UUID. The same object
UUID is associated with each potential
binding.
Note that, after calling the
lookup_next operation, the client must
select one binding handle from the list.
To select a binding handle at random,
the client can call the NSI binding
select routine
rpc_ns_binding_select(). For an
alternative selection algorithm, the
client can define and call its own
application-specific select algorithm.

Inquire Operation Attributes Traversed

rpc_ns_group_mbr_inq_next() Reads a group attribute and returns a
member name.

rpc_ns_profile_elt_inq_next() Reads a profile attribute and returns
the fields of a profile element.

330 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

14.3.1.7 Selecting the Starting Entry

When searching a namespace for an RPC interface and object, a client supplies the
name of the directory service entry where the search begins. The entry can be a
server entry, group, or profile. Generally, an NSI search starts with a group or profile.
The group or profile defines a search path that ends at a server entry containing the
requested interface identifier, object UUID, and compatible binding information.

A user may know in advance what server instance to use. In this case, starting with a
server entry for the server instance is appropriate.

14.3.1.8 Environment Variables

DCE RPC provides predefined environment variables that a client can use for NSI
operations. An environment variable is a variable that stores information, such as a
name, about a particular environment. The NSI interface provides two environment
variables, RPC_DEFAULT_ENTRY and RPC_DEFAULT_ENTRY_SYNTAX ,
which are described in theDCE 1.2.2 Application Development Reference. Used
together, these environment variables identify an entry name and indicate its syntax.

When a client searches for binding information, the search starts with a specific
entry name. Optionally, a client can specify this entry name as the value of the
RPC_DEFAULT_ENTRY variable. A client can also specify the name syntax of
the starting entry as the value of theRPC_DEFAULT_ENTRY_SYNTAX variable;
the default name syntax isdce.

Note: Thedcename syntax is the only syntax currently supported by CDS. However,
NSI is independent of any specific directory service and depending on your
vendor, may support one or more alternative directory services that use
different name syntaxes.

14.3.2 Searching the Namespace for Binding Information

Searching the namespace for binding information requires that a client specify a
starting point for the search. A client can start with a specific server entry. However,
this is a limiting approach because the client is restricted to using one server. To

DCE 1.2.2 Application Development Guide—Core Components 331

DCE Remote Procedure Call

avoid this, a client can start searching with a group or a profile instead of with a
server entry. Searches that start with a profile or a group should encounter the server
entry of a compatible server. If such an entry is not encountered, a search operation
returns therpc_s_no_more_bindingsstatus code to the client. When calling the
routinesrpc_ns_binding_import_next() or rpc_ns_binding_lookup_next(), a client
must track whether the routine returns this status code.

14.3.2.1 Theimport_next and lookup_next Search Algorithm

The NSI search operations (import_next and lookup_next) traverse one or more
entries in the namespace when searching for compatible binding information. In each
directory service entry, these operations ignore non-RPC attributes and process the
NSI attributes in the following order:

1. Binding attribute (and object attribute, if present)

2. Group attribute

3. Profile attribute

If an NSI search path includes a group attribute, the search path can encompass every
entry named as a group member. If a search path includes a profile attribute, the
search path can encompass every entry named as the member of a profile element
that contains the target interface identifier. A search finishes only when it finds a
server entry containing compatible binding information and the nonnil object UUID,
if requested. Search operations take the following steps when traversing a directory
service entry:

Step 1: Binding attribute

In each entry, the search operation starts by searching for a compatible
interface identifier in the binding attribute, if present.

The absence of a binding attribute or of any compatible interface
identifier causes the search operation to go directly to step 2.

The presence of any compatible interface identifier indicates that
compatible potential bindings may exist in the binding attribute. At this
point, object UUIDs may impact the search, as follows:

332 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

• If the client specified the nil object UUID, object UUIDs do not
affect the success or failure of the search. The search returns
compatible binding information for one or more potential bindings.

• If the client specified a nonnil object UUID, the search reads the
object attribute, if present, to look for the requested object UUID.
This search for an object UUID has one of the following outcomes:

— On finding the specified object UUID, the search returns the
object UUID along with compatible binding information for
one or more potential bindings.

— If a requested object UUID is absent, the search continues to
step 2.

Note: If a search involves a series ofimport_next or lookup_next
operations, a subsequent next operation resumes the search at
the point in the search path where the preceding operation left
off.

Step 2: Group attribute

If the binding attribute does not lead to compatible binding information
or if a series ofimport_next or lookup_next operations exhausts the
compatible binding information, the search continues by reading the
group attribute, if present; if the directory service entry lacks a group
attribute, the search goes directly to step 3.

The search operation selects a member of the group at random, goes to
the entry of that member, and resumes the search at step 1. Unless a
group member leads the search to compatible binding information, the
search looks at all the members of the group, one by one in random
order, until none remain.

Step 3: Profile attribute

If the binding and group attributes do not lead to compatible binding
information, the search continues by reading the profile attribute, if
present; if the directory service entry lacks a profile attribute, the search
fails.

The search operation identifies all the profile elements containing the
requested interface identifier and searches them in the order of their
priority, beginning with the 0 (zero) priority elements. Profile elements

DCE 1.2.2 Application Development Guide—Core Components 333

DCE Remote Procedure Call

of a given priority are searched in random order. For the selected
profile element, the search reads the member name and goes to the
corresponding directory service entry. There, the search resumes at step
1. Unless a profile element leads the search to compatible binding
information, the search eventually looks at all the profile elements with
the requested interface identifier, one by one, until none remain.

If the starting entry does not contain NSI attributes, or if none of the steps satisfies
the search, the search operation returns the status coderpc_s_no_more_bindingsto
the client.

Note: The inquire next (inq_next) operations for objects, groups, or profiles look
at only the entry specified in its corresponding inquire begin (inq_begin)
operation. The search ignores nested groups or nested profiles.

Figure 14-12 illustrates the three steps of theimport_next and lookup_next search
operations.

334 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

Figure 14–12. The import_next, lookup_next Search Algorithm in a Single Entry

?

Search

Search

No No

STARTS

No

No

compatible

information
binding

 RETURNS

?

?

Search

For each group
member, DO

For each profile element of a
compatible interface id, DO

attribute

Binding

Profile

attribute

Group

attribute

Step 2.

Step 1.

Step 3.

Yes

No

?

Compatible

object UUID
Yes

Contains

?
info.

Compatible
bindingYes

Yes

Yes

binding, DO

For each
potential

rpc_s_no_more_bindings

14.3.2.2 Examples of Searching for Server Entries

This subsection provides several examples of how the NSIimport_next and
lookup_next operations search for binding information associated with a given RPC
interface and object in a namespace.

DCE 1.2.2 Application Development Guide—Core Components 335

DCE Remote Procedure Call

The examples in this guide use the following conventions:

• To simplify the following examples, each member name is represented by a leaf
name preceded by the symbol that represents the local cell (/.:). For example, the
full global name of the group for theBulletin_board_interface is as follows:

/.../C=US/O=uw/OU=MadCity/LandS/bb_grp

The abridged name is/.:/LandS/bb_grp.

• Except for the nil interface UUID of the default profile, the examples avoid string
representations of actual UUIDs. Instead, the examples represent a UUID as a
value consisting of the name of the interface and the stringif-uuid or of the name
of the object and the stringobject-uuid; for example:

calendar-if-uuid,1.0

laser-printer-object-uuid

• Profile elements in the examples are organized as follows (annotations are not
displayed):

interface-identifier member-name priority

For example,

2fac8900-31f8-11ca-b331-08002b13d56d,1.0 /.:/LandS/C_host_7 0

which, in the following examples, is represented as follows:

calendar-if-uuid,1.0 /.:/LandS/C_host_7 0

336 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

Note: The priority is a value of 0 to 7, with 0 having the highest search priority
and 7 having the lowest priority.

The first two examples begin with the personal profile of a user, Esther Rose, whose
user name isesther_r and whose profile has the leaf name ofesther_r_profile. To use
this profile, Esther must specify its entry name to the client. Usually, a client either
uses the predefined RPC environment variableRPC_DEFAULT_ENTRY or prompts
for an entry name. For a client to useRPC_DEFAULT_ENTRY , the client or user
must have already set the variable to a directory service entry.

The following example illustrates six profile elements from the individual user profile
used in the first two examples. The six elements include five nondefault elements for
some frequently used interfaces and a default profile element. Each profile element is
displayed on three lines, but in an actual profile all the fields occupy a single record.
The fields are the interface identifier (interface UUID and version numbers), member
name, priority, and annotation.

/.:/LandS/anthro/esther_r_profile contents:

ec1eeb60-5943-11c9-a309-08002b102989,1.0

/.../C=US/O=uw/OU=MadCity/LandS/Cal_host_7

0 Calendar_interface_V1.0

ec1eeb60-5943-11c9-a309-08002b102989,2.0

/.../C=US/O=uw/OU=MadCity/LandS/Cal_host_4

1 Calendar_interface_V2.0

62251ddd-51ed-11ca-852c-08002b1bb4f6,2.0

/.../C=US/O=uw/OU=MadCity/bb_grp

0 Bulletin_board_interface_V2.0

62251ddd-51ed-11ca-852c-08002b1bb4f6,2.1

/.../C=US/O=uw/OU=MadCity/bb_grp

1 Bulletin_board_interface_V2.1

9e18d295-51ec-11ca-9cc0-08002b1bb4f5,1.0

/.../C=US/O=uw/OU=MadCity/LandS/anthro/Zork_host_2

0 Zork_interface_V1.0

DCE 1.2.2 Application Development Guide—Core Components 337

DCE Remote Procedure Call

00000000-0000-0000-0000-000000000000,0.0

/.../C=US/O=uw/OU=MadCity/cell-profile

0 Default_profile_element

14.3.2.2.1 Example 1: Importing for an Interface with Multiple Versions

Target Interface: Calendar V2.0

1. The search for binding information associated with Calendar V2.0 starts with the
entry esther_r_profile:

/.../C=US/O=uw/OU=MadCity/LandS/anthro/esther_r_profile contents:

calendar-if-uuid,1.0 /.:/LandS/C_host_7 0

calendar-if-uuid,2.0 /.:/LandS/C_host_4 1

bulletin_board-if-uuid,2.0 /.:/LandS/bb_grp 2

bulletin_board-if-uuid,2.1 /.:/LandS/bb_grp 3

Zork-if-uuid,1.0 /.:/Eng/Zork_host_2 0

00000000-0000-0000-0000-000000000000,0.0 /.:/cell-profile 0

The search operation examines only the two profile elements that refer to the
Calendar interface:

a. The operation rejects the first profile element for the interface because it refers
to the wrong version numbers.

b. In the next profile element, the operation finds the correct version numbers
(2.0). The search proceeds to the associated server entry,/.:/LandS/
Cal_host_4.

2. The search ends with the indicated server entry, where the binding information
requested by the client resides:

338 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

/.:/LandS/Cal_host_4 contents:

calendar-if-uuid,2.0

binding-information

14.3.2.2.2 Example 2: Using a Default Profile for Importing an Interface

Target Interface: Statistics V1.0

1. The search for binding information associated with Statistics V1.0 starts with the
entry esther_r_profile. But the profile lacks any elements for the interface. Thus
the search reaches the default profile element, which provides the entry name for
the default profile,/.:/cell-profile:

/.:/LandS/anthro/esther_r_profile contents:

calendar-if-uuid,1.0 /.:/LandS/C_host_7 0

calendar-if-uuid,2.0 /.:/LandS/C_host_4 1

bulletin_board-if-uuid,2.0 /.:/LandS/bb_grp 2

bulletin_board-if-uuid,2.1 /.:/LandS/bb_grp 3

Zork-if-uuid,1.0 /.:/Eng/Zork_host_2 0

00000000-0000-0000-0000-000000000000,0.0 /.:/cell-profile 0

2. The search continues to the indicated default profile,/.:/cell-profile, which
contains a profile element for the requested Statistics V1.0 interface:

/.:/LandS/cell-profile contents:

.

.

.

Statistics-if-uuid,1.0 /.:/LandS/Stats_host_6 0

.

.

DCE 1.2.2 Application Development Guide—Core Components 339

DCE Remote Procedure Call

.

3. The search ends at the indicated server entry,/.:/LandS/Stats_host_6, where a
server address for the requested interface resides:

/.:/LandS/Stats_host_6 contents:

Statistics-if-uuid,1.0

binding-information

14.3.2.2.3 Example 3: Importing an Interface and an Object

Target Interface: Print Server V2.1

Target Object: Laser Printer Print Queue

1. The search starts with the entry/.:/Bldg/Print_queue_grp, which contains the
entry names of several server entries that advertise thePrint_server interface and
the object UUID of a givenLaser_printer print queue. The search begins by
randomly selecting a member name. In this instance, the search selects the name
/.:/Bldg/Print_server_host_3:

/.:/Bldg/Print_queue_grp contents:

/.:/Bldg/Print_server_host_3

/.:/Bldg/Print_server_host_7

/.:/Bldg/Print_server_host_9

2. The search continues with the/.:/Bldg/Print_server_host_3entry. There, it finds
the requested Version 2.1 of thePrint_server interface. However, the search
continues because the entry lacks the object UUID of the requestedLaser_printer
queue:

340 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

/.:/Bldg/Print_server_host_3 contents:

print_server-if-uuid,2.1

binding-information

line_printer_queue-object-uuid

3. The search goes back to the previous entry, which was/.:/Bldg/Print_queue_grp,
to select another entry name; in this instance/.:/Bldg/Print_server_host_9:

/.:/Bldg/Print_queue_grp contents:

/.:/Bldg/Print_server_host_3

/.:/Bldg/Print_server_host_7

/.:/Bldg/Print_server_host_9

4. The search selects the/.:/Bldg/Print_server_host_9 entry. This entry contains
both a server address for the requested Version 2.1 of the interface and the
requested object UUID of theLaser_printer queue:

/.:/Bldg/Print_server_host_9 contents:

print_server-if-uuid, 2.1

binding-information

laser_printer_queue-object-uuid

The search returns binding information from this entry to the client.

14.3.2.3 Expiration Age of a Local Copy of Directory Service Data

To prevent accessing a namespace unnecessarily, previously requested directory service
data is sometimes stored on the system where the request originated. A local copy of

DCE 1.2.2 Application Development Guide—Core Components 341

DCE Remote Procedure Call

directory service data is not automatically updated at each request. Automatic updating
of the local copy occurs only when it exceeds its expiration age. The expiration age is
the amount of time that a local copy of directory service data from an NSI attribute can
remain unchanged before a request from an RPC application for the attribute requires
updating of the local copy. When an RPC application begins running, the RPC runtime
randomly specifies a value between 8 and 12 hours as the default expiration age for
that instance of the application. Most applications use only this default expiration age,
which is global to the application.

An expiration age is used by an NSI next operation, which reads data from directory
service attributes. For a given search or inquire operation, you can override the default
expiration age by calling the routinerpc_ns_mgmt_handle_set_exp_age()after the
operation’s begin routine. Note that specifying a low default age will result in increased
network updates among the name servers in your cell. This will adversely affect the
performance of all network traffic. Therefore, use the default whenever possible. If
you must override the default age, specify a number that is high enough to avoid
frequent updates of local data.

An NSI next operation usually starts by looking for a local copy of the attribute
data being requested by an application. In the absence of a local copy, the NSI next
operation creates one with fresh attribute data from the namespace. If a local copy
already exists, the operation compares its actual age to the expiration age used by the
application. If the actual age exceeds the expiration age, the operation automatically
tries to update the local copy with fresh attribute data. If updating is impossible,
the old local data remains in place and the NSI next operation fails, returning the
rpc_s_name_service_unavailablestatus code.

14.3.3 Strategies for Using Directory Service Entries

When developing an RPC application, decide how an application will use the
namespace and design your application accordingly. The following subsections discuss
issues associated with how servers use different types of directory service entries.

342 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

14.3.3.1 Using Server Entries

An application requires separate server entries for servers on different hosts. For
example, if a server offering the calendar service runs on two hosts,JULES and
VERNE, one server entry is necessary for the server onJULES and another is
necessary for the server onVERNE.

Each server entry requires a unique cell-relative entry name. If a server adheres to a
simple and consistent arrangement of server entries, you may be able to use server
initialization code to automatically generate a name for each server entry, and also to
ensure that the entry exists. However, some servers will need to obtain the entry name
of a server entry from an external source such as a command-line argument or a local
database belonging to the application.

Note: Applications that obtain entry names and UUIDs as command-line arguments
should accept user-defined values that represent them as an alternative to
accepting the actual names.

Some applications, such as a process-control application, require only one server
instance per system. Many applications, however, can accommodate multiple server
instances on a system. When multiple instances of a server run simultaneously on a
single system, all instances on a host can use a single server entry, every instance can
use separate server entries, or the instances can be classified into subsets with a separate
server entry. A client importing from a shared server entry cannot distinguish among
the server instances that export to the entry. Therefore, the recommended strategy for
a server on a given system depends on which server instances are viewed by clients
as interchangeable entities and which are viewed as unique entities, as follows:

• Interchangeable server instances

When clients consider all the server instances on a host as equivalent alternatives,
all of the instances can (and should) share a server entry. For example, multiple
instances of the calendar service running on hostJULES can all export to the
calendar_JULES entry.

• Unique server instances

A unique server instance possesses a significant difference from other instances
of the same host. Unique server instances require separate server entries. Each
server instance must export unique information to its own server entry; this unique
information can be either a server-specific, well-known endpoint or an object
UUID belonging exclusively to the one server instance.

DCE 1.2.2 Application Development Guide—Core Components 343

DCE Remote Procedure Call

Before exporting, each server instance must acquire the entry name of its server
entry from an external source. When a unique server instance stops running, its
server entry becomes available. An available server entry should be reused for
a new instance of that server by providing the existing entry’s name for a new
server instance to use with the export operation. If any existing server entries are
unavailable, a new server instance requires a new server entry name.

For a discussion of when a server instance should remove the binding information
from its server entry, see therpc_ns_binding_unexport(3rpc) reference page.

14.3.3.2 Using Groups

When a server is first installed on a system, the server or the installer creates one or
more server entries for the server. Also, when installing the first instance of the server
within a cell, the installer usually creates one or more groups for the application. For
any application, the local system and directory service administrators can create site-
specific groups whose members are server entries, groups, or both. Typically, a server
adds a server entry to at least one group.

Design decisions for defining groups may reflect a number of possible factors. Typical
factors that help define effective groups include the proximity of services or resources
to clients, the types of any resources offered by servers, the uses of UUIDs, and the
types of users that require a specific server.

For example, for a print server, proximity to the clients and the type of supported file
formats are both relevant. These factors may affect print servers as follows:

• Proximity

If the proximity of a server is important to clients, assign servers to groups
according to their locations. For example, print servers that are located together
can use their own group (for example, print servers in building 1 use the group
bldg_1_print_servers). Each server instance can add its own entry to the group,
or a system administrator can add server entries by using the RPC control program.

To select randomly among servers in a given location, a client imports using the
name of a group that corresponds to those servers (or of a profile that refers to
that group).

344 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

Note: If proximity is the key factor in selecting among servers,
name each server entry for the server’s location; for example,
bldg_1_pole_27_print_server.

• Object types

When accessing specific classes of resources is important to clients, you can group
server instances based on the type of object they offer.

For servers that advertise resources in server entries, groups often use subsets
for server entries according to the resources they advertise. For example, print
servers can be grouped according to supported file formats. In this case,
an administrator creates a group entry for each file format; for example,
post_printers, sixel_printers , and ascii_printers. Each print server entry is a
member of one or more groups.

Users that specify a group for a file format must find the printer that processes
the print command. To help the user find the printer, the client can obtain the
name of the server entry that supplied the server binding information by calling
rpc_ns_binding_inq_entry_name(), and then display the name for the user. If
the server entry name indicates the location of the print server (for example,
floor_3_room_45A_print_server), the user can then find the printer.

An application can set up groups according to different factors for different purposes.
For example, the print server application can set up groups of neighboring print servers
and a group of print servers for each of the file formats. The same server is a member
of at least one group of each kind. Clients require users to specify the name of a
directory service entry as a command-line argument of remote print commands. The
user specifies the name of the appropriate group.

Note: If a user wants a specific print server and knows the name of its server entry,
the user can specify that name to the client instead of a group.

14.3.3.3 Using Profiles

Profiles are tools for managing NSI searches (performed byimport_next or
lookup_next operations). Often profiles are set up as public profiles for the users
of a particular environment, such as a directory service cell, a system, a specific
application, or an organization. For example, the administrator of the local directory
service cell should set up a cell profile for all RPC applications that use the cell, and

DCE 1.2.2 Application Development Guide—Core Components 345

DCE Remote Procedure Call

the administrator of each system in the distributed computing environment should set
up a system profile for local servers.

For each application, a directory service administrator or the owner of an application
should add profile elements to the public profiles that serve the general user population;
for example, a cell profile, a system profile, or a profile of an organization. Each profile
element associates a profile member (represented in the member field of an element
as the global name of a directory service entry) with an interface identifier, access
priority, and optional annotation. A candidate for membership in a cell profile is a
group or another profile; for example, a group that refers, directly or indirectly, to the
servers of an application installed in the local cell or an application-specific profile.

An application may benefit from an application-specific profile. For example, an
administrator at a specific location, such as a company’s regional headquarters,
can assign priorities to profile elements based on the proximity of servers to the
headquarters, as illustrated by Figure 14-13.

Figure 14–13. Priorities Assigned on Proximity of Members

Priority 0

Local City

Rest of region

Other regions

Priority 7

Priority 5

Priority 3

Regional
Headquarters

346 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

An individual user can have a personalized user profile that contains elements for
interfaces the user uses regularly and a default element that specifies a public profile,
such as the cell profile, as the default profile. NSI searches use the default profile
when a client needs an RPC interface that lacks an element in the user profile.

14.3.4 The Service Model for Defining Servers

The NSI operations accommodate two distinct models for defining servers: the service
model and the resource model. These models express different views of how clients
use servers and how servers can present themselves in the directory service database.
The models are not mutually exclusive, and an application may need to implement
both models to meet diverse goals. By evaluating these models before designing an
RPC application, you can make informed decisions about whether and how to use
object UUIDs, how many server entries to use per server, how to distinguish among
instances of a server on a system, whether and how to use groups or profiles or both,
and so forth. The two models are the service model and resource model.

The service model views a server exclusively as a distributed service composed of
one or more application-defined interfaces that meet a common goal independently of
specific resources. The service model is used by applications whose servers offer an
identical service and whose clients do not request an RPC resource when importing
an interface. Often, with the service model, all the server instances of an application
are equivalent and are viewed as interchangeable. However, the service model can
accommodate applications that view each server instance as unique. The implications
of whether server instances are viewed as interchangeable or unique are significant,
so the following subsections address these alternatives separately.

14.3.4.1 Interchangeable Server Instances

With the service model, servers offer an identical service that operates the same way
on all host systems. For example, an application that uses the service model is a
collection of equivalent print servers that support an identical set of file formats, and
that are installed on printers in a single location. The print servers in any location can
be segregated from printer servers elsewhere by using a location-specific group.

DCE 1.2.2 Application Development Guide—Core Components 347

DCE Remote Procedure Call

Figure 14-14 shows interchangeable print servers offering an identical print service
on different hosts. To access this service, clients request the Print V1.0 interface and
specify the nil object UUID. In this illustration, the starting entry for the NSI search
is a group corresponding to local print servers. Note that a client may be able to reach
this print server group by starting from a profile or another group.

Note: To simplify the illustrations of the usage models, the contents of server entries
are represented without listing any binding information.

Figure 14–14. Service Model: Interchangeable Instances on Two Hosts

Exporting Exporting
Name service database

/.:/Bldg/Print_server_2

Print server 2Print server 1

/.:/Bldg/Printer_server_group

Error_reports V2.0 interfaceError_reports V2.0 interface

Print V1.0 interfacePrint V1.0 interface

/.:/Bldg/Print_server_1

None

/.:/Bldg/Print_server_group

Target interface:

Target Object:

Starting Entry:

Search Requirements

2Maximum number of traversed entries:

Printer V1.0

Interface ID for Print V1.0Interface ID for Print V1.0

/.../C=US/O=TheU/CO=MadCity/Bldg/Print_server_1

/.../C=US/O=TheU/CO=MadCity/Bldg/Print_server_2

348 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

Note: The number of entries traversed by a search operation is unrelated to the
number of binding handles it returns.

Figure 14-15 shows interchangeable service instances offering an identical statistics
service on a single host. To access this service, clients request the Statistics V1.0
interface and specify the nil object UUID. The starting entry for the NSI search is a
group corresponding to local servers that offer the service (or a profile that refers to
that group).

Figure 14–15. Service Model: Interchangeable Instances on One Host

Report_writer V2.0 interface

Statistics V1.0 interface

Exporting
Name service database

MAYA systemMAYA system
Statistics−service server instance 2Statistics−service server instance 1

Report_writer V2.0 interface

Statistics V1.0 interface

Exporting

Interface ID for Statistics V1.0

/.:/LandS/Statistics_service_MAYA

Interface ID for Statistics V1.0

/.:/LandS/Statistics_service_grp

/.../C=US/O=TheU/OU=MadCity/LandS/Statistics_service_AZTEC

/.../C=US/O=TheU/OU=MadCity/LandS/Statistics_service_MAYA

Target interface:

Target Object:

Starting Entry: /.:/LandS/Statistics_service_grp

Search Requirements

Maximum number of traversed entries:

Statistics V1.0

None

2

/.:/LandS/Statistics_service_AZTEC

Note that, if an application with interchangeable server instances uses the
connectionless RPC protocol, the default behavior of the endpoint map service is to

DCE 1.2.2 Application Development Guide—Core Components 349

DCE Remote Procedure Call

always return the endpoint from the first map element for that set of server instances.
To avoid having all clients using only one of the instances, before making a remote
procedure call to the server, each client must inquire for an endpoint. For a random
selection, a client calls therpc_ep_resolve_binding()routine. Alternatively, a client
can call therpc_mgmt_ep_elt_inq_...()routines to obtain all the map elements for
compatible server instances, and then use an application-specific selection algorithm
to select one of the returned elements.

14.3.4.2 Distinct Service Instances on a Single Host

With the service model, when multiple server instances on a given host are somehow
unique, each instance must export to a separate server entry. The exported binding
information must contain one or more instance-specific, well-known endpoints or
an instance UUID. Well-known endpoints and instance UUIDs are used under the
following circumstances:

• Well-known endpoints

An instance-specific, well-known endpoint must be provided to a server instance
as part of its installation; for example, as a command-line argument. Before calling
the export operation, the server instance tells the RPC runtime to use each of its
well-known endpoints; it does this by callingrpc_server_use_protseq_ep(). The
runtime includes these endpoints in the instance’s binding information, which the
runtime makes available to the instance via a list of server binding handles. The
server instance uses this list of binding handles to export its binding information,
including the well-known endpoints. The server also uses this list of binding
handles to export its well-known endpoint with the local endpoint map; it does
this by callingrpc_ep_register()or rpc_ep_register_no_replace(). Remote calls
made using an imported well-known endpoint from a server entry are guaranteed
by the RPC runtime to go only to the server instance that exported the endpoint
to that entry.

Note: Only one server instance per system can use a well-known endpoint
obtained from a given interface specification.

• Instance UUID

Create an instance UUID only for a new server entry. Generating a new
instance UUID each time a server instance exports to a server entry will
result in many instance UUIDs that are difficult to manage and may affect

350 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

performance as new instance UUIDs are constantly added to server entries.
If a new server instance inherits a currently unused server entry left behind
by an earlier instance, before exporting, the new server instance should
inquire for an instance UUID in the server entry; this is done by calling the
rpc_ns_entry_object_inq_{ begin,next,done} () routines. If the inherited entry
contains an instance UUID, the server uses it for an instance UUID, rather
than creating and exporting a new instance UUID. If an inherited entry lacks
an instance UUID, however, the server must create a UUID and export it to the
server entry.

Note that every server instance must register its instance UUID along with its
endpoints in the local endpoint map.

Note: Using an instance UUID precludes any other use of object UUIDs for the
application.

Figure 14-16 shows distinct instances of a statistics-service server on the same host.
Each server instance uses an instance UUID to identify itself to clients. The instance
UUID is the only object UUID a server instance exports to its server entry. Starting
at the statistics-service group, clients import the statistics interface.

After finding a server entry with compatible binding information for the statistics
interface, the import operation returns an instance UUID along with binding
information. Every remote procedure call made with that binding information goes
to the server instance that exported the instance UUID.

DCE 1.2.2 Application Development Guide—Core Components 351

DCE Remote Procedure Call

Figure 14–16. Service Model: Distinct Instances on One Host

Report_writer V2.0 interface

Statistics V1.0 interface

Exporting
Name service database

MAYA systemMAYA system
Statistics−service server instance 2Statistics−service server instance 1

Report_writer V2.0 interface

Statistics V1.0 interface

Exporting

/.:/LandS/Statistics_service_MAYA_01

Interface ID for Statistics V1.0

Instance UUID for instance 1

/.:/LandS/Statistics_service_MAYA_02

Instance UUID for instance 2

Interface ID for Statistics V1.0

/.:/LandS/Statistics_service_grp

/.../C=US/O=TheU/OU=MadCity/LandS/Statistics_service_MAYA_01

/.../C=US/O=TheU/OU=MadCity/LandS/Statistics_service_MAYA_02

Target interface:

Target Object:

Starting Entry: /.:/LandS/Statistics_service_grp

Search Requirements

Maximum number of traversed entries:

Statistics V1.0

None

2

14.3.5 The Resource Model for Defining Servers

The resource model views servers and clients as manipulating resources. A server and
its clients use object UUIDs to identify specific resources. With the resource model,
any resource an application’s servers and clients manipulate using an object UUID is
considered an RPC resource. Typically, an RPC resource is a physical resource such

352 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

as a database. However, an RPC resource may be abstract; for example, a print format
such as ASCII. Note that an application that uses the resource model for one context
may use the service model for another. (See earlier sections for details of the service
model.)

Applications use object UUIDs to refer to resources as follows:

1. Servers offer resources by assigning an object UUID to each specific resource.

2. Clients obtain those object UUIDs and use them to learn about a server that offers
a given resource.

3. When making a remote procedure call, a client requests a resource by passing its
UUID as part of the server binding information.

Each RPC resource or type of resource requires its own object UUID. A calendar
server, for example, may require a distinct UUID to identify each calendar.

RPC interfaces can be defined to operate with different types of resources and can
be implemented separately for each type; for example, a print server application
that supports PostScript, sixel, and ASCII file formats. When using different
implementations of an interface (different managers), servers must associate the object
UUID of a resource, such as an ASCII file format and its manager, by assigning them
a single type UUID. To request the resource, a client specifies its object UUID in the
server binding information. When a print server receives the remote procedure call, it
looks up the corresponding type UUID and selects the associated manager.

Some RPC resources, such as print queues, belong exclusively to a single server
instance. Some can be shared among server instances; for example, a file format or
an airline reservation database. For server instances on the same system, sharing a
resource means that its object UUID cannot distinguish between the two instances.
For a print server, this is unlikely to be a problem, assuming that each printer runs
only one instance of the print server. In contrast, an application with a widely accessed
database, such as an airline reservation application, may need to ensure that clients
can distinguish server instances from each other. An application can distinguish itself
by supplying its clients with instance-specific information; for example, a well-known
endpoint or an instance UUID.

Note: Multiple server instances that access the same set of resources can introduce
concurrency control problems, such as two instances accessing a tape drive at
the same time. Also, where the system provides concurrency control, servers

DCE 1.2.2 Application Development Guide—Core Components 353

DCE Remote Procedure Call

may compete and have to wait for resources such as databases. Dealing
with delayed access to shared resources may require an application-specific
mechanism, such as queuing access requests.

14.3.5.1 Guidelines for Defining and Using RPC Resources

When developing an RPC application, you need to decide whether to use object
UUIDs to identify RPC resources and, if so, what sorts of resources receive UUIDs
that servers export to the namespace. When making these decisions, consider the
following questions:

• Will users need to select a server entry from the namespace based on what object
UUIDs the entry contains (and what the client needs)?

If yes, then a client must specify an object UUID to the import operation.

• Does the type of resource you are using last for a long time (months or years),
so you can advertise object UUIDs efficiently in the namespace?

The information kept in a namespace should be static or rarely change. For
example, print queues are appropriate RPC resources. In contrast, quickly
changing information, such as the jobs queued for the printer, owners of the
jobs, or the time the job was added to the queue, should not be viewed as RPC
resources. Such short-lived data may be viewed as local objects, which are stored
and managed at a specific server. Programming with local objects is in the area of
regular object-oriented programming and is independent of an application’s use
of RPC resources.

• Is the number of objects belonging to the type of resource bounded in order to
avoid placing high demands on the directory service?

• Will the server implement an interface for different types of a resource, such as
different forms of calendar databases or different types of queues?

If yes, then the server must classify objects into types. For each type, the server
generates a nonnil UUID for the type UUID, sets the type UUID for every object
of the type, and specifies that type as the manager type when registering the
interface. When making a remote procedure call to the interface, a client must
supply an object UUID to specify an RPC resource.

• Is control over specific resources an important factor for distinguishing among
server instances on a host?

354 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

If yes, then each server must generate an object UUID for each of its resources.

For some applications, such as those accessing a database that many people use, shared
access to one or more objects may be essential. However, not all objects accommodate
such shared access.

14.3.5.2 Using Objects and Groups Together

Servers can associate object UUIDs with a group. Each server exports one or more
object UUIDs (without exporting any binding information) to the directory service
entry of the group. This involves specifying the NULL interface identifier to the
export operation along with the list of object UUIDs. The object UUIDs reside in the
directory service entry of the group. If a server stops offering an advertised object, a
server must unexport its object UUID from the group entry in order to keep its object
list up-to-date.

Clients use objects in a group entry as follows:

1. The client inquires for an object UUID from the group entry by calling the
rpc_ns_entry_object_inq_{ begin ,next,done} () routines. This routine selects
one object UUID at random and returns it to the client.

2. The client imports binding information for the returned object UUID (and the
interface of the called remote procedure), specifying the group for the start of the
search.

3. The import operation returns a binding handle that refers to the requested object
UUID and binding information for a server that offers the corresponding object.

4. The client issues the remote procedure call by using that binding handle.

5. The server looks up the type of the requested object.

6. The server assigns the remote procedure call to the manager that implements the
called remote procedure for that type of object.

DCE 1.2.2 Application Development Guide—Core Components 355

DCE Remote Procedure Call

14.3.5.3 System-Specific Applications

For some applications, the clients need to import an RPC resource that belongs to
a specific system, and the clients can specify a server entry name to learn about a
server on that system. For example, a process server that allows clients to monitor and
control processes on a remote machine is useful only to that machine. Figure 14-17
illustrates this type of system-specific interpretation of the resource model.

Figure 14–17. Resource Model: A System-Specific Application

Process_control V1.2 interface

Exporting
Name service database

/.:/hosts/MAYA/Process_control/.:/hosts/AZTEC/Process_control

process stats
file

AZTEC’s

MAYA systemAZTEC system
Process−control server

Interface ID for Process_control V1.2

Object UUID for MAYA’s process−status file

Interface ID for Process_control V1.2

Object UUID for AZTEC’s process−status file

Process−control server

Process_control V1.2 interface

process stats
file

MAYA’s

Exporting

Target interface:

Target Object:

Starting Entry:

Process_control V1.2

Process−status file of MAYA system

/.:/hosts/MAYA/Process_control

Search Requirements

1Maximum number of traversed entries:

356 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

Because clients usually find a system-specific server by specifying its server entry to
the import operation, groups are usually not part of the NSI search path for system-
specific applications. However, groups are a management tool for such applications.
A group containing the names of the server entries of all the current servers can
act as an accounting database. Also, a group for the servers on each set of related
systems, such as the members of a LAN or an administrative grouping, permits a
client to sequentially use the application on every system in the set. An application
with system-specific servers shouldnot use profiles.

14.3.5.4 Exporting Multiple Object UUIDs to a Single Server
Entry

Often a single server offers more than one resource, or it offers several types of
resources. In cases where a server instance has a large number of object UUIDs, the
application should usually place multiple object UUIDs into a single server entry.
Typically, an application places all its object UUIDs into one server entry; however,
it may need to segregate them into several server entries according to factors such
as object type, location, or who uses the different types of objects. When you are
subsetting resources, try to assign each resource to a single set so that its object
UUID is exported to only one server entry. Figure 14-18 illustrates a single server
entry implementation for each server for the resource model.

DCE 1.2.2 Application Development Guide—Core Components 357

DCE Remote Procedure Call

Figure 14–18. Resource Model: A Single Server Entry for Each Server

Exporting Exporting
Name service database

/.:/LandS/anthro/personal_calendars_grp

Search Requirements

/.:/LandS/anthro/personal_calendars_grp

AZTEC system
Calendar server

MAYA system
Calendar server

Mac’s
calendar

Pete’sDick’s
calendarcalendar

Jane’s
calendar

Molly’sMargy’s
calendarcalendar

Calendar V1.1 interface

/.:/LandS/anthro/calendars_MAYA/.:/LandS/anthro/calendars_AZTEC

Target interface:

Target Object:

Starting Entry:

A specific personal calendar

3Maximum number of traversed entries:

Calendar V1.1

Calendar V1.1 interface

Interface ID for Calendar V1.1

Object UUIDs for: Jane’s calendar

Margy’s calendar

Molly’s calendar

Interface ID for Calendar V1.1

Object UUIDs for: Mac’s calendar

Dick’s calendar

Pete’s calendar

/.../C=US/O=TheU/OU=MadCity/LandS/anthro/calendars_AZTEC

/.../C=US/O=TheU/OU=MadCity/LandS/anthro/calendars_MAYA

358 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

14.3.5.5 Exporting Every Object UUID to a Separate Server Entry

For some applications, exporting each object UUID to a separate server entry is a
practical strategy. To avoid excessive demands on directory service resources, however,
this strategy requires that the set of objects remain small. Applications with many RPC
resources should usually have each server create a single server entry for itself and
export the object UUIDs of the resources it offers to that server entry. For example,
an application that accesses a different personal calendar for every member of an
organization needs to avoid using a separate server entry for each calendar.

For some applications, however, you can use a separate server entry for each object
UUID; for example, a print server application that supports a small number of file
formats. Each server can create a separate server entry for each supported file format
and export its object UUID to that server entry. The server entries for a file format
are members of a distinct group.

To import binding information for a server that supports a required file format, a
client specifies the nil UUID as the object UUID and the group for that format as the
starting entry. The import operation selects a group member at random and goes to
the corresponding server entry. Along with binding information, the operation returns
the server’s object UUID for the requested file format from the server entry. When the
client issues a remote procedure call to the server, the imported object UUID correctly
identifies the file format the client needs. Figure 14-19 illustrates this use of object
UUIDs.

DCE 1.2.2 Application Development Guide—Core Components 359

DCE Remote Procedure Call

Figure 14–19. Resource Model: A Separate Server Entry for Each Object

Exporting Exporting

Print server 2Print server 1

Print V1.0 interfacePrint V1.0 interface

 ASCII
format format

/.:/Bldg/PrintServer_2_FF/ASCII

/.:/Bldg/PrintServer_2_FF/sixel

/.:/Bldg/PrintServer_2_FF/Post

Name service database

Interface ID for Print V1.0

Object UUID for ASCII format

Interface ID for Print V1.0

Object UUIDs for sixel format

Interface ID for Print V1.0

Object UUID for ASCII format

/.:/Bldg/PrintServer_1_FF/ASCII

/.:/Bldg/PrintServer_1_FF/Post

/.:/Bldg/ASCII_FF_group

/.:/Bldg/PrintServer_1_FF/ASCII

/.:/Bldg/PrintServer_2_FF/ASCII

/.:/Bldg/ASCII_FF_group

Target interface: Print V1.0

Search Requirements

Target Object:

Starting Entry:

ASCII file format (client specifies nil object UUID)

2Maximum number of traversed entries:

Interface ID for Print V1.0

Object UUID for PostScript formatObject UUID for PostScript format

Interface ID for Print V1.0

PostScript ASCII
format format format

PostScript Sixel

Applications that use a separate entry for each object UUID need to use groups
cautiously. Keeping groups small when clients are requesting a specific object is
essential because an NSI search looks up the group members in random order.
Therefore, the members of a group form a localized flat NSI search path rather than
the hierarchical path. Flat search paths are inefficient because the average search will
look at half the members. Small groups are not a problem. For example, if a group

360 DCE 1.2.2 Application Development Guide—Core Components

RPC and Other DCE Components

contains only 4 members, each of whom refers to a server entry that advertises a
distinct set of RPC resources, the average number of server entries accessed in each
search is 2 entries and the maximum is only 4. The larger the group, however, the
more inefficient the resulting search path. For example, for a group containing 12
members, each of whom refers to a server entry that advertises a distinct set of object
UUIDs, the average search accesses 6 entries and some searches access all 12 server
entries.

DCE 1.2.2 Application Development Guide—Core Components 361

Chapter 15
Developing Applications that Use
Distributed Objects

Before you read this chapter and begin developing with distributed objects, first
read DCE 1.2.2 Application Development—Introduction and Style Guide, chapter 8.
This chapter describes how to develop object-oriented, DCE applications that have
distributed objects. The chapter introduces C++ features of the Interface Definition
Language (IDL) that allow direct development of C++ DCE applications. It covers
the following topics:

• IDL and the class hierarchy of a DCE application

• Servers that manage distributed objects

• Clients that use distributed objects

• Multiple interfaces and interface inheritance

• Integrating C and C++ clients and servers

• Using objects from class libraries as RPC parameters

DCE 1.2.2 Application Development Guide—Core Components 363

DCE Remote Procedure Call

15.1 IDL and the Class Hierarchy of a DCE
Application

When you develop a DCE application, be it object oriented or otherwise, you begin by
creating an interface definition file. This file specifies the operations (with necessary
data structures) available for a client to call, all of which a server of this interface
must implement.

Although IDL resembles the C programming language, it is intended to be language
independent. This means that the applications that are developed could use any
programming language that makes sense for them. However, the IDL compiler
generates intermediate stub files in either C or C++, two of the most popular languages
in use today. We use a particular programming language to take advantage of its
features when developing an application. However, an application developed in another
language could use mechanisms (such as wrapper routines) that call the routines
generated by the IDL compiler.

The -lang option of the IDL compiler when used with acxx argument generates C++
intermediate stub files rather than C intermediate stub files. In order to support the
generation of C++ stubs, the IDL also needs additional features to give applications
developed in C++ a cleaner and more efficient use of the distributed application
features of DCE. This section describes how to use these features in interface
definitions.

15.1.1 Specifying a C++ Class via an IDL Interface

An IDL interface definition and a C++ class are very similar. An IDL interface
definition specifies the data structures and operations that an application needs to use
a distributed interface. A C++ class specifies the data structures and functions that an
application needs to use a type of object. IDL and the IDL compiler blend together the
distributed computing capabilities of an interface definition with the object-oriented
features of a C++ class to specifydistributed objects.

The following example shows an interface definition for a distributed Matrix object:

364 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

FILE matrix.idl ---

[

uuid(24cb0eda-3eb9-11ce-b1ce-08002bbbf636)

] interface Matrix

{

/* Create a new 2 by 2 Matrix. This operation requires an ACF */

/* to tell the stubs this is a creator operation. */

Matrix * createMatrix(

[in] long v11,

[in] long v12,

[in] long v21,

[in] long v22

);

/* Create a new Matrix of size rows by columns and return TRUE.*/

/* If server does not support the size requested, return FALSE */

/* and the maximum size in rows and columns that it supports.*/

/* This operation requires an ACF to tell the stubs this is a */

/* static operation. */

boolean newMatrix(

[in, out] long &rows,

[in, out] long &columns,

[out] Matrix ** m

);

/* The rest of the operations operate on the existing object */

/* that invokes them (this Matrix). */

/* Set a new value in this Matrix. */

void set(

[in] long row,

[in] long col,

[in] long value

);

/* Get a value from this Matrix. */

long get(

[in] long row,

[in] long col

);

DCE 1.2.2 Application Development Guide—Core Components 365

DCE Remote Procedure Call

/* Return a new Matrix that is the inverse of this Matrix. */

Matrix * inverse();

/* Return a new Matrix that is the product of this Matrix */

/* and m1.*/

Matrix * multiply(

[in] Matrix * m1

);

/* Return in Matrix m2 the sum of this Matrix and m1. */

void add(

[in] Matrix * m1,

[out] Matrix ** m2

);

}

Interface definitions and C++ classes are both specifications, not implementations. An
implementation of the IDL interface definition is a server’s manager code, and an
instance of the class is an object of that class. The operations of the Matrix interface
are described as follows:

createMatrix
If an interface designer expects clients to create dynamic objects, at
least one operation must be a static function that creates a new object.
For example, thecreateMatrix operation is intended to be a static
member function. Static member functions do not require an existing
object before they are called.

newMatrix Parameters are typically passed-by-value in C++. Apply the reference
operator (&) to parameters you want to pass by reference. A reference
parameter is required if the function changes the value. In this example,
the number of the rows and columns are input but the values change if
the function cannot create the Matrix requested.

set The set operation sets an individual value in an existing Matrix object.

get The get operation obtains an individual value from an existing Matrix
object.

366 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

inverse The inverseoperation returns a new Matrix object that is the inverse of
an existing Matrix object.

add The add operation does not return a value but has an output parameter
that is a new Matrix object. The output is the sum of an existing Matrix
object and an input parameter that is a Matrix object.

It is not appropriate to encapsulate data in the definition of a public interface; that
would be implementation detail, which does not belong in the interface definition.
Therefore, there is no IDL concept ofprivate data as there is in C++. However, the
base class from which all IDL interface classes are derived does encapsulated binding
data and RPC mechanisms.

15.1.2 IDL-Generated Classes as Part of Your Hierarchy

The interface definition is compiled with the following IDL compiler command to
generate an intermediate C++ header file, client stub, server stub, and manager class
header file:

idl -lang cxx matrix.idl

The IDL compiler then automatically invokes the local language compiler by default.
In this case it invokes the C++ compiler to create binary stub files that are used in the
development of clients and servers.

The IDL compiler automatically uses an Attribute Configuration File (ACF) if one is
available in its search directories. C++ applications use an ACF to specify features
such as static member functions, implementation class names, a lookup function for
named or persistent objects, and header files for inclusion in stub files.

Class hierarchies are created by the IDL compiler and made part of the clients and
servers. The hierarchies include an RPC base class that encapsulates the distributed
nature of objects. An abstract interface class is also created by the IDL compiler
and derived from the RPC base class. The interface class includes the data types and
nonstatic member functions of the interface definition and is the common interface
used by clients and servers. The interface class contains no implementation. Therefore,
clients and servers each need to derive implementation classes from the interface class.

DCE 1.2.2 Application Development Guide—Core Components 367

DCE Remote Procedure Call

Clients have anidl -generated implementation class generated for them, called aproxy
class. Servers have anidl -generated class generated for them called amanager class.

Server developers must implement the manager class functions by either modifying
the generated manager class header file or deriving an application-specific class from
the manager class. The manager class name generated by the IDL compiler is a
combination of the interface name andMgr . For example, the manager class for our
Matrix interface isMatrixMgr . The generated class is placed in a header file with a
name created from the combination the interface file name and the_mgr suffix. For
example,matrix_mgr.h .

If you decide to implement the manager by modify the generated manager class, you
want to be sure that any subsequent invocation of the IDL compiler does not overwrite
your manager class code. Use the-no_cxxmgroption with the IDL compiler command
to suppress generating a manager class.

idl -lang cxx -no_cxxmgr matrix.idl

15.2 Servers that Manage Distributed Objects

An application creates local objects for its own internal use. Servers must manage these
application-specific objects, just as any application does. In addition, distributed object
servers must manage two other basic kinds of objects for their clients:distributed
dynamic objectsand distributed named objects. The following subsections cover a
number of programming tasks and topics of interest to server developers. The basic
programming tasks server developers typically perform include the following:

1. Implementing dynamic objects for clients, if needed

2. Implementing static member functions, if any

3. If clients can pass local objects in calls to the server, linking in both server and
client stubs so that manager functions automatically access parameters that are
client-local objects

Other topics of interest to server developers include naming objects, dynamically
creating named or persistent objects with a lookup function, and using the DCE
backing store for persistent objects.

368 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

15.2.1 Initializing Object-Oriented Servers

DCE servers consist of two major portions of code:initialization codeand manager
code. All servers must perform some initialization prior to providing services and
objects. In addition to initialization code, the server also has manager code that
implements each interface that a server supports. The manager code contains the
implementation of both the static and nonstatic member functions (or methods).

In an object-oriented development environment, there would generally be a server class
with each server being an instance of that class. Although interesting and important for
object-oriented applications, the design and implementation of such an environment
is beyond the scope of this chapter. However, there are a few issues to consider when
initializing C++ servers, as follows:

• Server Registration

Servers are automatically registered by server stubs, so if your code calls the
rpc_server_register_if() routine, you will get a warning indicating the server is
already registered.

• Entry point vectors (EPVs) and C++ function tables

When a C++ application is compiled, a function table is automatically generated
for each class. The EPV mechanism in DCE is necessary for languages that do
not supply such a feature, such as C. Use NULL (the default EPV) for C++
applications.

• Named and persistent objects

Your server may need to create persistent or long-lived named objects before the
server begins servicing client requests. Naming objects is described later in this
chapter.

• Exceptions

DCE supplies exception handling macros such asTRY,CATCH , andFINALLY
for use in distributed applications. You should use DCE’s macros in your
applications instead of the standard C++ macros to be sure exceptions are
propagated properly from servers to clients.

See the first chapter of theDCE 1.2.2 Application Development—Introduction and
Style Guidefor the typical steps DCE requires to initialize a server. The following
subsections describe features needed in manager code, the code responsible for a
server’s specific implementations of the interfaces supported.

DCE 1.2.2 Application Development Guide—Core Components 369

DCE Remote Procedure Call

15.2.2 Implementing Distributed-Dynamic Objects

After the server has been initialized and is listening for calls, one obvious question
arises: How does the server create distributed objects? The server creates objects
locally, just as they are created in typical C++ applications, by allocating variables of
the class types or by dynamically creating them with the C++new operator, as shown
in the following example:

// m1 is allocated as a variable of class Matrix

Matrix m1;

// m2 is a pointer variable of class Matrix allocated with "new"

Matrix *m2 = new MatrixMgr(0, 0, 0, 0);

However, clients have no way to use these objects since they are only local and not
yet available as distributed objects.

For distributed dynamic objects, the server needs a way to know when a client requests
that the server create a dynamic object. This is done by using an ACF to associate
an appropriate interface operation with the server’s implemented manager class. You
must then write manager code that turns server-local objects into distributed dynamic
objects.

When you compile the interface definition file to create the interface header file and
server stub, you use an ACF to customize how your application code uses the interface,
as shown in the following:

/* FILE NAME: matrix.acf */

/* This file defines some attributes for the Matrix interface */

interface Matrix

{

/* include header files generated into the server stub */

[sstub] include "matrix_mgr";

/* createMatrix should be mapped as a creator function. */

/* The MatrixMgr is a class derived from the interface class. */

[cxx_new(MatrixMgr)] createMatrix();

.

370 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

.

.

[sstub] include
Use the include statement with thesstub attribute to make the IDL
compiler include specific header files in the server stub. In this example,
this is required so that the stub has a declaration of the manager class.

[cxx_new(MatrixMgr)] createMatrix();
Use thecxx_newattribute with the name of the implemented manager
class (MatrixMgr) as an argument, and apply it to the interface
operation that is intended to create a dynamic object,createMatrix.
The manager class can be theidl -generated one, as in this example, or
it can be one you derived from the generated manager class.

The following C++ code shows examples of constructor and destructor functions you
write for the manager class (MatrixMgr):

.

.

.

// Constructor

MatrixMgr::MatrixMgr(idl_long_int v1, idl_long_int v2,

idl_long_int v3, idl_long_int v4)

{

d[0][0] = v1;

d[0][1] = v2;

d[1][0] = v3;

d[1][1] = v4;

}

// Destructor for a 2x2 Matrix.

// In this application, the destructor does nothing.

MatrixMgr:: ~MatrixMgr(void)

{

return;

}

DCE 1.2.2 Application Development Guide—Core Components 371

DCE Remote Procedure Call

MatrixMgr::MatrixMgr
In the trivial case, a constructor automatically initializes the object
allocated by the C++ new operator. For this application, the constructor
simply fills in the data structure with the values sent in the remote
procedure call. In more realistic applications, the C++ constructor may
have to perform additional work. C++ allows you to define constructor
functions that contain application-specific code that is automatically
called immediately after the object is created.

MatrixMgr::~MatrixMgr
In addition to a constructor, C++ allows you to define destructor code
that is called to do application-specific cleanup just prior to the release
of storage for the object. In this example, the destructor is a dummy
function that has no special code and does nothing.

When a client initiates the creation of a dynamic object, the server receives a
remote procedure call request for thecreateMatrix function. This causes the server
stub to call the C++ constructor for the specified manager class (in this example
MatrixMgr), which creates a new object on the server. When this happens, the DCE
runtime stores information about the object in a table that also associates the object
with the requesting client. No other clients have access to a dynamic object unless
the originating client gives an object reference to another client. The runtime uses
reference counting to keep track of how many clients know about the object. When a
client deletes the object, the reference count on the server is reduced. The object on
the server is deleted only when the reference count reaches zero, which indicates that
there are no more clients with references to the object.

15.2.3 Implementing Static Member Functions

Static member functionsare specified in the interface definition or with an ACF.
Those operations of an interface that the designer knows should be static have the
static keyword before the operation in the interface definition file. For example, the
newMatrix operation of the Matrix interface is designed to work without an invoking
Matrix, so it could have been specified in the interface definition as a static member
function as follows:

372 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

interface Matrix

.

.

.

static boolean newMatrix(...);

The IDL compiler automatically compiles this kind of operation as a static member
function in both the server and client stubs. Depending on how a developer wants
to implement the interface, it may be undesirable to commit to a static function. For
example, theCreateMatrix() function described in the previous section could have
been specified as static in the interface, but it would prevent the server developer from
directly using the built-in constructor feature of C++ to implement an object creator
function. Therefore, to give maximum flexibility to both client and server developers,
the static keyword can be left off the operation and then specified as needed in an
ACF file.

Of course, creating new objects is just one thing a static member function can do, and
so any number of other static member functions may be specified in the interface to
do whatever application-specific work is required.

The Matrix interface declares the following operations:

Matrix * createMatrix(

[in] long v11,

[in] long v12,

[in] long v21,

[in] long v22

);

boolean newMatrix(

[in, out] long &rows,

[in, out] long &columns,

[out] Matrix ** m

);

The IDL compiler requires an ACF to implement these as static member functions. A
sample server ACF contains the following:

DCE 1.2.2 Application Development Guide—Core Components 373

DCE Remote Procedure Call

/* FILE NAME: matrix.acf */

/* This file defines some attributes for the Matrix interface */

interface Matrix

{

/* include header files generated into the server stub */

[sstub] include "matrix_mgr";

/* createMatrix should be mapped as a creator function. */

/* The MatrixMgr is a class derived from the interface class. */

[cxx_new(MatrixMgr)] createMatrix();

/* newMatrix should be mapped as a static member function. */

[cxx_static] newMatrix();

}

[sstub] include
Use the include statement with thesstub attribute to make the IDL
compiler include specific header files in the server stub. In this example,
this is required so that the stub has a declaration of the manager class.

[cxx_new(MatrixMgr)] createMatrix();
Use thecxx_newattribute with the name of the implemented manager
class (MatrixMgr) as an argument, and apply it to the interface
operation that is intended to create a dynamic object,createMatrix .
This feature is described in the previous section.

[cxx_static] newMatrix;
Apply the cxx_static attribute to the names of all interface operations
you intend to implement as static member functions.

To complete the story of a static function, the following is an example of one trivial
implementation of thenewMatrix function. The code implements only a 2 by 2
Matrix. If a client inputs values other than2 for rows or columns, the values are
changed to2, andFALSE is returned.

// Implementation of the static member function declared with an ACF

idl_boolean

Matrix::newMatrix(idl_long_int &rows, idl_long_int &columns, Matrix **m)

{

374 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

if(rows != 2 && columns != 2) //implementing only a 2 by 2 Matrix

{

rows = columns = 2;

*m = 0;

return FALSE;

}

else

{

*m = new MatrixMgr(0, 0, 0, 0);

return TRUE;

}

}

The cxx_static attribute can also take an argument that represents a new name to use
for the function. This may be necessary in your application if it needs to distinguish
between remote and local versions of a static member function. In any case, to
minimize changes to your code modules, it is a good idea to keep the implementation
of static functions in files separate from the nonstatic member functions (the rest of
the manager code). The following section describes a common example of when to
use an argument for thecxx_static attribute.

15.2.4 When Function Parameters Are Remote Objects

With distributed applications, especially with distributed objects, the distinction
between a client and server is not determined so much by a program on a specific
machine as it is by a state the program is currently in. Thus a program can be both a
client and a server, depending on its purposes. For example, it is possible that, when a
client object uses a function that has another object as an input parameter (ouradd()
function, for example), the input could easily be an object that is local to the client.
When the server is executing theadd() function, it needs a way to transparently access
the input object that is now remote to the server (but local to the client).

A server accesses client objects by linking in the client stub in addition to the server
stub. When an object is remote to the server, information in the binding from a client
is used automatically by the server stub during unmarshalling to create an object
reference (a proxy) and make remote calls back to the client to access the object
there. Server code itself does not have to do any special calls.

DCE 1.2.2 Application Development Guide—Core Components 375

DCE Remote Procedure Call

The following figure illustrates a brief review of all the code modules a typical server
needs. The server stub for each interface and initialization code are required to access
DCE’s distributed environment. Each interface requires a manager class, manager
code, and static member functions to implement them. Each interface with input
object parameters should include the client stub in order for the server stub to access
client-local objects.

Figure 15–1. Servers Need the Client Stub to Access Client-Local Objects

Manager
Class

Initialization
code

Manager
Code

(non-static)

static

functions
member

client
stub

server
stub

Making this work includes one other step besides linking in a client stub. If there are
any static member functions in the interface class, linking together a client and server
stub will produce a C++ compiler error due to a name conflict in the server and client
stub versions of the function. You use thecxx_static attribute in an ACF to rename
the server’s local version of the static functions. An example of such an ACF is as
follows:

/* FILE NAME: matrix.acf */

interface Matrix

{

/* include files generated into the server stub */

[sstub] include "matrix_mgr", "staticfunc";

376 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

/* createMatrix should be mapped as a creator function. The */

/* argument represents the class that implements the interface.*/

[cxx_new(MatrixMgr)] createMatrix();

/* newMatrix should be mapped as a static member function. */

[cxx_static(LocalMatrix)] newMatrix();

}

The LocalMatrix argument to thecxx_static attribute is the name for this server’s
local implementation of the function, and thenewMatrix name refers to the remote
(in this case, the client stub) function.

The include statement is needed with thesstub attribute to include header files that
contain declarations needed by the server stub only. In this example, thematrix_mgr.h
file contains the server’s manager class declaration, and thestaticfunc.h file contains
the declaration of the renamed static function,LocalMatrix . Thestaticfunc.h header
file is as follows:

// FILE NAME: staticfunc.h

// This file declares the function(s) to call

// when invoking local versions of an interface’s static functions.

// The prototype signatures should match that of the remote versions.

idl_boolean LocalMatrix(idl_long_int, idl_long_int, Matrix **m);

Note: Servers will work without including the client stub and renaming the local
version of the static functions. However, if a client ever uses a member
function with an object parameter that is remote to the server, a runtime error
occurs. If this happens, the server raises an exception (rpc_x_no_client_stub)
to propagate back to the client that indicates the client stub is not included in
the server.

15.2.5 Naming Objects

This section explains how to do the following for named objects:

DCE 1.2.2 Application Development Guide—Core Components 377

DCE Remote Procedure Call

• Register named objects

The built-in register_named_object() function uses the name service and
endpoint map to name and advertise an object.

• Place object names in name service directly

The name service can be used to advertise objects for which an instance has not
yet been created.

• Dynamically create instances of named or persistent objects

The server’s runtime can automatically call a lookup function to create objects it
supports but does not yet have an instance created.

15.2.5.1 Registering Named Objects

DCE RPC supplies every interface class with a member function,
register_named_object(), to do all that is required to register named objects. The
following example shows how a server might create an object and then register it as
a named object. The server first creates an object by using thenew operator. Then
the server calls theregister_named_objectfunction to register the object’s name,
universal unique identifier (UUID), and its server binding information with the name
service. The function also registers the object’s UUID and binding information with
the host’s endpoint map, and it updates the runtime’s object table.

.

.

.

// Create an object on the server.

Matrix * matrix = new MatrixMgr(1, 1, 1, 1);

matrix->register_named_object((unsigned_char_t *) \

"/.:/MatrixObject");

.

.

.

378 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

The register_named_object()function greatly simplifies your work, but you need to
be aware of the information it uses and generates. The following lists the approximate
order of events that occur when an object invokes this function:

1. A name service entry is created if one is not already there, using the name in the
first argument of the function.

2. If the named object does not already have a UUID associated with it in the name
service, one is created.

3. The server’s binding information is associated with the name service entry.

4. All interfaces supported by the object are also registered with the name service.

5. The object UUID is associated with the server’s location on the host by registering
endpoints in the host’s endpoint map.

The function has an optional second argument of typeboolean. The default
value is TRUE, which means this is theonly server on this host that services
this interface. (In C++, using no argument is the same as using the default value
for the argument.) If the default value is used, values in the endpoint map are
updated.

If the second argument to the function isFALSE, this is not the only server this
host has that services this interface. In this case, theregister_named_object()
function adds server binding information to the endpoint map (rather than
updating the endpoint map) so clients can find any of the servers. See the
rpc_ep_register_no_replace(3rpc)reference page for more on this topic.

6. Finally, an object table maintained by the server’s RPC runtime is updated so
that requests for specific objects are directed to the correct member function
invocation. Even though creating the object in the first place registers it with the
runtime’s object table, some information (such as the object’s UUID) may need
to be updated.

15.2.5.2 Placing an Object’s Name Directly in the Name Service

Consider the following situations:

• Suppose you want a server to just advertise the named objects it supports and
not use resources to create them until they are needed. As described in the
previous section, an object must be created before it can register itself with the
register_named_object()function.

DCE 1.2.2 Application Development Guide—Core Components 379

DCE Remote Procedure Call

• Suppose you want to use a known UUID to represent a named object. If the name
does not already exist in the name service, a new UUID is generated via the
register_named_object()call on the fly. This may be fine for many applications,
but, for some, manipulating objects only by their name service names may be
cumbersome and inflexible.

If you wish to place a named object in the name service and at the same time
use a consistent, stable, and well-known UUID for a named object, you first
associate the UUID with the named object in the name serviceprior to using the
register_named_object()function. There are typically two ways to place object names
in the name service:

• Prior to server startup, you can create or update a named object entry by using
dcecp with the rpcentry object and its export operation.

• Your server can create or update a named object entry by using
rpc_ns_binding_export() during server initialization.

The following example shows a script ofdcecpcommands and arguments to execute
on the server’s host to export an object’s name and then show the data exported to
the entry:

dcecp -c rpcentry export /.:/objects/IdentityMatrix

-interface {24cb0eba-3eb9-11ce-b1ce-08002bbbf636 0.0} \

-binding {ncacn_ip_tcp ‘hostname‘} \

-binding {ncadg_ip_udp ‘hostname‘} \

-object {dcea4900-65ba-11cd-bb34-08002b3d8412}

dcecp -c rpcentry show /.:/objects/IdentityMatrix

Attributes and arguments are as follows:

/.:/objects/IdentityMatrix
The object name.

-interface ... The interface’s UUID and version numbers from the interface definition
header.

-binding ncacn_ip_tcp‘ hostname‘ \
Binding information including a protocol sequence and the host’s name
(generated with thehostnamecommand).

-object ... The object UUID desired.

380 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

Whether you calldcecp’s rpcentry export operation or therpc_ns_binding_export()
routine, the first call automatically creates the entry in the name service and each
additional call adds binding information to the entry.

15.2.5.3 Dynamically Creating Named or Persistent Objects

If there are potentially thousands of persistent objects, you may want your application
to conserve resources and not register all of them at server startup. Servers may defer
creating objects until a client makes a request to use one.

The server’s runtime maintains a table of all its objects. The server gets a request
from a client on an object that is uniquely identified by an object UUID (from the
binding handle), and the object table maps object UUIDs to each object’s address in
the server’s address space. The server’s object table is a C++ class containing the
following information:

• Object UUIDs

• Interface UUIDs

• Object addresses

If the runtime cannot find the UUID of the object requested, an exception is raised
on the server to propagate to the client unless a user-definedobject lookup function
exists. If the lookup function does exist, the runtime automatically executes it. The
lookup function is created by the server developer to create the object and, if required,
register it as a named object. If the lookup function cannot create an object for the
specified UUID, it should return a 0, which causes the runtime to raise an exception
(rpc_x_object_not_found).

After the named object is registered, the object table contains the new object UUID,
so subsequent attempts to use the object do not invoke the lookup function again.
Alternatively, the lookup function can maintain its own object map. By not registering
with the runtime, subsequent operations will invoke the lookup function. This allows
the developer to use the lookup function to maintain complete control over the
existence of the object.

A lookup function name is specified using an ACF when the interface is compiled.
The following example is a portion of an ACF that specifies a lookup function:

DCE 1.2.2 Application Development Guide—Core Components 381

DCE Remote Procedure Call

[

cxx_lookup(object_lookup)

]

interface Matrix

{

[sstub] include "matrix_mgr", "lookup";

.

.

.

cxx_lookup(object_lookup)
To specify a lookup function use thecxx_lookup attribute with the name
of the lookup function (in this case,object_lookup) as an argument. A
lookup function is interface-wide, so it is defined in the ACF header.

[sstub] include
Use the include statement with thesstub attribute to make the IDL
compiler include implementation-specific header files in the server stub.
The matrix_mgr.h header file contains the manager class and the
lookup.h file contains a declaration of the lookup function you create.

The following example shows the declaration of theobject_lookup function in the
lookup.h header file:

//FILE NAME: lookup.h

//This file declares the lookup function used

// for server management of object lookup.

Matrix *object_lookup(uuid_t *);

A lookup function has the following signature requirements:

• The lookup function returns a pointer to the interface class (Matrix *).

• The function name matches the one declared in the ACF (object_lookup).

• There is one input parameter pointer of typeuuid_t.

An implementation of theobject_lookup() function is shown in the following section.

382 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

15.2.5.4 Storing and Retrieving Persistent Objects

DCE provides a convenient database storage facility called the backing store, that
lets you store and retrieve objects in a system-independent manner. The following
implementation of a lookup function shows how to use a backing store database to
lookup an object.

// FILE NAME: lookup.cxx

// This file contains the server lookup callout function

// specified by the [cxx_lookup] attribute in an ACF. It is called

// whenever an object cannot be found within the DCE runtime.

extern "C" {

#include <dce/dce.h> // standard DCE header file

#include <dce/dbif.h> // backing store facility header file

}

#include "matrix_mgr.h"

#include <check_status.h>

#include "backing.h" // IDL generated header file

//

// This function performs the server management of object lookups.

// If the uuid_t parameter identifies one of the persistent objects,

// this function creates and returns the object.

//

Matrix *

object_lookup(uuid_t *key)

{

dce_db_handle_t db_h;

backing_data_s_t data;

int found;

unsigned32 status;

Matrix *matrix;

//

// Lookup the UUID’s in a backing store database

// and get the data.

DCE 1.2.2 Application Development Guide—Core Components 383

DCE Remote Procedure Call

//

dce_db_open(

"backing.store",

0,

db_c_index_by_uuid | db_c_readonly,

(dce_db_convert_func_t) backing_data_convert,

&db_h,

&status

);

dce_db_fetch_by_uuid(

db_h,

key,

(void *) &data,

&status

);

if (status != rpc_s_ok)

found = 0;

else

found = 1;

dce_db_close(&db_h, &status);

if (!found)

return 0;

// Found the object’s data so create an instance of it.

matrix = new MatrixMgr(data.v00, data.v01, data.v10, data.v11);

// register the object so clients can find it directly

// and the server won’t have to look it up again.

matrix->register_named_object((unsigned_char_t *) data.name);

return matrix;

}

The example is described as follows:

384 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

dce_db_open()
Applications that have persistent objects commonly store in a database
the information necessary to regenerate the object. In this example,
the data is stored in a backing store data file (backing.store). The
argumentdb_c_index_by_uuid | db_c_readonlyindicates the file is
opened for read-only access and to be indexed by UUID. The argument
backing_data_convertis the function (defined in the backing interface)
that the backing store facility uses to store or retrieve the data. A record
for this database is also defined in the backing interface to contain the
entry name and values for a two-by-two matrix. The backing interface
is in the filebacking.idl, and looks as follows:

[

uuid(3e9400dc-0895-11cf-abec-08002b39f4b8)

] interface backing

{

import "dce/database.idl";

/* Data: object name (for CDS) and values */

/* for 2-by-2 matrix */

typedef struct backing_data_s_t {

[string] char name[100];

int v00;

int v01;

int v10;

int v11;

} backing_data_s_t;

/* conversion function declaration */

void backing_data_convert(

[in] handle_t h,

[in,out] backing_data_s_t *data,

[in,out] error_status_t *st

);

}

dce_db_fetch_by_uuid()
This DCE routine obtains the data for the object represented by the key
UUID.

DCE 1.2.2 Application Development Guide—Core Components 385

DCE Remote Procedure Call

matrix = new MatrixMgr(data.v00, data.v01, data.v10, data.v11);
An instance of the persistent object is created for this server. Note
that each server of the object would have its own implementation and
instance of the object.

register_named_object((unsigned_char_t *) data.name);
This function registers the object’s name, UUID, and its server binding
information with the cell’s name service. It also registers the object’s
UUID and binding information with the host’s endpoint map. Finally,
this routine updates the runtime object table. As an option for more
specific control, you can choose not to call this function and implement
your own object table instead.

return(0); If the object was not found, return a 0 value. This will cause the server
to raise an exception (rpc_x_object_not_found).

The backing.idl file is compiled with the following ACF:

interface backing

{

[encode,decode] backing_data_convert(

[comm_status] st

);

}

The application must also declare the database conversion function as shown in the
following backing.cxx file:

#include "backing.h"

extern "C" {

void

backing_data_convert(

idl_es_handle_t h,

backing_data_s_t *data

) {

}

386 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

}

For more on how to use the backing store facility, see the chapter,The DCE Backing
Store.

15.3 Clients That Use Distributed Objects

This section describes how to write object-oriented DCE clients. The subsections
describe how to do the following:

• Create remote, dynamic objects

• Create both local and remote instances of the same class

• Call functions that intermix the use of local and remote objects

• Bind to named objects by using names stored in the name service

• Bind to named objects by using their UUID identifiers. This method uses your
local name service hierarchy to begin the namespace search.

• Bypass the name service to bind to objects by using binding information

15.3.1 Creating Remote-Dynamic Objects

In C++ we create new objects dynamically by calling thenew operator for the class.
This works to creates local objects, but how do clients create remote dynamic objects?
In order for a client to create dynamic objects, at least one static object creator
operation must be defined in an interface to create its objects. Remember that a static
member function does not have to be invoked by an existing object, and thus it is
appropriate as a way to create new objects. The operation can be declared to return
a new object as a return value or an output parameter. Object creator functions are
declared as static in either of two ways:

• In the IDL file explicitly by using thestatic keyword

• In an ACF by using thecxx_static (or cxx_new) attribute

DCE 1.2.2 Application Development Guide—Core Components 387

DCE Remote Procedure Call

The following example is an ACF that specifies object creator member functions for
the Matrix interface:

/* FILE NAME: matrix.acf */

/* This file defines some attributes for a simple client */

/* of the Matrix interface. */

interface Matrix

{

/* createMatrix needs to be mapped as a creator function */

[cxx_static] createMatrix();

/* newMatrix needs to be mapped as a static member function */

[cxx_static] newMatrix();

}

When the interface is compiled with this ACF, the IDL compiler generates a proxy
class for the client in which these operations are declared as static member functions.
The proxy class is our client’s interface to DCE, and it is DCE’s mechanisms that let
clients interact with objects in the distributed environment.

In some ACFs, static object creator functions may be specified with thecxx_new
attribute instead ofcxx_static, and both the attributes may include an argument. These
differences do not affect the client stub and are significant only for server stubs.

The following example shows how a client calls the Matrix interface’s static member
functions:

#include "matrix.h" // IDL generated header file

#include printmatrix.h

void

main()

{

Matrix *m1;

cout << "Creating dynamic objects:" << endl;

388 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

// Create a remote Matrix object on a server using an

// object creator function.

m1 = Matrix::createMatrix(1, 2, 3, 4);

cout << "m1 created by an object creator function:" << endl;

print(m1);

delete m1;

// Create a remote Matrix object on a server using

// a static member function.

idl_boolean result = Matrix::newMatrix(2, 2, &m1);

if(result)

{

print(m1);

delete m1;

}

.

.

.

#include "matrix.h"
The interface class and proxy class are defined in thematrix.h header
file generated by the IDL compiler.

Matrix *m1;
Object references are declared as pointers to an interface class. The
interface class is an abstract class, and C++ does not allow you to create
instances of it. However, pointers to abstract classes are allowed. When
a remote object is created for one of these object references, the client
stub actually creates a proxy class object on the client.

m1 = Matrix::createMatrix(...)
Object creator functions are invoked using the interface class name
(Matrix) with the standard C++ scope operator (::). This function creates
a remote Matrix object on a server and returns a reference to the remote
object.

print(m1); After a dynamic object is created, the application uses it just like any
local object. This function is an application-specific inline function to
display a Matrix. It is defined in theprintmatrix.h header file and uses
the Matrix interface’sget() function.

DCE 1.2.2 Application Development Guide—Core Components 389

DCE Remote Procedure Call

delete m1; Remote dynamic objects are deleted with the standard C++delete
operator, just like local objects. However, for the remote object, an RPC
is sent to it to decrement the reference count. If no other clients have
a reference to it, the object is also deleted from the server’s address
space. Client applications should take care to delete all dynamic objects
prior to exiting. Otherwise, the object remains in the server’s address
space wasting resources. Dynamic objects are created for the use of the
invoking client. This means that servers cannot give a different client
a reference to a dynamic object. However, the client could behave as a
server and give a copy of the object reference to another client. For this
reason, a reference count is maintained on the server for objects.

... = Matrix::newMatrix(2, 2, &m1)
Static member functions are invoked using the interface class name
(Matrix) with the standard C++ scope operator (::). This function is
also an object creator function that creates a remote Matrix object on a
server.

15.3.2 Creating Client-Local Objects

The client code in the previous section showed only the case in which a class of
objects is remote. However, many client applications also need to create and use local
objects of the same class. The significant difference is that the local object is not
created by way of a remote procedure call as is the remote object. The interface class
generated by the IDL compiler from the interface definition is an abstract class. This
means that another class must be derived from it to create and manipulate objects. The
client stub has a proxy class automatically defined for remote objects, but your client
application must define a local implementation class so that your client can create and
manipulate local interface objects.

Do the following to create and use local versions of interface objects:

1. Derive a local class from the interface class to implement the client-local objects.
This class is just like a manager class used in server development: in fact, this
example uses the same manager class as the server.

2. Write the local code that implements the interface class. Our example uses the
same manager code implementation as for the server. You implement the manager
class by adding the code to the manager header file generated by the IDL compiler,

390 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

or by deriving a new class from the manager class and implementing those
functions.

3. Link the local class and local implementation code into your client application.

The following sample code shows how a client creates a local Matrix object:

#include "matrix.h" // IDL generated header file

#include "matrix_mgr.h" // local class implementation

.

.

.

Matrix *mlocal;

// Create a local Matrix object in this program

mlocal = new MatrixMgr(4, 3, 2, 1);

cout << "mlocal created:" << endl;

print(mlocal);

.

.

.

#include "matrix_mgr.h"
To implement client-local objects, the application includes a local
manager class that is derived from the interface class. Local code is
also linked to the application that implements the client-local objects.

mlocal = new MatrixMgr(...)
Clients create a local object by using the C++new operator on the local
manager class defined in thematrix_mgr.h header file.

15.3.3 Location Transparency of Local and Remote Objects

The previous sections showed separate cases of how to create objects that are either
remote or local. However, many applications use a mixture of remote and local objects.
For example, a presentation application can link in a video clip from another system
(remote), or it can embed a copy of the video clip into the presentation itself (local).
After the objects are created, we want the distinction to be as transparent as possible

DCE 1.2.2 Application Development Guide—Core Components 391

DCE Remote Procedure Call

to simplify application code. In DCE, you can also intermix local and remote objects
in function calls without needing to keep track of which is which.

To prepare your application to handle both local and remote objects simultaneously,
do the following development steps:

1. Use thecxx_static ACF attribute to rename local versions of static functions.

2. Use the IDL compiler to produce both the client and server stub code.

3. Link into your client the client stub, server stub, and local object implementation
code.

To accomplish this, you develop the client as if you are producing both a client
and a server simultaneously. The only real difference is that you do not need any
server initialization code. This means that your application includes theidl -generated
manager class header and server stub, and manager implementation code for each
interface. (See the following figure.) A client uses the client stub to produce and
use remote objects. The client uses the server code to produce and use client-local
objects of the interface class. This makes more sense when you think about server
development: the manager class and code implement distributed objects of the interface
class that arelocal to the server, so it helps to think local implementation code rather
than server implementation code when we use server stubs, manager classes, and
manager code in a client. If your application fails to use the server stub, the exception
rpc_x_no_server_stubis raised by the client if your application tries to use local
objects.

392 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

Figure 15–2. Clients Use the Server Stub

Implementation
Local

Local

Code
Implementation

client
stub

client
application

code

stub

Class

server

The IDL compiler requires an ACF such as the following when a client uses both
remote and local objects:

/* FILE NAME: matrix.acf */

interface Matrix

{

/* include files generated into the server stub */

[sstub] include "matrix_mgr", "staticfunc";

/* createMatrix must be mapped as a creator member function. */

/* The argument MatrixMgr names the class that implements the */

/* interface for the server stub. */

[cxx_new(MatrixMgr)] createMatrix();

/* The "newMatrix" name represents the remote version of the */

/* function that is used by either the client application or */

/* the server stub. */

[cxx_static(LocalMatrix)] newMatrix();

}

DCE 1.2.2 Application Development Guide—Core Components 393

DCE Remote Procedure Call

[sstub] include
The include statement causes the IDL compiler to include header files in
stubs. Data structures and definitions in code that are required by stubs
need to be included in this way. This example applies thesstubattribute
to specify the inclusion ofmatrix_mgr.h and staticfunc.h files in the
server stub only. Thematrix_mgr.h file contains the definition of the
client-local manager class. This class defines the implementation of the
interface and is derived from the interface class. The filestaticfunc.h
contains declarations of static member functions for the interface. In this
example, there is only one static member function:LocalMatrix() .

[cxx_new(MatrixMgr)] createMatrix();
The cxx_new attribute specifies that a static member function of the
interface is an object creator function. An argument (in this case,
MatrixMgr) is needed to name the manager class, the class derived
from the interface class to implement local interface objects. For the
client stub, the argument is ignored and the functioncreateMatrix()
is generated as a static member function. The client application uses
this function to create a remote interface object. For the server stub (or,
in this case, the client-local implementation), theMatrixMgr argument
represents the manager class name defined in a header file previously
specified in the ACF with theinclude statement. The application uses
the new operator on theMatrixMgr class to create a local interface
object.

[cxx_static(LocalMatrix)] newMatrix();
Thecxx_staticattribute specifies the interface’s static member functions.
All static member functions need to have this attribute (unless you use
the static keyword in the interface definition to specify the function as
static). An argument is required to avoid name conflicts between the
local and remote versions of the function when both client and server
stubs are linked together in the same application. For the client stub,
the argument is ignored and the client application callsnewMatrix()
for remote access to the interface. For the client-local (server) stub,
the argument is used to name the function, and the application calls
LocalMatrix() for local access to the interface.

The following example shows client code to create and use both remote and local
objects from an interface class:

394 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

#include "matrix_mgr.h"

#include "printmatrix.h" // print() macro

void

main()

{

idl_long_int d1, d2, d3, d4;

Matrix *mremote, *mlocal, *mr, *ml;

d1 = 1; d2 = 2; d3 = 3; d4 = 4;

cout << "Creating dynamic objects:" << endl;

// Create a remote Matrix object on a server

mremote = Matrix::createMatrix(d1, d2, d3, d4);

cout << "mremote created:" << endl;

print(mremote);

// Create a local Matrix object in this program

mlocal = new MatrixMgr(d4, d3, d2, d1);

cout << "mlocal created:" << endl;

print(mlocal);

// Create another object from a local and remote one.

// Whether the new matrix is local or remote depends on whether

// the invoking object is local or remote.

// create another remote Matrix while accessing a local object

mremote->add(mlocal, &mr);

cout << "mr is remote. It’s the sum of mremote and mlocal:" << endl;

print(mr);

// create another local Matrix while accessing a remote object

mlocal->add(mremote, &ml);

cout << "ml is local. It is the sum of mlocal and mremote:" << endl;

print(mr);

// Applications should ALWAYS delete remote dynamic objects when

// through, otherwise, the server will waste resources maintaining

// them.

DCE 1.2.2 Application Development Guide—Core Components 395

DCE Remote Procedure Call

delete mremote, mlocal, mr, ml;

cout << "Client exiting" << endl;

return;

}

Matrix *mremote, *mlocal, *mr, *ml;
Local and remote object references are both defined as pointers to the
interface class. Depending on how an object is created, polymorphism
causes the invocation of a client stub function for remote objects or the
locally defined function for local objects.

mremote = Matrix::createMatrix(d1, d2, d3, d4);

mlocal = new MatrixMgr(d4, d3, d2, d1);
Clients call a static creator function to create a remote object on a server
and use the C++new operator to create a local object.

mremote->add(mlocal, &mr);
A client can use remote and local objects together. In this example, a
local object (mlocal) is added to the invoking remote object (mremote)
to create a new remote object (mr) that is the sum of the two.

mlocal->add(mremote, &ml);
In this example, a remote object (mremote) is added to the invoking
local object (mlocal) to create a new local object (ml). Whether the
resulting object is local or remote depends on the invoking object.

delete mremote, mlocal, mr, ml;
Clients use the C++delete operator to delete both local and remote
objects. If a client does not delete local objects prior to exiting, no
real harm is done since all the memory for the application is released.
However, clients should always delete remote objects when finished with
them because the servers maintain them even after the client has exited.

15.3.4 Finding Known Remote Objects

Servers can register objects with the name service, such as the Cell Directory Service
(CDS). Such objects are termed named objects. When an interface is compiled, the

396 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

IDL compiler generates an overloadedbind() operation that allows a client to bind to
a named object in several ways. These include the following:

• Bind by an object’s name

• Bind by an object’s UUID

• Bind by a binding handle

An overloadedoperation’s argument list and functionality varies depending on which
argument is used. Thebind() operation of an interface is a static operation that returns
a typed interface pointer. A zero is returned upon failure to locate and bind to the
object.

15.3.4.1 Binding to Named Objects By Name

To bind to a named object by its CDS name, the argument provided to thebind()
operation should be anunsigned_char_t pointer that specifies the name of the
registered object in the CDS hierarchy. For example, the following code fragment
uses a CDS name to create a local object proxy in the client application bound to a
remote object:

Matrix m;

cout << "Binding to objects by name stored in CDS:" << endl;

m = Matrix::bind((unsigned_char_t *) "/.:/objects/identityMatrix");

if (m) {

print (m);

} else {

cerr << Cant bind to named object << endl;

}

In order for this to work, a server must have registered the object in CDS by calling
the register_named_object()function.

DCE 1.2.2 Application Development Guide—Core Components 397

DCE Remote Procedure Call

15.3.4.2 Binding to Named Objects by UUID

To bind to a named object by its object ID, the argument provided to the
bind() operation should be auuid_t reference. The argument specifies the UUID
of the registered object in the CDS hierarchy. The DCE environment variable
RPC_DEFAULT_ENTRY must be set to indicate where the search for the object
is to begin in the CDS name space. For example, the following code fragment uses
an object’s UUID to create a local object proxy in the client application bound to the
remote object:

const char *UUID = "f063cf5a-c5c8-11ce-8a4b-08002be415b2";

Matrix *m; // interface pointer

uuid_t u; // uuid of named object

unsigned32 status; // error status

// get a uuid from string format

uuid_from_string ((unsigned_char_t *) UUID, &u, &status);

if (status !=uuid_s_ok) {

// handle error case

}

// bind to a named object by uuid

m = Matrix::bind(u);

if (m) {

print (m);

} else {

cerr << Cannot bind to named object << endl;

}

15.3.4.3 Binding Explicitly to Known Objects

To bind to an object explicitly by its binding handle, the argument provided to the
bind() operation should be a server binding handle of typerpc_binding_handle_t.
Note that this method does not use CDS at all. For example, the following code
fragment uses a binding handle to create a local object proxy in the client application
bound to a remote object:

398 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

const char *UUID = "f063cf5a-c5c8-11ce-8a4b-08002be415b2";

const char *PROT = "ncacn_ip_tcp";

const char *HOST = "16.01.02.03";

const char *ENDP = "4041";

Matrix *m; // interface pointer

unsigned_char_t *string_binding; // string binding

rpc_binding_handle_t binding_handle; // binding handle

unsigned32 status; // error status

// build a string binding from the various components

rpc_string_binding_compose(

(unsigned_char_t *) UUID, // object uuid

(unsigned_char_t *) PROT, // protocol sequence

(unsigned_char_t *) HOST, // host address

(unsigned_char_t *) ENDP, // transport endpoint

NULL, // network options

&string_binding,

&status

);

if (status != rpc_s_ok) {

// handle error case

}

// convert a string binding into a binding handle

rpc_binding_from_string_binding(

string_binding,

&binding_handle,

&status

);

if (status != rpc_s_ok) {

// handle error case

}

m = Matrix::bind(binding_handle);

if (m) {

print(m);

} else {

cerr << "Cannot bind to named object" << endl;

}

DCE 1.2.2 Application Development Guide—Core Components 399

DCE Remote Procedure Call

rpc_string_binding_compose()
This RPC API routine combines string components of binding
information into a single string representation of a binding.

rpc_binding_from_string_binding()
This RPC API routine creates a binding handle from a string
representation of a binding handle.

m= Matrix::bind(binding_handle);
The bind() operation when used with a binding handle parameter binds
to the object specified by the object’s UUID and specific server binding
information.

15.4 Multiple Interfaces and Interface Inheritance

Objects in useful applications are organized into groups (using classes) and hierarchies
in order for people to more easily develop and maintain them. For the same reason,
you use more than one IDL interface to logically group the objects and functionality
of your applications. In addition, you can organize your interfaces into hierarchies that
take advantage of the inheritance capabilities of C++ classes.

This discussion uses a traditional savings account example, as shown in the class
hierarchy diagram of the following figure. First there is a high-levelAccountinterface
and then aSavingsinterface derived from theAccountinterface. TheAccountinterface
is specified separately from theSavingsinterface for the basic operations all accounts
might have and to show how interface inheritance works. With this scheme, we can
easily specify other kinds of accounts by using additional interfaces. (For example, we
could also have aCheckinginterface.) Our example also has a separateLoan interface
to show how to combine interfaces in applications. In the implementation of these
interfaces, we derive a simple savings account class (simpleSave) from the savings
interface, and we derive an overdraft-protected savings account class (overdraft) from
both the savings and the loan interfaces.

400 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

Figure 15–3. Multiple Interfaces and Inheritance

Classes

Manager
Classes Savings

Class

Simple

Savings
Interface

Interface
Account

Interface

Overdraft

Class
Savings

Interface
Loan

The Account interface contains the most basic operations for accounts, including one
to obtain the account’s balance, one to make deposits, and one to make withdrawals.
This interface definition is as follows:

[

uuid(b3896a1c-8ee2-11ce-badc-08002b2bf322)

] interface Account

{

double getAccountBalance();

double deposit(/* Value returned is the balance. */

[in] double amt

);

double withdraw(/* Value returned is actual amount withdrawn */

[in] double amt

);

}

DCE 1.2.2 Application Development Guide—Core Components 401

DCE Remote Procedure Call

Use the inheritance operator,:, in an interface definition to specifyinterface
inheritance.In the following example, the Savings interfaceinherits operations from
the Account interface. (Depending on your perspective, you can also say the Savings
interfaceis derived fromthe Account interface.) When an interface inherits another,
it also uses theimport statement to be sure the operations and any data types of
the inherited interface are available to the derived interface. The Savings interface
definition is as follows:

[

uuid(b388ab7c-8ee2-11ce-badc-08002b2bf322)

] interface Savings : Account

{

import "account.idl";

static Savings * openSimple(

[in] double amt

);

static Savings * openOverdraft(

[in] double amt

);

double getSavingsBalance();

void setInterestRate(

[in] double rate

);

void addInterest();

}

TheopenSimple()andopenOverdraft() static operations are object creator operations
used to create new accounts on a server. Notice that the Account interface has no
creator operations specified. This means that clients cannot create an Account object
directly, but servers of course can. The non-static operations for the Savings interface
include one to get the savings account balance (getSavingsBalance()), one to set the
interest rate (setInterestRate()), and one to add the interest to the balance of the
account (addInterest())

402 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

In this application, we have decided that our server implements the overdraft account
with a Loan interface. (Note we could have chosen to implement it in another way,
and without an additional interface.) The Loan interface is not derived from another
interface and is shown in the following example:

[

uuid(912ef43d-8ee2-11ce-a54e-08002b2bf322)

]

interface Loan

{

static Loan * openLoan(

[in] double amt,

[in] double rate,

[in] long months,

[out] double &payment

);

double getLoanBalance();

void payment(

[in] double amt

);

double recalculateLoan(/* returns payment amount required */

[in] double rate,

[in] long months

);

}

The openLoan() operation is a static object creator operation to create a loan
object. ThegetLoanBalance()operation gets the current balance of the loan and the
payment() operation is used to make a payment on the loan. TherecalculateLoan()
operation sets new terms for the loan and returns the new monthly payment required.

There are no special techniques to follow in server initialization code except be sure
that whatever is required for an individual interface is done for each interface your
application uses. For example, the initialization code must be sure to register the
endpoints for all interfaces.

DCE 1.2.2 Application Development Guide—Core Components 403

DCE Remote Procedure Call

15.4.1 Implementing Multiple Managers

Our implementation derives a simple savings account manager class (simpleSave)
from the Savings interface class. Since the Savings interface is derived from the
Account interface, all nonstatic operations in both interfaces must be declared in the
manager class and defined in the manager code. Of course, additional functions and
data types (such as constructors and destructors) can also be declared to specifically
implement the interface.

Our implementation also derives anoverdraft manager class for an overdraft type of
savings account. The overdraft account has characteristics of both a savings account
and a loan and demonstratesmultiple interface inheritance. It is defined to have
multiple inheritance by being derived from both the Savings and Loan interface classes.

Note: Applications can create C++ classes that inherit from multiple interface
classes, but interface classes cannot inherit from multiple interfaces.

The following code shows the overdraft manager class and its implementation.
This example has the manager implementation included within the class definition
header file itself, rather than in separate C++ code. C++ allows you to combine
implementation as part of the C++ class declarations. This is common practice when
the implementation code for each member function is small.

#ifndef overdraft_i_h

#define overdraft_i_h

#include <iostream.h>

#include "savings.h"

#include "loan.h"

class overdraft : public Savings, public Loan {

public:

overdraft(idl_long_float amt)

{

balance = amt;

}

~overdraft(void)

{

return;

404 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

}

idl_long_float getBalance()

{

return balance;

}

/////////////// Member Functions from all interfaces ///////////////

idl_long_float deposit(idl_long_float amt)

{

balance += amt;

return balance;

}

void payment(idl_long_float amt)

{

balance += amt;

}

idl_long_float withdraw(idl_long_float amt)

{

balance -= amt;

return amt;

}

void setInterestRate(idl_long_float r)

{

rate = r/loanTerm;

}

void addInterest()

{

balance += (balance * rate);

}

idl_long_float recalculateLoan(idl_long_float r, idl_long_int m)

{

if(balance < 0)

{

loanRate = r;

loanTerm = m;

return abs(balance) / loanTerm;

}

else

return 0;

}

idl_long_float getAccountBalance()

DCE 1.2.2 Application Development Guide—Core Components 405

DCE Remote Procedure Call

{

return getBalance();

}

idl_long_float getSavingsBalance()

{

return getBalance();

}

idl_long_float getLoanBalance()

{

static idl_long_float loanBalance;

if(balance < 0)

loanBalance = abs(balance);

else

loanBalance = 0;

return loanBalance;

}

private:

idl_long_float balance = 0; //loan is automatic if negative balance

idl_long_float rate = 0.02; //2%

idl_long_float loanRate = 0.15; //15%

idl_long_int loanTerm = 12; //12 months

};

The manager class must declare all the nonstatic functions of all its inherited interfaces.
These include all nonstatic operations defined in all three interfaces, including the
Account, Savings, and Loan interfaces. Be sure to define the operation signatures
exactly as they are declared in eachidl -generated header file, or else the C++ compiler
may not interpret the function as an implementation but rather as a new function. If this
occurs, the class is interpreted as an abstract class, which means that your application
cannot create instances of the manager class.

For this example, refer to thesavings_mgr.hand loan_mgr.h header files generated
by the IDL compiler to find the signatures of all the functions required. For
example, thedeposit(), withdraw() , and getAccountBalance() functions are from
the Account interface but are redeclared in the derived Savings interface. The
payment(), recalculateLoan(), and getLoanBalance()functions are declared in the
Loan interface. ThesetInterestRate(),addInterest(), and getSavingsBalance()are
declared in the Savings interface.

406 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

The static function implementations for the Savings and the Loan interface classes are
not shown here but includeopenSimple(), openOverdraft(), andopenLoan().

15.4.2 Using Objects that Support Multiple Interfaces

When clients use objects whose interfaces are independent from each other, no special
coding is required beyond the conventions described earlier: you just create, use, and
delete objects for each interface. The most interesting circumstances involving multiple
interfaces are those in which an object itself supports more than one interface.

15.4.2.1 Binding by Object Reference to Use a Different Interface

We defined our overdraft savings account to be derived from two different interfaces
(see the following figure). However, the client does not have any knowledge of how
a server implements the overdraft account. The client does have a way to create an
overdraft account by calling the static functionopenOverdraft(), but that is defined
in the Savings interface which has no access to the Loan interface. So how does
an overdraft object inquire about its loan balance by using the Loan interface’s
getLoanBalance()member function, when the object reference is to the Savings
interface? We obviously cannot simply create another object reference to the Loan
interface and expect the two different object references to both refer to the same
overdraft object.

DCE 1.2.2 Application Development Guide—Core Components 407

DCE Remote Procedure Call

Figure 15–4. Clients Do Not Know About Server Implementations

Interface

Interface
Account

Interface
LoanSavings

Clients know about

Class

the interface class

Clients do not know about the
server implementations Overdraft

Savings

The solution is to use anidl -generated member function. When the IDL compiler
generates the interface classes, it also generates an additionalbind() member function
that allows the client to easily use other interfaces. The following examples show
sample client code that creates and uses a new simple savings account object and an
overdraft account object:

#include "savings.h"

#include "loan.h"

Account *a = 0;

Savings *ss = 0;

Savings *od = 0;

Loan *iLoan = 0;

The interface classes are declared in the header files generated by the IDL compiler
as follows:

ss = Savings::openSimple(456.12);

od = Savings::openOverdraft(568.19);

408 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

In this example, the client creates a new simple savings account object on a server
by calling theopenSimple()function. The function creates an object reference to the
Savings interface. The client also creates a new overdraft account object on a server by
calling theopenOverdraft() function. This function also creates an object reference
to the Savings interface.

A robust server would likely give clients a way to find accounts again later by making
the objects named and persistent; but, to simplify our examples, we use only dynamic
objects. Therefore, accounts must be recreated each time a client runs.

balance = ss::getSavingsBalance();

assert(balance == 456.12);

balance = od::getSavingsBalance();

assert(balance == 568.19);

Object references to the Savings interface can call any member functions of the Savings
and Account interfaces as follows:

iLoan = Loan::bind(od);

To use a different interface, clients use the built-inbind() member function with an
object reference parameter. In this example, the function creates an object reference
to the Loan interface,iLoan, from the object reference to the Savings interface,od:

balance = iLoan->getLoanBalance();

cout << "Loan Balance: " << balance << endl;

The object can now call any member function of the Loan interface as follows:

ss->deposit(20.01);

An object reference to one interface can access member functions of its inherited
interfaces, as expected. In this example,ss is an object reference to a Savings object,
but thedeposit() function is specified in the Account interface:

DCE 1.2.2 Application Development Guide—Core Components 409

DCE Remote Procedure Call

balance = ss->getAccountBalance();

cout << Balance: " << balance << endl;

a = Account::bind(ss);

balance = a->getAccountBalance();

cout << Balance: " << balance << endl;

As an aid to debugging, it is a good idea to use the interface in which the operation
is declared, even if the inherited operation can be resolved. When the object calls
getAccountBalance()with a Savings object reference, the function is executed in the
client stub for the Savings interface. On the other hand, when the same function is
called with an Account object reference, the Account client stub function is executed.

15.4.2.2 Finding Out if an Interface is Supported

One of the most common reasons to find out if an interface is supported is to determine
whether or not a new version of an application uses an additional interface. The new
clients must check for application compatibility by inquiring as to whether the new
interface is supported. Compatibility is easily tested by calling theidl -generatedbind()
function with an object reference parameter, as described in the previous section. An
interface is not supported if the returned result is 0 (zero). This simple test implies that
it is easy to create new versions of applications by adding additional interfaces, rather
than running the risk of creating incompatibility by modifying existing interfaces.

The following example shows how to inquire if an interface is supported. Suppose we
are told that some servers on our network implemented the overdraft account without
using the Loan interface. This would not prevent our clients from creating and using
overdraft objects; we would just not have the Loan interface to use to inquire about the
status of an overdraft. In this scenario, the client that has the Savings interface could
inquire as to whether the object also supports the Loan interface, as in the following:

iLoan = Loan::bind(ss);

if(iLoan == 0)

cout <<"Simple accounts do not support the Loan interface."<< endl;

iLoan = Loan::bind(od);

if(iLoan == 0)

cout <<

"This overdraft account doesn’t support the Loan interface." << endl;

410 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

In the first case, attempting to bind a simple savings object to the Loan interface should
always return 0 (zero). In the second case, if a zero value is returned, this overdraft
object does not support the Loan interface (the Loan interface is not inherited).

15.4.2.3 Multiple Interfaces and Local Objects: a C++
Enhancement

The bind() member function that takes an object reference also works for local
interfaces and objects. This means that you can use IDL to specify, implement, and
test combinations of local interfaces without the overhead of remote procedure calls.
You may find this a useful approach when designing, prototyping, and debugging your
interfaces and implementations. The steps are as follows:

1. Create your IDL files by using theuuid and local attributes in the interface
headers.

2. Use the IDL compiler with the-lang cxx option to compile the interfaces. The
IDL compiler generates only the header files for each interface when the interface
has thelocal attribute. No stubs are generated.

3. Develop the manager class, manager implementations, and static member
functions as you would for typical servers.

4. Create a client that includes theidl -generated header files. The client also calls the
idl -generatedbind() function that binds by object reference, to switch between
local interfaces.

5. Link together the machine object code for the client, manager class, manager
code, and static functions.

6. Test the client application program.

15.5 Passing C++ Objects as DCE RPC Parameters

IDL allows the passing of any C language basic or constructed data type as an RPC
parameter, mainly through the use of attributes. However, the C++ language makes
it much easier and convenient for the programmer to define new types using class

DCE 1.2.2 Application Development Guide—Core Components 411

DCE Remote Procedure Call

definitions. A C++ application can contain a wealth of class definitions modeled after
real world objects, usually in the form of class libraries. The implementation details of
a class library definition are hidden from the programmer in favor of a public interface
or set of operations to manipulate the class instance. In addition, software vendors are
in the business of providing class libraries containing all sorts of class definitions that
are ready to use by the application programmer.

As applications move towards the client/server model, and as distributed object
technology becomes the vehicle for such a model, RPC must be able to pass C++
objects as parameters efficiently and intrinsically.

When an application is distributed, a number of issues arise that must be dealt
with. These issues include the ability of the network to pass large amounts of
data, the problem of passing pointers as RPC arguments, and the differences in the
representation of a piece of data in the computer’s memory that results from different
machine architectures. These problems are addressed by DCE implementations
adhering to the network data representation (NDR) for data types and the effective
use of attributes in the interface definition. However, other problems that are specific
to the C++ language include the following:

Data Hiding One advantage of a class definition is that it allows the application
designer to model a programming language construct after some real
world object and to interact with the construct in a high level fashion.
The details of how the construct is built and manipulated should be
handled by the designer of the class. The application programmer should
be insulated from the class internals and only needs to be aware of
the public interface to the object. However, this programming model
exposes a fundamental problem when extended to DCE RPC. In passing
a parameter to a remote procedure, the DCE runtime library must be able
to marshal the RPC parameters over the network on behalf of the caller
of the remote operation and unmarshal those parameters and reconstruct
the data type on the server side of the application. If users are able
to create new and exotic data types, how can the DCE runtime know
how to marshal them? It is unreasonable to expect that DCE could be
extensible enough to track and know how to marshal new data types
as they are created. It is also unreasonable to expect class designers to
supply their own support for marshaling objects. This is especially true
for data types that are provided as class libraries by outside vendors
having no connection at all with DCE.

412 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

Inheritance Inheritance and polymorphism are techniques available with C++
whereby a generic class type is used by an application but the actual
object is created from a more specific class type. A classic example
of this is a generic class called Shape and a number of specific classes
such as Circle, Square and Cylinder that all derive from the Shape class.
Shape might have operations such as draw() and rotate() which cause
the object to be drawn onto the screen and rotated. The application
can have an array of Shape objects and cause each one in turn to be
displayed and manipulated. However, the array could be a mix of Circle,
Square and Cylinder objects. Each object will know how to draw and
rotate itself. For some objects, a function such as rotate() may have no
meaning. The polymorphic behavior of the Shape class will forward the
draw() operation to the correct specific drawing operation implemented
by the object. The rotate() operation behaves similarly for classes that
support rotation. And if the object does not support rotation, the Shape
class will supply its own rotate implementation which may actually do
nothing.

The problem of passing a Shape object is that the DCE runtime may
not know what type of shape the object really is. A Shape could have
some self-identifying information, but this will often not be the case.
Furthermore, if there were some shape identifier, it would need to track
new class types as they are introduced into the application. This type
of design is not very extensible and contrary to the object oriented
methodology.

Lots of data Another problem with passing a C++ object over the network is
fundamental to any RPC argument. As the amount of data needed to
be passed over the wire and recreated in the server process increases,
the performance of the RPC call will obviously decrease. The decision
as to what kinds of operations are remote and what types of data they
require is a basic design issue. For example, consider a stack type. If
the stack is small then it may be advantageous to pass the entire stack
over the wire, recreate it on the server side, allow the server to update
it, and then pass it back to the client side so that it reflects any updates
the server made to it. The IDL language supports such a paradigm by
using an array network type along with other parameters to indicate the
array size. However, this paradigm quickly breaks down as the stack
size increases. A better way for the server to access a large stack would
be to pass a stack reference to the server and allow the server to access
the stack by making RPC calls to it.

DCE 1.2.2 Application Development Guide—Core Components 413

DCE Remote Procedure Call

Two programming methodologies are presented to illustrate how C++ objects can be
passed as DCE RPC parameters: data representation and delegation. It is a design
choice as to which solution better applies to a specific application problem. By using
these methodologies, class libraries can be easily integrated into an application. Both
solutions are intended to be handled primarily at the interface definition level so that
the application itself can be designed in a normal and natural way while minimizing
the issue of distributing the application.

15.5.1 Representation

The DCE IDL compiler supports a feature to allow a network representation of a data
type to differ from the representation used by the application. This feature is invoked
by using therepresent_asattribute on a data type in the Attribute Configuration File
(ACF). Applying this attribute to an IDL data type allows the network representation
of a data type to be isolated within the generated stubs. The programmer is required to
supply four conversion routines when using this feature. The function signatures for
these four routines are generated by the IDL compiler. Their purpose is to convert an
RPC argument from the application presented type to the network type, convert from
the network type to the presented type, and to free memory used by the network and
presented types. Presumably, a class library designer could supply the four conversion
routines along with the IDL generated stub routines as a library. In this way, the
application programmer need not be aware of how the data is transmitted across the
wire nor that the conversions take place.

For example, consider the C++ String class which is commonly supplied by C++
compiler vendors or easily implemented by the programmer. The IDL compiler has
no notion of a String class since it is not a primitive or constructed IDL type. The class
definition must be made known to the IDL compiler by using the include directive to
include the class definition into the generated header file. But the DCE runtime does
not know how to marshal the String type since its internals are hidden and, in fact,
could very well differ in its implementation between vendors.

To allow a String type to be passed as an RPC argument, a network type for a String
object is defined in the IDL file to be an array of characters with the string attribute
applied. An ACF file is then created for the interface to apply therepresent_asattribute
to the network type. The following code fragment is for the IDL file represent an IDL
character array as a String class in an application:

414 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

[uuid(c5a7c094-c5e3-11ce-bac2-08002be415b2)]

IText {

typedef [string,unique] char * net_string; /* 1 */

static net_string toUpper([in] net_string s); /* 2 */

static net_string toLower([in] net_string s); /* 3 */

}

The following code is an ACF definition for a String type:

{

include "String"; /* 4 */

typedef [represent_as(String)] net_string; /* 5 */

}

The code is described as follows:

1. A net_string is defined to be a unique pointer to a string

2. The static toUpper() operation takes a String argument and returns another one

3. The static toLower() operation takes a String argument and returns another one

4. Include theString.h file into the idl -generated header file

5. The network type net_string is presented as the C++ String type in the application

Using automatic binding, the client application would invoke the statictoUpper()
operation as follows:

String s1("Hello, World"); // create a local String object

String s2 = IText::toUpper(s1); // RPC call returns another

// String object

Note that a unique attribute is specified for the net_string type. Unique pointers should
always be used when therepresent_asattribute is applied to a pointer type.

The routines to convert between the network type and the presented type are
automatically invoked by the DCE runtime during the marshalling and unmarshalling
process. The IDL compiler generates a function signature to free the presented data

DCE 1.2.2 Application Development Guide—Core Components 415

DCE Remote Procedure Call

type. In this example, this routine would be namednet_string_free_local(String *).
The purpose of this routine is to free the memory occupied by the stack variable in
the server stub that represents the RPC parameter. But since the C++ compiler will
generate code to delete local stack objects when the server stub routine is exited, this
routine should not free its argument.

The represent_asattribute is properly used when the data comprising the C++ object
can be represented by some primitive or constructed IDL data type. The object’s
data must be accessible by the application. The overhead involved with using the
represent_asattribute is the conversion from one type to the other and the freeing of
memory.

It may not always be advantageous to use therepresent_asattribute to pass a C++
object as an RPC parameter. Consider the case presented earlier where a generic Shape
class is used in a class hierarchy with the more specific Square, Circle, and Cylinder
shapes derived from it. An application may wish to pass a Shape object as an RPC
parameter. Using therepresent_asfeature would require the conversion routines to
convert from a shape to some NDR structure that can be defined in IDL. However,
this is complicated by the fact that one IDL type may not be sufficient to represent all
possible shapes. To solve this, a discriminated union of different shape types could be
defined. But it is also very possible that the internals of the classes are not exposed
to the application. The user may have no knowledge of what data types are needed to
represent even the simplest shapes such as a square. Furthermore, as new shapes are
introduced into the application, the conversion routines would also require extensions
to handle the new shapes. An object oriented application should be extensible without
requiring such overhead.

Another drawback to using conversion routines is efficiency. Consider a common C++
Stack class and a distributed implementation of a reverse Polish notation algorithm.
The algorithm maintains a stack of operands. When an operator is processed, the
required number of operands are popped off the stack, the operation is performed on
them, and the result is pushed back onto the stack. For this example, let’s assume that
the algorithm supports the plus(), minus(), multiply() and divide() binary operations.
In order to illustrate the distributed nature of the algorithm, we can further assume
that the client reads an equation in reverse Polish notation from standard input and
maintains the stack locally, but the binary operations are implemented within a remote
server process. Hence, the server process needs access to the same stack as the client.
Simply passing the stack to the server process in its entirety would be inefficient since
only the top two elements need to be accessed per operation. A large stack would

416 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

quickly degrade the performance of the algorithm, especially since the stack would
have to be passed as both an input and output parameter.

15.5.2 Delegation

An alternative to passing the stack is to treat the stack as a distributed object and
pass a reference to it. The server and client would have access to the single stack in
the application and the server could use the stack object reference to push and pop
elements. A DCE distributed object requires that there be an interface defined for the
object and the object implementation be derived from the generated interface class.
If the stack being used is supplied by a third party vendor, it may not be possible
to modify its definition to derive it from an IDL generated class. The solution is to
create a delegate class for the stack to act as an interface to the actual stack object.
A delegate class encapsulates the real object and forwards operation invocations to it.
The IDL language has been extended to include the ACF attributecxx_delegateto
take advantage of this idiom.

An interface using this attribute will cause the generated interface class to wrap the
real object. Only the operations that need to be remote need to be defined in the
delegate class interface definition file. The application would then link the delegate
server stub with the client. Likewise, the delegate client stub would be linked with
the server. The DCE runtime will transparently perform the necessary setup to allow
the client application to act as a server for the delegate class. The following example
illustrates the use of thecxx_delegateattribute with a Stack class definition:

[uuid(0ea74f20-e2dc-11ce-9a8e-08002be415b2)]

interface IStack /* 1 */

{

void push([in] double x); /* 2 */

double pop(); /* 3 */

}

The ACF definition for delegation of the IStack interface is as follows:

DCE 1.2.2 Application Development Guide—Core Components 417

DCE Remote Procedure Call

[cxx_delegate(Stack)] /* 4 */

interface IStack{

include "Stack"; /* 5 */

}

1. An IStack interface is defined

2. The push() operation pushes an element onto the encapsulated stack

3. The pop() operation pops an element from the encapsulated stack

4. The IStack interface is a delegate for a Stack class

5. include theStack.h file into the IDL generated header file

Using the generated server stub and header file from the above IDL fragment, the
client application would instantiate an IStack interface pointer and pass it to the
remote procedure as follows:

Stack s; // create a local stack object

IStack *iStack; // declare an interface pointer to the local stack

iStack = new IStackMgr(&s); // create the interface ptr

// using the local stack

The cxx_delegateattribute causes the IDL generated classes to be built slightly
different than a normal interface class. The interface class contains a constructor
that takes a pointer to the delegated class instance as an argument and the manager
class supplies complete function bodies. The programmer does not need to supply a
manager class for an interface using this attribute.

The server application would use the interface pointer to invoke the push() and pop()
operations on the client’s stack instance. The overhead involved is the remoteness of
the push() and pop() operations which are implemented as RPC calls from the server
to the client. In this example, the client application would be linked with the IDL
generated server stub from the IStack interface and the server application would be
linked with the IDL generated client stub from the IStack interface. No extra DCE
API calls are required on the part of the client or server stubs. The DCE runtime will
handle the necessary overhead to allow the client application to act as a server for the
IStack interface.

418 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

This idiom is most effectively used when a class type is needed as an RPC argument
but the class hierarchy can not be changed by the application or when the overhead
of the RPC calls to access the object is outweighed by the combined overhead of
converting the object to a network type and the complexity of passing or updating a
large amount of data in the RPC call.

15.6 Integrating C and C++ Clients and Servers

This chapter has assumed your clients and servers are both written in C++, and the
rest of this guide describes how to write clients and servers that are both written in C.
Two fundamental differences between these types of applications are their perception
of what interfaces represent and whether clients bind to servers or objects.

For C applications, the model tends to be functionally oriented. The important features
are the operations, in which an interface represents a convenient set of operations with
associated data structures. Clients bind to servers that support the set of operations
and data.

For C++ applications, the model tends to be object oriented. In this model, the
important feature is the interface itself, which represent a class of objects. Operations
are an integral part of each object, but data structures tend to be hidden in the
implementations on the servers and not exposed in the interface. In this model, clients
bind to objects that support the interfaces.

This section addresses the intersection of these two models in the following ways:

• Writing C++ clients with a functional approach so that they bind to servers (written
in C) rather than to distributed objects

• Writing C clients so that they can bind to distributed objects rather than to servers

15.6.1 Writing a C++ Client for C Servers

Suppose you are writing a C++ client that needs to use an interface definition that has
not taken advantage of the IDL C++ features. A logical example is an older interface
definition written prior to the introduction of the C++ features of OSF DCE Version
1.2. An older interface is not designed to specify a class of objects and the associated

DCE 1.2.2 Application Development Guide—Core Components 419

DCE Remote Procedure Call

member functions. This means that servers for older interfaces do not maintain objects
in the way described in this chapter (if they maintain objects at all).

This section uses the following simplistic interface for demonstration:

[

uuid(166ab38b-95f9-11ce-9387-08002b2bf322)

] interface old_interface

{

double op1();

void op2([in] long input);

void op3();

}

If you simply compile this interface definition for the C++ language and build the C++
client application, the application cannot invoke any of the old interface’s member
functions because no object can exist on a server. However, static member functions
do not require an object in order to invoke them, so the solution is to make the
operations of an older interface static member functions.

In order for your C++ client to use an older interface, perform the following steps:

1. Create an ACF for the interface and apply thecxx_static attribute to every
operation of the interface. For example:

interface old_interface

{

[cxx_static] op1();

[cxx_static] op2();

[cxx_static] op3();

}

2. Use the IDL compiler with the-lang cxx option to compile the interface and
generate the header files and C++ stubs. Link the code into your C++ client
application as usual.

420 DCE 1.2.2 Application Development Guide—Core Components

Developing Applications that Use Distributed Objects

3. Call the static functions where needed in the C++ client application by using the
scope operator (::). For example:

#include "old_interface.h"

main()

{

idl_long_float result;

idl_long_int input = 1;

result = old_interface::op1();

old_interface::op2(input);

old_interface::op3();

return 0;

}

15.6.2 Writing a C Client for C++ Servers

If you wish, you can develop C language clients that use interfaces written with C++
features. Whenever the interface definition is compiled for C++, C structures, macros,
and function prototypes are automatically built into the header file and stubs to give
this capability.

For example, the followingget() operation is defined in the Matrix interface definition:

long get(

long row,

long col

);

The macros generated by the IDL compiler are formed by combining the name of the
interface and the name of the operation with an underscore between. For example,
to allow a C client to invoke theget operation on the interface, the IDL compiler
generates the following macro in the header file:

DCE 1.2.2 Application Development Guide—Core Components 421

DCE Remote Procedure Call

Matrix_get(obj, row, col)

Since member functions cannot be called in C with an implied object (the C++this
object), each member function for the C macros has an additional object argument as
the first parameter. The remaining arguments are the same as those specified in the
IDL input file.

To obtain the interface pointer using the C mapping, use one of the bind routines
generated by the IDL compiler for the C interface. These are also generated in the
header file. For example, the Matrix interface supports the following C macros for
binding to a remote object:

Matrix *Matrix_bind_by_name(unsigned_char_t *name);

Matrix *Matrix_bind_by_uuid(uuid_t * u);

Matrix *Matrix_bind_by_hndl(rpc_binding_handle_t bh);

All static member functions of an interface are also supported for C. The macros are
formed in a manner similar to the normal member functions (by joining the interface
name and the operation name with an underscore), except there is no need for an
additional argument to represent a current object. For example, if the Matrix interface
supports thecreateMatrix() static operation, the following example C code invokes
the operation:

/* code fragment showing the use of C macros */

Matrix *m; /* a C structure to represent an interface */

/*

** invoke a static member function to get an interface

** pointer and invoke operations on it.

*/

m = Matrix_createMatrix(1, 2, 3, 4);

if (!m) {

/* handle error */

} else {

printf("[%d, %d]\n", Matrix_get(m, 0, 0), Matrix_get(m, 0, 1));

printf("[%d, %d]\n", Matrix_get(m, 1, 0), Matrix_get(m, 1, 1));

}

422 DCE 1.2.2 Application Development Guide—Core Components

Chapter 16
Writing Internationalized RPC
Applications

An internationalizedDCE RPC application is one that

• Uses the operating system platform’s locale definition functions to establish
language-specific and culture-specific conventions for the user and programming
environment.

• Isolates all user-visible messages into message catalogs by using thesams
(symbols and message strings) utility.

• Uses the DCE general-purpose application messaging routines,dce_msg_* () and
dce_svc_* (), to display all program messages.

• Uses DCE RPC-provided or user-defined character and code set evaluation and
automatic conversion features to ensure character and code set interoperability
during the transfer of international characters in remote procedure calls between
RPC clients and servers.

A locale defines the subset of a user’s environment that depends upon language
and cultural conventions. A locale consists of categories; each category controls

DCE 1.2.2 Application Development Guide—Core Components 423

DCE Remote Procedure Call

specific aspects of some operating system components’ behaviors. Categories exist for
character classification and case conversion, collation order, date and time formats,
numeric nonmonetary formatting, monetary formatting, and formats of informative
and diagnostic messages and interactive responses.

The locale also determines the character sets and code sets used in the environment.
The syntax and use of a locale definition function depends on the operating system
platform in use with DCE. See your operating system programming guide and
reference documentation for a description of the system’s locale definition functions
and locale categories.

The samsutility provides DCE services and application programs with a method for
defining and cataloging user-visible messages, while the DCE messaging functions
allow DCE services and application programs to display messages in a consistent
manner. Chapter 3 describes how to develop an application that uses the DCE
messaging routines and how to use thesamsutility to create and generate message
catalogs. See theDCE 1.2.2 Application Development Referencefor a description of
DCE messaging routine syntax, and thesams(1dce)reference page for a description
of samsusage.

The remainder of this chapter describes the DCE RPC features for character and code
set interoperability in remote procedure calls that are available to programmers who
are developing internationalized DCE RPC applications. The first section describes
the concepts of character sets, code sets and code set conversion and explains the
default character and code set conversion mechanism that the RPC runtime protocol
supports for remote procedure calls. The remaining sections describe the execution of
a remote procedure call when it uses the DCE RPC features for character and code set
interoperability, and explains how to build an RPC application that uses these features.

16.1 Character Sets, Code Sets, and Code Set
Conversion

A character setis a group of characters, such as the English alphabet, Japanese
Kanji, and the European character set. To enable world-wide connectivity, DCE
guarantees that a minimum group of characters is supported in DCE. The DCE RPC
communications protocol ensures this guarantee by requiring that all DCE RPC clients
and servers support the DCE Portable Character Set (PCS). TheDCE 1.2.2 Introduction

424 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

to OSF DCElists the characters in the DCE PCS. The IDL base type specifierschar
and idl_char identify DCE PCS characters.

A code setis a mapping of the members of a character set to specific numeric code
values. Examples of code sets include ASCII, JIS X0208 (Japanese Kanji), and ISO
8859-1 (Latin 1). The same character set can be encoded in different code sets;
consequently, DCE can contain RPC clients and servers that use the same character set
but represent that character set in different numeric encodings.Code set conversionis
the ability for a DCE RPC client or server to convert character data between different
code sets.

The DCE RPC communications protocol, through the NDR transfer syntax, provides
automatic code set conversion for DCE PCS characters encoded in two code sets:
ASCII and EBCDIC. The RPC communications protocol automatically converts
character data declared aschar or idl_char between ASCII and EBCDIC encodings,
as necessary, for all DCE RPC clients and servers.

The DCE RPC communications protocol does not provide support for the recognition
of characters outside of the DCE PCS, nor does it provide automatic conversion for
characters encoded in code sets other than ASCII and EBCDIC.

However, DCE RPC does provide IDL constructs and RPC runtime routines
that programmers can use to write RPC applications that exchange nonPCS, or
international, character data that is encoded in code sets other than ASCII and
EBCDIC. These features provide mechanisms for international character and code
set evaluation and automatic code set conversion between RPC clients and servers.
Using these features, programmers can design their applications to run in a DCE that
supports multiple heterogeneous character sets and code sets.

The next section describes the remote procedure call execution model when the DCE
RPC features for character and code set interoperability are used.

16.2 Remote Procedure Call with Character/Code Set
Interoperability

Table 11-1 in Chapter 11 illustrates the basic tasks of an RPC application. Table 16-1
shows these basic tasks integrated with the additional tasks required to implement an
RPC that provides character and code set interoperability.

DCE 1.2.2 Application Development Guide—Core Components 425

DCE Remote Procedure Call

Table 16–1. Tasks of an Internationalized RPC Application

Client Tasks Server Tasks

1. Set locale.

2. Select network protocols.

3. Register RPC interfaces.

4. Advertise RPC interfaces and
objects in the namespace.

5. Get supported code sets and
register them in the namespace.

6. Listen for calls.

7. Set locale.

8. Establish a character and code
set evaluation routine.

9. Find compatible servers that
offer the procedures.

10. Call the remote procedure.

11. Establish a binding relationship
with the server.

12. Get code set tags from the
binding handle.

13. Calculate the buffer size for
possible conversion of input
arguments from a local to a
network code set.

14. Convert input arguments from a
local to a network code set (if
necessary).

15. Marshall input arguments

16. Transmit arguments to the
server’s runtime.

17. Receive a call.

426 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

Client Tasks Server Tasks

18. Get code set tags sent from the
client.

19. Calculate the buffer size for
possible conversion of input
arguments from network to local
code set.

20. Unmarshall input arguments.

21. Convert input arguments from a
network to a local code set (if
necessary).

22. Locate and invoke the called
procedure.

23. Execute the remote procedure

24. Calculate the buffer size for
possible conversion of output
arguments from a local to
network code set

25. Convert output arguments from a
local to a network code set (if
necessary).

26. Marshall output arguments and
return value.

27. Transmit results to the client’s
runtime.

28. Remove code set information
from namespace on exit.

29. Receive results.

30. Calculate the buffer size for
possible conversion of output
arguments from a network to a
local code set.

31. Unmarshall output arguments.

DCE 1.2.2 Application Development Guide—Core Components 427

DCE Remote Procedure Call

Client Tasks Server Tasks

32. Convert output arguments from a
network to a local code set (if
necessary).

33. Pass to the calling code the
results and return control to it.

As illustrated in the table, the internationalized RPC execution model consists of the
following new steps:

1. Both client and server invoke a platform-dependent function to set their locale
during initialization. This step establishes the client’s and the server’s local
character and code set; that is, the character and code set currently in use by
processes on the client host and processes on the server host.

2. The server, as part of its initialization phase, calls a DCE RPC routine that
retrieves information about code sets support on the server’s host. The RPC routine
examines the host’s locale environment and its code set registry to determine the
host’s supported code sets; that is, code sets for which conversion routines exist
that processes on the host can use to convert between code sets, if necessary.

The code set registry is a per-host file that contains mappings between string
names for the supported code sets and their unique identifiers. OSF assigns the
unique identifiers for the code sets and DCE licensees, and DCE administrators
assign their platform string names for the code sets. The DCE RPC routines for
character set and code set interoperability depend upon a code set registry existing
on each DCE host. For more information about the code set registry, see theDCE
1.2.2 Administration Guide—Introductionand thecsrc(8dce)reference page.

The routine returns a list of the supported code sets to the server; the list consists
of each code set’s unique identifier.

3. The server next calls a new RPC NSI routine to register the supported code
sets information in the name service database. Recall that a server can use the
NSI to store itsbinding information(information about its interfaces, objects,
and addresses) into its own namespace entry, called aserver entry. The new
RPC NSI routine adds the supported code sets information as an attribute that is
associated with the server entry, which the server created when it used the NSI
export operation to export its binding information into the name service database.
Placing the code sets information into the name service database gives RPC clients
access to this information.

428 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

4. Before it calls the RPC NSI routines that locate a server that offers the desired
remote procedure, the client calls a new RPC routine that sets up a character and
code sets compatibility evaluation routine.

5. The client calls RPC NSI routines to locate a compatible server. The RPC NSI
routines invoke the character and code set compatibility evaluation routine set up
by the client to evaluate potential compatible servers for character and code set
compatibility with the client.

6. The evaluation routine imports the server’s supported code sets information from
the name service database, retrieves the client’s supported code sets information
from the client host, and compares the two. If the client and the server are using
the samelocal code set—the code set that processes on the host use to encode
character data—then no code set conversion is necessary, and no data loss will
result.

If client and server are using different local code sets, then it is possible that the
server is using a different character set than the client. The client does not want
to bind to a server that is using a different character set, since significant data
loss would result during character data conversion. Consequently, the evaluation
routine uses the server’s code set information to determine its supported character
sets, and rejects servers using incompatible character sets. For example, if a client
is using the Japanese Kanji character set (such as JIS0208), the evaluation routine
rejects a server that offers the desired remote procedure but which is using the
Korean character set (such as KS C 5601).

If the client and server are character set compatible, and they support a common
code set into which one or the other (or both) can convert, the evaluation routine
deems the server to be compatible with the client. The NSI import routines return
this server’s binding information to the client.

7. The client makes the remote procedure call.

8. A client stub is called, with the character data represented in the local form and
in the local code set.

9. Before marshalling the input arguments, the client stub calls a new stub support
routine that retrieves code set identifying information that the evaluation routine
established in the binding handle.

10. The client stub next calls a new stub support routine that determines, based on the
code set identifying information, whether the character data needs to be converted
to another code set and, if so, whether the buffer that currently holds the character
data in the local form and code set is large enough to hold the data once it is

DCE 1.2.2 Application Development Guide—Core Components 429

DCE Remote Procedure Call

converted. If the routine determines that conversion is necessary and a new buffer
is required, it calculates the size of that buffer and returns the value to the client
stub.

11. The client stub next calls a new stub support routine that converts, based on the
code set identifying information, the character data from the local code set to the
appropriate code set to be used to transmit the data over the network to the server
(called thenetwork code set).

12. The client stub then marshalls the input arguments and transmits them to the
server runtime along with code set identifying information.

13. The server stub is called, with the character data represented in the network form
(which is alwaysidl_byte) and in the network code set.

14. The server stub unmarshalls the input arguments.

15. The server stub next calls a new stub support routine that determines, based on the
code set identifying information passed in the client call, whether the character
data needs to be converted from the network code set to the server’s local code
set and, if so, whether the buffer that currently holds the character data in the
network format and code set is large enough to hold the data once it is converted.
If the routine determines that conversion is necessary and a new buffer is required,
it calculates the size of that buffer and returns the value to the server stub.

16. The server stub next calls a new stub support routine that converts, based on the
code set identifying information, the character data from the code set used on the
network to the server’s local code set.

17. The server stub invokes the manager routine to execute the remote procedure.

18. Before marshalling the results of the remote procedure (the output arguments and
return values), the server calls a new stub support routine to determine whether
conversion from the server’s local code set is necessary, based on the code set
identifying information it received from the client, and whether or not the buffer
currently holding the character data is large enough to accommodate the converted
data. If a new buffer is required, the stub support routine calculates the size of
this new buffer and returns it to the server stub.

19. The server stub next calls a new stub support routine that converts, based on
the code set identifying information from the client, the character data from the
server’s local code set to the network code set.

20. The server stub marshalls the converted output arguments and transmits them to
the client runtime along with code set identifying information.

430 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

21. The server initialization procedure also contains a call to a new RPC routine
that removes the code set information from the server entry in the name service
database if the server exits or is terminated.

22. The client stub is called, with the character data in network format and code set.

23. The client stub unmarshalls the output arguments.

24. The client stub next calls a new stub support routine that determines, based on the
code set identifying information passed by the server, whether the character data
needs to be converted from the network code set to the client’s local code set and,
if so, whether the buffer that currently holds the character data in the network
format and code set is large enough to hold the data once it is converted. If the
routine determines that conversion is necessary and a new buffer is required, it
calculates the size of that buffer and returns the value to the client stub.

25. The client stub next calls a new stub support routine that converts, based on the
code set identifying information, the character data from the code set used on the
network to the client’s local code set.

26. The client stub passes the data to the client in the local format and code set.

Note that the stub conversion routines do not implement code set conversion. Instead,
they call POSIX complianticonv code set conversion routines, which are part of the
local operating system. As a result, if the platform to which DCE is ported does not
provide these POSIX conversion routines, DCE applications that run on this platform
cannot use the DCE RPC character and code set interoperability features.

16.3 Building an Application for Character and Code
Set Interoperability

An application programmer who wishes to design his or her RPC application for
character and code set interoperability performs the following steps:

1. Writes the interface definition file (.idl) to include constructs that will enable
automatic code set conversion during remote procedure execution.

2. Writes an associated attribute configuration file (.acf) for the interface that
includes ACF attributes that will enable automatic code set conversion during
remote procedure execution.

DCE 1.2.2 Application Development Guide—Core Components 431

DCE Remote Procedure Call

3. Writes the stub support routines that client and server stubs use to carry out
automatic code set conversion during a remote procedure call. You can omit this
step if you use the stub support routines supplied with DCE.

4. Writes the server code and includes the steps to get the server’s supported code
sets and export them to the name service database, and to remove them from the
name service database upon termination or exit.

5. Writes the client code and includes the steps to set up the character and code set
evaluation mechanism.

6. Writes the character and code set compatibility evaluation routine. You can omit
this step if you use one of the evaluation routines supplied with DCE.

Note that building an RPC application for character and code set interoperability
imposes some restrictions on the application. For example, an application that uses
the RPC character and code set interoperability features cannot use customized
binding handles. See Chapter 18 for more details on internationalized RPC application
restrictions.

The next sections describe the steps just outlined in more detail.

16.3.1 Writing the Interface Definition File

The interface definition file is where the set of remote operations that constitute the
interface are defined. The first step in writing an interface definition file that supports
automatic code set conversion is to create a specialtypedef that, when used in
operation parameters, represents international character data that can be automatically
converted, if necessary, before marshalling and unmarshalling at client and server sites.

As described in Chapter 17, the data representation for abyte data type is guaranteed
not to change when the data is transmitted by the RPC communications protocol.
Consequently, the special international character data type defined in the.idl is always
declared to be abyte type so that the RPC protocol will not automatically treat it as
a DCE PCS character and convert it between ASCII and EBCDIC.

The second step in writing an interface definition file that supports automatic code set
conversion is to define, for each operation that will transmit the special international
character data type, a maximum of three operation parameters that willtag the
international characters being passed in the operation’s input and output parameters

432 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

with code set identifying information established during the client-server evaluation
and binding procedure. These parameters are the following:

• The sending tag, which indicates the code set the client is using for international
characters it transmits over the network. The sending tag has thein parameter
attribute and is applied to international character data declared in the operation’s
input parameters. If the operation does not specify any international character data
as input, then it is not necessary to create this parameter.

• The desired receiving tag, which indicates the code set in which the client prefers
to receive international character data sent back from the server as output. The
desired receiving tag has thein parameter attribute. If the operation does not
specify any international character output data, then it is not necessary to create
this parameter.

• The receiving tag, which indicates the code set the server is using for international
characters it transmits over the network. The receiving tag has theout parameter
attribute and is applied to international character data declared in the operation’s
output parameters. If the operation does not specify any international character
output data, then it is not necessary to create this parameter.

You must define these code set tag parameters as unsigned long integers or unsigned
long integers passed by reference. The receiving tag parameter must be declared as a
pointer to the receiving tag unsigned long integer.

When international character data is to be unmarshalled, the client or server stub needs
to have received a description of the code set being used before it receives the data.
For this reason, the sending tag parameter must occur in an operation’s parameter
list before anyin international character data, and the receiving tag parameter must
occur in an operation’s parameter list before anyout international character data. The
requirement that a tag must be received before the data it relates to is received also
means that a customized binding handle cannot include international characters. This
is because a binding handle must be the first parameter in a parameter list.

Here is an example.idl file for an interface namedcs_test that uses the special
international character type definition and the code set tag parameters for input and
output parameters that are fixed arrays of characters from an international character
set:

DCE 1.2.2 Application Development Guide—Core Components 433

DCE Remote Procedure Call

[

uuid(b076a320-4d8f-11cd-b453-08000925d3fe),

version(1.0)

]

interface cs_test

{

const unsigned short SIZE = 100;

typedef byte net_byte;

error_status_t cs_fixed_trans (

[in] handle_t IDL_handle,

[in] unsigned long stag,

[in] unsigned long drtag,

[out] unsigned long *p_rtag,

[in] net_byte in_string[SIZE],

[out] net_byte out_string[SIZE]

);

16.3.2 Writing the Attribute Configuration File

The next step in building an RPC application that supports character and code set
interoperability is to create an attribute configuration file (.acf) to be associated with
the .idl file. This .acf file uses the following attributes:

• The cs_char attribute, which associates the local data type that the application
code uses to represent international characters in the local code set with the special
typedef defined in the.idl file. This is a required ACF attribute for an RPC
application that passes international character data. Chapter 18 provides complete
details on how to specify thecs_char ACF attribute and the programming
restrictions associated with its use.

• The cs_stag, cs_drtag, andcs_rtag attributes, for each operation in the interface
that specifies sending tag, desired receiving tag, and/or receiving tag parameters.
These ACF attributes declare the tag parameters defined in the corresponding
.idl file to be special code set tag parameters. Operations defined in the.idl
file that specify international character in input parameters must use thecs_stag
attribute. Operations defined in the.idl file that specify international character

434 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

in output parameters must use thecs_drtag and cs_rtag attributes. Chapter 19
provides complete details on how to specify thecs_stag, cs_drtag, andcs_rtag
ACF attributes.

• The cs_tag_rtn attribute, which specifies the name of a routine that the client
and server stubs will call to set an operation’s code set tag parameters to
specific code set values. Thecs_tag_rtn attribute is an optional ACF attribute for
internationalized RPC applications; application developers can use it to provide
code set tag transparency for callers of their application’s operations. See Chapter
19 for complete details on how to specify thecs_tag_rtnattribute. Section 16.3.3.3
provides more information on the role of the tag-setting routine.

Here is the companion.acf file for the cs_testinterface defined in Section 16.3.1:

[

explicit_handle

]

interface cs_test

{

include "dce/codesets_stub";

typedef [cs_char(cs_byte)] net_byte;

[comm_status, cs_tag_rtn(rpc_cs_get_tags)] cs_fixed_trans (

[cs_stag] stag,

[cs_drtag] drtag,

[cs_rtag] p_rtag);

The ACF forcs_testuses thecs_charattribute to definenet_byte as a data type that
represents international characters. Note that the local type specified in thecs_char
attribute definition iscs_byte. This local type is analogous to thebyte type. The ACF
for cs_testalso uses thecs_tag_rtn attribute to specify a tag-setting routine.

DCE 1.2.2 Application Development Guide—Core Components 435

DCE Remote Procedure Call

16.3.3 Writing the Stub Support Routines

When you use thecs_char attribute to define an international character data type,
you must provide stub support routines that check the buffer storage requirements for
character data to be converted and stub support routines that perform the conversions
between the local and network code sets. And, if you use thecs_tag_rtn attribute,
you must provide the routine that sets the code set tag parameters for the operations
in the application that transfer international characters.

DCE RPC provides several buffer-sizing routines and one tag-setting routine. You can
use the DCE RPC routines, or you can develop your own customized buffer-sizing
and tag-setting routines; the choice depends upon your application’s requirements.
The next sections describe these types of stub support routines in more detail.

16.3.3.1 Buffer-Sizing Routines

Different code sets use different numbers of bytes to encode a single character.
Consequently, there is always the possibility that the converted string can be larger
than the original string when converting data from one code set to another. The
function of the buffer-sizing routines is to calculate the necessary buffer size for code
set conversion between local and network code sets and return their findings to the
client and server stubs, which call these buffer-sizing routines before marshalling and
unmarshalling any international character data. The stubs then allocate a new buffer,
if necessary, before calling the code set conversion routines.

You must provide the following buffer-sizing routines for each local type that you
define with thecs_charattribute:

• local_type_name_net_size()—Calculates the necessary buffer size for code set
conversion from a local code set to a network code set. Client and server stubs
call this routine before they marshall any international character data.

• local_type_name_local_size()—Calculates the necessary buffer size for code set
conversion from a network code set to a local code set. Client and server stubs
call this routine before they unmarshall any international character data.

You specify the name for the local data type in thelocal_type_nameportion of the
function name and the appropriate suffix name (_net_sizeor _local_size).

436 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

DCE RPC provides buffer-sizing routines for thecs_byte and wchar_t data types.
The cs_bytedata type is equivalent to thebyte type, while thewchar_t data type is
a platform-dependent data type whose range of values can represent encodings for all
members of the largest international character set that exists within the set of character/
code sets supported on the host.

The DCE RPC buffer-sizing routines are

• cs_byte_net_size()—Calculates the necessary buffer size for code set conversion
from a local code set to a network code set when thecs_byte type has been
specified as the local data type in the .acf file.

• cs_byte_local_size()—Calculates the necessary buffer size for code set conversion
from a network code set to a local code set when thecs_byte type has been
specified as the local data type in the.acf file.

• wchar_t_net_size()—Calculates the necessary buffer size for code set conversion
from a local code set to a network code set when thewchar_t data type has been
specified as the local data type in the.acf file.

• wchar_t_local_size()—Calculates the necessary buffer size for code set
conversion from a network code set to a local code set when thewchar_t data
type has been specified as the local data type in the.acf file.

If your internationalized RPC application uses either of these data types as the local
type in the ACF, it can use these DCE RPC buffer-sizing routines; in order to do so,
simply link with the DCE library when compiling your application. The example ACF
shown earlier in this chapter uses thecs_byte type as the local type. Consequently,
the client and server stubs will use thecs_byte_buffer-sizing routines. Refer to the
cs_byte_* (3rpc) and wchar_t_* (3rpc) reference pages for a description of the
cs_byte_andwchar_t_ routine signatures and functions.

Applications that use data types other thancs_byte or wchar_t as their local data
types will need to provide their own buffer-sizing routines. User-provided buffer-
sizing routines must follow the same signature as the DCE RPC-provided buffer-
sizing routines. See thecs_byte_* (3rpc) andwchar_t_ * (3rpc) reference pages for a
description of the required routine signatures.

DCE 1.2.2 Application Development Guide—Core Components 437

DCE Remote Procedure Call

16.3.3.2 Code Set Conversion Routines

When RPC clients and servers exchange international character data, the data being
exchanged needs to be understood by both client and server. Both client and server
need to understand a character set, and both client and server need to understand the
way that character set is expressed. Code set conversion provides a way for a character
set to be represented in a form that both client and server can understand, given that
the client and server are using a compatible character set. (In general, character set
conversion is not recommended; it is unlikely that clients and servers would want to
map, for example, German characters to Chinese characters due to the data loss that
would occur as a result.)

The stub support routines for code set conversion provide the mechanism for the stubs
to use to convert between different code sets, given that character set compatibility
has been established. The code set conversion routines translate a character set from
one encoding to another. Consequently, the code set conversion routines provide the
way for a character set to be represented in a form that both client and server can
understand.

You must provide the following code set conversion routines for each local type that
you define with thecs_charattribute:

• local_type_name_to_netcs()—Converts international character data from a local
code set to a network code set. Client and server stubs call this routine before
they marshall any international character data.

• local_type_name_from_netcs()—Converts international character data from a
network code set to a local code set. Client and server stubs call this routine
before they unmarshall any international character data.

You specify the name for the local data type in thelocal_type_nameportion of the
function name and the appropriate suffix name (_to_netcsor _from_netcs).

DCE RPC provides code set conversion routines for thecs_byteand wchar_t data
types. These routines are

• cs_byte_to_netcs()—Converts international character data from a local code set
to a network code set when thecs_bytetype has been specified as the local data
type in the.acf file.

438 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

• cs_byte_from_netcs()—Converts international character data from a network
code set to a local code set when thecs_byte type has been specified as the
local data type in the.acf file.

• wchar_t_to_netcs()—Converts international character data from a local code set
to a network code set when thewchar_t data type has been specified as the local
data type in the.acf file.

• wchar_t_from_netcs()—Converts international character data from a network
code set to a local code set when thewchar_t data type has been specified as the
local data type in the.acf file.

If your application uses either of these data types as the local type, it can use these
DCE RPC code set conversion routines; in order to do so, simply link with the
DCE library when compiling your application. Refer to thecs_byte_* (3rpc) and
wchar_t_* (3rpc) reference pages for a description of thecs_byte_and wchar_t_
routine signatures and functions.

Applications that use data types other thancs_byteor wchar_t as their local data types
will need to provide their own code set conversion routines. User-provided code set
conversion routines must follow the same signature as the DCE RPC-provided code
set conversion routines. See thecs_byte_* (3rpc) and wchar_t_ * (3rpc) reference
pages for a description of thecs_byte_andwchar_t_ routine signatures and functions.

The DCE code set conversion routines depend upon the presence of the XPG4iconv
code set conversion facility in the underlying operating system platform. Theiconv
facility consists of the following routines:

• iconv_open()—Code conversion allocation function; returns a conversion
descriptor that describes a conversion from the code set specified in one string
pointer argument to the code set specified in another string pointer argument.

• iconv()—Code conversion function; converts the sequence of characters from one
code set into a sequence of corresponding characters in another code set.

• iconv_close()—Code conversion deallocation function; deallocates the conversion
descriptor and all associated resources allocated by theiconv_open()function.

Note that theiconv facility identifies a code set by a string name. This string name is
the name that the local platform uses to refer to the code set. However, all of the stub
support routines for automatic code set conversion use the unique identifier assigned
to the code set in the code set registry to identify a code set. Before the DCE code

DCE 1.2.2 Application Development Guide—Core Components 439

DCE Remote Procedure Call

set conversion routines can invoke theiconv facility, they must access the code set
registry to retrieve the platform-specific string names associated with the local and
network code set identifiers.

The DCE code set conversion routines use thedce_cs_loc_to_rgy() and
dce_cs_rgy_to_loc()routines to access the code set registry and translate between
code set string names and their corresponding unique identifiers. TheDCE 1.2.2
Application Development Referenceprovides a description of these routines’
signatures and functions; developers who are writing their own code set conversion
routines and who are using theiconv facility for conversion may want to use these
DCE routines to convert between code set names and identifiers.

16.3.3.3 Tag-Setting Routine

Recall from Section 16.3.1 that operations that specify international characters as input
and output parameters declare special code set tag parameters. The purpose of these
parameters is to hold the unique identifier for the code set into which the input or
output data is to be encoded when it is transferred over the network.

The function of the tag-setting routine is to provide a way to set an operation’s code
set tag parameters to specific code set values from within the stubs rather than in
the application code. The application specifies the name of the tag-setting routine as
the argument to thecs_tag_rtn ACF attribute; the client and server stubs call this
routine when the operation is invoked to set the tag parameters to specific network
code set values before they call the stub support routines for buffer-sizing and code
set conversion. The stubs use the network code set values returned by the tag-setting
routine as input to the buffer-sizing and conversion routines. In turn, these routines
compare the network code set values to be used for input and output data to the local
code set in use for the data, and determine whether or not new buffer allocation and
code set conversion are necessary.

When called from the client stub, the tag-setting routine sets the sending tag parameter
to the code set to use for input character data. If the client expects output character
data from the server, the routine also sets the desired receiving tag parameter to the
code set that the client prefers the server to use for sending back the output data.
On the client side, the buffer-sizing routineslocal_type_name_net_size()and the code
set conversion routineslocal_type_name_to_netcs() use the value in the sending
tag as the network code set value to use for transmitting the input data. When the

440 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

input data arrives at the server side, the server stub uses the sending tag as input
to the local_type_name_local_size()buffer-sizing routine and thelocal_type_name
_from_netcs()code set conversion routines, which use the value to determine whether
or not new buffer allocation and conversion is necessary from the network code set
to the local code set.

When called from the server stub, the tag-setting routine sets the receiving tag
parameter to the code set to use for transmitting the output character data back to
the server. The routine can use the desired receiving tag value as input to determine
the most appropriate code set in which to encode output data for the client. On the
server side, the buffer-sizing routineslocal_type_name_net_size()and the code set
conversion routineslocal_type_name_to_netcs()use the value in the receiving tag
as the network code set value to use for transmitting the output data. When the
output data arrives at the client side, the client stub uses the receiving tag as input
to the local_type_name_local_size()buffer-sizing routine and thelocal_type_name
_from_netcs()code set conversion routines, which use the value to determine whether
or not new buffer allocation and conversion is necessary from the network code set
to the local code set.

DCE RPC provides one tag-setting routine namedrpc_cs_get_tags()that applications
can use to set code set tag values within the stubs. To use this routine, specify its name
as the argument to thecs_tag_rtn attribute and link your application with the DCE
library. The example ACF for thecs_test interface specifies therpc_cs_get_tags()
routine.

Note that therpc_cs_get_tags()routine always sets the receiving tag value on the
server side to the value that the client specified in the desired receiving tag. See the
rpc_cs_get_tags(3rpc)reference page for an explanation of this routine’s signature
and function.

RPC application programmers who are developing their own tag-setting routines can
also refer to therpc_cs_get_tags(3rpc)reference page to obtain the required signature
for their user-written routine.

The tag-setting routine generally obtains the code set tag values from the binding
handle. These values are usually determined by the character and code set evaluation
routine invoked during the server binding import process, although they can be
explicitly set in the binding handle by using therpc_cs_binding_set_tags()routine.
However, applications can design the tag-setting routine to perform evaluation within
the stubs rather than in the application (client) code. For example, when called from

DCE 1.2.2 Application Development Guide—Core Components 441

DCE Remote Procedure Call

the client side, the DCE RPC tag-setting routinerpc_cs_get_tags()performs character
and code set compatibility evaluation itself if it does not find the tag values in the
binding handle. See Section 16.3.6 for more information on deferred evaluation.

16.3.4 Writing the Server Code

A programmer who is developing an RPC server that supports character and code set
interoperability needs to add the following steps to the server’s initialization functions
in addition to the normal initialization functions it carries out for RPC:

• Setting the server’s locale

• Establishing the server’s supported code sets

• Registering the server’s supported code sets in the name service database

• Establishing a cleanup function that removes the server’s supported code sets from
the name service database on the server’s termination or exit.

The next sections explain these steps in detail.

16.3.4.1 Setting the Server’s Locale

The server initialization code needs to include a platform-specific routine that sets the
locale environment for the server. This step establishes

• The name of the server’s local code set.

• The names of the code sets for which converters exist on the host and consequently,
into which processes that run on the host can convert if necessary.

An example of a locale-setting function is the POSIX, XPG3, XPG4setlocale()
function, which is defined inlocale.h. The server code should call the locale-setting
function as the first step in the initialization code, before calling the DCE RPC routines
that register the interface and export the binding information.

The locale-setting function also establishes the value for two platform-specific macros
that indicate

• The maximum number of bytes the local code set uses to encode one character.

442 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

• The maximum number of bytes that any of the supported code sets on the host
will use to encode one character.

On POSIX, XPG3, and XPG4 platforms, these macros areMB_CUR_MAX and
MB_LEN_MAX and are defined instdlib.h and limits.h , respectively. The buffer-
sizing routines useMB_CUR_MAX when calculating the size of a new buffer to hold
converted character data.

Note that all hosts that are members of an internationalized DCE cell (that is, a cell
that supports internationalized RPC applications) must provide converters that convert
between their supported code sets and the ISO 10646 universal code set. The DCE
RPC functions for character and code set interoperability use the universal code set as
the default intermediate code set into which a client or server can convert if there are
no other compatible code sets between them. Section 16.3.6 discusses intermediate
code sets in more detail.

16.3.4.2 Establishing the Server’s Supported Code Sets

The next step in writing an internationalized RPC server is to add to the server’s
initialization code a call to the DCE RPC routinerpc_rgy_get_codesets(). This routine
gets the supported code set names defined in the locale environment and translates
those names to their unique identifiers by accessing the code set registry on the host.
The server initialization code should call this routine after it has registered the interface
and created a server entry for its binding information in the name service database
(by calling the DCE RPC NSI binding export routinerpc_ns_binding_export()).

The routine returns an array of unique identifiers from the code set registry that
correspond to the server’s local code set and the code sets into which the server can
convert, if necessary; this data structure is called thecode sets array. The code sets
array also contains, for each code set, the maximum number of bytes that code set
uses to encode one character.

The purpose of this step is to obtain the registered unique identifiers for the server’s
supported code sets for use by the DCE character and code set interoperability features,
rather than using the string names for the code sets. The DCE features for character and
code set interoperability do not use string names because different operating systems
commonly use different string names to refer to the same code set, and clients and

DCE 1.2.2 Application Development Guide—Core Components 443

DCE Remote Procedure Call

servers passing international characters in a cell of heterogeneous platforms need to
ensure that they both refer to the same code set when establishing compatibility.

The code set registry provides the means for clients and servers to uniquely identify
a code set while permitting different platforms and the code set converters offered on
those platforms to continue to use the string names for the code sets.

See the rpc_rgy_get_codesets(3rpc)reference pages for a description of the
rpc_rgy_get_codesets()routine’s signature and arguments.

16.3.4.3 Registering the Server’s Supported Code Sets in the
Namespace

The next step in writing an internationalized RPC server is to make a call in the
server’s initialization code to the DCE RPC routinerpc_ns_mgmt_set_attribute(),
which takes the code sets array returned byrpc_rgy_get_codesets()and exports it to
the server’s entry in the name service database. The routine creates a code sets NSI
attribute in the name service database and associates it with the server entry created
by the NSI export operation.

The purpose of this step is to register the server’s supported code sets into
the name service database so that clients can gain access to the information.
Note, then, that server entries for internationalized RPC servers will have code
sets attributes in addition to the binding attributes and object attributes for the
servers. For a general discussion of NSI attributes, see Chapter 14. Refer to
the rpc_ns_mgmt_set_attribute(3rpc) reference page for a description of the
rpc_ns_mgmt_set_attribute()routine’s signature and arguments.

16.3.4.4 Establishing a Cleanup Function for the Namespace

The last step in writing an internationalized RPC server is to add a call to the
DCE RPC routinerpc_ns_mgmt_remove_attribute() to the cleanup code within
the server’s initialization code. This DCE RPC routine will remove the code sets
attribute associated with the server entry from the name service database when
it is called from the cleanup code as the result of a server crash or exit. See

444 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

the rpc_ns_mgmt_remove_attribute(3rpc) reference page for a description of the
rpc_ns_mgmt_remove_attribute()routine’s signature and arguments.

16.3.4.5 Sample Server Code

Here is an example of an internationalized RPC server that exports thecs_testinterface
defined in Section 16.3.1.

#include <stdio.h>

#include <stdlib.h>

#include <dce/rpc.h>

#include <dce/nsattrid.h>

#include <dce/dce_error.h>

#include <locale.h>

#include <pthread.h>

#include <dce/codesets.h>

#include "cs_test.h"

/*

* Macro for result checking

*/

#define CHECK_STATUS(t, func, returned_st, expected_st) \

{ \

if (returned_st == expected_st) { \

} \

else { \

dce_error_inq_text(returned_st, \

(unsigned char *)unexpected, &dce_status); \

dce_error_inq_text(expected_st,\

(unsigned char *)expected, &dce_status); \

printf("FAILED %s()\nresult: %s\nexpected: %s\n\n", \

func, unexpected, expected); \

} \

} \

static unsigned char unexpected[dce_c_error_string_len];

static unsigned char expected[dce_c_error_string_len];

DCE 1.2.2 Application Development Guide—Core Components 445

DCE Remote Procedure Call

static int dce_status;

int

main(int argc, char *argv[])

{

error_status_t status;

int i;

rpc_ns_handle_t inq_contxt;

rpc_binding_vector_t *binding_vector;

rpc_codeset_mgmt_p_t arr;

pthread_t this_thread = pthread_self();

sigset_t sigset;

char *nsi_entry_name;

char *server_locale_name;

error_status_t expected = rpc_s_ok;

int server_pid;

/* The environment variable I18N_SERVER_ENTRY needs

* to be set before running this program. This is

* not a DCE environment variable, so you can set up

* your own environment variable if you like.

*/

nsi_entry_name = getenv("I18N_SERVER_ENTRY");

(void)pthread_mutex_init(&mutex, pthread_mutexattr_default);

/* Set the locale. In this way, the current locale

* information is extracted from XPG/POSIX defined

* environment variable LANG or LC_ALL.

*/

setlocale(LC_ALL, "");

/*

* Get supported code sets.

*/

rpc_rgy_get_codesets (

&arr,

&status);

446 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

CHECK_STATUS(TRUE, "rpc_rgy_get_codesets", status, expected);

rpc_server_register_if (

cs_test_v1_0_s_ifspec,

NULL,

NULL,

&status);

CHECK_STATUS(TRUE, "rpc_server_register_if", status, expected);

rpc_server_use_all_protseqs (

rpc_c_protseq_max_reqs_default,

&status);

CHECK_STATUS(TRUE, "rpc_server_use_all_protseqs", status, expected);

rpc_server_inq_bindings (

&binding_vector,

&status);

CHECK_STATUS(TRUE, "rpc_server_inq_bindings", status, expected);

rpc_ns_binding_export (

rpc_c_ns_syntax_default,

(unsigned_char_p_t)nsi_entry_name,

cs_test_v1_0_s_ifspec,

binding_vector,

NULL,

&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_export", status, expected);

rpc_ep_register (

cs_test_v1_0_s_ifspec,

binding_vector,

NULL,

NULL,

&status);

DCE 1.2.2 Application Development Guide—Core Components 447

DCE Remote Procedure Call

CHECK_STATUS(TRUE, "rpc_ep_register", status, expected);

/*

* Register the server’s supported code sets into the name space.

*/

rpc_ns_mgmt_set_attribute (

rpc_c_ns_syntax_default,

(unsigned_char_p_t)nsi_entry_name,

rpc_c_attr_codesets,

(void *)arr,

&status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_set_attribute", status, expected);

/*

* Free memory allocated by getting code sets.

*/

rpc_ns_mgmt_free_codesets (&arr, &status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codeset", status, expected);

sigemptyset(&sigset);

sigaddset(&sigset, SIGINT);

if (pthread_signal_to_cancel_np(&sigset, &this_thread) != 0)

{

printf("pthread_signal_to_cancel_np failed\n");

exit(1);

}

TRY

{

server_pid = getpid();

printf("Listening for remote procedure calls...\n");

rpc_server_listen (

rpc_c_listen_max_calls_default,

&status);

CHECK_STATUS(TRUE, "rpc_server_listen", status, expected);

448 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

/*

* Remove code set attributes from namespace on return.

*/

rpc_ns_mgmt_remove_attribute (

rpc_c_ns_syntax_default,

(unsigned_char_p_t)nsi_entry_name,

rpc_c_attr_codesets,

&status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_remove_attribute", status, \

expected);

rpc_ns_binding_unexport (

rpc_c_ns_syntax_default,

(unsigned_char_p_t)nsi_entry_name,

cs_test_v1_0_s_ifspec,

(uuid_vector_p_t)NULL,

&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_unexport", status, expected);

rpc_ep_unregister (

cs_test_v1_0_s_ifspec,

binding_vector,

NULL,

&status);

CHECK_STATUS(TRUE, "rpc_ep_unregister", status, expected);

rpc_binding_vector_free (

&binding_vector,

&status);

CHECK_STATUS(TRUE, "rpc_binding_vector_free", status, expected);

rpc_server_unregister_if (

cs_test_v1_0_s_ifspec,

NULL,

&status);

DCE 1.2.2 Application Development Guide—Core Components 449

DCE Remote Procedure Call

CHECK_STATUS(TRUE, "rpc_server_unregister_if", status, expected);

(void)pthread_mutex_destroy(&mutex);

}

CATCH_ALL

{

/*

* Remove code set attribute from namespace on a signal.

*/

rpc_ns_mgmt_remove_attribute (

rpc_c_ns_syntax_default,

(unsigned_char_p_t)nsi_entry_name,

rpc_c_attr_codesets,

&status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_remove_attribute", status, \

expected);

rpc_ns_binding_unexport (

rpc_c_ns_syntax_default,

(unsigned_char_p_t)nsi_entry_name,

cs_test_v1_0_s_ifspec,

(uuid_vector_p_t)NULL,

&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_unexport", status, expected);

rpc_ep_unregister (

cs_test_v1_0_s_ifspec,

binding_vector,

NULL,

&status);

CHECK_STATUS(TRUE, "rpc_ep_unregister", status, expected);

rpc_binding_vector_free (

&binding_vector,

&status);

450 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

CHECK_STATUS(TRUE, "rpc_binding_vector_free", status, expected);

rpc_server_unregister_if (

cs_test_v1_0_s_ifspec,

NULL,

&status);

CHECK_STATUS(TRUE, "rpc_server_unregister_if", status, expected);

(void)pthread_mutex_destroy(&mutex);

}

ENDTRY;

}

16.3.5 Writing the Client Code

A programmer who is developing an RPC client that supports character and code set
interoperability needs to add the following steps to the client code in addition to the
basic functions for RPC:

1. Setting the client’s locale

2. Establishing a character and code set compatibility evaluation routine that the NSI
server binding import routines will call to evaluate potential servers for character
and code set compatibility

The next sections explain these steps in detail.

16.3.5.1 Setting the Client’s Locale

The first step in developing an internationalized RPC client is to add a call within
the client code to a platform-specific function that sets the locale environment for the
client. This step establishes

• The name of the client’s local code set.

DCE 1.2.2 Application Development Guide—Core Components 451

DCE Remote Procedure Call

• The names of the code sets for which converters exist on the host and,
consequently, into which processes that run on the host can convert if necessary.

The call to the locale-setting function must be the first call made within the client
code. An example of a locale-setting function is the POSIX, XPG3, XPG4setlocale()
function, which is defined inlocale.h.

The locale-setting function also establishes the value for two platform-specific macros
that indicate

• The maximum number of bytes the local code set uses to encode one character.

• The maximum number of bytes that any of the supported code sets on the host
will use to encode one character.

On the POSIX, XPG3, XPG4 platform, these macros areMB_CUR_MAX and
MB_LEN_MAX and are defined instdlib.h and limits.h , respectively. The buffer-
sizing routines use theMB_CUR_MAX macro when calculating the size of a new
buffer to hold converted character data.

Note that all hosts that are members of an internationalized DCE cell must provide
converters that convert between their supported code sets and the ISO 10646 universal
code set. The DCE RPC functions for character and code set interoperability use the
universal code set as the default intermediate code set into which a client or server
can convert if there are no other compatible code sets between them. Section 16.3.6
discusses intermediate code sets in more detail.

16.3.5.2 Establishing the Compatibility Evaluation Routine

The last step in writing an internationalized RPC client is to call the DCE
RPC NSI routine rpc_ns_import_ctx_add_eval(). The purpose of this
NSI routine is to add evaluation routines to the import context created
by the rpc_ns_binding_import_begin() routine that the NSI routine
rpc_ns_binding_import_next() will call to perform additional compatibility
evaluation on potential servers.

The internationalized RPC client code calls therpc_ns_import_ctx_add_eval()
routine to set up one or more character and code set compatibility evaluation
routines to be called fromrpc_ns_binding_import_next(). The client code must

452 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

make the call torpc_ns_import_ctx_add_eval()once for each compatibility routine
that it wants to add to the import context forrpc_ns_binding_import_next(). See
the rpc_ns_import_ctx_add_eval(3rpc) reference page for a description of the
rpc_ns_import_ctx_add_eval()routine’s signature and arguments.

The rpc_ns_import_ctx_add_eval() must be used in conjunction with the
rpc_ns_binding_import_begin/next/done() suite of RPC NSI binding functions
because these functions provide an import context argument. If you want to use
the rpc_ns_binding_lookup_begin/next/done/select()suite of RPC NSI routines,
your client code will need to perform character and code set evaluation logic on the
binding handle returned byrpc_ns_binding_select(). Section 16.3.6.4 provides a
sample client that performs character and code set evaluation in conjunction with the
lookup andselectRPC NSI routines.

16.3.5.3 Sample Client Code

Here is an example of an internationalized RPC client that calls the operation defined
in the cs_testinterface shown in Section 16.3.1. The client establishes the DCE RPC
evaluation routinerpc_cs_eval_without_universal()as the character and code set
evaluation routine to use.

#include <stdio.h>

#include <locale.h>

#include <dce/rpc.h>

#include <dce/rpcsts.h>

#include <dce/dce_error.h>

#include "cs_test.h" /* IDL generated header file */

/*

* Result check MACRO

*/

#define CHECK_STATUS(t, func, returned_st, expected_st) \

{ \

if (returned_st == expected_st) { \

/*

* Do nothing.

DCE 1.2.2 Application Development Guide—Core Components 453

DCE Remote Procedure Call

*/

} else { \

dce_error_inq_text(returned_st,\

(unsigned char *)unexpected, &dce_status); \

dce_error_inq_text(expected_st, \

(unsigned char *)expected, &dce_status); \

printf("FAILED %s()\nresult: %s\nexpected: %s\n\n", \

func, unexpected, expected); \

} \

} \

static unsigned char unexpected[dce_c_error_string_len];

static unsigned char expected[dce_c_error_string_len];

static int dce_status;

void

main(void)

{

rpc_binding_handle_t bind_handle;

rpc_ns_handle_t import_context;

error_status_t status;

error_status_t temp_status;

cs_byte net_string[SIZE];

cs_byte loc_string[SIZE];

unsigned char err_buf[256];

char *nsi_entry_name;

char *client_locale_name;

int i, rpc_num;

FILE *fp_in, *fp_out;

/* The environment variable I18N_SERVER_ENTRY needs

* to be set before running this program. This is

* not a DCE environment variable, so you can set up

* your own environment variable if you like.

*/

nsi_entry_name = getenv("I18N_SERVER_ENTRY");

setlocale(LC_ALL, "");

454 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

rpc_ns_binding_import_begin (

rpc_c_ns_syntax_default,

(unsigned_char_p_t)nsi_entry_name,

cs_test_v1_0_c_ifspec,

NULL,

&import_context,

&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_import_begin", status, rpc_s_ok);

/*

* Add code set compatibility checking logic to the context.

*/

rpc_ns_import_ctx_add_eval (

&import_context,

rpc_c_eval_type_codesets,

(void *)nsi_entry_name,

rpc_cs_eval_without_universal,

NULL,

&status);

CHECK_STATUS(TRUE, "rpc_ns_import_ctx_add_eval", status, rpc_s_ok);

while (1) {

rpc_ns_binding_import_next (

import_context,

&bind_handle,

&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_import_next", status, \

rpc_s_ok);

if (status == rpc_s_ok)

break;

else

{

return;

}

}

rpc_ns_binding_import_done (

DCE 1.2.2 Application Development Guide—Core Components 455

DCE Remote Procedure Call

&import_context,

&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_import_done", status, rpc_s_ok);

rpc_ep_resolve_binding (bind_handle,

cs_test_v1_0_c_ifspec,

&temp_status);

CHECK_STATUS(TRUE, "rpc_ep_resolve_binding", temp_status, rpc_s_ok);

if(rpc_mgmt_is_server_listening(bind_handle, &status)

&& temp_status == rpc_s_ok)

{

; /* Do nothing. */

}

else

{

dce_error_inq_text ((unsigned long)status,

err_buf, (int *)&temp_status);

printf("is_server_listening error -> %s\n", err_buf);

}

/*

* This program reads the data from a file.

*/

fp_in = fopen("./i18n_input_data", "r");

if (fp_in == NULL)

{

printf("i18n_input_data open failed\n");

return;

}

fp_out = fopen("./i18n_method_fixed_result_file", "w");

if (fp_out == NULL)

{

printf("i18n_result_file open failed\n");

456 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

fclose(fp_in);

return;

}

rpc_num = 1;

while (!feof(fp_in))

{

(void)fgets((char *)net_string, SIZE, fp_in);

temp_status = cs_fixed_trans(bind_handle, net_string, loc_string);

if (temp_status != rpc_s_ok)

{

dce_error_inq_text(temp_status, err_buf, (int *)&status);

printf("FAILED %ld MSG: %s\n", (unsigned long)temp_status, \

err_buf);

}

else

{

printf("PASSED rpc #%d\n", rpc_num++);

(void)fputs((char *)loc_string, fp_out);

(void)fputs("\n", fp_out);

}

}

fclose(fp_in);

fclose(fp_out);

return;

}

16.3.6 Writing the Evaluation Routine

Recall from Chapter 1 of theDCE 1.2.2 Application Development—Introduction and
Style Guideand Chapter 11 of this guide that when a prospective client attempts to
import binding information from a namespace entry that it looks up by name, the NSI

DCE 1.2.2 Application Development Guide—Core Components 457

DCE Remote Procedure Call

import routine checks the binding for compatibility with the client by comparing
interface UUIDs and protocol sequences. If the UUIDs match and the protocol
sequences are compatible, the NSI operation considers the binding handle contained in
the server entry to be compatible and returns it to the client. Internationalized clients
need to perform additional compatibility checking on potential server bindings: they
need to evaluate the server for character and code set compatibility.

The purpose of the character and code set compatibility evaluation routine is to
determine

• Whether the character set the server supports is compatible with the client’s
character set, since incompatible character sets result in unacceptable data loss
during character conversion.

• The level of code set compatibility between client and server, which determines the
conversion methodthat the client and server will use when transferring character
data between them.

A conversion method is a process for converting one code set into another. There are
four conversion methods:

• Receiver Makes It Right (RMIR)—The recipient of the data is responsible for
converting the data from the sender’s code set to its own code set. This is the
method that the RPC communications protocol uses to convert PCS character data
between ASCII and EBCDIC code sets.

• Client Makes It Right (CMIR)—The client converts the input character data to
be sent to the server into the server’s code set before the data is transmitted over
the network, and converts output data received from the server from the server’s
code set into its own local code set.

• Server Makes It Right (SMIR)—The server converts the input character data
received from the client into its local code set from the client’s code set and
converts output data to be sent to the client into the client’s code set before the
data is transmitted over the network.

• Intermediate—Both client and server convert to a common code set. DCE defines
a default intermediate code set to be used when there is no match between the
client and server’s supported code sets; this code set is the ISO 10646 universal
code set. Sites can also specify other code sets to be used as intermediate code
sets in preference to ISO 10646; to do this, they run thecsrc utility. See the
csrc(8dce)reference pages for a description ofcsrc utility usage.

458 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

A character and code set compatibility evaluation routine generally employs a
conversion modelwhen determining the level of code set compatibility. A conversion
model is an ordering of conversion methods; for example, CMIR first, then SMIR,
then intermediate. Consequently, the actual conversion method used is determined at
runtime.

16.3.6.1 DCE RPC Evaluation Routines

DCE RPC provides two character and code set compatibility evaluation routines:
rpc_cs_eval_with_universal()and rpc_cs_eval_without_universal(). To use either
one of these routines, specify their names in the evaluation function argument to the
rpc_ns_import_ctx_add_eval()routine. (The sample client code shown in Section
16.3.5.3 specifies a DCE RPC character and code set evaluation routine.)

The rpc_cs_eval_with_universal()routine first compares the client’s local code set
with the server’s local code set. If they are the same, client-server character and code
set compatibility exists. The routine returns to the NSI import routine, which returns
the server binding to the client.

If the routine finds that the client and server local code sets differ, it calls the
routine rpc_cs_char_set_compat_check()to determine client-server character set
compatibility. If the client and server are using the same character set, it will be
safe for them to exchange character data despite their use of different encodings for
the character data. Clients and servers using different character sets are considered to
be incompatible since the process of converting the character data from one character
set to the other will result in significant data loss.

Using the client and server’s local code set identifiers as indexes into the code set
registry, therpc_cs_char_set_compat_check()routine obtains the registered values
that represent the character set(s) that the specified code sets support. If the client
and server support just one character set, the routine compares the values for
compatibility. If the values do not match, then the client-server character sets are
not compatible; for example, the client is using the German character set and the
server is using the Korean character set. In this case, the routine returns the status
coderpc_s_ss_no_compat_charsetsto the evaluation routine so that binding to that
server will be rejected.

DCE 1.2.2 Application Development Guide—Core Components 459

DCE Remote Procedure Call

If the client and server support multiple character sets, the
rpc_cs_char_set_compat_check()routine determines whether at least two of
the sets are compatible. If two or more sets match, the routine considers the character
sets compatible and returns a success status code to the evaluation routine.

In the case where the client and server are character set compatible, the
rpc_cs_eval_with_universal() routine uses the following model to determine a
conversion method:

• RMIR (receiver makes it right)

• SMIR (client uses its local code set, server converts to and from it)

• CMIR (server uses its local code set, client converts to and from it)

• Use an intermediate code set

• Use the universal (ISO 10646) code set

This conversion model translates into the following steps:

1. The rpc_cs_eval_with_universal()routine takes the client’s local code set and
searches through the server’s code sets array to determine whether it has a
converter for the client’s local set. Then it takes the server’s local code set and
searches through the client’s code sets array to see if it has a converter for the
server’s local code set.

2. If both client and server support converters for each other’s local code sets (that
is, they can convert to and from each other’s local code set), the routine sets the
conversion method to RMIR.

3. If the server can convert to and from the client’s local code set, but the client
cannot convert from the server’s local code set, the routine sets the conversion
method to SMIR.

4. If the client can convert to and from the server’s local code set, but the server
cannot convert to and from the client’s local code set, the routine sets the
conversion method to CMIR.

If the conversion method is SMIR or RMIR, therpc_cs_eval_with_universal()
routine sets both the sending tag and the desired receiving tag to the code set
value that represents the client’s local code set. In the case of CMIR, the routine
sets both the sending tag and the desired receiving tag to the code set value that
represents the server’s local code set.

460 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

5. If neither client nor server support each other’s local code set, the routine next
determines if they both support a code set into which they both can convert to/
from their local code sets. If it finds an intermediate set into which they both can
convert, it sets the conversion method to INTERMEDIATE and sets the sending
tag and desired receiving tag to the code set value that represents the intermediate
code set to use.

6. If the routine does not find any intermediate code set into which client and server
can convert, it sets the sending tag and desired receiving tag to the code set value
that represents the ISO 10646 universal code set, which is the default intermediate
code set that all DCE clients and servers support.

The rpc_cs_eval_without_universal()routine uses the following conversion model
to determine a conversion method:

• RMIR

• SMIR (client uses its local code set, server converts to and from it)

• CMIR (server uses its local code set, client converts to and from it)

• Intermediate

• Reject for code set incompatibility

Consequently, therpc_cs_eval_without_universal()uses the same evaluation logic
asrpc_cs_eval_with_universal()except that it rejects the server binding if the client
and server do not support a common code set to use as an intermediate code set.

16.3.6.2 Writing Customized Evaluation Routines

Programmers writing internationalized RPC applications can develop their own
character and code set compatibility evaluation routines if their applications’ needs
are not met by the DCE RPC evaluation routines. These programmers may want to
use the following DCE RPC routines within their evaluation routine:

• The rpc_rgy_get_codesets()routine

• The rpc_cs_char_set_compat_check()routine

• The rpc_cs_binding_set_tags()routine

• The dce_cs_loc_to_rgy()routine

DCE 1.2.2 Application Development Guide—Core Components 461

DCE Remote Procedure Call

• The rpc_ns_mgmt_read_codesets()routine

• The rpc_ns_mgmt_free_codesets()routine

Refer to theDCE 1.2.2 Application Development Referencefor complete details about
these routines.

Programmers who write their own evaluation routines can also select when evaluation
is performed; that is, they can defer evaluation from occurring in the client code,
or they can defer evaluation completely at the client side and let it take place in the
server instead. Programmers who desire to defer evaluation to the client stub can write
an evaluation routine that sets the client’s and server’s supported code sets into the
binding handle returned by the client, then write the evaluation logic into the stub
support routine for tag setting so that it performs evaluation within the client stub.

Applications that do evaluation in the client stub take the chance that the binding
handle that is evaluated is the only binding handle available. For example, suppose
there are three binding handles. Two are character and code set compatible, and one
is incompatible. The incompatible binding is selected for RPC. If you evaluate in the
tag-setting routine, you cannot reselect to get the other compatible bindings.

In general, it is recommended that character and code set evaluation take place in the
client, rather than the server, for performance reasons. Also, once the server is selected
and a connection is established between it and the client, the client cannot typically
reselect the server because the code sets are incompatible.

Within the client, it is recommended that evaluation be performed in the client code
rather than in the client stub because deferring evaluation to occur in the client stub
removes any way for the client to gain access to other potential binding handles.

16.3.6.3 Notes About Tag Setting

The DCE RPC character and code set compatibility evaluation routines set the method
and the code set tag values into a data structure in the binding handle returned to the
client. These routines always set the sending tag and desired receiving tag to the same
code set value.

In addition, if the application uses the DCE RPC routinerpc_cs_get_tags()to set the
code set tags for the stubs, the value of the server’s receiving tag will always be the

462 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

value of what the client sent to it in the desired receiving tag. If RMIR is used, the
desired receiving tag is the server’s current code set.

RPC application programmers who do not want to use the DCE RPC-provided
evaluation routines can use therpc_cs_binding_set_tags()routine to set the code
set tag values into a binding handle.

16.3.6.4 Example Character and Code Set Evaluation Logic

Here is an example client program of thecs_test interface that provides its
own character and code set evaluation logic. This example client uses the
rpc_cs_binding_set_tags()routine to set the code set tags within the client code
rather than using a tag-setting routine to set them within the stub code.

#include <stdio.h>

#include <locale.h>

#include <dce/rpc.h>

#include <dce/rpcsts.h>

#include <dce/dce_error.h>

#include "cs_test.h" /* IDL generated header file */

/*

* Result check MACRO

*/

#define CHECK_STATUS(t, func, returned_st, expected_st) \

{ \

if (returned_st == expected_st) { \

; /* No operation */

} else { \

dce_error_inq_text(returned_st,\

(unsigned char *)unexpected, &dce_status); \

dce_error_inq_text(expected_st,\

(unsigned char *)expected, &dce_status); \

printf("FAILED %s()\nresult: %s\nexpected: %s\n\n", \

func, unexpected, expected); \

DCE 1.2.2 Application Development Guide—Core Components 463

DCE Remote Procedure Call

} \

} \

static unsigned char unexpected[dce_c_error_string_len];

static unsigned char expected[dce_c_error_string_len];

static int dce_status;

void

main(void)

{

rpc_binding_handle_t bind_handle;

rpc_ns_handle_t lookup_context;

rpc_binding_vector_p_t bind_vec_p;

unsigned_char_t *entry_name;

unsigned32 binding_count;

cs_byte net_string[SIZE];

cs_byte loc_string[SIZE];

int i, k, rpc_num;

int model_found, smir_true, cmir_true;

rpc_codeset_mgmt_p_t client, server;

unsigned32 stag;

unsigned32 drtag;

unsigned16 stag_max_bytes;

error_status_t status;

error_status_t temp_status;

unsigned char err_buf[256];

char *nsi_entry_name;

char *client_locale_name;

FILE *fp_in, *fp_out;

nsi_entry_name = getenv("I18N_SERVER_ENTRY");

setlocale(LC_ALL, "");

rpc_ns_binding_lookup_begin (

rpc_c_ns_syntax_default,

(unsigned_char_p_t)nsi_entry_name,

cs_test_v1_0_c_ifspec,

NULL,

464 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

rpc_c_binding_max_count_default,

&lookup_context,

&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_lookup_begin", status, rpc_s_ok);

rpc_ns_binding_lookup_next (

lookup_context,

&bind_vec_p,

&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_lookup_next", status, rpc_s_ok);

rpc_ns_binding_lookup_done (

&lookup_context,

&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_lookup_done", status, rpc_s_ok);

/*

* Get the client’s supported code sets

*/

rpc_rgy_get_codesets (

&client,

&status);

CHECK_STATUS(TRUE, "rpc_rgy_get_codesets", status, rpc_s_ok);

binding_count = (bind_vec_p)->count;

for (i=0; i < binding_count; i++)

{

if ((bind_vec_p)->binding_h[i] == NULL)

continue;

rpc_ns_binding_select (

bind_vec_p,

&bind_handle,

&status);

CHECK_STATUS(FALSE, "rpc_ns_binding_select", status, rpc_s_ok);

DCE 1.2.2 Application Development Guide—Core Components 465

DCE Remote Procedure Call

if (status != rpc_s_ok)

{

rpc_ns_mgmt_free_codesets(&client, &status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets",

status, rpc_s_ok);

}

rpc_ns_binding_inq_entry_name (

bind_handle,

rpc_c_ns_syntax_default,

&entry_name,

&status);

CHECK_STATUS(TRUE, "rpc_ns_binding_inq_entry_name", status, \

rpc_s_ok);

if (status != rpc_s_ok)

{

rpc_ns_mgmt_free_codesets(&client, &status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets",

status, rpc_s_ok);

}

/*

* Get the server’s supported code sets from NSI

*/

rpc_ns_mgmt_read_codesets (

rpc_c_ns_syntax_default,

entry_name,

&server,

&status);

CHECK_STATUS(FALSE, "rpc_ns_mgmt_read_codesets", status, \

rpc_s_ok);

if (status != rpc_s_ok)

{

rpc_ns_mgmt_free_codesets(&client, &status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets",

status, rpc_s_ok);

466 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

}

/*

* Start evaluation

*/

if (client->codesets[0].c_set == server->codesets[0].c_set)

{

/*

* client and server are using the same code set

*/

stag = client->codesets[0].c_set;

drtag = server->codesets[0].c_set;

break;

}

/*

* check character set compatibility first

*/

rpc_cs_char_set_compat_check (

client->codesets[0].c_set,

server->codesets[0].c_set,

&status);

CHECK_STATUS(FALSE, "rpc_cs_char_set_compat_check",

status, rpc_s_ok);

if (status != rpc_s_ok)

{

rpc_ns_mgmt_free_codesets(&server, &status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets",

status, rpc_s_ok);

}

smir_true = cmir_true = model_found = 0;

for (k = 1; k <= server->count; k++)

{

if (model_found)

break;

DCE 1.2.2 Application Development Guide—Core Components 467

DCE Remote Procedure Call

if (client->codesets[0].c_set

== server->codesets[k].c_set)

{

smir_true = 1;

model_found = 1;

}

if (server->codesets[0].c_set

== client->codesets[k].c_set)

{

cmir_true = 1;

model_found = 1;

}

}

if (model_found)

{

if (smir_true && cmir_true)

{

/* RMIR model works */

stag = client->codesets[0].c_set;

drtag = server->codesets[0].c_set;

stag_max_bytes

= client->codesets[0].c_max_bytes;

}

else if (smir_true)

{

/* SMIR model */

stag = client->codesets[0].c_set;

drtag = client->codesets[0].c_set;

stag_max_bytes

= client->codesets[0].c_max_bytes;

}

else

{

/* CMIR model */

stag = server->codesets[0].c_set;

drtag = server->codesets[0].c_set;

stag_max_bytes

= server->codesets[0].c_max_bytes;

468 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

}

/*

* set tags value to the binding

*/

rpc_cs_binding_set_tags (

&bind_handle,

stag,

drtag,

stag_max_bytes,

&status);

CHECK_STATUS(FALSE, "rpc_cs_binding_set_tags",

status, rpc_s_ok);

if (status != rpc_s_ok)

{

rpc_ns_mgmt_free_codesets(&server, &status);

CHECK_STATUS(FALSE, "rpc_ns_mgmt_free_codesets",

status, rpc_s_ok);

rpc_ns_mgmt_free_codesets(&client, &status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets",

status, rpc_s_ok);

}

}

else

{

/*

* try another binding

*/

rpc_binding_free (

&bind_handle,

&status);

CHECK_STATUS(FALSE, "rpc_binding_free", status, rpc_s_ok);

if (status != rpc_s_ok)

{

rpc_ns_mgmt_free_codesets(&server, &status);

CHECK_STATUS(FALSE, "rpc_ns_mgmt_free_codesets", \

status, rpc_s_ok);

rpc_ns_mgmt_free_codesets(&client, &status);

DCE 1.2.2 Application Development Guide—Core Components 469

DCE Remote Procedure Call

CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets", \

status, rpc_s_ok);

}

}

}

rpc_ns_mgmt_free_codesets(&server, &status);

CHECK_STATUS(FALSE, "rpc_ns_mgmt_free_codesets", status, rpc_s_ok);

rpc_ns_mgmt_free_codesets(&client, &status);

CHECK_STATUS(TRUE, "rpc_ns_mgmt_free_codesets", status, rpc_s_ok);

if (!model_found)

{

printf("FAILED No compatible server found\n");

tet_result(TET_DCE_FAIL);

}

rpc_ep_resolve_binding (bind_handle,

cs_test_v1_0_c_ifspec,

&temp_status);

CHECK_STATUS(TRUE, "rpc_ep_resolve_binding", temp_status, rpc_s_ok);

if(rpc_mgmt_is_server_listening(bind_handle, &status)

&& temp_status == rpc_s_ok)

{

printf("PASSED rpc_mgmt_is_server_listening());

}

else

{

dce_error_inq_text ((unsigned long)status, err_buf,

(int *)&temp_status);

printf("is_server_listening error -> %s\n", err_buf);

}

fp_in = fopen("./i18n_input_data", "r");

if (fp_in == NULL)

{

470 DCE 1.2.2 Application Development Guide—Core Components

Writing Internationalized RPC Applications

printf("i18n_input_data open failed\n");

tet_result(TET_DCE_FAIL);

}

fp_out = fopen("./i18n_tags_fixed_result_file", "w");

if (fp_out == NULL)

{

printf("i18n_result_file open failed\n");

tet_result(TET_DCE_FAIL);

}

rpc_num = 1;

while (!feof(fp_in))

{

(void)fgets((char *)net_string, SIZE, fp_in);

temp_status = cs_fixed_trans(bind_handle, net_string, loc_string);

if (temp_status != rpc_s_ok)

{

dce_error_inq_text(temp_status, err_buf, (int *)&status);

printf("FAILED %ld MSG: %s\n", (unsigned long)temp_status, \

err_buf);

}

else

{

printf("PASSED rpc #%d\n", rpc_num++);

(void)fputs((char *)loc_string, fp_out);

(void)fputs(", fp_out);

}

}

fclose(fp_in);

fclose(fp_out);

return;

}

DCE 1.2.2 Application Development Guide—Core Components 471

Chapter 17
Topics in RPC Application
Development

This chapter describes special features of DCE RPC for application development. The
topics include

• Memory management

• Error handling

• Context handles

• Pipes

• Nested calls and callbacks

• Routing RPCs

• Portable data and the IDL encoding services

DCE 1.2.2 Application Development Guide—Core Components 473

DCE Remote Procedure Call

17.1 Memory Management

When called to handle a remote operation, RPC client stubs allocate and free memory
by using whatever memory management scheme is currently in effect. Theclient
code—the generic code that can be called from either RPC clients or RPC servers—
can use DCE RPC stub support routines to control which memory management scheme
the stubs will use.

If client code has not explicitly set the memory management routines, the RPC client
stubs use the following defaults:

• When called from manager code, and the operation contains one or more
parameters that are full or unique pointers, or the ACFenable_allocateattribute
has been applied, the client stubs use therpc_ss_allocate()and rpc_ss_free()
routines.

• When called from any other context, the RPC client stubs use the operating
system allocation and free routines (for example,malloc() and free()) on POSIX
platforms.

Note that the memory management scheme established, whether explicitly or by
default, is on a per-thread basis.

RPC server stubs do not allocate memory. Instead, they rely on themanager code—the
code that the server stubs call—to allocate it for them.

The following sections gives guidelines for how client code and manager code should
use the the various allocation and free routines provided with DCE.

Note: DCE provides two versions of DCE RPC stub support routines. Therpc_ss_
* () routines raise an exception, while therpc_sm_* () routines return an
error status value. In all other ways, the routines are identical. It is generally
recommended that you use therpc_sm_* () routines instead of therpc_ss_*
() routines for compliance with theApplication Environment Specification/
Distributed Computing.

474 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

17.1.1 Using the Memory Management Defaults

If it does not matter to the client code which memory allocation routine the RPC
client stubs use, the client code should call therpc_ss_client_free()routine to free
any memory that the client stub allocates and returns. Therpc_ss_client_free()routine
uses the current free routine that is in effect. Client code that usesrpc_ss_client_free()
must use caution if it calls other routines before it frees all of the pieces of allocated
storage withrpc_ss_client_free(), because it is possible that the called code has been
written so that it swaps in a different allocation/free pair without reestablishing the
previous allocation/free pair on exit.

17.1.2 Using rpc_ss_allocate and rpc_ss_free

Both client code and manager code can userpc_ss_allocate()andrpc_ss_free(). The
next sections describe how.

17.1.2.1 Usingrpc_ss_allocateand rpc_ss_freein Manager Code

Manager code uses either therpc_ss_allocate()and rpc_ss_free() routines or the
operating system allocation and free routines to allocate and free memory.

Manager code usesrpc_ss_allocate()to allocate storage for data that the server stub
is to send back to the client. Manager code can either userpc_ss_free()to free the
storage explicitly, or it can rely on the server stub to free it. After the server stub
marshalls the output parameters, it releases any storage that the manager code has
allocated withrpc_ss_allocate().

Manager code can also use therpc_ss_free()routine to release storage pointed to by
a full pointer in an input parameter and have the freeing of the memory reflected on
return to the calling application if thereflect_deletionsattribute has been specified as
an operation attribute in the interface definition. See Chapter 18 for instructions on
how to declare thereflect_deletionsoperation attribute.

Manager code uses the operating system allocation routine to create storage for its
internal data. The server stub does not automatically free memory that operating system

DCE 1.2.2 Application Development Guide—Core Components 475

DCE Remote Procedure Call

allocation routines have allocated. Instead, manager code must use the operating
system free routine to deallocate the memory explicitly before it exits.

When manager code makes a remote call, the default memory management routines
are rpc_ss_allocate()and rpc_ss_free().

17.1.2.2 Usingrpc_ss_allocateand rpc_ss_freein Client Code

Client code may also want to use therpc_ss_allocate()and rpc_ss_free()routines
as the stub memory management scheme. However, before client code can use
rpc_ss_allocate()and rpc_ss_free(), it must first call therpc_ss_enable_allocate()
routine, which enables the use ofrpc_ss_allocate(). If client code calls
rpc_ss_enable_allocate(), it must also call therpc_ss_disable_allocate()routine
before it exits its thread to disable use ofrpc_ss_allocate(). This routine releases all
of the memory allocated by calls torpc_ss_allocate()in that thread since the call to
rpc_ss_enable_allocate()was made. As a result, client code can either free each piece
of allocated storage withrpc_ss_free(), or it can haverpc_ss_disable_allocate()free
it all at once when it disables therpc_ss_allocate/freememory management scheme.

Before calling rpc_ss_enable_allocate(), client code must ensure that it has not
been called by code that has already set up therpc_ss_allocate/freememory
management scheme. As a result, if the client code can ensure that it has not
been called from a manager routine,and it can ensure that any previous calls to
rpc_ss_enable_allocate()have been paired with calls torpc_ss_disable_allocate(), it
can safely callrpc_ss_enable_allocate().

If client code cannot ensure that these conditions are true, it should check to make
sure therpc_ss_allocate/freescheme has not already been set up. For example:

/* Get RPC memory allocation thread handle */

rpc_ss_thread_handle_t thread_handle;

idl_void_p_t (*p_saved_alloc)(unsigned long);

void (*p_saved_free)(idl_void_p_t);

TRY

thread_handle = rpc_ss_get_thread_handle();

476 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

CATCH(pthread_badparam_e)

thread_handle = NULL;

ENDTRY

if (thread_handle == NULL) {

/* Set up rpc_ss_allocate environment */

rpc_ss_enable_allocate();

}

rpc_ss_swap_client_alloc_free(

appl_client_alloc,appl_client_free,

&p_saved_alloc,&p_saved_free);

After control returns from the client stub, the client code should again check
to see whetherrpc_ss_allocate/free has already been enabled before it calls
rpc_ss_disable_allocate():

rpc_ss_set_client_alloc_free(p_saved_alloc,p_saved_free);

/* If we set up rpc_ss_allocate environment, disable it now */

if (thread_handle == NULL)

rpc_ss_disable_allocate();

17.1.3 Using Your Own Allocation and Free Routines

At times it might be necessary for client code to change the routines that the client
stubs use to allocate and free memory. For example, client code that is making an
RPC call might want to direct the RPC client stubs to use special debug versions
of malloc() and free() that check for memory leaks. Another example might be an
application that uses DCE RPC but needs to preserve its users’ ability to free memory
returned from the application by using the platform’s memory management scheme
(rather than exposing the user to DCE).

DCE 1.2.2 Application Development Guide—Core Components 477

DCE Remote Procedure Call

Client code that wants to use its own memory allocation and free routines can
use the rpc_ss_swap_client_alloc_free()routine to exchange the current client
allocation and freeing mechanism for one supplied in the call. The routine returns
pointers to the memory allocation and free routines formerly in use. Before calling
rpc_ss_swap_client_alloc_free(), client code must ensure that it has not been called
from a manager routine.

Deallocation of allocated storage returned from the client stubs is not automatic.
Therefore, client code must ensure that it uses the free routine that it specified in the
call to rpc_ss_swap_client_alloc_free()to deallocate each piece of allocated storage.

Client code that swaps in memory management routines with
rpc_ss_swap_client_alloc_free() should use the rpc_ss_set_client_alloc_free()
routine before it exits to restore the old allocation and free routines.

17.1.4 Using Thread Handles in Memory Management

There are two situations where control of memory management requires the use of
thread handles. The more common situation is when the manager thread spawns
additional threads. The less common situation is when a program transitions from
being a client to being a server, then reverts to being a client.

17.1.4.1 Spawning Threads

When a remote procedure call invokes the manager code, the manager code may wish
to spawn additional threads to complete the task for which it was called. To spawn
additional threads that are able to perform memory management, the manager code
must first call therpc_ss_get_thread_handle()routine to get its thread handle and
then pass that thread handle to each spawned thread. Each spawned thread must call
the rpc_ss_set_thread_handle()routine with the handle received from the manager
code.

These routine calls allow the manager and its spawned threads to share a common
memory management environment. This common environment enables memory
allocated by the spawned threads to be used in returned parameters and causes all

478 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

allocations in the common memory management environment to be released when the
manager thread returns to the server stub.

The main manager thread must not return control to the server stub before all the
threads it spawned complete execution; otherwise, unpredictable results may occur.

The listener thread can cancel the main manager thread if the remote procedure call is
orphaned or if a cancellation occurs on the client side of the application. You should
code the main manager thread to terminate any spawned threads before it exits. The
code should anticipate exits caused by an unexpected exception or by being canceled.

Your code can handle all of these cases by including aTRY/FINALLY block
to clean up any spawned threads if a cancellation or other exception occurs. If
unexpected exceptions do not concern you, then your code can perform two steps.
They are disabling cancelability before threads are spawned followed by enabling
cancelability after the join operation finishes and after testing for any pending cancel
operations. Following this disable/enable sequence prevents routinepthread_join()
from producing a cancel point in a manager thread that has spawned threads which,
in turn, share thread handles with the manager thread.

17.1.4.2 Transitioning from Client to Server to Client

Immediately before the program changes from a client to a server, it must obtain a
handle on its environment as a client by callingrpc_ss_get_thread_handle(). When
it reverts from a server to a client, it must reestablish the client environment by calling
the rpc_ss_set_thread_handle()routine, supplying the previously obtained handle as
a parameter.

17.2 Guidelines for Error Handling

During a remote procedure call, server and communications errors may occur. These
errors can be handled using any or all of the following methods:

• Writing exception handler code to recover from the error or to exit the application

• Using thefault_status attribute in the ACF to report an RPC server failure

DCE 1.2.2 Application Development Guide—Core Components 479

DCE Remote Procedure Call

• Using thecomm_statusattribute in the ACF to report a communications failure

Use of exceptions, where the procedure exits the program due to an error, tends to
improve code quality. It does this by making errors obvious because the program exits
at that point, and by lessening the amount of code needed to detect error conditions
and handle them. When you use thefault_status attribute, an exception that occurs
on the server is not reported to the client as an exception. The variable to which the
comm_statusattribute is attached contains error codes that report errors that would not
have occurred if the application were not distributed over a communications network.
The comm_statusattribute provides a method of handling RPC errors without using
an exception handler.

17.2.1 Exceptions

Exceptions report either RPC errors or errors in application code. Exceptions have the
following characteristics:

• You do not have to adjust procedure declarations between local and distributed
code.

• You can distribute existing interfaces without changing code.

• You do not have to check for failures. This results in more robust code because
errors are reported even if they are not checked.

• Your code is more efficient when there is no recovery coded for failures.

• You can use a simpler coding style.

• Exceptions work well for coarse-grained exception handling.

• If your application does not contain any exception handlers and the application
thread gets an error, the application thread is terminated and a system-dependent
error message from the threads package is printed.

Note: RPC exceptions are equivalent to RPC status codes. To identify the status code
that corresponds to a given exception, replace the_x_ string of the exception
with the string _s_ . For example, the exceptionrpc_x_comm_failure is
equivalent to the status coderpc_s_comm_failure. The RPC exceptions are
defined in thedce/rpcexc.hheader file, and the equivalent status codes are
described in theDCE 1.2.2 Problem Determination Guide.

480 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

The set of exceptions that can always be returned from the server to the client
(such as therpc_x_invalid_tag exception) are referred to assystem exceptions. These
exceptions are defined indce/rpcexec.handdce/exec_handling.h.

An interface definition can also specify a set of user-defined exceptions that the
interface’s operations can return to the client. You can declare user-defined exceptions
in an interface definition by using theexceptionsinterface attribute, which is described
in Chapter 18.

If a user-defined exception in the implementation of a server operation occurs during
server execution, the server terminates the operation and propagates the exception
to the client in a manner similar to the way system exceptions are propagated.
If a server implementation of an operation raises an exception that is neither a
system exception nor a user-defined exception, the exception returned to the client
is rpc_x_unknown_remote_fault .

By default, the IDL compiler defines and initializes all exceptions under a once block
in the generated stubs. If you want to share exception names in multiple interfaces or
you desire greater control over how these exceptions are defined and initialized, you
can use the ACFextern_exceptionsattribute to disable the automated mechanism that
the IDL compiler uses to define and initialize exceptions. See Chapter 19 for more
information on theextern_exceptionsattribute.

Because exceptions are associated with operation implementation, they are not
imported into other interfaces by way of theimport declaration. For more information
about using exceptions to handle errors, see Part 2 of this guide.

17.2.2 The fault_status Attribute

The fault_statusattribute requests that errors occurring on the server due to incorrectly
specified parameter values, resource constraints, or coding errors be reported by a
designated status parameter instead of by an exception.

If a user-defined exception is returned from a server to a client that has specified
fault_status on the operation in which the exception occurred, the value given to the
fault_status parameter isrpc_s_fault_user_defined.

The fault_status attribute has the following characteristics:

DCE 1.2.2 Application Development Guide—Core Components 481

DCE Remote Procedure Call

• Occurs where you do not want transparent local/remote behavior

• Occurs where you expect that you may be passing incorrect data to the server or
the server is not coded robustly, or both

• Works well for fine-grained error handling

• Requires that you adjust procedure declarations between local and distributed code

• Controls the reporting only of errors that come from the server and that are
reported via a fault packet

For more information on thefault_status attribute, see Chapter 19.

17.2.3 The comm_status Attribute

The comm_statusattribute requests that RPC communications failures be reported
through a designated status parameter instead of by an exception. Thecomm_status
attribute has the following characteristics:

• Occurs where you expect communications to fail routinely; for instance, no server
is available, the server has no resources, and so on

• Works well for fine-grained error handling; for example, trying a procedure many
times until it succeeds

• Requires that you adjust procedure declarations between local and distributed code
to add the new status parameter

• Controls the reporting of errors only from RPC runtime error status codes

For more information on thecomm_statusattribute, see Chapter 19.

17.2.4 Determining Which Method to Use for Handling Exceptions

Some conditions are better for using thecomm_statusor fault_status attribute on an
operation, rather than the default approach of handling exceptions.

The comm_statusattribute is useful only if the call to the operation has a specific
recovery action to perform for one or more communications failures; for example,

482 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

rpc_s_comm_failure or rpc_s_no_more_bindings. The comm_status attribute is
recommended only when the application knows that it is calling a remote operation.
If you expect communications to fail often because the server does not have enough
resources to execute the call, you can use this attribute to allow the call to be retried
several times. If you are using an implicit or explicit binding, you can use the
comm_statusattribute if you want to try another server because the operation cannot
be performed on the one you are currently using. You can also use an exception
handler for each of the two previous instances.

In general, the advantange of usingcomm_statusif the recovery is local to the routine
is that the overhead is less. The disadvantage of usingcomm_statusis that it results in
two different operation signatures. Distributed calls contain thecomm_statusattribute,
however; local calls do not. Also, if all of the recovery cannot be done locally (where
the call is made), there must be a way to pass the status to outer layers of code to
process it.

The fault_status attribute is useful only if the call to the operation has a
specific recovery action to perform for one or more server faults; for example,
rpc_s_invalid_tag, rpc_s_fault_pipe_comm_error , rpc_s_fault_int_overflow, or
rpc_s_fault_remote_no_memory . Use fault_status only when the application
calls a remote operation and wants different behavior than if it calls the same
operation locally. If you are requesting an operation on a large data set, you can
use this attribute to traprpc_s_fault_remote_no_memoryand retry the operation
to a different server, or you may break your data set into two smaller sections. You
can also handle the previous case with exception handlers. The advantange of using
fault_status if the recovery is local is that the overhead is less. The disadvantage of
fault_status is that the operation is different between the local and distributed case.
Also, if all of the recovery cannot be done locally, there must be a way to pass the
status to outer layers of code to process it.

17.2.5 Examples of Error Handling

The following subsections present two examples of error handling. The first example
assumes that thecomm_statusattribute is in use in the ACF. The second example
assumes that thecomm_statusattribute is not in use.

DCE 1.2.2 Application Development Guide—Core Components 483

DCE Remote Procedure Call

17.2.5.1 The Matrix Math Server Example

Assume that you have an existing local interface that provides matrix math operations.
Since it is local, errors such as floating-point overflow or divide by zero are returned
to the caller of a matrix operation as exceptions. It is likely that these exceptions are
caused by providing data to the operation in an improper form.

In this case, the exceptions are part of the interface, sofault_status changes the way
the application calls the matrix interface and probably is undesirable. Depending on
the environment, finding a server may not be difficult (if the network is relatively
stable and has enough resources), and addingcomm_statusserves only to introduce
differences between the local and distributed applications.

If a decision as to what action to take is based upon a communications failure, then
you may try to add the conditional codecomm_status requires. Otherwise, using
auto_handleallows an attempt on each available server. If no server is available, the
application terminates because it cannot proceed. You can add an exception handler
to the main program to report the error in a user-friendly manner.

17.2.5.2 The Stock Quote Application Example

Assume that you have an application that reads from stock quote servers and displays
graphs of the data. Since you do not expect to get server failures because it is a
commercial-quality server, you are not interested in writing code to handle values
returned fromfault_status. If high availability and robustness is important, you may
have a list of recovery plans to make sure a stock analyst can get the necessary
information as quickly as possible. For example:

retry_count = 10;

do {

query_stock_quote(h, ...,&st);

switch (st) /* st parameter can be used because */

{ /* [comm_status] is in the ACF */

case rpc_s_ok:

break;

case rpc_s_comm_failure:

484 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

retry_count -= 1;

break;

case rpc_s_network_unreachable:

h = some_other_handle;

break;

case

.

.

.

default:

retry_count -= 1;

}

}

while ((st == rpc_s_ok) || (retry_count <= 0))

If this is not a critical application, you may only report that the server is currently
unavailable. Depending upon the design of the application, there may be several places
to put the exception handler to report the failure but continue processing. For example:

TRY

update_a_quote(...);

CATCH_ALL

display_message("Stock quote not currently available");

ENDTRY

This example assumes thatupdate_a_quote()eventually calls the remote operation
query_stock_quote()and that this call may raise an exception that is detected and
reported here.

The advantage of using exceptions in this case is that all of the work done in
update_a_quote()has the same error recovery and it does not need to be repeated
at every call to a remote operation. Another advantage is that, if one of the remote
operations does have a recovery for one exception, it can handle that one exception
and allow the rest to propagate to the more general handler in an outer layer of the
code.

DCE 1.2.2 Application Development Guide—Core Components 485

DCE Remote Procedure Call

17.3 Context Handles

During a series of remote procedure calls, the client may need to refer to a context
maintained by a specific server instance. Server application code can maintain
information it needs for a particular client (such as the state of RPC the client is using)
as a context. To provide a client with a means of referring to its context, the client
and server pass back and forth an RPC-specific parameter called acontext handle.
A context handle is a reference (a pointer) to the server instance and the context of
a particular client. A context handle ensures that subsequent remote procedure calls
from the client can reach the server instance that is maintaining context for the client.

On completing the first procedure in a series, the server passes a context handle to
the client. The context handle identifies the context that the server uses for subsequent
operations. The client is not supposed to do anything with the context handle; it merely
passes it to subsequent calls as needed, and it is used internally by the remote calls.
This allows applications to have such things as remote calls that handle file operations
much as local calls would; that is, a client application can remotely open a file, get
back a handle to it, and then perform various other remote operations on it, passing
the context handle as an argument to the calls. A context handle can be used across
interfaces (where a single server offers the multiple interfaces), buta context handle
belongs only to the client that caused it to be activated.

The server maintains the context for a client until the client calls a remote procedure
that terminates use of the context or communications are lost. In the latter case, the
server’s runtime can invoke a context rundown procedure. This application-specific
routine is called by the server stub automatically to reclaim (rundown) the pointed-to
resource in the event of a communications break between the server and client. For
example, in the case of the remote file pointer just mentioned, the context rundown
routine would simply close the file.

As usual with RPC, you need to apply indirection operators in a variety of ways to
maintain the correct[in] and[out] semantics. Typical declarations for a context handle
are as follows. In the.idl file, declare a named type such as

typedef [context_handle] void* my_handle_t;

A manager routine that returns a context handle as anout parameter declares it as

486 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

my_handle_t *h;

The routine then sets the value of the handle as follows:

*h = &context_data;

A routine that refers to a context handle as anin parameter declares it as

my_handle_t h;

and dereferences the handle as follows:

context_data = (my_handle_t*)h;

For the in,out case, the routine uses the same declaration as in theout case, and
dereferences the handle as follows:

context_data = (my_handle_t*)*h;

The following extensive example shows a simple use of context handles. In the sample
code, the client requests a unit of storage from the server, using thestore_open()call,
and receives a handle to the allocated storage. Thestore_read(), store_write() , and
store_set_ptr() routines allow the client to read from and write to specific locations
in the allocated storage. Thestore_close()routine releases the server resources.

17.3.1 Context Handles in the Interface

The .idl file declarations for thestore interface are as follows:

/*

* store.idl

DCE 1.2.2 Application Development Guide—Core Components 487

DCE Remote Procedure Call

* A sample interface that demonstrates server maintained context.

* The client requests temporary storage of a specified size,

* and the server returns a handle that can be used to read and

* write to storage. The interface doesn’t care how the

* server implements the storage.

*/

[

uuid(0019b8c5-e8b5-1c84-9a41-0000c0d4de56),

pointer_default(ref),

version(1.0)

]

interface store

{

/* A context handle used to access remote storage: */

typedef [context_handle] void* store_handle_t;

/* A storage object name string: */

/* typedef [string] char* store_name_t; */

/* A buffer type for data: */

typedef byte store_buf_t[*];

/* Note that the context handle is an [out] parameter of the open */

/* routine, an [in, out] parameter of the close routine, and an */

/* [in] parameter of the other routines. If the context handle */

/* were treated as an [in] parameter of the close routine, the */

/* stubs would never learn that the context had been set to NULL, */

/* and would consider the context to still be live. This would */

/* result in the rundown routine’s being called when the client */

/* terminated, even though there would be no context to run down. */

void store_open(

[in] handle_t binding,

[in] unsigned32 store_size,

[out] store_handle_t *store_h,

[out] error_status_t *status

);

void store_close(

488 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

[in,out] store_handle_t *store_h,

[out] error_status_t *status

);

void store_set_ptr(

[in] store_handle_t store_h,

[in] unsigned32 offset,

[out] error_status_t *status

);

void store_read(

[in] store_handle_t store_h,

[in] unsigned32 buf_size,

[out, size_is(buf_size), length_is(*data_size)] \

store_buf_t buffer,

[out] unsigned32 *data_size,

[out] error_status_t *status

);

void store_write(

[in] store_handle_t store_h,

[in] unsigned32 buf_size,

[in, size_is(buf_size)] store_buf_t buffer,

[out] unsigned32 *data_size,

[out] error_status_t *status

);

}

17.3.2 Context Handles in a Server Manager

Server manager code to provide a rudimentary implementation of thestore interface
is as follows:

/* context_manager.c -- implementation of "store" interface. */

/* */

DCE 1.2.2 Application Development Guide—Core Components 489

DCE Remote Procedure Call

/* The server maintains a certain number of storage areas, only one */

/* of which can be (or should be) opened by a single client at a */

/* time. More than one client can, however, apparently be invoked */

/* (up to thenumber of separate storelets == store handles */

/* available, defined by the value of NUM_STORELETS). Each client */

/* keeps track of its store(and likewise enables the server to do */

/* the same) by means of the context handle it receives when it */

/* opens its store. */

/* */

/***/

#include <stdio.h>

#include <string.h>

#include <malloc.h>

#include <pthread.h>

#include <dce/dce_error.h>

#include <dce/daclif.h>

#include "context.h"

#define NUM_STORELETS 10

/***/

/* The actual "storelet" structure... */

typedef struct store_hdr{

pthread_mutex_t ref_lock;

unsigned32 size;

unsigned32 refcount;

idl_byte *storage;

} store_hdr_t;

store_hdr_t headers[NUM_STORELETS]; /* There’s an array of these. */

/***/

/* The store specification structure; note that it is equivalent to */

/* the handle; the pointer to it is returned as the handle by the */

/* store_open() routine below... */

/* The assumption is that all access to a given handle is serialized*/

/* in a single thread, so no locking is needed for these. */

490 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

typedef struct store_spec{

unsigned32 number; /* The storelet number we’ve opened. */

unsigned32 offset; /* The current read/write position. */

} store_spec_t; /* There’s only one of these; it’s the handle that */

/* gives access to one of the NUM_STORELETS set of */

/* "storelets". */

/* The server entry name: */

extern unsigned_char_p_t entry;

/* Initialization control block: */

pthread_once_t init_once_blk = pthread_once_init;

/******

*

* store_mgmt_init -- Zeroes out all the storelet structures; executed

* only once per server instance, as soon as a client

* has called the store_open() routine.

*

******/

/***/

void

store_mgmt_init(

)

{

int i;

store_hdr_t *hdr;

fprintf(stdout, "Store Manager: Initializing Store);

memset(headers, 0, sizeof(store_hdr_t) * NUM_STORELETS);

for (i = 0; i < NUM_STORELETS; i++)

{

hdr = headers + i;

pthread_mutex_init(

(pthread_mutex_t *)hdr,

pthread_mutexattr_default);

}

DCE 1.2.2 Application Development Guide—Core Components 491

DCE Remote Procedure Call

}

/******

*

* store_open -- Opens a store and returns a handle to it. Store

* consists of one "storelet" selected from array of

* NUM_STORELETS.

******/

/***/

void

store_open(

handle_t binding,

unsigned32 store_size, /* Size specified for actual storage. */

store_handle_t *store_h, /* To return the store handle in. */

error_status_t *status

)

{

int i; /* Index variable. */

store_spec_t *spec; /* Store specification == handle. */

store_hdr_t *hdr; /* Storelet structure. */

/* Do the store initialization if this is the first open call... */

/* Zero out the store headers... */

pthread_once(&init_once_blk, store_mgmt_init);

/* The following loop goes through all the storelets, looking for */

/* one whose reference count is zero. As soon as one such is */

/* found, a handle is allocated for it, storage is allocated for */

/* its store structure, and the loop (and the call) terminates. If */

/* no unreferenced storelet is found, a status of -1 is returned */

/* and no handle is allocated... */

for(i = 0; i < NUM_STORELETS; i++)

{

/* Go to the next storelet... */

hdr = headers + i;

/* Is it unreferenced?... */

if (hdr->refcount == 0)

{

492 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

/* If so, lock the header... */

*status = pthread_mutex_lock((pthread_mutex_t *)hdr);

if (*status != 0)

{

return;

}

/* ...and check the reference count again... */

if (hdr->refcount == 0)

{

/* Now we know we "really" have this one. */

/* Only one open is allowed, so lock only */

/* the reference count... */

hdr->refcount++;

/* Now unlock the header so other threads */

/* can continue to check it... */

*status = pthread_mutex_unlock((pthread_mutex_t *)hdr);

if (*status != 0)

return;

/* Now allocate space for the specifica- */

/* tion structure... */

spec = (store_spec_t *)malloc(sizeof(store_spec_t));

spec->number = i;

spec->offset = 0;

*store_h = spec;

/* Allocate space for the storage part of */

/* the header... */

hdr->storage = (idl_byte *)malloc(store_size);

hdr->size = store_size;

/* Finally, set the return status to OK, */

/* and return... */

*status = error_status_ok;

return;

}

/* If the reference count turned out to have */

DCE 1.2.2 Application Development Guide—Core Components 493

DCE Remote Procedure Call

/* been accessed between our first check and our */

/* locking the mutex, we must now unlock the mutex */

/* preparatory to looping around to check the next */

/* storelet... */

*status = pthread_mutex_unlock((pthread_mutex_t *)hdr);

if (*status != 0)

{

return;

}

}

}

/* The following is reached only if we never found a free */

/* storelet... */

*store_h = NULL;

*status = -1;

}

/******

*

* store_set_ptr -- Insert a new value into the store buffer pointer.

*

*******/

/***/

void store_set_ptr(

store_handle_t store_h, /* The store handle. */

unsigned32 offset, /*Value to insert into store buffer pointer.*/

error_status_t *status

)

{

store_spec_t *spec; /* Our pointer to store handle. */

spec = (store_spec_t *)store_h; /* Get the store spec. */

spec->offset = offset; /*Copy in the new buffer pointer value.*/

*status = error_status_ok;

}

/******

*

494 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

* store_close -- Close the opened storelet.

*

******/

/***/

void

store_close(

store_handle_t *store_h, /* Store handle. */

error_status_t *status

)

{

store_spec_t *spec; /* Our pointer to store handle. */

store_hdr_t *hdr; /* Pointer to a storelet. */

printf("Store Manager: Closing Store);

spec = (store_spec_t *)*store_h; /* Get the store spec. */

hdr = headers + spec->number; /*Point to the correct storelet.*/

/* If the thing is actually opened, close it... */

if (hdr->refcount > 0)

{

/* Lock the header first... */

*status = pthread_mutex_lock((pthread_mutex_t *)hdr);

if (*status != 0)

{

printf("Close: lock failed);

return;

}

/* Check the reference count to make sure no one slipped in */

/* before we could lock the header, and already closed the */

/* critter... */

if (hdr->refcount > 0)

{

/* The store is open, and it’s locked by us, so we */

/* can safely close it. So do it. First, decrement */

/* the reference count... */

hdr->refcount--;

/* Is it completely closed now? */

DCE 1.2.2 Application Development Guide—Core Components 495

DCE Remote Procedure Call

if (hdr->refcount == 0)

{

/* If so, get rid of its storage space... */

hdr->size = 0;

free(hdr->storage);

}

}

/* If the store turned out to be closed before we could */

/* close it, we have nothing to do but release the lock... */

*status = pthread_mutex_unlock((pthread_mutex_t *)hdr);

if (*status != 0)

{

printf("Close: unlock failed);

return;

}

}

/* And free our handle space... */

free(spec);

/* Be sure to NULL the context handle. Otherwise, the context */

/* will be considered to be live as long as the client is run- */

/* ning... */

*store_h = NULL;

*status = error_status_ok;

}

/******

*

* store_read -- Read a certain number of bytes from the opened store.

*

******/

/***/

void

store_read(

store_handle_t store_h, /* Store handle. */

unsigned32 buf_size, /* Number of bytes to read. */

store_buf_t buffer, /* Space to return data read in. */

unsigned32 *data_size, /* To return number of bytes read in. */

496 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

error_status_t *status

)

{

store_spec_t *spec; /* Our handle pointer. */

store_hdr_t *hdr; /* Pointer to a storelet. */

spec = (store_spec_t *)store_h; /* Get the storelet spec. */

hdr = headers + spec->number; /*Point to the correct storelet.*/

/* If the amount we’re to read is less than the amount left to be*/

/* read, then read it... */

if (buf_size <= hdr->size)

{

/* Copy bytes from the storelet storage, beginning at off- */

/* set, into the return buffer, up to the size of the */

/* buffer... */

memcpy(buffer, hdr->storage + spec->offset, buf_size);

/* Update the storelet buffer pointer past what we’ve just */

/* read... */

spec->offset += buf_size;

/* Show return size of data read... */

*data_size = buf_size;

*status = error_status_ok;

return;

}

/* If there’s less data left than has been specified to read, */

/* don’t read it... */

*data_size = 0;

*status = -1;

}

/******

*

* store_write -- Write some data into the opened store.

*

******/

DCE 1.2.2 Application Development Guide—Core Components 497

DCE Remote Procedure Call

void

store_write(

/* handle_t IDL_handle,*/ /* If the server ACF declares */

/* [explicit_handle] */

store_handle_t store_h, /* Store handle. */

unsigned32 buf_size, /* Number of bytes to write. */

store_buf_t buffer, /* Data to be written. */

unsigned32 *data_size, /* To return number of bytes written. */

error_status_t *status

)

{

store_spec_t *spec; /* Our pointer to store handle. */

store_hdr_t *hdr; /* Pointer to a storelet. */

/* Do an access check on IDL_handle here... */

/* [--ORIGINAL NOTE] -- I don’t know what the above means. */

spec = (store_spec_t *)store_h; /* Get the storelet spec. */

hdr = headers + spec->number; /*Point to the correct storelet.*/

/* If the amount of unused room left in the storelet is greater */

/* than what we’re supposed to write in it, write it... */

if ((hdr->size - spec->offset) > buf_size)

{

/* Copy bytes from the buffer into the storelet storage, */

/* beginning at the current read/write position... */

memcpy(hdr->storage + spec->offset, buffer, buf_size);

/* Update the storelet buffer pointer to point past what */

/* we’ve just written... */

spec->offset += buf_size;

/* Add a null in case we want to read the store as a */

/* string... */

*(hdr->storage + spec->offset) = 0;

/* Show return size of data written... */

*data_size = buf_size;

498 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

*status = error_status_ok;

return;

}

/* If we don’t have room to write the whole buffer, don’t write */

/* anything... */

*data_size = 0;

*status = error_status_ok;

}

/******

*

* print_manager_error-- Manager version. Prints text associated with

* bad status code.

*

*

******/

void

print_manager_error(

char *caller, /* String identifying routine that received the error.*/

error_status_t status) /* status we want to print the message for. */

{

dce_error_string_t error_string;

int print_status;

dce_error_inq_text(status, error_string, &print_status);

fprintf(stderr," Manager: %s: %s, caller, error_string);

}

The sample implementation of the store interface is obviously too limited for
any practical use, but it does demonstrate the application of context handles in a
straightforward way. A context handle returned by thestore_open()routine is opaque
to the client. To the server, it is a pointer to the server’s representation of a storage
unit. In this case, it points to a structure that keeps track of the client’s current location
within a specific piece of server-maintained storage.

Aside from deallocating the actual storage, thestore_close()routine sets the context
handle to NULL. The NULL value indicates to the server stub that the context is no

DCE 1.2.2 Application Development Guide—Core Components 499

DCE Remote Procedure Call

longer active, and the stub, in turn, tells the RPC runtime not to maintain the context.
For example, after thestore_close()routine has been invoked, the rundown routine
will not be invoked if communication ends between client and server. The context
rundown routine takes care of closing the client’s storage in case of a communication
failure while the context is active.

The global array ofstore_hdrstructures that keeps track of allocated storage, obviously
servers no practical purpose in the example. (Presumably the operating system is
already doing this!) However, it does provide a demonstration of the fact that global
server manager data is shared data in the implicitly multithreaded server environment.
The routines that manipulate this shared data may be called simultaneously by multiple
server threads (in response to multiple simultaneous client calls); therefore, locking
must be provided, in this case on therefcount field. The sample also demonstrates
how thepthread_once()facility can be used to provide one-time initialization of the
shared data on the firststore_open()call.

As an exercise, the storage interface can easily be made more interesting by providing
multiple clients simultaneous access to a given storage area. To implement this, the
application could add astore_nameparameter to thestore_open()routine and replace
the refcount field with counts of readers and writers. The division of the storage
management between thestore_hdr and thestore_specdata structures is intended
to facilitate this; thestore_hdr holds shared state relating to each store, while the
store_specholds each thread’s private state.

17.3.3 Context Rundown

Context handles typically point to some state maintained by a server instance for a
client over a series of RPC operations. If the series of operations fails to complete
because communication is lost between client and server, the server will probably
have to take some kind of recovery action such as restoring data to a consistent state
and freeing resources.

The stub detects outstanding context when it marshals context handle parameters.
Outstanding context is considered to exist from the point at which a non-NULL pointer
value is returned, until a NULL pointer value is returned. When outstanding context
exists, the server stub code will call a context rundown routine in response to certain
exceptions that indicate a loss of contact with the client. You should note that the
exact timing of the call depends on the transport. In particular, with the connectionless

500 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

protocol, servers that maintain context for clients expect clients to indicate periodically
that they are still running. If the server fails to hear from the client during a specified
timeout period, the server will assume that the client has stopped and call the context
rundown routine. This can mean a substantial delay between the time the client actually
fails and the time at which context maintained for the client is actually cleaned up. If
the context being held represents a scarce resource on the server, one consequence of
the delayed rundown may be that failed calls continue to hold the scarce resource for
some time before it is made available again.

Since a context handle may be freely shared among threads of the calling client context,
it is possible for outstanding context to exist for more than one call simultaneously.
Such shared context is considered to be outstanding as long as it is outstanding for
any of the participating threads. Also, any communications failures are likely to be
detected at different times for each such call thread, and the difference in timing may
be especially noticeable in the case of the connectionless protocol. Context rundown
occurs only after all server call threads have been terminated. This means that call
operations in progress on the server need not be concerned that the context they
are operating on will be changed unexpectedly. Imagine a situation in which context
handles represent open file descriptors, and the rundown routine closes the files. A
manager thread that shares these descriptors via a context handle is guaranteed that the
files will remain open even if a communications failure is detected in another thread
that also is using the same context handle.

/******

*

* store_handle_t_rundown -- Closes the opened storelet.

*

******/

/**/

void

store_handle_t_rundown(

store_handle_t store_h

)

{

error_status_t st;

printf("Store Manager: Running down context.);

store_close(&store_h, &st);

}

DCE 1.2.2 Application Development Guide—Core Components 501

DCE Remote Procedure Call

17.3.4 Binding and Security Information

One element that is clearly missing from the context handle sample code is any access
checking. To do this, it is necessary to get the client binding, although it may not be
immediately obvious how to do this with a context handle. The answer is actually quite
simple but, to understand it, it helps to have a clear idea of how binding parameters
operate in RPC.

Every call requires binding information, whether this is supplied explicitly as a binding
parameter or not. When a call is made with a binding handle, the client uses cached
binding information associated with the binding handle. When no binding handle
parameter is passed, the client derives the binding information it needs by some other
means. For example, with a context handle, the client uses cached binding information
associated with the context handle.

Even when an explicit binding handle parameter is present, the handle is not marshalled
as call data in the same way other call parameters are. Similarly, on the server side,
when a binding handle parameter is present in a manager operation, it isunmarshalled
simply as a reference to the binding information cached by the server runtime for
the call. It is irrelevant whether the call was made with an explicit binding handle
parameter on the client side.

Therefore, it is perfectly possible for a server manager operation to have a binding
handle as a parameter even when the client RPC call is made without an explicit
binding parameter.

The mechanics of this are to use different.acf declarations on the client and server
sides. The.idl file declaration for the operation does not declare an explicit binding
handle parameter, but the server.acf file applies the[explicit_handle] attribute to the
operation. This results in a server stub that expects to unmarshal a binding handle as
the first parameter of the operation, while the client stub does not expect an explicit
binding handle parameter for the call.

An example of a server-side.acf file for the store interface is as follows:

/* store.acf - server side

* Unmarshal a client binding handle on each call

*/

502 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

interface store

{

store_open();

[explicit_handle]store_close();

[explicit_handle]store_set_ptr();

[explicit_handle]store_read();

[explicit_handle]store_write();

}

You could achieve the same effect by using different.idl files for the client and server,
but this is not recommended. The.idl file serves as the canonical representation of an
interface and hence should be the same for all clients and servers.

This technique can be used in a number of ways; for example, to permit the client to use
implicit binding while the server manager operations extract authorization information
from a client binding handle. In the case of a context handle, the principle is the same.
You use the server.acf declarations to add a binding parameter to the call on the server
side. The client continues to call using the context handle, while the server manager
receives the client binding as a first extra parameter.

In the case of the sample code, the client calls to the store interface remain the same,
but the server manager implementations now contain an extra parameter. For example:

void

store_write(

handle_t IDL_handle,

store_handle_t store_h,

unsigned32 buf_size,

store_buf_t buffer,

unsigned32 *data_size,

error_status_t *status

)

{

store_spec_t *spec;

store_hdr_t *hdr;

if (check_access(IDL_handle, sec_acl_perm_write) == 0)

{

DCE 1.2.2 Application Development Guide—Core Components 503

DCE Remote Procedure Call

*status = str_s_no_perms;

return;

}

.

.

.

}

17.4 Pipes

Pipes are a mechanism for efficiently handling large quantities of data by overlapping
the transfer and processing of data. Input data is transferred in chunks to the server for
processing, and output data is processed by the server in chunks and transferred to the
client. A pipe is declared in a type definition of an interface definition, and the data
type is used as parameters in the operations of the interface. The server manager calls
stub pipe support routines in a loop, and the client stub calls pipe support routines
that the client application must provide.

One of the pipe support routines that the client must provide is analloc routine,
which allocates a buffer for each chunk of pipe data. Given that pipes are intended to
process data asynchronously, consuming it as it arrives, thealloc routine should not
just blindly allocate a new buffer each time it is called, since the net effect would be
to allocate space for the whole stream. A reasonable approach is either to declare a
buffer statically or allocate it on the first call (per thread), and thereafter simply return
the same buffer. The following code example shows the form analloc routine takes
in client application code.

#define CLIENT_BUFFER_SIZE 2048

idl_byte client_buffer[CLIENT_BUFFER_SIZE];

void client_alloc (state, bsize, buf, bcount)

rpc_ss_pipe_state_t state;

unsigned int bsize;

byte **buf;

unsigned int *bcount;

{

504 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

*buf = client_buffer;

*bcount = CLIENT_BUFFER_SIZE;

}

17.4.1 Input Pipes

In the following example, a client sends the contents of a file to a server as a set of
chunks allocated from the same static buffer. The chunks are processed (in this case
simply printed) as they arrive.

The declaration in the interface definition is as follows:

typedef pipe char test_pipe_t;

void pipe_test1(

[in] handle_t handle,

[in] test_pipe_t test_pipe,

[out] error_status_t *status

);

Note that the pipe is declared as atypedef, resulting in an IDL-generated C typedef
for test_pipe_t, which is a structure containing pointers to the pipe support routines
and a pipe state field. The server manager and client code then implement the pipe in
a complementary fashion.

For an [in] pipe, the server manager code consists of a cycle of calls to the
test_pipe.pull routine (a server stub routine) which terminates when a zero-length
chunk is received:

void

pipe_test1(

handle_t binding_h,

test_pipe_t test_pipe,

error_status_t *status

)

DCE 1.2.2 Application Development Guide—Core Components 505

DCE Remote Procedure Call

{

char buffer[SBUFFSIZE];

int count;

char *cptr;

do

{

(*(test_pipe.pull))(test_pipe.state, buffer, \

SBUFFSIZE, &count);

for (cptr = buffer; cptr < buffer + count; cptr++)

putchar(*cptr);

} while (count > 0);

}

Using the buffer supplied by the manager, thetest_pipe.pull routine unmarshals an
amount of data that is nonzero, but not more than the buffer can hold. There is no
guarantee that the buffer will be filled. The actual amount of data in the buffer is
indicated by thecount parameter returned in thetest_pipe.pull routine. This count
equals the number oftest_pipe_tdata elements in the buffer.

The test_pipe.pull routine signals the end of data in the pipe by returning a chunk
whose count is 0 (zero). Any attempt to pull data from the pipe after the zero-length
chunk has been encountered will cause an exception to be raised. Thein pipes must
be processed in the order in which they occur in the operation signature. Attempting
to pull data from anin pipe before end-of-data on any precedingin pipe has been
encountered will result in an exception being raised. If the manager code attempts to
write to anout pipe or return control to the server stub before end-of-data has been
encountered on the lastin pipe, an exception will be raised. (Note that there is no
guarantee that chunks seen by the manager will match the chunks supplied by the
client’s pull routine.)

The client application code must supplypull and alloc routines and a pipe state.
These routines must work together to produce a sequence of pointers to chunks, of
which only the last is empty. In the following example, the client code provides a
test_pipe.pull routine that reads chunks of the input file into a buffer and returns a
count of the chunk size, returning a zero count when the end of the file is reached.
The pipe state block is used here simply as a convenient way to make the file state
available to thepull routine. Applications need not make any use of the pipe state.

506 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

/* Client declares types and routines */

typedef struct client_pipe_state_t {

idl_char *filename;

idl_boolean file_open;

int file_handle;

} client_pipe_state_t;

client_pipe_state_t client_in_pipe_state = {false, 0};

void client_pull(state,buf,esize,ecount)

client_pipe_state_t * state;

byte *buf;

unsigned int esize;

unsigned int *ecount;

{

if (! state->file_open)

{

state->file_handle = open(state->filename,O_RDONLY);

if (state->file_handle == -1)

{

printf("Client couldn’t open %s, state->filename);

exit(0);

}

state->file_open = true;

}

*ecount = read(state->file_handle, buf, esize);

if (*ecount == 0)

{

close(state->file_handle);

state->file_open = false;

}

}

Finally, the client must do the following:

1. Allocate thetest_pipe_tstructure.

2. Initialize thetest_pipe_t.pull, test_pipe_t.alloc, and test_pipe_t.statefields.

3. Include code where appropriate for checking thepipe_t.statefield.

DCE 1.2.2 Application Development Guide—Core Components 507

DCE Remote Procedure Call

4. Pass the structure as the pipe parameter. The structure can be passed either by
value or by reference, as indicated by the signature of the operation that contains
the pipe parameter:

/* Client initializes pipe */

test_pipe_t test_pipe;

test_pipe.pull = client_pull;

test_pipe.alloc = client_alloc;

test_pipe.state = (rpc_ss_pipe_state_t)&client_in_pipe_state;

/* Client makes call */

pipe_test1(binding_h, test_pipe, &status);

To transmit a large amount of data that is already in the proper form in memory (that
is, the data is already an array oftest_pipe_t), the client application code can have
the alloc routine allocate a buffer that already has the information in it. In this case,
the pull routine becomes a null routine.

17.4.2 Output Pipes

An [out] pipe is implemented in a similar way to an input pipe, except that the client
and server make use of thepush routine instead of thepull routine. The following
samples show an[out] pipe used to read the output from a shell command executed
by the server.

The declarations in the interface definition are as follows:

typedef pipe char test_pipe_t;

void pipe_test2(

[in] handle_t handle,

[in, string] char cmd[],

[out] test_pipe_t *test_pipe,

508 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

[out] error_status_t *status

);

The server manager routines demonstrate a couple of possible implementations. In
each case, the manager makes a cycle of calls to the server stub’spush routine,
ending by pushing a zero-length chunk:

#include <dirent.h>

#define SBUFFSIZE 256

void

pipe_test2(

handle_t binding_h,

idl_char *cmd,

test_pipe_t *test_pipe,

error_status_t *status

)

{

DIR *dir_ptr;

struct dirent *directory;

char buffer[SBUFFSIZE];

FILE *str_ptr;

int n;

/* An elementary mechanism to execute a command and get

* the output back. Note that popen() and fread() are

* thread-safe, so the whole process won’t block while

* the call thread waits for them to return.

*

* This is potentially a dangerous operation!

* Here we’ll only allow a couple of "safe" commands.

*/

if (!strcmp(cmd, "ps") || !strcmp(cmd, "ls"))

{

if ((str_ptr = popen(cmd, "r")) == NULL)

return;

DCE 1.2.2 Application Development Guide—Core Components 509

DCE Remote Procedure Call

while ((n = fread(buffer, sizeof(char), \

SBUFFSIZE, str_ptr)) > 0)

{

(*(test_pipe->push))(test_pipe->state, buffer, n);

}

(*(test_pipe->push))(test_pipe->state, buffer, 0);

fclose(str_ptr);

}

/* Here’s another method: list an arbitrary directory

* This time, we buffer the directory names as null-

* terminated strings of various lengths. The client

* will need to provide formatting of the output stream,

* for example, by substituting a CR for each NULL byte.

*/

/*

if ((dir_ptr = opendir(cmd)) == NULL)

{

printf("Can’t open directory %s, cmd);

return;

}

while ((directory = readdir(dir_ptr)) != NULL)

{

if (directory->d_ino == 0)

continue;

(*(test_pipe->push))(test_pipe->state, \

directory->d_name,

strlen(directory->d_name)+1);

}

(*(test_pipe->push))(test_pipe->state, \

directory->d_name, 0);

closedir(dir_ptr);

*/

*status = error_status_ok;

}

510 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

The stub enforces well-behaved pipe filling by the manager by raising exceptions as
necessary. After allin pipes have been drained completely, theout pipes must be
completely filled, in order.

The client code uses the same declarations as in the input pipe example, except that
instead of using aclient_pull routine it uses atest_pushroutine that prints out the
contents of each received buffer:

/*

* Our push routine prints each received buffer-full.

*/

void test_push(

rpc_ss_pipe_state_t *state,

idl_char *buf,

unsigned32 count

)

{

unsigned_char_t *cptr;

for (cptr = buf; cptr < buf + count; cptr++)

{

/* For the second, directory reading example,

uncomment the following:

if (*cptr == 0)

*cptr = ’;

*/

putchar(*cptr);

}

}

For anout pipe, the client code must do the following:

1. Allocate thetest_pipe_tstructure.

2. Initialize thetest_pipe_t.pushand test_pipe_t.statefields.

3. Pass the structure as the pipe parameter, either by value or by reference.

test_pipe_t test_pipe;

DCE 1.2.2 Application Development Guide—Core Components 511

DCE Remote Procedure Call

test_pipe.alloc = (void (*)())client_alloc;

test_pipe.push = (void (*)())test_push;

test_pipe.state = (rpc_ss_pipe_state_t)&out_test_pipe_state;

pipe_test2(binding_h, cmd, &test_pipe, &status);

The client stub unmarshals chunks of the pipe into a buffer and calls back to the
application, passing a reference to the buffer. To allow the application code to manage
its memory usage, and possibly avoid unnecessary copying, the client stub first calls
back to the application’stest_pipe.allocroutine to get a buffer. In some cases, this
may result in thetest_pipe.pushroutine’s not having any work to do.

The client stub may go through more than one (test_pipe.alloc, test_pipe.push) cycle
in order to unmarshal data that the server marshalled as a single chunk. Note that there
is no guarantee that chunks seen by the client stub will match the chunks supplied by
the server’spush routine.

17.4.3 Pipe Summary

The pipe examples show how the client and server tasks are complementary.
The client implements the appropriate callback routines (test_pipe.allocand either
test_pipe.pushor test_pipe.pull), and the server manager makes a cycle of calls
to either test_pipe.pushor test_pipe.pull of the stub. The application code gives
the illusion that the server manager is calling the client-supplied callbacks. In fact,
the manager is actually calling stub-supplied callbacks, and the client callbacks
are asynchronous: a server manager call to one of the callback routines does not
necessarily result in a call to the corresponding client callback.

One result of this is that the client and server should not count on the chunk sizes
being the same at each end. For example, in the last directory reading example, the
manager calls thetest_pipe.pushroutine once with each NULL-terminated filename.
However, the clienttest_push routine does not necessarily receive the data stream
one filename at at time. For example, if thetest_pushroutine attempted to print the
filenames usingprintf("%s\n",buf); , it might fail. An interesting exercise would be
to addprintf() routines to the client callbacks and the server manager to show when
each callback is made.

512 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

Note also that the use of the pipestatefield by the client is purely local and entirely
at the discretion of the client. The state is not marshalled between client and server,
and the server stubs use the localstatefield in a private manner. The server manager
should not alter the state field.

Pipes may also be[in,out] , although the utility of this construct is somewhat limited.
Ideally, a client would like to be able to pass a stream of data to the server and have
it processed and returned asynchronously. In practice, the input and output streams
must be processed synchronously; that is, all input processing must be finished before
any output processing can be done. This means that[in, out] pipes, while they can
reduce latency within both the server and the client, cannot reduce latency between
server and client; the client must still wait for all server processing to finish before it
can begin to process the returned data stream.

For an in,out pipe, both thepull routine (for thein direction) and apush routine
(for the out direction) must be initialized, as well as thealloc routine and the state.
During the lastpull call (when it will return a zero count to indicate that the pipe is
drained), the application’spull routine must reinitialize the pipe state so that the pipe
can be used by thepush routine correctly.

17.5 Nested Calls and Callbacks

A called remote procedure can call another remote procedure. The call to the
second remote procedure is nested within the first call; that is, the second call is
a nested remote procedure call. A nested call involves the following general phases,
as illustrated in Figure 17-1:

1. A client makes an initial remote procedure call to the first remote procedure.

2. The first remote procedure makes a nested call to the second remote procedure.

3. The second remote procedure executes the nested call and returns it to the first
remote procedure.

4. The first remote procedure then resumes executing the initial call.

DCE 1.2.2 Application Development Guide—Core Components 513

DCE Remote Procedure Call

Figure 17–1. Phases of a Nested RPC Call

First server

Call thread (acting as a client)

4

Calling
 code

A client application
 thread

1 2 3

Call thread

Second server

 remote
 procedure

Second

 remote
 procedure

First

Client

Nested RPC thread RPC thread

A specialized form of a nested remote procedure call involves a called remote
procedure that is making a remote procedure call (callback) to the address space
of the calling client application thread. Calling the client’s address space requires that
a server application thread be listening in that address space. Also, the second remote
procedure needs a server binding handle for the address space of the calling client.

The remote procedure can ask the local RPC runtime to convert the client binding
handle, provided by the server runtime, into a server binding handle. This is done by
calling therpc_binding_server_from_client() routine. This routine returns a partially
bound binding handle (the server binding information lacks an endpoint). For a nested
remote procedure call to find the address space of the calling client, the application
must ensure that the partially bound binding handle is filled in with the endpoint of
that address space. The therpc_binding_server_from_client(3rpc) reference page
discusses alternatives for ensuring that the endpoint is obtainable for a nested remote
procedure call.

Using the server binding handle, a remote procedure can attempt a nested remote
procedure call. The nested call involves the general phases illustrated by Figure 17-2.

514 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

Figure 17–2. Phases of a Nested RPC Call to Client Address Space

Single address space

Multithreaded RPC application

Remote server

The server application
 thread (listening)

 remote
 procedure

Call thread acting
 as a client4

Calling
 code

A client application
 thread

 RPC thread

1

2

3
Call thread

Second
 remote
 procedure

Nested RPC thread

First

The application threads in the preceding figure are performing the following activities:

1. A client application thread from a multithreaded RPC application makes an initial
remote procedure call to the first remote procedure.

2. After converting the client binding handle into a server binding handle and
obtaining the endpoint for the address space of the calling client application thread,
the first remote procedure makes a nested call to the second remote procedure at
that address space.

3. The second remote procedure executes the nested call and returns it to the first
remote procedure.

4. The first remote procedure then resumes executing the initial call (the client).

DCE 1.2.2 Application Development Guide—Core Components 515

DCE Remote Procedure Call

17.6 Routing Remote Procedure Calls

The following section discusses routing incoming remote procedure calls between
their arrival at a server’s system and the server’s invocation of the requested remote
procedure. The following routing steps are discussed:

1. If a client has a partially bound server binding handle, before sending a call request
to a server, the client runtime must get the endpoint of a compatible server from
the endpoint mapper service of the server’s system. This endpoint becomes the
server address for a call request.

2. When the request arrives at the endpoint, the server’s system places it in a request
buffer belonging to the corresponding server.

3. As one of its scheduled tasks, the server gets the incoming calls from the
request buffer. The server either accepts or rejects an incoming call, depending
on available resources. If no call thread is available, an accepted call is queued
to wait its turn for an available call thread.

4. The server then allocates an available call thread to the call.

5. The server identifies the appropriate manager for the called remote procedure and
invokes the procedure in that manager to execute the call.

6. When the call thread finishes executing a call, the server returns the call’s output
arguments and control to the client.

Figure 17-3 illustrates these steps.

516 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

Figure 17–3. Steps in Routing Remote Procedure Calls

Request buffer

Server process

 call
Incoming

 call
Returned

Call queue

Step 4.

Step 5.
Select

manager
for call

 thread
Call

Step 3.

Request buffer

Step 6.

...

...

DCE daemon

Endpoint map

.

.

.

2001 ...ncadg_ip_udp

Interface ID Object UUID Ept. Prot. seq.

...

... ncacn_ip_tcp ...1025

2001

1025

Step 2.

Endpoint

Key:

 = remote procedure call

Endpoint

Step 1.

The concepts in the following subsections are for the advanced RPC developer. The
first subsection discusses how clients obtain endpoints when using partially bound
binding handles. Then we discuss how a system buffers call requests and how a
server queues incoming calls; this information is relevant mainly to advanced RPC
developers. The final subsection discusses how a server selects the manager to execute

DCE 1.2.2 Application Development Guide—Core Components 517

DCE Remote Procedure Call

a call; it is relevant for developing an application that implements an interface for
different types of RPC objects.

17.6.1 Obtaining an Endpoint

The endpoint mapper service ofdcedmaintains the local endpoint map. The endpoint
map is composed of elements which contain fully bound server binding information
for a potential binding and an associated interface identifier and object UUID (which
may be nil). Optionally, a map element can also contain an annotation such as the
interface name.

Servers use the local endpoint mapper service to register their binding information.
Each interface for which a server must register binding information requires a separate
call to an rpc_ep_register...() routine, which calls the endpoint map service. The
endpoint map service uses a new map element for every combination of binding
information specified by the server. Figure 17-4 shows the correspondence between
server binding information specified by a server and a graphic representation of the
resulting endpoint map elements.

518 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

Figure 17–4. Mapping Information and Corresponding Endpoint Map Elements

Corresponding Representation of Endpoint Map Elements

Server’s Inputs to Endpoint−Register Operation

 2FAC8900−31F8−11CA−B331−08002B13D56D,1.0

*

Binding handles also enable the endpoint map service to learn the server’s RPC protocol
version and transfer syntaxes; this information is identical for every map element, however,

*

2FAC8900−31F8−11CA−B331−08002B13D56D,1.0

2FAC8900−31F8−11CA−B331−08002B13D56D,1.0

2FAC8900−31F8−11CA−B331−08002B13D56D,1.0

2FAC8900−31F8−11CA−B331−08002B13D56D,1.0

2FAC8900−31F8−11CA−B331−08002B13D56D,1.0

2FAC8900−31F8−11CA−B331−08002B13D56D,1.0

47F40D10−E2E0−11C9−BB29−08002B0F4528

47F40D10−E2E0−11C9−BB29−08002B0F4528

16977538−E257−11C9−8DC0−08002B0F4528

16977538−E257−11C9−8DC0−08002B0F4528

30DBEEA0−FB6C−11C9−8EEA−08002B0F4528

30DBEEA0−FB6C−11C9−8EEA−08002B0F4528

 interface−handle

 object−UUID−list

 binding−handle−list

and is ignored here to simplify the following representation of endpoint map elements.
For the same reason, the network address of the server’s host system is omitted from this
representation of map elements.

Interface ID Object UUID

 47F40D10−E2E0−11C9−BB29−08002B0F4528
 30DBEEA0−FB6C−11C9−8EEA−08002B0F4528
 16977538−E257−11C9−8DC0−08002B0F4528

 ncacn_ip_tcp:16.20.15.25[1025]
 ncadg_ip_udp:16.20.15.25[2001]

Ept.

1025

2001

1025

2001

1025

2001

Prot. seq.

ncacn_ip_tcp

ncadg_ip_udp

ncacn_ip_tcp

ncadg_ip_udp

ncacn_ip_tcp

ncadg_ip_udp

> Interface ID:

> Object UUIDs:

> Server addresses:

A remote procedure call made with server binding information that lacks an endpoint
uses an endpoint from the endpoint map service. This endpoint must come from
binding information of a compatible server. The map element of a compatible server
contains the following:

• A compatible interface identifier

DCE 1.2.2 Application Development Guide—Core Components 519

DCE Remote Procedure Call

The requested interface UUID and compatible version numbers are necessary. For
the version to be compatible, the major version number requested by the client
and registered by the server must be identical, and the requested minor version
number must be less than or equal to the registered minor version number.

• The requested object UUID, if registered for the interface

• A server binding handle that refers to compatible binding information that contains
the following:

— A protocol sequence from the client’s server binding information

— The same RPC protocol major version number that the client runtime supports

— At least one transfer syntax that matches one used by the client’s system

To identify the endpoint of a compatible server, the endpoint service uses the following
rules:

1. If the client requests a nonnil object UUID, the endpoint map service begins by
looking for a map element that contains both the requested interface UUID and
object UUID.

a. On finding an element containing both of the UUIDs, the endpoint map
service selects the endpoint from that element for the server binding
information used by the client.

b. If no element contains both UUIDs, the endpoint map service discards the
object UUID and starts over (see rule 2).

2. If the client requests the nil object UUID (or if the requested nonnil object UUID
is not registered), the endpoint map service looks for an element containing the
requested interface UUID and the nil object UUID.

a. On finding that element, the endpoint map service selects the endpoint from
the element for the client’s server binding information.

b. If no such element exists, the lookup fails.

The RPC protocol service inserts the endpoint of the compatible server into the client’s
server binding information.

Figure 17-5 illustrates the decisions the endpoint map service makes when looking up
an endpoint for a client.

520 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

Figure 17–5. Decisions for Looking Up an Endpoint

compatible
?

information
mapping

Other

Call

Object UUID

asking for
non−nil

?

?

fails.

Endpoint
lookup

registered
UUID

Interface

(with nil object
UUID)

?

registered
together

and interface UUID

Non−nil
object UUID

No

No

information.
server binding

Insert endpoint
into

Yes

Yes

Yes

No

No

Yes

You can design a server to allow the coexistence on a host system of multiple
interchangeable instances of a server. Interchangeable server instances are identical,
except for their endpoints; that is, they offer the same RPC interfaces and objects over
the same network (host) address and protocol sequence pairs. For clients, identical
server instances are fully interchangeable.

Usually, for each such combination of mapping information, the endpoint map service
stores only one endpoint at a time. When a server registers a new endpoint for mapping

DCE 1.2.2 Application Development Guide—Core Components 521

DCE Remote Procedure Call

information that is already registered, the endpoint map service replaces the old map
element with the new one.

For interchangeable server instances to register their endpoints in the local endpoint
map, they must instruct the endpoint map service not to replace any existing elements
for the same interface identifier and object UUID. Each server instance can create new
map elements for itself by calling therpc_ep_register_no_replace()routine.

When a client uses a partially bound binding handle, load sharing among
interchangeable server instances depends on the RPC protocol the client is using.

• Connectionless (datagram) protocol

The map service selects the first map element with compatible server binding
information. If necessary, a client can achieve a random selection among all the
map elements with compatible binding information. However, this requires that,
before making a remote procedure call, the client needs to resolve the binding by
calling therpc_ep_resolve_binding()routine.

• Connection-oriented protocol

The client RPC runtime uses therpc_ep_resolve_binding() routine, and the
endpoint map service selects randomly among all the map elements of compatible
servers.

For an alternative selection criteria, a client can call the
rpc_mgmt_ep_elt_inq_{ begin, next,done} () routines and use an application-
specific routine to select from among the binding handles returned to the client.

When a server stops running, its map elements become outdated. Although the
endpoint map service routinely removes any map element containing an outdated
endpoint, a lag time exists when stale entries remain. If a remote procedure call uses
an endpoint from an outdated map element, the call fails to find a server. To avoid
clients getting stale data from the endpoint map, before a server stops, it should remove
its own map elements.

A server also has the option of removing any of its own elements from the local
endpoint map and continuing to run. In this case, an unregistered endpoint remains
accessible to clients that know it.

522 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

17.6.2 Buffering Call Requests

Call requests for RPC servers come into the RPC runtime over the network. For each
endpoint that a server registers (for a given protocol sequence), the runtime sets up
a separate request buffer. A request buffer is a first-in, first-out queue where an RPC
system temporarily stores call requests that arrive at an endpoint of an RPC server.
The request buffers allow the runtime to continue to accept requests during heavy
activity. However, a request buffer may fill up temporarily, causing the system to
reject incoming requests until the server fetches the next request from the buffer. In
this case, the calling client can try again, with the same server or a different server.
The client does not know why the call is rejected, nor does the client know when a
server is available again.

Each server process regularly dequeues requests, one by one, from all of its request
buffers. At this point, the server process recognizes them as incoming calls. The
interval for removing requests from the buffers depends on the activities of the system
and of the server process.

How the runtime handles a given request depends partly on the communications
protocol over which it arrives, as follows:

• A call over a connectionless transport is routed by the server’s system to the call
request buffer for the endpoint specified in the call.

• A call over a connection-oriented transport may be routed by the server’s system
to a request buffer or the call may go directly to the server process.

Whether a remote procedure call goes to the request buffer depends on whether
the client sends the call over an established connection. If a client makes a remote
procedure call without an established connection, the server’s system treats the call
request as a connection request and places the call request into a request buffer. If
an established connection is available, the client uses it for the remote procedure
call; the system handles the call as an incoming call and sends it directly to the
server process that owns the connection.

Whether a server gets an incoming call from a request buffer or over an existing
connection, the server process manages the call identically. A server process applies
a clear set of call-routing criteria to decide whether to dispatch a call immediately,
queue it, or reject it (if the server is extremely busy). These call-routing criteria are
discussed in Section 17.6.3.

DCE 1.2.2 Application Development Guide—Core Components 523

DCE Remote Procedure Call

When telling the RPC runtime to use a protocol sequence, a server specifies the number
of calls it can buffer for the specified communications protocol (at a given endpoint).
Usually, it is best for a server to specify a default buffer size, represented by a literal
whose underlying value depends on the communications protocol. The default equals
the capacity of a single socket used for the protocol by the server’s system.

The default usually is adequate to allow the RPC runtime to accept all the incoming
call requests. For a well-known endpoint, the size of a request buffer cannot exceed
the capacity of a single socket descriptor (the default size); specifying a higher number
causes a runtime error. For well-known endpoints, specify the default for the maximum
number of call requests.

For example, consider the request buffer at full capacity as represented in Figure 17-6.
This buffer has the capacity to store five requests. In this example, the buffer is full,
and the runtime rejects incoming requests, as is happening to the sixth request.

Figure 17–6. A Request Buffer at Full Capacity

 request call request maximum = 5Rejected
Request buffer −−

(connection
 refused;
 datagram
 timed out)

123456

System

17.6.3 Queuing Incoming Calls

Each server process uses a first-in, first-out call queue. When the server is already
executing its maximum number of concurrent calls, it uses the queue to hold incoming
calls. The capacity of queues for incoming calls is implementation dependent; most
implementations offer a small queue capacity, which may be a multiple of the
maximum number of concurrently executing calls.

524 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

A call is rejected if the call queue is full. The appearance of the rejected call depends
on the RPC protocol the call is using, as follows:

• Connectionless (datagram) protocol

The server does not notify the client about this failure. The call fails as if the
server does not exist, returning anrpc_s_comm_failure communications status
code (rpc_x_comm_failure exception).

• Connection-oriented protocol

The server rejects the call with anrpc_s_server_too_busycommunications status
code (rpc_x_server_too_busyexception).

The server process routes each incoming call as it arrives. Call routing is illustrated
by the server in Figure 17-7. This server has the capacity to execute only one call
concurrently. Its call queue has a capacity of eight calls. This figure consists of four
stages (A through D) of call routing by a server process. On receiving any incoming
call, the server begins by looking at the call queue.

DCE 1.2.2 Application Development Guide—Core Components 525

DCE Remote Procedure Call

Figure 17–7. Stages of Call Routing by a Server Process

A. Server process

Call queueAvailable
call thread

Call thread

1

 call
Incoming

C.

(Server too busy)

Server process

 available
call thread

No

 call
Incoming

Rejected
 call

1

10

6

5

4

3

2

9

8

7

capacity = 8
Call queue −−

 −−Call thread
concurrent calls
maximum = 1

queue
full

Server processB.

 available
call thread

No1

4

3

2

full
queue

NOT

Call queue

 −−Call thread
concurrent calls
maximum = 1

 call
Incoming

5

Server process

Call threadReturned
 arguments

1 2
Available
call thread

6

5

4

9

8

3

7
full

queue
NOT

 call

12

Incoming

Call queue

D.

queue
empty

11

The activities of the four stages in the preceding figure are described as follows:

1. In stageA, call 1 arrives at a server that lacks any other calls. When the call
arrives, the queue is empty and a call thread is available. The server accepts the
call and immediately passes it to a call thread. The requested remote procedure
executes the call in that thread, which becomes temporarily unavailable.

2. In stageB, call 5 arrives. The call queue is partially full, so the server accepts
the call and adds it to the end of the queue.

526 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

3. In stageC, call 11 arrives. The queue is full, so the server rejects this call, as
it rejected the previous call,10. (The caller can try again with the same or a
different server.)

4. In stageD, the called procedure has completed call1, making the call thread
available. The server has removed call2 from the queue and is passing it to the
call thread for execution. Thus, the queue is partially empty as call12 arrives, so
the server accepts the call and adds it to the queue.

17.6.4 Selecting a Manager

2Unless an RPC interface is implemented for more than one specific type of object,
selecting a manager for an incoming call is a simple process. When registering an
interface with a single manager, the server specifies the nil type UUID for the manager
type.
In the absence of any other manager, all calls, regardless of whether they request an
object, go to the nil type manager.

The situation is more complex when a server registers multiple managers for an
interface. The server runtime must select from among the managers for each incoming
call to the interface. The DCE RPC dispatching mechanism requires a server to set a
nonnil type UUID for a set of objects and for any interface that will access the objects
in order to register a manager with the same type UUID.

To dispatch an incoming call to a manager, a server does the following:

1. If the call contains the nil object UUID, the server looks for a manager registered
with the nil type UUID (the nil type manager).

a. If the nil type manager exists for the requested interface, the server dispatches
the call to that manager.

b. Otherwise, the server rejects the call.

2. If the call contains a nonnil object UUID, the server looks to see whether it has
set a type for the object (by assigning a nonnil type UUID).

If the object lacks a type, the server looks for the nil type manager.

2. The API uses NULL to specify a synonym to the address of the nil UUID, which contains
only zeros.

DCE 1.2.2 Application Development Guide—Core Components 527

DCE Remote Procedure Call

a. If the nil type manager exists for the requested interface, the server dispatches
the call to that manager.

b. Otherwise, the server rejects the call.

3. If the object has a type, the call requires a remote procedure of a manager whose
type matches the object’s type. In its absence, the RPC runtime rejects the call.

Figure 17-8 illustrates the decisions a server makes to select a manager to which to
dispatch an incoming call.

528 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

Figure 17–8. Decisions for Selecting a Manager

type UUID

same non−nil

nil
type UUID

Call

Object UUID

asking for
non−nil

?

?

??

set for
object

Manager
registered for

type UUID

Manager
registered with

Non−nil

Reject call

Key:

 = The default decision path

manager

Dispatch call
to

nil type non−nil type
manager

to appropriate
Dispatch call

Yes

NoNo

Yes

No Yes

No

Yes

17.7 Creating Portable Data via the IDL Encoding
Services

The IDL encoding services provide client and server RPC applications with a method
for encoding data types in input parameters into byte stream format and decoding data

DCE 1.2.2 Application Development Guide—Core Components 529

DCE Remote Procedure Call

types in output parameters from a byte stream without invoking the RPC runtime.
Encoding and decoding functions are just like marshalling and unmarshalling, except
that the data is stored locally and is not transmitted over the network; the IDL encoding
services separate the data marshalling and unmarshalling functions from interaction
with the RPC runtime.

Client and server applications can use the IDL encoding services to flatten (or serialize)
a data structure, even binary data, and then store it; for example, by writing it to a file
on disk. An RPC application on any DCE machine, regardless of its data type size and
byte endianess, is then able to use the IDL encoding services to decode previously
encoded data. Without the IDL encoding services, you cannot create a file of data on
one machine and then successfully read that data on another machine that has different
size data types and byte endianess.

The IDL encoding services can generate code that takes the input parameters to a
procedure and places them in a standard form in one or more buffers that are delivered
to user code. This process is calledencoding. Encoded data can be written to a file or
forwarded by a messaging system. The IDL encoding services can also generate code
that delivers, as the output parameters of a procedure, data that has been converted
into the standard form by encoding. Delivery of data in this way is calleddecoding.
Data to be decoded can be read from a file or received by a messaging system.

Applications use the ACF attributesencodeand decodeas operation attributes or as
interface attributes to direct the IDL compiler to generate IDL encoding services stubs
for operations rather than generating RPC stubs. See Chapter 19 for usage information
on encodeanddecode.

17.7.1 Memory Management

IDL encoding services stubs handle memory management in the same way as RPC
client stubs: when you call an operation to which theencodeand/ordecodeattributes
have been applied, the encoding services stub uses whatever client stub memory
management scheme is currently in effect. See Section 17.1 for further details on client
stub memory management defaults and setting up memory management schemes.

You can control which memory management scheme the stubs will use by calling the
rpc_ss_swap_client_alloc_free()and rpc_ss_set_client_alloc_free()routines. The
first routine sets the memory management routines used by both the encoding and

530 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

decoding stubs, and the second routine restores the previous memory management
scheme after encoding and decoding are complete.

Note that the memory management scheme established, whether explicitly or by
default, is on a per-thread basis.

17.7.2 Buffering Styles

There are a number of different ways in which buffers containing encoded data can
be passed between the application code and the IDL encoding services. These are
referred to as differentbuffering styles. The different buffering styles are:

• Incremental encoding

The incremental encoding style requires that you provide anallocate routine
which creates an empty buffer into which IDL encoding services can place
encoded data, and awrite routine which IDL encoding services will call when
the buffer is full or all the parameters of the operation have been encoded. The
IDL encoding services call theallocate and write routines repeatedly until the
encoding of all of the parameters has been delivered to the user code. See the
idl_es_encode_incremental(3rpc)reference page for a description of the required
parameters for theallocate andwrite routines.

• Fixed buffer encoding

The fixed buffer encoding style requires that the application supply a single buffer
into which all the encoded data is to be placed. The buffer must have an address
that is 8-byte aligned and must be a multiple of 8 bytes in size. It must also
be large enough to hold an encoding of all the data, together with an encoding
header for each operation whose parameters are being encoded; 56 bytes should
be allowed for each encoding header.

• Dynamic buffer encoding

With the dynamic buffer encoding style, the IDL encoding services build a single
buffer containing all the encoded data and deliver the buffer to application code.
The buffer is allocated by whatever client memory management mechanism has
been put in place by the application code. The default for this ismalloc(). When
the application code no longer needs the buffer, it should release the memory
resource.

DCE 1.2.2 Application Development Guide—Core Components 531

DCE Remote Procedure Call

The dynamic buffer encoding style has performance implications. The IDL
encoding services will usually allocate a number of intermediate buffers, then
allocate the buffer to be delivered to the application code, copy data into it from
the intermediate buffers, and release the intermediate buffers.

• Incremental decoding

The incremental decoding buffering style requires that you provide aread routine
which, when called, delivers to the IDL encoding services a buffer that contains
the next part of the data to be decoded. The IDL encoding services will call the
read routine repeatedly until all of the required data has been decoded. See the
idl_es_encode_incremental(3rpc)reference page for a description of the required
parameters for theread routine.

• Buffer decoding

The buffer decoding style requires that you supply a single buffer containing
all the encoded data. Where application performance is important, note that, if
the supplied buffer is not 8-byte aligned, the IDL encoding services allocate a
temporary aligned buffer of comparable size and copy data from the user-supplied
buffer into it before performing the requested decoding.

17.7.3 IDL Encoding Services Handles

When an application’s encoding or decoding operation is invoked, the handle passed
to it must be an IDL encoding services handle (theidl_es_handle_ttype). The IDL
encoding services handle indicates whether encoding or decoding is required, and
what style of buffering is to be used. The IDL encoding services provides a set of
routines to enable the application code to obtain encoding and decoding handles to
the IDL encoding services. The IDL encoding services handle-returning routine you
call depends on the buffering style you have chosen:

• If you have selected the incremental encoding style, you call the
idl_es_encode_incremental()routine, which returns an incremental encoding
handle.

• If you have selected the fixed buffer encoding style, you call the
idl_es_encode_fixed_buffer()routine, which returns a fixed buffer encoding
handle.

532 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

• If you have selected dynamic buffer encoding, you call the
idl_es_encode_dyn_buffer() routine, which returns a dynamic buffer
encoding handle.

• If you have selected incremental decoding as your buffering style, you call
the idl_es_decode_incremental()routine, which returns an incremental decoding
handle.

• If you have selected the buffer decoding style, you call theidl_es_decode_buffer()
routine, which returns a buffer decoding handle.

When the encoding or decoding for which an IDL encoding services handle was
required is completed, the application code should release the handle resources by
calling theidl_es_handle_free()routine. See theDCE 1.2.2 Application Development
Referencefor a complete description of the IDL encoding service routines.

It is an error to call an operation for whichencodeor decodehas been specified by
using an RPC binding handle, and it is an error to call an RPC operation by using an
IDL encoding services handle.

The following restrictions apply to the use of IDL encoding services handles:

• An operation can be called with an encoding handle only if the operation has
been given theencodeACF attribute.

• An operation can be called with a decoding handle only if the operation has been
given thedecodeACF attribute.

• The auto_handleACF attribute cannot be used with the IDL encoding services.

• The implicit_handle ACF attribute cannot be used with the IDL encoding
services.

• Customized handles cannot be used with the IDL encoding services.

• An in context handle does not contain the handle information needed by the IDL
encoding services.

DCE 1.2.2 Application Development Guide—Core Components 533

DCE Remote Procedure Call

17.7.4 Programming Example

The following example uses the IDL encoding service features described in the
preceding sections. The example verifies that the results of a number of decoding
operations are the same as the parameters used to create the corresponding encodings.

The interface definition for this example is as follows:

[uuid(20aac780-5398-11c9-b996-08002b13d56d), version(0)]

interface es_array

{

const long N = 5000;

typedef struct

{

byte b;

long l;

} s_t;

typedef struct

{

byte b;

long a[7];

} t_t;

void in_array_op1([in] handle_t h, [in] long arr[N]);

void out_array_op1([in] handle_t h, [out] long arr[N]);

void array_op2([in] handle_t h, [in,out] s_t big[N]);

void array_op3([in] handle_t h, [in,out] t_t big[N]);

}

The attribute configuration file for the example is as follows:

534 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

interface es_array

{

[encode] in_array_op1();

[decode] out_array_op1();

[encode, decode] array_op2();

[encode, decode] array_op3();

}

The test code for the example is as follows:

#include <dce/pthread_exc.h>

#include "rpcexc.h"

#include <stdio.h>

#include <stdlib.h>

#include <file.h>

#include <sys/file.h>

#include "es_array.h"

/*

* User state for incremental encode/decode

*/

typedef struct es_state_t {

idl_byte *malloced_addr;

int file_handle;

} es_state_t;

static es_state_t es_state;

#define OUT_BUFF_SIZE 2048

static idl_byte out_buff[OUT_BUFF_SIZE];

static idl_byte *out_data_addr;

static idl_ulong_int out_data_size;

/*

* User allocate routine for incremental encode

*/

void es_allocate(state, buf, size)

idl_void_p_t state;

idl_byte **buf;

DCE 1.2.2 Application Development Guide—Core Components 535

DCE Remote Procedure Call

idl_ulong_int *size;

{

idl_byte *malloced_addr;

es_state_t *p_es_state = (es_state_t *)state;

malloced_addr = (idl_byte *)malloc(*size);

p_es_state->malloced_addr = malloced_addr;

*buf = (idl_byte *)(((malloced_addr - \

(idl_byte *)0) + 7) & (~ 7));

*size = (*size - (*buf - malloced_addr)) & (~ 7);

}

/*

* User write routine for incremental encode

*/

void es_write(state, buf, size)

idl_void_p_t state;

idl_byte *buf;

idl_ulong_int size;

{

es_state_t *p_es_state = (es_state_t *)state;

write(p_es_state->file_handle, buf, size);

free(p_es_state->malloced_addr);

}

/*

* User read routine for incremental decode

*/

void es_read(state, buf, size)

idl_void_p_t state;

idl_byte **buf;

idl_ulong_int *size;

{

es_state_t *p_es_state = (es_state_t *)state;

read(p_es_state->file_handle, out_data_addr, out_data_size);

*buf = out_data_addr;

*size = out_data_size;

}

536 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

static ndr_long_int arr[N];

static ndr_long_int out_arr[N];

static s_t sarr[N];

static s_t ref_sarr[N];

static s_t out_sarr[N];

static t_t tarr[N];

static t_t ref_tarr[N];

static t_t out_tarr[N];

static ndr_long_int (*oarr)[M];

#define FIXED_BUFF_STORE (8*N+64)

static idl_byte fixed_buff_area[FIXED_BUFF_STORE];

/*

* Test Program

*/

main()

{

idl_es_handle_t es_h;

idl_byte *fixed_buff_start;

idl_ulong_int fixed_buff_size, encoding_size;

idl_byte *dyn_buff_start;

error_status_t status;

int i,j;

for (i = 0; i < N; i++)

{

arr[i] = random()%10000;

sarr[i].b = i & 0x7f;

sarr[i].l = random()%10000;

ref_sarr[i] = sarr[i];

tarr[i].b = i & 0x7f;

for (j = 0; j < 7; j++) tarr[i].a[j] = random()%10000;

ref_tarr[i] = tarr[i];

}

/*

*Incremental encode/decode

*/

DCE 1.2.2 Application Development Guide—Core Components 537

DCE Remote Procedure Call

/* Encode data using one operation */

es_state.file_handle = open("es_array_1.dat", \

O_CREAT|O_TRUNC|O_WRONLY, 0777);

if (es_state.file_handle < 0)

{

printf("Can’t open es_array_1.dat\n");

exit(0);

}

idl_es_encode_incremental((idl_void_p_t)&es_state, es_allocate, \

es_write, &es_h, &status);

if (status != error_status_ok)

{

printf("Error %08x from idl_es_encode_incremental\n", status);

exit(0);

}

in_array_op1(es_h, arr);

close(es_state.file_handle);

idl_es_handle_free(&es_h, &status);

if (status != error_status_ok)

{

printf("Error %08x from idl_es_handle_free\n", status);

exit(0);

}

/* Decode the data using another operation with */

/* the same signature */

out_data_addr =

(idl_byte *)(((out_buff - (idl_byte *)0) + 7) & (~7));

out_data_size =

(OUT_BUFF_SIZE - (out_data_addr - out_buff)) & (~7);

es_state.file_handle = open("es_array_1.dat", O_RDONLY, 0);

if (es_state.file_handle < 0)

{

printf("Can’t open es_array_1.dat for reading\n");

exit(0);

}

idl_es_decode_incremental((idl_void_p_t)&es_state, es_read,

&es_h, &status);

if (status != error_status_ok)

{

printf("Error %08x from idl_es_decode_incremental\n", status);

538 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

exit(0);

}

out_array_op1(es_h, out_arr);

close(es_state.file_handle);

idl_es_handle_free(&es_h, &status);

if (status != error_status_ok)

{

printf("Error %08x from idl_es_handle_free\n", status);

exit(0);

}

/* Check the input and output are the same */

for (i = 0; i < N; i++)

{

if (out_arr[i] != arr[i])

{

printf("out_arr[%d] - found %d - expecting %d\n",

i, out_arr[i], arr[i]);

}

}

/*

* Fixed buffer encode/decode

*/

fixed_buff_start = (idl_byte *)(((fixed_buff_area - \

(idl_byte *)0) + 7)

& (~7));

fixed_buff_size = (FIXED_BUFF_STORE - \

(fixed_buff_start - fixed_buff_area))

& (~7);

idl_es_encode_fixed_buffer(fixed_buff_start, fixed_buff_size,

&encoding_size, &es_h, &status);

if (status != error_status_ok)

{

printf("Error %08x from idl_es_encode_fixed_buffer\n", status);

exit(0);

}

array_op2(es_h, sarr);

idl_es_handle_free(&es_h, &status);

if (status != error_status_ok)

DCE 1.2.2 Application Development Guide—Core Components 539

DCE Remote Procedure Call

{

printf("Error %08x from idl_es_handle_free\n", status);

exit(0);

}

idl_es_decode_buffer

(fixed_buff_start, encoding_size, &es_h, &status);

if (status != error_status_ok)

{

printf("Error %08x from idl_es_decode_buffer\n", status);

exit(0);

}

array_op2(es_h, out_sarr);

idl_es_handle_free(&es_h, &status);

if (status != error_status_ok)

{

printf("Error %08x from idl_es_handle_free\n", status);

exit(0);

}

for (i = 0; i < N; i++)

{

if (out_sarr[i].b != ref_sarr[i].b)

{

printf

("array_op2 - out_sarr[%d].b = %c\n", i, out_sarr[i].b);

}

if (out_sarr[i].l != ref_sarr[i].l)

{

printf

("array_op2 - out_sarr[%d].l = %d\n", i, out_sarr[i].l);

}

}

/*

* Dynamic buffer encode - fixed buffer decode

*/

idl_es_encode_dyn_buffer

(&dyn_buff_start, &encoding_size, &es_h, \ &status);

if (status != error_status_ok)

{

printf("Error %08x from idl_es_encode_dyn_buffer\n", status);

540 DCE 1.2.2 Application Development Guide—Core Components

Topics in RPC Application Development

exit(0);

}

array_op3(es_h, tarr);

idl_es_handle_free(&es_h, &status);

if (status != error_status_ok)

{

printf("Error %08x from idl_es_handle_free\n", status);

exit(0);

}

idl_es_decode_buffer(dyn_buff_start, encoding_size, &es_h, &status);

if (status != error_status_ok)

{

printf("Error %08x from idl_es_decode_buffer\n", status);

exit(0);

}

array_op3(es_h, out_tarr);

rpc_ss_free (dyn_buff_start);

idl_es_handle_free(&es_h, &status);

if (status != error_status_ok)

{

printf("Error %08x from idl_es_handle_free\n", status);

exit(0);

}

for (i = 0; i < N; i++)

{

if (out_tarr[i].b != ref_tarr[i].b)

{

printf("array_op3 - out_tarr[%d].b = %c\n", i, out_tarr[i].b);

}

for (j=0; j<7; j++)

{

if (out_tarr[i].a[j] != ref_tarr[i].a[j])

{

printf("array_op3 - out_tarr[%d].a[%d] = %d\n",

i, j, out_tarr[i].a[j]);

}

}

}

printf("Test Complete\n");

DCE 1.2.2 Application Development Guide—Core Components 541

DCE Remote Procedure Call

}

17.7.5 Performing Multiple Operations on a Single Handle

Multiple operations can be performed using one encoding handle before the handle is
released. In this case, all the encoded data is part of the same buffer system.

A single decoding handle is used to obtain the contents of the encoded data. Decoding
operations must be called in the same order the encoding operations were called to
create the encoded data.

The definition of the user client memory management functions, and any memory
allocated by IDL encoding services using the client memory allocator, must not be
modified between operations for which the same encoding handle is used.

17.7.6 Determining the Identity of an Encoding

Applications can use theidl_es_inq_encoding_id()routine to determine the identity
of an encoding operation, for example, before calling their decoding operations.

542 DCE 1.2.2 Application Development Guide—Core Components

Chapter 18
Interface Definition Language

This chapter describes how to construct an Interface Definition Language (IDL)
file. First, it describes the IDL syntax notation conventions and lexical elements. It
then describes the interface definition structure and the individual language elements
supported by the IDL compiler.

18.1 The Interface Definition Language File

The IDL file defines all aspects of an interface that affect data passed over the network
between a caller (client) and a callee (server). An interface definition file has the suffix
.idl . In order for a caller and callee to interoperate, they both need to incorporate the
same interface definition.

DCE 1.2.2 Application Development Guide—Core Components 543

DCE Remote Procedure Call

18.2 Syntax Notation Conventions

In addition to the documentation conventions described in the Preface of this guide,
the IDL syntax uses the special notation described in the following subsections.

18.2.1 Typography

IDL documentation uses the following typefaces:

Bold Bold typeface indicates a literal item. Keywords and literal punctuation
are represented in bold typeface. Identifiers used in a particular example
are represented in bold typeface when mentioned in the text.

Italic Italic typeface indicates a symbolic item for which you need to substitute
a particular value. In IDL syntax descriptions, all identifiers that are not
keywords are represented in italic typeface.

Constant width
Constant width typeface is used for source code examples (in IDL
or in C) that are displayed separately from regular text.

18.2.2 Special Symbols

IDL documentation uses the following symbolic notations:

[item] Italic brackets surrounding an item, which may include brackets in
regular typeface, indicate that the item contained within them is optional.

[item] Brackets shown in regular typeface surrounding a variableitem indicate
that the brackets are a required when the item is included, whether or
not the item itself is required.

item ... Ellipsis points following an item indicate that the item may occur one
or more times.

item, ... If an item is followed by a literal punctuation character and then by
ellipsis points, the item may occur either once without the punctuation
character or more than once with the punctuation character separating
each instance.

544 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

... If ellipsis points are shown on a line by themselves, the item or set of
items in the preceding line may occur any number of additional times.

item | item If several items are shown separated by vertical bars, exactly one of
those items must occur.

18.3 IDL Lexical Elements

The following subsections describe these IDL lexical elements:

• Identifiers

• Keywords

• Punctuation characters

• Whitespace

• Case sensitivity

18.3.1 Identifiers

The character set for IDL identifiers comprises the alphabetic characters A to Z and a
to z, the digits 0 to 9, and the_ (underscore) character. An identifier must start with
an alphabetic character.

No IDL identifier can exceed 31 characters. In some cases, an identifier has a shorter
maximum length because the IDL compiler uses the identifier as a base from which
to construct other identifiers; we identify such cases as they occur.

18.3.2 Keywords

IDL reserves some identifiers as keywords. In the text of this chapter, keywords are
represented inbold typeface, and identifiers chosen by application developers are
represented initalic typeface.

DCE 1.2.2 Application Development Guide—Core Components 545

DCE Remote Procedure Call

18.3.3 Punctuation Characters

IDL uses the following graphic characters:

" ’ () * , . / : ; | = [\] { }

The { (left brace) and} (right brace) characters are national replacement set characters
that may not be available on all keyboards. Wherever IDL specifies a left brace, the
??< trigraph may be substituted. Wherever IDL specifies a right brace, the??> trigraph
may be substituted.

Use of these trigraph sequences adds the following punctuation characters to the set
in the preceding list:

< > ?

18.3.4 Whitespace

Whitespace is used to delimit other constructs. IDL defines the following whitespace
constructs:

• A space

• A carriage return

• A horizontal tab

• A form feed at the beginning of a line

• A comment

• A sequence of one or more of the preceding whitespace constructs

A keyword, identifier, or number not preceded by a punctuation character must
be preceded by whitespace. A keyword, identifier, or number not followed by a
punctuation character must be followed by whitespace. Unless we note otherwise,
any punctuation character may be preceded and/or followed by whitespace.

546 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

When enclosed in"" (double quotes) or’’ (single quotes), whitespace constructs are
treated literally. Otherwise, they serve only to separate other lexical elements and are
ignored.

Just as in C, the character sequence/* (slash and asterisk) begins a comment, and the
character sequence*/ (asterisk and slash) ends a comment. For example:

/* all natural */

import "potato.idl"; /* no preservatives */

Comments do not nest.

18.3.5 Case Sensitivity

The IDL compiler does not force the case of identifiers in the generated code.

The only case sensitivity issue that you have to be aware of is the implications involved
in calling generated stubs from languages other than C.

18.4 IDL Versus C

IDL resembles a subset of ANSI C. The major difference between IDL and C is that
there are no executable statements in IDL.

18.4.1 Declarations

An interface definition specifies how operations are called, not how they are
implemented. IDL is therefore a purely declarative language.

DCE 1.2.2 Application Development Guide—Core Components 547

DCE Remote Procedure Call

18.4.2 Data Types

To support applications written in languages other than C, IDL defines some data types
that do not exist in C and extends some data types that do exist in C. For example,
IDL defines a Boolean data type.

Some C data types are supported by IDL only with modifications or restrictions. For
example, unions must be discriminated, and all arrays must be accompanied by bounds
information.

18.4.3 Attributes

The stub modules that are generated from an interface definition require more
information about the interface than can be expressed in C. For example, stubs must
know whether an operation parameter is an input or an output.

The additional information required to define a network interface is specified via IDL
attributes. IDL attributes can apply to types, to structure members, to operations, to
operation parameters, or to the interface as a whole. Some attributes are legal in only
one of the preceding contexts; others are legal in more than one context. An attribute
is always represented in[] (brackets) before the item to which it applies. For example,
in an operation declaration, inputs of the operation are preceded by thein attribute
and outputs are preceded by theout attribute:

void arith_add (

[in] long a,

[in] long b,

[out] long *c,

);

18.5 Interface Definition Structure

An interface definition has the following structure:

548 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

[interface_attribute, ...] interface interface_name

{

declarations

}

The portion of an interface definition that precedes the{ (left brace) is the interface
header. The remainder of the definition is the interface body. Interface header syntax
and interface body syntax are described separately in the following two subsections.

18.5.1 Interface Definition Header

The interface header comprises a list of interface attributes enclosed in[] (brackets),
the keywordinterface, and the interface name:

[interface_attribute, ...] interface interface_name

Interface names, together with major and minor version numbers, are used by the
IDL compiler to construct identifiers for interface specifiers, entry point vectors, and
entry point vector types. If the major and minor version numbers are single digits, the
interface name can be up to 17 characters long.

For C++ output, the interface header can also inherit an interface by using the
inheritance operator (:) as follows:

[interface_attribute, ...] interface interface_name: inherited_interface

18.5.2 Interface Definition Body

The declarationsin an interface definition body are one or more of the following:

import_declaration

constant_declaration

DCE 1.2.2 Application Development Guide—Core Components 549

DCE Remote Procedure Call

type_declaration

operation_declaration

A ; (semicolon) terminates each declaration, and{ } (braces) enclose the entire body.

Import declarations must precede other declarations in the interface body. Import
declarations specify the names of other IDL interfaces that define types and constants
used by the importing interface.

Constant, type, and operation declarations specify the constants, types, and operations
that the interface exports. These declarations can be coded in any order, provided any
constant or type is defined before it is used.

18.6 Overview of IDL Attributes

Table 18-1 lists the attributes allowed in interface definition files and specifies the
declarations in which they can occur.

Table 18–1. IDL Attributes

Attribute Where Used

uuid Interface definition headers

version

endpoint

exceptions

pointer_default

local

broadcast Operations

maybe

idempotent

reflect_deletions

in Parameters

550 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

Attribute Where Used

out

ignore Structures

max_is Arrays

min_is

size_is

first_is

last_is

length_is

string Arrays

ptr Pointers

ref

unique

handle Customized handles

context_handle Context handles

transmit_as Type declarations

18.7 Interface Definition Header Attributes

The following subsections describe in detail the usage and semantics of the IDL
attributes that can be used in interface definition headers. The attributes provided for
interface definition headers are as follows:

• uuid

• version

• endpoint

• exceptions

• pointer_default

DCE 1.2.2 Application Development Guide—Core Components 551

DCE Remote Procedure Call

• local

18.7.1 The uuid Attribute

The uuid attribute specifies the Universal Unique Identifier (UUID) that is assigned
to an interface. Theuuid attribute takes the following form:

uuid (uuid_string)

A uuid_stringis the string representation of a UUID. This string is typically generated
as part of a skeletal interface definition by the utilityuuidgen. A uuid_stringcontains
one group of 8 hexadecimal digits, three groups of 4 hexadecimal digits, and one group
of 12 hexadecimal digits, with hyphens separating the groups, as in the following
example:

01234567-89ab-cdef-0123-456789abcdef

A new UUID should be generated for any new interface. If several versions of one
interface exist, all versions should have the same interface UUID but different version
numbers. A client and a server cannot communicate unless the interface imported by
the client and the interface exported by the server have the same UUID. The client and
server stubs in an application must be generated from the same interface definition or
from interface definitions with identicaluuid attributes.

Any remote interface must have theuuid attribute. An interface must have either the
uuid attribute or thelocal attribute, but cannot have both.

The uuid attribute can appear at most once in an interface.

The following example illustrates use of theuuid attribute:

uuid(4ca7b4dc-d000-0d00-0218-cb0123ed9876)

552 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

18.7.2 The version Attribute

The version attribute specifies a particular version of a remote interface. Theversion
attribute takes the following form:

version (major [. minor])

A version number can be either a pair of integers (the major and minor version
numbers) or a single integer (the major version number). If both major and minor
version numbers are supplied, the integers should be separated by a period without
whitespace. If no minor version number is supplied, 0 (zero) is assumed.

The following examples illustrate use of theversion attribute:

version (1.1) /* major and minor version numbers */

version (3) /* major version number only */

Theversion attribute can be omitted altogether, in which case the interface is assigned
0.0 as the default version number.

A client and a server can communicate only if the following requirements are met:

• The interface imported by the client and the interface exported by the server have
the same major version number.

• The interface imported by the client has a minor version number less than or equal
to that of the interface exported by the server.

You must increase either the minor version number or the major version number when
you make any compatible change to an interface definition. You must not decrease the
minor version number unless you simultaneously increase the major version number.

You must increase the major version number when you make any incompatible change
to an interface definition. (See the definition of compatible changes that follows.) You
cannot decrease the major version number.

The following are considered compatible changes to an interface definition:

DCE 1.2.2 Application Development Guide—Core Components 553

DCE Remote Procedure Call

• Adding operations to the interface, if and only if the new operations are declared
after all existing operation declarations in the interface definition.

• Adding type and constant declarations, if the new types and constants are used
only by operations added at the same time or later. Existing operation declarations
cannot have their signatures modified.

The major and minor integers in theversion attribute can range from 0 to 65,535,
inclusive. However, these typically are small integers and are increased in increments
of one.

The following are considered incompatible changes to an interface definition:

• Changing the signature of an existing operation

• Changing the order of existing operations

• Adding a new operation other than at the end

The version attribute can appear at most once in an interface.

18.7.3 The endpoint Attribute

The endpoint attribute specifies the well-known endpoint or endpoints on which
servers that export the interface will listen. Theendpoint attribute takes the following
form:

endpoint (endpoint_spec, ...)

Eachendpoint_specis a string in the following form:

" family : [endpoint] "

The family identifies a protocol family. The following are accepted values forfamily:

• ncacn_ip_tcp: NCA Connection over Internet Protocol: Transmission Control
Protocol (TCP/IP)

554 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

• ncadg_ip_udp: NCA Datagram over Internet Protocol: User Datagram Protocol
(UDP/IP)

The endpoint identifies a well-known endpoint for the specifiedfamily. The values
accepted forendpointdepend on thefamily but typically are integers within a limited
range. IDL does not define validendpointvalues.

Well-known endpoint values are typically assigned by the central authority that
‘‘owns’’ a protocol. For example, the Internet Assigned Numbers Authority assigns
well-known endpoint values for the IP protocol family.

At compile time, the IDL compiler checks eachendpoint_speconly for gross syntax.
At runtime, stubs pass thefamily and endpointstrings to the RPC runtime, which
validates and interprets them.

Most applications should not use well-known endpoints and should instead use
dynamically assigned opaque endpoints. Most interfaces designed for use by
applications should therefore not have theendpoint attribute.

The following example illustrates use of theendpoint attribute:

endpoint ("ncacn_ip_tcp:[1025]", "ncadg_ip_udp:[6677]")

The endpoint attribute can appear at most once in an interface.

18.7.4 The exceptions Attribute

Theexceptionsattribute specifies a set of user-defined exceptions that can be generated
by the server implementation of the interface. Theexceptions attribute takes the
following form:

exceptions (exception_name[,exception_name] ...)

The following is a sample declaration of anexceptionsattribute:

DCE 1.2.2 Application Development Guide—Core Components 555

DCE Remote Procedure Call

[uuid(06255501-08AF-11CB-8C4F-08002B13D56D),

version (1.1),

exceptions (

exc_e_exquota,

binop_e_aborted,

binop_e_too_busy,

binop_e_shutdown)

] interface binop

{

long binop_add(

[in] long a,

[in] long b

);

}

See Chapter 17 for more information on using exceptions.

18.7.5 The pointer_default Attribute

IDL supports two kinds of pointer semantics. Thepointer_default attribute specifies
the default semantics for pointers that are declared in the interface definition. The
pointer_default attribute takes the following form:

pointer_default (pointer_attribute)

Possible values forpointer_attributeare ref, unique, andptr .

The default semantics established by thepointer_default attribute apply to the
following usages of pointers:

• A pointer that occurs in the declaration of a member of a structure or a union.

• A pointer that does not occur at the top level of an operation parameter declared
with more than one pointer operator. A top-level pointer is one that is not the
target of another pointer and is not a field of a data structure that is the target of
a pointer. (See Section 18.14.7.2 for more information on top-level pointers.)

556 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

Note that thepointer_default attribute does not apply to a pointer that is the return
value of an operation because this is always a full pointer.

The default semantics can be overridden by pointer attributes in the declaration of
a particular pointer. If an interface definition does not specifypointer_default and
contains a declaration that requires default pointer semantics, the IDL compiler will
issue a warning. For additional information on pointer semantics, refer to Section
18.14.7.1.

The pointer_default attribute can appear at most once in an interface.

18.7.6 The local Attribute

The local attribute indicates that an interface definition does not declare any remote
operations and that the IDL compiler should therefore generate only header files, not
stub files. Thelocal attribute takes the following form:

local

An interface containing operation definitions must have either thelocal attribute or
the uuid attribute. No interface can have both.

The local attribute can appear at most once in an interface.

18.7.7 Rules for Using Interface Definition Header Attributes

An interface cannot have both thelocal attribute and theuuid attribute. In an interface
definition that contains any operation declarations, eitherlocal or uuid must be
specified. In an interface definition that contains no operation declarations, bothlocal
anduuid can be omitted.

The local, uuid, and version attributes cannot be coded more than once. If the
endpoint or thepointer_default attribute is coded more than once, the IDL compiler
issues a warning and, where conflicts exist, the IDL compiler accepts the last value
specified.

DCE 1.2.2 Application Development Guide—Core Components 557

DCE Remote Procedure Call

18.7.8 Examples of Interface Definition Header Attributes

The following example uses theuuid andversion attributes:

[uuid(df961f80-2d24-11c9-be74-08002b0ecef1), version(1.1)]

interface my_interface_name

The following example uses theuuid, endpoint, andversion attributes:

[uuid(0bb1a080-2d25-11c9-8d6e-08002b0ecef1),

endpoint("ncacn_ip_tcp:[1025]", "ncacn_ip_tcp:[6677]"),

version(3.2)]

interface my_interface_name

18.8 Import Declarations

The IDL import_declarationspecifies interface definition files that declare types and
constants used by the importing interface. It takes the following form:

import file,... ;

Thefile argument is the pathname, enclosed in double quotes, of the interface definition
you are importing. This pathname can be relative; the-I option of the IDL compiler
allows you to specify a directory from which to resolve import pathnames.

The effect of an import declaration is as if all constant, type, and import declarations
from the imported file occurred in the importing file at the point where the import
declaration occurs. Operation declarations are not imported.

For example, suppose that the interface definitionaioli.idl contains a declaration to
import the definitions for thegarlic andoil interfaces:

558 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

import "garlic.idl", "oil.idl";

The IDL compiler will generate a C header file namedaioli.h that contains the
following #include directives:

#include "garlic.h"

#include "oil.h"

The stub files that the compiler generates will not contain code for anygarlic andoil
operations.

Importing an interface many times has the same effect as importing it once.

18.9 Constant Declarations

The IDL constant_declarationcan take any one of the following forms:

const integer_type_spec identifier= integer | value | integer_const_expression;

const booleanidentifier = TRUE | FALSE | value;

const char identifier = character| value;

const char* identifier = string | value;

const void* identifier = NULL | value;

The integer_type_specis the data type of the integer constant you are declaring. The
identifier is the name of the constant. Theinteger, integer_const_expression, character,
string, or valuespecifies the value to be assigned to the constant. Avaluecan be any
previously defined constant.

IDL provides only integer, Boolean, character, string, and null pointer constants.

Following are examples of constant declarations:

const short TEN = 10;

const boolean FAUX = FALSE;

DCE 1.2.2 Application Development Guide—Core Components 559

DCE Remote Procedure Call

const char* DSCH = "Dmitri Shostakovich";

18.9.1 Integer Constants

An integer_type_specis a type_specifierfor an integer, except that theint_sizefor an
integer constant cannot behyper.

An integeris the decimal representation of an integer. IDL also supports the C notation
for hexadecimal, octal, and long integer constants.

You can specify any previously defined integer constant as thevalue of an integer
constant.

You can specify any arithmetic expression as theinteger_const_expressionthat
evaluates to an integer constant.

18.9.2 Boolean Constants

A Boolean constant can take one of two values: TRUE or FALSE.

You can specify any previously defined Boolean constant as thevalue of a Boolean
constant.

18.9.3 Character Constants

A characteris an ASCII character enclosed in single quotes. A white space character
is interpreted literally. The\ (backslash) character introduces an escape sequence, as
defined in the ANSI C standard. The’ (single quote) character can be coded as the
characteronly if it is escaped by a backslash.

You can specify any previously defined character constant as thevalueof a character
constant.

560 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

18.9.4 String Constants

A string is a sequence of ASCII characters enclosed in double quotes. Whitespace
characters are interpreted literally. The\ (backslash) character introduces an escape
sequence, as defined in the ANSI C standard. The" (double quote) character can be
coded in astring only if it is escaped by a backslash.

You can specify any previously defined string constant as thevalueof a string constant.

18.9.5 NULL Constants

A void* constant can take only one literal value: NULL.

You can specify any previously definedvoid* constant as thevalueof avoid* constant.

18.10 Type Declarations

The IDL type_declarationenables you to associate a name with a data type and to
specify attributes of the data type. It takes the following form:

typedef [[type_attribute, ...]] type_specifier type_declarator, ... ;

A type_attributespecifies characteristics of the type being declared.

The type_specifiercan specify a base type, a constructed type, a predefined type,
or a named type. A function pointer can be specified if thelocal attribute has been
specified.

Each type_declaratoris a name for the type being defined. Note, though, that a
type_declaratorcan also be preceded by an* (asterisk), followed by[] (brackets),
and can include() (parentheses) to indicate the precedence of its components.

DCE 1.2.2 Application Development Guide—Core Components 561

DCE Remote Procedure Call

18.10.1 Type Attributes

A type_attributecan be any of the following:

• handle: The type being declared is a user-defined, customized-handle type.

• context_handle: The type being declared is a context-handle type.

• transmit_as: The type being declared is apresented type. When it is passed in
remote procedure calls, it is converted to a specifiedtransmitted type.

• ref: The type being declared is a reference pointer.

• ptr : The type being declared is a full pointer.

• unique: The type being declared is a unique pointer.

• string: The array type being declared is a string type.

18.10.2 Base Type Specifiers

IDL base types include integers, floating-point numbers, characters, aboolean type,
a byte type, avoid type, and a primitive handle type.

Table 18-2 lists the IDL base data type specifiers. Where applicable, the table shows
the size of the corresponding transmittable type and the type macro emitted by the
IDL compiler for resulting declarations.

Table 18–2. Base Data Type Specifiers

Specifier Type Macro

(sign) (size) (type) Size Emitted by idl

small int 8 bits idl_small_int

short int 16 bits idl_short_int

long int 32 bits idl_long_int

hyper int 64 bits idl_hyper_int

unsigned small int 8 bits idl_usmall_int

562 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

Specifier Type Macro

(sign) (size) (type) Size Emitted by idl

unsigned short int 16 bits idl_ushort_int

unsigned long int 32 bits idl_ulong_int

unsigned hyper int 64 bits idl_uhyper_int

float 32 bits idl_short_float

double 64 bits idl_long_float

char 8 bits idl_char

boolean 8 bits idl_boolean

byte 8 bits idl_byte

void — idl_void_p_t

handle_t — —

The base types are described individually later in this chapter.

Note that you can use theidl_ macros in the code you write for an application to
ensure that your type declarations are consistent with those in the stubs, even when the
application is ported to another platform. Theidl_ macros are especially useful when
passing constant values to RPC calls. For maximum portability, all constants passed to
RPC calls declared in your network interfaces should be cast to the appropriate type
because the size of integer constants (like the size of theint data type) is ambiguous
in the C language.

The idl_ macros are defined indce/idlbase.h, which is included by header files that
the IDL compiler generates.

18.10.3 Constructed Type Specifiers

IDL constructed types include structures, unions, enumerations, pipes, arrays, and
pointers. (In IDL, as in C, arrays and pointers are specified via declarator constructs
rather than type specifiers.) Following are the keywords used to declare constructed
type specifiers:

DCE 1.2.2 Application Development Guide—Core Components 563

DCE Remote Procedure Call

struct

union

enum

pipe

Constructed types are described in detail later in this chapter.

18.10.4 Predefined Type Specifiers

While IDL per se does not have any predefined types, DCE RPC IDL implicitly
importsnbase.idl, which does predefine some types. Specifically,nbase.idlpredefines
an error status type, several international character data types, and many other types.
Following are the keywords used to declare thesepredefinedtype specifiers:

error_status_t

ISO_LATIN_1

ISO_MULTI_LINGUAL

ISO_UCS

The error status type and international characters are described in detail later in this
chapter.

18.10.5 Type Declarator

An IDL type_declaratorcan be either a simple declarator or a complex declarator.

A simple declarator is just an identifier.

A complex declarator is an identifier that specifies an array, a function pointer, or a
pointer.

564 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

18.11 Operation Declarations

The IDL operation_declarationcan take the following forms:

[[operation_attribute, ...]] [static] type_specifier operation_identifier(parameter_declaration, ...);

[[operation_attribute, ...]] [static] type_specifier operation_identifier([void]);

Use the first form for an operation that has one or more parameters; use the second
form for an operation that has no parameters. Use thestatic keyword if the operation
is a static member function of the interface class (C++ output only).

An operation_attributecan take the following forms:

• idempotent: The operation is idempotent.

• broadcast: The operation is always to be broadcast.

• maybe: The caller of the operation does not require and will not receive any
response.

• reflect_deletions: If rpc_ss_free()is applied by application code on the server
side to memory used for the referent of a full pointer that is part of an[in]
parameter, the storage occupied by that referent on the client side is released.

• ptr : The operation returns a full pointer. This attribute must be supplied if the
operation returns a pointer result and reference pointers are the default for the
interface.

• context_handle: The operation returns a context handle.

• string: The operation returns a string.

The type_specifierin an operation declaration specifies the data type that the operation
returns, if any. This type must be either a scalar type or a previously defined type. If
the operation does not return a result, itstype_specifiermust bevoid .

For information on the semantics of pointers as operation return values, refer to the
discussion of pointers in Section 18.14.7.

The operation_identifierin an operation declaration is an identifier that names the
operation.

DCE 1.2.2 Application Development Guide—Core Components 565

DCE Remote Procedure Call

Eachparameter_declarationin an operation declaration declares a parameter of the
operation. Aparameter_declarationtakes the following form:

[parameter_attribute, ...] type_specifier parameter_declarator

Parameter declarations and the parameter attributes are described separately in the
following sections.

18.11.1 Operation Attributes

Operation attributes determine the semantics to be applied by the RPC client and
server protocol when an operation is called.

18.11.2 Operation Attributes: Execution Semantics

The idempotent attribute specifies that an operation is idempotent; that is, it can safely
be executed more than once.

Thebroadcastattribute specifies that an operation is to be broadcast to all hosts on the
local network each time the operation is called. The client receives output arguments
from the first reply to return successfully, and all subsequent replies are discarded.

An operation with thebroadcast attribute is implicitly idempotent.

Note that the broadcast capabilities of RPC runtime have a number of distinct
limitations:

• Not all systems and networks support broadcasting. In particular, broadcasting is
not supported by the RPC connection-oriented protocol.

• Broadcasts are limited to hosts on the local network.

• Broadcasts make inefficient use of network bandwidth and processor cycles.

• The RPC runtime library does not supportat-most-oncesemantics for broadcast
operations; it appliesidempotent semantics to all such operations.

566 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

• The input arguments for broadcast calls are limited to 944 bytes.

The maybe attribute specifies that the caller of an operation does not expect any
response. An operation with themaybe attribute cannot have any output parameters
and cannot return anything. Delivery of the call is not guaranteed.

An operation with themaybe attribute is implicitly idempotent.

18.11.3 Operation Attributes: Memory Management

Use thereflect_deletionsattribute to mirror the release of memory from server pointer
targets to client pointer targets. When you use thereflect_deletionsattribute, memory
occupied by pointer targets on the client will be released when the corresponding
pointer targets on the server are released. This is only true for pointer targets that
are components of[in] parameters of the operation. By default, the mechanism
used by RPC to release the pointer targets is the C languagefree() function unless
the client code is executing as part of RPC server application code, in which
case therpc_ss_free() function is used. You can override the default by calling
rpc_ss_set_client_alloc_free() or rpc_ss_swap_client_alloc_free() before the call to
the remote operation.

18.12 Parameter Declarations

A parameter_declarationis used in an operation declaration to declare a parameter
of the operation. Aparameter_declarationtakes the following form:

[parameter_attribute, ...] type_specifier parameter_declarator

If an interface does not use implicit handles or use interface-based binding, the first
parameter must be an explicit handle that gives the object UUID and location. The
handle parameter can be of a primitive handle type,handle_t, or a nonprimitive user-
defined handle type.

A parameter_attributecan be any of the following:

DCE 1.2.2 Application Development Guide—Core Components 567

DCE Remote Procedure Call

• array_attribute: One of several attributes that specifies the characteristics of arrays.

• in: The parameter is an input attribute.

• out: The parameter is an output attribute.

• ref: The parameter is a reference pointer; it cannot be NULL and cannot be an
aliased pointer.

• ptr : The parameter is a full pointer; it can be NULL and can be an aliased pointer.

• unique: The parameter is a unique pointer; it can be NULL.

• string: The parameter is a string.

• context_handle: The parameter is a context handle.

• switch_is:

The directional attributesin andout specify the directions in which a parameter is to
be passed. Thein attribute specifies that the parameter is passed from the caller to the
callee. Theout attribute specifies that the parameter is passed from the callee to the
caller.

An output parameter must be passed by reference and therefore must be declared with
an explicit * (asterisk). (Note that an array is implicitly passed by reference and so
an output array does not require an explicit* .) At least one directional attribute must
be specified for each parameter of an operation.

An explicit handle parameter must have at least thein attribute.

The ref, unique, andptr attributes are described later in Section 18.14.7. Thestring
attribute is described in Section 18.14.6. Thecontext_handleattribute is described in
Section 18.14.9.1.

The type_specifierin a parameter declaration specifies the data type of the parameter.

The declarator in a parameter declaration can be any simple or complex declarator.

A parameter with theout attribute must be either an array or an explicitly declared
pointer. An explicitly declared pointer is declared by apointer_declarator, rather than
by a simple_declaratorwith a named pointer type as itstype_specifier.

568 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

For information on the semantics of pointers as operation parameters, refer to the
discussion of pointers in Section 18.14.7.

18.13 Basic Data Types

The following subsections describe the basic data types provided by IDL and the
treatment of international characters within IDL. The basic data types are as follows:

• Integer types

• Floating-point types

• The char type

• The boolean type

• The byte type

• The void type

• The handle_t type

• The error_status_t type

Section 18.14 describes the constructed data types that are built on the basic data
types.

18.13.1 Integer Types

IDL provides four sizes of signed and unsigned integer data types, specified as follows:

int_size [int]

unsigned int_size [int]

int_sizeunsigned [int]

The int_sizecan take the following values:

DCE 1.2.2 Application Development Guide—Core Components 569

DCE Remote Procedure Call

hyper

long

short

small

The hyper types are represented in 64 bits. Along is 32 bits. Ashort is 16 bits. A
small is 8 bits.

The keywordint is optional and has no effect. The keywordunsigned denotes an
unsigned integer type; it can occur either before or after the size keyword.

18.13.2 Floating-Point Types

IDL provides two sizes of floating-point data types, specified as follows:

float

double

A float is represented in 32 bits. Adouble is represented in 64 bits.

18.13.3 The char Type

The IDL character type is specified as follows:

[unsigned] char

A char is unsigned and is represented in 8 bits.

The keywordunsigned is optional and has no effect. IDL does not support a signed
character type. IDL provides thesmall data type for representing signed 8-bit integers.

570 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

18.13.4 The boolean Type

The IDL boolean type is specified as follows:

boolean

A boolean is represented in 8 bits. Aboolean is a logical quantity that assumes one
of two values: TRUE or FALSE. Zero is FALSE and any nonzero value is TRUE.

18.13.5 The byte Type

The IDL byte type is specified as follows:

byte

A byte is represented in 8 bits. The data representation format ofbyte data is
guaranteed not to change when the data is transmitted by the RPC mechanism.

The IDL integer, character, and floating-point types (and hence any types constructed
from these) are all subject to format conversion when they are transmitted between
hosts that use different data representation formats. You can protect data of any type
from format conversion by transmitting that type as an array ofbyte.

18.13.6 The void Type

The IDL void type is specified as follows:

void

The void type may be used to do the following:

• Specify the type of an operation that does not return a value

DCE 1.2.2 Application Development Guide—Core Components 571

DCE Remote Procedure Call

• Specify the type of a context handle parameter, which must bevoid*

• Specify the type of a NULL pointer constant, which must bevoid*

18.13.7 The handle_t Type

The IDL primitive handle type is specified as follows:

handle_t

A handle_t is a primitive handle type that is opaque to application programs but
meaningful to the RPC runtime library. Section 18.14.8 discusses primitive and
nonprimitive handle types.

18.13.8 The error_status_t Type

IDL provides the following predefined data type to hold RPC communications status
information:

error_status_t

The values that can be contained in theerror_status_t data type are compatible with
the unsigned long and unsigned32 IDL data types. These data types are used for
status values in the DCE.

The error_status_t data type contains an additional semantic to indicate that this
particular unsigned long contains a DCE format error status value. This additional
semantic enables the IDL compiler to perform any necessary translation when moving
the status value between systems with differing hardware architectures and software
operating systems. If you are using status codes that are not in the DCE error status
format or if you do not require such conversion, use anunsigned long instead of
error_status_t.

572 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

18.13.9 International Characters

The implicitly importednbase.idl provides predefined data types to support present
and emerging international standards for the representation of characters and strings:

ISO_LATIN_1

ISO_MULTI_LINGUAL

ISO_UCS

Data of typechar is subject to ASCII-EBCDIC conversion when transmitted by the
RPC mechanism. The predefined international character types are constructed from the
base typebyte and are thereby protected from data representation format conversion.

The ISO_LATIN_1 type is represented in 8 bits and is predefined as follows:

typedef byte ISO_LATIN_1;

The ISO_MULTI_LINGUAL type is represented in 16 bits and is predefined as
follows:

typedef struct {

byte row, column;

} ISO_MULTI_LINGUAL;

The ISO_UCS type is represented in 32 bits and is predefined as follows:

typedef struct {

byte group, plane, row, column;

} ISO_UCS;

DCE 1.2.2 Application Development Guide—Core Components 573

DCE Remote Procedure Call

18.14 Constructed Data Types

The following subsections describe the constructed data types that are provided by
IDL. The constructed types are built on the basic data types, which are described in
Section 18.13. The constructed data types are as follows:

• Structures

• Unions

• Enumerations

• Pipes

• Arrays

• Strings

In IDL, as in C, arrays and pointers are specified via declarator constructs. The other
constructed types are specified via type specifiers.

18.14.1 Structures

The type_specifierfor a structure type can take the following forms:

struct [tag]

{

struct_member;

...

}

struct tag

A tag, if supplied in a specifier of the first form, becomes a shorthand form for the
set of member declarations that follows it. Such atag can subsequently be used in a
specifier of the second form.

A struct_membertakes the following form:

574 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

[[struct_member_attribute, ...]] type_specifier declarator, ...;

A struct_member_attributecan be any of the following:

• array_attribute: One of several attributes that specify characteristics of arrays.

• ignore: An attribute indicating that the pointer member being declared is not to
be transmitted in remote procedure calls.

• ref: An attribute indicating that the pointer member being declared is a reference
pointer; it cannot be NULL and cannot be an alias.

• ptr : An attribute indicating that the pointer member being declared is a full pointer;
it can be NULL and can be an alias.

• unique: An attribute indicating that the pointer member being declared is a unique
pointer.

• string: An attribute indicating that the array member being declared is a string.

• switch_is:

A structure can contain a conformant array (conformant structure) only as its last
member. And such a structure can be contained by another structure only as its last
member, and so on. A conformant structure cannot be returned by an operation as
its value and cannot be simply anout parameter. Note that a structure can contain
any number ofpointer to conformant arrays. Structure fields defined as pointers to
an array base type and with one or more of the array size attributes define pointers
to conformant arrays. Since the size of the pointer field in the structure is fixed, the
structure itself is not conformant, although the array that it points to is conformant.

A structure cannot contain a pipe or context handle.

The ignore attribute specifies that the pointer is not to be transmitted in remote
procedure calls. Note that theignore attribute can be applied only to a pointer that is
a member of a structure. Theignore attribute is not allowed in a type declaration that
defines a pointer type.

DCE 1.2.2 Application Development Guide—Core Components 575

DCE Remote Procedure Call

18.14.2 Unions

IDL provides two types of unions: encapsulated and nonencapsulated. An IDL union
must be discriminated. In an encapsulated union, the discriminator is part of the union.
In a nonencapsulated union, the discriminator is not part of the union.

The following type_specifiercan be used to indicate either kind of union.

union [tag]

A definition of the union identified bytag must appear elsewhere in the interface
definition.

18.14.2.1 Encapsulated Unions

To define an encapsulated union, use the following syntax:

union [tag] switch (disc_type_spec discriminator) [union_name]

{

case

...

[default_case]

}

If a tag is supplied, it can be used in atype_specifierof the form shown in Section
18.14.2.

The disc_type_specindicates the type of thediscriminator, which can be an integer,
a character, aboolean, or an enumeration.

Theunion_namespecifies a name to be used in C code generated by the IDL compiler.
When the IDL compiler generates C code to represent an IDL union, it embeds the
union and its discriminator in a C structure. The name of the IDL union becomes the
name of the C structure. If you supply aunion_namein your type declaration, the

576 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

compiler assigns this name to the embedded C union; otherwise, the compiler assigns
the generic nametagged_union.

A casecontains one or more labels and may contain a member declaration:

caseconstant:

...

[union_member];

Each label in acasespecifies a constant. Theconstantcan take any of the forms
accepted in an integer, character, or Boolean constant declaration, each of which is
described earlier in this chapter.

A default_casecan be coded anywhere in the list of cases:

default:

[union_member];

A union_membertakes the following form:

[[union_member_attribute, ...]] type_specifier declarator;

A union_member_attributecan be any of the following:

• ptr : An attribute indicating that the pointer member being declared is a full pointer;
it can be NULL and can be an alias.

• string: An attribute indicating that the character array member being declared is
a string.

In any union, the type of the discriminator and the type of all constants in all case
labels must resolve to the same type. At the time the union is used, the value of the
discriminator selects a member, as follows:

• If the value of the discriminator matches the constant in any label, the member
associated with the label is selected.

DCE 1.2.2 Application Development Guide—Core Components 577

DCE Remote Procedure Call

• If there is no label whose constant matches the value of the discriminator and
there is a default case, the default member is selected.

• If there is no label whose constant matches the value of the discriminator and there
is no default case, no member is selected and the exceptionrpc_x_invalid_tag is
raised.

Note that IDL prohibits duplicate constant label values.

A union_membercan contain only one declarator. If nounion_memberis supplied,
the member is NULL; if that member is selected when the union is used, no data is
passed. But note that the discriminator is always passed.

A union cannot contain a pipe, a conformant array, a varying array, or any structure
that contains a conformant or varying array. A union also cannot contain aref or
unique pointer or any structure that contains aref or unique pointer.

The following is an example of an encapsulated union.

/* IDL construct /*

typedef

union fred switch (long a) ralph {

case 1: float b;

case 2: long c;

} bill;

/* becomes in the generated header file /*

typedef

struct fred {

long a;

union {

float b;

long c;

} ralph;

} bill;

578 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

18.14.2.2 Nonencapsulated Unions

To define a nonencapsulated union, use the following syntax:

[switch_type(datatype)]union [tag]

{

case

...

[default_case]

}

If a tag is supplied, it can be used in atype_specifierof the form shown in Section
18.14.2.

A parameter or a structure field that is a nonencapsulated union must have an attribute
attached to it. This attribute has the following form:

switch_is(attr_var)

whereattr_var is the name of the parameter or structure field that is the discriminator
for the union.

If a nonencapsulated union is used as a structure field, the discriminator of the union
must be a field of the same structure. If a nonencapsulated union is used as a parameter
of an operation, the discriminator must be another parameter of the same operation.

The following example shows uses of a nonencapsulated union.

typedef

[switch_type(long)] union {

[case (1,3)] float a_float;

[case (2)] short b_short;

[default] ; /* An empty arm. Nothing is shipped. */

} n_e_union_t;

DCE 1.2.2 Application Development Guide—Core Components 579

DCE Remote Procedure Call

typedef

struct {

long a; /* The discriminant for the */

/* union later in this struct. */

[switch_is (a)] n_e_union_t b;

} a_struct;

/* Note switch can follow union in operation */

void op1 (

[in] handle_t h,

[in,switch_is (s)] n_e_union_t u,

[in] long s);

18.14.3 Enumeration

An IDL enumeration provides names for integers. It is specified as follows:

enum {identifier[= integer], ...}

Each identifier in an enumeration is assigned an integer, either explicitly in the interface
or automatically by the IDL compiler. If all the identifiers are unassigned, the IDL
compiler begins assigning 0 (zero) to the first identifier, 1 to the next identifier, and so
on. If an unassigned identifier follows an assigned one, the compiler restarts number
assignment with the next consecutive integer. An enumeration can have up to 32,767
identifiers.

Assignments can be made in any order, and multiple identifiers can have the same
value. For example:

typedef enum {

SHOVEL = 9, AX, MATTOCK = 3, PITCHFORK, SPADE = 9

} yard_tools;

/* values assigned: SHOVEL:9, AX:10, MATTOCK:3, PITCHFORK:4, */

/* SPADE:9 */

580 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

18.14.4 Pipes

IDL supports pipes as a mechanism for transferring large quantities of typed data.
An IDL pipe is an open-ended sequence of elements of one type. A pipe permits
application-level optimization of bulk data transfer by allowing the overlap of
communication and processing. Applications that process a stream of data as it arrives,
rather than simply storing the data in memory, can make efficient use of the pipe
mechanism.

A pipe is specified as follows:

pipe type_specifier

The type_specifierspecifies the type for the elements of the pipe. This type cannot be
a pointer type, a type that contains a pointer, a conformant type, a context handle, a
handle_t element type, or a data type that is declared astransmit_as.

A pipe type can be used to declare only the type of an operation parameter. IDL
recognizes three kinds of pipes, based on the three operation parameters:

• An in pipe is for transferring data from a client to a server. It allows the callee
(server) to pull an open-ended stream of typed data from the caller (client).

• An out pipe is for transferring data from a server to a client. It allows the callee
(server) to push the stream of data to the caller (client).

• An in,out pipe provides for two-way data transfer between a client and server by
combining the behavior ofin andout pipes.

A pipe can be defined only through atypedef declaration. Anonymous pipe types are
not supported.

At the interface between the stub and the application-specific code (for both the client
and server), a pipe appears as a simple callback mechanism. To the user code, the
processing of a pipe parameter appears to be synchronous. The IDL implementation
of pipes in the RPC stub and runtime allows the apparent callbacks to occur without
requiring actual remote callbacks. As a result, pipes provide an efficient transfer
mechanism for large amounts of data.

DCE 1.2.2 Application Development Guide—Core Components 581

DCE Remote Procedure Call

Note however, that pipe data communications occur at about the same speed as arrays.
Pipes can improve latency and minimum memory utilization, but not throughput. Pipes
are intended for use where the receiver can process the data in some way as it arrives,
for example by writing it to a file or passing it to a consumer thread. If the intent is
to store the data in memory for later processing, pipes offer no advantage over arrays.

18.14.4.1 IDL Pipes Example

To illustrate the IDL implementation of pipes, consider the following IDL fragment:

typedef

pipe element_t pipe_t;

When the code containing this fragment is compiled, the IDL compiler will generate
the following declarations in the derived header file:

typedef struct pipe_t {

void (* pull)(

rpc_ss_pipe_state_t state,

element_t *buf,

idl_ulong_int esize,

idl_ulong_int *ecount

);

void (* push)(

rpc_ss_pipe_state_t state,

element_t *buf,

idl_ulong_int ecount

);

void (* alloc)(

rpc_ss_pipe_state_t state,

idl_ulong_int bsize,

element_t **buf,

idl_ulong_int *bcount

);

rpc_ss_pipe_state_t state;

582 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

} pipe_t;

The pipe data structure specifies pointers to three separate routines and a pipe state.
The client application has to implement these routines for the client stub to call, and
the server manager must call the associated routines generated in the server stub.

The pull routine is used for an input pipe. It pulls the next chunk of data from the
client application into the pipe. The input parameters include the pipestate, the buffer
(*buf) containing a chunk of data, and the size of the buffer (esize) in terms of the
number of pipe data elements. The output parameter is the actual count (*ecount) of
the number of pipe data elements in the buffer.

The push routine is used for an output pipe. It pushes the next chunk of data from the
pipe to the client application. The input parameters include the pipestate, the buffer
(*buf) containing a chunk of data, and a count (ecount) of the number of pipe data
elements in the buffer.

Thealloc routine allocates a buffer for the pipe data. The input parameters include the
pipe state and the requested size of the buffer (bsize) in bytes. The output parameters
include a pointer to the allocated buffer (**buf), and the actual count (bcount) of the
number of bytes in the buffer. The routine allocates memory from which pipe data can
be marshalled or into which pipe data can be marshalled. If less memory is allocated
than requested, the RPC runtime uses the smaller memory and makes more callbacks
to the user. If the routine allocates more memory than requested, the excess memory
is not used.

Finally, thestate is used to coordinate between these routines.

For more on how to write the code for the client and server manager, see Chapter 17.

18.14.4.2 Rules for Using Pipes

Observe the following rules when defining pipes in IDL:

• Pipe types must only be parameters. In other words, pipes of pipes, arrays of
pipes, and structures or unions containing pipes as members are illegal.

• A pipe cannot be a function result.

• The element type of a pipe cannot be a pointer or contain a pointer.

DCE 1.2.2 Application Development Guide—Core Components 583

DCE Remote Procedure Call

• The element type of a pipe cannot be acontext_handleor handle_t type.

• A pipe type cannot be used in the definition of another type. For example, the
following code fragment is illegal:

typedef

pipe char pipe_t;

typedef

pipe_t * pipe_p_t;

• A pipe type cannot have thetransmit_as attribute.

• The element type of a pipe cannot have thetransmit_as attribute.

• A pipe parameter can be passed by value or by reference. A pipe that is passed
by reference (that is, has an* (asterisk)) cannot have theptr or unique parameter
attributes.

• Pipes that pass data from the client to the server must be processed in the order
in which they occur in an operation’s signature. All such pipes must be processed
before data is sent from the server to the client.

• Pipes that pass data from the server to the client must be processed in the order
in which they occur in an operation’s signature. No such pipes must be processed
until all data has been sent from the client to the server.

• Manager routines must reraise RPC pipe and communications exceptions so that
client stub code and server stub code continue to execute properly.

For example, consider an interface that has anout pipe along with otherout
parameters. Suppose that the following sequence of events occurs:

— The manager routine closes the pipe by writing an empty chunk whose length
is 0 (zero).

— The manager routine attempts to write another chunk of data to the pipe.

— The generatedpush routine raises the exceptionrpc_x_fault_pipe_closed.

— The manager routine catches the exception and does not reraise it.

— The manager routine exits normally.

— The server stub attempts to marshall theout parameters.

584 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

After this sequence, neither the server stub nor the client stub can continue to
execute properly.

To avoid this situation, youmustreraise the exception.

• A pipe cannot be used in an operation that has thebroadcast or idempotent
attribute.

• The element type of a pipe cannot be a conformant structure.

• The maximum length of pipe type IDs is 29 characters.

18.14.5 Arrays

IDL supports the following types of arrays:

• Fixed: The size of the array is defined in IDL and all of the data in the array is
transferred during the call.

• Conformant: The size of the array is determined at runtime. At least one bound
of the array is determined at runtime by a value referenced through amin_is,
max_is, or size_isattribute. All of the data in the array is transferred during the
call.

• Varying: The size of the array is defined in IDL but the part of its contents
transferred during the call is determined by the values of fields or parameters
named in one or more data limit attributes. The data limit attributes arefirst_is,
length_is , and last_is.

An array can also be both conformant and varying (or, as it is sometimes termed,
open). In this case, the size of the array is determined at runtime by the value of
the field or parameter referenced by themin_is , max_is or size_isattributes. The
part of its contents transferred during the call is determined by the values of fields or
parameters named in one or more of the data limit attributes.

An IDL array is declared via anarray_declaratorconstruct whose syntax is as follows:

array_identifier array_bounds_declarator...

An array_bounds_declaratormust be specified for each dimension of an array.

DCE 1.2.2 Application Development Guide—Core Components 585

DCE Remote Procedure Call

18.14.5.1 Array Bounds

The array_bounds_declaratorfor the first dimension of an array can take any of the
following forms:

[lower ..upper]
The lower bound islower. The upper bound isupper.

[size] The lower bound is 0 (zero). The upper bound issize− 1.

[*] The lower bound is 0 (zero). The upper bound is determined by amax_is
or size_isattribute.

[] The lower bound is 0 (zero). The upper bound is determined by amax_is
or size_isattribute.

[lower..] The lower bound islower. The upper bound is determined by amax_is
or size_isattribute.

[* .. upper] The lower bound is determined by amin_is attribute. The upper bound
is upper.

[* .. *] The lower bound is determined by amin_is attribute. The upper bound
is determined by asize_isor max_is attribute.

18.14.5.2 Conformance in Dimensions Other Than the First

If a multidimensional array is conformant in a dimension other than the first, the C
description for this array, which is located in the header (.h) file generated by the IDL
compiler, will be a one-dimensional conformant array of the appropriate element type.
This occurs because there is no ‘‘natural’’ C binding for conformance in dimensions
other than the first.

The following examples show how IDL type definitions and parameter declarations
that contain bounds in dimensions other than the first are translated into their C
equivalents at runtime.

IDL Type Definition:

586 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

typedef struct {

long a;

long e;

[max_is(,,e),min_is(a)] long g7[*..1][2..9][3..*];

} t3;

C Translation:

typedef struct {

idl_long_int a;

idl_long_int e;

idl_long_int g7[1];

IDL Parameter Declaration:

[in,out,max_is(,,e),min_is(a)] long g7[*..1][2..9][3..*];

C Translation:

/* [in, out] */ idl_long_int g7[]

Arrays that have a nonzero first lower bound and a first upper bound that is determined
at runtime are translated into the equivalent C representation of a conformant array,
as shown in the following IDL type definition and parameter declaration examples:

IDL Type Definition:

typedef struct {

long s;

[size_is(s)] long fa3[3..*][-4..1][-1..2];

} t1;

C Translation:

DCE 1.2.2 Application Development Guide—Core Components 587

DCE Remote Procedure Call

typedef struct {

idl_long_int s;

idl_long_int fa3[1][6][4];

} t1;

IDL Parameter Declaration:

[in,out,size_is(s)] long fa3[3..*][-4..1][-1..2]

C Translation:

/* [in, out] */ idl_long_int fa3[][6][4]

18.14.5.3 Array Attributes

Array attributes specify the size of an array or the part of an array that is to be
transferred during a call. An array attribute specifies a variable that is either a field in
the same structure as the array or a parameter in the same operation as the array.

An array_attributecan take the following forms:

min_is ([*] variable)

max_is ([*] variable)

size_is ([*] variable)

last_is ([*] variable)

first_is ([*] variable)

length_is ([*] variable)

wherevariable specifies a variable whose value at runtime will determine the bound
or element count for the associated dimension. A pointer variable is indicated by
preceding the variable name with an* (asterisk).

588 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

If the array is a member of a structure, any referenced variables must be members of
the same structure. If the array is a parameter of an operation, any referenced variables
must be parameters of the same operation.

Only the ..._is(variable)form is allowed when the array is a field of a structure. In
this case, the..._is(*variable)form is not allowed.

Note that an array with an array attribute (that is, a conformant or varying array) is
not allowed to have thetransmit_as attribute.

18.14.5.3.1 Themin_is Attribute

The min_is attribute is used to specify the variable(s) from which the values of one
or more lower bounds of the array will be obtained at runtime. If any dimension of
an array has an unspecified lower bound, the array must have amin_is attribute. A
variable must be identified for each such dimension. The following examples show
the syntax of themin_is attribute:

/* Assume values of variables are as follows

long a = -10;

long b = -20;

long c = -30;

*/

long [min_is(a)] g1[*..10]; /* g1[-10..10] */

long [min_is(a)] g2[*..10][4]; /* g2[-10..10[0..3] */

long [min_is(a,b)] g3[*..10][*..20]; /* g3[-10..10][-20..20] */

long [min_is(,b)] g4[2][*..20]; /* g4[0..1][-20..20] */

long [min_is(a,,c)] g5[*..7][2..9][*..8];

/* g5[-10..7][2..9][-30..8] */

long [min_is(a,b,)] g6[*..10][*..20][3..8];

/* g6[-10..10][-20..20][3..8] */

The following examples show themin_is attribute being applied to the first dimension
of an array in an IDL type definition and parameter declaration, and how the definition
or parameter is translated into its C equivalent:

DCE 1.2.2 Application Development Guide—Core Components 589

DCE Remote Procedure Call

IDL Type Definition:

typedef struct {

long n;

[min_is(n)] long fa3[*..10][-4..1][-1..2]

} t2;

C Translation:

typedef struct {

idl_long_int n;

idl_long_int fa3[1][6][4];

} t2;

IDL Parameter Declaration:

[in,out,min_is(n)] long fa3[*..10][-4..1][-1..2]

C Translation:

/* [in, out] */ idl_long_int fa3[][6][4]

18.14.5.3.2 Themax_is Attribute

The max_is attribute is used to specify the variables from which the values of one or
more upper bounds of the array are obtained at runtime. If any dimension of an array
has an unspecified upper bound, the array must have amax_is or size_isattribute. A
variable must be identified for each dimension in which the upper bound is unspecified.
In a max_is attribute, the value in the identified variable specifies the maximum array
index in that dimension. An array with one or more unspecified upper bounds may
have amax_is attribute or asize_isattribute, but not both.

590 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

The max_is attribute is for use with conformant arrays. The following is an example
of the max_is attribute:

/* Assume values of variables are as follows:

long a = 10;

long b = 20;

long c = 30;

*/

long [max_is(a)] f1[]; /* f1[0..10] /*

long [max_is(a)] f2[][4]; /* f2[0..10][0..3] */

long [max_is(a,b)] f3[][]; /* f3[0..10][0..20] */

long [max_is(,b)] f4[2][]; /* f4[0..1][0..20] */

long [max_is(a,,c)] f5[1..*][2..9][3..*]; /* f5[1..10][2..9][3..30] */

long [max_is(a,b,)] f6[1..*][2..*][3..8]; /* f6[1..10][2..20][3..8] */

18.14.5.3.3 Thesize_isAttribute

The size_isattribute is used to specify the variables from which the values of the
element counts for one or more dimensions of the array are obtained at runtime.
If any dimension of an array has an unspecified upper bound, the array must have
a max_is or size_isattribute. A variable must be identified for each dimension in
which the upper bound is unspecified. In asize_isattribute, the value in the identified
variable specifies the number of elements in that dimension. An array with one or
more unspecified upper bounds may have amax_is attribute or asize_isattribute, but
not both.

The size of a dimension is defined as the upper bound, minus the lower bound, + 1.

The size_isattribute is for use with conformant arrays. The following is an example
of the size_isattribute:

/* Assume the following values for the referenced variables:

n3 = 5;

x2 = 12;

DCE 1.2.2 Application Development Guide—Core Components 591

DCE Remote Procedure Call

x3 = 14;

z2 = 9;

z3 = 10;

*/

/* The following declaration */

int [min_is(,,n3),max_is(,x2,x3)] hh[3..13,4..*,*..*];

/* specifies the same data to be */

/* transmitted as the declaration */

int [min_is(,,n3),size_is(,z2,z3)] hh[3..13,4..*,*..*];

18.14.5.3.4 Thelast_is Attribute

The last_isattribute is one of the attributes that can be used to allow the amount of data
in an array that will be transmitted to be determined at runtime. Eachlast_is attribute
specifies an upper data limit, which is the highest index value in that dimension for
the array elements to be transmitted. If the entry in alast_is attribute for a dimension
is empty, the effect is as if the upper bound in that dimension had been specified.

An array can have either thelast_is attribute or thelength_is attribute, but not both.

When an array with thelast_isattribute is used in a remote procedure call, the elements
actually passed in the call can be a subset of the maximum possible.

The last_is attribute is for use with varying arrays. The following is an example of
the last_is attribute:

/* Assume the following values for the referenced variables:

long a = 1;

long b = 2;

long c = 3;

long e = 25;

long f = 35;

*/

592 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

long [last_is(a,b)] bb1[10][20]; /* transmit bb1[0..1][0..2] */

long [last_is(a,b)] bb2[-1..10][-2..20][-3..30];

/* transmit bb2[-1..1][-2..2][-3..30]*/

long [last_is(a,,c)] bb3[-1..10][-2..20][-3..30];

/* transmit bb3[-1..1][-2..20][-3..3]*/

long [last_is(,b,c),max_is(,e)] cc1[10][][30];

/* transmit cc1[0..9][0..2][0..3] */

long [last_is(a,b),max_is(,e,f)] cc2[-4..4][][];

/* transmit cc2[-4..1][0..2][0..35] */

18.14.5.3.5 Thefirst_is Attribute

Thefirst_is attribute is one of the attributes that can be used to allow the amount of data
in an array that will be transmitted to be determined at runtime. Eachfirst_is attribute
specifies a lower data limit, which is the lowest index value in that dimension for the
array elements to be transmitted. If the entry in afirst_is attribute for a dimension is
empty, the effect is as if the lower bound in that dimension had been specified.

When an array with thefirst_is attribute is used in a remote procedure call, the
elements actually passed in the call can be a subset of the maximum possible.

The first_is attribute is for use with varying arrays. The following is an example of
the first_is attribute:

/* Assume the following values for the referenced variables:

long p = -1;

long q = -2;

long r = -3;

long t = -25;

long u = -35;

long x = 1;

long y = 2;

long z = 3;

*/

long [first_is(p)] dd1[-10..10]; /* transmit dd1[-1..10] */

long [first_is(p),last_is(x)] dd2[-10..10]; /* transmit dd2[-1..1] */

DCE 1.2.2 Application Development Guide—Core Components 593

DCE Remote Procedure Call

long [first_is(p,q)] ee1[-10..10][-20..20];

/* transmit ee1[-1..10][-2..20] */

long [first_is(p,q)] ee2[-10..10][-20..20][-30..30];

/* transmit ee2[-1..10][-2..20][-30..30] */

long [first_is(p,q,r),last_is(,,z)] ee3[-10..10][-20..20][-30..30]:

/* transmit ee3[-1..10][-2..20[-3..30] */

double [first_is(,q,r),min_is(,t)] ff1[10][*..2][-30..30];

/* transmit ff1[0..9][-2..2][-3..30] */

double [first_is(p,q),min_is(,t,u)] ff2[-4..4][*..2][*..35];

/* transmit ff2[-1..4][-2..2][-35..35] */

double [max_is(x,,z),min_is(,t,u),first_is(p,,r)]ff3[-20..*][*..30][*..*]

/* transmit ff3[-1..1][-25..30][-3..3] */

18.14.5.3.6 Thelength_is Attribute

The length_isattribute is one of the attributes that can be used to allow the amount of
data in an array that will be transmitted to be determined at runtime. Eachlength_is
attribute specifies the number of elements in that dimension to be transmitted. If the
entry in a length_is attribute for a dimension is empty, the effect is for the highest
index value in that dimension for the elements to be transmitted to be determined
from the upper bound in that dimension.

An array can have either thelast_is attribute or thelength_is attribute, but not both.

When an array with thelength_is attribute is used in a remote procedure call, the
elements actually passed in the call can be a subset of the maximum possible.

The length_is attribute is for use with varying arrays. The following is an example of
the length_is attribute:

/* Assume the following values for the referenced variables:

n3 = 5;

f2 = 10;

a1 = 11;

a2 = 12;

a3 = 14;

e1 = 9;

594 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

e2 = 3;

e3 = 10;

*/

/* The following declaration: */

int [min_is(,,n3),first_is(,f2,),last_is(a1,a2,a3)] \

gg[3..13,4..14,*..15];

/* specifies the same data to be */

/* transmitted as the declaration: */

int [min_is(,,n3),first_is(,f2,),length_is(e1,e2,e3)] \

gg[3..13,4..14,*..15];

18.14.5.4 Rules for Using Arrays

Observe the following rules when defining arrays in IDL:

• A structure can contain only one conformant array, which must be the last member
in the structure.

• Conformant arrays are not valid in unions.

• A structure parameter containing a conformant array can be passed only by
reference.

• Arrays that have thetransmit_as attribute cannot be conformant or varying arrays.

• The structure member or parameter referenced in an array attribute cannot be
defined to have either therepresent_asor transmit_as attribute.

• Array bounds must be integers. Array attributes can reference only structure
members or parameters of integer type.

• A parameter that is referenced by an array attribute on a conformant array must
have thein attribute.

• Array elements cannot be context handles or pipes, or conformant arrays or
conformant structures.

DCE 1.2.2 Application Development Guide—Core Components 595

DCE Remote Procedure Call

18.14.6 Strings

IDL implements strings as one-dimensional arrays to which thestring attribute is
assigned. The element type of the array must resolve to one of the following:

• Type char

• Type byte

• A structure all of whose members are of typebyte or of a named type that resolves
to byte

• A named type that resolves to one of the previous three types

• Type unsigned short

• Type unsigned long

• A named type that resolves tounsigned short or unsigned long

Strings built frombyte or char data types are referred to asbyte-string typeswhile
strings built fromunsigned short or unsigned long types are calledinteger-string
types. Integer string types allow for multioctet character sets whose characters are
represented by 16-bit or 32-bit quantities, rather than as groups of bytes. For example:

/* A structure that contains a fixed string */

/* and a conformant string */

typedef unsigned long PRIVATE_CHAR_32;

typedef struct {

[string] PRIVATE_CHAR_32 fixed[27];

[string] PRIVATE_CHAR_32 conf[];

} two_strings;

/* A structure that contains pointers to two strings */

typedef unsigned short PRIVATE_CHAR_16;

typedef struct {

[string] PRIVATE_CHAR_16 *astring;

[string] PRIVATE_CHAR_16 *bstring;

} stringptrs;

596 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

Integer-string types use the array element zero (0) to specify the string terminator,
while byte-string types use the NULL character. Both byte-type and integer-type
strings conform to the same usage rules.

An array with thestring attribute represents a string of characters. Thestring attribute
does not specify the format of the string or the mechanism for determining its length.
Implementations of IDL provide string formats and mechanisms for determining string
lengths that are compatible with the programming languages in which applications are
written. For DCE RPC IDL, the number of characters in astring array includes the
NULL terminator (for byte-string types) or the zero (0) terminator (for integer-string
types), and the entire terminated string is passed between stubs.

The array_bounds_declaratorfor a string array determines the maximum number
of characters in the array. Note that, when you declare a string, you must allocate
space for one more than the maximum number of characters the string is to hold. For
instance, if a string is to store 80 characters, the string must be declared with a size
of 81:

/* A string type that holds 80 characters */

typedef

[string] char string_t [81];

If an array has thestring attribute or if the type of an array has thestring attribute,
the array cannot have thefirst_is, the last_is, or the length_is attribute.

18.14.7 Pointers

Use the following syntax to declare an IDL pointer:

* [*]...pointer_identifier

The * (asterisk) is the pointer operator, and multiple asterisks indicate multiple levels
of indirection.

DCE 1.2.2 Application Development Guide—Core Components 597

DCE Remote Procedure Call

18.14.7.1 Pointer Attributes

Pointers are used for several purposes, including implementing a parameter passing
mechanism that allows a data value to be returned, and building complex data
structures.

IDL offers three classes of pointers: reference pointers, full pointers, and unique
pointers. The attributes that indicate these pointers are as follows:

• ref: Indicates reference pointers. This is the default for top-level pointers used in
parameters.

• ptr : Indicates full pointers.

• unique: Indicates unique pointers.

Pointer attributes are used in parameters, in structure and union members, and in type
definitions. In some instances, IDL infers the applicable pointer class from its usage.
However, most pointer declarations require that you specify a pointer class by using
one of the following methods:

• Use theref, ptr , or unique attribute in the pointer declaration.

• Use thepointer_default attribute in the IDL interface heading. The default pointer
class is determined by thepointer_default attribute.

Pointer attributes are applied only to the top-level pointer within the declaration. If
multiple pointers are declared in a single declaration, thepointer_default established
applies to all but the top-level pointer. (See Section 18.14.7.2, which describes pointer
attributes in parameters.)

Examples of pointers are shown at the end of this section.

18.14.7.1.1 Reference Pointers

A reference pointer is the least complex form of pointer. The most common use for
this class of pointer is as a passing mechanism; for example, passing an integer by
reference. Reference pointers have significantly better performance than full pointers,
but are restrictive; you cannot create a linked list by using a reference pointer because
a reference pointer cannot have a NULL value, and the list cannot be terminated.

598 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

A reference pointer has the following characteristics:

• It always points to valid storage; it can never have a NULL value.

• Its value does not change during a call; it always points to the same storage on
return from the call as it did when the call was made.

• It does not support aliasing; it cannot point to a storage area that is pointed to by
any other pointer used in a parameter of the same operation.

When a manager routine is entered, all the reference pointers in its parameters will
point to valid storage, except those reference pointers that point neither to targets
whose size can be determined at compile time nor to values that have been received
from the client.

In the following example, the size of the targets of the reference pointers can be
calculated at compilation time:

typedef [ref] long *rpl;

void op1([in] long f,

[in] long l,

[in,first_is(f),last_is(l)] rpl rpla[10]);

For this example, when the manager is entered, all the pointers inrpla will point to
usable storage, although only*rpla[f] through *rpla[l] will be the values received
from the client.

Conversely, the size of the targets of the reference pointers cannot be calculated at
compile time in the following example:

typedef [ref,string] char *rps;

void op1([in] long f,

[in] long l,

[in,first_is(f),last_is(l)] rps rpsa[10]);

In this case, onlyrpsa[f] through rpsa[l] , which point to values received from the
client, will point to usable storage.

DCE 1.2.2 Application Development Guide—Core Components 599

DCE Remote Procedure Call

18.14.7.1.2 Full Pointers

A full pointer is the most complex form of pointer. It supports all capabilities associated
with pointers. For example, by using a full pointer you can build complex data
structures such as linked lists, trees, queues, or arbitrary graphs.

A full pointer has the following characteristics:

• Its value can change during a call; it can change from a NULL to non-NULL
value, non-NULL to NULL, or from one non-NULL value to another non-NULL
value.

• It supports aliasing; it can point to a storage area that is also pointed to by
any other full pointer used in a parameter of the same operation. However, all
such pointers must point to the beginning of the structure. There is no support
for pointers to substructures or to overlapping storage areas. For example, if the
interface definition code contains the following:

[uuid(0e256080-587c-11ca-878c-08002b111685), version(1.0)]

interface overlap

{

typedef struct {

long bill;

long charlie;

} foo;

typedef struct {

long fred;

foo ken;

} bar;

void op ([in] foo *f, [in] bar *b);

}

and the client application code includes the following:

bar bb;

.

.

600 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

.

op (&bb.ken, &bb);

then the server stub treats these two separate parameters as distinct, and the
manager application code does not see them as overlapping storage.

• It allows dynamically allocated data to be returned from a call.

Note that you might need to take some extra steps if you use large linked lists in your
application. Linked lists are marshalled and unmarshalled using recursion which can
cause the stack size to grow. Linked lists usually do not cause problems in simple
clients that do not spawn threads for remote procedure calls. In this case, the stack
can grow as needed.

Large linked lists can cause problems in servers because the server’s thread-stack
usually cannot grow automatically. Large lists can overrun the stack, causing the
server to crash.

DCE offers several ways to avoid this server memory problem while using large linked
lists.

One method is to increase the server stack size using the
rpc_mgmt_set_server_stack_size()routine. This method is useful when you
suspect that the linked list is just slightly larger than the server stack. For information
about using therpc_mgmt_set_server_stack_size()routine, refer to theDCE 1.2.2
Application Development Reference.

If you suspect that the list size is much greater than the stack, you can convert the
list to an array using thetransmit_as idl attribute. Servers handle arrays by allocating
memory from the heap rather than from the stack. For information about using the
transmit_as idl attribute, refer to Chapter 19 in this guide.

18.14.7.1.3 Unique Pointers

A unique pointer is more flexible than a reference pointer. However, both types of
pointers share several important characteristics.

A unique pointer has the following characteristics:

• It can have a NULL value.

DCE 1.2.2 Application Development Guide—Core Components 601

DCE Remote Procedure Call

• It can change from NULL to non-NULL during a call. This change results in
memory being allocated on return from the call, whereby the result is stored in
the allocated memory.

• It can change from non-NULL to NULL during a call. This change can result in
the orphaning of the memory pointed to on return from the call. Note that, if a
unique pointer changes from one non-NULL value to another non-NULL value,
the change is ignored.

• It does not identify particular extents of memory, but only extents of memory that
are suitable for storing the data. If it is important to know that the data is being
stored in a specific memory location, then you should use a full pointer.

• If it has a value other than NULL, output data is placed in existing storage.

Unique pointers are similar to reference pointers in the following ways:

• No storage pointed to by a unique pointer can be reached from any other name
in the operation. That is, a unique pointer does not allow aliasing of data within
the operation.

• Data returned from the called subroutine is written into the existing storage
specified by the unique pointer, if the pointer did not have the value NULL.

With regard to performance, unique pointers have an advantage over full pointers
because unique pointers do not support the referencing of common data by more than
one pointer (aliasing), and they are significantly more flexible than reference pointers
because they can have a value of NULL.

Unique pointers are particularly suitable for creating optional parameters (because you
can specify them as NULL) and for simple tree or singly linked-list data structures.
You specify the three different levels of pointers by attributes, as follows:

[ref] Reference pointers

[unique] Unique pointers

[ptr] Full pointers

The following example shows how a unique pointer can be used:

[

uuid(D37A0E80-5D23-11C9-B199-08002B13D56D)

602 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

] interface Unique_ptrs

{

typedef [ref] long *r_ptr;

typedef [unique] long *u_ptr;

typedef [ptr] long *f_ptr;

void op1 (

[ref,in,out,string] char *my_rname,

[unique,in,out,string] char *my_uname,

[ptr,in,out,string] char *my_pname

);

}

18.14.7.2 Pointer Attributes in Parameters

A pointer attribute can be applied to a parameter only if the parameter contains an
explicit pointer declaration (*).

By default, a single pointer (*) operator in a parameter list of an operation declaration
is treated as a reference pointer. To override this, specify a pointer attribute for
the parameter. When there is more than one pointer operator, or multiple levels of
indirection in the parameter list, the rightmost pointer is the top-level pointer; all
pointers to the left of the rightmost pointer are of a lower level. The top-level pointer
is treated as a reference pointer by default; the lower-level pointers have the semantics
specified by thepointer_default attribute in the interface.

The following example illustrates the use of top- and lower-level pointers:

void op1 ([in] long **p_p_l)

In this example,p_p_l is a pointer to a pointer to a long integer. The first or leftmost
pointer (*) signifies that the pointer to the long integer is a lower-level pointer, and the
second or rightmost pointer (*) signifies that the pointer to the pointer is a top-level
pointer.

Any pointer attribute you specify for the parameter applies to the top-level
pointer only. Note that unless you specify a pointer attribute, the top-level explicit

DCE 1.2.2 Application Development Guide—Core Components 603

DCE Remote Procedure Call

pointer declaration in a parameter defaults to a reference pointer even if the
pointer_default(ptr) interface attribute is specified.

Using a reference pointer improves performance but is more restrictive. For example,
the pointer declared in the following operation, for the parameterint_value, is a
reference pointer. An application call to this operation can never specify NULL as the
value of int_value.

void op ([in] long *int_value);

To pass a NULL value, use a full pointer. The following two methods makeint_value
into a full pointer:

• Applying theptr attribute to the declaration of the parameter,int_value:

void op ([in, ptr] long *int_value);

• Using thepointer_default (ptr) attribute in an interface header :

[uuid(135e7f00-1682-11ca-bf61-08002b111685,

pointer_default(ptr),

version(1.0)] interface full_pointer

{

typedef long *long_ptr;

void op ([in] long_ptr int_value);

}

A NULL pointer can also be passed via a unique pointer.

18.14.7.3 Array Attributes on Pointers

To apply array attributes to pointers, use themax_isor size_isattributes. When applied
to a pointer, themax_isandsize_isattributes convert the pointer from a single element

604 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

of a certain type to a pointer to an array of elements of that type. The number of
elements in the array is determined by the variable in themax_isandsize_isattributes.

18.14.7.4 Pointer Attributes in Function Results

Function results that are pointers are always treated as full pointers. Theptr attribute
is allowed on function results but it is not mandatory. Theref pointer attribute is never
allowed on function results.

A function result that is a pointer always indicates new storage. A pointer parameter
can reference storage that was allocated before the function was called, but a function
result cannot.

18.14.7.5 Pointers in Structure Fields and Union Case

If a pointer is declared in a member of a structure or union, its default is determined
by thepointer_default attribute you specify for the interface. To override this, specify
a pointer attribute for the member.

18.14.7.6 Resolving a Possible Pointer Ambiguity

A declaration of the following form raises a possible ambiguity about the type of
myarray:

void op ([in, out] long s, [in, out, size_is(s)] long **myarray);

IDL definesmyarray in this case to be an array of pointers tolongs, not a pointer to
an array oflongs. The max_is andsize_isattributes always apply to the top-level, or
rightmost, * (asterisk) in the IDL signature of a parameter.

DCE 1.2.2 Application Development Guide—Core Components 605

DCE Remote Procedure Call

18.14.7.7 Rules for Using Pointers

Use the following rules when developing code in IDL:

• Do not use the full pointer attribute on the following:

— The parameter in the first parameter position, when that parameter is of type
handle_t or is of a type with thehandle attribute.

— Context handle parameters.

— A parameter that has the output attribute (out), but not the input attribute (in).

• The element type of a pipe must not be a pointer or a structure containing a
pointer.

• A member of a union or a structure contained in a union cannot contain a reference
pointer.

• A reference pointer must point to valid storage at the time the call is made.

• A parameter containing a varying array of reference pointers must have all array
elements initialized to point to valid storage even if only a portion of the array is
input, since the manager code (the application code supporting an interface on a
server) may use the remaining array elements. (Recall that a varying array is one
to which any of the array attributesfirst_is, last_is, length_isis applied).

• The type name in a declaration that defines a pointer type must have no more
than 28 characters.

18.14.7.8 Memory Management for Pointed-to Nodes

A full pointer can change its value across a call. Therefore, stubs must be able to
manage memory for the pointed-to nodes. Managing memory involves allocating and
freeing memory for user data structures.

18.14.7.8.1 Allocating and Freeing Memory

Manager code within RPC servers usually uses therpc_ss_allocate()routine to
allocate storage. Storage that is allocated byrpc_ss_allocate()is released by the server
stub after any output parameters have been marshalled by the stubs. Storage allocated

606 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

by other allocators is not released automatically but must be freed by the manager
code. When the manager code makes a remote call, the default memory management
routines arerpc_ss_allocate()and rpc_ss_free().

The syntax of therpc_ss_allocate()routine is as follows:

idl_void_p_t rpc_ss_allocate (idl_size_tsize);

The sizeparameter specifies the size of the memory allocated.

Note: In ANSI standard C environments,idl_void_p_t is defined asvoid * and in
other environments is defined aschar * .

Use rpc_ss_free() to release storage allocated byrpc_ss_allocate(). You can also
use therpc_ss_free() routine to release storage pointed to by a full pointer in an
input parameter and have the freeing of the memory reflected on return to the calling
application by specifying thereflect_deletionsattribute as anoperation_attribute. See
Section 18.4.1 for more information.

The syntax of the routine is as follows:

void rpc_ss_free (idl_void_p_tnode_to_free);

The node_to_freeparameter specifies the location of the memory to be freed.

18.14.7.8.2 Enabling and Disabling Memory Allocation

It may be necessary to call manager routines from different environments; for example,
when the application is both a client and a server of the same interface. In this case, the
same routine may be called both from server manager code and from client code. The
rpc_ss_allocate()routine, when used by the manager code to allocate memory, must
be initialized before its first use. The stub performs the initialization automatically.
Code, other than stub code, that calls a routine, which in turn callsrpc_ss_allocate(),
first calls therpc_ss_enable_allocate()routine.

The syntax of the routine is as follows:

DCE 1.2.2 Application Development Guide—Core Components 607

DCE Remote Procedure Call

void rpc_ss_enable_allocate (void);

The environment set up by therpc_ss_enable_allocate()routine is released by calling
the rpc_ss_disable_allocate()routine. This routine releases all memory allocated by
calls torpc_ss_allocate()since the call torpc_ss_enable_allocate()was made. It also
releases memory that was used by the memory management mechanism for internal
bookkeeping.

The syntax of therpc_ss_disable_allocate()routine is as follows:

void rpc_ss_disable_allocate (void);

18.14.7.9 Advanced Memory Management Support

Memory management may also involve setting and swapping the mechanisms used for
allocating and freeing memory. The default memory management routines aremalloc()
and free(), except when the remote call occurs within manager code, in which case
the default memory management routines arerpc_ss_allocate()and rpc_ss_free().

18.14.7.9.1 Setting the Client Memory Mechanism

Use the rpc_ss_set_client_alloc_free()routine to establish the routines used in
allocating and freeing memory.

The syntax of the routine is as follows:

void rpc_ss_set_client_alloc_free (

idl_void_p_t (*p_allocate) (

idl_size_t size),

void (*p_free) (

idl_void_p_t ptr)

);

608 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

The p_allocateparameter points to a routine that has the same procedure declaration
as themalloc() routine, and is used by the client stub when performing memory
allocation. Thep_free parameter points to a routine that has the same procedure
declaration as thefree() routine, and is used by the client stub to free memory.

18.14.7.9.2 Swapping Client Memory Mechanisms

This routine exchanges the current client allocation and freeing mechanism for one
supplied in the call. The primary purpose of this routine is to simplify the writing
of modular routine libraries in which RPC calls are made. To preserve modularity,
any dynamically allocated memory returned by a modular routine library must be
allocated with a specific memory allocator. When dynamically allocated memory is
returned by an RPC call that is then returned to the user of the routine library, use
rpc_ss_swap_client_alloc_free(), before making the RPC call, to make sure the
desired memory allocator is used. Prior to returning, the modular routine library
calls rpc_ss_set_client_alloc_free()to restore the previous memory management
mechanism.

The syntax of the routine is as follows:

void rpc_ss_swap_client_alloc_free (

idl_void_p_t (*p_allocate) (

idl_size_t size),

void (*p_free) (

idl_void_p_t ptr),

idl_void_p_t (** p_p_old_allocate) (

idl_size_t size),

void (** p_p_old_free) (

idl_void_p_t ptr)

);

The p_allocateparameter points to a routine that has the same procedure declaration
as themalloc() routine, and is used by the client stub when performing memory
allocation. Thep_free parameter points to a routine that has the same procedure
declaration as thefree() routine, and is used by the client stub to free memory.
The p_p_old_allocateparameter points to a pointer to a routine that has the same
procedure declaration as themalloc() routine, and is the default routine used for
memory allocation in the client stub. Thep_p_old_freeparameter points to a pointer

DCE 1.2.2 Application Development Guide—Core Components 609

DCE Remote Procedure Call

to a routine that has the same procedure declaration as thefree() routine, and is used
for memory release in the client.

18.14.7.10 Use of Thread Handles in Memory Management

There are two situations where control of memory management requires the use of
thread handles. The more common situation is when the manager thread spawns
additional threads. The less common situation is when a program transitions from
being a client to being a server, then reverts to being a client.

18.14.7.10.1 Spawning Threads

When a remote procedure call invokes the manager code, the manager code may wish
to spawn additional threads to complete the task for which it was called. To spawn
additional threads that are able to perform memory management, the manager code
must first call therpc_ss_get_thread_handle()routine to get its thread handle and
then pass that thread handle to each spawned thread. Each spawned thread that uses
the rpc_ss_allocate()and rpc_ss_free()routines for memory management first calls
the rpc_ss_set_thread_handle()routine by using the handle obtained by the original
manager thread.

These routine calls allow the manager and its spawned threads to share a common
memory management environment. This common environment enables memory
allocated by the spawned threads to be used in returned parameters, and causes all
allocations in the common memory management environment to be released when the
manager thread returns to the server stub.

The main manager thread must not return control to the server stub before all the
threads it spawned complete execution; otherwise, unpredictable results may occur.

The listener thread can cancel the main manager thread if the remote procedure call is
orphaned or if a cancellation occurs on the client side of the application. You should
code the main manager thread to terminate any spawned threads before it exits. The
code should anticipate exits caused by an unexpected exception or by being canceled.

Your code can handle all of these cases by including aTRY/FINALLY block
to clean up any spawned threads if a cancellation or other exception occurs. If

610 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

unexpected exceptions do not concern you, then your code can perform two steps.
They are disabling cancelability before threads are spawned followed by enabling
cancelability after the join operation finishes and after testing for any pending cancel
operations. Following this disable/enable sequence prevents routinepthread_join()
from producing a cancel point in a manager thread that has spawned threads which,
in turn, share thread handles with the manager thread.

18.14.7.10.2 Transitioning from Client to Server to Client

Immediately before the program changes from a client to a server, it must obtain a
handle on its environment as a client by callingrpc_ss_get_thread_handle(). When
it reverts from a server to a client, it must reestablish the client environment by calling
the rpc_ss_set_thread_handle()routine, supplying the previously obtained handle as
a parameter.

18.14.7.10.3 Syntax for Thread Routines

The syntax for therpc_ss_get_thread_handle()routine is as follows:

rpc_ss_thread_handle_t rpc_ss_get_thread_handle(void);

The syntax for therpc_ss_set_thread_handle()routine is as follows:

void rpc_ss_set_thread_handle (

rpc_ss_thread_handle_tid

);

The rpc_ss_thread_handle_t()value identifies the thread to the RPC stub support
library. The id parameter indicates the thread handle passed to the spawned
thread by its creator, or the thread handle returned by the previous call to
rpc_ss_get_thread_handle().

DCE 1.2.2 Application Development Guide—Core Components 611

DCE Remote Procedure Call

18.14.7.11 Rules for Using the Memory Management Routines

You can use therpc_ss_allocate()routine in the following environments:

• The manager code for an operation that has a full pointer in its argument list

• The manager code for an operation to which theenable_allocateACF attribute
is applied

• Code that is not called from a server stub but that has called the
rpc_ss_enable_allocate()routine

• A thread, spawned by code of any of the previous three types, that has made a
call to therpc_ss_set_thread_handle()routine using a thread handle obtained by
this code

18.14.7.12 Examples Using Pointers

The examples in this subsection contain the following files, listed here with the
function of each file:

STRING_TREE.IDL
Defines data types and interfaces

CLIENT.C User of the interface

MANAGER.C
Server code that implements the procedure

SERVER.C Declares the server; enables the client code to find the interface it needs

STRING_TREE.OUTPUT
Shows the output

The STRING_TREE.IDL Example

[uuid(0144d600-2d28-11c9-a812-08002b0ecef1), version(0)]

interface string_tree

{

/*

* Maximum length of a string in the tree

612 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

*/

const long int st_c_name_len = 32;

/*

* Definition of a node in the tree.

*/

typedef struct node

{

[string] char name[0..st_c_name_len];

[ptr] struct node *left;

[ptr] struct node *right;

} st_node_t;

/*

* Operation that prunes the left subtree of the specified

* tree and returns it as the value.

*/

st_node_t *st_prune_left (

[in, out] st_node_t *tree /* root of tree by ref */

);

}

The CLIENT.C Example

#include <stdio.h>

#include "string_tree.h"

#include <stdlib.h>

/*

** Routine to print a depiction of the tree

*/

void st_print_tree (tree, indent)

st_node_t *tree;

int indent;

{

int i;

if (tree == NULL) return;

DCE 1.2.2 Application Development Guide—Core Components 613

DCE Remote Procedure Call

for (i = 0; i < indent; i++) printf(" ");

printf("%s\n",tree->name);

st_print_tree(tree->left, indent + 1);

st_print_tree(tree->right, indent + 1);

}

/*

** Create a tree with a few nodes

*/

st_node_t *st_make_tree()

{

st_node_t *root = (st_node_t *)malloc(sizeof(st_node_t));

strcpy(root->name,"Root Node");

/* left subtree node */

root->left = (st_node_t *)malloc(sizeof(st_node_t));

strcpy(root->left->name,"Left subtree");

/* left subtree children */

root->left->right = NULL;

root->left->left = (st_node_t *)malloc(sizeof(st_node_t));

strcpy(root->left->left->name,"Child of left subtree");

root->left->left->left = NULL;

root->left->left->right = NULL;

/* right subtree node */

root->right = (st_node_t *)malloc(sizeof(st_node_t));

strcpy(root->right->name,"Right subtree");

root->right->left = NULL;

root->right->right = NULL;

return root;

}

main()

{

st_node_t *tree;

st_node_t *subtree;

/* setup and print original tree */

614 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

tree = st_make_tree();

printf("Original Tree:\n");

st_print_tree(tree, 1);

/* call the prune routine */

subtree = st_prune_left (tree);

/* print the resulting trees */

printf("\nPruned Tree:\n");

st_print_tree(tree, 1);

printf("\nPruned subtree:\n");

st_print_tree(subtree, 1);

}

The MANAGER.C Example

#include <stdio.h>

#include "string_tree.h"

/*

** Prune the left subtree of the specified tree and return

** it as the function value.

*/

st_node_t *st_prune_left (tree)

/* [in,out] */ st_node_t *tree;

{

st_node_t *left_sub_tree = tree->left;

tree->left = (st_node_t *)NULL;

return left_sub_tree;

}

The SERVER.C Example

DCE 1.2.2 Application Development Guide—Core Components 615

DCE Remote Procedure Call

#include <stdio.h>

#include "string_tree.h" /* header created by idl compiler */

#define check_error(s, msg) if(s != rpc_s_ok) \

{fprintf(stderr, "%s", msg); exit(1);}

main ()

{

unsigned32 status; /* error status (nbase.h) */

rpc_binding_vector_p_t binding_vector;

/* set of binding handles (rpc.h) */

rpc_server_register_if(/* register interface with RPC runtime */

string_tree_v0_0_s_ifspec,

/* interface specification (string_tree.h) */

NULL,

NULL,

&status /* error status */

);

check_error(status, "Can’t register interface\n");

rpc_server_use_all_protseqs(/* establish protocol sequences */

rpc_c_protseq_max_calls_default,

/* concurrent calls server takes (rpc.h) */

&status

);

check_error(status, "Can’t establish protocol sequences\n");

rpc_server_inq_bindings(

/* get set of this server’s binding handles*/

&binding_vector,

&status

);

check_error(status, "Can’t get binding handles\n");

rpc_ep_register(

/* register addresses in endpoint map database */

string_tree_v0_0_s_ifspec, /* interface specification */

binding_vector, /* (string_tree.h) the set of binding handles */

NULL,

"",

616 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

&status

);

check_error(status, "Can’t add address to the endpoint database\n");

rpc_ns_binding_export(/* establish namespace entry */

rpc_c_ns_syntax_dce, /* syntax of the entry name (rpc.h) */

"string_tree", /* entry name in directory service */

&string_tree_v0_0_s_ifspec, /* interface specification */

binding_vector, /* (string_tree.h) the set of binding handles */

NULL,

&status

);

check_error(status, "Can’t export to directory service\n");

rpc_binding_vector_free(/* free set of binding handles */

&binding_vector,

status

);

check_error(status, "Can’t free binding handles and vector\n");

rpc_server_listen(/* listen for remote calls */

rpc_c_listen_max_calls_default,

/* concurrent calls server executes (rpc.h) */

&status

);

check_error(status, "rpc listen failed\n");

}

The STRING_TREE.OUTPUT Example

Original Tree:

Root Node

Left subtree

Child of left subtree

Right subtree

Pruned Tree:

Root Node

Right subtree

DCE 1.2.2 Application Development Guide—Core Components 617

DCE Remote Procedure Call

Pruned subtree:

Left subtree

Child of left subtree

18.14.8 Customized Handles

The handle attribute specifies that the type being declared is a user-defined,
nonprimitive handle type, and is to be used in place of the predefined primitive handle
type handle_t. The termcustomized handleis used to denote a nonprimitive handle.

The following example declares a customized handle typefilehandle_t, a structure
containing the textual representations of a host and a pathname:

typedef [handle] struct {

char host[256];

char path[1024];

} filehandle_t;

If the handle parameter is the first parameter in the list, then it is a customized handle
that is used to determine the binding for the call, and it must have thein attribute or
the in,out attributes. A handle parameter that is not the first parameter in the parameter
list need not have thein or in,out attributes.

Note that ahandle_t parameter that is the first parameter in the list must not have the
transmit_as attribute.

To build an application that uses customized handles, you must write custom binding
and unbinding routines, and you must link those routines with your application client
code. At runtime, each time the client calls an operation that uses a customized handle,
the client stub calls the custom binding routine before it sends the remote procedure
call request, and the client stub calls the custom unbinding routine after it receives a
response.

The following paragraphs specify C prototypes for customized binding and unbinding
routines; in these prototypes,CUSTOMis the name of the customized handle type.

618 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

The custom binding routineCUSTOM_bind generates a primitive binding handle from
a customized handle and returns the primitive binding handle:

handle_t CUSTOM_bind (CUSTOM c-handle)

The custom unbinding routineCUSTOM_unbind takes two inputs, a customized
handle and the primitive binding handle that was generated from it, and has no outputs:

void CUSTOM_unbind (

CUSTOM c-handle,

handle_t rpc-handle)

A custom unbinding routine typically frees the primitive binding handle and any
unneeded resources associated with the customized handle, but it is not required to
do anything.

Because thehandle attribute can occur only in a type declaration, a customized
handle must have a named type. Because customized handle type names are used
to construct custom binding and unbinding routine names, these names cannot exceed
24 characters.

A customized handle can be coded either in a parameter list as an explicit handle or
in an interface header as an implicit handle.

18.14.9 Context Handles

Manager code often maintains state information for a client. A handle to this state
information is passed to the client in an output parameter or as an operation result.
The client passes the unchanged handle-to-the-state information as an input or input/
output parameter of a subsequent manager operation that the client calls to manipulate
that data structure. This handle-to-the-state information is called acontext handle. A
context handle is implemented as an untyped pointer or a pointer to a structure by tag
name.

DCE 1.2.2 Application Development Guide—Core Components 619

DCE Remote Procedure Call

The manager causes the untyped pointer or the structure pointer to point to the state
information it will need the next time the client asks the manager to manipulate the
context. For the client, the context handle is an opaque pointer (idl_void_p_t or an
opaque structure tag). The client receives or supplies the context handle by means of
the parameter list but does not perform any transformations on it.

The RPC runtime maintains the context handle, providing an association between the
client and the address space running the manager and the state information within that
address space.

If a manager supports multiple interfaces, and a client obtains a context handle by
performing an operation from one of these interfaces, the client can then supply the
context handle to an operation from another of these interfaces.

A context handle can only be exchanged between the server process that created it
and the client process for which it was created. No other client except the one that
obtained the context handle can use it without causing an application error.

18.14.9.1 The context_handle Attribute

Specify a context handle by one of the following methods:

• Use thecontext_handleattribute on a parameter of typevoid * .

• Use thecontext_handleattribute on a type that is defined asvoid * .

• Use thecontext_handleattribute on a type that is defined as a pointer to a structure
by tag name.

For example, in the IDL file, you can define a context handle within a type declaration
as follows:

typedef [context_handle] void * my_context;

or within a parameter declaration as follows:

[in, context_handle] void * my_context;

620 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

You can also define a context handle within a type declaration as a forward reference
to a structure type by tag, as follows:

typedef [context_handle] struct opaque_struct * opaque_ch_t;

Note that you do not need to define the structure type in the IDL file; it is a forward
reference to a structure whose definition can be included into the server code, either
from a private.h file or from a server IDL file. As a result, the structure type is
opaque to the client. This method of defining a context handle provides type checking
and permits the server code to avoid extensive casting when manipulating the context
handle.

A structure type in a context handle type definition must be referenced by tag name
and not by type name. So, for example, the first of the following declarations is valid,
while the second is not:

typedef [context_handle] struct struct_tag * valid_ch_t;

/* valid */

typedef [context_handle] struct_type * invalid_ch_t;

/* error */

The following example illustrates context handles defined as untyped pointers and as
pointers to structures by tag name.

/* A context handle implemented as untyped pointer */

typedef [context_handle] void * void_ch_t;

/* A context handle implemented as a */

/* pointer to a structure by tag name */

typedef [context_handle] struct opaque_struct * opaque_ch_t;

/* Operations using both types of context handles */

void ch_oper(

[in] void_ch_t v1,

[in,out] void_ch_t *v2,

DCE 1.2.2 Application Development Guide—Core Components 621

DCE Remote Procedure Call

[out] void_ch_t *v3,

[in] opaque_ch_t *o2,

[out] opaque_ch_t *o3

);

void_ch_t void_ch_oper ([in] handle_t h);

opaque_ch_t opaque_ch_oper([in] handle_t h);

It is possible to define a structure type in a context handle in the IDL file; for
example, the following structure definition can either precede or follow the definition
of valid_ch_t in the example previously shown:

typedef struct struct_tag {long l;} struct_type;

This practice is not recommended, however, since it violates the opaqueness of the
context handle type.

The type name in a context handle declaration must be no longer than 23 characters.

The first operation on a context creates a context handle that the server procedure
passes to the client. The client then passes the unmodified handle back to the server
in a subsequent remote call. The called procedure interprets the context handle. For
example, to specify a procedure that a client can use to obtain a context handle, you
can define the following:

typedef [context_handle] void * my_context;

void op1(

[in]handle_t h,

[out] my_context * this_object);

To specify a procedure that a client can call to make use of a previously obtained
context handle, you can define the following:

void op2([in] my_context this_object);

622 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

To close a context, and to clean the context on the client side, you can define the
following:

[in, out, context_handle] void * my_context;

The resources associated with a context handle are reclaimed when, and only when,
the manager changes the value of thein,out context handle parameter from non-NULL
to NULL.

18.14.9.2 The Context Rundown Procedure

Some uses of context handles may require you to write a context rundown procedure in
the application code for the server. If communications between the client and server
are broken while the server is maintaining context for the client, RPC invokes the
context rundown procedure on the server to recover the resources represented by the
context handle. If you declare a context handle as a named type, you must supply a
rundown procedure for that type.

When a context requires a context rundown procedure, you must define a named type
that has thecontext_handleattribute. For each different context handle type, you must
provide a context rundown procedure as part of the manager code.

The format for the rundown procedure name is as follows:

context_type_name_rundown

A rundown procedure takes one parameter, the handle of the context to be run down,
and delivers no result. For example, if you declare the following:

typedef [context_handle] void * my_context;

then the rundown procedure is as follows:

DCE 1.2.2 Application Development Guide—Core Components 623

DCE Remote Procedure Call

void my_context_rundown (my_context this_object);

Server application code that uses a certain context handle may be executing in one
or more server threads at the time that RPC detects that communications between
the server and the client that is using that context have broken. The context rundown
routine will not be invoked until a return of control to the server stub has happened
in each of the threads that were using the context handle.

If application code in any of these threads destroys the context before returning control
to the server stub from which it was called, your context rundown procedure will not
be executed.

18.14.9.3 Creating New Context

When a client makes its first request to the manager to manipulate context, the
manager creates context information and returns this information to the client through
a parameter of the typecontext_handle. This parameter must be an output parameter
or an input/output parameter whose value is NULL when the call is made. A context
handle can also be a function result.

18.14.9.4 Reclaiming Client Memory Resources for the Context
Handle

In the event that a communications error causes the context handle to be unusable,
the resources that maintain the context handle must be reclaimed. Use the
rpc_ss_destroy_client_context()routine in the client application to reclaim the
client-side resources and to set the context handle value to NULL.

The syntax of the routine is as follows:

void rpc_ss_destroy_client_context(

void *p_unusable_context_handle);

624 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

18.14.9.5 Relationship of Context Handles and Binding

For the client, the context handle specifies the state within a server and also contains
binding information. If an operation has an input context handle or input/output context
handle that is not NULL, it is not necessary to supply any other binding information.
A context handle that has only thein attribute cannot be NULL. If an operation has
in,out context handle parameters but noin context handle parameters, at least one of
the in,out context handle parameters cannot be NULL. However, if the only context
handle parameters in an operation are output, they carry no binding information. In
this case, you must use another method to bind the client to a server.

If you specify multiple context handles in an operation, all active context handles must
map to the same remote address space on the same server or the call fails. (A context
handle is active while it represents context information that the server maintains for
the client. It is inactive if no context has yet been created, or if the context is no
longer in use.)

18.14.9.6 Rules for Using Context Handles

The following rules apply to using context handles:

• A context handle can be a parameter or a function result. You cannot use context
handles as an array element, as a structure or union member, or as the element
type of a pipe.

• A context handle cannot have thetransmit_as or ptr attributes.

• An input-only context handle cannot be NULL.

• A context handle cannot be pointed to, except by a top-level reference pointer.

18.14.9.7 Examples Using Context Handles

The following examples show a sample IDL file that uses context handles and a sample
context rundown procedure file.

Example of an IDL File That Uses a Context Handle

DCE 1.2.2 Application Development Guide—Core Components 625

DCE Remote Procedure Call

/*

* Filename: context_handle.idl

*/

[uuid(f38f5080-2d27-11c9-a96d-08002b0ecef1),

pointer_default(ref), version (1.0)]

interface files

{

/* File context handle type */

typedef [context_handle] void * file_handle_t;

/* File specification type */

typedef [string] char * filespec_t;

/* File read buffer type */

typedef [string] char buf_t[*];

/*

* The file_open call requires that the client has located a

* file server interface files and that an RPC handle that is

* bound to that server be passed as the binding parameter h.

*

* Operation to OPEN a file; returns context handle for that

* file.

*/

file_handle_t file_open

(

/* RPC handle bound to file server */

[in] handle_t h,

/* File specification of file to open */

[in] filespec_t fs

);

/*

* The file_read call is able to use the context handle

* obtained from the file_open as the binding parameter,

* thus an RPC handle is not necessary.

*

* Operation to read from an opened file; returns true if

* not end-of-file

*/

boolean file_read

(

626 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

/* Context handle of opened file */

[in] file_handle_t fh,

/* Maximum number of characters to read */

[in] long buf_size,

/* Actual number of characters of data read */

[out] long *data_size,

/* Buffer for characters read */

[out, size_is(buf_size), length_is(*data_size)] \

buf_t buffer

);

/* Operation to close an opened file */

void file_close

(

/* Valid file context handle goes [in]. On successful close,

* null is returned.

*/

[in,out] file_handle_t *fh

);

}

Example of a Context Rundown Procedure

/*

* fh_rundown.c: A context rundown procedure.

*/

#include <stdio.h>

#include "context_handle.h" /* IDL-generated header file */

void file_handle_t_rundown

(

file_handle_t file_handle /* Active context handle */

* (open file handle) */

)

{

/*

* This procedure is called by the RPC runtime on the

* SERVER side when communication is broken between the

DCE 1.2.2 Application Development Guide—Core Components 627

DCE Remote Procedure Call

* client and server. This gives the server the

* opportunity to reclaim resources identified by the

* passed context handle. In this case, the passed

* context handle identifies a file, and simply closing

* the file cleans up the state maintained by the context

* handle, that is "runs down" the context handle. Note

* that the file_close manager operation is not used here;

* perhaps it could be, but it is more efficient to use

* the underlying file system call to do the close.

*

* File handle is void*, it must be cast to FILE*

*/

fclose((FILE *)file_handle);

}

18.15 IDL Support for C++

Most of the IDL features apply to both C and C++ applications. However, just as C++
is an extension to C, this section describes additional IDL features required to use
IDL effectively with C++.

When the IDL compiler compiles an interface definition, it typically generates a header
file and one or more intermediate stub files in C or C++, and then it invokes the
appropriate compiler to generate object stub files. The IDL Compiler generates C
language intermediate stub files by default, but you can use the- lang cxx option to
cause it to generate C++ files instead.

This section describes the following topics:

• The idl -generated class hierarchy

This is important for a basic understanding of how to integrate the interface into
an object-oriented application.

• Interface inheritance

One interface can be derived from another, just as classes are derived from other
classes.

• Static operations

628 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

Static operations specify member functions that are called independently from an
object. All other operations specify nonstatic member functions which are only
invoked with respect to an existing object.

• Reference parameters

Reference parameters are passed by reference instead of being passed by value.

• idl -generated member functions

Several member functions are generated by IDL and made part of the interface
class. These functions perform useful operations for all interfaces.

18.15.1 The idl-generated Class Hierarchy

For C++ applications, the interface definition specifies a public interface class. This
means that IDL data types specify public data members of the interface class, and
IDL operations specify member functions. The IDL compiler generates thisinterface
classwithin C++ class hierarchies for both the client and server. The RPC network
mechanisms are encapsulated in a class above the interface class. Clients use (and
servers implement) the objects of classes below the interface class.

18.15.1.1 The rpc_object_reference Base Class

Because C++ makes it easy to hide information, the IDL compiler generates an
rpc_object_referencebase classfor identifying, distributing, and tracking objects.
All interface classes inherit therpc_object_referenceclass, which encapsulates the
following information:

• Object binding information, including server binding information and an object
UUID representing the object on the particular server

• Transport protocol information for the server

• A name identifying an optional location in the namespace for the object’s binding
information

• A location flag indicating whether the object is on the local system or a remote
system

• A reference count to keep track of how many clients currently access the object

DCE 1.2.2 Application Development Guide—Core Components 629

DCE Remote Procedure Call

18.15.1.2 The Interface Class

For each interface, the IDL compiler generates and places in the header file the
interface class derived from therpc_object_referenceclass. The class name generated
is the interface name specified in the interface definition. For example, the compiler
generates the following class:

class interface_name: public virtual rpc_object_reference

This is an abstract class that contains public functions for all the operations specified
in the IDL interface. The member functions that are not static object creator functions
are defined as pure virtual functions. In C++, an abstract class contains at least one
pure virtual function, which means that the implementation is postponed until a later,
derived class. Therefore, object instances cannot be created for abstract classes, and
thus the interface class is not implemented but is only a declaration. Other classes
must be derived from the interface class so that objects can be created for clients and
servers.

No constructor operations are allowed in the interface definition, and the IDL compiler
does not generate one because no objects are created for the interface class. No
destructor operations are allowed in the interface definition, but the compiler generates
one automatically for the interface class.

18.15.1.3 The Client’s Proxy Class

The IDL compiler places in the header file aproxy classderived from the interface
class. An instance of a proxy class is also known as anobject reference, which clients
use to access a remote object. This class provides proxy (or surrogate) objects on
the client whose member functions (or methods) transparently perform the RPCs that
invoke the actual remote object’s member functions on the server. The proxy class
name is generated from the interface name and the wordProxy, as follows:

class interface_nameProxy : public interface_name

630 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

Implementations of the proxy class’s member functions are automatically generated in
the client stub and represent the client’s implementation of the interface’s operations.

18.15.1.4 The Server’s Manager Class

A manager classis required for servers to implement the interface. The class is
generated by the IDL compiler and derived from the interface class as follows:

class interface_name _Mgr : public interface_name {

public:

.

.

.

}

The class is placed in a header file whose name is based on the IDL file and an_mgr
suffix. When generated, the manager class contains empty functions of all the nonstatic
member functions of the interface class. The member function implementations and
other implementation details of this class are calledmanager code.

18.15.2 The Interface Inheritance Operator

An interface definition can inherit properties of a previously defined interface, just as
a C++ class can inherit properties of previously defined classes. You can modify an
interface definition to inherit an interface by using the inheritance operator (:) in the
interface header, as follows:

[interface_attribute, ...] interface interface_name [: inherited_interface]

This idl -generated header file contains the inherited interface’s data types and interface
class. The interface definition must also declare the information in the inherited
interface’s header file by using animport declaration in the body of the interface.
The following example shows how thederived interface inherits another interface and

DCE 1.2.2 Application Development Guide—Core Components 631

DCE Remote Procedure Call

imports that interface’s definition file. The inherited interface definition file is named
inherit.idl , and the interface it contains is namedinherit .

interface derived : inherit

{

import "inherit.idl";

.

.

.

}

A interface may inherit only one interface; that is, multiple interface inheritance is not
allowed.

18.15.3 The static Keyword for Operations

In C++ applications, the interface definition operations specify the member functions
of the interface class. The majority of the member functions are invoked by an existing
object, but some operations are intended to work regardless of whether an object
invokes them or not. Static member functions are invoked independently from any
object and are good for such things as object creator functions and for obtaining a
class’s static data; that is, data that is class-wide and independent from a specific
object.

Static member functions may be specified in an interface definition by using thestatic
keyword in front of the operation, in one of the following ways:

static return_type operation_identifier(...);

[operation_attribute, ...] static return_type operation_identifier(...);

Instead of using thestatic keyword in the interface definition, you can use the
cxx_static attribute in an ACF.

632 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

Since non-static member functions are invoked by an object for which the application
must already have a binding, nonstatic operations cannot have a binding handle
parameter. If you want to use explicit binding for an interface, only static operations
can have a binding handle as the first parameter.

18.15.4 The C++ Reference Operator (&) on Parameters

C++ passes arguments by value; however, to override this and cause a member function
argument to be passed by reference, apply the reference operator (&) to the parameter
in the interface definition. Specify a reference parameter as follows:

[parameter_attribute,...] parameter_type& parameter

Using the reference operator on a parameter is the same as applying the reference
pointer attribute ([ref]) to a pointer parameter.

18.15.5 Functions Generated by IDL

The IDL compiler generates some additional member functions for an interface
class. For clients, these functions include overloaded static member functions to bind
to remote named objects in various ways and a member function to set security
information. For servers, additional member functions exist to advertise named objects
and get the binding handle on which a member function was called from within the
member function implementation.

Four overloaded functions for binding clients to known objects are namedbind(). The
functions otherwise differ by the type of parameter passed in. Three of these functions
are intended for use with named objects and one is used to swap between interfaces
when an object supports more than one interface. Eachbind() function obtains an
object reference(instance of a proxy class) by returning a pointer to the interface
class. These functions are described in the following sections.

DCE 1.2.2 Application Development Guide—Core Components 633

DCE Remote Procedure Call

18.15.5.1 The bind() Function for Binding by an Object’s Name

A client can bind to a named object (an object whose name is advertised in a name
service) by calling theidl -generatedbind() static member function with the name
service name as an argument. The function’s prototype is as follows:

interface_class* interface_class::bind(unsigned_char_t *)

This function takes a pointer argument of typeunsigned_char_tthat points to a name
service name. The function returns a pointer to the interface class. For example:

char *CDS_name = "/.:/object_name";

IF_class * object = IF_class::bind((unsigned_char_t *) CDS_name);

If the entry contains more than one binding, one is returned at random. The function
obtains a full binding (the binding information includes a server’s endpoint.)

Before a client uses this function, a persistent object on a server typically places
its name and binding information in the name service by using theidl -generated
register_named_object()member function.

18.15.5.2 The bind() Function for Binding by an Object’s UUID

A client can bind to a named object by using the object’s UUID as an argument to the
idl -generatedbind() static member function. This function’s prototype is as follows:

interface_class* interface_class::bind(uuid_t &)

This function takes an argument of typeuuid_t that is the UUID of a named object.
The function returns a pointer to the interface class. For example:

634 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

uuid_t objectUUID;

interface_class * object = interface_class::bind(objectUUID);

The search in the namespace for an entry that contains the matching UUID begins
with the default entry named in theRPC_DEFAULT_ENTRY environment variable.
The binding obtained is fully bound.

18.15.5.3 The bind() Function for Binding by Binding Handle

A client can bind to a known object directly by using a binding handle as an argument
to the idl -generatedbind() static member function. This function’s prototype is as
follows:

interface_class* interface_class::bind(rpc_binding_handle_t)

This function takes an argument of typerpc_binding_handle_t that is a binding
handle to an object. The function returns a pointer to the interface class. For example:

rpc_binding_handle_t bindingHandle;

interface_class * object = interface_class::bind(bindingHandle);

This function does not use the name service because the client obtains the binding
information and binding handle prior to the call. The binding handle can be either
partially or fully bound. If the binding handle is partially bound, it becomes fully
bound when the object calls a member function.

18.15.5.4 The bind() Function for Binding by Object Reference

Depending on the application, objects can have the behavior of more than one interface
class. However, your code can access only one interface’s member functions at a time.
A client uses theidl -generatedbind() static member function with an existing object
reference as an argument to bind to a different interface. This function’s prototype is
as follows:

DCE 1.2.2 Application Development Guide—Core Components 635

DCE Remote Procedure Call

different_interface_class* different_interface_class::bind(rpc_object_reference *)

This function takes a pointer argument of typerpc_object_referencethat is an existing
object reference to an interface class. The function returns a pointer to a different
interface class that the object also supports. The original object is obtained through a
previousbind() call, an object creator function, or an output parameter of a member
function. For example:

rpc_binding_handle_t bindingHandle;

interface_class * object = interface_class::bind(bindingHandle);

diff_if_class * new_object = diff_if_class::bind(object);

18.15.5.5 The secure() Function for Setting Object Security

Objects use theidl -generatedsecure() member function to set their authorization
and authentication information from the client. This sets the information for all the
binding handles encapsulated in the client proxy object. Thesecure() function is a
public member function of therpc_object_referenceclass. This function’s prototype
is as follows:

void interface_class::secure(

[unsigned_char_t * server_principal_name =0,]

[unsigned32 protection_level = rpc_c_protect_level_default,]

[unsigned32 authentication_protocol =rpc_c_authn_default,]

[rpc_auth_identity_handle_t authorization_identity =NULL ,]

[unsigned32 authorization_policy =rpc_c_authz_name]

)

The following code shows an example of how to use thesecure()member function:

Matrix *m;

cout << "creating a remote matrix" << endl;

m = Matrix::createMatrix(1, 2, 3, 4);

636 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

cout << "calling set() operation without authorization" << endl;

m->set(0,0,99);

// Without authorization, operation should have not changed anything.

assert(m->get(0,0) == 1);

cout << "setting security privileges on object" << endl;

m->secure(

(unsigned_char_t *) "refmon_test", // server principal name

rpc_c_protect_level_pkt_integ, // protection level

rpc_c_authn_dce_secret, // authentication protocol

NULL, // inherited login context

rpc_c_authz_name // authorization policy

);

// since we now have set security flags, the set() operation

// should work

m->set(0,0,99);

assert(m->get(0,0) == 99);

The example shows that unauthorized use of a matrix’s member function will not
change values (m->get(0,0,99);). However, after setting the appropriate authorization
and authentication information withsecure(), the member function will work as
expected. All parameters to thesecure()function are optional, but it is recommended
that you specify values rather than depend on the default values.

18.15.5.6 The SetRebind()Function

A client can automatically rebind to an object if the client first sets a rebind policy
by using theSetRebind() function. This allows a degree of fault tolerance in an
application. For example, if a server goes down and is restarted, the client can re-
establish communications with the new server. In another example, if a server provides
access over multiple protocols or addresses and one of those links fails, the client can
choose another link automatically. Finally, if multiple servers support the same object
and one server exits, clients can still access the object via another server.

The format of the function is as follows:

DCE 1.2.2 Application Development Guide—Core Components 637

DCE Remote Procedure Call

void interface_class:: SetRebind(

DCERebindPolicy policy,

[unsigned32 * n = 0]

)

The second argument is optional and only used when the rebind policy is
attempt_rebind_n. The valid policies include the following:

attempt_rebind_n
If a communication fails, try to communicate with the object by selecting
another binding until successful or untiln attempts have been tried.

wait_on_rebind
If a communication fails, try to communicate with the object by selecting
another binding until successful or until the calling thread is canceled.

attempt_rebind
If a communication fails, try to communicate with the object by selecting
another binding, if possible. If all handles have been tried, return an
error. This is the default policy.

never_rebind
If a communication fails, return an error.

18.15.5.7 The register_named_object() Function

Persistent objects can name and register themselves from the server by using the
idl -generatedregister_named_object()member function. This function performs the
following tasks:

• Creates the name service entry (if it doesn’t already exist) and adds the server’s
binding information so clients can find the server’s host

• Replaces or adds the object’s binding information in this host’s endpoint map so
clients can find this server

This function’s prototype is as follows:

void interface_class:: register_named_object(

unsigned_char_t * name_service_name

638 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

[, boolean32 replace_endpoint =TRUE]

)

The function takes a pointer argument of typeunsigned_char_t, representing the name
to use for the name service entry. The function has an optional second argument of
type boolean32to indicate whether to replace or add the object’s binding information
to the host’s endpoint map. If the second argument is not used (or is set toTRUE) and
the object’s binding information already exists, this function replaces the information.
If the second argument is set toFALSE, the object’s binding information is added to
the endpoint map (not replaced). You should add the binding information rather than
replace it in circumstances where a single host has more than one server that offers
the same interface. The function does not return a value.

18.15.5.8 The get_binding_handle() Function

Server manager code uses theidl -generatedget_binding_handle()function to obtain
the binding handle used to invoke the call. The function’s prototype is as follows:

rpc_binding_handle_t get_binding_handle();

Member functions (that are not static) cannot have an explicit binding handle argument
since the handle is encapsulated in therpc_object_referencebase class. A member
function implementation uses this function to obtain the binding handle to verify
security information, among other things.

18.16 Associating a Data Type with a Transmitted Type

Thetransmit_asattribute associates a transmitted type that stubs pass over the network
with a presented type that clients and servers manipulate. The specified transmitted
type must be a named type defined previously in another type declaration.

There are two primary uses for this attribute:

• To pass complex data types for which the IDL compiler cannot generate
marshalling and unmarshalling code.

DCE 1.2.2 Application Development Guide—Core Components 639

DCE Remote Procedure Call

• To pass data more efficiently. An application can provide routines to convert a data
type between a sparse representation (presented to the client and server programs)
and a compact one (transmitted over the network).

To build an application that uses presented and transmitted types, you must write
routines to perform conversions between the types and to manage storage for the
types, and you must link those routines with your application code. At runtime, the
client and server stubs call these routines before sending and after receiving data of
these types.

The following paragraphs specify C prototypes for generic binding and unbinding
routines; in these prototypes,PRESis the name of the presented type andTRANSis
the name of the transmitted type.

The PRES_to_xmit() routine allocates storage for the transmitted type and converts
from the presented type to the transmitted type:

void PRES_to_xmit (PRES*presented, TRANS** transmitted)

The PRES_from_xmit() routine converts from the transmitted type to the presented
type and allocates any storage referenced by pointers in the presented type:

void PRES_from_xmit (TRANS* transmitted, PRES*presented)

ThePRES_free_inst()routine frees any storage referenced by pointers in the presented
type byPRES_from_xmit() :

void PRES_free_inst (PRES*presented)

Suppose that thetransmit_as attribute appears either on the type of a parameter or
on a component of a parameter and that the parameter has theout or in,out attribute.
Then, thePRES_free_inst() routine will be called automatically for the data item that
has thetransmit_as attribute.

640 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

Suppose that thetransmit_as attribute appears on the type of a parameter and that
the parameter has only thein attribute. Then, thePRES_free_inst() routine will be
called automatically.

Finally, suppose that thetransmit_as attribute appears on a component of a parameter
and that the parameter has only thein attribute. Then, thePRES_free_inst() routine
will not be called automatically for the component; the manager application code must
release any resources that the component uses, possibly by explicitly calling thePRES
_free_inst() routine.

The PRES_free_xmit() routine frees any storage that has been allocated for the
transmitted type byPRES_to_xmit():

void PRES_free_xmit (TRANS* transmitted)

A type with the transmit_as attribute cannot have other type attributes, specifically
the following:

• A pipe type.

• A pipe element type.

• A type with thecontext_handleattribute.

• A type of which any instance has thecontext_handleattribute.

• A type that includes thehandle attribute in its definition cannot be used, directly
or indirectly, in the definition of a type with thetransmit_as attribute. Nor can a
type that includes thetransmit_as attribute in its definition be used, directly or
indirectly, in the definition of a type with thehandle attribute.

• A conformant array type.

• A varying array type.

• A structure type co ntaining a conformant array.

• An array type of which any instance is varying.

• A type with therepresent_asattribute.

The type name in a declaration for atransmit_as attribute is restricted to 21 characters.

DCE 1.2.2 Application Development Guide—Core Components 641

DCE Remote Procedure Call

A transmitted type specified by thetransmit_as attribute must be either a base type,
a predefined type, or a named type defined viatypedef. A transmitted type cannot be
a conformant array type or a conformant structure type if any instance of that type is
an in parameter or anin, out parameter.

The following is an example oftransmit_as. Assuming the following declarations:

typedef

struct tree_node_t {

data_t data;

struct tree_node_t * left;

struct tree_node_t * right;

} tree_node_t;

typedef

[transmit_as(tree_xmit_t)] tree_node_t *tree_t;

The application code must include routines that match the prototypes:

void tree_t_to_xmit (tree_t *, (tree_xmit_t **));

void tree_t_from_xmit ((tree_xmit_t *), (tree_t *));

void tree_t_free_inst (tree_t *);

void tree_t_free_xmit ((tree_xmit_t *));

18.17 IDL Grammar Synopsis

This section summarizes IDL syntax, in extended Backus-Naur Format (BNF) notation.

<interface> ::= <interface_header> "{" <interface_body> "}"

<interface_header> ::=

"[" <interface_attributes> "]" "interface" <identifier> \

[":" <identifier>]

642 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

<interface_attributes> ::=

<interface_attribute> ["," <interface_attribute>] ...

<interface_attribute> ::= "uuid" "(" <uuid_rep> ")"

| "version" "(" <major> ["." <minor>] ")"

| "endpoint" "(" <endpoint_spec> ["," <endpoint_spec>] ... ")"

| "pointer_default" "(" <pointer_attribute> ")"

| "local"

| "exceptions" "(" <excep_name> ["," <excep_name>] ... ")"

<excep_name> ::= <Identifier>

<major> ::= <integer>

<minor> ::= <integer>

<endpoint_spec> ::=

""" <family_string> ":" "[" <endpoint_string> "]" """

<family_string> ::= <identifier>

<endpoint_string> ::= <identifier>

<interface_body> ::= [<import>] ... [<export>] ...

<export> ::= <const_declaration> ";"

| <type_declaration> ";"

| <op_declaration> ";"

<import> ::= import <import_files> ";"

<import_files> ::= <filename> ["," <filename>] ... ";"

<filename> ::= """ <character> ... """

<const_declaration> ::=

"const" <const_type_spec> <identifier> "=" <const_exp>

<const_type_spec> ::=

DCE 1.2.2 Application Development Guide—Core Components 643

DCE Remote Procedure Call

<integer_type> | "char" | "char" "*" | "boolean" | "void" "*"

<const_exp> ::=

<integer_const_exp> | <character_const> | <string_const>

| <identifier> | "TRUE" | "FALSE" | "NULL"

<integer_const_exp> ::= <conditional_exp>

<conditional_exp> ::= <logical_or_exp>

| <logical_or_exp> "?" <integer_const_exp> ":" <conditional_exp>

<logical_or_exp> ::= <logical_and_exp>

| <logical_or_exp> "||" <logical_and_exp>

<logical_and_exp> ::= <inclusive_or_exp>

| <logical_and_exp> "&&" <inclusive_or_exp>

<inclusive_or_exp> ::= <exclusive_or_exp>

| <inclusive_or_exp> "|" <exclusive_or_exp>

<exclusive_or_exp> ::= <and_exp>

| <and_exp> "^" <and_exp>

<and_exp> ::= <equality_exp>

| <and_exp> "&" <equality_exp>

<equality_exp> ::= <relational_exp>

| <equality_exp> "==" <relational_exp>

| <equality_exp> "!=" <relational_exp>

<relational_exp> ::= <shift_exp>

| <relational_exp> "<" <shift_exp>

| <relational_exp> ">" <shift_exp>

| <relational_exp> "<=" <shift_exp>

| <relational_exp> ">=" <shift_exp>

<shift_exp> ::= <additive_exp>

| <shift_exp> "<<" <additive_exp>

| <shift_exp> ">>" <additive_exp>

644 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

<additive_exp> ::= <multiplicative_exp>

| <additive_exp> "+" <multiplicative_exp>

| <additive_exp> "-" <multiplicative_exp>

<multiplicative_exp> ::= <unary_exp>

| <multiplicative_exp> "*" <unary_exp>

| <multiplicative_exp> "/" <unary_exp>

| <multiplicative_exp> "%" <unary_exp>

<

unary_exp> ::= <primary_exp>

| "+" <primary_exp>

| "-" <primary_exp>

| "~" <primary_exp>

| "!" <primary_exp>

<primary_exp> ::= <integer_literal>

| <identifier>

<character_const> ::= "’" <character> "’"

<string_const> ::= """ [<character>] ... """

<type_declaration> ::=

"typedef" [<type_attributes>] <type_spec> <declarators>

<type_spec> ::= <simple_type_spec>

| <constructed_type_spec>

<simple_type_spec> ::= <base_type_spec>

| <predefined_type_spec>

| <identifier>

<declarators> ::= <declarator> ["," <declarator>] ...

<declarator> ::= <simple_declarator>

| <complex_declarator>

<simple_declarator> ::= <identifier>

DCE 1.2.2 Application Development Guide—Core Components 645

DCE Remote Procedure Call

<complex_declarator> ::= <array_declarator>

| <function_ptr_declarator>

| <ptr_declarator>

| <ref_declarator>

<ref_declarator> ::= "&" <identifier>

<tagged_declarator> ::= <tagged_struct_declarator>

| <tagged_union_declarator>

<base_type_spec> ::= <integer_type>

| <floating_type>

| <char_type>

| <boolean_type>

| <byte_type>

| <void_type>

| <handle_type>

<floating_type> ::= "float" | "double"

<integer_type> ::= <signed_int> | <unsigned_int>

<signed_int> ::= <int_size> ["int"]

<

unsigned_int> ::= <int_size> "unsigned" ["int"]

| "unsigned" <int_size> ["int"]

<int_size> ::= "hyper" | "long" | "short" | "small"

<char_type> ::= ["unsigned"] "char"

<boolean_type> ::= "boolean"

<byte_type> ::= "byte"

<void_type> ::= "void"

<handle_type> ::= "handle_t"

646 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

<constructed_type_spec> ::= <struct_type>

| <union_type>

| <tagged_declarator>

| <enumeration_type>

| <pipe_type>

<tagged_struct_declarator> ::= "struct" <tag>

| <tagged_struct>

<struct_type> ::= "struct" "{" <member_list> "}"

<tagged_struct> ::= "struct" <tag> "{" <member_list> "}"

<tag> ::= <identifier>

<member_list> ::= <member> [<member>] ...

<member> ::= <field_declarator> ";"

<field_declarator> ::= [<field_attribute_list>]

<type_spec> <declarators>

<field_attribute_list> ::= "[" <field_attribute> [","

<field_attribute>] ... "]"

<tagged_union_declarator> ::= "union" <tag>

| <tagged_union>

<union_type> ::= "union" <union_switch> "{" <union_body>

"}" | "union" "{" <union_body_n_e> "}"

<union_switch> ::= "switch" "(" <switch_type_spec> <identifier> ")"

[<union_name>]

<

switch_type_spec> ::= <integer_type>

| <char_type>

| <boolean_type>

| <enumeration_type>

<tagged_union_declarator> ::= "union" <tag>

DCE 1.2.2 Application Development Guide—Core Components 647

DCE Remote Procedure Call

| <tagged_union>

<union_type> ::= "union" <union_switch> "{" <union_body> "}"

| "union" "{" <union_body_n_e> "}"

<union_switch> ::= "switch" "(" <switch_type_spec> \

<Identifier> ")" [<union_name>]

<switch_type_spec> ::= <primitive_integer_type>

| <char_type>

| <boolean_type>

| <enumeration_type>

<tagged_union> ::= "union" <tag> <union_switch> "{" <union_body> "}"

| "union" <tag> "{" <union_body_n_e> "}"

<union_name> ::= <Identifier>

<union_body> ::= <union_case> [<union_case>] ...

<union_body_n_e> ::= <union_case_n_e> [<union_case_n_e>] ...

<union_case> ::= <union_case_label> \

[<union_case_label>] ... <union_arm> | <default_case>

<union_case_n_e> ::= <union_case_label_n_e> <union_arm>

| <default_case_n_e>

<union_case_label> ::= "case" <const_exp> ":"

<union_case_label_n_e> ::= "[" "case" "(" <const_exp> \

[, <const_exp>] ...")" "]"

<default_case> ::= "default" ":" <union_arm>

<default_case_n_e> ::= "[" "default" "]" <union_arm>

<union_arm> ::= [<field_declarator>] ";"

<union_type_switch_attr> ::= "switch_type" "(" \

648 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

<switch_type_spec> ")"

<union_instance_switch_attr> ::= "switch_is" "(" <attr_var> ")"

<enumeration_type> ::=

<enum_identifier> ::= <identifier> ["=" <const_exp>]

<pipe_type> ::= "pipe" <type_spec> <pipe_declarators>

<array_declarator> ::= <identifier> <array_bounds_list>

<array_bounds_list> ::= <array_bounds_declarator>

[<array_bounds_declarator>] ...

<array_bounds_declarator> ::= "[" [<array_bound>] "]"

| "[" <array_bounds_pair> "]"

<array_bounds_pair> ::= <array_bound> ".." <array_bound>

<array_bound> ::= "*"

| <integer_literal>

| <identifier>

<type_attribute> ::= "transmit_as" "(" <xmit_type> ")"

| "handle"

| <usage_attribute>

| <union_type_switch_attr>

| <ptr_attr>

<usage_attribute> ::= "string"

| "context_handle"

<xmit_type> ::= <simple_type_spec>

<field_attribute> ::= "first_is" "(" <attr_var_list> ")"

| "last_is" "(" <attr_var_list> ")"

| "length_is" "(" <attr_var_list> ")"

| "max_is" "(" <attr_var_list> ")"

| "min_is" "(" <attr_var_list> ")"

DCE 1.2.2 Application Development Guide—Core Components 649

DCE Remote Procedure Call

| "size_is" "(" <attr_var_list> ")"

| <usage_attribute>

| <union_instance_switch_attr>

| "ignore"

| <ptr_attr>

<attr_var_list> ::= <attr_var> ["," <attr_var>] ...

<attr_var> ::= [["*"]<identifier>]

<ptr_declarator> ::= "*"<identifier>

<ptr_attr> ::= "ref"

| "unique"

| "full"

<op_declarator> ::= [<operation_attributes>]

<simple_type_spec> <identifier> <parameter_declarators>

<

operation_attributes> ::= "[" <operation_attribute> ["static"]

["," <operation_attribute>] ... "]"

<

operation_attribute> ::= "idempotent"

| "broadcast"

| "maybe"

| "reflect_deletions"

| <usage_attribute>

| <ptr_attr>

<param_declarators> ::= "(" "void" ")"

| "(" [<param_declarator> ["," <param_declarator>] ...] ")"

<param_declarator> ::= <param_attributes> <type_spec> <declarator>

<param_attributes> ::=

"[" <param_attribute> ["," <param_attribute>] ... "]"

<param_attribute> ::= <directional_attribute>

650 DCE 1.2.2 Application Development Guide—Core Components

Interface Definition Language

| <field_attribute>

<directional_attribute> ::= "in" ["(" "shape" ")"]

| "out" ["(" "shape" ")"]

<function_ptr_declarator> ::= <simple_type_spec>

"(" "*"<identifier> ")" <param_declarators>

<predefined_type_spec> ::= "error_status_t"

| <international_character_type>

<international_character_type> ::= ISO_LATIN_1

| ISO_MULTI_LINGUAL

| ISO_UCS

<pipe_declarators> ::= <pipe_declarator> \

["," <pipe_declarator>] ...

<pipe_declarator> ::= <simple_declarator>

| <ptr_declarator>

| <ref_declarator>

DCE 1.2.2 Application Development Guide—Core Components 651

Chapter 19
Attribute Configuration Language

The Attribute Configuration Language is used for writing an Attribute Configuration
File (ACF). Use the attributes in the ACF to modify the interaction between the
application code and stubs without affecting the client/server network interaction.

19.1 Syntax Notation Conventions

The syntax of the Attribute Configuration Language is similar to the syntax of IDL.
For syntax information, see the syntax notation conventions for the IDL.

The use of[] (brackets) can be either a required part of the syntax or can denote that
a string is optional to the syntax. To differentiate this, brackets that are required are
shown as [] (plain square brackets). Brackets that contain optional strings are shown
as [] (italicized square brackets).

A | (vertical bar) denotes a logical OR.

DCE 1.2.2 Application Development Guide—Core Components 653

DCE Remote Procedure Call

19.2 Attribute Configuration File

The ACF changes the way the IDL compiler interprets the interface definition, written
in IDL. The IDL file defines a means of interaction between a client and a server. For
new server implementations to be compatible across the network with existing servers,
the interaction between the client and server must not be modified. If the interaction
between an application and a specific stub needs to change, you must provide an ACF
when you build this stub.

The ACF affects only the interaction between the generated stub code and the local
application code; it has no effect on the interaction between local and remote stubs.
Therefore, client and server writers are likely to have different attribute configuration
files that they can modify as desired.

19.2.1 Naming the ACF

To name the ACF, replace the extension of the IDL file (.idl) with the extension
of the ACF (.acf). For example, the ACF associated withmy_idl_filename.idl is
my_idl_filename.acf.

19.2.2 Compiling the ACF

When you issue theidl command, naming the IDL file to compile, it searches for
a corresponding ACF and compiles it along with the IDL file. The compiler also
searches for any ACF (there can be more than one) associated with any imported IDL
files. The stubs that the compiler creates contain the appropriate modifications.

19.2.3 ACF Features

The following list contains the ACF attributes and the features associated with the
attributes:

• include statement: Includes header files in the generated code

654 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

• auto_handle, explicit_handle, implicit_handle, binding_callout: Controls
binding

• comm_status, fault_status: Indicates parameters to hold status conditions
occurring in the call

• cs_char, cs_tag_rtn, cs_stag, cs_drtag, cs_rtag: Controls the transmission of
international (non-PCS) characters

• code, nocode: Controls which operations of the IDL file are compiled

• encode, decode: Controls the generation of IDL encoding services stubs to
perform encoding or decoding operations

• extern_exceptions: Indicates user-defined parameters to hold status conditions
occurring in the call

• represent_as: Controls conversion between local and network data types

• enable_allocate: Forces the initialization of the memory management routines

• heap: Specifies objects to be allocated from heap memory

• cxx_lookup, cxx_delegate, cxx_new, cxx_static: Specifies C++ features

19.3 Structure

The structure of the ACF is as follows:

interface_header

{

interface_body

}

Follow these structural rules when creating an ACF:

• The basename of the ACF must be the same as the basename of the IDL file
although the extensions are different.

• The interface name in the ACF must be the same as the interface name in the
corresponding IDL file.

DCE 1.2.2 Application Development Guide—Core Components 655

DCE Remote Procedure Call

• With a few exceptions, any type, parameter, or operation names in the ACF must
be declared in the IDL file, or defined in files included by use of theinclude
statement, as the same class of name.

• Except for additional status parameters, any parameter name that occurs within
an operation in the ACF must also occur within that operation in the IDL file.

19.3.1 ACF Interface Header

The ACF interface header has the following structure:

[[acf_attribute_list]] interface idl_interface_name

The acf_attribute_listis optional. The interface header attributes can include one or
more of the following attributes, entered within brackets. If you use more than one
attribute, separate them with commas and include the list within a single pair of
brackets. (Note that some of these attributes can be used in the ACF body also. See
Section 19.3.2 for more information.)

• code

• nocode

• implicit_handle(handle_type handle_name)

• auto_handle

• explicit_handle

• encode

• decode

• binding_callout(routine_name)

• extern_exceptions(exception_name[,exception_name]...)

• cs_tag_rtn(tag_set_routine)

• cxx_lookup(function_name)

• cxx_delegate(class_name)

656 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

The following example shows how to use more than one attribute in the ACF interface
header:

[auto_handle, binding_callout(rpc_ss_bind_authn_client)] \

interface phone_direct

{

}

19.3.2 ACF Interface Body

The ACF interface body can contain the elements in the following list. Note that some
of the attributes listed here can also be used in the ACF header, as described in Section
19.3.1. If you use more than one attribute, separate them with commas and include
the list within a single pair of brackets.

• An include statement

• A declared type

typedef [[represent_as (local_type_name)] | [heap] |

[cs_char (local_type_name)]] type_name;

• An operation

[[explicit_handle] | [comm_status] | [fault_status] |

[code] | [nocode] | [enable_allocate] |

[cxx_new(manager_class)] | [cxx_static] | [cxx_static(local_function)] |

[encode] | [decode] | [cs_tag_rtn (tag_set_routine)]]

operation_name([parameter_list]);

A parameter_listis a list of zero or more parameter names as they appear in the
corresponding operation definition of the IDL file. You do not need to use all
the parameter names that occur in the IDL operation definition; use only those
to which you attach an ACF attribute. If you use more than one parameter name,
the names must be separated by commas.

DCE 1.2.2 Application Development Guide—Core Components 657

DCE Remote Procedure Call

• A parameter within an operation

[[comm_status] | [fault_status] | [heap] |

[cs_stag] | [cs_drtag] | [cs_rtag]] parameter_name

19.3.3 The include Statement and the C++ Attributes cstub and
sstub

The include statement specifies any additional header files you want included in the
generated stub code. You can specify more than one header file. Theinclude statement
is placed in the body of the ACF and has the following syntax:

include " filename" [," filename"] ...;

[[sstub | cstub | sstub, cstub]] include " filename";

Do not specify the directory name or file extension when you use theinclude
statement. The compiler appends the.h extension. If you want to specify the directory
name(s), use the-cc_opt or -I IDL compiler command options.

Use the include statement whenever you use therepresent_as, implicit_handle,
cs_char, cxx_static, cxx_new, cxx_lookup, or cxx_delegate attributes and the
specified type is not defined or imported in the IDL file.

The sstub and cstub attributes are optional. By default, the IDL compiler places
directives only in theidl -generated header file when neither thesstub nor cstub
attributes are used. These attributes restrict where#include compiler directives are
placed in order to include application-specific header files in C++ client and server
stub files. In C++ applications, local and remote versions of operations are included
together by linking in both the client and server stubs. C++ applications need to
control #include compiler directives so that the operations for local objects can be
easily renamed to avoid name conflicts with the operations for remote objects.

658 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

The following table shows to which output file the IDL compiler places the#include
compiler directive for the application-specific file. Note, that the idl-generated header
file is always included automatically in each stub.

ACF Statement Header File Client Stub Server Stub

include "file"; X

[cstub] include "file"; X

[sstub] include "file"; X

[cstub, sstub] include" file"; X X

19.3.4 The auto_handle Attribute

This attribute causes the client stub and RPC runtime to manage the binding to the
server by using a directory service. Any operation in the interface that has no parameter
containing binding information is bound automatically to a server so the client does
not have to specify a binding to a server.

When an operation is automatically bound, the client does not have to specify the
server on which an operation executes. If you make a call on an operation without
explicit binding information in an interface for which you have specifiedauto_handle,
and no client/server binding currently exists, the client stub selects an available server
and establishes a binding. This binding is used for this call and subsequent calls to
all operations in the interface that do not include explicit binding information, while
the server is still available.

When a client uses the automatic binding method, DCE must use the name service to
obtain binding information. However, the client host must have a starting entry from
which to begin the namespace search. If theRPC_DEFAULT_ENTRY environment
variable is defined on the client host, DCE uses the entry in that variable to obtain
binding information. If RPC_DEFAULT_ENTRY is not defined, DCE looks for
binding information from the host’s name service profile.

Server termination, network failure, or other problems can cause a break in binding.
If this occurs during the execution of an automatically bound operation, the client
stub issues the call to another server, provided one is available and the operation is
idempotent, or it determines that the call did not start to run on the server. Similarly,

DCE 1.2.2 Application Development Guide—Core Components 659

DCE Remote Procedure Call

if a communications or server failure occurs between calls, the client stub binds to
another server for the next call, if a server is available.

If the client stub is unable to find a server to run the operation, it reports this by
returning the status coderpc_s_no_more_bindingsin the comm_statusparameter,
or by raising the exceptionrpc_x_no_more_bindingsif the operation does not use the
comm_statusattribute for error reporting. Note that, if a binding breaks, the search
for another server begins at the directory service entry following the one where the
binding broke. This means that, even if a server earlier in the list becomes available, it
is not treated as a candidate for binding. After the RPC runtime tries each server in the
list, it reinitializes the list of server candidates and tries again. If the second attempt is
unsuccessful, the RPC runtime reports the status coderpc_s_no_more_bindings. The
next call on an operation in the interface starts from the top of the list when looking
for a server to bind to.

The auto_handleattribute can occur at most once in the ACF.

If an interface uses theauto_handle attribute, the presence of a binding handle or
context handle parameter in an operation overridesauto_handle for that operation.

The auto_handle attribute declaration has the following syntax. (See the example at
the end of this section.)

[auto_handle] interface interface_name

You cannot useauto_handleif you useimplicit_handle or if you useexplicit_handle
in the interface header. You also cannot useauto_handle if you use theencodeor
decodeACF attributes.

Example Using the auto_handle Attribute

ACF

[auto_handle] interface math_1

{

}

660 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

IDL File

[uuid(b3c86900-2d27-11c9-ab09-08002b0ecef1)]

interface math_1

{

/* This operation has no handle parameter,

* therefore, uses automatic binding.

*/

long add([in] long a,

[in] long b);

/*

* This operation has an explicit handle parameter, h,

* that overrides the [auto_handle] ACF attribute.

* Explicit handles also override [implicit_handle].

*/

long subtract ([in] handle_t h,

[in] long a,

[in] long b);

}

19.3.5 The explicit_handle Attribute

This attribute allows the application program to manage the binding to the server. The
explicit_handle attribute indicates that a binding handle is passed to the runtime as
an operation parameter.

The explicit_handle attribute has the following syntax. (See the example at the end
of this section.)

For an interface:

[explicit_handle] interface interface_name

For an operation:

DCE 1.2.2 Application Development Guide—Core Components 661

DCE Remote Procedure Call

[explicit_handle] operation_name([parameter_list]);

When used as an ACF interface attribute, theexplicit_handle attribute applies to all
operations in the IDL file. When used as an ACF operation attribute, this attribute
applies to only the operation you specify.

If you use theexplicit_handle attribute as an ACF interface attribute, you must not
use theauto_handleor implicit_handle attributes. Also, you cannot use theencode
anddecodeattributes if you useexplicit_handle.

Using the explicit_handle attribute on an interface or operation has no effect on
operations in IDL that have explicit binding information in their parameter lists.

Example Using the explicit_handle Attribute

ACF

[explicit_handle] interface math_2

{

/* This causes the operation, as called by the client, to

* have the parameter handle_t IDL_handle, at the start of

* the parameter list, before the parameters specified here

* in the IDL file.

*/

}

IDL File

[uuid(41ce5b80-0ba7-11ca-87ba-08002b111685)]

interface math_2

{

long add([in] long a,

[in] long b);

}

662 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

19.3.6 The implicit_handle Attribute

This attribute allows the application program to manage the binding to the server. You
specify the data type and name of the handle variable as part of theimplicit_handle
attribute. Theimplicit_handle attribute informs the compiler of the name and type
of the global variable through which the binding handle is implicitly passed to the
client stub. A variable of this type and name is defined in the client stub code, and
the application initializes the variable before making a call to this interface.

The implicit_handle attribute declaration has the following syntax. (See the example
at the end of this section.)

For an interface:

[implicit_handle (handle_type handle_name)] interface interface_name

If an interface uses theimplicit_handle attribute, the presence of a binding handle
or in or in,out context handle parameter in an operation overrides the implicit handle
for that operation.

The implicit_handle attribute can occur at most once in the ACF.

You cannot use theimplicit_handle attribute if you are using theauto_handle
attribute or theexplicit_handle attribute as an interface attribute. You also cannot
use implicit_handle if you use theencodeor decodeACF attributes.

If the type in theimplicit_handle clause is nothandle_t, then it is treated as if it has
the handle attribute.

The ACF in the following example modifies themath_3 interface to use an implicit
handle.

Example Using the implicit_handle Attribute

ACF

DCE 1.2.2 Application Development Guide—Core Components 663

DCE Remote Procedure Call

[implicit_handle(user_handle_t global_handle)] interface math_3

{

/*

* Since user_handle_t is not a type defined in IDL, you

* must specify an header file that contains the definition

*/

include "user_handle_t_def";

}

IDL File

[uuid(a01d0280-2d27-11c9-9fd3-08002b0ecef1)]

interface math_3

{

long add([in] long a,

[in] long b);

}

19.3.7 The client_memory Attribute

While marshalling parameters, the client stub uses built-in routines to manage memory.
You can use theclient_memory attribute to specify different memory allocation and
free routines. Theclient_memory attribute has the following syntax in the ACF
header:

[client_memory(malloc_routine, free_routine)] interface idl

_interface_name

The routines you specify must have the same respective procedure declarations as the
system’smalloc() and free() routines.

Applications need to manage memory consistently, so if your application needs to
do other memory allocation, be sure to use the same routines you specified with the
client_memory attribute.

664 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

You can use the client_memory attribute in conjunction with RPC
stub support API routines such asrpc_sm_set_client_alloc_free() and
rpc_sm_swap_client_alloc_free().

19.3.8 The comm_status and fault_status Attributes

The comm_status and fault_status attributes cause the status code of any
communications failure or server runtime failure that occurs in a remote procedure
call to be stored in a parameter or returned as an operation result, instead of being
raised to the client application code as an exception.

The comm_statusattribute causes communications failures to be reported through a
specified parameter. Thefault_status attribute causes server failures to be reported
through a specified parameter. Applying both attributes causes all remote and
communications failures to be reported through status. Any local exception caused
by an error during marshalling, correctness checking performed by the client stubs,
or an error in application routines continues to be returned as an exception.

The comm_status and fault_status attributes have the following syntax. (See the
examples at the end of this section.)

For an operation:

[comm_status | fault_status]operation_name([parameter_list]);

For a parameter:

operation_name([comm_status | fault_status]parameter_name);

Note: You can apply one of each attribute to the same operation and/or parameter
at the same time. Separate the attributes with a comma. (See the example at
the end of this section.)

If the parameter named in acomm_statusor fault_status attribute is in the
parameter list for the operation in the IDL file, then it must have theout

DCE 1.2.2 Application Development Guide—Core Components 665

DCE Remote Procedure Call

attribute in the IDL file. (Additional ACF parameters do not havein andout
directional attributes.)

If the status attribute occurs on the operation, the returned value result must be defined
as typeerror_status_t in the IDL file. If an error occurs during execution of the
operation, the error code is returned as the operation result. If the operation completes
successfully, the value returned to the client is the value returned by the manager code.

Note: The error_status_t type is equivalent tounsigned32, which is the data type
used by the RPC runtime for an error status. The status codeerror_status_ok
is equivalent torpc_s_ok, which is the RPC runtime success status code.

If the status attribute occurs on a parameter, the parameter name does not have to be
defined in the IDL file, although it can be. Note the following:

• If the parameter name is one used in the IDL file, then that parameter must be an
output parameter of typeerror_status_t. If the operation completes successfully,
the value of this parameter is the value returned by the manager code.

• If the parameter name is different from any name defined within the operation
definition in the IDL file, the IDL compiler creates an extra output parameter of
type error_status_t in the application code after the last parameter defined in the
IDL file. In a successfully completed remote call, this extra parameter has the
valueerror_status_ok.

In either case, if an error occurs during the remote call, the error code is returned to
the parameter that has the status attribute. (See theDCE 1.2.2 Problem Determination
Guide for an explanation of status codes.)

If you define both additionalcomm_statusand additionalfault_status parameters,
they are automatically added at the end of the procedure declaration in the order of
specification in the ACF.

In the following example, there are three possible uses of the status attributes: as the
operation result ofadd, as a parameter ofsubtract as defined in the IDL file, and as
an additional parameter ofmultiply .

Example Using the comm_status and fault_status Attributes

ACF

666 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

[auto_handle] interface math_4

{

[comm_status,fault_status] add();

subtract ([comm_status,fault_status] s);

/*

* ’sts’ is not a parameter in the interface definition of

* operation ’multiply’. This specifies that the application

* wants a trailing parameter ’sts’ that is of type

* error_status_t, after the parameters a and b.

*/

multiply ([comm_status] c_sts,[fault_status] f_sts);

}

IDL File

[uuid(91365000-2d28-11c9-ad5a-08002b0ecef1)]

interface math_4

{

error_status_t add ([in] double a,

[in] double b,

[out] double *c);

double subtract ([in] double a,

[in] double b,

[out] error_status_t *s);

double multiply ([in] double a,

[in] double b);

}

server.c

/*

* The three server procedures below illustrate the different

* models of comm_status and fault_status appearing in the

* idl and acf declarations above.

*

DCE 1.2.2 Application Development Guide—Core Components 667

DCE Remote Procedure Call

* RPC automatically passes back DCE error codes through

* comm_status and fault_status. These examples differ in

* their handling of the nonerror case.

*/

error_status_t add (double a,

double b,

double * c)

{

...

*c = answer;

/*

* comm_status and fault_status are operation attributes.

* If no error occurs, the client will see the value that

* the server returns.

*

* We return error_status_ok here for the normal

* successful case.

*/

return error_status_ok;

}

double subtract (double a,

double b,

error_status_t * s)

{

/*

* "s" appears in both the idl definition and the acf

* specification.

*

* In the successful case, the client is returned the

* value that the server puts in *s. Therefore, assume

* success here.

*/

*s = error_status_ok;

...

668 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

return answer;

}

double multiply (double a,

double b,

error_status_t * c_sts,

error_status_t * f_sts)

{

/*

* c_sts and f_sts appear in the acf, but do not appear

* in the idl definition. In this case, c_sts and f_sts

* are placed at the end of the parameter list generated

* by the idl compiler. To conform to the prototype

* generated by idl, your server code must also declare

* these parameters.

*

* In the successful case, c_sts and f_sts are

* automatically returned to the client as

* error_status_ok. Even though c_sts and f_sts are

* parameters to the function, the server code must not

* modify these parameters or store through them.

*/

...

return answer;

}

19.3.9 The code and nocode Attributes

The codeandnocodeattributes allow you to control which operations in the IDL file
have client stub code generated for them by the compiler. These attributes affect only
the generation of a client stub; they have no effect when generating the server stub.

The code and nocodeattributes have the following syntax. (See the example at the
end of this section.)

For an interface:

DCE 1.2.2 Application Development Guide—Core Components 669

DCE Remote Procedure Call

[code | nocode] interfaceinterface_name

For an operation:

[code | nocode]operation_name([parameter_list]);

When you specifynocode as an attribute on an ACF interface, stub code is not
generated for the operations in the corresponding IDL interface unless you also specify
codefor the particular operation(s) for which you want stub code generated. Similarly,
when you specifycode (the default) as an attribute on an ACF interface, stub code
is generated for the operations in the corresponding IDL interface unless you also
specify nocode for the particular operations for which you do not want stub code
generated.

Do not usenocodeon any of the operations if the compiler is generating only server
stub code because it has no effect. Server stubs must always contain generated code
for all operations.

In the following example, the IDL compiler generates client stub code for the
operationsopen, read, and close, but not for the operationwrite . An alternative
method for specifying the same behavior is to use[nocode] write() in the ACF.

Example Using the code and nocode Attributes

ACF

[nocode,auto_handle] interface open_read_close

{

[code] open();

[code] read();

[code] close();

}

IDL File

670 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

[uuid(2166d580-0c69-11ca-811d-08002b111685)]

interface open_read_close

{

void open (...);

void read (...);

void write (...);

void close (...);

}

19.3.10 The represent_as Attribute

This attribute associates a local data type that your application code uses with a data
type defined in the IDL file. Use of therepresent_asattribute means that, during
marshalling and unmarshalling, conversions occur between the data type used by the
application code and the data type specified in the IDL.

The represent_asattribute has the following syntax. (See the example at the end of
this section.)

typedef [represent_as (local_type_name)] net_type_name;

The local_type_nameis the local data type that the application code uses. You can
define it in the IDL file or in an application header file. If you do not define it in the
IDL file, use theinclude statement in the ACF to make its definition available to the
stubs.

The net_type_nameis the data type that is defined in the IDL file.

The represent_asattribute can appear at most once in atypedef declaration in an
ACF.

If you use therepresent_as attribute, you must write routines that perform the
conversions between the local and network types, and routines that release the memory
storage used to hold the converted data. The conversion routines are part of your
application code.

DCE 1.2.2 Application Development Guide—Core Components 671

DCE Remote Procedure Call

The suffix for the routine names, the function of each, and where they are used (client
or server) appear in the following list:

• _from_local(): Allocates storage instance of the network type and converts from
the local type to the network type (used for client and server).

• _to_local(): Converts from the network type to the local type (used for client and
server).

• _free_inst(): Frees storage instance used for the network type (used by client and
server).

• _free_local(): Frees storage used by the server for the local type (used in server).
This routine frees any object pointed to by its argument but does not attempt to
free the argument itself.

Suppose that therepresent_asattribute is applied to either the type of a parameter or
to a component of a parameter and that the parameter has theout or in,out attribute.
Then, the_free_local() routine will be called automatically for the data item that has
the type to which therepresent_asattribute was applied.

Suppose that therepresent_asattribute is applied to the type of a parameter and that
the parameter has only thein attribute. Then, the_free_local() routine will be called
automatically.

Finally, suppose that therepresent_asattribute is applied to the type of a component
of a parameter and that the parameter has only thein attribute. Then, the_free_local()
routine will not be called automatically for the component; the manager application
code must release any resources that the component uses, possibly by explicitly calling
the _free_local() routine.

Append the suffix of the routine name to thenet_type_name. The syntax for these
routines is as follows:

void net_type_name_from_local (

(local_type_name*),

(net_type_name**))

672 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

void net_type_name_to_local (

(net_type_name*),

(local_type_name*))

void net_type_name_free_inst ((net_type_name*))

void net_type_name_free_local ((local_type_name*))

Example Using the represent_as Attribute

ACF

[auto_handle] interface phonedir

{

/*

* You must specify an included file that contains the

* definition of my_dir_t.

*/

include "user_types";

/*

* The application code wants to pass data type my_dir_t

* rather than dir_t. The [represent_as] clause allows

* this, and you must supply routines to convert dir_t

* to/from my_dir_t.

*/

typedef [represent_as(my_dir_t)] dir_t;

}

IDL File

[uuid(06a12100-2d26-11c9-aa24-08002b0ecef1)]

interface phonedir

{

DCE 1.2.2 Application Development Guide—Core Components 673

DCE Remote Procedure Call

typedef struct

{

short int area_code;

long int phone_num;

char last_name[20];

char first_name[15];

char city[20];

} dir_t;

void add ([in] dir_t *info);

void lookup ([in] char city[20],

[in] char last_name[20],

[in] char first_name[15],

[out] dir_t *info);

void delete ([in] dir_t *info);

}

19.3.11 The enable_allocate Attribute

The enable_allocateattribute on an operation causes the server stub to initialize
the rpc_ss_allocate()routine. Therpc_ss_allocate()routine requires initialization
of its environment before it can be called. The server stub automatically initializes
(enables)rpc_ss_allocate()if the operation uses either full pointers or a type with
the represent_asattribute. If the operation does not meet either of these conditions,
but the manager application code needs to make use of therpc_ss_allocate()and
rpc_ss_free()routines, then use theenable_allocateattribute to force the stub code
to enable.

The enable_allocateattribute has the following syntax.

For an operation:

[enable_allocate]operation_name([parameter_list]);

Example Using the enable_allocate Attribute

ACF

674 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

[auto_handle] interface phonedir

{

[enable_allocate] lookup ();

}

IDL File

[uuid(06a12100-2d26-11c9-aa24-08002b0ecef1)]

interface phonedir

{

typedef struct

{

short int area_code;

long int phone_num;

char last_name[20];

char first_name[15];

char city[20];

} dir_t;

void add ([in] dir_t *info);

void lookup ([in] char city[20],

[in] char last_name[20],

[in] char first_name[15],

[out] dir_t *info);

void delete ([in] dir_t *info);

}

19.3.12 The heap Attribute

This attribute specifies that the server stub’s copy of a parameter or of all parameters
of a specified type is allocated in heap memory rather than on the stack.

The heap attribute has the following syntax. (See the example at the end of this
section.)

For a type:

DCE 1.2.2 Application Development Guide—Core Components 675

DCE Remote Procedure Call

typedef [heap] type_name;

For a parameter:

operation_name([heap] parameter_name);

Any identifier occurring as a parameter name within an operation declaration in the
ACF must also be a parameter name within the corresponding operation declaration
in IDL.

The heap attribute is ignored for pipes, context handles, and scalars.

Example Using the heap Attribute

ACF

[auto_handle] interface galaxies

{

typedef [heap] big_array;

}

IDL File

[uuid(e61de280-0d0b-11ca-6145-08002b111685)]

interface galaxies

{

typedef long big_array[1000];

}

19.3.13 The extern_exceptions Attribute

By default, the IDL compiler declares and initializes all exceptions listed in an
exceptions interface attribute in the stub code that it generates. You can use the
extern_exceptionsattribute to override this behavior; theextern_exceptionsattribute

676 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

allows you to specify one or more exceptions listed in the exceptions interface attribute
that you do not want the idl-generated stub code to declare. If theextern_exceptions
attribute appears with no list, it has the same effect as if all IDL-defined exceptions
were specified in the list.

Theextern_exceptionsattribute has the following syntax. (See the example at the end
of this section.)

[extern_exceptions (exception_name [,exception_name]...)]

interface interface_name

The extern_exceptionsattribute indicates that the specified exceptions are defined
and initialized in some other external manner before calling theextern_exceptions
attribute. They may be predefined exceptions (such asexc_e_exquota) that were
provided by another interface, or exceptions that are defined and initialized explicitly
by the application itself.

Example Using the extern_exceptions Attribute

In the following example, the exception named in the list in theextern_exceptions
attribute in the ACF is not defined or initialized in the idl-generated stub code. All
of the other exceptions listed in theexceptions interface attribute are defined and
initialized in the generated stub.

ACF

[extern_exceptions(exc_e_exquota)] interface binop {}

/*

*The exc_e_exquota exception is a predefined exception

*(provided in exc_handling.h) and so does not need

*to be declared and initialized in the idl-generated stub.

*/

IDL File

DCE 1.2.2 Application Development Guide—Core Components 677

DCE Remote Procedure Call

[uuid(06255501-08af-11cb-8c4f-08002b13d56d),

version (1.1),

exceptions (

exc_e_exquota,

binop_e_aborted,

binop_e_too_busy,

binop_e_shutdown)

] interface binop

{

long binop_add(

[in] long a,

[in] long b

);

}

19.3.14 The encode and decode Attributes

The encodeanddecodeattributes are used in conjunction with IDL encoding services
routines (idl_es*) to enable RPC applications to encode data types in input parameters
into a byte stream and decode data types in output parameters from a byte stream
without invoking the RPC runtime. Encoding and decoding operations are analogous
to marshalling and unmarshalling, except that the data is stored locally and is not
transmitted over the network.

The stubs that perform encoding or decoding operations are different from the stubs
that perform RPC operations. The ACF attributesencode and decode direct the
IDL compiler to generate encoding or decoding stubs for operations defined in a
corresponding IDL interface rather than generating RPC stubs for those operations.

The encodeanddecodeattributes have the following syntax. (See the example at the
end of this section.)

For an interface:

[encode] | [decode] | [encode,decode] interfaceinterface_name

For an operation:

678 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

[encode] | [decode] | [encode,decode]operation_name([parameter_list]);

When used as an ACF interface attribute, theencodeand decodeattributes apply to
all operations defined in the corresponding IDL file. When used as an ACF operation
attribute,encodeand decodeapply only to the operation you specify. If you apply
the encodeor decodeattribute to an ACF interface or operation, you must not use
the auto_handleor the implicit_handle ACF attributes.

When you apply theencodeor decodeattribute to an operation, the IDL compiler
generates IDL encoding services stubs that support encoding or decoding, depending
on the attribute used, in the client stub code; it does not generate stub code for the
operation in the server stub. To generate an IDL encoding services stub that supports
both encoding and decoding, apply both attributes to the operation.

If you apply theencodeor decodeattribute to all of the operations in an interface,
no server stub is generated. If you apply theencodeand decodeattributes to some,
but not all, of the operations in an interface, the stubs for the operations that do not
have theencodeand decodeattributes applied to them are generated as RPC stubs
into the server stub module.

When data encoding takes place, only the operation’sin parameters provide data for
the encoding. When data decoding takes place, the decoded data is delivered only to
the operation’sout parameters.

If data is being both encoded and decoded, you generally declare all of the operation’s
parameters to bein,out. However, you can encode data by using thein parameters
of one operation, and decode it by using theout parameters of another operation if
the types and order of thein and out parameters are the same. For equivalence, the
IDL encoding services treat a function result as anout parameter that appears after
all otherout parameters.

In the following example, the IDL compiler generates IDL encoding services stub
code for thein_array_op1, out_array_op1 , andarray_op2 operations, but not for
the array_op3 operation. The stub code generated for thein_array_op1 operation
supports encoding, the stub code generated for theout_array_op1 operation supports
decoding, and the stub code generated for thearray_op2 operation supports both
encoding and decoding. The stub code generated for thearray_op3 is an RPC client
stub. For further information on using the IDL encoding services, see Chapter 18 of
this guide and the reference pages for theidl_es_* (3rpc) routines.

DCE 1.2.2 Application Development Guide—Core Components 679

DCE Remote Procedure Call

Example Using the encode and decode Attributes

ACF

interface es_array

{

[encode] in_array_op1();

[decode] out_array_op1();

[encode, decode] array_op2();

}

IDL File

[uuid(20aac780-5398-11c9-b996-08002b13d56d), version(0)]

interface es_array

{

void in_array_op1([in] handle_t h, [in] long arr[100]);

void out_array_op1([in] handle_t h, [out] long arr[100]);

void array_op2([in] handle_t h, [in,out] long big[100]);

void array_op3([in] handle_t h, [in,out] long big[100]);

}

19.3.15 The cs_char Attribute

The cs_char attribute is intended for use in internationalized RPC applications. It is
used in conjunction with thecs_stag, cs_drtag, cs_rtagandcs_tag_rtnattributes and
the DCE RPC routines for automatic code set conversion to provide RPC applications
with a mechanism for ensuring character and code set interoperability between clients
and servers transferring international (non-PCS) characters.

The cs_charattribute is very similar in function to therepresent_asattribute, in that
it associates a local data type that your application code uses with a data type defined
in the IDL file. The cs_char attribute permits the application code to use the local
data type for international character data and converts between the local data type and
the format specified in the IDL file when transferring international characters over the

680 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

network. Thecs_char ACF attribute permits the conversion of characters, arrays of
characters, and strings of characters between the format in which the application code
requires them and the format in which they are transmitted over the network.

As with represent_as, use of thecs_char attribute means that, during marshalling
and unmarshalling, conversions occur between the data type that the application code
is using and the data type specified in IDL. In the case ofcs_char, the local data type
is automatically converted between the local data type in the local code set encoding
and theidl_byte data type in thenetworkcode set encoding. The network code set
is the code set encoding that the application code, through the use of the DCE RPC
automatic code set conversion routines, has selected to use when transmitting the
international characters over the network.

The cs_charattribute differs from the[transmit_as] attribute in that it does not affect
the network contract between the client and server. It differs from the[represent_as]
attribute in that multiple data items (for example, the characters of an array or string)
can be converted with a single stub call to user-written conversion code, and that
the conversion can modify array size and data limit information between what is
transmitted over the network and what is used by application code.

The cs_charattribute has the following syntax. (See the examples at the end of this
section.)

typedef [cs_char (local_type_name)] net_type_name;

The local_type_nameis the local data type that the application code uses. You can
define it in the IDL file or in an application header file. If you do not define it in the
IDL file, use theinclude statement in the ACF to make its definition available to the
stubs.

The net_type_nameis the data type that is defined in the IDL file. When used with
the cs_charattribute, this data type is alwaysbyte in the IDL file.

If you use thecs_char attribute, you must write the following stub support routines
for each local type that you define:

• Routines that check the buffer storage requirements for international character
data to be converted to determine whether or not more buffer space needs to be
allocated to hold the converted data

DCE 1.2.2 Application Development Guide—Core Components 681

DCE Remote Procedure Call

• Routines to perform conversion between local and network code sets

The suffix for the routine names, the function of each, and where they are used (client
or server) appear in the following list:

• local_type_name_net_size(): Calculates the necessary buffer size for code set
conversion from a local code set to a network code set. Client and server stubs
call this routine before they marshall any international character data.

• local_type_name_local_size(): Calculates the necessary buffer size for code set
conversion from a network code set to a local code set. Client and server stubs
call this routine before they unmarshall any international character data.

• local_type_name_to_netcs(): Converts international character data from a local
code set to a network code set. Client and server stubs call this routine before
they marshall any international character data.

• local_type_name_from_netcs() : Converts international character data from a
network code set to a local code set. Client and server stubs call this routine
before they unmarshall any international character data.

You specify the name for the local data type in thelocal_type_nameportion of the
function name. The name that you specify cannot exceed 20 characters because the
entire generated name must not exceed the 31-character limit for C identifiers.

For each piece of international character data being marshalled, the_net_sizeand
_to_netcsroutines are called once each. For each piece of international character data
being unmarshalled, the_local_sizeand_from_netcs routines are called once each.

DCE RPC provides buffer sizing and code set conversion routines for thecs_byte
and wchar_t data types (thecs_byte type is equivalent to thebyte type). If they
meet the needs of your application, you can use these RPC routines (cs_byte_* and
wchar_t_*) instead of providing your own routines.

If you do provide your own routines for buffer sizing and code set conversion, they
must follow a specific signature. See the reference pages for thecs_byte_* (3rpc) and
wchar_t_* (3rpc) routines for a complete description of the required signatures for
these routines.

When international character data is to be unmarshalled, a stub needs to have received
a description of the code set being used before it receives the data. For this reason,

682 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

the cs_charattribute cannot be applied to the base type of a pipe or to a type used in
constructing the base type of a pipe.

The cs_charattribute also cannot be applied to a type if there is an array that has this
type as a base type and the array has more than one dimension, or if the attributes
min_is, max_is, first_is, last_is, or string have been applied to the array. As a result,
all instances of the type to whichcs_char has been applied must be scalars or one-
dimensional arrays. Only thelength_isand/orsize_isattributes can be applied to these
arrays.

The following restrictions apply to the use of variables that appear in array attributes:

• Any parameter that is referenced by asize_isor length_is attribute of an array
parameter whose base type has thecs_char attribute cannot be referenced by
any attribute of an array parameter whose base type does not have thecs_char
attribute.

• Any structure field that is referenced by asize_isor length_is attribute of an
array field whose base type has thecs_charattribute cannot be referenced by any
attribute of an array field whose base type does not have thecs_charattribute.

Thecs_charattribute cannot interact with thetransmit_as or represent_asattributes.
This restriction imposes the following rules:

• The cs_char attribute cannot be applied to a type that has thetransmit_as
attribute, nor can it be applied to a type in whose definition a type with the
transmit_as attribute is used.

• The cs_char attribute cannot be applied to a type that has therepresent_as
attribute, nor can it be applied to a type in whose definition a type with the
represent_asattribute is used.

• The cs_char attribute cannot be applied to the transmitted type specified in a
transmit_as attribute or to any type used in defining such a transmitted type.

The cs_charattribute cannot be applied to any type that is the type of the referent of
a pointer that has amax_is or size_isattribute applied to it. It also cannot be applied
to the base type of an array parameter that has theunique or ptr attribute applied to
it.

An application that uses thecs_char ACF attribute cannot use the IDL encoding
servicesencodeanddecodeACF attributes.

DCE 1.2.2 Application Development Guide—Core Components 683

DCE Remote Procedure Call

Examples Using the cs_char Attribute

Arrays of cs_char can be fixed, varying, conformant, or conformant varying. The
treatment of a scalarcs_char is similar to that of a fixed array of one element. The
following examples show the relationship between IDL declarations and declarations
in the generated header file when thecs_charattribute has been applied. The examples
assume that the ACF contains the type definition:

typedef [cs_char(ltype)] my_byte;

For a fixed array, if the IDL file contains

typedef struct {

my_byte fixed_array[80];

} fixed_struct;

the declaration generated in the header file is

typedef struct {

ltype fixed_array[80];

} fixed_struct;

The number of array elements in the local and network representations of the data
must be the same as the array size stated in the IDL.

For a varying array, if the IDL file contains

typedef struct {

long l;

[length_is(l)] my_byte varying_array[80];

} varying_struct;

the declaration generated in the header file is

684 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

typedef struct {

idl_long_int l;

ltype varying_array[80];

} varying_struct;

Neither the number of array elements in the local representation nor the number of
array elements in the network representation may exceed the array size in the IDL.

For a conformant array, if the IDL file contains

typedef struct {

long s;

[size_is(s)] my_byte conf_array[];

} conf_struct;

the declaration generated in the header file is

typedef struct {

idl_long_int s;

ltype conf_array[1];

} conf_struct;

The number of array elements in the local representation and the number of array
elements in the network representation need not be the same. The conversions between
these numbers are done in the user-provided_net_sizeand_local_sizeroutines.

For a conformant varying array, if the IDL file contains

typedef struct {

long s;

long l;

[size_is(s), length_is(l)] my_byte open_array[];

} open_struct;

the declaration generated in the header file is

DCE 1.2.2 Application Development Guide—Core Components 685

DCE Remote Procedure Call

typedef struct {

idl_long_int s;

idl_long_int l;

ltype open_array[1];

} open_struct;

The maximum number of array elements in the local representation and the maximum
number of array elements in the network representation need not be the same. The
conversions between these numbers are done in the user-provided_net_size and
_local_sizeroutines.

For fixed or varying arrays, the size of the storage available to hold the local data
is determined by the array size specified in IDL and the local type specified in the
cs_charattribute. For conformant or conformant varying arrays, you must determine
the transformations between local storage size and network storage size without
reference to the characters being transmitted or received. Where a variable-width
character set is in use, this means making the most conservative assumption about the
size of the data.

19.3.16 The cs_stag, cs_drtag, and cs_rtag Attributes

Thecs_stag, cs_drtag, andcs_rtagattributes are used in conjunction with thecs_char
and (optionally) thecs_tag_rtn attributes and DCE RPC routines for automatic code
set conversion to provide internationalized RPC applications with a mechanism to
ensure character and code set interoperability between clients and servers handling
international character data.

The cs_stag, cs_drtag, and cs_rtag attributes are parameter ACF attributes that
correspond to the sending tag, desired receiving tag, and receiving tag parameters
defined in operations in the IDL file that handle international character data. These
operation parameterstag international characters being passed in the operation’s input
and output parameters with code set identifying information. Thecs_stag, cs_drtag,
andcs_rtag ACF parameter attributes declare the tag parameters in the corresponding
operation definition to be special code set parameters.

The cs_stagattribute has the following syntax:

686 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

operation_name([cs_stag]parameter_name);

The cs_stagattribute identifies the code set used when the client sends international
characters to the server. Operations defined in the IDL file that specify international
characters inin parameters must use thecs_stagattribute in the associated ACF.

The cs_drtag attribute has the following syntax:

operation_name([cs_drtag] parameter_name);

The cs_drtag attribute identifies the code set the client would like the server to use
when returning international characters.

The cs_rtag attribute has the following syntax:

operation_name([cs_rtag] parameter_name);

The cs_rtag attribute identifies the code set that is actually used when the server
sends international characters to the client. Operations defined in the IDL file that
specify international characters inout parameters must apply thecs_rtag attribute in
the associated ACF.

Example Using the cs_stag, cs_drtag, and cs_rtag Attributes

Here is an example ACF for an IDL file in which the operationmy_op has the tag
parametersmy_stag, my_drtag, andmy_rtag, whose types are eitherunsigned long
or [ref] unsigned long.

my_op([cs_stag] my_stag, [cs_drtag] my_drtag, [cs_rtag] my_rtag);

For more information about thecs_stag, cs_drtag, and cs_rtag ACF attributes and
their use in internationalized RPC applications, see Chapter 16 of this guide.

DCE 1.2.2 Application Development Guide—Core Components 687

DCE Remote Procedure Call

19.3.17 The cs_tag_rtn Attribute

The cs_tag_rtn attribute is an ACF attribute for use in RPC applications that handle
international character data. This attribute specifies the name of a user-written routine
that the client and server stubs will call to set an operation’s code set tag parameters to
specific code set values. Thecs_tag_rtnattribute is an optional ACF attribute that you
can use to provide code set tag transparency for callers of your interface’s operations.
If an operation that transfers international character data has thecs_tag_rtn attribute
applied to it in the corresponding ACF, the code set tag parameters will not appear in
the operation’s definition within the generated header file. If thecs_tag_rtn attribute
is not used, the operation’s caller must provide appropriate values to the operation’s
code set tag parameters before international character data is marshalled.

The cs_tag_rtnattribute has the following syntax. (See the example at the end of this
section.)

For an interface:

[cs_tag_rtn(tag_set_routine)] interface interface_name

For an operation:

[cs_tag_rtn(tag_set_routine)] operation_name([parameter_list]);

When used as an ACF interface attribute, thecs_tag_rtn attribute applies to all
operations defined in the corresponding IDL file. When used as an ACF operation
attribute, thecs_tag_rtn attribute applies only to the operation you specify.

The tag_set_routineis the name of the stub support routine that the client and server
stubs will call to set the operation’s code set tag parameters. The IDL compiler will
generate a function prototype fortag_set_routinein the generated header file.

Applications can specify the DCE RPC tag-setting routinerpc_cs_get_tags()if it
meets their applications’ needs, or they can write their own tag-setting routines.
The routine name must be distinct from any type name, procedure name, constant
name, or enumeration name appearing in the interface definition. It must also have

688 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

a specific calling signature. See therpc_cs_get_tags(3rpc)reference page for a
complete description of the required routine signature.

When the tag-setting routine is called from a client stub, it is called before anyin
parameters are marshalled. When called from a server stub, it is called before anyout
parameters are marshalled. For more information on thecs_tag_rtn attribute and its
use in internationalized RPC applications, see Chapter 16 of this guide.

Example Using the cs_tag_rtn Attribute

As shown in the following example, thecs_tag_rtn attribute is used in conjunction
with the cs_char, cs_stag, cs_drtag, andcs_rtag ACF attributes. In the example, the
stub generated fora_op will call the tag-setting routineset_tagsto set the code set
tag parameters to specific values before any data is marshalled. Forb_op, it is the
responsibility of the operation’s caller to ensure that the code set tag parameters are
set correctly before any data is marshalled.

IDL File

typedef byte my_byte;

void a_op(

[in] unsigned long stag,

[in] unsigned long drtag,

[out] unsigned long *p_rtag,

[in] long s,

[in, out] long *p_l,

[in, out, size_is(s), length_is(*p_l)] my_byte a[]

);

void b_op(

[in] unsigned long stag,

[in] unsigned long drtag,

[out] unsigned long *p_rtag,

[in] long s,

[in, out] long *p_l,

[in, out, size_is(s), length_is(*p_l)] my_byte a[]

);

DCE 1.2.2 Application Development Guide—Core Components 689

DCE Remote Procedure Call

ACF

typedef [cs_char(ltype)] my_byte;

[cs_tag_rtn(set_tags)] a_op([cs_stag] stag,

[cs_drtag] drtag,

[cs_rtag] p_rtag);

b_op([cs_stag] stag,

[cs_drtag] drtag,

[cs_rtag] p_rtag);

Generated Header File

typedef byte my_byte;

void a_op(

/* [in] */ idl_long_int s,

/* [in, out] */ idl_long_int *p_l,

/* [in, out, size_is(s), length_is(*p_l)] */ ltype a[]

);

void b_op(

/* [in] */ idl_ulong_int stag,

/* [in] */ idl_ulong_ing drtag,

/* [out] */ idl_ulong_int *p_rtag,

/* [in] */ idl_long_int s,

/* [in, out] */ idl_long_int *p_l,

/* [in, out, size_is(s), length_is(*p_l)] */ ltype a[]

);

19.3.18 The binding_callout Attribute

The binding_callout attribute permits you to specify the name of a routine that the
client stub is to call automatically to modify a server binding handle before it initiates

690 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

a remote procedure call. This attribute is intended for use by client applications
that employ the automatic binding method through theauto_handle ACF interface
attribute. In automatic binding, it is the client stub, rather than the client application
code, that obtains the binding handle to the server. Thebinding_callout attribute
allows a client application using automatic binding to modify the binding handle
obtained by the client stub. Without this attribute, it is impossible for the client
application to modify the binding handle before the client stub attempts to initiate
a remote procedure call to the selected server.

Clients typically use this attribute to augment automatic binding handles with security
context, for example, so that authenticated RPC is used between client and server.

The binding_callout attribute has the following syntax. (See the example at the end
of this section.)

[binding_callout(routine_name)] interface interface_name

The routine_namespecifies the name of a binding callout routine that the client stub
will call to modify the server binding handle before initiating the remote procedure call
to the server. The IDL compiler will generate a function prototype forroutine_name
in the generated header file.

You can specify the name of a routine that you supply, or you can specify the DCE
RPC routinerpc_ss_bind_authn_client()to modify the binding handle if it meets the
needs of your application. See therpc_ss_bind_authn_client(3rpc)reference page
for more information.

The binding callout routine you provide must have a specific routine signature. See the
rpc_ss_bind_authn_client(3rpc)reference page for information about the required
routine signature.

The binding_callout attribute can occur at most once in the ACF and applies to all
of the operations in the corresponding IDL file.

A binding callout routine should return theerror_status_ok status code when it
successfully modifies the binding handle or determines that no action is necessary.
This status code causes the client stub to initiate the remote procedure call.

DCE 1.2.2 Application Development Guide—Core Components 691

DCE Remote Procedure Call

A binding callout routine can also return error status. If it does, the client stub does
not initiate the remote procedure call. Instead, if theauto_handle attribute has been
applied in the ACF, the client stub attempts to locate another server of the interface and
then calls the binding callout routine again. Ifauto_handle is not in use, the client
stub invokes its normal error-handling logic. A binding callout routine for a client
using auto_handle can return the status coderpc_s_no_more_bindingsto prevent
the client stub from searching for another server and instead invoking its error-handling
logic immediately.

By default, the client stub handles an error condition by raising an exception. If a
binding callout routine returns one of therpc_s_ status codes, the client stub raises
a matchingrpc_x_ exception. However, if a binding callout routine returns any other
type of status code, the client stub will most likely raise it as an ‘‘unknown status’’
exception.

If the comm_statusparameter ACF attribute has been applied to an operation, the
client stub handles an error condition by returning the error status value in the
comm_statusparameter. Consequently, a binding callout routine can return any error
status value to the client application code if thecomm_status attribute has been
applied to the operation.

A binding callout routine can raise a user-defined exception, rather than return a status
code, to report application-specific error conditions back to the client application code
using exceptions.

Example Using the binding_callout Attribute

ACF

[auto_handle,binding_callout(my_bh_callout)] interface \

bindcall

{

}

Generated Header File (bindcall.h)

692 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

void my_bh_callout(

rpc_binding_handle_t *p_binding,

rpc_if_handle_t interface_handle,

error_status_t *p_st

);

19.3.19 The C++ Attributes cxx_new, cxx_static, cxx_lookup, and
cxx_delegate

The IDL compiler uses an ACF to do the following for C++ applications:

• Declare a server’s manager class and object constructor by usingcxx_new.

• Declare interface member functions as static by using thecxx_static attribute, if
they are not already declared in the interface definition file.

• Rename static member functions by usingcxx_static. .

• Specify a lookup function by using thecxx_lookup attribute. The server calls this
application-specific function automatically if a client requests a known object not
currently maintained by the server.

• Specify a delegate interface class by using thecxx_delegateattribute. A third-
party class is encapsulated by a delegate class so it can be used in RPCs without
modifying the original class.

• Control in which stub files application-specific header files are included. (See also
the include statement and thecstub andsstub attributes.)

19.3.19.1 Using cxx_new to Declare an Object Creator Function

Member functions may be specified as static object creator functions by applying the
cxx_new attribute to the function name. An object creator function allows clients to
dynamically create remote objects of an interface class. Servers require this feature to
specify their implementation-specific manager class, and clients can use this feature
to specify their local implementation of the interface class. Thecxx_new attribute is
applied to an operation and has the following format:

DCE 1.2.2 Application Development Guide—Core Components 693

DCE Remote Procedure Call

[cxx_new (manager_class)] creator_function();

The associated IDL file must contain a function that returns a pointer to the interface
class and that matches thecreator_functionname.

The manager_classargument to thecxx_new attribute specifies the class name the
application uses to locally implement the interface class. The server stub requires the
manager_class,which must be declared for it in a header file and included by using the
sstub attribute with theinclude statement. The format in C++ of themanager_class
declaration is as follows:

class manager_class: public interface_class{

// The constructor, destructor, function declarations, and data.

...

}

The manager class may include not only a constructor to create objects of the class,
but also all the nonstatic member functions declared in the interface class. A server
implements themanager_classmember functions in its manager code. Manager code
handles requests from clients for all of the interface’s member functions (static and
nonstatic), including thecreator_functionwhich dynamically creates interface objects
on the server for the client.

When a client calls thecreator_function, the client stub executes a proxy function that
uses RPCs to execute a manager class constructor on a server. A client can use the
manager_classargument to specify a class name when implementing its own local
version of the interface class. In this case, the client links into its application theidl -
generated server stub along with a local implementation of the interface class. When
the client uses thenew operator to creates objects of themanager_classtype, the
object is local and no RPCs are involved.

19.3.19.2 Using cxx_static to Specify Static Interface Member
Functions

Member functions can be specified as static by applying thecxx_static attribute to
the function name. Thecxx_static attribute is an operation attribute with a format as
follows:

694 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

[cxx_static [(local_function)]] member_function();

The member_functionname must match a function named in the associated IDL file.

Both remote and local versions of objects are implemented in an application by
linking in both client and server stubs. A client links in the server stub to implement
client-local versions of interface objects. A server links in the client stub to allow
access to remote (in this case, client-local) objects that are passed in as parameters to
member functions. Thelocal_functionargument to thecxx_static attribute specifies
the function name that the application uses to locally implement the static member
function and avoid name conflicts with the remote version of the function (always
defined in the client stub).

The server implements a static function namedmember_functionin its manager code
if no local_functionis specified. However, if alocal_functionis specified, the server
implements a static function namedlocal_functionin its manager code. In this case,
the manager_functionis automatically implemented in the client stub which is linked
into the application (along with the server stub) to handle marshalling of parameters
that are client- local objects (remote to the server). When there is alocal_function, it
must be declared for the server stub in a header file and included by using thesstub
attribute with theinclude statement in the ACF.

When a client calls the staticmember_function, the client stub executes a proxy
function that uses RPCs to execute the associated remote function on a server. A client
uses thelocal_functionargument to specify a function name to use when implementing
its own local version of themember_function. In this case, in addition to linking in
the client stub, the client application also links in theidl -generated server stub with a
local implementation of the function. When you develop a client, it might be easier if
you think of the server stub as a local-implementation stub, because, when the client
calls the staticlocal_function, the call is strictly local and no RPCs are involved. If
you compile an interface such that a server stub is not generated, thelocal_function
argument tocxx_static is ignored.

An interface can instead specify static member functions by using thestatic keyword
in the interface definition, in front of a member function.

DCE 1.2.2 Application Development Guide—Core Components 695

DCE Remote Procedure Call

19.3.19.3 Using cxx_lookup to Declare a Server’s Object Lookup
Function

If a client requests the use of a known object that is not yet in the server’s runtime,
the server can automatically look it up and create it by using an application-specific
function. The object lookup function name is specified by using thecxx_lookup
attribute in an ACF header. The ACF format is as follows:

cxx_lookup (object_lookup_function)

The object_lookup_functionmust be declared in a header file and included in the
server stub by using thesstub attribute with theinclude statement in the ACF. The
C++ function declaration must have the following format:

interface_name*object_lookup_function(uuid_t *);

The lookup function has one input pointer argument of typeuuid_t representing the
UUID of the object desired. The function returns a pointer to the interface class. The
returned pointer represents the newly created object. If the object cannot be found or
created, the function must return a zero.

19.4 Summary of Attributes

The following table lists the attributes available for use in the ACF and where in the
file the attribute can be used.

Table 19–1. Summary of the ACF Attributes

Attribute Where Used

auto_handle Interface header

binding_callout Interface header

code Interface header, operation

696 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

Attribute Where Used

comm_status Operation, parameter

cs_char Type

cs_drtag Parameter

cs_rtag Parameter

cs_stag Parameter

cs_tag_rtn Operation, interface header

cxx_delegate Interface header

cxx_lookup Interface header

cxx_new Operation

cxx_static Operation

cstub include statement

decode Operation, interface header

enable_allocate Operation

encode Operation, interface header

explicit_handle Interface header, operation

extern_exceptions Interface header

fault_status Operation, parameter

heap Type, parameter

implicit_handle Interface header

nocode Interface header, operation

represent_as Type

sstub include statement

19.5 Attribute Configuration Language

This section summarizes the ACF syntax, in extended BNF notation.

DCE 1.2.2 Application Development Guide—Core Components 697

DCE Remote Procedure Call

<acf_interface> ::=

<acf_interface_header> "{" <acf_interface_body> "}"

<acf_interface_header> ::=

[<acf_interface_attr_list>] "interface" <idl_interface_name>

<acf_interface_attr_list> ::= "[" <acf_interface_attrs> "]"

<acf_interface_attrs> ::=

<acf_interface_attr> ["," <acf_interface_attr>] ...

<acf_interface_attr> ::= <acf_code_attr>

| <acf_nocode_attr>

| <acf_auto_handle_attr>

| <acf_explicit_handle_attr>

| <acf_implicit_handle_attr>

| <acf_cs_tag_rtn_attr>

| <acf_extern_exceps_attr>

| <acf_encode_attr>

| <acf_decode_attr>

| <acf_binding_callout_attr>

| <acf_delegate_attr>

| <acf_lookup_attr>

<acf_auto_handle_attr> ::= "auto_handle"

<acf_explicit_handle_attr> ::= "explicit_handle"

<acf_implicit_handle_attr> ::=

"implicit_handle" "(" <acf_named_type> <Identifier> ")"

698 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

<acf_extern_exceps_attr> ::=

"extern_exceptions" "(" <acf_ext_excep_list> ")"

<acf_ext_exceps_list> ::=

"<acf_ext_excep> ["," <acf_ext_excep] ...

<acf_ext_excep> ::= <Identifier>

<acf_binding_callout_attr> ::=

"binding_callout" "(" <acf_bind_call_rtn_name> ")"

<acf_delegate_attr> ::= "cxx_delegate" "(" acf_delegate_name ")"

<acf_delegate_name> ::= <Identifier>

<acf_lookup_attr> ::= "cxx_lookup" "(" acf_lookup_name ")"

<acf_lookup_name> ::= <Identifier>

<acf_bind_call_rtn_name> ::= <Identifier>

<acf_interface_name> ::= <Identifier>

<acf_interface_body> ::= [<acf_body_element>] ...

<acf_body_element> ::= <acf_include> ";"

| <acf_type_declaration> ";"

| <acf_operation> ";"

DCE 1.2.2 Application Development Guide—Core Components 699

DCE Remote Procedure Call

<acf_include> ::= [<acf_include_attr>] \

"include" <acf_include_list>

<acf_include_attr> ::= "sstub" | "cstub" | "sstub" "," "cstub"

<acf_include_list> ::= <acf_include_name> \

["," <acf_include_name>] ...

<acf_include_name> ::= """ <filename> """

<acf_type_declaration> ::= typedef [<acf_type_attr_list>] \

<acf_named_type>

<acf_named_type> ::= <Identifier>

<acf_type_attr_list> ::= "[" <acf_type_attrs> "]"

<acf_type_attrs> ::= <acf_type_attr> ["," <acf_type_attr>] ...

<acf_type_attr> ::= <acf_represent_attr>

| <acf_cs_char_attr>

| <acf_heap_attr>

<acf_represent_attr> ::= "represent_as" "(" <acf_repr_type> ")"

700 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

<acf_cs_char_attr> ::=

"cs_char" "C" "(" <acf_cs_char_type> ")"

<acf_cs_char_type> ::= <acf_named_type>

<acf_repr_type> ::= <acf_named_type>

<acf_operation> ::= [<acf_op_attr_list>] <Identifier> "("

[<acf_parameters>] ")"

<acf_op_attr_list> ::= "[" <acf_op_attrs> "]"

<acf_op_attrs> ::= <acf_op_attr> ["," <acf_op_attr>] ...

<acf_op_attr> ::= <acf_explicit_handle_attr>

| <acf_comm_status_attr>

| <acf_cs_tag_rtn_attr>

| <acf_encode_attr>

| <acf_decode_attr>

| <acf_fault_status_attr>

| <acf_code_attr>

| <acf_nocode_attr>

| <acf_enable_allocate_attr>

| <acf_static_attr>

| <acf_new_attr>

<acf_cs_tag_rtn_attr> ::=

"cs_tag_rtn" "(" <acf_cs_tag_rtn_name> ")"

DCE 1.2.2 Application Development Guide—Core Components 701

DCE Remote Procedure Call

<acf_cs_tag_rtn_name> ::=

<Identifier>

<acf_parameters> ::= <acf_parameter> ["," <acf_parameter>] ...

<acf_parameter> ::= [<acf_param_attr_list>] <Identifier>

<acf_param_attr_list> ::= "[" <acf_param_attrs> "]"

<acf_param_attrs> ::= <acf_param_attr> ["," <acf_param_attr>] ...

<acf_param_attr> ::= <acf_comm_status_attr>

| <acf_fault_status_attr>

| <acf_cs_stag_attr>

| <acf_cs_drtag_attr>

| <acf_cs_rtag_attr>

| <acf_heap_attr>

<acf_code_attr> ::= "code"

<acf_nocode_attr> ::= "nocode"

<acf_encode_attr> ::= "encode"

<acf_decode_attr> ::= "decode"

702 DCE 1.2.2 Application Development Guide—Core Components

Attribute Configuration Language

<acf_cs_stag_attr> ::= "cs_stag"

<acf_cs_drtag_attr> ::= "cs_drtag"

<acf_cs_rtag_attr> ::= "cs_rtag"

<acf_comm_status_attr> ::= "comm_status"

<acf_fault_status_attr> ::= "fault_status"

<acf_enable_allocate_attr> ::= "enable_allocate"

<acf_static_attr> ::= "cxx_static" | "cxx_static" \

"(" <acf_static_name> ")"

<acf_static_name> ::= <Identifier>

<acf_new_attr> ::= "cxx_new" "(" <acf_new_name> ")"

<acf_new_name> ::= <Identifier>

<acf_heap_attr> ::= "heap"

DCE 1.2.2 Application Development Guide—Core Components 703

Index

&, reference operator, 366

A
ACCEPT credential type

creating, 816
defined, 814

accounts, registry database, 836
ACF, 479, 654

attribute list, 654
body, 657
compiling, 654
cxx_delegate attribute, 417, 418
cxx_lookup attribute, 382, 383
cxx_new attribute, 374
cxx_static

attribute, 374
cxx_static attribute, 376
features, 654
file extension, 654
grammar synopsis, 697
header, 656
naming, 654
represent_as attribute, 414
sstub attribute, 374, 382
sstub attribute use, 371

structure, 655
table of attributes, 696

ACL, 310, 800, 801
access checking, 807
contents, 802
definition, 799
editor, 902
entries, 802
errors, 904
extended naming, 905
handle, 903
manager interface, 905
manager types, 800
names, 757
network interface, 907
permissions

for RPC control program,
289

action after a message, 113
Ada compiler

generating reentrant code, 196
additional parameter, 661, 669
address space association , 619
aliasing, 598, 600
allocating memory, 474, 606, 674
announcements, 56
API

access control list, 901
backing store, 139
definition of, 230
extended attribute, 841

DCE 1.2.2 Application Development Guide—Core Components Index–1

Index

extended privilege attribute, 819
ID map, 917
key management, 895
login, 885
password management, 943
registry, 831
security, 744
security services and facilities,

751
serviceability, 77

application
application, 228
Basic RPC tasks of, 229
messaging, 55
RPC code, 230
RPC thread, 296

Application Programming Interface ,
751

array, 585
array_declarator, 585
attributes , 568, 575, 588

first_is, 593
last_is, 592
length_is, 594
max_is, 590
min_is, 589, 590
size_is, 591

bounds, 586
conformant , 585
conformant and varying, 585
fixed, 585
open, 585
rules for, 595
varying, 585

array_attribute attribute, 575
array_declarator, 585
ASCII text strings

binary timestamps translated to,
708

asynchronous cancelability, 178

asynchronous signals, 190
at-most-once semantics, 272
attempt_rebind, 638
attempt_rebind_n, 638
attribute

code sets, 444
instance

access control, 846
defined, 843

schema
defined, 842

type
access control , 843
defined, 843

Attribute Configuration Language, 653
syntax, 653, 697

attributes
ACF, 654
array, 575
array_attribute, 575
code, 696
condition variable, 169
IDL, 548
ignore, 575
inherit scheduling, 168
mutex type, 168
object

creating, 165
definition of, 165
deleting, 165

out, 548
privilege, 802
scheduling policy, 166
scheduling priority, 167
stacksize, 168
thread, 166

audit, 919
APIs, 933

Index–2 DCE 1.2.2 Application Development Guide—Core Components

Index

adding audit capability
to distributed
applications, 933

adding event-specific
information, 936

closing an audit trail file,
942, 938

committing an audit
record, 937

dce_aud_close(), 943,
938

dce_aud_commit() , 937
dce_aud_discard(), 942
dce_aud_get_ev_info(),

942
dce_aud_get_header(),

941
dce_aud_next(), 940
dce_aud_open() , 934,

939
dce_aud_print(), 941
dce_aud_put_ev_info(),

937
dce_aud_start() , 935
dce_aud_start_with_

name(), 935
dce_aud_start_with_

server_binding()
, 935

dce_aud_start_with_
server_pac(), 935

dce_aud_start_with_
uuid(), 935

discarding an audit record,
942

initializing audit records,
935

opening an audit trail,
934

opening audit trail file for
reading, 939

reading audit records into
a buffer, 940

specifying amount of
header information,
936

transforming audit records
into text, 941

clients, 920
code point, 921
data type, 937
event, 921
event class, 924
event class number, 925
event name, 922
event number, 922

event-id, 922
format, 922
set-id, 922

record
criteria for selection, 940
predicates, 940
structure, 926

service, 919
components, 920
concepts, 920
features, 919

trail file, 927
life cycle of, 927
writing analysis and

examination tools,
939

authenticated RPC
access checking, 308
and DCE security, 305, 310
and RPC runtime, 305
authenticate, 296
authentication, 305

cross-cell, 306

DCE 1.2.2 Application Development Guide—Core Components Index–3

Index

authorization, 295, 296, 305
basic operations, 279
choosing a server principal name,

328
definition, 305
protection level, 305, 307
routines, 310
server principal name, 306, 311

authentication, 305, 306, 746, 759
commands, 765, 766
intercell, 795
mutual surrogates, 796
of applications that use GSSAPI,

793
protection level, 307
protocols, 764, 799
public key protocol, 767
server principal name, 306, 311
surrogates, 760
third-party, 775
user-to-user protocol, 791

Authentication Service, 760
authorization, 305, 308, 746, 799

certified, 310
DCE, 310
name-based, 309
options, 308
protocols, 799
with PACs, 310

authorization interface
authenticated RPC, 295

auto_handle attribute, 656, 659, 696
automatic binding, 659
avoiding

deadlocks, 198
nonreentrant software, 195
priority inversion, 196
race conditions, 197

B
backing store

closing, 145
creating a new, 145
deleting items from, 148
iterating through, 147
library, 139
locking, 148
opening an existing, 145
retrieving data from, 146
storing data into, 146
traversing the keys of, 147

backing store API
dce_db_close(), 145
dce_db_delete(), 148
dce_db_delete_by_name(), 148
dce_db_delete_by_uuid(), 148
dce_db_fetch(), 146
dce_db_fetch_by_name(), 146
dce_db_fetch_by_uuid(), 146
dce_db_inq_count(), 148
dce_db_iter_done(), 148
dce_db_iter_next(), 147
dce_db_iter_next_by_name(),

147
dce_db_iter_next_by_uuid(),

147
dce_db_iter_start(), 147
dce_db_lock(), 148
dce_db_open(), 145
dce_db_store(), 146
dce_db_store_by_name(), 146
dce_db_store_by_uuid(), 146
dce_db_unlock(), 148

backing store usage, 383
base class rpc_object_reference , 629
base type specifiers, 562
BIH, 708

Index–4 DCE 1.2.2 Application Development Guide—Core Components

Index

Binary Timestamps, 714
bind() by object name, 634
bind() by object UUID, 634
bind() and local objects, 411
bind() by binding handle, 398
bind() by name, 397
bind() by object binding handle, 635
bind() by object reference, 408, 635
bind() by UUID, 398
binding, 258

automatic, 659
context handle, 625
explicit, 661
handle, 261
implicit, 663
information, 261

binding attribute, 315
searches of, 332

binding by object binding handle, 398,
635

binding by object name, 397, 634
binding by object reference, 407, 635
binding by object UUID, 398, 634
binding_callout attribute, 656, 690, 696
BLISS compiler

generating reentrant code, 196
blocking system calls, 187
body, ACF, 657
boolean type, 571
Booleans, 560
boss/worker software model, 157
BOTH credential type

creating, 816
defined, 814

broadcast attribute, 565
broadcast attribute, 550, 566
broadcast semantics , 273
broadcasting, 565, 566
buffer decoding, 532
buffer-sizing routines, 436

buffering styles, 531
byte type, 571

C
C

compiler, 196
library interfaces, 755

C and C++ integration, 419
C Client for C++ Servers, 421
C++

generating from IDL, 628
optional parameters, 379

C++ and name conflicts, 376
C++ class via IDL interface, 364
C++ clients for C servers, 419
C++ DCE applications, 363
C++ delete operator, 390
C++ enhancement, 411
C++ features, 363
C++ new operator, 370, 387
C++ objects as parameters, 411
C++ output from IDL, 549
C++ overloading, 396
C++ reference operator, 366
C++ reference operator, &, 633
C++ scope operator, 389
C++ support in IDL, 628
call queue, 524
call thread, 297
calling

fork(), 187
UNIX services, 184

calls
registry database, 834
registry server, 832

DCE 1.2.2 Application Development Guide—Core Components Index–5

Index

cancel-timeout period, 301
canceled thread, 301
canceling a thread, 178
cancels

RPC
use of, 273, 301

CATCH statement, 202, 209, 210, 256
CATCH_ALL statement, 202, 209, 210
CDS, 396

and security namespace, 757
cell

and security, 761
name

RPC, 317
profile

RPC, 345
root

RPC, 318
RPC, 317

cell-relative name
RPC, 318

certificate of identity, 886, 890
character set, 424

compatibility evaluation, 429,
452

evaluation, 457
interoperability, 423
local, 428

characters, 560, 570
class hierarchies, 367
class hierarchy, 364
class libraries, 412
client, 654

and server components, 722
application thread

RPC, 297
authentication information, RPC,

296
binding handle

RPC, 268

binding information
RPC, 268

definition of, 228
exceptions, 665
memory, 609
memory management, 608

client proxy class, 630
client stub for servers, 376
client-local objects, 390
client-side password management API,

945
client_memory ACF attribute, 664
clients and distributed objects, 387
clients becoming servers, 479, 611
clients use server stub, 392
closing a backing store, 145
COBOL compiler

generating nonreentrant code,
196

code attribute, 656, 669, 696
code point, 921
code set, 425

array, 443
attribute, 444
compatibility evaluation, 429,

452
conversion

in RPC applications, 425
in RPC protocol, 425
method, 458
model, 459
operating system routines,

439
operating system routines

for, 431
stub routines for, 429,

436
stub support routines, 438

evaluation, 429, 457
exporting, 428, 444

Index–6 DCE 1.2.2 Application Development Guide—Core Components

Index

intermediate, 443, 458
interoperability, 423
ISO 10646, 443, 458
local, 428, 442, 451
network, 430
registry, 428
removing from the namespace,

444
supported, 428, 443
tags

ACF attributes, 434
operation parameters,

432
universal, 443, 458

combination software model, 158
comm_status attribute, 256, 479, 657,

660, 665, 696
commands

authentication , 765, 766, 782
idl, 654

communication failure, 256, 479
context rundown, 623
status attributes, 665

communications
protocols, 260
RPC protocol, 260

compatible
binding information

RPC, 263
programming language, 236

compilers
generating nonreentrant code,

196
generating reentrant code, 196

compiling
ACF, 654

complex types, 639
concurrency control

RPC, 302
condition variable, 172

attributes, 169
diagram of, 173
figure of, 174
signaling, 198

configuring a new server remotely, 30
conformance in dimensions other than

the first, 586
code example, 586, 587, 588

conformant array, 585
conformant and varying array, 585
connection-oriented RPC protocol, 260
connectionless RPC protocol, 260
constant declarations, 559
constant expressions, 559
constants

Booleans, 560
characters, 560
integers, 559, 560
nulls, 561
strings, 559, 561

constructed data types, 574
constructed type specifiers , 563
constructor, 630
constructors in C++, 372
ContactProvider

procedure, 725
remote procedure call, 722

context
login, 885

context handle, 606
resource recovery, 623

context handle, 619
and binding, 625
attribute, 619
creating new, 624
definition of, 486
usage rules, 625

context rundown procedure, 273, 623
context_handle attribute, 619

DCE 1.2.2 Application Development Guide—Core Components Index–7

Index

context_handle attribute, 550, 562, 565,
568, 620

conventions, 241, 242
conversion method, 458
conversion model, 459
Coordinated Universal Time, 708
creating

attributes object, 165
context, 624
files with jacket routines, 184
new backing store, 145
threads, 162

credentials
ACCEPT credential type, 814
and principal types, 813
BOTH credential type, 814
context initiators, 815
creating ACCEPT type

credentials, 816
creating BOTH type credentials,

816
creating credential handles, 816
creating INITIATE type

credentials, 816
default, 814
delegating, 817
gss_acquire_cred() routine, 816
GSSAPI, 813
INITIATE credential type, 814
portability of applications and,

814
registering principal names for,

816
types, 814
using defaults to accept a security

context, 815
using defaults to initiate a

security context, 815
cross-cell authentication, 306
cs_byte type, 435, 437

cs_char attribute, 434, 436, 657, 680,
696

cs_drtag attribute , 434, 658, 686, 696
cs_rtag attribute, 434, 658, 686, 696
cs_stag attribute, 434, 658, 686, 696
cs_tag_rtn attribute, 435, 436, 440, 656,

657, 688, 696
cstub attribute, 658, 696
customized handles, 618
cxx argument to -lang, 364
cxx_delegate, 656
cxx_delegate attribute, 417, 418, 696
cxx_lookup, 656
cxx_lookup attribute, 382, 383, 696
cxx_new attribute, 374, 693, 696
cxx_new attribute of ACF, 371
cxx_static attribute, 374, 376, 694, 696

D
data

encryption mechanisms, 764
thread-specific, 177

Data Encryption Standard, 764
data hiding, 412
database storage, 383
DCE

authorization protocol, 799
host services, 7
host daemon (dced), 8
Threads Exceptions

table of, 211
Threads signal handling, 191
XPG4 routines, 65

dce/utc.h header file, 716
dce_db_fetch_by_uuid(), 385
dce_db_open(), 385

Index–8 DCE 1.2.2 Application Development Guide—Core Components

Index

dcecp
rpcentry export, 380

dced services
configuring a new server

remotely, 30
dced services

binding to the services, 11
enabling and disabling, 36
endpoint mapper, 7, 10
entry lists for services, 13
entry lists for services, 18
host service data, 15
hostdata management, 7
key table management, 8, 38
remote control of servers, 29
remote host service data, 22
security validation, 8, 37
server management, 8
starting and stopping servers, 34

dced, DCE host daemon, 8
deadlock

avoiding, 198
debug messaging , 120
decode attribute, 656, 657, 678, 696
decrementing reference count, 390
default

authentication protocol, 752
authorization protocol, 799
pointer semantics, 598
profile, 324
profile element, 323

default credentials, 814
defining

epilogue actions, 207
delegation, 819

and GSSAPI credentials, 817
delegation for C++ objects, 417
deleting

attributes object, 165
condition variables, 199

items from a backing store, 148
threads, 164

derived interface, 631
DES, 764
destructor, 630
destructors in C++, 372
determining the identity of an encoding,

542
directional attributes, 569
directory pathname

RPC, 318
directory service

entries, 317
RPC server entries, 319

handle, 329
when to use, 268

disabling memory , 607
disabling services of a server, 36
distributed applications, 9
distributed objects, 363
distributed objects as parameters, 375
distributed-dynamic objects, 370
double type, 570
DTS

API routines, 737
relative time structures , 714
routines, 707
security dependencies, 756
synchronization algorithm, 734
time structures, 713, 714, 715,

716
dtsprovider files, 727
dynamic buffer encoding , 531
dynamic endpoint, 270
dynamic objects, 368
dynamically creating objects, 381

DCE 1.2.2 Application Development Guide—Core Components Index–9

Index

E
editor, ACL, 902
enable_allocate attribute, 657, 674, 696
enabling memory, 607
enabling services of a server, 36
encapsulated data, 367
encapsulated unions, 576
encapsulating RPCs, 629
encode attribute, 656, 657, 678, 696
encoding and decoding of data, 142
encryption mechanisms, 764
endpoint

attribute, 550, 554
map, 518
mapper service, 7, 10
register operation, 286, 350
role of within server address,

262
unregister operation, 286

endpoint map, 379
ENDTRY statement, 202, 209, 210, 256
entry point vectors in C++, 369
entry types, ACL, 802
enumeration, 580
environment variable

NSI, 331
epilogue actions, 207
error displays, 56
error_status_t type, 572, 669
errors, 256, 479, 657

ACL, 904
attributes, 657

evaluation routine, 457, 459
establishing, 452

event class, 924
event class number, 925
event points, 96
example program

prime number search, 215
exception codes, RPC exceptions, 480
exception-returning interface, 201, 215

invoking, 204
syntax for C, 202

exceptions, 479, 660
and definitions, table of, 211
attribute, 481, 550, 555
catching, 207
client, 256, 665
declaring and initializing, 205
defining a region of code to catch,

206
defining epilogue actions, 207
definition, 205
extern_exceptions attribute, 676
handler, 479
importing error status, 208
invoking the exception-returning

interface, 204
naming convention for, 209
operations on, 205
raising, 206, 256
rules for modular use of, 208
server, 256, 665

exceptions in C++, 369
execution semantics, 272
expiration age, 342
explicit binding, 661
explicit_handle attribute, 656, 661, 696
export operation, 278, 287
exporting code sets to the namespace,

428, 444
extended ACL entry type, 807
extended attribute

API, 841
extended naming, ACL, 905
extended privilege attribute

API, 819

Index–10 DCE 1.2.2 Application Development Guide—Core Components

Index

extern_exceptions attribute, 481, 656,
676, 696

F
failures, 479, 657, 660

attributes, 657
fault_status attribute, 256, 657, 665, 696
FIFO (First in, First out) scheduling,

166
file

extension, ACF, 654
IDL, 722
name, ACF, 654
reading/writing with jacket

routines, 184
filter, 925

subject identity, 926
FINALLY statement, 204, 209, 210
finding remote objects, 396
first_is attribute, 550, 593, 606
fixed array, 585
fixed buffer encoding, 531
float type, 570
floating-point numbers, 570
fork()

calling, 187
freeing memory , 606
freeing backing store memory, 146
freeing memory, 474, 674
full pointer, 600
fully bound binding handle, 263
function results, pointers, 605
functions generated by IDL , 633

G
general cancelability, 178
generating C++ files, 628
generating nonreentrant code, 196
Generic Security Service, 744
get_binding_handle() function , 639
global lock, 194, 195
Greenwich Mean Time (GMT), 708
group

RPC, 314
RPC attribute, 315, 333
RPC member, 322

GSSAPI, 744
about, 744
and delegation, 817
authentication and authorization,

746
authentication process, 793
context acceptor defined, 744
context initiator defined, 744
data integrity with, 763
Kerberos and, 746
per-message security, 763
protection levels, 763

H
handle, 567

ACL, 903
attribute, 550, 562, 606, 618
context, 619, 620
customized, 618

handle_t type, 572

DCE 1.2.2 Application Development Guide—Core Components Index–11

Index

handlers not provided with UNIX
signals, 191

header
ACF, 656

heap attribute , 657, 675, 696
host profile, 659
host service naming, 12
hostdata management service, 7
hyper type, 570

I
iconv routines, 431
ID map API, 917
idempotent attribute, 565
idempotent attribute, 550, 566
idempotent semantics, 272
identities

delegating, 819
IDL, 654

array, 585
conformant, 585
conformant and varying,

585
fixed, 585
open, 585
varying, 585

array attributes, 575
attributes, 548
basic data types, 569
boolean type, 571
byte type, 571
case sensitivity, 547
comments, 547
const declaration, 559
constant declarations, 559

constructed type specifiers, 563
constructed types, 574
customized handles, 618
data types, 548
declarations, 547
encoding services, 142
encoding services handles, 532
enumerations, 580
file, 722
grammar synopsis, 642
identifiers, 545
idl_macros, 563
import declarations, 550, 558
import statement, 400
interface definition body, 549
interface definition header, 549
interface definition structure,

548
international characters, 573
keywords, 545
lexical elements, 545
memory management, 474
named types, 561
operation declaration, 565
parameter declarations, 566
pipes, 581
predefined type specifiers, 564
punctuation characters, 546
special symbols, 544
static keyword, 372, 632
strings, 596
structures, 574
syntax notation, 544
Time-Provider process file, 726
type attributes, 562
types, 570
typography, 544
unions, 576
unsigned integer types, 570
user-defined exceptions, 481

Index–12 DCE 1.2.2 Application Development Guide—Core Components

Index

whitespace, 546
idl command, 654
IDL compiler

-lang cxx option, 364
-no_cxxmgr option, 368

IDL inheritance operator, 549
IDL support for C++ , 628
idl-generated class hierarchy, 629
idl-generated functions for C++, 633
idl_ macros, 563
idl_void_p_t type, 607
idl_void_p_t type, 607
ignore attribute, 575
ignore attribute , 550, 575
implicit binding, 663
implicit_handle attribute, 656, 663, 696
import declarations, 558
import operation

RPC, 278
import statement, 400
in attribute, 568
in attribute, 550, 569
inaccuracy, specifying ISO, 709
include in ACF, 377
include statement, 657
include statement in ACF, 374, 658
incremental decoding , 532
incremental encoding , 531
inherit an interface, 549
inherit scheduling attribute, 168
inheritance, 413
inheritance of interfaces , 631
inheritance operator, :, 400
initialization routines, one-time, 176
initializing object-oriented servers, 369
INITIATE credential type

creating, 816
defined, 814

input jacket routines, 184
instance

of an RPC server, 350, 521
distinguishing, 353
interchangeable instances,

319, 347
RPC UUID, 259

int type, 569
integers, 559, 560, 569, 570
interaction of attributes, 679
interface, 228

body, 657
C library, 755
checking if supported, 410
definitions, 240, 543, 548, 549

header, 549
exception-returning, 202
handle

RPC use of, 287
header, 656
interface, 228
password management facility,

755
registry database, 834
RPC identifier , 323
RPC specification, 284
RPC UUIDs, 238
security server, 751
security services and facilities,

751
UNIX security, 755
UUID, 240

RPC definition of, 238
RPC use of, 264

interface class, 367, 630
Interface Definition Language, 228, 654
interface inheritance, 400, 549, 631
intermediate code set, 443, 458
international characters, 425, 573

representing in .idl files, 432
International Organization for

Standardization , 709

DCE 1.2.2 Application Development Guide—Core Components Index–13

Index

International Time Bureau, 708
internationalized RPC, 423

ACF for, 434
application development steps

for, 431
client code, 451
evaluation routines, 457
execution model, 425
interface definition for, 432
server code, 442
setting locale in, 442
stub support routines, 429, 436

ISO format, 709
iterating through a backing store, 147

J
jacket routines, 184
join primitive, 176

K
KDC, 767
KDS, 760
Kerberos

available using GSSAPI, 746
Key Distribution Center, 767
key distribution service, 760
key management, 895
key management API, 895
key table management service, 8, 38

L
last_is attribute, 606
last_is attribute, 550, 592
leaf name, RPC, 318
length_is attribute, 606
length_is attribute, 550, 594
levels of protection , 762

authenticated RPC, 762
GSSAPI, 763

local application thread
RPC, 296

local attribute, 550, 557
local code set, 442
local type, 671
locale, 423, 451

setting, 442, 451
lock

global, 195
locking a backing store, 148
locking a mutex, 198
login context, 885, 886, 894

changing a groupset, 892
expiration, 890
importing and exporting, 891
inheritance, 889
validating, 887

logs, 56
long type, 570
lookup function for objects, 381
lookup operation

RPC, 278

M
major version number, 262, 264

Index–14 DCE 1.2.2 Application Development Guide—Core Components

Index

making backing store headers, 147
manager

RPC, 275
manager class, 367, 406
manager class for server, 631
manager class functions, 368
manager class header file, 367
manager implementation, 404
manager interface, ACL, 905
managing distributed objects, 368
managing several objects, 139
mapping string-to-UUID, 917
marshalling

RPC, 231
masks

ACL entry types, 806
max_is attribute, 550, 590
maybe attribute, 565
maybe attribute, 550, 567
maybe semantics, 273
memory

advanced management support,
608

allocating, 474, 606, 674
disabling, 607
enabling, 607
freeing, 474, 606, 674
heap attribute, 675
management, 474, 606

client, 608
server, 674
server threads, 478, 610
usage rules, 612

routines, 606
server threads, 478, 610
setting client, 608
setting for thread stack, 168
swapping memory, 609

memory management, 530
message

action attributes, 113
catalog, 56, 61, 78
filtering, 116
output routines, 64
prolog suppression, 113
retrieval routines, 65
routing, 105
severity, 103
table routines, 65
text format notation, 102

messaging
interface, 55
routines and internationalized

RPC , 424
methods, 369
min_is attribute, 550, 589
minor version number, 262, 264
models for multithreaded programming,

156
modular use of exceptions, 208
multiple interfaces, 400, 411
multiple managers, 404
multiple operations on a single IDL

encoding services handle, 542
multithreaded applications , 302
multithreaded programming, 197

introduction, 155
potential disadvantages, 159,

196, 198
software models, 156

mutex, 169
locking before signaling

condition variable, 198
type attribute, 168

mutual authentication surrogates, 796

DCE 1.2.2 Application Development Guide—Core Components Index–15

Index

N
name

domain, 834
name service and objects, 379
name-based authorization, 812
named objects, 368, 396

registering, 378
named types, 561
names, 241, 242

directory service entry, 326
server principal, 328

naming objects, 377
NDR, 262
nested remote procedure call, 513, 514
network

ACL interface, 907
address, 261
addressing information, 261
descriptor, 274
protocol, 260
type, 671

network code set, 430
Network Data Representation , 262
never_rebind, 638
new operator, 370
nil UUID

RPC, 264
no client stub exception, 377
no server stub exception, 392
nocode attribute, 656, 669, 696
nonencapsulated union, 579

code example, 579
nonreentrant code, 196
nonreentrant software, 159, 195, 196

using global lock to avoid, 195
nonterminating signals, 189
nonthreaded libraries, 194
NSI

attribute, 329
code sets, 444

attributes, 332
RPC, 315

binding attribute, 315
CDS ACL permissions, 289
directory service entries, 314

profile, 315
server entry, 314

directory service handle, 329
directory service names, 326
export operation, 287
group attribute, 315
import operation, 278
lookup operation, 278
object attribute, 315
operations, 278
potential binding, 286
profile attribute, 316
search operations , 321, 332
search path, 325
unexport operation, 279
usage models, 347, 352

null constants, 561

O
object

attribute, 315
managing several, 139
persistence of, 139
RPC, 275

use of, 264
UUID, 259

object creator function, 387, 693
object creator operation, 402
object hierarchies, 400

Index–16 DCE 1.2.2 Application Development Guide—Core Components

Index

object location transparency, 391
object lookup function, 381, 382, 696
object name in name service, 379
object not found exception, 381
object reference, 389, 630, 633
object references

local and remote, 396
object security, 636
object table, 379, 381
object UUID, 379
object-oriented servers

initializing, 369
objects

automatic rebinding, 637
creating dynamically, 381
delegation, 417
developing distributed, 363
library objects as parameters,

411
local and remote, 391
multiple interfaces, 407
naming, 377
persistent, 381
registering, 638
registering named, 378
representation, 414
swapping interfaces, 407

one-time initialization routines, 176
opaque pointer, 619
open array, 585
opening an existing backing store, 145
opening files with jacket routines, 184
operation

attributes, 566
declaration, 565, 567

operations, 565, 566, 567
NSI, 278
on exceptions, 205

optional parameters, 379
out attribute, 568

out attribute, 550, 569
output jacket routines, 184
overloaded functions , 633
overloaded operation, 396

P
PAC, 310
parameters, 566, 567, 568, 603
parameters and remote objects, 375
parent directory, 318
partially bound binding handle, 263
PASCAL compiler

generating reentrant code, 196
password management, 943

facility
interfaces, 755

network interface, 947
password management API

client side, 945
rsec_pwd_mgmt_gen_pwd(),

947
rsec_pwd_mgmt_str_chk(), 949
sec_pwd_mgmt_free_handle(),

945
sec_pwd_mgmt_gen_pwd(), 945
sec_pwd_mgmt_get_val_type(),

945
sec_pwd_mgmt_setup() , 945
sec_rgy_acct_passwd(), 945

path
for NSI searches, 325

PCS, 424
per-message security, 763
persistent object storage, 383
persistent objects, 381

DCE 1.2.2 Application Development Guide—Core Components Index–17

Index

pickling of data, 142
pipelining software model, 158
pipes, 581

out, 511
pointer levels, 603
pointer_default attribute, 550, 556, 598,

605
pointers, 597, 601, 620

array attributes on, 604
in function results, 605
opaque, 619

pointers to abstract classes, 389
polymorphism, 413
port, 554
Portable Character Set (PCS), 424
POSIX

sigaction service, 192
sigwait service, 192

potential binding
RPC, 286

preauthentication, 886
predefined type specifiers, 564
prime number search example, 215
principal

definition of, 760
priority

inversion, 196
of scheduling routines, 180

private data, 367
private key storage server (PKSS), 768
privilege

attributes, 802
privilege attribute certificate, 310
privilege service, 760
privilege ticket-granting ticket, 783
procedure declaration, 228
processes

Time-Provider, 735
profile, 315, 323, 325, 345

attribute, 316, 333

program responses, 56
programming with threads, 183
prompts, 56
protection levels, 305, 307, 762

authenticated RPC, 762
GSSAPI, 763

protocol
authentication and authorization,

746
DCE Authorization, 746
DCE authorization, 799
family, 554
for RPC communications, 260
name-based authorization, 812
sequence, 261

protocols
authentication, 764
authentication and authorization,

744
shared-secret authentication, 761
third-party authentication, 775
user-to-user authentication, 791

proxy, 375
proxy class, 367
proxy class for client, 630
PTGT, 782
pthread functions, 163, 195
ptr attribute, 575
ptr attribute, 550, 562, 577, 598, 600
public interface, 367
public key protocol, 767
public profile, 345

Q
query site, 831

Index–18 DCE 1.2.2 Application Development Guide—Core Components

Index

R
race conditions, 197
RAISE statement, 202
raising exceptions, 206
reading/writing files with jacket routines,

184
realm, 761
reentrant code, 159, 196
ref attribute, 562, 568, 575
ref attribute, 550, 598, 633
reference operator, & , 633
reference count decrement, 390
reference counting, 372
reference operator, &, 366
reference pointer, 598
reflect_deletions attribute, 550, 567
register_named_object(), 378, 379, 386,

397, 638
registering code sets in the namespace,

428
registering named objects, 378
registry, 831, 833, 837

database, 760
database accounts, 836
database calls and interfaces,

834
extending, 842
server, 832
service, 305, 760

relative time, 711, 712
remote

control of servers, 29
management

of endpoints, 9
of objects, 9
of servers, 9
of services, 9

serviceability interface, 128

remote and local object references, 396
remote and local objects, 391
remote objects as parameters, 375
remote procedure call, 228
remote-dynamic objects, 387
represent_as attribute, 414, 657, 671,

696
representation of C++ objects, 414
request buffer, 523
RERAISE statement, 202
resource model, 352
restrictions on handle use , 533
retrieving backing store headers, 147
retrieving data from a backing store,

146
routines

ACF, 672
context rundown, 623
error, 479
jacket, 184
RPC, 606, 607, 608, 609, 674

RPC
authenticated, 744
interface, 237

handle, 287
identifier, 323
specification, 284
UUID, 264
version numbers, 264

internationalized, 423
object, 264, 275
operations, 286
parts of application, 230
profile, 323, 345

definition of, 315
explanation of, 325

profile element, 323
protocol, 260

sequence, 261
version numbers , 262

DCE 1.2.2 Application Development Guide—Core Components Index–19

Index

public profile, 345
resource model, 352
runtime, 233

library, 723
routines, 286, 317

search path, 325
server instances, 353
thread, 298

RPC encapsulation, 629
RPC base class, 367
RPC_DEFAULT_ENTRY, 398, 635,

659
rpc_ep_register_no_replace(3rpc), 379
rpc_mgmt_set_server_stack_size()

routine, 601
rpc_ns_binding_export(), 380
rpc_object_reference base class, 629
rpc_x_no_client_stub exception, 377
rpc_x_no_server_stub exception, 392
rpc_x_object_not_found exception,

381, 386
RR (Round Robin) scheduling, 166
rundown, 623
running routines with fork(), 185
running Time-Provider process, 735
runtime, 620, 659

RPC library, 723

S
sams utility

and internationalized RPC, 424
sams utility for message catalog

generation, 56
sams utility for message catalog

generation, 78

saved server state, 619
scheduling, 167, 168, 180

policy attribute, 166
threads, 179

Schema, 842, 843
scope operator, ::, 389
search

operations, 321, 330, 332
path, 325

secure() function, 636
security

commands used in authentication
, 765, 766, 782

contexts
and delegation, 817

DTS dependencies, 756
for peer-to-peer applications,

744
risks, 745
server, 750

and cells, 761
interfaces, 751

service
namespaces, 757
RPC principal names,

328
services and authenticated RPC,

746
services and GSSAPI, 746
UNIX versus DCE, 745
validation service, 37
validation service, 8

security for objects, 636
sending and receiving messages on

sockets, 184
server, 228, 654

application thread, 297
binding handle, 262
binding information, 262
controlling remotely, 29

Index–20 DCE 1.2.2 Application Development Guide—Core Components

Index

distinguishing RPC instances,
350, 353

entry, 314
exceptions, 665
failure, 479
initialization code, 233
instance, 319
interchangeable instances, 347,

521
management service, 8
memory management, 674
messages , 77
state, 619
threads, 478, 610

server manager class , 631
server registration in C++, 369
server stub in clients, 392
servers use client stub, 376
service

model, 347
RPC, 239

serviceability
and the __FILE__ macro, 114
event points, 96
interface, 55

remote, 128
interface logs, 111

serviceability API
DCE_SVC_DEFINE

_HANDLE() , 97
dce_svc_printf(), 99
dce_svc_register(), 98
dce_svc_set_progname(), 98
dce_svc_unregister(), 98

services
authentication, 760
key distribution , 760
privilege, 760
registry, 760
ticket-granting, 760

SetRebind() function, 637
setting

client memory , 608
shared-secret authentication protocol,

761
short type, 570
signal handlers, 191
signals, 189
sigwait service, 192
size_is attribute, 550, 591
skeletal interface definitions, 240
small type, 570
spawning server threads, 478, 610
sstub attribute, 371, 374, 377, 382, 658,

696
stacksize attribute, 168
starting

threads, 162
starting and stopping servers, 34
state transitions, threads, 162
static function renaming, 392
static function specification, 694
static keyword, 565, 632
static keyword in IDL, 372
static member functions, 372, 390
status, 660

attributes, 657, 665
codes, 332

status codes, 525
status codes, 342
storing data into a backing store, 146
string

attribute, 550, 562, 565, 568,
575, 577, 596

bindings, 266, 268, 293
string-to-UUID mapping, 917
strings, 559, 561, 596
struct type, 574
structure member attributes , 574
stub, 230

DCE 1.2.2 Application Development Guide—Core Components Index–21

Index

stub support routines
for internationalized RPC , 429

supported code sets
establishing, 443
exporting to the namespace, 444

surrogates
authentication, 760
mutual authentication, 796

swapping client memory, 609
switch_is attribute, 568, 575
synchronization methods, 176
synchronization objects, 172, 198

mutex, 169
race conditions, 197

synchronous programming techniques,
193

synchronous signals, 190
system exceptions, 481
system profile, 346

T
tag-setting routine, 440

ACF attribute, 435
TDF, 709
terminating

threads, 163, 191
terminating signals, 189
TGS, 760
TGT, 765, 766
third-party authentication, 775
thread, 296

attributes, 166
avoiding nonreentrant routines,

159
canceling, 178

creating, 162
definition, 155
deleting, 164
example, 215
exception-returning interface,

201
exceptions and definitions, table

of, 211
memory management for, 478,

610
multithreaded programming, 159
priorities, 180
reentrant, 195
scheduling

priority attribute, 167
starting, 162
state transitions, 162
states, 162
terminating, 163
waiting for another to terminate,

163
thread-specific data, 177, 195, 196
thread-specific storage, 196
threads

scheduling, 166, 179
ticket-granting service, 760
ticket-granting ticket, 765, 766, 886
time

relative, 711
time differential factor, 709
time representation, 708
time structures, 707
Time-Provider

algorithm, 733
interface, 721
process, 735

time.h header file, 715
timeslice, 167
tm time structures, 715
TP stub, 723

Index–22 DCE 1.2.2 Application Development Guide—Core Components

Index

TPI, 721
TPI Control Flow, 722
trail file, 927
transfer syntax, 262
transmit_as attribute, 562
transmit_as attribute, 550, 639
transmit_as idl attribute, 601
transport errors and exceptions, 256
transport protocol, 260
traversing the keys of a backing store,

147
TRY statement, 202, 209, 210, 256
type

declarations, 561
declarators, 564
of a manager EPV, 285
specifiers, 562, 563, 564, 565,

568
UUID, 259, 282, 285

typedef declaration, 561
types, 639

IDL, 561, 618
of signals, 189

U
undefining jackets, 186
unexport operation, 279
union

nonencapsulated, 579
union type, 576
unions, 576
unique attribute, 575
unique attribute, 562, 598
unique pointers, 601

example, 602

universal code set, 443, 458
universal unique identifier, 238
UNIX

security interfaces, 755
services, 184
signals, 189

installing signal handlers
for, 191

UNIX signals
table of, 191

unmarshalling
RPC, 232

unsigned integer types , 570
unsigned32 type, 669
update site, 831
user-to-user authentication, 791
using a thread attributes object, 166
using jacketed system calls, 186
using signals, 189
using synchronization objects, 197
UTC, 708, 721
uuid attribute, 550, 552
UUIDs, 259

definition of, 238

V
varying and conformant array, 585
varying array, 585
version attribute, 550, 553
version numbers, 262, 264
void type, 571

DCE 1.2.2 Application Development Guide—Core Components Index–23

Index

W
wait_on_rebind, 638
waiting

for a thread to terminate, 163
warnings, 56
wchar_t type, 437
well-known endpoint, 270
work crew software model, 157

work queue variation of boss/worker
model, 157

X
xattrschema object, 843

Index–24 DCE 1.2.2 Application Development Guide—Core Components

