
X/Open Technical Study

Desktop Internationalisation

X/Open Company Ltd.

 December 1995, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open Technical Study

Desktop Internationalisation

X/Open Document Number: E501

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.org

ii X/Open Technical Study (1995)

Contents

Chapter 1 Internationalisation.. 1
 1.1 Introduction ... 1
 1.2 Character Sets and Encodings.. 2
 1.3 The C Programming Language.. 5
 1.4 Internationalisation Support in POSIX .. 6
 1.5 Internationalisation Support in the X/Open CAE............................... 7
 1.5.1 XPG4 Facilities.. 7
 1.6 Current Work... 8
 1.6.1 Distributed Internationalisation Requirements 8
 1.6.2 Definition and Registration of Locales .. 8
 1.6.3 Complex Text Languages... 9
 1.6.4 Use of the UNICODE standard/ISO/IEC10646 9
 1.6.5 Testing of Internationalised Components .. 9
 1.6.6 Distributed Internationalisation Framework..................................... 9

Chapter 2 The X/Open Common Desktop Environment...................... 11
 2.1 Introduction ... 11
 2.2 Elements of the XCDE.. 11
 2.3 Internationalisation .. 12

Chapter 3 X Specifications ... 15
 3.1 X Window System Protocol .. 15
 3.1.1 Description.. 15
 3.1.2 Internationalisation Issues ... 15
 3.1.2.1 Character Representations.. 15
 3.1.2.2 Keyboard Input ... 15
 3.1.2.3 Defined KEYSYM Alphabets.. 15
 3.1.2.4 ErrorStrings ... 16
 3.1.2.5 String Identifiers.. 16
 3.1.2.6 Text Drawing ... 16
 3.2 Xlib - C Language Binding.. 17
 3.2.1 Description.. 17
 3.2.2 Internationalisation Features... 17
 3.2.3 Internationalisation Issues ... 17
 3.2.3.1 String Identifiers.. 17
 3.2.3.2 Font Attributes .. 18
 3.2.3.3 Text Directionality .. 18
 3.2.3.4 ErrorStrings ... 18
 3.2.3.5 Keyboard Input ... 18
 3.2.3.6 Simplified Keyboard Event Functions.. 18
 3.2.3.7 String Properties.. 18
 3.2.3.8 Command Strings... 19

Desktop Internationalisation iii

Contents

 3.2.3.9 Resource Files .. 19
 3.2.3.10 Cut Buffers.. 19
 3.3 X Toolkit Intrinsics.. 20
 3.3.1 Description.. 20
 3.3.2 Internationalisation Features... 20
 3.3.3 Internationalisation Issues ... 20
 3.3.3.1 String Identifiers.. 20
 3.3.3.2 Default Font Resource.. 20
 3.3.3.3 ErrorStrings ... 20
 3.3.3.4 Translation Table Syntax ... 21
 3.4 File Formats and Application Conventions .. 22
 3.4.1 Introduction.. 22
 3.4.2 Inter-Client Communications Conventions Manual (ICCCM) 22
 3.4.2.1 Description... 22
 3.4.2.2 Internationalisation Issues .. 22
 3.4.3 X Logical Font Description (XLFD).. 23
 3.4.3.1 Description... 23
 3.4.3.2 Internationalisation Issues .. 23
 3.4.4 Compound Text ... 24
 3.4.4.1 Description... 24
 3.4.4.2 Internationalisation Features.. 24
 3.4.4.3 Internationalisation Issues .. 24
 3.4.5 Bitmap Distribution Format (BDF)... 25
 3.4.5.1 Description... 25
 3.4.5.2 Internationalisation Issues .. 25

Chapter 4 XCDE Specifications .. 27
 4.1 Motif Toolkit API .. 27
 4.1.1 Description.. 27
 4.1.2 Internationalisation Features... 27
 4.1.3 Internationalisation Issues ... 27
 4.1.3.1 String Identifiers.. 27
 4.1.3.2 Argument Lists.. 28
 4.1.3.3 Accelerator Descriptions ... 28
 4.1.3.4 Uil String Formats... 28
 4.1.3.5 Scale Widget Number Formats.. 28
 4.1.3.6 String Manipulation ... 28
 4.1.3.7 Text Directionality .. 28
 4.1.3.8 Text Widget Values... 28
 4.2 XCDE Definitions and Infrastructure ... 29
 4.2.1 Introduction.. 29
 4.2.2 XCDE Data Format Naming.. 29
 4.2.2.1 Description... 29
 4.2.2.2 Internationalisation Issues .. 29
 4.2.3 X Window System and Motif .. 29
 4.2.3.1 Description... 29
 4.2.3.2 Internationalisation Implications .. 29
 4.2.4 Miscellaneous Desktop Services... 30

iv X/Open Technical Study (1995)

Contents

 4.2.4.1 Description... 30
 4.2.4.2 Internationalisation Issues .. 30
 4.2.5 Message Services.. 30
 4.2.5.1 Description... 30
 4.2.5.2 Internationalisation Features.. 30
 4.2.5.3 Internationalisation Issues .. 30
 4.2.6 Drag-and-drop.. 32
 4.2.6.1 Description... 32
 4.2.6.2 Internationalisation Issues .. 32
 4.2.7 Data Typing... 32
 4.2.7.1 Description... 32
 4.2.7.2 Internationalisation Features.. 32
 4.2.7.3 Internationalisation Issues .. 33
 4.2.8 Execution Management.. 33
 4.2.8.1 Description... 33
 4.2.8.2 Internationalisation Features.. 33
 4.2.8.3 Internationalisation Issues .. 34
 4.3 XCDE Services and Applications .. 35
 4.3.1 Introduction.. 35
 4.3.2 Window Management Services .. 35
 4.3.3 Workspace Management Services.. 35
 4.3.3.1 Description... 35
 4.3.3.2 Internationalisation Features.. 35
 4.3.3.3 Internationalisation Issues .. 35
 4.3.4 Session Management Services .. 36
 4.3.4.1 Description... 36
 4.3.4.2 Internationalisation Features.. 36
 4.3.4.3 Internationalisation issues .. 36
 4.3.5 Help Services .. 36
 4.3.5.1 Description... 36
 4.3.5.2 Internationalisation Features.. 36
 4.3.5.3 Internationalisation Issues .. 36
 4.3.6 Calendar and Appointment Services... 37
 4.3.7 Mail Services ... 37
 4.3.7.1 Description... 37
 4.3.7.2 Internationalisation Features.. 37
 4.3.7.3 Internationalisation Issues .. 37
 4.3.8 File Management Services ... 38
 4.3.8.1 Description... 38
 4.3.8.2 Internationalisation Features.. 38
 4.3.9 Front Panel Services .. 38
 4.3.9.1 Description... 38
 4.3.9.2 Internationalisation Features.. 38
 4.3.9.3 Internationalisation Issues .. 38
 4.3.10 Text Editing Services ... 38
 4.3.10.1 Description... 38
 4.3.10.2 Internationalisation Features.. 39
 4.3.10.3 Internationalisation Issues .. 39

Desktop Internationalisation v

Contents

 4.3.11 Icon Editing Services ... 40
 4.3.11.1 Description... 40
 4.3.11.2 Internationalisation Features.. 40
 4.3.12 GUI Scripting Services .. 40
 4.3.12.1 Description... 40
 4.3.12.2 Internationalisation Issues .. 40
 4.3.13 Terminal Emulation Services... 40
 4.3.13.1 Description... 40
 4.3.13.2 Internationalisation Features.. 41
 4.3.13.3 Internationalisation Issues .. 41
 4.3.14 Style Management Services ... 41
 4.3.14.1 Description... 41
 4.3.14.2 Internationalisation Features.. 41
 4.3.15 Application Building Services... 41
 4.3.15.1 Description... 41
 4.3.15.2 Internationalisation Features.. 42
 4.3.15.3 Internationalisation Issues .. 42
 4.3.16 Application Integration Services .. 42
 4.3.16.1 Description... 42
 4.3.16.2 Internationalisation Features.. 42
 4.3.17 Action Creation Services .. 43
 4.3.17.1 Description... 43
 4.3.17.2 Internationalisation Features.. 43
 4.3.17.3 Internationalisation Issues .. 43
 4.3.18 Print Job Services ... 43
 4.3.18.1 Description... 43
 4.3.18.2 Internationalisation Features.. 43
 4.3.19 Calculator Services .. 43
 4.3.19.1 Description... 43
 4.3.19.2 Internationalisation Features.. 44
 4.3.19.3 Internationalisation Issues .. 44
 4.3.20 Application Conventions ... 44
 4.3.20.1 Description... 44
 4.3.20.2 Internationalisation Features.. 44
 4.3.21 Application Style Checklist ... 44
 4.3.21.1 Description... 44
 4.3.21.2 Internationalisation Features.. 44
 4.3.21.3 Internationalisation Issues .. 44
 4.4 Calendaring and Scheduling API.. 46
 4.4.1 Description.. 46
 4.4.2 Internationalisation Features... 46
 4.4.3 Internationalisation Issues ... 46
 4.4.3.1 Locale Conflicts ... 46
 4.4.3.2 Date, Time and Number Formats.. 47
 4.4.3.3 Calendar Archive Names and Values... 47
 4.4.3.4 String Manipulation ... 47
 4.4.3.5 Encoding of csa_logon() Arguments.. 47
 4.4.3.6 Rule Syntax .. 48

vi X/Open Technical Study (1995)

Contents

Chapter 5 Summary and Recommendations .. 49
 5.1 Introduction ... 49
 5.2 Character Representations.. 49
 5.3 Font Attributes .. 49
 5.4 Text Directionality .. 50
 5.5 Pasted Segment Directionality... 50
 5.6 Keyboard Input ... 50
 5.7 Defined KEYSYM Alphabets.. 50
 5.8 Simplified Keyboard Event Functions.. 51
 5.9 String Properties.. 51
 5.10 Error Strings ... 51
 5.11 Null-terminated Strings... 51
 5.12 String Identifiers.. 52
 5.13 Configuration File Syntax ... 53
 5.14 Font Representations.. 53
 5.15 Uil String Formats... 53
 5.16 Command Strings... 53
 5.17 Text Drawing ... 53
 5.18 String Manipulation ... 54
 5.19 Cut Buffers.. 54
 5.20 Drag-and-drop Text.. 54
 5.21 Character Set Registry ... 54
 5.22 Scale Widget Number Formats.. 54
 5.23 Text Widget Values... 55
 5.24 Locale Conflicts ... 55
 5.25 Boolean Strings.. 55
 5.26 Locale Dependence of Descriptions and Labels................................... 56
 5.27 Description of dtksh... 56
 5.28 Terminal Emulation Issues ... 56
 5.29 Source Code of dtcodegen .. 56
 5.30 Object Palette Limitations ... 57
 5.31 Building Help Text.. 57
 5.32 Help Information and Actions ... 57
 5.33 Calculator Internationalisation.. 57
 5.34 Mail Message Header Fields... 57
 5.35 Mail Aliases.. 58
 5.36 Date, Time and Number Formats.. 58
 5.37 Encoding of csa_logon() Arguments.. 58

 Index... 59

Desktop Internationalisation vii

Contents

viii X/Open Technical Study (1995)

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

Desktop Internationalisation ix

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

x X/Open Technical Study (1995)

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done in any one of the following ways:

• anonymous ftp to ftp.xopen.org

• ftpmail (see below)

• reference to the Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information using ftpmail, send a message to ftpmail@xopen.org with the
following four lines in the body of the message:

open
cd pub/Corrigenda
get index
quit

This will return the index of publications for which Corrigenda exist. Use the same email
address to request a copy of the full corrigendum information following the email instructions.

This Document

This document is a Technical Study of internationalisation aspects of X/Open Common Desktop
Environment (XCDE) specifications.

Computer systems and applications are increasingly expected to work in an international
environment in which different languages, character sets and cultural conventions are in use.
This poses a number of requirements. The growth of distributed computing, with systems and
applications interworking across networks, is making these requirements more urgent. At the
same time, they affect the networking technology on which distributed systems are based; if it
does not take them into account, the ability of a distributed system to work in different language
and cultural environments is limited.

This Technical Study identifies the implications of internationalisation requirements on the
specifications of the X/Open Common Desktop Environment (XCDE).

The X/Open XCDE specifications considered are the following (full details are given in the list of
references):

• X Window System Protocol

• Xlib

• X Toolkit Intrinsics

• Motif Toolkit API

• File Formats and Application Conventions

Desktop Internationalisation xi

Preface

• CDE Definitions and Infrastructure

• CDE Services and Applications

• Calendaring and Scheduling API.

This document is structured as follows:

• Chapter 1 on page 1 discusses internationalisation in more detail, and in particular describes
the provisions that are made for it in international standards and in the X/Open Common
Applications Environment.

• Chapter 2 on page 11 describes the XCDE as a whole.

• Chapter 3 on page 15 and Chapter 4 on page 27 discuss the individual specifications listed
above and the internationalisation issues associated with them.

• Chapter 5 on page 49 contains conclusions and recommendations.

xii X/Open Technical Study (1995)

Trade Marks

UNIX is a registered trade mark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Limited.

X/Open acknowledges that there may be other products that might be covered by trade mark
protection and advises the reader to verify them independently.

Desktop Internationalisation xiii

Referenced Documents

The following X/Open documents are referenced in this Technical Study:

Distributed Internationalisation Framework
X/Open Snapshot, January 1995, Distributed Internationalisation Framework (ISBN:
1-85912-079-2, S503).

Distributed Internationalisation Services
X/Open Snapshot, December 1994, Distributed Internationalisation Services, Version 2
(ISBN: 1-85912-033-4, S308).

Internationalisation Guide
X/Open Guide, July 1993, Internationalisation Guide, Version 2 (ISBN: 1-859120-02-4, G304).

Layout Services
X/Open Snapshot, December 1994, Portable Layout Services: Context-dependent and
Directional Text (ISBN: 1-85912-075-X, S425).

Locale Registry
X/Open Electronic Publication, October 1993, Locale Registry Procedures (ISBN: 1-872630-
94-4, G303).

Migration Guide
X/Open Guide, July 1992, XPG3-XPG4 Base Migration Guide (ISBN: 1-872630-49-9, G204).

Motif Toolkit API
X/Open CAE Specification, April 1995, Motif Toolkit API (ISBN: 1-85912-024-5, C320).

UCS
X/Open Technical Study, February 1994, Universal Multiple-Octet Coded Character Set
Coexistence and Migration (ISBN: 1-85912-031-8, E401).

UTF-8
X/Open CAE Specification, April 1995, File System Safe UCS Transformation Format (UTF-
8) (ISBN: 1-85912-082-2, C501).

X11R5 File Formats
X/Open CAE Specification, May 1995, Window Management (X11R5): File Formats and
Applications Conventions (ISBN: 1-85912-090-3, C510).

This comprises:

— Inter-Client Communications Conventions Manual (ICCCM)

— X Logical Font Description (XLFD)

— Compound Text

— Bitmap Distribution Format (BDF).

X11R5 X Protocol
X/Open CAE Specification, May 1995, Window Management (X11R5): X Window System
Protocol (ISBN: 1-85912-087-3, C507).

X11R5 X Toolkit
X/Open CAE Specification, May 1995, Window Management (X11R5): X Toolkit Intrinsics
(ISBN: 1-85912-089-X, C509).

xiv X/Open Technical Study (1995)

Referenced Documents

X11R5 Xlib
X/Open CAE Specification, May 1995, Window Management (X11R5): X Lib - C Language
Binding (ISBN: 1-85912-088-1, C508).

XCDE: Definitions and Infrastructure
X/Open CAE Specification, April 1995, X/Open Common Desktop Environment (XCDE):
Definitions and Infrastructure (ISBN: 1-85912-070-9, C324).

XCDE: Services and Applications
X/Open CAE Specification, April 1995, X/Open Common Desktop Environment (XCDE):
Services and Applications (ISBN: 1-85912-074-1, C323).

XCS
X/Open CAE Specification, April 1995, Calendaring and Scheduling API (XCS) (ISBN:
1-85912-076-8, C321).

XCU, Issue 4
X/Open CAE Specification, July 1992, Commands and Utilities, Issue 4 (ISBN:
1-872630-48-0, C203).

XPG4, Version 2
The X/Open Branding Programme, How to Brand — What to Buy, February 1995
(ISBN: 1-85912-084-9, X951).

XSH, Issue 4
X/Open CAE Specification, July 1992, System Interfaces and Headers, Issue 4
(ISBN: 1-872630-47-2, C202).

The following non-X/Open documents are referenced in this Technical Study:

ANSI C
American National Standard for Information Systems: Standard X3.159-1989, Programming
Language C.

ANSI X3.64-1979 C
ANSI standard X3.64-1979: Additional Controls for Use with American Standard Code for
Information Interchange.

CCITT T.100
CCITT Recommendation T.100: 1984, International Information Exchange for Interactive
Videotex.

CCITT T.61
CCITT Recommendation T.61: 1984, Character Repertoire and Coded Character Sets for the
International Teletex Service, Geneva, 1980, amended at Malaga-Torremolinos, 1984.

ISO 2022
ISO 2022: 1986, Information Processing — ISO 7-bit and 8-bit Coded Character Sets —
Coded Extension Techniques.

ISO 2375
ISO 2375: 1985 Data Processing — Procedure for Registration of Escape Sequences.

ISO 3166
ISO 3166: 1988, Codes for the Representation of Names of Countries, Bilingual edition.

ISO 639
ISO 639: 1988, Codes for the Representation of Names of Languages, Bilingual edition.

Desktop Internationalisation xv

Referenced Documents

ISO 8859-1
ISO 8859-1: 1987, Information Processing — 8-bit Single-byte Coded Graphic Character Sets
— Part 1: Latin Alphabet No. 1.

ISO C
ISO/IEC 9899: 1990, Programming Languages — C (technically identical to ANSI standard
X3.159-1989).

ISO/IEC 10646
ISO/IEC 10646: 1993, Information Technology — Universal Multiple-Octet Coded Character
Set (UCS).

ISO/IEC 6429
ISO/IEC 6429: 1992, Information Technology — Control Functions for Coded Character
Sets.

ISO/IEC 646
ISO/IEC 646: 1991, Information Processing — ISO 7-bit Coded Character Set for Information
Interchange.

MSE
ISO/IEC 9899: 1990/Amendment 1: 1994, Multibyte Support Extensions (MSE) for ISO C.

POSIX.1
IEEE Std 1003.1-1988, Standard for Information Technology — Portable Operating System
Interface (POSIX) — Part 1: System Application Program Interface (API) [C Language].

POSIX.2
IEEE Std 1003.2-1992, Standard for Information Technology — Portable Operating System
Interface (POSIX) — Part 2: Shell and Utilities.

RFC 822
Internet RFC 822 — Standard for the Format of ARPA Internet Text Messages, the Internet
Architecture Board, 1982.

RFCs 1521 and 1522
Internet RFCs 1521 and 1522 — MIME (Multipurpose Internet Mail Extensions) — Parts 1
and 2, the Internet Architecture Board, 1993.

UNICODE Standard
The Unicode Consortium, The Unicode Standard, Worldwide Character Encoding Version
1.0, Volume One, Addison-Wesley, 1991.

xvi X/Open Technical Study (1995)

Chapter 1

Internationalisation

1.1 Introduction
Computer systems must meet the needs of users who speak different languages, conform to
different cultural conventions and follow different business practices. This means that the
facilities of the X/Open Common Applications Environment (CAE) must not impose constraints
on the users’ languages, cultural conventions or business practices, and must include facilities
that support the development of applications that can be used in multiple language, cultural and
business environments.

Understanding of the implications of this has evolved as the X/Open CAE has developed. It is
evolving still.

The most obvious area in which constraints can be imposed, and the area that has received the
most attention, is that of character sets and their encodings. But programs have often imposed
other constraints by making assumptions about:

• directionality (whether text is written from right to left or from left to right)

• collation rules used in comparing, ordering and sorting character strings

• rules for character classification into categories such as alphabetic, numeric, punctuation, and
so on

• shift rules for character case conversion

• the way in which numbers are written (for example, the use of a comma (,) or period (.) as
decimal separator)

• the value and positioning of the currency symbol

• the way in which dates are written (for example, dd/mm/yy or mm/dd/yy, or using Asian
formats with dissimilar date component separators)

• the way in which times are written (for example, 10:24 PM, 22.24, 10h24)

• the use of upper and lower-case characters

• the language of the user interface (for example, error messages in a particular natural
language have often been hard-coded into a program).

This chapter summarises the provisions that have been made in international standards and in
the X/Open CAE for addressing internationalisation issues. The international standards
concerned fall into two categories. The first is that of standards for character sets and encodings
used in data communication. The second is that of standards for information processing;
specifically, the C programming language and the POSIX operating system interface. X/Open
publications have always taken account of developments in international standards, and have
often anticipated and influenced them. This chapter therefore concludes with an indication of
the current direction of internationalisation work within X/Open.

Desktop Internationalisation 1

Character Sets and Encodings Internationalisation

1.2 Character Sets and Encodings
A wide variety of character sets is used to represent the languages of the world. This report is
written in the English language, represented using the characters of the basic Latin alphabet.
Other Western European languages are represented using character sets that include those of the
basic Latin alphabet plus a few additional characters (different additional characters are used by
each language). Other languages (such as Greek and Russian) use character sets that are
alphabetic but are not variants of the Latin alphabet. Yet other languages, such as Japanese and
Chinese, use ideographic scripts that are not alphabetic. Mathematical and scientific text, in any
language, uses characters borrowed from several different alphabets.

When held in computer storage, and while being transmitted between computers, characters are
encoded as bit patterns. The bit patterns that constitute the encodings of a character set are
called a codeset.

A number of encoding schemes used to represent characters being transmitted between
computers have been standardised by national standards bodies, the CCITT and ISO. In each of
these standards, a character is typically encoded as one or more octets, where an octet is a
sequence of 8 bits, each of which can take the value 0 or 1.

Early communication protocols were designed for communication over low bandwidth lines
and with relatively ‘‘dumb’’ devices such as teletypes. They used the minimum possible
number of bits per character, and distinguished between graphic characters, which would be
printed, and control characters, which would affect the operation of the remote device. Control
characters included characters used to control communication (such as the <SOH> character
that indicated the start of header information) and also characters used to control printing (such
as the <CR> character that, on a teletype, caused the carriage to return to its starting position).

These facts affected the character encoding schemes that were used in conjunction with early
protocols. The American Standard Code for Information Interchange (ASCII) was directly
descended from such schemes. It is the basis of ISO/IEC 646, has considerably influenced later
schemes, and is still in use. It represents the basic Latin alphabet, plus some additional control
characters, using 7 bits per character. Control characters are encoded with values in the range 00
to 1F (hexadecimal).

Modern communication protocols, including the OSI protocols standardised by ISO and the
protocols of the Internet protocol suite, transport 8-bit data transparently. This allows the use of
encoding schemes that use all 8 bits of an octet and that do not reserve particular values for
protocol control purposes.

A mechanism, intended for use with 7-bit or 8-bit encoding schemes, by which several different
schemes can be used within a single transmission, is defined in ISO 2022. In this mechanism,
certain control characters perform a shift function which determines how subsequent codes are
to be interpreted. (This is by analogy with a typewriter, on which the <Shift> keys determine the
symbols that will be printed when other keys are subsequently pressed.) The mechanism also
allows the possibility that the encoding of a character can occupy more than one octet.
Essentially, the unshifted codes represent the characters of the basic Latin alphabet, while shifted
codes represent the characters of some other character set (as agreed by the communicating
parties). With multiple-octet-per-character encoding schemes, any character set can be encoded.

A register of character sets and encodings is defined in ISO 2375. Encodings for most Western
European character sets and for Japanese Kanji are registered.

Encodings compatible with ISO 2022 for the character sets of most languages used in Europe
and North America (including Greenlandic, Russian and Turkish) and also of Afrikaans, Arabic,
Esperanto and Hebrew, are defined in ISO 8859.

2 X/Open Technical Study (1995)

Internationalisation Character Sets and Encodings

Encoding schemes that use the mechanism of ISO 2022 have been standardised for use in the
Teletex service (see the T.61 CCITT Recommendation) and the Videotex service (see the T.100
CCITT Recommendation).

It should be noted that all the above standards use the same encodings as ISO/IEC 646 for the
characters of the basic Latin alphabet. They also maintain the principle, even in multi-octet
encodings, that octets in the range 00 to 1F (hexadecimal) are reserved for control characters.

However, the latest encoding standard, ISO/IEC 10646 (which incorporates the work of the
UNICODE consortium), departs from these principles.

ISO/IEC 10646 is intended to cover the character sets of all languages that may be used in
conjunction with computer systems. It defines a four-octet representation for each character.
The characters whose representations have zero as their two most significant octets form what is
known as the Basic Multilingual Plane (this includes most alphabetic character sets). Two forms
of encoding are permitted:

UCS-2 This form applies where only characters in the Basic Multilingual Plane are used. In it,
the encoding of a character consists of the two least significant octets of its four-octet
representation.

UCS-4 This form permits the encoding of any character. In it, the encoding of a character
consists of the whole of its four-octet representation.

In addition to the UCS-2 and UCS-4 forms, ISO/IEC 10646 allows a composite graphical symbol
to be represented by the encoding of a base character followed by the encodings of one or more
combining characters. For example, the e with acute accent graphical symbol can be
represented in UCS-4 by (hex) 00 00 00 65 00 00 03 01 — the encoding for lower-case letter <e>
followed by the encoding for a combining <acute accent>. This symbol can also be represented
in UCS-4 by (hex) 00 00 00 E9 — the encoding for Latin small letter <e with acute accent>. A
composite graphical symbol can thus have more than one encoding in UCS-4 (and also,
similarly, in UCS-2). ISO/IEC 10646 defines three conformance levels:

1. Combining characters are not allowed.

2. Some combining characters are allowed for certain scripts, such as Arabic, Hebrew, Indic
and Thai.

3. Combining characters are allowed with no restrictions.

The combinations of the three conformance levels with the two encoding forms gives six
possible ways in which an implementation can support ISO/IEC 10646. Version R1.1 of the
UNICODE standard is equivalent to just one of these ways: UCS-2 Level 3.

A degree of compatibility with ISO/IEC 646 is maintained, in that the characters encoded by
ISO/IEC 646 are encoded by ISO/IEC 10646 using the ISO/IEC 646 codes preceded by the
appropriate number of null octets (one in the UCS-2 form; three in the UCS-4 form). For
example, upper-case A of the Latin alphabet is encoded as (hex) 41 by ISO/IEC 646, and as (hex)
00 41 by ISO/IEC 10646.

However, the ISO/IEC 646 encoding of any control or graphic character can appear as the
leading octet of the encoding of a completely different character in the UCS-2 form of
ISO/IEC 10646, or as any of the three leading octets of an encoding of the UCS-4 form. For
example, the ISO/IEC 646 encoding of the End of Text (<ETX>) character appears as an octet of
the ISO/IEC 10646 encodings of the characters of the Greek alphabet. This makes it hard to use
the UCS-2 or UCS-4 encoding for data transmitted using communication protocols that assign
special meanings to ISO/IEC 10646 control codes.

Desktop Internationalisation 3

Character Sets and Encodings Internationalisation

Recognising that this is a problem, ISO/IEC 10646 defines a UCS Transformation Format (UTF).
When applied to an ISO/IEC 10646 encoding, this algorithm yields a 1, 2, 3 or 5 octet value that
is guaranteed not to contain the ISO/IEC 646 encodings of any control character, or of the
<SPACE> or characters. Data encoded in accordance with ISO/IEC 10646, and then
transformed by a UTF, can safely be transmitted using communication protocols that assign
special meanings to ISO/IEC 646 control codes.

The algorithm defined by ISO/IEC 10646 (known as UTF-1) does not prevent encodings from
containing the ISO/IEC 646 encoding of the slash character, (hex) 2F. This limits its use on
POSIX-compliant systems, where the slash character is used to delimit segments of pathnames
of files. (There are similar problems with many systems that are not POSIX-compliant.) A
second UTF, FSS-UTF, was therefore defined by the X/Open-UniForum Joint
Internationalization Group (JIG); it has been adopted by ISO as a normative annex to
ISO/IEC 10646 under the name of UTF-8.1 In this UTF, an octet with bit 8 set to zero can only
appear as the single-octet representation of the identical ISO/IEC 646 encoding. As well as
being safe for transmission by common communication protocols, such data can safely be
processed by applications that handle file pathnames on POSIX-compliant systems.

Most current implementations use the UCS-2 form of encoding, because it is much more
economical in its use of storage. A further transformation, known as UTF-16 (or ‘‘shifted
UNICODE’’) has been defined to enable applications on such systems to use some of the
characters that can be represented in UCS-4 but not in UCS-2. It does this by using pairs of UCS-
2 code positions to represent UCS-4 characters.

The current practice for accommodating ISO/IEC 10646 and the UNICODE standard in open
systems is to use the UTF-8 encoding for filestores and to define interface functions whose
arguments are of type wchar_t (see Section 1.3) rather than of type char; these interface functions
can if necessary parallel existing functions whose arguments are arrays of type char.

A full discussion of the issues pertaining to the use of ISO/IEC 10646 in open systems is
contained in the X/Open UCS Technical Study.

1. See the referenced X/Open UFT-8 Specification.

4 X/Open Technical Study (1995)

Internationalisation The C Programming Language

1.3 The C Programming Language
In internal machine storage, characters are held in bytes. A byte is a unit of machine storage
containing at least 8 bits, each of which can take the value 0 or 1.

Often, the same encodings are used for characters held in machine storage as are used for
characters in transmission.

The facilities of the programming language determine how characters held in machine storage
can be manipulated by applications programs. For applications within the X/Open CAE, the
most important programming language is C. The character handling facilities of the C
programming language are of great importance with regard to the development of
internationalised applications.

Early versions of the C programming language, such as that specified in XPG1, assumed a
character encoding scheme similar to ASCII. They defined a char type such that a value of type
char could be held in a single (8-bit) byte, and defined a character string to be an array of type
char terminated by a null character. Many applications programs written using such versions of
C use these facilities, and are not amenable to internationalisation, since they cannot handle
multi-byte character set encodings.

In the version of C standardised by ANSI, and subsequently by ISO, some of the issues
associated with internationalisation are addressed. The char type still has values that can be
represented as single bytes, and character strings are still null-terminated arrays of type char.
However, multi-byte character encodings are possible, and can be held in strings with several
elements of type char representing each character. Also, the type wchar_t is provided for multi-
byte character encodings. In ISO C it is defined to be such that its range of values can represent
all codes for the largest supported character set.

A set of character and string handling functions that have arguments that are of type wchar_t
and related types are defined in the MSE amendment to ISO C. For example, function strcat()
has been used since the earliest days of C programming, but is unsuitable for use in
internationalised programs because it has arguments of type char *. This constrains the
language to be one that uses an 8-bit character set. Many languages use character sets that are
not representable using 8 bits. The MSE amendment to ISO C includes the wcscat() function,
which takes wide-character code arguments (type wchar_t *) and can be used in place of strcat()
in internationalised programs.

Because strings are null-terminated, an encoding scheme used in conjunction with ISO C must
not produce a null byte except as the encoding of the null character. The UCS-4 and UCS-2
encoding schemes do not have this property; therefore, use of the C language char data type as
defined in ISO C in conjunction with the coded character set defined in ISO/IEC 10646 is
problematic.

In addition to permitting flexibility of character sets and encodings, ISO C specifies a locale
mechanism that can be used to enable application programs to be written without making
assumptions about language and cultural conventions. ISO C specifies functions for handling
characters, strings, date and time, and formatted input/output. The behaviour of these
functions is affected by the current locale. This can be set by the applications program to reflect
the language and cultural environment in which the application is executing. Application
programs can also examine the current locale and modify their behaviour accordingly.

Character collation, classification and case conversion, and the format of numbers, monetary
values and dates may all be affected by the locale. ISO C does not prescribe precisely how they
are affected in any particular language and cultural environment (other than a basic default
environment); it just specifies a general mechanism whose use is implementation-defined.

Desktop Internationalisation 5

Internationalisation Support in POSIX Internationalisation

1.4 Internationalisation Support in POSIX
The locale mechanism of ISO C is extended by the POSIX.1 standard.2 This provides a means
whereby an application program can use a locale that has been established in its process
environment. For example, this allows a system to be shipped with a repertoire of pre-defined
locales. The user or system administrator selects the locales in which applications run.
However, the POSIX.1 standard still specifies the general mechanism only, and contains no
standardised descriptions of specific locales (other than the default locale).

Also, the POSIX.1 standard defines a Portable Filename Character Set, which it recommends for
use in international applications. (It allows other characters to be used in filenames, but advises
that such names are not portable between different language and cultural environments). This
consists of the upper and lower-case characters of the Latin alphabet as used in English, the
digits 0 to 9 and the period, underscore and hyphen characters (as found in ISO/IEC 646).

The interface specified in the POSIX.2 standard3 provides for a system to support multiple
locales and, optionally, to allow the user to define locales. The behaviour of the system utilities is
affected by the currently established locale. For example, the ls utility lists files, sorted by name
according to the collation sequence in the current locale.

The current locale also affects certain aspects of the command interpreter (sh), although the
reserved words that have special meaning are all defined using a particular character set — the
Portable Character Set — that is required to be present in every supported locale. This Portable
Character Set is a superset of the Portable Filename Character Set defined in the POSIX.1
standard. It includes additional punctuation characters such as { and }.

Several of the utilities defined in the POSIX.2 standard can handle character-patterns called
regular expressions. The meaning of ‘‘regular expression’’ is defined in terms of the current locale.
For example, it is possible to specify the range of characters [a-z] as a regular expression; this
would include the e-acute character in a French locale but not in an English one.

The definition of a locale includes the specification of an encoding of its characters. Stateless, but
not stateful, multi-byte encodings are supported.4

2. The POSIX.1 standard is identical to IEEE Standard 1003.1. It specifies a programming interface to operating system services.
3. The POSIX.2 standard is identical to IEEE Standard 1003.2, which specifies a user interface to operating system services

(commands and utilities).
4. A stateful encoding is one in which a code can set the interpreter into a state that affects the meaning of subsequent codes. An

example of a stateful encoding is one that has a shift-lock code that causes subsequent codes for lower-case letters to be
interpreted as the corresponding upper-case letters.

6 X/Open Technical Study (1995)

Internationalisation Internationalisation Support in the X/Open CAE

1.5 Internationalisation Support in the X/Open CAE
The need for internationalisation was stated in the first issue of the X/Open Portability Guide
(XPG1). A trial-use definition of facilities to enable internationalised application programs to be
developed was contained in the second issue (XPG2). Issue 3 (XPG3) included some mandatory
facilities for the X/Open System Interface (XSI), which were largely aligned with the
internationalisation facilities of the POSIX.1 standard and the ANSI C standard. They were
expanded and refined in Issue 4 (XPG4) including full conformance with ISO C. (ISO C is based
on, and technically equivalent to, the ANSI C standard.)

A more complete description of the development of internationalisation facilities can be found in
the X/Open Internationalisation Guide. The differences between Issue 3 and Issue 4 of the XSI
are summarised in the X/Open Migration Guide (Issue 4 is the latest version, published in July
1992.)

The XSH internationalisation facilities represent the most comprehensive, commonly agreed
understanding of the requirement to date. They are summarised in Section 1.5.1.

Recent further work within the JIG has been concerned with internationalisation within a
distributed systems environment. This concludes that the internationalisation facilities specified
in the X/Open XSH, Issue 4 Specification are not sufficient. It proposes further facilities and
places an implicit requirement on the communication infrastructure. It represents the current
direction of thinking and is summarised in Section 1.6.1 on page 8.

1.5.1 XPG4 Facilities

Firstly, the X/Open XSH, Issue 4 Specification includes the wchar_t type of ISO C and the locale
mechanism of the POSIX.1 standard.

Secondly, recognising that many of the traditional open systems facilities do constrain the
language, culture or business environment assumed by the application, XSH includes a parallel
Worldwide Portability Interface facility for each such traditional facility. These facilities are
provided by the functions that are defined in the MSE amendment to ISO C.

While the X/Open XSH, Issue 4 Specification includes both the traditional, non-
internationalised, function definitions and the internationalised, Worldwide Portability function
definitions, it recommends use of the latter for new developments, retaining the traditional
definitions for compatibility with existing systems and applications.

Desktop Internationalisation 7

Current Work Internationalisation

1.6 Current Work
Work is continuing on the following topics.

1.6.1 Distributed Internationalisation Requirements

The JIG has produced the X/Open DIS, Version 2 Snapshot. This document discusses the issues
arising from the need for internationalised applications programs executing in a distributed
environment. It considers multi-processor applications, where the program in each processor
may be multi-threaded. In addition to applications that execute in a single locale (which may
vary from user to user), it considers applications that, for a single user, process data created in
multiple locales.

When distributed internationalised applications cooperate, it is important that they assume the
same locale information. For example, if a list of names created on a system in Denmark is sorted
into alphabetical order on a system in the USA, the American system must use the right collating
rules (placing AA at the end of the list rather than at the beginning, for example). For this to be
possible the following must be true:

• There must be a standardised means of describing locales.

• There must be a way of identifying particular locales.

• There must be a way of conveying locale information between communicating applications.

• It must be possible for an application to use the appropriate locale when processing
information that has been created by another application.

The X/Open DIS, Version 2 Snapshot describes the syntax and semantics of a naming scheme
that identifies a locale across a heterogeneous network. Version 1 proposed that a registry of
standard locales should be established. This registry has been set up by X/Open and is
described in the X/Open DIS, Version 2 Snapshot.

The X/Open DIS, Version 2 Snapshot defines a set of functions that support multi-locale
programs in a distributed environment. They are intended to be viewed as potentially being able
to operate on code element strings of any data type, although they are specifically defined only
for code element strings of types char and wchar_t. They include provision for single characters
represented by multiple code string elements (for example, e-acute represented by two elements:
letter e and acute accent). They are aligned with the functions defined in the MSE amendment to
ISO C, and allow for character set introducers, direction introducers and possibly in future for other
introducers; for example, to indicate locales (strings containing such introducers are sometimes
referred to as self-announcing data or tagged data).

1.6.2 Definition and Registration of Locales

A registry of standard locales has been established by X/Open. The X/Open Locale Registry
Procedures Guide describes how the registry operates. The locales in the registry can be
obtained from X/Open. At the time of writing, the registry contains some 22 locales, including
Danish, Dutch, English (American, British and Canadian), Faroese, French (Canadian), German
(Austrian, German and Swiss), Greenlandic, Hungarian, Icelandic, Italian, Japanese, Latvian,
Lithuanian, Polish, Portuguese and Romanian locales.

8 X/Open Technical Study (1995)

Internationalisation Current Work

1.6.3 Complex Text Languages

The locale mechanism currently defined in XPG4 covers the most commonly encountered
differences between languages or cultural environments. However, it does not provide for all
differences. In particular, it does not address the special needs of those languages that have been
described as complex text languages. These can be defined as languages that have different
layouts and forms of the text for presentation purposes and for processing purposes. These
differences are generally concerned with:

• directionality; for example, in Arabic, Farsi, Urdu, Hebrew and Yiddish, the text flows mainly
from right to left but includes segments that must be read from left to right

• shaping and composition of characters; for example, in Arabic, each character has a different
form depending on whether it stands alone, is at the beginning of a word, is in the middle of
a word, or is at the end of a word

• national numbers; for example, in Arabic, Thai, Chinese and Bengali, there are numeric
characters other than the normal ‘‘Arabic’’ numerals (Arabic uses Hindi numerals), and the
encodings of the ‘‘Arabic’’ numerals (hex 30-39 in ASCII) should be understood as
representing these characters rather than the ‘‘Arabic’’ ones when the text of these languages
is processed.

These issues are addressed in the X/Open Layout Services Snapshot.

1.6.4 Use of the UNICODE standard/ISO/IEC 10646

ISO/IEC 10646 represents a radical new direction in character set encoding standards. There are
a number of questions relating to its use that are not yet settled. These include:

• Should all implementations support all characters defined in ISO/IEC 10646 (that is, treat
them as valid input and perform valid comparisons on them), or should it be possible to
define standard subsets so that an implementation need not support every character?

• Should UCS-dependent APIs (that is, APIs that assume that character data is encoded in
accordance with ISO/IEC 10646 UCS-2) be defined?

• What are the appropriate scopes of use of the various UTFs that have been defined?

1.6.5 Testing of Internationalised Components

An internationalised system component should work in any language and cultural environment.
This means that it must be tested in conjunction with a number of locales. The question of what
locales should be used for testing purposes has been raised. It may be that new locales,
incorporating particular combinations of characteristics, will be defined for testing purposes.

1.6.6 Distributed Internationalisation Framework

The X/Open Distributed Internationalisation Framework Snapshot sets the context for work
on internationalisation in distributed systems. It provides an overview and analysis of the
problem areas, but does not contain detailed interface specifications, which are in the X/Open
DIS, Version 2 Snapshot.

Desktop Internationalisation 9

Internationalisation

10 X/Open Technical Study (1995)

Chapter 2

The X/Open Common Desktop Environment

2.1 Introduction
The X/Open Common Desktop Environment (XCDE) specifications extend the X/Open
Common Applications Environment (CAE) to enable applications programs to interact with
people in a manner that is modelled on the way that desktops are used.

On a desktop, information relating to several activities can be kept readily accessible and can be
used in carrying out the activity on which work is being done at any particular moment. Any
information processing activity can be performed. There may be special provision, through
diaries, memo pads, and so on, for performing common office tasks.

In an information processing system, the desktop is modelled by a user interface that has
‘‘windows’’. A user can have one or more windows for each of his activities. Each window
contains a visible representation of information which is displayed to the user and which he may
be able to create or modify. Changes in the information held by the system cause changes to the
displayed representations, and changes made by users to the displayed representations cause
changes to the information held by the system. A user can interact with any information
processing application program in this way. There is special provision for applications such as
diaries and message handling systems that support common office tasks.

This form of user interface is very powerful and flexible. From the point of view of the
applications programmer, it requires a more sophisticated form of programming interface than a
traditional character-based terminal interface. In particular, the application program does not
directly control all aspects of the user interface. Rather, there are autonomous programs
(‘‘managers’’) that handle many aspects of the interface (such as refreshing the display when the
user selects a new activity) and whose operation can be influenced by the application program
and by the user.

2.2 Elements of the XCDE
A user of the XCDE interacts with his system via the X Window System display and window
handling system and the Motif style of user interface. He can customise some aspects of the user
interface. The applications that he can use include an icon editor, a file manager, a mathematical
calculator, a simple text editor, a calendar and appointments diary and an electronic mail
system. A character-based terminal emulator enables him to use non-desktop applications.
Printer management services enable him to print files and control printer operation. ‘‘Help’’ on
how to use the system and its applications is available to him.

These services to the user are supported by the following elements of the XCDE:

• the X Window System display and window handling system, including the X Protocol
handler, the X Library and the X Toolkit

• the Motif toolkit

• a manager that handles ‘‘virtual screens’’ called workspaces

• a manager that handles sessions of interaction between users and the system

Desktop Internationalisation 11

Elements of the XCDE The X/Open Common Desktop Environment

• ‘‘front panel’’ facilities that allow certain aspects of the user interface to be defined

• a style manager that allows users to customise the system’s visual behaviour

• an icon editor application

• a file manager application

• a mathematical calculator application

• a simple text editor application

• a calendar and appointments diary application

• an electronic mail application

• a character-based terminal emulator

• a printer manager

• a ‘‘help’’ subsystem

• an inter-process messaging system (based on ‘‘ToolTalk’’) that enables applications to
communicate with each other

• a ‘‘drag-and-drop’’ service that supports the transfer, under control of the user, of
information between applications

• data-typing services that enable applications to categorise information

• execution management services that enable applications that have not been designed for the
XCDE to be executed within the XCDE.

APIs to these components are available to the applications programmer. An application
program can interact with the XDCE through a C-language interface or through a ‘‘scripting’’
interface that uses an extension of the shell command language.

Applications written by different people must cooperate within the XCDE. The XCDE
specifications define a number of conventions and common information formats that enable
applications to cooperate effectively.

The XCDE also contains services that enable applications programs to be created and integrated
into the system, and services that enable applications and information files in the system to be
associated with icons displayed at the user interface.

2.3 Internationalisation
Because the XCDE is so concerned with the presentation of information, internationalisation is a
crucial aspect of its design.

In contrast to the traditional character-based model, the new ‘‘desktop’’ model of user
interaction has a style that is in many respects quite independent of language and culture. For
example, icons do not depend on language, and the action of pointing to an icon is an
appropriate way of selecting an action, in any culture. But language and cultural differences
have not been eliminated completely. Natural language text is still a part of the interface, and
some icons have associations that are dependent on culture.

The requirement for international use has been taken into account in the design of the XCDE.
There is provision for internationalisation of many of the remaining areas where the user
interface is affected by language and culture. For example, there is provision for natural
language text to be taken from message catalogues, such that different catalogues can be used

12 X/Open Technical Study (1995)

The X/Open Common Desktop Environment Internationalisation

for different natural languages.

Nevertheless, there are still some problems for the application developer who wants to write a
fully internationalised application in the XCDE. This study seeks to identify these problems, and
to put forward recommendations for removing them.

Desktop Internationalisation 13

The X/Open Common Desktop Environment

14 X/Open Technical Study (1995)

Chapter 3

X Specifications

3.1 X Window System Protocol

3.1.1 Description

The X Protocol is the protocol that enables a computer on which an application is running (a
client) to communicate with a computer that contains user interface hardware (a server) so that
the application can interface to a user. It allows for the transfer of keyboard and other inputs
from the server to the client, and of transfer from the client to the server of commands to display
graphical shapes and text. It is described in the X/Open X Window System Protocol
Specification.

3.1.2 Internationalisation Issues

3.1.2.1 Character Representations

Characters are represented in the protocol as indexes into font matrices. Indexes can be either 8
or 16 bits long. It would therefore not be possible to define a font for a character set of more than
65,536 characters. In particular, it would not be possible to define a font for the full
ISO/IEC 10646 character set. This is unlikely to prove a practical limitation, however. If more
than 65,536 of the possible ISO/IEC 10646 values are actually assigned to characters, it will be
possible (and will probably be convenient) to use several fonts to display them.

3.1.2.2 Keyboard Input

The symbols on key caps are encoded by quantities called KEYSYMS. They are mapped to
physical keys (encoded by KEYCODES) by a scheme that is heavily influenced by the traditional
keyboard system of shift keys and other modifier keys. The KEYCODES are 8-bit integers, so a
keyboard with more than 256 keys would present a problem. The KEYSYMS, however, are 32-bit
integers (of which only 29 bits are actually used, half of them for vendor-defined codes). This
scheme presents no serious immediate internationalisation issues but, taking a possibly
speculative long-term view, there is a potential issue that should be raised. While the traditional
Western keyboard has been adapted for use with languages and character sets of all kinds, it is
by no means ideal for all of those languages. For example, for ideographic characters such as
Chinese, a light pen and a small tablet that can recognise the characters might be easier to use.
As technology develops, more efficient ways of obtaining input in non-Latin character sets will
become practical. The KEYCODE/KEYSYM mechanism is unlikely to be able to cope with them
without adaptation.

3.1.2.3 Defined KEYSYM Alphabets

The set of defined KEYSYMS includes the Latin-1, Latin-2, Latin-3, Latin-4, Kana, Arabic,
Cyrillic, Greek, Technical, Special, APL and Hebrew characters plus a set of common keyboard
symbols (RETURN, and so on). It is not clear how this standard set is to be extended to include
other alphabets.

Desktop Internationalisation 15

X Window System Protocol X Specifications

3.1.2.4 Error Strings

If connection set-up fails, the client receives a ‘‘reason’’ string or a set of information including a
‘‘vendor’’ string. It is likely that implementations would use these strings to convey textual
messages. However, an internationalised application cannot interpret such a message (unless
the strings are standardised) and cannot display it either, since it is not locale-dependent.

3.1.2.5 String Identifiers

Atoms have string names which by convention are restricted to the Latin-1 alphabet.

Font names are Latin-1 strings. They are matched by patterns that can include wildcards. Colour
names and extension names are also Latin-1 strings.

3.1.2.6 Text Drawing

There are different sets of graphics primitives for drawing characters in fonts with 8-bit indexes
and for drawing characters in fonts with 16-bit indexes. Programmers of internationalised
applications must take care not to assume a particular index type for text that can be displayed
in different character sets (and therefore in different fonts).

16 X/Open Technical Study (1995)

X Specifications Xlib - C Language Binding

3.2 Xlib - C Language Binding

3.2.1 Description

Xlib, described in the X/Open Xlib - C Language Binding Specification, is a software library
providing a C-language interface to the X Protocol described in the X/Open X Window System
Protocol Specification.

3.2.2 Internationalisation Features

Xlib is designed to support variable-locale applications (but not multi-locale applications).
However, an implementation of Xlib need not support all locales supported by its host.
Function setlocale () can be used for locale announcement in an ANSI C environment, and an
application can then call XSupportsLocale () to determine whether the current locale is supported
by the implementation of Xlib.

The value of the current locale affects Xlib in:

• encoding and processing input method text

• encoding of resource files and values

• encoding and imaging of text strings

• encoding and decoding for inter-client text communication.

Parallel functions are defined using char and wchar_t data types for operations such as input
handling and font handling.

Xlib provides for various different input methods to allow for text that uses complex characters
to be entered.

Resource files are configuration files, intended to be set up by users and used to generate a
resource database that can be queried by applications; for example, to determine window
colours. Resource databases store properties. There is a locale bound to each resource database
(see the description of XrmLocaleOfDatabase() in the X/Open Xlib - C Language Binding
Specification).

3.2.3 Internationalisation Issues

3.2.3.1 String Identifiers

The encoding and interpretation of display names is implementation-dependent. Strings in the
host portable character encoding are supported; support for other encodings is implementation-
dependent. (The X Portable Character Set consists of the characters a to z, A to Z, 0 to 9,
punctuation characters, space, tab and newline. The host portable character encoding is an
encoding of the X Portable Character Set that is the same in all supported locales.) A particular
format for display names is described for possible use on POSIX-conformant systems. It assumes
availability of the period (‘‘.’’) and colon (‘‘:’’) characters.

The DisplayString (), XDisplayString() and XDisplayName() functions return the display name as
a string that presumably is null-terminated. This facility is said to be useful for printing error
messages. The string is not locale-dependent.

Functions ServerVendor() and XServerVendor() return a null-terminated string describing the
implementor, either in the host portable character encoding or in an implementation-defined
encoding. It is not required to be locale-dependent.

Desktop Internationalisation 17

Xlib - C Language Binding X Specifications

Colours and other entities can be identified by character strings that are encoded in the host
portable character encoding (or the result is implementation-dependent). String constants that
make sense in English are defined for some identifiers.

Font names are passed across the API in null-terminated strings. Pattern matching can be
applied to the names. Names and patterns are encoded using the host portable character
encoding (or the result is implementation-dependent).

Font pathnames are encoded in a codeset that is dependent on the server implementation. This
is a portability issue as well as an internationalisation issue. The application programmer or the
system programmer must use the correct pathnames and the correct encodings for the servers to
which his software must interface. It will be hard to develop an internationalised application in
which the user can configure the font paths that are used.

It should be noted that names (of fonts, colours, hosts, and so on) should in general be encoded
using the host portable character encoding on the client. This implies that the server should only
use characters from the X Portable Character Set in such names. Presumably, they will be
conveyed by the X Protocol in the encoding defined by ISO 8859-1, and may be converted to
another encoding at the client, at the server, or at both. If such names are ever displayed to the
user, an internationalised application will have to convert them (perhaps by table look-up) to a
locale-dependent form.

3.2.3.2 Font Attributes

The built-in font property name CAP_HEIGHT is only useful in conjunction with character sets
that distinguish upper and lower-case letters.

3.2.3.3 Text Directionality

Font structures include a horizontal directionality specification, but not a vertical directionality
specification.

3.2.3.4 Error Strings

The XGetErrorText() and XGetErrorDatabaseText() functions return null-terminated strings in the
encoding of the current locale. The use of null-terminated strings precludes encodings such as
the UNICODE standard and ISO/IEC 10646 that contain embedded nulls.

3.2.3.5 Keyboard Input

Xlib relies on the KEYCODE/KEYSYM scheme defined in the X/Open X Window System
Protocol Specification for keyboard input.

3.2.3.6 Simplified Keyboard Event Functions

The Latin-1 Keyboard Event Functions provide special (simplified) facilities for applications that
assume the use of Latin-1 keyboards.

3.2.3.7 String Properties

Properties can be passed across the API as text strings, and there is provision for them to be
encoded in accordance with the current locale. But the strings are presumably null-terminated.

18 X/Open Technical Study (1995)

X Specifications Xlib - C Language Binding

3.2.3.8 Command Strings

The XGetCommand() and XSetCommand() functions get and set the command and arguments
used to invoke a window’s application. They must be encoded in the host portable character
encoding, or the result is implementation-dependent.

3.2.3.9 Resource Files

Resource file syntax requires resource names to use Latin-1 alphanumeric characters plus the
hyphen and underscore characters. Resource values can include any character except null or
newline, and there are escape sequences that allow these to be included too. Also, there is a
notation that allows any byte to be included. Resource databases are opaque; the entries are not
manipulated directly but by using resource management functions. These take string arguments
for resource names, which must be in host portable character encoding (or the result is
implementation-dependent). Various retrieval functions return STRING-type resources as
strings in the codeset of the current locale.

3.2.3.10 Cut Buffers

Cut buffers are properties containing text in STRING encoding. This restricts them to the Latin-1
alphabet. Internationalised applications can therefore not use this facility.

Desktop Internationalisation 19

X Toolkit Intrinsics X Specifications

3.3 X Toolkit Intrinsics

3.3.1 Description

The X/Open X Toolkit Intrinsics Specification defines a widgets management C-language API.

A widget is instantiated by a window that enables a user to perform input or receive output or
both. Each widget belongs to some widget class. The class that a widget belongs to largely
determines the way that it behaves.

A widget class has associated with it a number of actions that widgets that belong to it can
perform. They can be invoked in response to user-input events. This is done by translation
management, which is table-driven. The translation tables can be extended and modified by
application programmers.

As well as being invoked in response to user input, actions can be invoked directly by
applications.

An instance of a widget has associated with it a number of stored information items called
resources that it can use. Resources belong to resource classes. There is a mechanism for extending
widget class records at run time.

Widgets, actions and resources are identified by character strings. This enables the application
programmer to customise the behaviour of standard widgets to suit his application.

3.3.2 Internationalisation Features

The toolkit provides a mechanism that enables an application to set the locale.

The XtResolvePathname() function uses substitutions corresponding to XPG localisation
conventions in order to search for a file.

An event filter mechanism for use by internationalised applications is defined for function
XtDispatchEvent().

3.3.3 Internationalisation Issues

3.3.3.1 String Identifiers

Widget classes, actions, resource classes, resource representations and resources are identified
by character strings. There are naming conventions that enable resource names and resource
representation names to be derived from the names that the programmer gives to the source
program data structure fields associated with them.

3.3.3.2 Default Font Resource

If no default font resource value is obtainable, the toolkit uses an implementation-dependent
ISO 8859-1 font. This would not be appropriate in many locales. However, internationalised
applications can always ensure that an appropriate font is available.

3.3.3.3 Error Strings

Error message strings may be constructed by the application and will be overridden by the
contents of an external system-wide file, the error database file. It is not clear how these messages
can be made locale-dependent. The name and path of the error database file is implementation-
dependent, and so might be localised, but no satisfactory standard localisation method has yet
been found.

20 X/Open Technical Study (1995)

X Specifications X Toolkit Intrinsics

3.3.3.4 Translation Table Syntax

The translation table syntax uses ISO Latin-1.

Desktop Internationalisation 21

File Formats and Application Conventions X Specifications

3.4 File Formats and Application Conventions

3.4.1 Introduction

The X/Open File Formats and Application Conventions Specification contains:

• Inter-Client Communications Conventions Manual (ICCCM)

• X Logical Font Description (XLFD)

• Compound Text

• Bitmap Distribution Format (BDF).

They are discussed in the following sections of this chapter.

3.4.2 Inter-Client Communications Conventions Manual (ICCCM)

3.4.2.1 Description

The Inter-Client Communications Conventions Manual (ICCCM) in the X/Open File Formats
and Application Conventions Specification states the conventions that applications should
follow in order to interwork with other applications. There are conventions in the following
areas:

• selection mechanism

• cut buffers

• window manager

• session manager

• manipulation of shared resources

• device colour characterisation.

3.4.2.2 Internationalisation Issues

Atom Strings

Atoms are items of information identified by numbers. The information can include character
strings. There is a convention that such strings should consist of Latin-1 alphabet characters
encoded in accordance with ISO 8859-1.

Cut Buffers

When information is transferred between applications under user control by the selection
method, the type of the information is indicated by an atom known as a target atom. There are
two types of text that can be identified by the currently defined target atoms: STRINGs,
consisting of Latin-1 characters, and COMPOUND TEXT, consisting of segments of characters
with arbitrary encodings. When the cut buffer method of transferring information is used, only
STRING text can be transferred. This means that the cut buffer mechanism cannot be used in
many locales, and is thus not appropriate for use by internationalised applications.

22 X/Open Technical Study (1995)

X Specifications File Formats and Application Conventions

String Properties

Some properties (items of information associated with windows) include text strings (for
example, the WM_NAME property is an uninterpreted string that the client wants the window
manager to display in association with a window). Properties are typed, and the type of a text
property implies the encoding used for the text characters. The defined types for text property
are STRING and COMPOUND TEXT (with the meanings given in Cut Buffers on page 22 for the
atoms with these names). Internationalised applications should not use STRING properties to
contain text for display.

Some properties (for example, the WM_CLASS property) contain more than one string. By
convention, these are separated by nulls. Unless the null separators are interpreted as being of
the same width as the widest character codes in the encoding of the text, this precludes the use
of encodings such as the UNICODE standard or ISO/IEC 10646 that can contain embedded
nulls.

3.4.3 X Logical Font Description (XLFD)

3.4.3.1 Description

The X Logical Font Description (XLFD) specification in the X/Open File Formats and
Application Conventions Specification identifies those aspects of character renderings that can
change from one font to another. It specifies how different fonts should be identified, and how
their properties should be represented, in a desktop environment.

3.4.3.2 Internationalisation Issues

Font Attributes

Many of the font attributes are oriented towards Latin alphabets. For example, the
CAP_HEIGHT property is meaningless for character sets in which there is no distinction
between upper and lower-case letters. Also, such distinctions as the difference between Roman
and Helvetica may not be meaningful in all alphabets.

String Identifiers

Font names are Latin-1 strings on which pattern matching can be done. They are case-
insensitive. The name and pattern format must be supported by the X Protocol OpenFont, and
so on, messages.

Character Set Registry

Character sets and encodings are registered in the X character set registry. The X character set
registry registry appears partly to duplicate the functions of the X/Open Locale Registry, since
programmers will need to relate these encodings to locales. Indeed, it would be better to name
the locale rather than the encoding, since, for example, it may be necessary to sort words
represented in the encoding.

Only one font — ISO 8859-1 — is guaranteed to be registered.

Desktop Internationalisation 23

File Formats and Application Conventions X Specifications

String Properties

FACE_NAME, COPYRIGHT and NOTICE are ‘‘human readable string’’ font properties
(presumably Latin-1). FACE_NAME ‘‘may be used as feedback during font selection’’. There
would be problems in displaying these strings in some locales. NOTICE gives copyright and
trade mark information. Apart from the fact that the character set and encoding of this string
will not be appropriate in all locales, there is also the problem that the form of the notice may be
required to vary from one country to another. However, a discussion of international copyright
law is beyond the scope of this study.

3.4.4 Compound Text

3.4.4.1 Description

The Compound Text specification in the X/Open File Formats and Application Conventions
Specification defines how text that may include characters from multiple character sets should
be encoded in a desktop environment.

3.4.4.2 Internationalisation Features

The encoding format is based on ISO 2022. There is support for standard encodings for the
following character sets:

• ISO 8859-1 through ISO 8851-9 Latin

• Japanese 8-bit alphanumeric Katakana

• Chinese Hanzi

• Japanese Graphic

• Korean Graphic.

There is also support for arbitrary character set encodings. Their names should be registered
with the X Consortium, and should when appropriate match the CharSet registry and Encoding
registration described in the X Logical Font Description specification in the X/Open File Formats
and Application Conventions Specification. These encodings can be single or multi-byte
encodings, and can contain embedded nulls.

Text directionality can be indicated. Segments of text of different directionalities can be nested
(to any nesting level).

A simple mapping to Latin-1 strings is defined to enable compound text strings to be used in
resources.

3.4.4.3 Internationalisation Issues

Text Directionality

Horizontal, but not vertical, directionality can be indicated.

24 X/Open Technical Study (1995)

X Specifications File Formats and Application Conventions

String Identifiers

Extension encoding names are Latin-1 strings.

Character Set Registry

The X/Open File Formats and Application Conventions Specification states that encodings
should be registered with the X Consortium.

3.4.5 Bitmap Distribution Format (BDF)

3.4.5.1 Description

The Bitmap Distribution Format specification in the X/Open File Formats and Application
Conventions Specification defines a standard format for representing character fonts.

3.4.5.2 Internationalisation Issues

Font Representations

Font representations are human-readable. They are expressed in an English-like formal
language using the Latin-1 alphabet with U.S. ASCII encoding.

Desktop Internationalisation 25

X Specifications

26 X/Open Technical Study (1995)

Chapter 4

XCDE Specifications

4.1 Motif Toolkit API

4.1.1 Description

The XCDE Motif toolkit enables the application programmer to give a particular ‘‘look and feel’’
to the user interface. It includes:

• the Motif window manager (mwm) command-line utility that handles the windows on the
user’s desktop

• a number of widgets and associated functions

• functions associated with the User Interface Language (UIL)

• a number of other functions that perform operations related to the user interface (‘‘Toolkit
Functions’’).

The Motif window manager, the above functions and associated data type definitions are
specified in the X/Open Motif Toolkit API Specification. The X/Open XCDE: Services and
Applications Specification defines the XCDE window manager, which consists of the Motif
window manager plus some extensions.

4.1.2 Internationalisation Features

The LANG environment variable specifies the user’s choice of language for the mwm message
catalogue, the mwm resource description file, and the search paths for resource description files
and UID files. Window manager resource files can be used to give values for window manager
resources. They are standard text files, for which an English-oriented syntax is specified, but
which are in the language defined by LANG. This means that an appropriate window manager
can be built for each locale.

In widget definitions, where appropriate, the encoding used for one resource is given by the
value of another resource (for example, the XmNiconNameEncoding resource of the
TopLevelShell widget class), or the directionality of the text in one resource is given by the value
of another resource (for example, the XmNstringDirection resource of widget class XmManager).

4.1.3 Internationalisation Issues

4.1.3.1 String Identifiers

Various entities (for example, functions) are identified in resource files, in widget resources and
in API function arguments using character strings. In function arguments, they are presumably
null-terminated. In some cases, such as font names (XLFD strings, composed of Latin-1
characters, see the X/Open File Formats and Application Conventions Specification) and font
tags (ISO/IEC 646 strings), their character sets and encodings are restricted. The specification of
restricted character sets implies that the character set encoding of the locale must include the
encoding defined in ISO 8859-1 as a subset.

Desktop Internationalisation 27

Motif Toolkit API XCDE Specifications

4.1.3.2 Argument Lists

The XmNargv resource of the Application Shell widget class is a list of items of type string.

4.1.3.3 Accelerator Descriptions

Accelerators are described by String resources in a format similar to that used by the translation
manager.

4.1.3.4 Uil String Formats

Source and object files are passed to Uil(), the User Interface Language (UIL) compiler routine,
as strings. Function Uil() passes to its error callback function a character string containing error
message text, and a string consisting of the source line where the error occurred. The description
of Uil() does not state that these strings use the character set encoding of the current locale.

4.1.3.5 Scale Widget Number Formats

XmScale widgets display numbers with decimal points. It is not clear whether the decimal
separator is internationalised, and it is not clear whether national numerals are used in those
locales that have them.

4.1.3.6 String Manipulation

String comparison and manipulation functions such as XmStringHasSubstring() are likely to
produce counter-intuitive results in locales where glyphs can have alternative representations
(for example, <e-acute> and <e> plus <acute accent>).

4.1.3.7 Text Directionality

Compound string functions such as XmStringCreate() do not allow for vertical directionality.

Text field functions implicitly assume horizontal, rather than vertical, directionality.

4.1.3.8 Text Widget Values

The XmNValue resource of widget classes XmText and XmTextField is of type String rather than
XmString, and there is no resource to indicate the encoding used for the XmNValue resource.
This appears to limit the degree to which these widgets can be used in internationalised
applications. Moreover, the descriptions of these widgets do not state that their behaviour is
entirely locale-dependent. However, from their descriptions, these widgets are clearly intended
to be used in internationalised applications.

28 X/Open Technical Study (1995)

XCDE Specifications XCDE Definitions and Infrastructure

4.2 XCDE Definitions and Infrastructure

4.2.1 Introduction

The X/Open XCDE: Definitions and Infrastructure Specification contains an introduction, a
glossary and descriptions of:

• XCDE data format naming

• the relationship of XCDE to the X Window System and Motif

• the C interface to some miscellaneous XCDE services

• the XCDE message services

• extensions to the Motif drag-and-drop services

• a C-language interface to data typing services

• a C-language interface to execution management services.

These descriptions are contained in a number of self-contained chapters of the X/Open XCDE:
Definitions and Infrastructure Specification. Each of these chapters is discussed in a separate
subsection below.

4.2.2 XCDE Data Format Naming

4.2.2.1 Description

The section on data format naming forms the entire contents of the chapter entitled ‘‘General
Definitions and Requirements’’. It contains a description of the names that are used to identify
data formats. Standard names are defined for a number of formats, such as encapsulated
postscript, RFC 822 message format and the X PixMap format. A set of conventions is defined
for the names of other data formats.

4.2.2.2 Internationalisation Issues

The names must be valid ICCCM selection target atoms, which implies that they use the Latin-1
alphabet defined in ISO 8859-1. According to the naming conventions stated in the X/Open
XCDE: Definitions and Infrastructure Specification, they should be in upper-case with words
separated by underscores.

4.2.3 X Window System and Motif

4.2.3.1 Description

The X/Open XCDE: Definitions and Infrastructure Specification contains a description of the
relationship between the XCDE and the X Window System and Motif. It includes specifications
of three additional widgets and of the C interfaces to some widget convenience functions for
those widgets.

4.2.3.2 Internationalisation Implications

There are no internationalisation issues specifically associated with this section of the X/Open
XCDE: Definitions and Infrastructure Specification.

Desktop Internationalisation 29

XCDE Definitions and Infrastructure XCDE Specifications

4.2.4 Miscellaneous Desktop Services

4.2.4.1 Description

This chapter of the X/Open XCDE: Definitions and Infrastructure Specification contains C-
language definitions of functions that initialise the desktop library and of a header file that
includes a number of public constant definitions.

4.2.4.2 Internationalisation Issues

Applications, tool classes and library versions are identified in the API by character strings that
presumably are null-terminated (see, for example, the name argument of DtInitialize ()).

4.2.5 Message Services

4.2.5.1 Description

The XCDE message services are based on the Sun Microsystems ToolTalk service. They support
the creation, sending, reception and processing of messages between applications. Message
reception is based on pattern matching criteria. The X/Open XCDE: Definitions and
Infrastructure Specification contains:

• a specification of the C interface to message services

• specifications of command line interfaces to message-related utilities

• specifications of standard messages.

4.2.5.2 Internationalisation Features

The tt_type_comp utility is a form of compiler. The source code that it processes is contained in
text files and, with certain flag settings (−h, −O, −p, −P, −v), it generates textual output. Also,
some of the data items created by tt_type_comp include text strings. The X/Open XCDE:
Definitions and Infrastructure Specification states that its execution is affected by
internationalisation environment variables such as LANG. It is to be assumed that these
determine the codeset and, where appropriate (for example, for help information), the language
used for textual input and output, although the X/Open XCDE: Definitions and Infrastructure
Specification does not state this explicitly. Other utilities (ttcp, ttmv, ttrm, ttrmdir, ttsession,
tttar) are also affected by locale environment variables. It is similarly to be assumed that any
textual output (such as help information) that they generate is in the language and codeset of the
current locale.

The data type of the contents argument to the Deposit request message should be string unless
the contents can include embedded nulls, in which case it must be bytes. The bytes data type
allows application programmers to pass text encoded using an encoding that contains
embedded nulls.

4.2.5.3 Internationalisation Issues

String Identifiers

A number of entities such as slots, files, processes and sessions, are identified by null-terminated
character strings.

Message attributes and pattern values can include null-terminated arrays of type char and can
include length-specified arrays of type unsigned char.

30 X/Open Technical Study (1995)

XCDE Specifications XCDE Definitions and Infrastructure

Message Trace Strings

The ttsession utility has a trace mode in which messages and their statuses are displayed. The
tt_message_print() function returns a string containing a textual representation of a message
trace, formatted as for the ttsession trace facility. It is to ‘‘allow the application to dump out
message that are received but not understood’’. The tt_pattern_print () function returns a string
containing a textual representation of a pattern, formatted in a similar way. There is no
requirement for these textual representations to be locale-dependent.

Message status attributes have character strings associated with them (see the description of
tt_message_status_string() in the X/Open XCDE: Definitions and Infrastructure Specification).
The X/Open XCDE: Definitions and Infrastructure Specification states that the status string
should be used by the application developer to amplify on, for example, why the application is
failing a message. There is no requirement for these strings to be locale-dependent

The tt_status_message() function returns a null-terminated character string that describes a
problem status code. There is no requirement for this string to be locale-dependent.

Locale Conflicts

A data item of type otype generated by tt_type_comp contains an optional command string that
can be executed. A data item of type ptype can contain a start string that is executed by the shell
to start a process. If the shell is internationalised (as it should be), these strings should be in the
codeset of the current locale. This is the locale indicated by the environment of the background
ToolTalk process ttsession, and could be the locale of the user or of the system administrator.
However, if tt_type_comp is internationalised, they will be in the codeset of the application
developer or, in some cases, of the application installer.

The X/Open XCDE: Definitions and Infrastructure Specification does not make it clear how this
conflict should be resolved. It may be that, in practice, an internationalised application should
use only command and start strings expressed in the character set and encoding of ISO 8859-1,
and that users and system administrators should only use locales whose character set encodings
include the encoding of ISO 8859-1 as a subset. Note that this would preclude encodings such as
EBCDIC which have codes different from those of ISO 8859-1 for the Latin alphabet.

The Get_Environment request message reports the (string) value of a (string-named) environment
variable. The name and the value are presumably both encoded in the codeset of the user’s
locale, established at run time. However, if the application developer supplies names or values
for these strings (for example, as compiled string constants), they will be in the execution
codeset of the compiler. The X/Open XCDE: Definitions and Infrastructure Specification does
not state how this conflict should be resolved.

Similar considerations arise for other message arguments of string type, such as the string
identifying the tool’s current working directory returned by the Get_Situation request message.
This is particularly the case for the visual argument of the Get_XInfo request message — an
output argument for which a set of standard values (‘‘StaticGray’’, and so on) are defined;
application programmers will naturally test this argument by string comparisons with compiled
string constants.

Desktop Internationalisation 31

XCDE Definitions and Infrastructure XCDE Specifications

4.2.6 Drag-and-drop

4.2.6.1 Description

The Motif drag-and-drop services are described in the X/Open Motif Toolkit API Specification.
They allow for transfer of information between applications when the user ‘‘drags’’ an icon
representing the information from one window to another, and ‘‘drops’’ it there. The X/Open
XCDE: Definitions and Infrastructure Specification defines extensions, including convenience
APIs, to the Motif drag-and-drop services.

4.2.6.2 Internationalisation Issues

String Identifiers

Some of the data items that can be passed to the drag-and-drop callback functions are character
strings that presumably are null-terminated (for example, the file names in the String field of the
DtDndContext structure). Some of these strings identify resources (see the description of
DtDndDropRegister() in the X/Open XCDE: Definitions and Infrastructure Specification).

Drag-and-drop host names and file names are in STRING format, and are therefore restricted to
the Latin-1 alphabet and ISO 8859-1 encoding.

Drag-and-drop buffer names are in STRING format, and are therefore restricted to the Latin-1
alphabet and ISO 8859-1 encoding.

Drag-and-drop Text

Textual data transferred using drag-and-drop services can be either Latin-1 alphabet text
encoded according to ISO 8859-1 (STRING data) or compound text in arbitrary alphabets
encoded using arbitrary encodings (COMPOUND_TEXT data).

4.2.7 Data Typing

4.2.7.1 Description

The XCDE data typing services provide capabilities that enable the attributes of a file or other
data item to be determined from its name, in accordance with criteria held in a database. The
X/Open XCDE: Definitions and Infrastructure Specification defines:

• a C-language API to XCDE data typing services

• the location and format of the files from which the database is created.

4.2.7.2 Internationalisation Features

A different database can be established for each locale.

In the files from which the database is constructed, file names are described by shell pattern-
matching expressions as defined in the X/Open XCU Specification. These take account of
internationalised regular expressions.

32 X/Open Technical Study (1995)

XCDE Specifications XCDE Definitions and Infrastructure

4.2.7.3 Internationalisation Issues

String Identifiers

Some of the API function arguments are character strings that presumably are null-terminated
and that identify entities (for example, the opt_name argument of DtDtsBufferToAttributeList()).

In the files from which the database is constructed, constructs for entity names must use the
Host Portable Character encoding. Other constructs may use other codesets, but it is probable
that codesets not compatible with ISO/IEC 646 would cause problems.

Boolean Strings

The DtDtsIsTrue() function tests a string for a Boolean value. The strings that it identifies as
meaning ‘‘true’’ are all English words (or the number ‘‘1’’), and presumably are encoded in
accordance with ISO 8859-1.

Configuration File Syntax

The syntax of the files from which the database is constructed is English-like.

String Manipulation

One of the data criteria sorting rules is that paths are ordered so that the longest is more specific.
It is not clear whether, in codesets that include combining characters, combining characters
count towards the length of a path name. Other rules may be affected in a similar way by
codesets that contain combining characters.

4.2.8 Execution Management

4.2.8.1 Description

The XCDE execution management services support the handling of actions (applications and
utilities that can be invoked from the desktop or by an application). Each system in the XCDE
has access to an actions database (which may be distributed across several systems) that defines
the relationship of actions to files associated with application programs and utilities. The
X/Open XCDE: Definitions and Infrastructure Specification defines:

• a C-language API through which applications can load the database, query the database and
invoke actions

• the dtaction utility that can be invoked from the command line and that in turn invokes an
XCDE action

• the format of files from which the database is loaded.

4.2.8.2 Internationalisation Features

As for data typing services, a different database can be established for each locale.

For command actions, the database contains a string containing the command to be passed to
the shell. It should be in the character set encoding of the user’s locale. This presents no problem,
however, if there is a different action database for each locale.

Desktop Internationalisation 33

XCDE Definitions and Infrastructure XCDE Specifications

4.2.8.3 Internationalisation Issues

Locale Dependence of Descriptions and Labels

The DESCRIPTION field of the actions database contains a textual description suitable for
presentation to the user. There is no requirement that it should be locale-dependent. However
the LABEL field, which contains a textual label for presentation to the user, is locale-dependent.
This raises two questions:

• If there is a separate database for each locale, why does the LABEL field need to be locale-
dependent?

• If there is some reason for the LABEL field to be locale-dependent, why does it not also apply
to the DESCRIPTION field?

String Identifiers

Various API function arguments (for example, the actionName argument of
DtActionDescription()) contain character strings that identify resources and other entities. These
entities are also identified by character strings in the dtaction command.

Command String

The command line text is returned, as a presumably null-terminated string, by DtAction().

34 X/Open Technical Study (1995)

XCDE Specifications XCDE Services and Applications

4.3 XCDE Services and Applications

4.3.1 Introduction

The X/Open XCDE: Services and Applications Specification defines:

• APIs to the standard services and applications that are available to the user in the XCDE

• tools that are available to the programmer writing applications for the XCDE and to the
system integrator building a system that includes the XCDE

• standard conventions that should be used by application designers so that the user interface
will have the appropriate ‘‘look and feel’’.

These definitions are contained in a number of self-contained chapters of the X/Open XCDE:
Services and Applications Specification. With some exceptions, each of these chapters is
discussed in a separate subsection below. The exceptions are:

• the chapter on Window Management Services, which is discussed together with the Window
Management part of the X/Open Motif Toolkit API Specification in Section 4.1

• the chapter on Calendar and Appointment Services, which is discussed together with the
X/Open XCS Specification in Section 4.4.

4.3.2 Window Management Services

The XCDE window manager handles the windows on the user’s ‘‘desktop’’. It is a superset of
the X/Open Motif mwm window manager. It is discussed together with the Window
Management part of the X/Open Motif Toolkit API Specification in Section 4.1.

4.3.3 Workspace Management Services

4.3.3.1 Description

The XCDE workspace manager provides support for multiple ‘‘virtual screens’’ known as
workspaces. The X/Open XCDE: Services and Applications Specification defines a C-language
API to the workspace manager. The API enables an application to query and control the state of
a workspace, to add windows to workspaces, and to remove windows from workspaces.

4.3.3.2 Internationalisation Features

Workspace titles (a workspace title is displayed in the button for the workspace in the front
panel) are passed across the API in character strings. Each such string is interpreted in the locale
in which the workspace manager is running. This allows internationalised applications to use
locale-dependent workspace titles.

4.3.3.3 Internationalisation Issues

The strings containing workspace titles are presumably null-terminated.

Desktop Internationalisation 35

XCDE Services and Applications XCDE Specifications

4.3.4 Session Management Services

4.3.4.1 Description

A session is the collection of applications, settings and resources that are present on a user’s
desktop from the time that he logs in to the time that he logs out. The XCDE session
management services are described in the ICCCM sections of the X/Open File Formats and
Application Conventions Specification. The X/Open XCDE: Services and Applications
Specification defines a C-language API to them.

4.3.4.2 Internationalisation Features

An implementation of session management services is required to be internationalised in
accordance with the X/Open XSH Specification, the X/Open Xlib - C Language Binding
Specification and the X/Open Motif Toolkit API Specification, and must support any locales
supported by the associated Xlib implementation.

4.3.4.3 Internationalisation issues

Filenames and pathnames are passed across the API as character strings, that presumably are
null-terminated (see, for example, the description of DtSessionRestorePath() in the X/Open
XCDE: Services and Applications Specification).

4.3.5 Help Services

4.3.5.1 Description

The XCDE help services provide information to the user about the system, the desktop
environment and the applications that he can use. They are provided to the user through a
number of widgets on the desktop. The X/Open XCDE: Services and Applications Specification
defines the widget classes of these widgets.

4.3.5.2 Internationalisation Features

The help system is internationalised in that it enables a different set of help text to be provided
for each locale. It does not provide for that text to follow a common format and cross-reference
structure; the imposition of a common structure for help text in different locales is left to the
application programmer. (See the HelpTag format description in the X/Open XCDE: Services
and Applications Specification.)

For resources containing file pathnames, there is a mechanism for making the pathname
dependent on the LANG environment variable. This enables an internationalised application to
use an appropriate set of files for each locale.

There is provision for an application to deliver localised help into a non-localised XCDE
environment (see the description of DtHelpSetCatalogName () in the X/Open XCDE: Services and
Applications Specification).

4.3.5.3 Internationalisation Issues

Dialog widgets and cursors are identified in the API by character strings that presumably are
null-terminated (see the DtCreateHelpDialog () and DtHelpReturnSelectedWidgetId() function
descriptions in the X/Open XCDE: Services and Applications Specification).

36 X/Open Technical Study (1995)

XCDE Specifications XCDE Services and Applications

4.3.6 Calendar and Appointment Services

The chapter on Calendar and Appointment Services is discussed together with the X/Open XCS
Specification in Section 4.4.

4.3.7 Mail Services

4.3.7.1 Description

The XCDE mail services allow the user to send, receive and manipulate electronic mail
messages. The message format defined in the RFC 822 Internet Specification is assumed, and the
messages can be MIME-encoded and have attachments, as described in the RFCs 1521 and 1522
Internet Specifications.

4.3.7.2 Internationalisation Features

An implementation of XCDE mail services is required to be internationalised in accordance with
the X/Open XSH Specification, the X/Open Xlib - C Language Binding Specification and the
X/Open Motif Toolkit API Specification, and must support any locales supported by the
associated Xlib implementation.

4.3.7.3 Internationalisation Issues

Mail Message Header Fields

The RFC 822 Internet Specification requires use of ASCII text for message headers and text, but
not (if MIME is used) for attachments. This means that a user cannot in general use his national
character set for message addresses, subjects, and so on. This applies for national as well as for
international messages.

Locale Conflicts

A user can display lists giving message senders, subjects, and so on. These, if in ASCII, could be
in a different locale from the current session locale. They will still usually be displayable, since
ASCII is effectively a subset of most character sets used in computer systems.

Mail Message Text

A user whose locale does not have ASCII as its character encoding must make the text of his
message an attachment rather than part of the message proper, which is an inconvenience to
him. For example, the mail system is required to support the capability of displaying the text of
a message. This is of little use for non-ASCII messages; in this case the user would prefer to
display the first attachment.

Mail Aliases

A user must be able to maintain a list of personal mail aliases. For internationalised operation,
he should be able to define aliases using the character set and encoding of his locale. No
requirement to allow this is stated. (Normally, it would be taken for granted that a user could
use the character set and encoding of his locale. However, as the names of message addressees
must be in ASCII, it is important to state explicitly that aliases can be in other character set
encodings.)

Desktop Internationalisation 37

XCDE Services and Applications XCDE Specifications

4.3.8 File Management Services

4.3.8.1 Description

The XCDE file management services provide a user interface for manipulation of objects
(including files) and folders, and for application execution. The user accesses these services by
invoking actions in desktop widgets. The X/Open XCDE: Services and Applications
Specification defines these actions.

4.3.8.2 Internationalisation Features

An implementation of XCDE file management services is required to be internationalised in
accordance with the X/Open XSH Specification, the X/Open Xlib - C Language Binding
Specification and the X/Open Motif Toolkit API Specification, and must support any locales
supported by the associated Xlib implementation. This allows a user to manipulate files that
have been named in his own locale. It does not necessarily enable him to manipulate files that
have been named in other locales.

4.3.9 Front Panel Services

4.3.9.1 Description

A front panel appears in every XCDE workspace. It is a window that enables many of the basic
parameters of the desktop to be customised. The X/Open XCDE: Services and Applications
Specification specifies the front panel capabilities that must be provided by an implementation
of the XCDE, and defines the format of the configuration files that give the values of the front
panel parameters in installed systems.

4.3.9.2 Internationalisation Features

An implementation of XCDE front panel services is required to be internationalised in
accordance with the X/Open XSH Specification, the X/Open Xlib - C Language Binding
Specification and the X/Open Motif Toolkit API Specification, and must support any locales
supported by the associated Xlib implementation.

4.3.9.3 Internationalisation Issues

The configuration files have an English-like syntax. The character set and encoding used for the
configuration files is not specified. It is likely that many implementations will assume ASCII.

4.3.10 Text Editing Services

4.3.10.1 Description

The XCDE text editing services enable the user to create and edit short documents, using the
DtEditor widget. The X/Open XCDE: Services and Applications Specification defines:

• the DtEditor widget

• a C-language API to the XDCE text editing services

• the dtpad utility that can be invoked from a command line

• text editing actions that can be invoked from widgets

• inter-application (ToolTalk) messages supported by XCDE text editing services.

38 X/Open Technical Study (1995)

XCDE Specifications XCDE Services and Applications

4.3.10.2 Internationalisation Features

An implementation of XCDE text editing services is required to be internationalised in
accordance with the X/Open XSH Specification, the X/Open Xlib - C Language Binding
Specification and the X/Open Motif Toolkit API Specification, and must support any locales
supported by the associated Xlib implementation.

The DtEditor widget supports locales with single and multi-byte character set encodings (but
presumably does not support character set encodings such as the UNICODE standard and
ISO/IEC 10646 that contain embedded nulls).

The dtpad editor utility is affected by localisation of environment variables such as LANG.

The XCDE text editing services support the Tooltalk C_STRING message for text in an arbitrary
codeset.

In a similar way to Motif text widgets, the DtEditor widget supports horizontal (left-to-right
and/or right-to-left) directionality of text.

Localisation resources are defined that allow localisation of dialogues. This approach seems an
excellent one from the point of view of internationalisation. It could usefully be followed in
other widgets, such as the Motif text widgets.

The text that is edited can be passed over the API in null-terminated strings, in strings of type
wchar_t or in sized buffers (see, for example, the description of DtEditorAppend()). This should
be sufficient for a fully-internationalised application, and even allows for character set encodings
that contain embedded nulls.

4.3.10.3 Internationalisation Issues

String Identifiers

Editor widgets are identified in the API by character strings that presumably are null-terminated
(see the DtCreateEditor() function description in the X/Open XCDE: Services and Applications
Specification).

Text Directionality

The DtEditor widget does not support vertical text directionality.

String Manipulation

Certain functions (DtEditorChange(), DtEditorFind() and DtEditorInvokeFindChangeDialog ())
perform string manipulation and comparison operations such as search-and-replace. These
operations are locale-dependent. However, the X/Open XCDE: Services and Applications
Specification does not make it clear what happens when a locale allows a character to be
encoded in two or more different ways (such as when an accented character can be encoded
either as a single character or as a character with a combining accent character). It is likely that
some string comparison operations will not work in the way that the user expects when a
character can be encoded in more than one way.

Desktop Internationalisation 39

XCDE Services and Applications XCDE Specifications

Pasted Segment Directionality

Variable horizontal directionality is supported. However, the description of
DtEditorPasteFromClipboard () does not make it clear whether, when a segment is pasted into a
segment with reversed directionality, the directionality of the pasted text is reversed, or the
pasted text becomes a nested segment with its own directionality.

4.3.11 Icon Editing Services

4.3.11.1 Description

The XCDE icon editing services enable users to create and modify icons. The X/Open XCDE:
Services and Applications Specification defines the actions that the user can invoke from
widgets in order to do this.

4.3.11.2 Internationalisation Features

An implementation of XCDE icon editing services is required to be internationalised in
accordance with the X/Open XSH Specification, the X/Open Xlib - C Language Binding
Specification and the X/Open Motif Toolkit API Specification, and must support any locales
supported by the associated Xlib implementation.

4.3.12 GUI Scripting Services

4.3.12.1 Description

The XCDE GUI scripting services provide extensions to the shell programming language defined
in the X/Open XCU Specification that allow access to the XCDE services. The X/Open XCDE:
Services and Applications Specification defines the dtksh utility that can be invoked from the
command line and that provides these services.

4.3.12.2 Internationalisation Issues

The X/Open XCDE: Services and Applications Specification states that the dtksh utility
supports fully localised shell scripts, and it describes how a localised shell script is created.
However, more detail could be given on the meaning and implications of localisation. For
example:

• When dtksh converts string values to ‘‘an appropriate internal representation’’, is this
dependent on the current locale?

• How is multi-character set compound text represented in a single-language locale?

4.3.13 Terminal Emulation Services

4.3.13.1 Description

The XCDE terminal emulation services provide a window for applications written for character-
based terminals. The services are available in two forms: a stand-alone client and a widget. The
terminal emulation provided is partly based on the VT220 terminal, and is compatible with
ANSI X3.64 standard and ISO/IEC 6429. The X/Open XCDE: Services and Applications
Specification defines:

• the terminal emulation capabilities that an XCDE implementation must support

• a C-language API to XCDE terminal emulation services

40 X/Open Technical Study (1995)

XCDE Specifications XCDE Services and Applications

• the DtTerm terminal emulation widget

• the dtterm terminal emulation utility that can be invoked from the command line

• the actions that can be invoked to provide terminal emulation services

• the format of the data stream (including escape sequences) recognised by the terminal
emulation.

4.3.13.2 Internationalisation Features

An implementation of XCDE terminal emulation services is required to be internationalised in
accordance with the X/Open XSH Specification, the X/Open Xlib - C Language Binding
Specification and the X/Open Motif Toolkit API Specification, and must support any locales
supported by the associated Xlib implementation.

The behaviour of the dtterm utility is dependent on internationalisation environment variables
such as LANG.

4.3.13.3 Internationalisation Issues

It is not clear how far languages that do not use the ASCII character set, and complex text
languages in particular, can be supported with the defined terminal emulation. For example, in
insert mode, characters are stated to be moved ‘‘to the right’’.

4.3.14 Style Management Services

4.3.14.1 Description

The XCDE style management services enable users to customise the visual elements and system
behaviour of the XCDE. The X/Open XCDE: Services and Applications Specification defines the
capabilities that an implementation of XCDE style management services must provide, and the
style management actions that can be invoked.

4.3.14.2 Internationalisation Features

An implementation of XCDE style management services is required to be internationalised in
accordance with the X/Open XSH Specification, the X/Open Xlib - C Language Binding
Specification and the X/Open Motif Toolkit API Specification, and must support any locales
supported by the associated Xlib implementation.

4.3.15 Application Building Services

4.3.15.1 Description

The XCDE application building services provide the application developer with aid in
assembling graphical objects into the user interface and with generation of appropriate calls to
XCDE API routines. The X/Open XCDE: Services and Applications Specification defines:

• the capabilities that an implementation of the XCDE application building services must
support

• the dtcodegen utility that can be invoked from the command line and that provides XDCE
application building services

• the actions that can be invoked to provide XDCE application building services.

Desktop Internationalisation 41

XCDE Services and Applications XCDE Specifications

4.3.15.2 Internationalisation Features

An implementation of XCDE application building services is required to be internationalised in
accordance with the X/Open XSH Specification, the X/Open Xlib - C Language Binding
Specification and the X/Open Motif Toolkit API Specification, and must support any locales
supported by the associated Xlib implementation.

The behaviour of dtcodegen is affected by internationalisation environment variables such as
LANG.

The developer can cause the code generator to determine whether internationalisation message-
handling functions (catgets(), and so on) should be used in the application, and whether a
message source text file should be generated.

4.3.15.3 Internationalisation Issues

Source Code of dtcodegen

It is not clear whether the source codeset of dtcodegen programs is locale-dependent.

Object Palette Limitations

The object palette includes standard Text Pane and Text Field objects, but does not include
standard date, time, number or money objects. This means that the application developer does
not have to be concerned with handling text in an internationalised application, but he does
have to be concerned with handling other data whose format is locale-dependent.

Building Help Text

It is not clear whether message catalogue source file generation applies to help text.

4.3.16 Application Integration Services

4.3.16.1 Description

The XCDE application integration services enable application developers and system
administrators to integrate applications into the XCDE. The X/Open XCDE: Services and
Applications Specification defines:

• the dtappintegrate utility that can be invoked from the command line and that provides
XCDE application integration services

• the application integration actions that can be invoked.

4.3.16.2 Internationalisation Features

The dtappintegrate utility allows for files in selected or all locales to be integrated.

42 X/Open Technical Study (1995)

XCDE Specifications XCDE Services and Applications

4.3.17 Action Creation Services

4.3.17.1 Description

Actions provide the ability to associate an application with an icon on the desktop. Data types
provide the ability to associate a data file with an icon on the desktop. The XCDE action creation
services enable users to define actions and data types. They are provided through a set of pre-
defined actions that are specified in the X/Open XCDE: Services and Applications Specification.
The X/Open XCDE: Services and Applications Specification also defines the capabilities that an
implementation of XCDE action creation services must support.

4.3.17.2 Internationalisation Features

An implementation of XCDE action creation services is required to be internationalised in
accordance with the X/Open XSH Specification, the X/Open Xlib - C Language Binding
Specification and the X/Open Motif Toolkit API Specification, and must support any locales
supported by the associated Xlib implementation.

4.3.17.3 Internationalisation Issues

Action creation services are required to support the association of help information with action
icons. There is, however, no requirement for the help information to be localisable. In a multi-
national organisation, a user or system administrator defining an action for system-wide use
might wish to define help information for use in more than one locale.

4.3.18 Print Job Services

4.3.18.1 Description

The XCDE print job services provide information to users about printers and print jobs. The
X/Open XCDE: Services and Applications Specification defines the capabilities that an
implementation of the XCDE print job services must support, and defines the print job service
actions that can be invoked.

4.3.18.2 Internationalisation Features

An implementation of XCDE print job services is required to be internationalised in accordance
with the X/Open XSH Specification, the X/Open Xlib - C Language Binding Specification and
the X/Open Motif Toolkit API Specification, and must support any locales supported by the
associated Xlib implementation.

4.3.19 Calculator Services

4.3.19.1 Description

The XCDE calculator services provide basic computation capabilities to users. The X/Open
XCDE: Services and Applications Specification defines the capabilities that an implementation
of the XCDE calculator services must support, and defines the calculator service actions that can
be invoked.

Desktop Internationalisation 43

XCDE Services and Applications XCDE Specifications

4.3.19.2 Internationalisation Features

An implementation of XCDE calculator services is required to be internationalised in accordance
with the X/Open XSH Specification, the X/Open Xlib - C Language Binding Specification and
the X/Open Motif Toolkit API Specification, and must support any locales supported by the
associated Xlib implementation.

4.3.19.3 Internationalisation Issues

It is not entirely clear what it means for an implementation of calculator services to be
internationalised. For example:

• Does it mean that the number separators and decimal characters are locale-dependent (so
that 10001/8 appears as 1,125.125 in an English locale and as 1.125,125 in a French one)?

• In locales that have special (non-Arabic) character sets, in which character set are numbers
displayed?

4.3.20 Application Conventions

4.3.20.1 Description

The ‘‘Application Conventions’’ chapter of the XCDE describes font and icon conventions that
applications should follow.

4.3.20.2 Internationalisation Features

There are requirements for fonts and font names for use in locales that include the Latin-1
character set (as defined in ISO 8859-1). There are guidelines, but not requirements, for other
locales.

4.3.21 Application Style Checklist

4.3.21.1 Description

The ‘‘Application Style Checklist’’ chapter of the XCDE states the style requirements for XCDE
applications.

4.3.21.2 Internationalisation Features

Although it does not define in detail the variations required for non-English locales, the X/Open
XCDE: Services and Applications Specification does indicate the areas where such variations
will apply, and it is generally clear what the variations should be.

4.3.21.3 Internationalisation Issues

Command and Filename Encodings

When the user selects files or commands, it is possible that the names of some of the files and
commands that are available to him do not use the character set of the user’s locale. There is no
guidance as to how such names should be displayed.

44 X/Open Technical Study (1995)

XCDE Specifications XCDE Services and Applications

Operating System Messages

The X/Open XCDE: Services and Applications Specification recommends that messages from
the underlying operating system should be ‘‘translated’’ into non-technical terms before being
given to the user. Presumably, this should include localisation. However, this will not be
practical if the operating system generates non-localised text messages. The X/Open XCDE:
Services and Applications Specification also states that the application optionally should not
rely on error messages from the operating system. It might be better to state categorically that
an internationalised application shall not display to the user non-localised text generated by the
underlying operating system.

The X/Open XCDE: Services and Applications Specification states that the application
optionally should write error messages to the XCDE error log when it is not appropriate to
display them to the user, but when they may nevertheless be useful in diagnosing problems. For
messages generated by the application, it might be more appropriate to log error codes and to
have a utility that converts these codes to error messages in the locale of the system
administrator or user who is using the error log.

Desktop Internationalisation 45

Calendaring and Scheduling API XCDE Specifications

4.4 Calendaring and Scheduling API

4.4.1 Description

The XCDE calendar and appointment services enable users to maintain appointment diaries, and
to browse and update their own and other users’ diaries in order to set up group meetings.

A C-language API to the XCDE calendar and appointment services is defined in the X/Open
XCDE: Services and Applications Specification and the X/Open XCS Specification. The
X/Open XCDE: Services and Applications Specification also defines:

• the capabilities that an implementation of XCDE calendar and appointment services must
support

• utilities that can be invoked from the command line and that provide calendar and
appointment services

• actions that can be invoked from the desktop or by applications and that provide calendar
and appointment services

• inter-application (ToolTalk) messages used by calendar and appointment services

• the data formats of calendar archive files and calendar entries.

4.4.2 Internationalisation Features

The X/Open XCDE: Services and Applications Specification states that an implementation of
calendar and appointment services is required to be internationalised in accordance with the
X/Open XSH Specification, the X/Open Xlib - C Language Binding Specification and the
X/Open Motif Toolkit API Specification, and must support any locales supported by the
associated Xlib implementation.

The X/Open XCS Specification states that every calendar has a character set (there is an
implementation-specific default). It defines the CSA_CAL_ATTR_CHARACTER_SET attribute,
support for which is optional. It defines values IBM 437, IBM 850, Microsoft 1252, Apple
ISTRING, UNICODE standard, TSS T61, TSS IA5, ISO/IEC 10646, ISO/IEC 646 and ISO 8859-1
for this attribute and allows implementations to support others. The calendar character set is
presumably set through the calendar_attributes argument to csa_add_calendar ().

The X/Open XCS Specification states that a session character set is identified by the character_set
argument of csa_logon (). Its values are implementation-specific.

4.4.3 Internationalisation Issues

4.4.3.1 Locale Conflicts

It is not clear whether the session character set established by csa_logon () can be different from
the calendar character set. If it can be different, it is not clear how the implementation behaves
when the session character set is different from the diary character set. For example, it might
perform character conversion, in which case there should be some indication if information is
lost.

The X/Open XCDE: Services and Applications Specification states that the behaviour of the
utilities depends on the internationalisation environment variables (LANG, and so on). As with
the session character set, it is not clear whether the character set and encoding of the locale can
be different from the character set and encoding of the calendar, or how the implementation
should behave if they are different.

46 X/Open Technical Study (1995)

XCDE Specifications Calendaring and Scheduling API

The X/Open XCDE: Services and Applications Specification states that a user can change his
calendar display to that of another user. It is not clear what happens if the two users work in
different locales.

The X/Open XCS Specification states that a natural language can be specified by a combination
of the (optional) CSA_CAL_ATTR_COUNTRY and CSA_CAL_ATTR_LANGUAGE attributes.
They contain ISO 3166 and ISO 639 values respectively. It is not clear how the implementation
behaves if this language is different from that defined by the currently established locale.

The X/Open XCS Specification defines function csa_update_calendar_attributes () which updates
the calendar attribute values for a calendar. It is not clear what happens if an attempt is made to
change the calendar codeset using this function. In particular, the X/Open XCS Specification
does not state whether all of the entries should be re-encoded.

The X/Open XCS Specification defines function csa_add_entry () which adds an entry to a
calendar. The entry can have attributes. It is not clear whether they can include a codeset
attribute. If they can:

• It is not clear how the implementation behaves if this is different from the session codeset
and/or the calendar codeset.

• It is not clear how the implementation behaves if an attempt is made to change this codeset
through the csa_update_entry_attributes () function — are character values re-encoded?

4.4.3.2 Date, Time and Number Formats

The X/Open XCDE: Services and Applications Specification states that dates and times can be
specified to some of the utilities (for example, via the −d and −s flags of dtcm_insert) and defines
a particular form in which they are to be represented. This form may not be appropriate in all
locales (some locales use dd/mm/yy rather than mm/dd/yy, for example). Also, it is not clear
whether the numbers can be non-arabic numerals in locales that include non-arabic numerals.

4.4.3.3 Calendar Archive Names and Values

The X/Open XCDE: Services and Applications Specification states that, in the calendar archive
file format, names that are ISO 8859-1 strings and values can contain null-terminated strings,
interpreted relative to the character set for the entry containing them. However, it is not clear
where this character set is identified in the entry description.

4.4.3.4 String Manipulation

The X/Open XCDE: Services and Applications Specification states that appointments can be
searched for using string searches. It is not clear how these searches operate in locales where
there are different representations for a single character (for example, <e-acute> and <e> plus
<acute accent>).

4.4.3.5 Encoding of csa_logon() Arguments

It is not clear what character set and encoding is used for the arguments of csa_logon (). The
character set and encoding established by the character_set argument should apply to the user,
password, required_csa_version and logon_extensions arguments. However, it cannot apply to the
character_set argument itself. The most likely explanation is that the character_set argument must
use Latin-1 characters encoded in accordance with ISO 8859-1, but the X/Open XCS
Specification does not state this.

Desktop Internationalisation 47

Calendaring and Scheduling API XCDE Specifications

4.4.3.6 Rule Syntax

In the X/Open XCS Specification, exception rules and recurrence rules are specified as strings
with an English-oriented formal grammar.

48 X/Open Technical Study (1995)

Chapter 5

Summary and Recommendations

5.1 Introduction
This section of the report contains a summary of the internationalisation issues and
recommendations for resolving them. Provisional versions of these recommendations have been
discussed by the X/Open Desktop Working Group and the Joint Internationalization Group of
X/Open and UniForum. The recommendations as stated here embody the conclusions of those
groups.

5.2 Character Representations
There is a practical limitation of 65,536 on the number of characters in a font (see Section 3.1.2.1
on page 15).

There are a number of alphabets that have more than 65,535 characters. They are usually dealt
with by allocating multiple fonts to them. For example, three fonts are needed to represent
Japanese characters, and three fonts are needed to represent Chinese characters. This is
satisfactory, but guidelines are needed on how multiple fonts are to be used for a single
character set.

There are some guidelines in X11R6, which provides for the
/usr/lib/X11/locale/%L/XLC_LOCALE file to define the fonts for a single codeset that consists of
multiple character sets. This aspect of X11R6 should be incorporated into the XCDE (which is
currently based on the previous release, R5, of X11).

5.3 Font Attributes
Some font attributes are oriented towards Latin fonts (see Section 3.2.3.2 on page 18 and Font
Attributes on page 23).

The Complex Text Languages requirements are relevant to this. They are discussed in the
X/Open Layout Services Snapshot.

There are probably of the order of tens of attributes that should be investigated, and that may
lead to the definition of further attributes to meet the needs of users of non-Latin alphabets.

It is likely that the X implementors will be the best people to define new attributes.
Arrangements should be made so that if X/Open identifies a need for attributes that are not
defined in the XCDE, then this need can be fed into the X implementors as a requirement.

Desktop Internationalisation 49

Text Directionality Summary and Recommendations

5.4 Text Directionality
The XCDE supports text with varying horizontal directionality (right-to-left, left-to-right) but
does not support text with vertical directionality (top-to-bottom or bottom-to-top). See Section
3.2.3.3 on page 18, Text Directionality on page 24, Section 4.1.3.7 on page 28 and Text
Directionality on page 39.

Vertical directionality will probably be a requirement at some time in the future. This is made
clear in the X/Open Layout Services Snapshot. It should be considered as a possible
requirement for future issues of the XCDE specifications.

5.5 Pasted Segment Directionality
The description of DtEditorPasteFromClipboard () does not make it clear how segment pasting
works in text with reversed directionality (see Pasted Segment Directionality on page 40).

Ideally, the directionality of the pasted segment should be context-sensitive. This is difficult to
specify, however.

The ICCCM states that the destination application supplies a property and the originating
application converts the information to the type of that property (or, if it cannot perform the
conversion, the operation fails). Properties of type COMPOUND_TEXT should be specified by
the destination application to cause the originating application to provide directionality
information. If the source and destination applications can use the same services for handling
shaping and re-ordering (such services are described in the X/Open Layout Services Snapshot),
then all aspects of shaping and directionality can be preserved.

The XCDE specifications should be left unchanged.

5.6 Keyboard Input
The keyboard input recognition mechanism does not look to be appropriate for possible future
new input methods (see Section 3.1.2.2 on page 15 and Section 3.2.3.5 on page 18).

This issue is not of immediate concern, and no action is proposed in respect of it.

5.7 Defined KEYSYM Alphabets
The set of defined KEYSYMS includes the characters of a number of alphabets (see Section 3.1.2.3
on page 15). As the XCDE is used more widely in locales with other alphabets, it will be
appropriate to extend the set of defined KEYSYMS.

The X Consortium is the body that can best perform this task.

50 X/Open Technical Study (1995)

Summary and Recommendations Simplified Keyboard Event Functions

5.8 Simplified Keyboard Event Functions
The Latin-1 Keyboard Event Functions provide special (simplified) facilities for applications that
assume the use of Latin-1 keyboards (see Section 3.2.3.6 on page 18). This is a convenience for
programmers writing non-internationalised applications in locales that use the Latin-1 character
set, but it does not affect the writing of internationalised applications.

The XCDE specifications should be amended to state that internationalised applications should
not use these functions.

5.9 String Properties
Some properties contain Latin-1 text strings (see String Properties on page 23 and String
Properties on page 24).

The requirement not to break implementations is overriding, and existing property
specifications should not be changed. The specifications should warn that such text must not be
displayed by internationalised applications. No new such properties should be defined.

5.10 Error Strings
Non-localised text conveying error or status descriptions can be conveyed by the X Protocol (see
Section 3.1.2.4 on page 16) and returned by some API functions (see Section 3.3.3.3 on page 20,
Message Trace Strings on page 31 and Operating System Messages on page 45).

These strings should not be internationalised but, where non-localised strings are returned, the
specifications should warn that internationalised applications must not display the text to users.
It should be noted that applications can define message catalogues containing strings that can be
used in place of those conveyed by the protocol.

5.11 Null-terminated Strings
Strings passed to or returned by functions or contained in ToolTalk messages are often null-
terminated (see Section 3.2.3.1 on page 17, Section 3.2.3.4 on page 18, Section 3.2.3.7 on page 18,
Section 4.1.3.1 on page 27, Section 4.2.4.2 on page 30, String Identifiers on page 30, String
Identifiers on page 32, String Identifiers on page 33, Command String on page 34, Section
4.3.4.3 on page 36, Section 4.3.5.3 on page 36, String Identifiers on page 39 and Section 4.4.3.3 on
page 47). Lists of strings in properties are null-separated (see String Properties on page 23).

The use of null-terminated or null-separated strings presents problems when encodings such as
the UNICODE standard and ISO/IEC 10646 that contain embedded nulls are in use.

To overcome these problems, functions should ideally treat strings as being multi-byte encoded
and terminated by a number of null bytes that is appropriate for the encoding. However, the
identity of the encoding need not always be available to XCDE functions that process character
strings. Where applications use only the Host Portable Character Set, no problems will arise; in
many cases the function descriptions warn that use of other characters may lead to
implementation-dependent results, but for some functions (for example, DisplayString (),
XDisplayString() and XDisplayName()) this caveat is missing.

The XCDE specifications should be amended so that a caveat statement appears in the
descriptions of all functions to which it is relevant.

Desktop Internationalisation 51

Null-terminated Strings Summary and Recommendations

For ToolTalk messages, the ToolTalk protocol makes it clear which encoding is used.5

5.12 String Identifiers
Various entities including hosts, displays, fonts, widget classes and resources are identified in
atoms, in ToolTalk messages, in program source code and in configuration files by character
strings, often restricted to the Latin-1 alphabet. (See Section 3.1.2.5 on page 16, Section 3.2.3.1 on
page 17, Section 3.3.3.1 on page 20, Atom Strings on page 22, String Identifiers on page 23,
String Identifiers on page 25, Section 4.1.3.1 on page 27, Section 4.2.2 on page 29, Section 4.2.4.2
on page 30, String Identifiers on page 30, String Identifiers on page 32, String Identifiers on
page 33, String Identifiers on page 34, Section 4.3.3.3 on page 35, Section 4.3.4.3 on page 36,
Section 4.3.5.3 on page 36, String Identifiers on page 39 and Section 4.4.3.3 on page 47.)

The use of such identifiers in source code affects system programmers and application
programmers but does not affect users.

The use of such identifiers in configuration files could affect users, in particular system
administrators, as well as programmers. Configuration files are used to create databases such as
the resource database, the data types database and the actions database. (See Section 3.2.3.9 on
page 19.) In general, it is possible to define a set of configuration files in any locale, and to make
the pathname which is used to access the configuration files when the database is built locale-
dependent. However, while a value in the databases can use any character set and encoding,
identifiers are generally required to use Latin-1 characters encoded in accordance with
ISO 8859-1. This effectively restricts the supported locales to those whose character set encoding
is an extension of ISO 8859-1. Not all encodings have this property. Those that follow ISO 2022
do but others, such as the UNICODE standard, do not.

Allowing string identifiers to use arbitrary character sets and encodings could present technical
difficulties (see Section 3.1.2.5 on page 16).

A restriction to characters of the X Portable Character Set is acceptable; a restriction to the
characters of the Latin-1 alphabet is not. There is an overriding requirement not to change the X
Protocol (for compatibility and interoperability reasons), so references in the X Protocol
specification to ISO 8859-1 should not be changed. However, this does not apply to Xlib and the
other XCDE specifications.

The XCDE specifications should be amended as follows:

1. Other than in the X Protocol specification, in those cases where they restrict identifiers to
using the Latin-1 alphabet, they should be amended so that the restriction is to characters
of the Host Portable Character Set.

2. The X Toolkit Intrinsics specification (Section 3.6.1) should state clearly that the Host
Portable Character Set shall be used for string identifiers.

3. The definition of the String data type should be referred to in the index of the specification
in which it appears, so that it can be found easily. If it is actually missing then it should be
added to the appropriate XCDE specification. It should state clearly that the data type is
used for null-terminated strings of 8-bit bytes.

5. This protocol is not defined in the XCDE specifications. It is a Sun Microsystems specification and is available from CDE
vendors. It satisfies the X/Open criteria for a proprietary specification that is relied on by an X/Open specification; the
technology can be licenced on reasonable terms and is available from multiple sources.

52 X/Open Technical Study (1995)

Summary and Recommendations String Identifiers

5.13 Configuration File Syntax
The syntax of configuration files is generally English-like (see Section 3.3.3.4 on page 21, Section
4.3.9.3 on page 38, Section 4.4.3.3 on page 47 and Section 4.4.3.6 on page 48). Accelerators are
described by String resources in a format similar to that used by the translation manager (see
Section 4.1.3.3 on page 28).

The present situation is satisfactory, and no change is proposed.

5.14 Font Representations
As for configuration files (see Section 5.13), BDF font representations have an English-like syntax
(see Font Representations on page 25). They are designed to be human-readable as well as
machine-readable. From the human-readability point of view, the representations should ideally
be locale-dependent. However, this is outweighed by the importance of a common machine-
readable format for system interoperability.

No action is therefore proposed in respect of this issue.

5.15 Uil String Formats
It is not clear whether the strings processed and generated by Uil() are locale-dependent (see
Section 4.1.3.4 on page 28).

The strings should be locale-dependent, and the XCDE specifications should be amended to say
so.

5.16 Command Strings
There are some instances where command strings used to invoke applications are assumed to
use the characters of the X Portable Character Set (see Section 3.2.3.8 on page 19 Section 4.1.3.2
on page 28).

This is acceptable, and no change is proposed.

5.17 Text Drawing
Programmers writing internationalised applications should take care to use the appropriate text
drawing primitives (see Section 3.1.2.6 on page 16).

Use of the single-byte-character primitives should be deprecated in the XCDE specifications.

Desktop Internationalisation 53

String Manipulation Summary and Recommendations

5.18 String Manipulation
String comparison and manipulation operations are likely to produce counter-intuitive results in
locales where glyphs can have alternative representations (for example, <e-acute> and <e> plus
<acute accent>). See Section 4.1.3.6 on page 28, String Manipulation on page 33, String
Manipulation on page 39 and Section 4.4.3.4 on page 47.

The specifications should draw their readers’ attention to this.

5.19 Cut Buffers
Cut buffers can only contain Latin-1 alphabet text. Internationalised applications can therefore
not use the ‘‘cut buffer’’ facility. (See Section 3.2.3.10 on page 19 and Cut Buffers on page 22.)

Since the cut buffer mechanism is obsolescent, no action is proposed in respect of this.

5.20 Drag-and-drop Text
Textual data transferred using drag-and-drop services can be either Latin-1 alphabet text or
compound text (see Drag-and-drop Text on page 32). The availability of a special Latin-1 text
facility is an extra convenience to applications written specifically for Latin-1 locales; the
availability of COMPOUND_TEXT data allows internationalised applications to be written.

No action is proposed in respect of this issue.

5.21 Character Set Registry
The X Character Set Registry appears to duplicate some of the functions of the X/Open Locale
Registry (see Character Set Registry on page 23 and Character Set Registry on page 25).

No formal links between the registries are necessary. X/Open should, however, be aware of the
X Character Set Registry, and of other registries such as those maintained by ECMA and OSF.

5.22 Scale Widget Number Formats
It is not clear whether the format of the numbers displayed by XmScale widgets is fully
internationalised (see Section 4.1.3.5 on page 28).

The specifications of these widgets should be amended to require the use of the numeric and
decimal separators of the current locale, and of national numbers where appropriate.

54 X/Open Technical Study (1995)

Summary and Recommendations Text Widget Values

5.23 Text Widget Values
The degree to which XmText and XmTextField widgets can be used in internationalised
applications is unclear (see Section 4.1.3.8 on page 28).

The descriptions of these widgets should clarify the extent to which their behaviour is locale-
dependent and should explain how the XmNValue resource is encoded. Relevant clarifications
are contained in Chapter 11 of the Athena Motif 1.1 Specification.

5.24 Locale Conflicts
There are a number of instances where information that has been created in one locale can be
processed in another. They can be considered in two groups:

1. See Locale Conflicts on page 31, Command and Filename Encodings on page 44 and
Locale Conflicts on page 37.

These conflicts exist but there is nothing that can be done to resolve them. If UTF-8 was
used for all information passed between locales then there would be no problem, but
UTF-8 is not supported by all platforms.

For the next revision of the XCDE specifications, the recommendations of the X/Open DIS,
Version 2 Snapshot should be considered, particularly the recommendations relating to the
use of UTF-8.

2. See Section 4.4.3.1 on page 46.

The user will see ‘‘garbage’’ if he tries to access a calendar using the wrong locale. Ideally:

— Calendars should have locale attributes rather than character set attributes.

— Individual entries should have locale attributes.

— When entries are displayed, it may sometimes be desirable to take account of
timezones when displaying dates and times.

These issues should be considered as possible future work items.

5.25 Boolean Strings
The DtDtsIsTrue() function tests a string for a Boolean value. The strings that it identifies as
meaning ‘‘true’’ are all English words (or the number ‘‘1’’). See Boolean Strings on page 33. This
affects the application programmer rather than the user.

No action is proposed in respect of this issue.

Desktop Internationalisation 55

Locale Dependence of Descriptions and Labels Summary and Recommendations

5.26 Locale Dependence of Descriptions and Labels
There is no requirement that the DESCRIPTION field of the actions database should be locale-
dependent, but the LABEL field is locale-dependent (see Locale Dependence of Descriptions
and Labels on page 34).

This situation was intended by the XCDE developers. The DESCRIPTION field is never seen by
the user. Currently, it is probably never used.

No change is proposed in respect of this issue.

5.27 Description of dtksh
The description of the dtksh utility leaves a number of internationalisation aspects unclear (see
Section 4.3.12.2 on page 40).

The XCDE specifications state that dtksh behaves in the same way as XPG4 sh. The
internationalised behaviour of this is not very clearly stated in the XPG4 specifications, but it is
in fact internationalised in the same way as the POSIX.2 standard (the XPG4 Commands and
Utilities Component Definition refers to this as an overriding standard).

The description of dtksh should be enhanced to point out this implication of the reference to
XPG4 sh.

5.28 Terminal Emulation Issues
It is not clear how far languages that do not use the ASCII character set, and complex text
languages in particular, can be supported with the defined terminal emulation (see Section
4.3.13.3 on page 41).

Ideally, it might be desirable to define emulations of other terminals that are designed to cater
for non-Latin character sets, but this would not be practical. No action is proposed.

5.29 Source Code of dtcodegen
It is not clear whether the source codeset of dtcodegen programs is locale-dependent (see Source
Code of dtcodegen on page 42). This affects the application developer, but not the user.

The source codeset of dtcodegen programs is the same as that of the C compiler in use. This
should be obvious and there is no need to mention it in the XCDE specifications.

56 X/Open Technical Study (1995)

Summary and Recommendations Object Palette Limitations

5.30 Object Palette Limitations
The object palette includes standard Text Pane and Text Field objects, but does not include
standard date, time, number or money objects (see Object Palette Limitations on page 42).

Consideration should be given to defining standard, locale-dependent, date, time, number and
money objects as possible future enhancements, not only for the object palette, but for Motif
also.

5.31 Building Help Text
It is not clear whether message catalogue source file generation applies to help text (see Building
Help Text on page 42).

The X/Open XCDE: Services and Applications Specification should state clearly that message
catalogue source file generation does not, and should not, apply to help text.

5.32 Help Information and Actions
There is no requirement for the help information associated with action icons to be locale-
dependent (see Section 4.3.17.3 on page 43).

A requirement for the help information to be locale-dependent should be added to the X/Open
XCDE: Services and Applications Specification.

5.33 Calculator Internationalisation
It is not entirely clear what it means for an implementation of calculator services to be
internationalised (see Section 4.3.19.3 on page 44).

The X/Open XCDE: Services and Applications Specification should be enhanced to make it
clear. The enhancement should take the form of an additional capability specified for the
calculator.

5.34 Mail Message Header Fields
Users are forced to use ASCII for the header fields of their mail messages (see Mail Message
Header Fields on page 37). This is a consequence of the adoption of the RFC 822 Internet
Specification format.

No action is proposed in respect of this issue.

Desktop Internationalisation 57

Mail Aliases Summary and Recommendations

5.35 Mail Aliases
The X/Open XCDE: Services and Applications Specification does not require alias lists to be
localised (see Mail Aliases on page 37).

This is a desirable facility for future specifications.

5.36 Date, Time and Number Formats
The X/Open XCDE: Services and Applications Specification does not require a properly
localised format for dates, times and numbers specified to the calendaring and appointment
services (see Section 4.4.3.2 on page 47).

It should do so.

5.37 Encoding of csa_logon() Arguments
It is not clear what character set and encoding is used for the arguments of csa_logon () (see
Section 4.4.3.5 on page 47).

The X/Open XCS Specification should state that the character sets of the arguments are the
implementation-specific default character set for the implementation.

58 X/Open Technical Study (1995)

Index

accelerator descriptions
motif ..28

action creation services ...43
actions...20, 33, 43
actions database..33
ANSI C ..5
application building services41
application conventions ..44
application development services12
application integration services42
application style checklist.......................................44
applications

XCDE...35
argument lists

motif ..28
atom strings

ICCCM..22
attachments

electronic mail messages37
Basic Multilingual Plane..3
BDF ..25
Boolean strings..33

conclusions ..55
C language interface ..12
calculator ..11-12
calculator internationalisation

conclusions ..57
calculator internationalization...............................44
calculator services ..43
calendar and appointment services................37, 46
calendar and appointments diary11-12
calendar archive names and values......................47
calendaring and scheduling API46
character representations

conclusions ..49
X Protocol ...15

character set registry
compound text encoding....................................25
XLFD...23, 54

character-based terminals.......................................40
class

resource ..20
widget ...20

client ..15
combining character...3
command and filename encodings.......................44

command string
execution management34

command strings
conclusions ..53
Xlib...19

complex characters...17
complex text languages...9
Compound Text ..24
configuration file syntax

data typing...33
configuration files...17

front panel services ..38
conventions..12, 20

application ...44
cut buffers

conclusions ..54
conventions..22
ICCCM..22
Xlib...19

data types ...43
data typing...32
data typing database..33
data-typing...12
database

actions ...33
data typing...33

date, time and number formats
calendaring and scheduling47
conclusions ..58

default font resource
X Toolkit ...20

defined KEYSYM alphabets
conclusions ..50
X Protocol ...15

desktop ...11
desktop services

miscellaneous ..30
device colour characterisation

conventions..22
diaries..46
directionality..9
distributed environment ...8
drag-and-drop...12

XCDE...32
drag-and-drop text ...32

conclusions ..54

Desktop Internationalisation 59

Index

dtaction utility...33
dtksh description ..40

conclusions ..56
dtksh utility..40
electronic mail ...11-12, 37
elements of the XCDE..11
encoding of csa_logon() arguments.....................47

conclusions ..58
error strings

conclusions ..51
X Protocol ...16
X Toolkit ...20
Xlib...18

event filters...20
execution management12, 33
file

manager,...11
File Formats and Application Conventions22
file management services..38
file manager ...12
font attributes

conclusions ..49
XLFD ...23
Xlib...18

font matrices ..15
font representations

BDF..25
conclusions ..53

front panel facilities..12
front panel services ..38
front panels ..38
FSS-UTF ..4
GUI scripting services ...40
help...11-12
help information and actions43

conclusions ..57
help services ..36
help text

application building services.......................42, 57
host portable character encoding..........................17
ICCCM..22
icon editing services...40
icon editor...11-12
icons...43
input methods ...17
inter-process messaging..12
internationalisation

XCDE...12
ISOC ..5
ISO C ...5
ISO/IEC10646 ...3, 5, 9, 15

JIG ..4
keyboard input

conclusions ..50
X Protocol ...15
Xlib...18

KEYSYMS...15
locale conflicts

calendaring and scheduling46
conclusions ..55
mail services ..37
message services...31

locale dependence of descriptions and labels
conclusions ..56
execution management34

locale mechanism ...5
locale registry ..8
mail aliases...37

conclusions ..58
mail message header fields.....................................37

conclusions ..57
mail message text ...37
mail services ..37
manager ..11
manipulation of shared resources

conventions..22
mathematical calculator11-12
Message Services ..30
message trace strings ...31
messaging

inter-process ..12
MIME...37
miscellaneous desktop services.............................30
Motif ..11
Motif toolkit ...11
Motif toolkit API...27
motif window manager...27
MSE amendment to ISOC...5
multi-locale applications8, 17
multi-processor applications....................................8
mwm ...27
national numbers..9
null-terminated strings

conclusions ..51
object palette limitations...42

conclusions ..57
operating system messages45
parallel char and wchar_t functions17
pasted segment directionality................................40

conclusions ..50
print job services...43
printer management ..11

60 X/Open Technical Study (1995)

Index

printer manager ..12
properties ...17, 23
resource class...20
resource files ..17

Xlib...19
resources...20
RFC 822 Internet Specification...............................37
rule syntax

calendaring and scheduling48
scale widget number formats

motif ..28, 54
scripting interface ...12
selection mechanism

conventions..22
self-announcing data..8
server...15
services and applications

XCDE...35
session ...11
session management services36
session manager

conventions..22
sessions ...36
shaping..9
shell..12
shell programming language.................................40
simplified keyboard event functions

conclusions ..51
Xlib...18

source code of dtcodegen42
conclusions ..56

standard KEYSYMS ...15
string identifiers

compound text encoding....................................25
conclusions ..52
data typing...33
execution management34
message services...30
miscellaneous desktop services30
motif ..27
session manager..36
text editing services ...39
workspace manager...35
X Protocol ...16
X Toolkit ...20
XCDE drag-and-drop ..32
XLFD ...23
Xlib...17

string manipulation
calendaring and scheduling47
conclusions ..54

data typing...33
motif ..28
text editing services ...39

string properties
conclusions ..51
ICCCM..23
XLFD ...24
Xlib...18

string resources
help services ..36

style management services.....................................41
style manager ..12
tagged data...8
terminal emulation issues.......................................41

conclusions ..56
terminal emulation services40
terminal emulator ...11-12
testing..9
text directionality

compound text encoding....................................24
conclusions ..50
motif ..28
text editing services ...39
Xlib...18

text drawing
conclusions ..53
X Protocol ...16

text editing services..38
text editor..11-12
text widget values

conclusions ..55
motif ..28

toolkit functions..27
ToolTalk ..12
translation management ...20
translation table syntax

X Toolkit ...21
translation tables...20
UCS Transformation Format (UTF)4
UCS-2 ..3
UCS-4 ..3
UIL..27-28
Uil string formats

conclusions ..53
motif ..28

UNICODE ..3
standard..9

user interface language (UIL)...........................27-28
UTF ..4
UTF-1...4
UTF-16...4

Desktop Internationalisation 61

Index

UTF-8...4
variable-locale applications....................................17
VT220 terminals ..40
wchar_t ...5, 17
widget ...20
widget class..20
widget classes..20
widgets..27
window

desktop ...11
window management services

XCDE...35
window manager

conventions..22
motif ..27
XCDE...27

workspace ..11
workspace management services35
workspaces ..35
X portable character set...17
X Toolkit Intrinsics ...20
X Window System..11
X Window System and Motif.................................29
X Window System Protocol....................................15

C-language interface..17
X/Windows ...11
XCDE

elements..11
introduction...11

XCDE data format naming.....................................29
XCDE window manager ...27
XLFD ...23
Xlib...17

62 X/Open Technical Study (1995)

