
X/Open Developers’ Specification

Protocols for X/Open PC Interworking: (PC)NFS

X/Open Company, Ltd.

 1990, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior permission of the copyright
owners.

X/Open Developers’ Specification

Protocols for X/Open PC Interworking: (PC)NFS

ISBN: 1 872630 00 6
X/Open Document Number: XO/DEV/90/030

Set in Palatino by X/Open Company Ltd., U.K.
Printed by Maple Press, U.K.
Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to
X/Open at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

X/Open Developers’ Specification (1990)
Page : ii Protocols for X/Open PC Interworking: (PC)NFS

Contents

PROTOCOLS FOR X/OPEN PC INTERWORKING:
(PC)NFS

Chapter 1 INTRODUCTION

Chapter 2 INTRODUCTION TO NFS

2.1 OVERVIEW

2.2 AUDIENCE

2.3 PROTOCOL STACKS

2.4 REFERENCES

Chapter 3 XDR PROTOCOL SPECIFICATION

3.1 INTRODUCTION
3.1.1 A Canonical Standard
3.1.2 Byte Encoding
3.1.3 Basic Block Size

3.2 XDR DATA TYPES
3.2.1 Integer
3.2.2 Unsigned Integer
3.2.3 Enumeration
3.2.4 Boolean
3.2.5 Fixed-length Opaque Data
3.2.6 Variable-length Opaque Data
3.2.7 String
3.2.8 Fixed-length Array
3.2.9 Variable-length Array
3.2.10 Structure
3.2.11 Discriminated Union
3.2.12 Void
3.2.13 Constant
3.2.14 Typedef
3.2.15 Optional-data

3.3 The XDR LANGUAGE SPECIFICATION
3.3.1 Notational Conventions
3.3.2 Lexical Notes
3.3.3 Syntax Information
3.3.3.1 Syntax Notes

3.4 AN EXAMPLE OF AN XDR DATA DESCRIPTION

3.5 REFERENCES

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : xxvii

Contents

Chapter 4 REMOTE PROCEDURE CALLS: PROTOCOL SPECIFICATION

4.1 INTRODUCTION
4.1.1 Terminology
4.1.2 The RPC Model
4.1.3 Transports and Semantics
4.1.4 Binding and Rendezvous Independence

4.2 RPC PROTOCOL REQUIREMENTS
4.2.1 Programs and Procedures
4.2.2 Authentication
4.2.3 Program Number Assignment

4.3 THE RPC MESSAGE PROTOCOL

4.4 AUTHENTICATION PROTOCOLS
4.4.1 Null Authentication
4.4.2 UNIX Authentication

4.5 THE RPC LANGUAGE
4.5.1 The RPC Language Specification
4.5.2 An Example Service Described in the

RPC Language
4.5.3 Syntax Notes

4.6 REFERENCES

Chapter 5 NETWORK FILE SYSTEM: PROTOCOL SPECIFICATION

5.1 INTRODUCTION
5.1.1 Remote Procedure Call
5.1.2 External Data Representation
5.1.3 Stateless Servers and Idempotency

5.2 NFS PROTOCOL DEFINITION
5.2.1 File System Model

5.3 RPC INFORMATION
5.3.1 Sizes of XDR Structures
5.3.2 Basic Data Types
5.3.2.1 stat
5.3.2.2 ftype
5.3.2.3 nfscookie
5.3.2.4 fhandle
5.3.2.5 timeval
5.3.2.6 diropok
5.3.2.7 fattr
5.3.2.8 sattr
5.3.2.9 filename
5.3.2.10 path
5.3.2.11 attrstat
5.3.2.12 diropargs
5.3.2.13 diropres

X/Open Developers’ Specification (1990)
Page : xxviii Protocols for X/Open PC Interworking: (PC)NFS

Contents

5.4 NFS IMPLEMENTATION ISSUES

5.5 SERVER PROCEDURES
5.5.1 NFSPROC_NULL Specification - Do Nothing
5.5.1.1 RPC Data Descriptions
5.5.1.2 RPC Procedure Description
5.5.1.3 Description
5.5.1.4 Return Codes
5.5.2 NFSPROC_GETATTR Specification - Get File Attributes
5.5.2.1 RPC Data Descriptions
5.5.2.2 RPC Procedure Description
5.5.2.3 Description
5.5.2.4 Return Codes
5.5.3 NFSPROC_SETATTR Specification - Set File Attributes
5.5.3.1 RPC Data Descriptions
5.5.3.2 RPC Procedure Description
5.5.3.3 Description
5.5.3.4 Return Codes
5.5.4 NFSPROC_ROOT Specification - Get File System

Root
5.5.4.1 RPC Data Descriptions
5.5.4.2 RPC Procedure Description
5.5.4.3 Description
5.5.4.4 Return Codes
5.5.5 NFSPROC_LOOKUP Specification - Look Up File

Name
5.5.5.1 RPC Data Descriptions
5.5.5.2 RPC Procedure Description
5.5.5.3 Description
5.5.5.4 Return Codes
5.5.6 NFSPROC_READLINK Specification - Read From Symbolic

Link
5.5.6.1 RPC Data Descriptions
5.5.6.2 RPC Procedure Description
5.5.6.3 Description
5.5.6.4 Return Codes
5.5.7 NFSPROC_READ Specification - Read From File
5.5.7.1 RPC Data Descriptions
5.5.7.2 RPC Procedure Description
5.5.7.3 Description
5.5.7.4 Return Codes
5.5.8 NFSPROC_WRITECACHE Specification - Write to Cache
5.5.8.1 RPC Data Descriptions
5.5.8.2 RPC Procedure Description
5.5.8.3 Description
5.5.8.4 Return Codes
5.5.9 NFSPROC_WRITE Specification - Write to File
5.5.9.1 RPC Data Descriptions
5.5.9.2 RPC Procedure Description

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : xxix

Contents

5.5.9.3 Description
5.5.9.4 Return Codes
5.5.10 NFSPROC_CREATE Specification - Create File
5.5.10.1 RPC Data Descriptions
5.5.10.2 RPC Procedure Description
5.5.10.3 Description
5.5.10.4 Return Codes
5.5.11 NFSPROC_REMOVE Specification - Remove File
5.5.11.1 RPC Data Descriptions
5.5.11.2 RPC Procedure Description
5.5.11.3 Description
5.5.11.4 Return Codes
5.5.12 NFSPROC_RENAME Specification - Rename File
5.5.12.1 RPC Data Descriptions
5.5.12.2 RPC Procedure Description
5.5.12.3 Description
5.5.12.4 Return Codes
5.5.13 NFSPROC_LINK Specification - Create Link to

File
5.5.13.1 RPC Data Descriptions
5.5.13.2 RPC Procedure Description
5.5.13.3 Description
5.5.13.4 Return Codes
5.5.14 NFSPROC_SYMLINK Specification - Create Symbolic Link
5.5.14.1 RPC Data Descriptions
5.5.14.2 RPC Procedure Description
5.5.14.3 Description
5.5.14.4 Return Codes
5.5.15 NFSPROC_MKDIR Specification - Create Directory
5.5.15.1 RPC Data Descriptions
5.5.15.2 RPC Procedure Description
5.5.15.3 Description
5.5.15.4 Return Codes
5.5.16 NFSPROC_RMDIR Specification - Remove Directory
5.5.16.1 RPC Data Descriptions
5.5.16.2 RPC Procedure Description
5.5.16.3 Description
5.5.16.4 Return Codes
5.5.17 NFSPROC_READDIR Specification - Read From Directory
5.5.17.1 RPC Data Descriptions
5.5.17.2 RPC Procedure Description
5.5.17.3 Description
5.5.17.4 Return Codes
5.5.18 NFSPROC_STATFS Specification - Get File System

Attributes
5.5.18.1 RPC Data Descriptions
5.5.18.2 RPC Procedure Description
5.5.18.3 Description
5.5.18.4 Return Codes

X/Open Developers’ Specification (1990)
Page : xxx Protocols for X/Open PC Interworking: (PC)NFS

Contents

Chapter 6 ADJUNCT PROTOCOLS

6.1 INTRODUCTION

6.2 PORT MAPPER PROGRAM PROTOCOL
6.2.1 Introduction to Port Mapper Program Protocol
6.2.2 Port Mapper Protocol Specification (in RPC

Language)
6.2.3 Port Mapper Procedures
6.2.4 PMAPPROC_NULL Specification - Do Nothing
6.2.4.1 RPC Data Descriptions
6.2.4.2 RPC Procedure Descriptions
6.2.4.3 Description
6.2.5 PMAPPROC_SET Specification - Set Mapping
6.2.5.1 RPC Data Descriptions
6.2.5.2 RPC Procedure Descriptions
6.2.5.3 Description
6.2.6 PMAPPROC_UNSET Specification - Unset Mapping
6.2.6.1 RPC Data Descriptions
6.2.6.2 RPC Procedure Descriptions
6.2.6.3 Description
6.2.7 PMAPPROC_GETPORT Specification - Get Port
6.2.7.1 RPC Data Descriptions
6.2.7.2 RPC Procedure Descriptions
6.2.7.3 Description
6.2.8 PMAPPROC_DUMP Specification - Dump Mappings
6.2.8.1 RPC Data Descriptions
6.2.8.2 RPC Procedure Descriptions
6.2.8.3 Description

6.3 PCNFSD PROTOCOL DEFINITION
6.3.1 Authentication
6.3.2 Print Spooling

6.4 RPC Information
6.4.1 Sizes of XDR Structures
6.4.2 Basic Data Types
6.4.2.1 ident
6.4.2.2 password
6.4.2.3 client
6.4.2.4 printername
6.4.2.5 username
6.4.2.6 spoolname
6.4.2.7 options
6.4.2.8 arstat
6.4.2.9 pirstat
6.4.2.10 psrstat
6.4.3 PCNFSD Server Procedures
6.4.4 PCNFSD_NULL Specification - Do Nothing
6.4.4.1 RPC Data Descriptions
6.4.4.2 RPC Procedure Description

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : xxxi

Contents

6.4.4.3 Description
6.4.4.4 Return Codes
6.4.5 PCNFSD_AUTH Specification - Perform User Authentication
6.4.5.1 RPC Data Descriptions
6.4.5.2 RPC Procedure Description
6.4.5.3 Description
6.4.5.4 Return Codes
6.4.6 PCNFSD_PR_INIT Specification - Initialise Remote Printing
6.4.6.1 RPC Data Descriptions
6.4.6.2 RPC Procedure Description
6.4.6.3 Description
6.4.6.4 Return Codes
6.4.7 PCNFSD_PR_START Specification - Print a Spooled

File
6.4.7.1 RPC Data Descriptions
6.4.7.2 RPC Procedure Description
6.4.7.3 Description
6.4.7.4 Return Codes

6.5 MOUNT PROTOCOL DEFINITION
6.5.1 Introduction

6.6 RPC Information
6.6.1 Sizes of XDR Structures
6.6.2 Basic Data Types
6.6.2.1 fhandle
6.6.2.2 fhstatus
6.6.2.3 dirpath
6.6.2.4 name
6.6.3 Server Procedures
6.6.4 MNTPROC_NULL Specification - Do Nothing
6.6.4.1 RPC Data Descriptions
6.6.4.2 RPC Procedure Description
6.6.4.3 Description
6.6.4.4 Return Codes
6.6.5 MNTPROC_MNT Specification - Add Mount Entry
6.6.5.1 RPC Data Descriptions
6.6.5.2 RPC Procedure Description
6.6.5.3 Description
6.6.5.4 Return Codes
6.6.6 MNTPROC_DUMP Specification - Return Mount Entries
6.6.6.1 RPC Data Descriptions
6.6.6.2 RPC Procedure Description
6.6.6.3 Description
6.6.6.4 Return Codes
6.6.7 MNTPROC_UMNT Specification - Remove Mount Entries
6.6.7.1 RPC Data Descriptions
6.6.7.2 RPC Procedure Description
6.6.7.3 Description
6.6.7.4 Return Codes

X/Open Developers’ Specification (1990)
Page : xxxii Protocols for X/Open PC Interworking: (PC)NFS

Contents

6.6.8 MNTPROC_UNMNTALL Specification - Remove all Mount
Entries

6.6.8.1 RPC Data Description
6.6.8.2 RPC Procedure Descriptions
6.6.8.3 Return Codes
6.6.9 MNTPROC_EXPORT Specification - Return Export List
6.6.9.1 RPC Data Descriptions
6.6.9.2 RPC Procedure Description
6.6.9.3 Description
6.6.9.4 Return Codes

6.7 NETWORK LOCK MANAGER PROTOCOL DEFINITION
6.7.1 Introduction
6.7.2 Versions
6.7.2.1 Versions 1 and 2
6.7.2.2 Version 3
6.7.3 Synchronisation of Lock Managers
6.7.4 DOS File Sharing Support
6.7.5 RPC Information
6.7.5.1 Sizes of XDR Structures
6.7.5.2 Basic Data Types for Locking
6.7.6 DOS 3.1 File Sharing
6.7.6.1 fsh_mode
6.7.6.2 fsh_access
6.7.6.3 nlm_share
6.7.6.4 nlm_shareargs
6.7.6.5 nlm_shareres
6.7.6.6 nlm_notify
6.7.7 Server Procedures
6.7.8 NLM_NULL Specification - Do Nothing
6.7.8.1 RPC Data Descriptions
6.7.8.2 RPC Procedure Description
6.7.8.3 Description
6.7.8.4 Return Codes
6.7.9 NLM_UNLOCK Specification - Unlock File
6.7.9.1 RPC Data Descriptions
6.7.9.2 RPC Procedure Description
6.7.9.3 Description
6.7.9.4 Return Codes
6.7.10 NLM_SHARE Specification - Share a File
6.7.10.1 RPC Data Descriptions
6.7.10.2 RPC Procedure Description
6.7.10.3 Description
6.7.10.4 Return Codes
6.7.11 NLM_UNSHARE Specification - Unshare a File
6.7.11.1 RPC Data Descriptions
6.7.11.2 RPC Procedure Description
6.7.11.3 Description
6.7.11.4 Return Codes

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : xxxiii

Contents

6.7.12 NLM_NM_LOCK Specification - Non-monitored Lock
6.7.12.1 RPC Data Descriptions
6.7.12.2 RPC Procedure Description
6.7.12.3 Description
6.7.12.4 Return Codes
6.7.13 NLM_FREE_ALL Specification - Free All
6.7.13.1 RPC Data Descriptions
6.7.13.2 RPC Procedure Description
6.7.13.3 Description
6.7.13.4 Return Codes

Chapter 7 RPC INTERFACE TO UDP TRANSPORT SERVICES

7.1 INTRODUCTION

7.2 RPC AND TRANSPORT REQUIREMENTS

7.3 UDP AS A TRANSPORT PROTOCOL

7.4 RPC INTERFACE
7.4.1 The RPC request
7.4.2 The RPC reply
7.4.3 Receiving a UDP Reply Packet
7.4.4 Closing

Appendix A MAPPING FILENAMES AND ATTRIBUTES

A.1 INTRODUCTION

A.2 CONTEXT

A.3 MAPPING FILE NAMES

A.4 BACK-MAPPING FILENAMES

A.5 MAPPING FILE ATTRIBUTES

A.6 BACK-MAPPING FILE ATTRIBUTES

Appendix B NFS TRANSMISSION ANALYSIS

B.1 INTRODUCTION

B.2 DOS FUNCTIONS

Appendix C DEFINITIONS

X/Open Developers’ Specification (1990)
Page : xxxiv Protocols for X/Open PC Interworking: (PC)NFS

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of
the world’s largest information systems suppliers, user organisations and software
companies. Its mission is to bring greater value to users through the practical
implementation of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards
into a comprehensive, integrated, high-value and usable system environment, called the
Common Applications Environment (CAE). This environment covers all the standards,
above the hardware level, that are needed to support open systems. It ensures portability
and connectivity of applications, and allows users to move between systems without
retraining.

The interfaces identified as components of the Common Applications Environment are
defined in the X/Open Portability Guide. This guide contains an evolving portfolio of
practical applications programming interface standards (APIs), which significantly
enhance portability of application programs at the source code level. The interfaces
defined in the X/Open Portability Guide are supported by an extensive set of
conformance tests and a distinct trademark - the X/Open brand - that is carried only on
products that comply with the X/Open definitions.

X/Open is thus primarily concerned with standards selection and adoption. The policy is
to use formal approved de jure standards, where they exist, and to adopt widely
supported de facto standards in other cases.

Where formal standards do not exist, it is X/Open policy to work closely with standards
development organizations to encourage the creation of formal standards covering the
needed functionalities, and to make its own work freely available to such organizations.
Additionally, X/Open has a commitment to align its definitions with formal approved
standards.

The X/Open Product Family - XPG

There is a single family of X/Open products, which has the generic name ‘‘XPG’’.

XPG Versions

There are different numbered versions of XPG within the XPG family (XPG1, XPG2, XPG3).
Each XPG version is an integrated set of elements supporting the development,
procurement and implementation of open systems products, and each comprises its
own:

• XPG Specifications

• XPG Verification Suite

• XPG descriptive guides

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : xi

Preface

• XPG trademark licensing materials

The XPG trademark (or ‘‘brand’’) licensed by X/Open always contains a particular XPG
version number (e.g., ‘‘XPG3’’) and, when associated with a vendor’s system,
communicates clearly and unambiguously to a procurer that the software bearing the
trademark correctly implements the corresponding XPG specifications. Users specifying
particular XPG versions in their procurements are therefore certain as to the XPG
specifications to which vendors’ systems conform.

XPG Specifications

There are four types of XPG specification:

• XPGn Formal Specifications

These are the long-life XPG specifications that form the basis for conformant/branded
X/Open systems, and are the only type of XPG specification released with an XPG
version number (e.g., ‘‘XPG3’’). They are intended to be used widely within the
industry for product development and procurement purposes. Currently, all XPG
Formal Specifications are included in Issue 3 of the X/Open Portability Guide.

Individual XPG specifications are released as Formal Specifications only as part of the
formal release of the complete XPG version to which they belong. However, prior to
the launch of that XPG version, they may be made available as:

• XPG Developers’ Specifications

These are specifically designed to allow developers to create X/Open-compliant
products and applications in advance of the formal launch of a future version of the
XPG.

Developers’ Specifications may be relied on by product developers as the final, base
specification that will appear in a future XPG. They are made available beforehand in
order to meet the need of product developers for advance notification of the contents
of XPG Formal Specifications, to assist in their product planning and development
activities.

By providing such advance notification, X/Open makes it possible for products
conforming to future XPG Formal Specifications to be developed as soon as
practicable, enhancing the value of XPG itself as a procurement aid to users.

• XPG Preliminary Specifications

These are XPG specifications, usually addressing an emerging area of technology, and
consequently not yet supported by a base of conformant product implementations,
that are released in a controlled manner for validation purposes. A Preliminary
Specification is not a ‘‘draft’’ specification. Indeed, it is as stable as X/Open can make
it, and on publication will have gone through the same rigorous X/Open
development and review procedures as XPG Formal and Developers’ Specifications.

Preliminary Specifications are analogous with the ‘‘trial-use’’ standards issued by
formal standards organizations, and product development teams are intended to
develop product on the basis of them. Because of the nature of the technology they
are addressing, they are untried in practice, and they may therefore change before
being published as an XPG Formal or Developers’ Specification.

X/Open Developers’ Specification (1990)
Page : xii Protocols for X/Open PC Interworking: (PC)NFS

Preface

• Snapshot Specifications

These are ‘‘draft’’ documents, that provide a mechanism for X/Open to disseminate
information on its current direction and thinking to a limited audience, in advance of
formal publication, with a view to soliciting feedback and comment.

This Document

This document is a Developers’ Specification (see above), which defines protocols that
have been adopted by X/Open as the means of interoperability between personal
computers and X/Open-compliant systems.

For interoperability via asynchronous serial links, X/Open has already defined in XPG3 a
file transfer protocol and a set of features provided on X/Open-compliant systems for
terminal emulators. The protocols defined in this document are aimed at interoperability
over local area networks (LANs).

X/Open has defined two protocols for PC interworking:

• (PC)NFS is intended for use in situations where personal computers are added to
existing networks of X/Open-compliant systems which already have a distributed file
system (the most widely adopted one being the Network File System (NFS) originally
developed by Sun Microsystems).

• Server Message Block (SMB) is intended for use in situations where X/Open-
compliant systems are added to an existing LAN consisting primarily of personal
computers. (For personal computers running under DOS or OS/2, which is the vast
majority, SMB is the generally accepted non-proprietary protocol.)

This document contains the X/Open (PC)NFS protocol.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : xiii

Preface

X/Open Developers’ Specification (1990)
Page : xiv Protocols for X/Open PC Interworking: (PC)NFS

Trademarks

AT&T is a registered trademark of American Telephone & Telegraph Company in the USA
and other countries.

Diablo is a registered trademark of Xerox Corporation.

Ethernet is a registered trademark of Xerox Corporation.

IBM is a registered trademark of International Business Machines Corporation.

Lan Manager is a trademark of Microsoft Corporation.

MS-DOS is a registered trademark of Microsoft Corporation.

NFS is a registered trademark of Sun Microsystems, Inc.

OS/2 is a registered trademark of International Business Machines Corporation.

PC-NFS is trademark of Sun Microsystems, Inc.

PostScript is a registered trademark of Adobe Systems, Inc.

Sun Microsystems is a registered trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc. in the USA and other
countries.

VAX is a registered trademark of Digital Equipment Corporation.

VMS is a trademark of Digital Equipment Corporation.

X/Open is a trademark of the X/Open Company Ltd in the UK and other countries.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : xv

Acknowledgements

X/Open gratefully acknowledges Karl Auerbach and Avnish Aggarwal for permission to
reprint RFCs 1001 and 1002.

X/Open Developers’ Specification (1990)
Page : xvi Protocols for X/Open PC Interworking: (PC)NFS

Chapter 1

Introduction

Of all the types of computers, personal computers are the most abundant. Originally
intended to be a personal productivity tool, an ever increasing number of them are being
connected to computer networks, thus becoming parts of distributed information
systems.

Personal computers normally run under single-user operating systems with interfaces
differing from those specified in the X/Open Portability Guide. However, X/Open
realises how important it is to facilitate interworking between personal computers and
X/Open-compliant systems in a standardised way.

Two areas have to be addressed to achieve this goal; interoperability, and programming
interfaces to server functions facilitating applications portability. Interoperability means
that personal computers and X/Open-compliant systems can interchange information
using the same network protocols. Standardisation of programming interfaces to server
functions, in addition to standardisation of protocols, makes it possible to write
Distributed Client/Server applications whose server component will be portable to all
X/Open-compliant systems.

For interoperability via asynchronous serial links, X/Open has already defined in the
X/Open Portability Guide, Issue 3 a file transfer protocol and a set of features provided
on X/Open-compliant systems for terminal emulators. Now it is time to address
interworking in local area networks (LANs).

In the X/Open Developers’ Specifications of the (PC)NFS and SMB protocols,
interoperability of personal computers and X/Open-compliant systems is addressed.
The applications portability component, containing definitions of programmatic
interfaces to server functions, will appear in a future document.

When connecting personal computers and X/Open-compliant systems via standard
transport protocols, there appear to be two possibly overlapping but distinct market
segments. In the first one, personal computers are added to existing networks of
X/Open-compliant systems which already have a distributed file system, the most
widely adopted one being the Network File System originally designed by Sun
Microsystems. In the second one, X/Open-compliant servers are added to LANs
consisting primarily of personal computers. For personal computers running under DOS
or OS/2 operating systems, which is the vast majority, the generally accepted non-
proprietary protocol is the Server Message Block from Microsoft Corporation.

Therefore, for connecting personal computers to X/Open-compliant systems, both the
(PC)NFS and the SMB protocols have been adopted by X/Open.

The resources accessed on the X/Open-compliant server are local to that system since
X/Open has not yet specified a resource sharing method between X/Open-compliant
systems. (PC)NFS and SMB protocol implementations on the same server are not required
to interwork with respect to those additional features beyond those provided by XSI (e.g.,
extended DOS file open modes). The (PC)NFS and SMB protocols are only specified to run
on a single LAN subnetwork, but interoperation in connected sub-networks is not
precluded.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 17

Introduction

The following diagram illustrates the relationship of the service protocols (defined in the
(PC)NFS and SMB specifications) to their underlying transport protocols. It also reflects
the organisation of the two documents. The (PC)NFS specification describes the
mandatory and optional protocols for NFS, RPC and XDR. The SMB specification describes
the mandatory and optional protocols for SMB, the mapping of NetBIOS over an OSI
transport (TOP/NetBIOS) and the mapping of NetBIOS over an Internet Protocol Suite
transport (RFC1001/RFC1002).

SMB

NFS

RPC/XDR

TOP/NetBIOS RFC 1001/1002

Connection-less
Transport
Services

Defined
outside
the XPG

Connection
orientated
Transport
Services
(T6212)

Defined
outside
the XPG

IP

Defined outside the XPG

TCP

Defined
outside
the XPG

UDP

Defined
outside
the XPG

Since SMB and NFS protocols do not easily map onto the seven layer OSI Reference
Model, the diagram does not use it.

The text in this volume is divided into the specification itself and a number of
appendices. Compliant implementations will provide functionality as defined by the
specification. The text in the appendices is auxiliary information for implementors and is
non-normative.

Throughout the specification DOS is used as an abbreviation for the Personal Computer’s
operating system instead of MS-DOS or PC DOS.

X/Open Developers’ Specification (1990)
Page : 18 Protocols for X/Open PC Interworking: (PC)NFS

Chapter 2

Introduction to NFS

2.1 OVERVIEW

This Developers’ Specification describes the Network File System (NFS) architecture and
its applicability to interoperability for X/Open-compliant systems. The Network File
System (NFS) is an operating system-independent service that allows users to mount
directories across the network, and then to treat those directories as if they are local.

This specification contains protocol specifications for External Data Representation
(XDR), Remote Procedure Call Protocol (RPC), the Network File System (NFS), and the
NFS adjunct protocols which include the Portmap, PCNFSD, Mount and Network Lock
Manager (NLM).

The XDR specification is included because this specification defines the NFS protocol in
terms of XDR. Generally implementations of NFS make use of XDR, but this is not a
requirement, merely one implementation strategy.

The RPC specification is included because the NFS protocols are implemented on top of it.
This specification does not define any general RPC protocols or interfaces for distributed
client-server applications. Such an RPC specification will appear in a future issue.

Although full NFS is operating system-independent, this specification describes only
those parts required to implement a server for a single-user system client. Specific
attention is given to issues unique to PC interworking. These include:

• authentication;

• the addition of a remote print spooling mechanism;

• server-only role, and

• DOS file sharing and locking support.

2.2 AUDIENCE

The description of NFS is targeted for those wishing to provide an NFS server on an
X/Open-compliant system for a DOS client system.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 19

Protocol Stacks Introduction to NFS

2.3 PROTOCOL STACKS

In order to support NFS as a basis for PC Interworking, a server system must implement
the following protocols:

• NFS (Chapter 5, Network File System: Protocol Specification)

• Portmap (Section 6.2, Port Mapper Program Protocol)

• PCNFSD (Section 6.3, PCNFSD Protocol Definition)
(Not required, but highly desirable)

• Mount (Section 6.4, Mount Protocol Definition)

• NLM (Section 6.5, Network Lock Manager Protocol Definition)

These protocols are implemented on top of the Remote Procedure Call (RPC) protocol,
which employs the External Data Representation (XDR) encoding to ensure operating
system independence.

Although the RPC protocol is inherently independent of any particular transport service,
existing implementations are generally based upon the Internet Protocols, popularly
referred to as the TCP/IP suite. Since a major goal of this specification is to foster
interoperability based upon de facto standards, this description is limited to the use of
NFS and RPC over the Internet Protocols. The NFS and portmap protocols are explicitly
accessed via well-known UDP transport addresses.

This specification is restricted to the protocol stack which corresponds to those
implementations which are commercially available and in use today.

X/Open Developers’ Specification (1990)
Page : 20 Protocols for X/Open PC Interworking: (PC)NFS

Introduction to NFS References

2.4 REFERENCES

This specification describes only those protocols which have not otherwise been
standardised.

The following documents should be consulted for details of the Internet Protocol suite.

RFC 1011 - Official Internet Protocols

This specification is the authoritative reference, showing which document defines each
protocol. RFC 1011 was published in May 1987; the reader is advised to check the RFC
Index (available from the sources listed below) and, if necessary, obtain the latest version
of Official Internet Protocols. The descriptions which follow are derived from RFC 1011.

RFC 791 - Internet Protocol (IP)

This is the universal protocol of the Internet. This datagram protocol provides the
universal addressing of hosts in the Internet.

RFC 792 - Internet Control Message Protocol (ICMP)

This protocol describes the control messages and error reports that go with the Internet
Protocol. Note that ICMP is defined to be an integral part of IP. An implementation of IP
is not complete if it does not include ICMP.

RFC 768 - User Datagram Protocol (UDP)

This protocol provides a datagram service to applications. It adds port addressing to the
IP services.

RFC 793 - Transmission Control Protocol (TCP)

This protocol provides a reliable end-to-end data stream service. Note that RFC 1011
includes many additions and clarifications to RFC 793, and refers to additional RFCs
which go into greater detail on certain topics.

RFC 950 - Internet Subnet Protocol

This specification specifies procedures for the use of subnets, which are logical sub-
sections of a single Internet network.

RFC 826 - Address Resolution Protocol (ARP)

This is a procedure for finding the network hardware address corresponding to an
Internet Address.

RFC 997 - Internet Numbers

This specification describes the fields of network numbers and autonomous system
numbers that are assigned specific values for actual use, and lists the currently assigned
values.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 21

References Introduction to NFS

RFC 1010 - Assigned Numbers

This specification describes the fields of various protocols that are assigned specific
values for actual use, and lists the currently assigned values.

RFC 894 - Internet Protocol on Ethernet Networks

Describes the representation of Internet Protocol services on Ethernet networks.

RFC 1011 (includes) Internet Protocol on IEEE 802

This section of RFC 1011 describes the latest policy on the transmission of IP datagrams
on IEEE 802 networks.

In addition, XDR, RPC and NFS are described in the following RFCs:

RFC 1014 - XDR: External Data Representation Standard

RFC 1057 - RPC: Remote Procedure Call Protocol Specification Version 2

This specification has the status of a proposal only, and includes the disclaimer that
‘‘This memo is not an Internet standard at this time’’.

RFC 1094 - NFS: Network File System Protocol Specification

For further information about Internet Protocols in general, please contact:

Joyce K. Reynolds
USC - Information Sciences Institute,
4676 Admiralty Way,
Marina del Rey,
CA 90292-6695,
U.S.A.

Phone: (+1) 213-822-1511

Electronic mail: jkreynolds@isi.edu

X/Open Developers’ Specification (1990)
Page : 22 Protocols for X/Open PC Interworking: (PC)NFS

Chapter 3

XDR Protocol Specification

This chapter specifies a protocol that is used by many implementors of NFS. It is derived
from a document designated RFC1014 by the ARPA Network Information Centre.

This chapter includes only the subset of XDR that is required to define the NFS protocol.

3.1 INTRODUCTION

XDR is a standard for the description and encoding of data. It is useful for transferring
data between different computer architectures, and has been used to communicate data
between many diverse machines. XDR fits into the ISO presentation layer, and is roughly
analogous in purpose to X.209 (previously X.409), ISO Abstract Syntax Notation. The
major difference between these two is that XDR uses implicit typing, while X.209 uses
explicit typing.

XDR uses a language to describe data formats. The language can only be used to describe
data; it is not a programming language. This language allows description of intricate
data formats in a concise manner. The alternative of using graphical representations
(itself an informal language) quickly becomes incomprehensible when faced with
complexity. The XDR language itself is similar to the C language [ref 1], just as Courier
[ref 3] is similar to Mesa. Protocols such as RPC (Remote Procedure Call) and the NFS
(Network File System) use XDR to describe the format of their data.

The XDR standard assumes that bytes (or octets) are portable, where a byte is defined to
be 8 bits of data. A given hardware device should encode the bytes onto the various
media in such a way that other hardware devices may decode the bytes without loss of
meaning. For example, the Ethernet standard suggests that bytes be encoded in ‘‘little-
endian’’ style [ref 2], or least significant bit first. A data-description language is used to
define XDR rather than diagrams, as languages are more formal than diagrams and lead
to less ambiguous descriptions of data. There is also a close analogy between the types of
XDR and a high-level language such as C or Pascal. This makes the implementation of
XDR encoding and decoding modules an easier task. The language specification itself is
an ASCII string that can be passed from machine to machine to perform on-the-fly data
interpretation.

3.1.1 A Canonical Standard

XDR’s approach to standardising data representations is canonical . That is, XDR defines a
single byte order (big-endian [ref 2]), a single floating-point representation (IEEE), and so
on. Any program running on any machine can use XDR to create portable data by
translating its local representation to the XDR standard representations; similarly, any
program running on any machine can read portable data by translating the XDR standard
representations to its local equivalents. The single standard completely decouples
programs that create or send portable data from those that use or receive portable data.
The advent of a new machine or a new language has no effect upon the community of
existing portable data creators and users.

No data-typing is provided in the XDR language as it has a relatively high cost (encoding
and interpreting the type fields) and most protocols already know what data types they

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 23

Introduction XDR Protocol Specification

are expecting. However, one can still get the benefits of data-typing using XDR. One way
is to encode two things: first a string which is the XDR data description of the encoded
data, and then the encoded data itself. Another way is to assign a value to all the types in
XDR, and then define a universal type which takes this value as its discriminant, and for
each value, describe the corresponding data type.

3.1.2 Byte Encoding

The XDR standard makes the following assumption: that bytes (or octets) are portable,
where a byte is defined to be 8 bits of data. A given hardware device should encode the
bytes onto the various media in such a way that other hardware devices may decode the
bytes without loss of meaning. For example, the Ethernet standard suggests that bytes be
encoded with the least significant bit first.

3.1.3 Basic Block Size

The representation of all items requires a multiple of four bytes (or 32 bits) of data. Four
bytes is big enough to support most machine architectures efficiently, yet is small enough
to keep the encoded data to a reasonable size. The bytes are numbered 0 to n-1. The
bytes are read or written to a byte stream such that byte m always precedes byte m+1. If
the n bytes needed to contain the data are not a multiple of four, then the n bytes are
followed by enough (0 to 3) residual zero bytes, r, to make the total byte count a multiple
of 4. Setting these residual bytes to zero enables the same data to be encoded to the same
result on all machines, allowing encoded data to be meaningfully compared or
checksummed.

A Block

byte 0 byte 1 byte n-1 0 0

........ .

....

....

....

....

....

n bytes r bytes

n+r (where (n+r) mod 4 = 0)

X/Open Developers’ Specification (1990)
Page : 24 Protocols for X/Open PC Interworking: (PC)NFS

XDR Protocol Specification XDR Data Types

3.2 XDR DATA TYPES

Each of the sections that follow describes a data type defined in the XDR standard, shows
how it is declared in the language, and includes a graphic illustration of its encoding.

For each data type in the language a general paradigm declaration is shown. Note that
angle brackets (< and >) denote variable length sequences of data and square brackets
([and]) denote fixed-length sequences of data. n, m and r denote integers. For the full
language specification and more formal definitions of terms such as ‘‘identifier’’ and
‘‘declaration’’, refer to Section 3.4, The XDR Language Specification.

For some data types, more specific examples are included. A more extensive example of
a data description is in Section 3.5, An Example of an XDR Data Description.

3.2.1 Integer

An XDR signed integer is a 32-bit datum that encodes an integer in the range
[-2147483648,2147483647]. The integer is represented in two’s complement notation. The
most and least significant bytes are 0 and 3, respectively. Integers are declared as
follows:

int identifier;

byte 0 byte 1 byte 2 byte 3

32 bits

(MSB) (LSB)

3.2.2 Unsigned Integer

An XDR unsigned integer is a 32-bit datum that encodes a non-negative integer in the
range [0,4294967295]. It is represented by an unsigned binary number whose most and
least significant bytes are 0 and 3, respectively. An unsigned integer is declared as
follows:

unsigned int identifier;

byte 0 byte 1 byte 2 byte 3

32 bits

(MSB) (LSB)

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 25

XDR Data Types XDR Protocol Specification

3.2.3 Enumeration

Enumerations have the same representation as signed integers. Enumerations are handy
for describing subsets of the integers. Enumerated data is declared as follows:

enum { name-identifier = constant, ... } identifier;

For example, the three colours red, yellow and blue could be described by an enumerated
type:

enum { RED = 2, YELLOW = 3, BLUE = 5 } colors;

It is an error to encode as an enum any integer other than those that have been given
assignments in the enum declaration.

3.2.4 Boolean

Booleans are important enough, and occur frequently enough, to warrant their own
explicit type in the standard. Booleans are declared as follows:

bool identifier;

This is equivalent to:

enum { FALSE = 0, TRUE = 1 } identifier;

3.2.5 Fixed-length Opaque Data

At times, fixed-length uninterpreted data needs to be passed among machines. This data
is called ‘‘opaque’’ and is declared as follows:

opaque identifier[n];

where the constant n is the (static) number of bytes necessary to contain the opaque data.
If n is not a multiple of four, then the n bytes are followed by enough (0 to 3) residual zero
bytes, r, to make the total byte count of the opaque object a multiple of four.

byte 0 byte 1 byte n-1 0 0

........ .

....

....

....

....

....

n bytes r bytes

n+r (where (n+r) mod 4 = 0)

0 1

3.2.6 Variable-length Opaque Data

The standard also provides for variable-length (counted) opaque data, defined as a
sequence of n (numbered 0 to n-1) arbitrary bytes to be the number n encoded as an
unsigned integer (as described below), and followed by the n bytes of the sequence.

Byte m of the sequence always precedes byte m+1 of the sequence, and byte 0 of the
sequence always follows the sequence’s length (count). If n is not a multiple of four, then
the n bytes are followed by enough (0 to 3) residual zero bytes, r, to make the total byte
count a multiple of four. Variable-length opaque data is declared in the following way:

X/Open Developers’ Specification (1990)
Page : 26 Protocols for X/Open PC Interworking: (PC)NFS

XDR Protocol Specification XDR Data Types

opaque identifier<m>;

or

opaque identifier<>;

The constant m denotes an upper bound of the number of bytes that the sequence may
contain. If m is not specified, as in the second declaration, it is assumed to be 232 -1, the
maximum length. The constant m would normally be found in a protocol specification.
For example, a filing protocol may state that the maximum data transfer size is 8192
bytes, as follows:

opaque filedata<8192>;

This can be illustrated as follows:

length n byte 0 byte 1 byte n-1 0 0

...... .

...

...

...

...

...

4 bytes n bytes r bytes

n+r (where (n+r) mod 4 = 0)

0 1 2 3 4 5
| | | |

| | |

| |

It is an error to encode a length greater than the maximum described in the declaration.

3.2.7 String

The standard defines a string of n (numbered 0 to n-1) ASCII bytes to be the number n
encoded as an unsigned integer (as described above), and followed by the n bytes of the
string. Byte m of the string always precedes byte m+1 of the string, and byte 0 of the
string always follows the string’s length. If n is not a multiple of four, then the n bytes are
followed by enough (0 to 3) residual zero bytes, r, to make the total byte count a multiple
of four. Counted byte strings are declared as follows:

string object<m>;

or

string object<>;

The constant m denotes an upper bound of the number of bytes that a string may contain.
If m is not specified, as in the second declaration, it is assumed to be 232 -1, the maximum
length. The constant m would normally be found in a protocol specification. For
example, a filing protocol may state that a file name can be no longer than 255 bytes, as
follows:

string filename<255>;

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 27

XDR Data Types XDR Protocol Specification

This can be illustrated as:

length n byte 0 byte 1 byte n-1 0 0

...... .

...

...

...

...

...

4 bytes n bytes r bytes

n+r (where (n+r) mod 4 = 0)

0 1 2 3 4 5
| | | |

| | |

| |

It is an error to encode a length greater than the maximum defined in the declaration.

3.2.8 Fixed-length Array

Declarations for fixed-length arrays of homogeneous elements are in the following form:

type-name identifier[n];

Fixed-length arrays of elements, numbered 0 to n-1, are encoded by individually
encoding the elements of the array in their natural order, 0 to n-1. Each element’s size is a
multiple of four bytes. Though all elements are of the same type, the elements may have
different sizes. For example, in a fixed-length array of strings, all elements are of type
string, yet each element will vary in its length.

element 0 element 1 element n-1

.....

.....

.....

n elements

3.2.9 Variable-length Array

Counted arrays provide the ability to encode variable-length arrays of homogeneous
elements. The array is encoded as the element count n (an unsigned integer) followed by
the encoding of each of the array’s elements, starting with element 0 and progressing
through element n-1. The declaration for variable-length arrays follows this form:

type-name identifier<m>;

or

type-name identifier<>;

The constant m specifies the maximum acceptable element count of an array; if m is not
specified, as in the second declaration, it is assumed to be 232 -1.

X/Open Developers’ Specification (1990)
Page : 28 Protocols for X/Open PC Interworking: (PC)NFS

XDR Protocol Specification XDR Data Types

n element 0 element 1 element n-1

.....

..

..

4 bytes n elements

0 1 2 3 4
| | | |

| | |

|

It is an error to encode a value of n that is greater than the maximum described in the
declaration.

3.2.10 Structure

Structures are declared as follows:

struct {
component-declaration-A;
component-declaration-B;
...

} identifier;

The components of the structure are encoded in the order of their declaration in the
structure. Each component’s size is a multiple of four bytes, though the components may
be different sizes.

component A component B

.....

.

.

3.2.11 Discriminated Union

A discriminated union is a type composed of a discriminant followed by a type selected
from a set of pre-arranged types according to the value of the discriminant. The type of
discriminant is either int, unsigned int, or an enumerated type, such as bool. The
component types are called ‘‘arms’’ of the union, and are preceded by the value of the
discriminant which implies their encoding. Discriminated unions are declared as
follows:

union switch (discriminant-declaration) {
case discriminant-value-A:

arm-declaration-A;
case discriminant-value-B:

arm-declaration-B;
...
default: default-declaration;

} identifier;

Each case keyword is followed by a legal value of the discriminant. The default arm is
optional. If it is not specified, then a valid encoding of the union cannot take on
unspecified discriminant values. The size of the implied arm is always a multiple of four
bytes.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 29

XDR Data Types XDR Protocol Specification

The discriminated union is encoded as its discriminant followed by the encoding of the
implied arm.

discriminant implied arm

4 bytes

0 1 2 3
| | | |

| | |

|

3.2.12 Void

An XDR void is a 0-byte quantity. voids are useful for describing operations that take no
data as input or no data as output. They are also useful in unions, where some arms
may contain data and others do not. The declaration is simply as follows:

void;

voids are illustrated as follows:

0 bytes

3.2.13 Constant

The data declaration for a constant follows this form:

const name-identifier = n;

const is used to define a symbolic name for a constant; it does not declare any data. The
symbolic constant may be used anywhere a regular constant may be used. For example,
the following defines a symbolic constant DOZEN, equal to 12.

const DOZEN = 12;

3.2.14 Typedef

typedef does not declare any data either, but serves to define new identifiers for
declaring data. The syntax is:

typedef declaration;

The new type name is actually the variable name in the declaration part of the typedef.
For example, the following defines a new type called eggbox using an existing type called
egg:

typedef egg eggbox[DOZEN];

Variables declared using the new type name have the same type as the new type name
would have in the typedef, if it was considered a variable. For example, the following
two declarations are equivalent in declaring the variable fresheggs :

X/Open Developers’ Specification (1990)
Page : 30 Protocols for X/Open PC Interworking: (PC)NFS

XDR Protocol Specification XDR Data Types

eggbox fresheggs;
egg fresheggs[DOZEN];

When a typedef involves a struct, enum, or union definition, there is another (preferred)
syntax that may be used to define the same type. In general, a typedef of the following
form:

typedef <<struct, union, or enum definition>> identifier;

may be converted to the alternative form by removing the ‘‘typedef’’ part and placing the
identifier after the struct, union, or enum keyword, instead of at the end. For example,
here are the two ways to define the type bool:

typedef enum { /∗ using typedef ∗/
FALSE = 0,
TRUE = 1

} bool;

enum bool { /∗ preferred alternative ∗/
FALSE = 0,
TRUE = 1

};

The second syntax is preferred because it is not necessary to wait until the end of a
declaration to find the name of the new type.

3.2.15 Optional-data

Optional-data is one kind of union that occurs so frequently that it is given a special
syntax of its own. It is declared as follows:

type-name ∗identifier;

This is equivalent to the following union:

union switch (bool opted) {
case TRUE:

type-name element;
case FALSE:

void;
} identifier;

It is also equivalent to the following variable-length array declaration, since the boolean
opted can be interpreted as the length of the array:

type-name identifier<1>;

Optional-data is not so interesting in itself, but it is very useful for describing recursive
data-structures such as linked-lists and trees. For example, the following defines a type
stringlist that encodes lists of arbitrary length strings:

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 31

XDR Data Types XDR Protocol Specification

struct ∗stringlist {
string item<>;
stringlist next;

};

It could have been equivalently declared as the following union:

union stringlist switch (bool opted) {
case TRUE:

struct {
string item<>;
stringlist next;

} element;
case FALSE:

void;
};

or as a variable-length array:

struct stringlist<1> {
string item<>;
stringlist next;

};

Both of these declarations obscure the intention of the stringlist type, so the optional-data
declaration is preferred over both of them. The optional-data type also has a close
correlation to the way in which recursive data structures are represented in high-level
languages such as Pascal or C by use of pointers. In fact, the syntax is the same as that of
the C language for pointers.

X/Open Developers’ Specification (1990)
Page : 32 Protocols for X/Open PC Interworking: (PC)NFS

XDR Protocol Specification XDR Language Specification

3.3 The XDR LANGUAGE SPECIFICATION

3.3.1 Notational Conventions

This specification uses an extended Backus-Naur Form notation for describing the XDR
language. Here is a brief description of the notation:

1. The characters |, (,), [,], ", and ∗ are special.

2. Terminal symbols are strings of any characters surrounded by double quotes (").

3. Non-terminal symbols are strings of non-special characters.

4. Alternative items are separated by a vertical bar (|).

5. Optional items are enclosed in brackets.

6. Items are grouped together by enclosing them in parentheses.

7. A ∗ following an item means zero or more occurrences of that item.

For example, consider the following pattern:

"a " "very" (", " " very")∗ [" cold " "and"] " rainy " ("day" | "night")

An infinite number of strings match this pattern. A few of them are:

‘‘a very rainy day’’
‘‘a very, very rainy day’’
‘‘a very cold and rainy day’’
‘‘a very, very, very cold and rainy night’’

3.3.2 Lexical Notes

1. Comments begin with /∗ and terminate with ∗/ .

2. White space serves to separate items and is otherwise ignored.

3. An identifier is a letter followed by an optional sequence of letters, digits or
underbar ‘‘_’’. The case (lower or upper) of identifiers is not ignored.

4. A constant is a sequence of one or more decimal digits, optionally preceded by a
minus-sign ‘‘-’’.

3.3.3 Syntax Information

declaration:
type-specifier identifier

| type-specifier identifier "[" value "]"
| type-specifier identifier "<" [value] ">"
| "opaque" identifier "[" value "]"
| "opaque" identifier "<" [value] ">"
| "string" identifier "<" [value] ">"
| type-specifier "∗" identifier
| "void"

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 33

XDR Language Specification XDR Protocol Specification

value:
constant

| identifier

type-specifier:
["unsigned"] "int"

| "bool"
| enum-type-spec
| struct-type-spec
| union-type-spec
| identifier

enum-type-spec:
"enum" enum-body

enum-body:
"{"
(identifier "=" value)
("," identifier "=" value)∗
"}"

struct-type-spec:
"struct" struct-body

struct-body:
"{"
(declaration ";")
(declaration ";")∗
"}"

union-type-spec:
"union" union-body

union-body:
"switch" "(" declaration ")" "{"
("case" value ":" declaration ";")
("case" value ":" declaration ";")∗
["default" ":" declaration ";"]
"}"

constant-def:
"const" identifier "=" constant ";"

type-def:
"typedef" declaration ";"

| "enum" identifier enum-body ";"
| "struct" identifier struct-body ";"
| "union" identifier union-body ";"

X/Open Developers’ Specification (1990)
Page : 34 Protocols for X/Open PC Interworking: (PC)NFS

XDR Protocol Specification XDR Language Specification

definition:
type-def

| constant-def

specification:
definition ∗

Although XDR is used by many implementations of NFS, it has been defined in this
document as a tool for use in later chapters. No implementation of the XDR language is
required by a server.

3.3.3.1 Syntax Notes

• The following are keywords and cannot be used as identifiers: bool, case, const,
default, enum, opaque, string, struct, switch, typedef, union, unsigned and void.

• Only unsigned constants may be used as size specifications for arrays. If an identifier
is used, it must have been declared previously as an unsigned constant in a const
definition.

• Constant and type identifiers within the scope of a specification are in the same name
space and must be declared uniquely within this scope.

• Similarly, variable names must be unique within the scope of struct and union
declarations. Nested struct and union declarations create new scopes.

• The discriminant of a union must be of a type that evaluates to an integer; that is, int,
unsigned int, bool, an enumerated type or any typedefed type that evaluates to one
of these is legal. Also, the case values must be one of the legal values of the
discriminant. Finally, a case value may not be specified more than once within the
scope of a union declaration.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 35

Example XDR Data Description XDR Protocol Specification

3.4 AN EXAMPLE OF AN XDR DATA DESCRIPTION

Here is a short XDR data description of an object called a file, which might be used to
transfer files from one machine to another.

const MAXUSERNAME = 32; /∗ max length of a user name ∗/
const MAXFILELEN = 65535; /∗ max length of a file ∗/
const MAXNAMELEN = 255; /∗ max length of a file name ∗/

/∗
∗ Types of files:
∗/

enum filekind {
TEXT = 0, /∗ ascii data ∗/
DATA = 1, /∗ raw data ∗/
EXEC = 2 /∗ executable ∗/

};

/∗
∗ File information, per kind of file:
∗/

union filetype switch (filekind kind) {
case TEXT:

void; /∗ no extra information ∗/
case DATA:

string creator<MAXNAMELEN>; /∗ data creator ∗/
case EXEC:

string interpretor<MAXNAMELEN>; /∗ program interpretor ∗/
};

/∗
∗ A complete file:
∗/

struct file {
string filename<MAXNAMELEN>; /∗ name of file ∗/
filetype type; /∗ info about file ∗/
string owner<MAXUSERNAME>; /∗ owner of file ∗/
opaque data<MAXFILELEN>; /∗ file data ∗/

};

Suppose now that there is a user named ‘‘john’’ who wants to store his lisp program
‘‘sillyprog’’ that contains just the data ‘‘(quit)’’. His file would be encoded as follows:

X/Open Developers’ Specification (1990)
Page : 36 Protocols for X/Open PC Interworking: (PC)NFS

XDR Protocol Specification Example XDR Data Description

Offset Hex Bytes ASCII Description
0 00 00 00 09 Length of filename = 9
4 73 69 6c 6c sill Filename characters
8 79 70 72 6f ypro ... and more characters ...

12 67 00 00 00 g... ... and 3 zero-bytes of fill
16 00 00 00 02 Filekind is EXEC = 2
20 00 00 00 04 Length of interpreter = 4
24 6c 69 73 70 lisp Interpreter characters
28 00 00 00 04 Length of owner = 4
32 6a 6f 68 6e john Owner characters
36 00 00 00 06 Length of file data = 6
40 28 71 75 69 (qui File data bytes ...
44 74 29 00 00 t).. ... and 2 zero-bytes of fill

If instead ‘‘john’’ stored the same file in the text file ‘‘sillytext’’, it would be encoded as
follows:

Offset Hex Bytes ASCII Description
0 00 00 00 09 Length of filename = 9
4 73 69 6c 6c sill Filename characters
8 79 74 65 78 ytex ... and more characters ...

12 74 00 00 00 t... ... and 3 zero-bytes of fill
16 00 00 00 00 Filekind is TEXT = 0

Note: no data encoded for void
20 00 00 00 04 Length of owner = 4
24 6a 6f 68 6e john Owner characters
28 00 00 00 06 Length of file data = 6
32 28 71 75 69 (qui File data bytes ...
36 74 29 00 00 t).. ... and 2 zero-bytes of fill

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 37

References XDR Protocol Specification

3.5 REFERENCES

[1] Brian W. Kernighan & Dennis M. Ritchie, ‘‘The C Programming Language’’, Bell
Laboratories, Murray Hill, New Jersey, 1978.

[2] Danny Cohen, ‘‘On Holy Wars and a Plea for Peace’’, IEEE Computer, October 1981.

[3] ‘‘Courier: The Remote Procedure Call Protocol’’, XEROX Corporation, XSIS 038112,
December 1981.

X/Open Developers’ Specification (1990)
Page : 38 Protocols for X/Open PC Interworking: (PC)NFS

Chapter 4

Remote Procedure Calls: Protocol Specification

This chapter specifies a protocol that is used by many implementors of NFS. It is derived
from a document designated RFC1057 by the ARPA Network Information Centre.

4.1 INTRODUCTION

This chapter specifies a message protocol used in implementing a Remote Procedure Call
(RPC) package. The message protocol is specified with the External Data Representation
(XDR) language; see Chapter 3, XDR Protocol Specification for the details. It is assumed
that the reader is familiar with XDR and no attempt is made to justify it or its uses. The
paper by Birrell and Nelson [ref 1] is recommended as an excellent background to and
justification of RPC.

4.1.1 Terminology

This chapter discusses servers, services, programs, procedures, clients and versions.

network server a piece of software where network services are implemented.

network service a collection of one or more remote programs.

remote program implements one or more remote procedures; the procedures, their
parameters, and results are documented in the specific program’s
protocol specification.

network clients pieces of software that initiate remote procedure calls to services.

A network server may support more than one version of a remote program in order to be
forward compatible with changing protocols. For example, a network file service may be
composed of two programs; one program may deal with high-level applications such as
file system access control and locking; the other may deal with low-level file I/O and
have procedures like read and write. A client machine of the network file service would
call the procedures associated with the two programs of the service on behalf of a user on
the client machine.

4.1.2 The RPC Model

The remote procedure call model is similar to the local procedure call model. In the local
case, the caller places arguments to a procedure in some well-specified location (such as
a stack). It then transfers control to the procedure, and eventually gains back control. At
that point, the results of the procedure are extracted from the well-specified location, and
the caller continues execution.

In the remote case, one thread of control logically winds through two processes - one is
the caller’s process, the other is a server’s process. That is, the caller process sends a call
message to the server process and waits (blocks) for a reply message. The call message
contains the procedure’s parameters, among other things. The reply message contains
the procedure’s results, among other things. Once the reply message is received, the
results of the procedure are extracted, and the caller’s execution is resumed.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 39

Introduction Remote Procedure Calls: Protocol Specification

On the server side, a process is dormant awaiting the arrival of a call message. When one
arrives, the server process extracts the procedure’s parameters, computes the results,
sends a reply message, and then awaits the next call message. Note that in this model,
only one of the two processes is active at any given time.

However, this model is only given as an example. The RPC protocol makes no
restrictions on the concurrency model implemented, and others are possible. For
example, an implementation may choose to have RPC calls asynchronous, so that the
client may do useful work while waiting for the reply from the server. Another
possibility is to have the server create a task to process an incoming request, so that the
server can be free to receive other requests.

4.1.3 Transports and Semantics

The RPC protocol is independent of transport protocols. That is, RPC does not care how a
message is passed from one process to another. The protocol deals only with
specification and interpretation of messages.

It is important to point out that RPC does not try to implement any kind of reliability and
that the application must be aware of the type of transport protocol underneath RPC. If it
knows it is running on top of a reliable transport such as TCP/IP [ref 2], then most of the
work is already done for it. If, however, it is running on top of an unreliable transport
such as UDP/IP [ref 3], it must implement its own retransmission and time-out policy as
the RPC layer does not provide this service.

Because of transport independence, the RPC protocol does not attach specific semantics
to the remote procedures or their execution. Semantics can be inferred from (but should
be explicitly specified by) the underlying transport protocol. For example, consider RPC
running on top of an unreliable transport such as UDP/IP. If an application retransmits
RPC messages after short time-outs, the only thing it can infer if it receives no reply is that
the procedure was executed zero or more times. If it does receive a reply, then it can
infer that the procedure was executed at least once.

A server may wish to remember previously granted requests from a client and not
regrant them in order to ensure some degree of execute-at-most-once semantics. A
server can do this by taking advantage of the transaction ID that is packaged with every
RPC request. The main use of this transaction is by the client RPC layer in matching
replies to requests. However, a client application may choose to re-use its previous
transaction ID when retransmitting a request. The server application, knowing this fact,
may choose to remember this ID after granting a request and not re-grant requests with
the same ID in order to achieve some degree of execute-at-most-once semantics. The
server is not allowed to examine this ID in any other way except as a test for equality.

However, if using a reliable transport such as TCP/IP, the application can infer from a
reply message that the procedure was executed exactly once, but if it receives no reply
message, it cannot assume the remote procedure was not executed. Note that even if a
connection-oriented protocol like TCP is used, an application still needs time-outs and
reconnection to handle server crashes.

There are other possibilities for transports besides datagram- or connection-oriented
protocols. For example, a request-reply protocol such as VMTP[2] is perhaps the most
natural transport for RPC. Note that although RPC is currently implemented on top of

X/Open Developers’ Specification (1990)
Page : 40 Protocols for X/Open PC Interworking: (PC)NFS

Remote Procedure Calls: Protocol Specification Introduction

both TCP/IP and UDP/IP transports, all known implementations of NFS are over
connection-less protocols; therefore, RPC over connection-oriented protocols will not be
discussed further in this specification.

4.1.4 Binding and Rendezvous Independence

The act of binding a client to a service is not part of the remote procedure call
specification. This important and necessary function is left up to some higher-level
software. (The software may use RPC itself, see Section 6.2, Port Mapper Program
Protocol.)

Implementors should think of the RPC protocol as the jump-subroutine instruction (JSR)
of a network; the loader (binder) makes JSR useful, and the loader itself uses JSR to
accomplish its task. Likewise, the network makes RPC useful, using RPC to accomplish
this task.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 41

RPC Protocol Requirements Remote Procedure Calls: Protocol Specification

4.2 RPC PROTOCOL REQUIREMENTS

The RPC protocol must provide for the following:

• unique specification of a procedure to be called;

• provisions for matching response messages to request messages, and

• provisions for authenticating the caller to service and vice versa .

Besides these requirements, RPC has features that detect the following:

• RPC protocol mismatches;

• remote program protocol version mismatches;

• protocol errors (such as incorrect specification of a procedure’s parameters);

• reasons why remote authentication failed, and

• any other reasons why the desired procedure was not called.

4.2.1 Programs and Procedures

The RPC call message has three unsigned fields: remote program number (Section 4.2.3,
Program Number Assignment), remote program version number, and remote procedure
number. The three fields uniquely identify the procedure to be called. Program numbers
are administered by some central authority. (Currently Sun Microsystems is responsible
for administering program numbers.) Once an implementor has a program number, the
remote program can be implemented; the first implementation would most likely have
the version number of 1. Because most new protocols evolve into better, stable and
mature protocols, a version field of the call message identifies which version of the
protocol the caller is using. Version numbers make speaking old and new protocols
through the same server process possible.

The procedure number identifies the procedure to be called. These numbers are
documented in the specific program’s protocol specification. For example, a file service’s
protocol specification may state that its procedure number 5 is read and procedure
number 12 is write.

Just as remote program protocols may change over several versions, the actual RPC
message protocol could also change. Therefore, the call message also contains the RPC
version number, which is always 2 for the version of RPC described here.

The reply message to a request message has enough information to distinguish the
following error conditions:

• The remote implementation of RPC does not speak protocol version 2. The lowest
and highest supported RPC version numbers are returned.

• The remote program is not available on the remote system.

• The remote program does not support the requested version number. The lowest and
highest supported remote program version numbers are returned.

• The requested procedure number does not exist. (This is usually a caller side protocol
or programming error.)

X/Open Developers’ Specification (1990)
Page : 42 Protocols for X/Open PC Interworking: (PC)NFS

Remote Procedure Calls: Protocol Specification RPC Protocol Requirements

• The parameters to the remote procedure appear to be uninterpretable from the
server’s point of view. (Again, this is usually caused by a disagreement about the
protocol between client and service.)

4.2.2 Authentication

The RPC protocol provides the fields necessary for a client to identify itself to a service
and vice versa . Security and access control mechanisms can be built on top of the
message authentication. Several different authentication protocols can be supported. A
field in the RPC header indicates which protocol is being used. More information on
specific authentication protocols can be found in Section 4.4, Authentication Protocols.

4.2.3 Program Number Assignment

Program numbers are given out in groups of 0x20000000 according to the following chart:

Program Numbers Description

0 - 1fffffff Defined by Sun Microsystems
20000000 - 3fffffff Defined by user
40000000 - 5fffffff Transient
60000000 - 7fffffff Reserved
80000000 - 9fffffff Reserved
a0000000 - bfffffff Reserved
c0000000 - dfffffff Reserved
e0000000 - ffffffff Reserved

The first group is a range of numbers administered by Sun Microsystems and should be
identical for all sites. The second range is for applications peculiar to a particular site.
This range is intended primarily for debugging new programs. When a site develops an
application that might be of general interest, that application should be given an assigned
number in the first range. The third group is for applications that generate program
numbers dynamically. The final groups are reserved for future use, and should not be
used.

To obtain an assigned RPC program number contact:

RPC Administrator
Sun Microsystems
2550 Garcia Avenue,
Mountain View,
CA 94043,
U.S.A.

or via electronic mail:

rpc@sun.com

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 43

The RPC Message Protocol Remote Procedure Calls: Protocol Specification

4.3 THE RPC MESSAGE PROTOCOL

This section defines the RPC message protocol in the XDR data description language. The
message is defined in a top-down style.

enum msg_type {
CALL = 0,
REPLY = 1

};

/∗
∗ A reply to a call message can take on two forms:
∗ the message was either accepted or rejected.
∗/
enum reply_stat {

MSG_ACCEPTED = 0,
MSG_DENIED = 1

};

/∗
∗ Given that a call message was accepted, the following is the
∗ status of an attempt to call a remote procedure.
∗/
enum accept_stat {

SUCCESS = 0, /∗ RPC executed successfully ∗/
PROG_UNAVAIL = 1, /∗ remote hasn’t exported program ∗/
PROG_MISMATCH = 2, /∗ remote can’t support version number ∗/
PROC_UNAVAIL = 3, /∗ program can’t support procedure ∗/
GARBAGE_ARGS = 4 /∗ procedure can’t decode params ∗/

};

/∗
∗ Reasons why a call message was rejected:
∗/
enum reject_stat {

RPC_MISMATCH = 0, /∗ RPC version number is not 2 ∗/
AUTH_ERROR = 1 /∗ remote can’t authenticate caller ∗/

};

/∗
∗ Why authentication failed:
∗/
enum auth_stat {

AUTH_BADCRED = 1, /∗ bad credentials ∗/
AUTH_REJECTEDCRED = 2, /∗ client must begin new session ∗/
AUTH_BADVERF = 3, /∗ bad verifier ∗/
AUTH_REJECTEDVERF = 4, /∗ verifier expired or replayed ∗/
AUTH_TOOWEAK = 5 /∗ rejected for security reasons ∗/

};

X/Open Developers’ Specification (1990)
Page : 44 Protocols for X/Open PC Interworking: (PC)NFS

Remote Procedure Calls: Protocol Specification The RPC Message Protocol

/∗
∗ The RPC message:
∗ All messages start with a transaction identifier, xid,
∗ followed by a two-armed discriminated union. The union’s
∗ discriminant is a msg_type which switches to one of the two
∗ types of the message. The xid of a REPLY message always
∗ matches that of the initiating CALL message. N.B.: The xid
∗ field may be used by clients to match reply messages with
∗ call messages, or by servers detecting retransmissions; the
∗ service side cannot treat this xid as any type of sequence
∗ number.
∗/
struct rpc_msg {

unsigned int xid;
union switch (msg_type mtype) {

case CALL:
call_body cbody;

case REPLY:
reply_body rbody;

} body;
};

/∗
∗ Body of an RPC request call:
∗ In version 2 of the RPC protocol specification, rpcvers must
∗ be equal to 2. The fields prog, vers and proc specify the
∗ remote program, its version number, and the procedure within
∗ the remote program to be called. After these fields are two
∗ authentication parameters: cred (authentication credentials)
∗ and verf (authentication verifier). The two authentication
∗ parameters are followed by the parameters to the remote
∗ procedure, which are specified by the specific program
∗ protocol.
∗/
struct call_body {

unsigned int rpcvers; /∗ must be equal to two (2) ∗/
unsigned int prog;
unsigned int vers;
unsigned int proc;
opaque_auth cred;
opaque_auth verf;
/∗ procedure specific parameters start here ∗/

};

/∗
∗ Body of an RPC reply:
∗ The call message was either accepted or rejected.
∗/

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 45

The RPC Message Protocol Remote Procedure Calls: Protocol Specification

union reply_body switch (reply_stat stat) {
case MSG_ACCEPTED:

accepted_reply areply;
case MSG_DENIED:

rejected_reply rreply;
} reply;

/∗
∗ Reply to an RPC request that was accepted by the server:
∗ there could be an error even though the request was accepted.
∗ The first field is an authentication verifier that the server
∗ generates in order to validate itself to the caller. It is
∗ followed by a union whose discriminant is an enum
∗ accept_stat. The SUCCESS arm of the union is protocol
∗ specific. The PROG_UNAVAIL, PROC_UNAVAIL and GARBAGE_ARGS
∗ arms of the union are void. The PROG_MISMATCH arm specifies
∗ the lowest and highest version numbers of the remote program
∗ supported by the server.
∗/
struct accepted_reply {

opaque_auth verf;
union switch (accept_stat stat) {

case SUCCESS:
opaque results[0];
/∗ procedure-specific results start here ∗/

case PROG_MISMATCH:
struct {

unsigned int low;
unsigned int high;

} mismatch_info;
default:

/∗
∗ Void. Cases include PROG_UNAVAIL,
∗ PROC_UNAVAIL and GARBAGE_ARGS.
∗/
void;

} reply_data;
};

/∗
∗ Reply to an RPC request that was rejected by the server:
∗ The request can be rejected for two reasons: either the
∗ server is not running a compatible version of the RPC
∗ protocol (RPC_MISMATCH), or the server refuses to
∗ authenticate the caller (AUTH_ERROR). In case of an RPC
∗ version mismatch, the server returns the lowest and highest
∗ supported RPC version numbers. In case of refused
∗ authentication, failure status is returned.
∗/

X/Open Developers’ Specification (1990)
Page : 46 Protocols for X/Open PC Interworking: (PC)NFS

Remote Procedure Calls: Protocol Specification The RPC Message Protocol

union rejected_reply switch (reject_stat stat) {
case RPC_MISMATCH:

struct {
unsigned int low;
unsigned int high;

} mismatch_info;
case AUTH_ERROR:

auth_stat stat;
};

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 47

Authentication Protocols Remote Procedure Calls: Protocol Specification

4.4 AUTHENTICATION PROTOCOLS

As previously stated, authentication parameters are opaque, but open-ended to the rest
of the RPC protocol. This section defines two ‘‘flavours’’ of authentication. Other
implementations are free to invent new authentication types, with the same rules of
flavour number assignment as there are for program number assignment.

Provisions for authentication of caller to service and vice versa are provided as a part of
the RPC protocol. The call message has two authentication fields; the credentials and
verifier. The reply message has one authentication field, the response verifier. The RPC
protocol specification defines all three fields to be the following opaque type:

enum auth_flavor {
AUTH_NULL = 0,
AUTH_UNIX = 1,
/∗ and more to be defined ∗/

};

struct opaque_auth {
auth_flavor flavor;
opaque body<400>;

};

In other words, any opaque_auth structure is an auth_flavor enumeration followed by a
sequence of bytes which are opaque to the RPC protocol implementation.

The interpretation and semantics of the data contained within the authentication fields is
specified by individual, independent authentication protocol specifications.

If authentication parameters are rejected, the response message will contain information
stating why they were rejected.

4.4.1 Null Authentication

Often calls must be made where the caller does not know who he is or the server does not
care who the caller is. In this case, the flavour value (the discriminant of the
opaque_auth ’s union) of the RPC message’s credentials, verifier and response verifier is
AUTH_NULL. The bytes of the opaque_auth ’s body are undefined. It is recommended that
the opaque length be zero.

4.4.2 UNIX Authentication

The caller of a remote procedure may wish to identify himself as he is identified on a
UNIX system. The value of the credential’s discriminant of an RPC call message is
AUTH_UNIX. The bytes of the credential’s opaque body encode the following structure:

struct auth_unix {
unsigned int stamp;
string machinename<255>;
unsigned int uid;
unsigned int gid;
unsigned int gids<8>;

};

X/Open Developers’ Specification (1990)
Page : 48 Protocols for X/Open PC Interworking: (PC)NFS

Remote Procedure Calls: Protocol Specification Authentication Protocols

The stamp is an arbitrary ID which the caller machine may generate. The machinename is
the name of the caller’s machine (like ‘‘krypton’’). The uid is the caller’s effective user ID.
The gid is the caller’s effective group ID. The gids is a counted array of groups which
contain the caller as a member (supplementary groups). An entry in the gids array whose
value is 0xffffffff should be ignored. Although the supplementary group list gids is part of
the NFS specification and is supported by (PC) NFS clients, it is only optional in the
X/Open CAE. A server which does not implement supplementary groups may choose to
ignore the gids field. The verifier accompanying the credentials (the verf field in call_body
and accept_reply) should be of AUTH_NULL (defined above).

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 49

The RPC Language Remote Procedure Calls: Protocol Specification

4.5 THE RPC LANGUAGE

Just as it was necessary to describe the XDR data-types in a formal language, it is also
necessary to describe the procedures that operate on these XDR data-types in a formal
language as well. The RPC Language is used for this purpose. It is an extension to the
XDR language. The following example is used to describe the essence of the language.

4.5.1 The RPC Language Specification

The RPC language is identical to the XDR language, except for the added definition of a
program-def described below.

program-def:
"program" identifier "{"

version-def
version-def ∗

"}" "=" constant ";"

version-def:
"version" identifier "{"

procedure-def
procedure-def ∗

"}" "=" constant ";"

procedure-def:
type-specifier identifier "(" type-specifier ")"
"=" constant ";"

4.5.2 An Example Service Described in the RPC Language

Here is an example of the specification of a simple ping program.

/∗
∗ Simple ping program
∗/
program PING_PROG {

/∗ Latest and greatest version ∗/
version PING_VERS_PINGBACK {

void PINGPROC_NULL(void) = 0;

/∗
∗ Ping the caller, return the round-trip time
∗ (in microseconds). Returns -1 if the operation
∗ timed out.
∗/
int PINGPROC_PINGBACK(void) = 1;

} = 2;

/∗ Original version ∗/
version PING_VERS_ORIG {

void PINGPROC_NULL(void) = 0;

X/Open Developers’ Specification (1990)
Page : 50 Protocols for X/Open PC Interworking: (PC)NFS

Remote Procedure Calls: Protocol Specification The RPC Language

} = 1;
} = 1;

const PING_VERS = 2; /∗ latest version ∗/

The first version described is PING_VERS_PINGBACK with two procedures,
PINGPROC_NULL and PINGPROC_PINGBACK. PINGPROC_NULL takes no arguments and
returns no results, but it is useful for computing round-trip times from the client to the
server and back again. By convention, procedure 0 of any RPC protocol should have the
same semantics, and never require any kind of authentication. The second procedure is
used for the client to have the server do a reverse ping operation back to the client, and it
returns the amount of time (in microseconds) that the operation used. The next version,
PING_VERS_ORIG, is the original version of the protocol and it does not contain
PINGPROC_PINGBACK procedure. It is useful for compatibility with old client programs,
and as this program matures it may be dropped from the protocol entirely.

4.5.3 Syntax Notes

• The keywords program and version are added and cannot be used as identifiers.

• A version name cannot occur more than once within the scope of a program
definition; nor can a version number occur more than once within the scope of a
program definition.

• A procedure name cannot occur more than once within the scope of a version
definition; nor can a procedure number occur more than once within the scope of
version definition.

• Program identifiers are in the same name space as constant and type identifiers.

• Only unsigned constants can be assigned to programs, versions and procedures.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 51

References Remote Procedure Calls: Protocol Specification

4.6 REFERENCES

[1] Birrell, Andrew D. & Nelson, Bruce Jay; ‘‘Implementing Remote Procedure Calls’’;
XEROX CSL-83-7, October 1983.

[2] Postel, J.; ‘‘Transmission Control Protocol - DARPA Internet Program Protocol
Specification’’, RFC 793; Information Sciences Institute, September 1981.

[3] Postel, J.; ‘‘User Datagram Protocol’’, RFC 768; Information Sciences Institute, August
1980.

X/Open Developers’ Specification (1990)
Page : 52 Protocols for X/Open PC Interworking: (PC)NFS

Chapter 5

Network File System: Protocol Specification

This chapter specifies a protocol that Sun Microsystems and others are using. It is
derived from a document designated RFC1094 by the ARPA Network Information Center.

5.1 INTRODUCTION

The Network File System (NFS) protocol provides transparent remote access to shared
file systems over local area networks. The NFS protocol is designed to be machine,
operating system, network architecture and transport protocol independent. This
independence is achieved through the use of Remote Procedure Call (RPC) primitives
built on top of an External Data Representation (XDR). Implementations exist for a variety
of machines, from personal computers to supercomputers.

The supporting mount protocol allows the server to hand out remote access privileges to
a restricted set of clients. It performs the operating system-specific functions that allow a
client to attach remote directory trees to a local file system. The supporting mount
protocol (see Chapter 6, Adjunct Protocols) is used by a client to obtain access to a
particular file system or a subset thereof. The server will provide a ‘‘handle’’ which the
client can use to identify the file system in subsequent NFS operations. Typically, the
client will use the handle to arrange for the remote file system to appear to the user as
part of the local file system.

5.1.1 Remote Procedure Call

The remote procedure call specification provides a procedure-oriented interface to
remote services. Each server supplies a program that is a set of procedures. NFS is one
such ‘‘program’’. The combination of host address, program number and procedure
number specifies one remote service procedure. RPC does not depend on services
provided by specific protocols, so it can be used with any underlying transport protocol
(see Chapter 4, Remote Procedure Calls: Protocol Specification). The remote procedure
call specification provides a procedure-oriented interface to remote services. Each server
supplies a program that is a set of procedures. NFS is one such ‘‘program’’. The RPC
protocol is described in Chapter 4, Remote Procedure Calls: Protocol Specification.

5.1.2 External Data Representation

The External Data Representation (XDR) standard provides a common way of
representing a set of data types over a network. The NFS Protocol Specification is written
using the RPC data description language. For more information, see Chapter 3, XDR
Protocol Specification. Implementations of XDR and RPC are available in the public
domain, but NFS does not require their use. Any software that provides equivalent
functionality can be used, and if the encoding is exactly the same it can interoperate with
other implementations of NFS.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 53

Introduction Network File System: Protocol Specification

5.1.3 Stateless Servers and Idempotency

The NFS protocol is stateless; that is, a server does not need to maintain any extra state
information about any of its clients in order to function correctly. Stateless servers have a
distinct advantage over stateful servers in the event of a failure. With stateless servers, a
client need only retry a request until the server responds; it does not even need to know
that the server has crashed, or the network temporarily went down. The client of a
stateful server, on the other hand, needs to either detect a server crash and rebuild the
server’s state when it comes back up, or cause client operations to fail.

This may not sound like an important issue, but it affects the protocol in some
unexpected ways.

However, NFS deals with objects such as files and directories that inherently have state -
what good would a file be if it did not keep its contents intact? The goal is to not
introduce any extra state in the protocol itself. Another way to simplify recovery is by
making operations ‘‘idempotent’’ whenever possible (so that they can potentially be
repeated). The NFS protocol is stateless; that is, a server does not need to maintain any
extra state information about any of its clients in order to function correctly, neither is
there any protocol associated with state recovery. However, NFS deals with objects such
as files and directories which inherently have state. This apparent contradiction is
resolved by introducing distributed state and by making operations idempotent.

Distributed state arises when an NFS server passes information such as a file handle or
directory search ‘‘cookie’’ to a client. The server promises, in effect, that when the client
passes this information back to the server at a later date it will still be valid and can be
used to reconstruct the state needed to perform the requested operation. The state
information must be valid even if the server has been rebooted in the interim, and thus
must refer to objects held on stable server storage. (In practice, servers will employ
caching techniques to accelerate the interpretation of this state in the normal case when
no reboot has occurred.)

An idempotent operation is one which can be repeated several times without changing
the results. For example, a request to write 5 bytes at offset 165 in a file is idempotent; a
request to write 5 bytes at the current end-of-file is not. NFS employs idempotent
operations wherever possible. Certain operations are inherently not idempotent - for
example, deleting a file - so NFS server implementations will normally include
mechanisms to attempt to detect duplicate requests and furnish the appropriate results.
Occasionally this strategy will fail and a client will receive an unexpected error; NFS
clients must be tolerant of such occurrences.

X/Open Developers’ Specification (1990)
Page : 54 Protocols for X/Open PC Interworking: (PC)NFS

Network File System: Protocol Specification NFS Protocol Definition

5.2 NFS PROTOCOL DEFINITION

Servers can change over time, and so can the protocol that they use. RPC therefore
provides a version number with each RPC request. This chapter describes version 2 of
the NFS protocol. It contains procedures and parameters which are unused (obsolete) but
which are retained for compatibility purposes. NFS server implementations should be
prepared to handle these appropriately.

5.2.1 File System Model

NFS assumes a file system that is hierarchical, with directories as all but the bottom-level
files. Each entry in a directory (file, directory, device, etc.) has a string name. Different
operating systems may have restrictions on the depth of the tree or the names used, as
well as using different syntax to represent the ‘‘pathname’’, which is the concatenation of
all the ‘‘components’’ (directory and file names) in the name. A ‘‘file system’’ is a tree on a
single server (usually a single disk or physical partition) with a specified ‘‘root’’. Some
operating systems provide a ‘‘mount’’ operation to make all file systems appear as a
single tree, while others maintain a ‘‘forest’’ of file systems. Files are unstructured
streams of uninterpreted bytes.

NFS looks up one component of a pathname at a time. It may not be obvious why it does
not just take the whole pathname, travel down the directories, and return a file handle
when it is done. There are several good reasons not to do this. First, pathnames need
separators between the directory components, and different operating systems use
different separators. A Network Standard Pathname Representation could be defined,
but then every pathname would have to be parsed and converted at each end. Other
issues are discussed in Section 5.4, NFS Implementation Issues.

Although files and directories are similar objects in many ways, different procedures are
used to read directories and files. This provides a network standard format for
representing directories. The same argument as above could have been used to justify a
procedure that returns only one directory entry per call. However, directories can
contain many entries, and a remote call to return each would lead to unacceptable
performance.

Symbolic links

The NFS file system model includes the concept of symbolic links, in which a directory
entry is associated with a piece of text instead of a file or directory. An NFS client which
encounters a symbolic link while processing a path will normally issue an
NFSPROC_READLINK to retrieve the text and will then treat this as a path and look up the
components to locate the actual file or directory. An NFS server need not implement
symbolic links; if it does not, it should be prepared to return a PROC_UNAVAIL error if a
client invokes NFSPROC_READLINK or NFSPROC_SYMLINK. Similarly, an NFS client
should only issue an NFS_READLINK if a lookup returns an entry typed as an NFLNK, and
should be prepared to handle failures of any symbolic link operations.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 55

RPC Information Network File System: Protocol Specification

5.3 RPC INFORMATION

Authentication

The NFS service uses AUTH_UNIX style authentication, except in the NULL procedure
where AUTH_NONE is also permitted.

Transport Protocols

Current implementations of NFS are supported over UDP/IP only.

Port Number

The NFS protocol currently uses the UDP port number 2049. This is not an officially
assigned port, so later versions of the protocol will use the ‘‘Portmapping’’ facility of RPC.

5.3.1 Sizes of XDR Structures

These are the sizes, given in decimal bytes, of various XDR structures used in the
protocol:

/∗ The maximum number of bytes of data in a READ or WRITE request ∗/
const NFS_MAXDATA = 8192;

/∗ The maximum number of bytes in a pathname argument ∗/
const NFS_MAXPATHLEN = 1024;

/∗ The maximum number of bytes in a file name argument ∗/
const NFS_MAXNAMLEN = 255;

/∗ The size in bytes of the opaque ‘‘cookie’’ passed by READDIR ∗/
const NFS_COOKIESIZE = 4;

/∗ The size in bytes of the opaque file handle ∗/
const NFS_FHSIZE = 32;

5.3.2 Basic Data Types

The following XDR definitions are basic structures and types used in other structures
described further on.

5.3.2.1 stat

enum stat {
NFS_OK = 0,
NFSERR_PERM=1,
NFSERR_NOENT=2,
NFSERR_IO=5,
NFSERR_NXIO=6,
NFSERR_ACCES=13,
NFSERR_EXIST=17,
NFSERR_NODEV=19,

X/Open Developers’ Specification (1990)
Page : 56 Protocols for X/Open PC Interworking: (PC)NFS

Network File System: Protocol Specification RPC Information

NFSERR_NOTDIR=20,
NFSERR_ISDIR=21,
NFSERR_FBIG=27,
NFSERR_NOSPC=28,
NFSERR_ROFS=30,
NFSERR_NAMETOOLONG=63,
NFSERR_NOTEMPTY=66,
NFSERR_DQUOT=69,
NFSERR_STALE=70,
NFSERR_WFLUSH=99

};

The stat type is returned with every procedure’s results. A value of NFS_OK indicates
that the call completed successfully and the results are valid. The other values indicate
some kind of error occurred on the server side during the servicing of the procedure.

NFSERR_PERM Not owner. The caller does not have the correct ownership to
perform the requested operation.

NFSERR_NOENT No such file or directory. The file or directory specified does not
exist.

NFSERR_IO Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFSERR_NXIO No such device or address.

NFSERR_ACCES Permission denied. The caller does not have the correct
permission to perform the requested operation.

NFSERR_EXIST File exists. The file specified already exists.

NFSERR_NODEV No such device.

NFSERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFSERR_ISDIR Is a directory. The caller specified a directory in a non-directory
operation.

NFSERR_FBIG File too large. The operation caused a file to grow beyond the
server’s limit.

NFSERR_NOSPC No space left on device. The operation caused the server’s file
system to reach its limit.

NFSERR_ROFS Read-only file system. Write attempted on a read-only file system.

NFSERR_NAMETOOLONG
File name too long. The file name in an operation was too long.

NFSERR_NOTEMPTY Directory not empty. Attempted to remove a directory that was
not empty.

NFSERR_DQUOT Disk quota exceeded. The client’s disk quota on the server has
been exceeded.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 57

RPC Information Network File System: Protocol Specification

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file
referred to by that file handle no longer exists, or access to it has
been revoked.

5.3.2.2 ftype

enum ftype {
NFNON = 0,
NFREG = 1,
NFDIR = 2,
NFBLK = 3,
NFCHR = 4,
NFLNK = 5

};

The enumeration ftype gives the type of a file. The type NFNON indicates a non-file,
NFREG is a regular file, NFDIR is a directory, NFBLK is a block-special device, NFCHR is a
character-special device, and NFLNK is a symbolic link.

5.3.2.3 nfscookie

typedef opaque nfscookie[NFS_COOKIESIZE];

The nfscookie is an opaque value that identifies a particular piece of data, such as a
directory entry in the NFSPROC_READDIR call.

5.3.2.4 fhandle

typedef opaque fhandle[NFS_FHSIZE];

The fhandle is the file handle passed between the server and the client. All file
operations are done using file handles to refer to a file or directory. The file handle can
contain whatever information the server needs to distinguish an individual file.

5.3.2.5 timeval

struct timeval {
unsigned int seconds;
unsigned int useconds;

};

The timeval structure is the number of seconds and microseconds since midnight
January 1, 1970, Greenwich Mean Time. It is used to pass time and date information.

5.3.2.6 diropok

struct diropok {
fhandle file;
fattr attributes;

};

X/Open Developers’ Specification (1990)
Page : 58 Protocols for X/Open PC Interworking: (PC)NFS

Network File System: Protocol Specification RPC Information

5.3.2.7 fattr

struct fattr {
ftype type;
unsigned int mode;
unsigned int nlink;
unsigned int uid;
unsigned int gid;
unsigned int size;
unsigned int blocksize;
unsigned int rdev;
unsigned int blocks;
unsigned int fsid;
unsigned int fileid;
timeval atime;
timeval mtime;
timeval ctime;

};

The fattr structure contains the attributes of a file; type is the type of the file; nlink is the
number of hard links to the file (the number of different names for the same file); uid is
the user identification number of the owner of the file; gid is the group identification
number of the group of the file; size is the size in bytes of the file; blocksize is the size in
bytes of a block of the file; rdev is the device number of the file if it is type NFCHR or
NFBLK; blocks is the number of blocks the file takes up on disk; fsid is the file system
identifier for the file system containing the file; fileid is a number that uniquely identifies
the file within its file system; atime is the time when the file was last accessed for either
read or write; mtime is the time when the file data was last modified (written); and ctime is
the time when the status of the file was last changed. Writing to the file also changes
ctime if the size of the file changes.

mode is the access mode encoded as a set of bits. Notice that the file type is specified both
in the mode bits and in the file type; the server must ensure they are consistent.

The descriptions given below specify the bit positions using octal numbers.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 59

RPC Information Network File System: Protocol Specification

Bit Description
0040000 This is a directory; type field should be NFDIR.
0020000 This is a character special file; type field should be NFCHR.
0060000 This is a block special file; type field should be NFBLK.
0100000 This is a regular file; type field should be NFREG.
0120000 This is a symbolic link file; type field should be NFLNK.
0140000 This is a named socket; type field should be NFNON.
0004000 Set user id on execution.
0002000 Set group id on execution.
0001000 Not used.
0000400 Read permission for owner.
0000200 Write permission for owner.
0000100 Execute and search permission for owner.
0000040 Read permission for group.
0000020 Write permission for group.
0000010 Execute and search permission for group.
0000004 Read permission for others.
0000002 Write permission for others.
0000001 Execute and search permission for others.

Notes: The bits are the same as the mode bits returned by the stat() XSI system call with
the addition of the socket and symbolic link combinations which are supported
by NFS and some operating systems.

The rdev field in the attributes structure is an operating system specific device
specifier.

5.3.2.8 sattr

struct sattr {
unsigned int mode;
unsigned int uid;
unsigned int gid;
unsigned int size;
timeval atime;
timeval mtime;

};

The sattr structure contains the file attributes which can be set from the client. The fields
are the same as for fattr above. A value of 0xffffffff indicates a field that should be
ignored. A size of zero means the file should be truncated to zero length.

5.3.2.9 filename

typedef string filename<NFS_MAXNAMLEN>;

The type filename is used for passing filenames or pathname components.

5.3.2.10 path

typedef string path<NFS_MAXPATHLEN>;

X/Open Developers’ Specification (1990)
Page : 60 Protocols for X/Open PC Interworking: (PC)NFS

Network File System: Protocol Specification RPC Information

The type path is a pathname to be used in the symbolic link operations
NFSPROC_SYMLINK and NFSPROC_READLINK. The server must consider it as a string
with no internal structure.

5.3.2.11 attrstat

union attrstat switch (stat status) {
case NFS_OK:

fattr attributes;
default:

void;
};

The attrstat structure is a common procedure result. It contains a status and, if the call
succeeded, it also contains the attributes of the file on which the operation was done.

5.3.2.12 diropargs

struct diropargs {
fhandle dir;
filename name;

};

The diropargs structure is used in directory operations. The fhandle dir is the directory
in which to find the file name. A directory operation is one in which the directory is
affected.

5.3.2.13 diropres

union diropres switch (stat status) {
case NFS_OK:

struct diropok diropok;
default:

void;
};

The results of a directory operation are returned in a diropres structure. If the call
succeeded, a new file handle file and the attributes associated with that file are returned
along with the status.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 61

NFS Implementation Issues Network File System: Protocol Specification

5.4 NFS IMPLEMENTATION ISSUES

The NFS protocol is designed to be operating system independent, but since this version
was designed in a UNIX environment, many operations have semantics similar to the
operations of the UNIX file system. This section discusses some of the implementation-
specific semantic issues.

Server/Client Relationship

Every NFS client can also potentially be a server, and remote and local mounted file
systems can be freely intermixed. This leads to some interesting problems when a client
travels down the directory tree of a remote file system and reaches the mount point on
the server for another remote file system. Allowing the server to follow the second
remote mount would require loop detection, server lookup and user revalidation.
Instead, it was decided not to let clients cross a server’s mount point.

When a client does an NFSPROC_LOOKUP on a directory on which the server has
mounted a file system, the client sees the underlying directory instead of the mounted
directory. A client can do remote mounts that match the server’s mount points to
maintain the server’s view.

Permission Issues

The NFS protocol, strictly speaking, does not define the permission checking used by
servers. However, it is expected that a server will do normal operating system
permission checking using AUTH_UNIX style authentication as the basis of its protection
mechanism. The server gets the client’s effective uid, effective gid and groups on each
call, and uses them to check permission. There are various problems with this method
that can be resolved in interesting ways.

Using uid and gid implies that the client and server share the same uid list. Every server
and client pair must have the same mapping from user to uid and from group to gid.
Since every client can also be a server, this tends to imply that the whole network shares
the same uid/gid space.

Another problem arises due to the usually stateful open operation. Most operating
systems check permission at open time, and then check that the file is open on each read
and write request. With stateless servers, the server has no idea that the file is open and
must do permission checking on each read and write call. On a local file system, a user
can open a file and then change the permissions so that no one is allowed to touch it, but
will still be able to write to the file because it is open. On a remote file system, by contrast,
the write would fail. To get around this problem, the server’s permission checking
algorithm should allow the owner of a file to access it regardless of the permission
setting.

A similar problem has to do with paging in from a file over the network. The operating
system usually checks for execute permission before opening a file for demand paging,
and then reads blocks from the open file. The file may not have read permission, but after
it is opened it doesn’t matter. An NFS server cannot tell the difference between a normal
file read and a demand page-in read. To make this work, the server allows reading of
files if the uid given in the call has execute or read permission on the file.

X/Open Developers’ Specification (1990)
Page : 62 Protocols for X/Open PC Interworking: (PC)NFS

Network File System: Protocol Specification NFS Implementation Issues

In most operating systems, a particular user (with the user ID zero) has access to all files
no matter what permission and ownership they have. This ‘‘super-user’’ permission may
not be allowed on the server, since anyone who can become super-user on their client
could gain access to all remote files. An X/Open-compliant server, by default, maps user
id 0 to -2 (0xfffffffe) before doing its access checking. A server implementation may
provide a mechanism to change this mapping.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 63

Server Procedures Network File System: Protocol Specification

5.5 SERVER PROCEDURES

The protocol definition is given as a set of procedures with arguments and results
defined using the RPC language. A brief description of the function of each procedure
should provide enough information to allow implementation.

All of the procedures in the NFS protocol are synchronous. When a procedure returns to
the client the operation has completed and any data associated with the request is now
on stable storage. For example, a client NFSPROC_WRITE request will cause the server to
update some or all of the following: data blocks, file system information blocks (such as
indirect blocks), and file attribute information (size and modify times). When the
NFSPROC_WRITE returns to the client, it can assume that the write is safe, even in case of
a server crash, and it can discard the data written. This is a very important part of the
statelessness of the server. If the server waited to flush data from remote requests, the
client would have to save those requests so that it could resend them in case of a server
crash.

/∗
∗ Remote file service routines
∗/
program NFS_PROGRAM {

version NFS_VERSION {
void NFSPROC_NULL(void) = 0;
attrstat NFSPROC_GETATTR(fhandle)= 1;
attrstat NFSPROC_SETATTR(sattrargs) = 2;
void NFSPROC_ROOT(void) = 3;
diropres NFSPROC_LOOKUP(diropargs) = 4;
readlinkres NFSPROC_READLINK(fhandle) = 5;
readres NFSPROC_READ(readargs) = 6;
void NFSPROC_WRITECACHE(void) = 7;
attrstat NFSPROC_WRITE(writeargs) = 8;
diropres NFSPROC_CREATE(createargs) = 9;
stat NFSPROC_REMOVE(diropargs) = 10;
stat NFSPROC_RENAME(renameargs) = 11;
stat NFSPROC_LINK(linkargs) = 12;
stat NFSPROC_SYMLINK(symlinkargs) = 13;
diropres NFSPROC_MKDIR(createargs) = 14;
stat NFSPROC_RMDIR(diropargs) = 15;
readdirres NFSPROC_READDIR(readdirargs) = 16;
statfsres NFSPROC_STATFS(fhandle) = 17;

} = 2;
} = 100003;

X/Open Developers’ Specification (1990)
Page : 64 Protocols for X/Open PC Interworking: (PC)NFS

Network File System: Protocol Specification Server Procedures

5.5.1 NFSPROC_NULL Specification - Do Nothing

5.5.1.1 RPC Data Descriptions

Call Arguments

None.

Return Arguments

None.

5.5.1.2 RPC Procedure Description

void
NFSPROC_NULL(void) = 0;

5.5.1.3 Description

This procedure does no work. It is made available in all RPC services to allow server
response testing and timing.

5.5.1.4 Return Codes

None.

5.5.2 NFSPROC_GETATTR Specification - Get File Attributes

5.5.2.1 RPC Data Descriptions

Call Arguments

typedef opaque fhandle[NFS_FHSIZE];

Return Arguments

union attrstat switch (stat status) {
case NFS_OK:

fattr attributes;
default:

void;
};

fattr and sattr are defined in Section 5.3.2, Basic Data Types.

5.5.2.2 RPC Procedure Description

attrstat
NFSPROC_GETATTR (fhandle) = 1;

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 65

Server Procedures Network File System: Protocol Specification

5.5.2.3 Description

If the reply status is NFS_OK, then the reply attributes contains the attributes for the file
given by the input fhandle. The file handle supplied to this procedure can refer to any of
the supported file types. See the definition of ftype in Section 5.3.2, Basic Data Types.

5.5.2.4 Return Codes

NFS_OK Indicates that the call completed successfully and the results are
valid.

It is recommended that implementations return the following error codes for the
following situations. Other error values are considered implementation-specific.

NFSERR_IO Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file
referred to by that file handle no longer exists, or access to it has
been revoked.

5.5.3 NFSPROC_SETATTR Specification - Set File Attributes

5.5.3.1 RPC Data Descriptions

Call Arguments

struct sattrargs {
fhandle file;
sattr attributes;

};

fhandle and sattr are defined in Section 5.3.2, Basic Data Types.

Return Arguments

union attrstat switch (stat status) {
case NFS_OK:

fattr attributes;
default:

void;
};

fattr and sattr are defined in Section 5.3.2, Basic Data Types.

5.5.3.2 RPC Procedure Description

attrstat
NFSPROC_SETATTR (sattrargs) = 2;

5.5.3.3 Description

The attributes argument contains fields which are either 0xffffffff or are the new value for
the attributes of file. If the reply status is NFS_OK, then the reply attributes have the

X/Open Developers’ Specification (1990)
Page : 66 Protocols for X/Open PC Interworking: (PC)NFS

Network File System: Protocol Specification Server Procedures

attributes of the file after the NFSPROC_SETATTR operation has completed. The file
handle supplied to this procedure can refer to any of the supported file types, but it may
not be possible to set all attributes in the sattr structure for a particular file type.

Setting the size field to zero in the sattr structure means the file should be truncated. This
operation should only be permitted on regular files.

5.5.3.4 Return Codes

NFS_OK Indicates that the call completed successfully and the results are
valid.

It is recommended that implementations return the following error codes for the
following situations. Other error values are considered implementation-specific.

NFSERR_PERM Not owner. The caller does not have the correct ownership to
perform the requested operation.

NFSERR_IO Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct
permission to perform the requested operation or is attempting to
change an attribute which may not be modified for a particular file
type.

NFSERR_ISDIR Is a directory. The caller specified a directory in a non-directory
operation.

NFSERR_ROFS Read-only file system. Write attempted on a read-only file system.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file
referred to by that file handle no longer exists, or access to it has
been revoked.

5.5.4 NFSPROC_ROOT Specification - Get File System Root

5.5.4.1 RPC Data Descriptions

Call Arguments

None.

Return Arguments

None.

5.5.4.2 RPC Procedure Description

void
NFSPROC_ROOT(void) = 3;

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 67

Server Procedures Network File System: Protocol Specification

5.5.4.3 Description

Obsolete. The function of looking up the root file handle is now handled by the mount
protocol. This procedure is no longer used because finding the root file handle of a file
system requires moving pathnames between client and server. To do this correctly would
require the definition of a network standard representation of pathnames. Instead, the
function of looking up the root file handle is done by the MNTPROC_MNT procedure. (See
Section 6.4, Mount Protocol Definition.)

5.5.4.4 Return Codes

None.

5.5.5 NFSPROC_LOOKUP Specification - Look Up File Name

5.5.5.1 RPC Data Descriptions

Call Arguments

struct diropargs {
fhandle dir;
filename name;

};

fhandle and filename are defined in Section 5.3.2, Basic Data Types.

Return Arguments

union diropres switch (stat status) {
case NFS_OK:

struct diropok diropok;
default:

void;
};

fhandle, fattr and sattr are defined in Section 5.3.2, Basic Data Types.

5.5.5.2 RPC Procedure Description

diropres
NFSPROC_LOOKUP(diropargs) = 4;

5.5.5.3 Description

If the reply status is NFS_OK, then the reply diropok.file and reply diropok.attributes are the
file handle and attributes for the file name in the directory given by dir in the argument.
The file handle supplied to this procedure can refer to any of the supported file types.

5.5.5.4 Return Codes

NFS_OK Indicates that the call completed successfully and the results are
valid.

X/Open Developers’ Specification (1990)
Page : 68 Protocols for X/Open PC Interworking: (PC)NFS

Network File System: Protocol Specification Server Procedures

It is recommended that implementations return the following error codes for the
following situations. Other error values are considered implementation-specific.

NFSERR_NOENT No such file or directory. The file or directory specified does not
exist.

NFSERR_IO Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct
permission to perform the requested operation.

NFSERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFSERR_NAMETOOLONG
File name too long. The file name in an operation was too long.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file
referred to by that file handle no longer exists, or access to it has
been revoked.

NFSERR_PERM Not owner. The caller does not have correct ownership to perform
the requested operation.

5.5.6 NFSPROC_READLINK Specification - Read From Symbolic Link

5.5.6.1 RPC Data Descriptions

Call Arguments

typedef opaque fhandle[NFS_FHSIZE];

Return Arguments

union readlinkres switch (stat status) {
case NFS_OK:

path data;
default:

void;
};

path and sattr are defined in Section 5.3.2, Basic Data Types.

5.5.6.2 RPC Procedure Description

readlinkres
NFSPROC_READLINK(fhandle) = 5;

5.5.6.3 Description

If status has the value NFS_OK, then the reply data is the data in the symbolic link given by
the file referred to by the fhandle argument. The file handle supplied to this procedure
must refer to a file of the symbolic link file type.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 69

Server Procedures Network File System: Protocol Specification

An NFS server need not implement symbolic links; if it does not, it should return an
PROC_UNAVAIL error. An NFS client should only issue an NFSPROC_READLINK if a
lookup returns an entry that is typed as NFLNK, and should be prepared to handle
failures of any symbolic link operation.

Note that since NFS always parses pathnames on the client, the pathname in a symbolic
link may mean something different (or be meaningless) on a different client or on the
server if a different pathname syntax is used.

5.5.6.4 Return Codes

NFS_OK Indicates that the call completed successfully and the results are
valid.

It is recommended that implementations return the following error codes for the
following situations. Other error values are considered implementation-specific.

NFSERR_IO Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file
referred to by that file handle no longer exists, or access to it has
been revoked.

PROC_UNAVAIL This procedure is not supported.

NFSERR_NXIO The fhandle given in the argument does not refer to a symbolic
link.

5.5.7 NFSPROC_READ Specification - Read From File

5.5.7.1 RPC Data Descriptions

Call Arguments

struct readargs {
fhandle file;
unsigned offset;
unsigned count;
unsigned totalcount;

};

fhandle is defined in Section 5.3.2, Basic Data Types.

Return Arguments

union readres switch (stat status) {
case NFS_OK:

fattr attributes;
opaque data<NFS_MAXDATA>;

default:
void;

};

X/Open Developers’ Specification (1990)
Page : 70 Protocols for X/Open PC Interworking: (PC)NFS

Network File System: Protocol Specification Server Procedures

fattr and sattr are defined in Section 5.3.2, Basic Data Types.

5.5.7.2 RPC Procedure Description

readres
NFSPROC_READ(readargs) = 6;

5.5.7.3 Description

Up to count bytes of data are returned from the file given by file starting at offset bytes
from the beginning of the file. The first byte of the file is at offset zero. The file attributes
after the read takes place are returned in attributes. Read operations should only be
permitted on regular files. Reading directory files should be performed using the
NFSPROC_READDIR procedure (see Section 5.5.17, NFSPROC_READDIR Specification -
Read From Directory).

Note that the argument totalcount is unused.

5.5.7.4 Return Codes

NFS_OK Indicates that the call completed successfully and the results are
valid.

It is recommended that implementations return the following error codes for the
following situations. Other error values are considered implementation specific.

NFSERR_IO Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct
permission to perform the requested operation.

NFSERR_ISDIR Is a directory. The caller specified a directory in a non-directory
operation.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file
referred to by that file handle no longer exists, or access to it has
been revoked.

5.5.8 NFSPROC_WRITECACHE Specification - Write to Cache

5.5.8.1 RPC Data Descriptions

Call Arguments

None.

Return Arguments

None.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 71

Server Procedures Network File System: Protocol Specification

5.5.8.2 RPC Procedure Description

void
NFSPROC_WRITECACHE(void) = 7;

5.5.8.3 Description

Function not used.

5.5.8.4 Return Codes

None.

5.5.9 NFSPROC_WRITE Specification - Write to File

5.5.9.1 RPC Data Descriptions

Call Arguments

struct writeargs {
fhandle file;
unsigned beginoffset;
unsigned offset;
unsigned totalcount;
opaque data<NFS_MAXDATA>;

};

fhandle is defined in Section 5.3.2, Basic Data Types.

Return Arguments

union attrstat switch (stat status) {
case NFS_OK:

fattr attributes;
default:

void;
};

fattr and sattr are defined in Section 5.3.2, Basic Data Types.

5.5.9.2 RPC Procedure Description

attrstat
NFSPROC_WRITE(writeargs) = 8;

5.5.9.3 Description

data is written, beginning offset bytes from the beginning of file. The first byte of the file is
at offset zero. If the reply status is NFS_OK, then the reply attributes contains the attributes
of the file after the write has completed. The write operation is atomic. Data from this call
to NFSPROC_WRITE will not be mixed with data from another client’s calls. Write
operations should only be permitted on regular files.

X/Open Developers’ Specification (1990)
Page : 72 Protocols for X/Open PC Interworking: (PC)NFS

Network File System: Protocol Specification Server Procedures

Note that the arguments beginoffset and totalcount are unused.

5.5.9.4 Return Codes

NFS_OK Indicates that the call completed successfully and the results are
valid.

It is recommended that implementations return the following error codes for the
following situations. Other error values are considered implementation-specific.

NFSERR_IO Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct
permission to perform the requested operation.

NFSERR_ISDIR Is a directory. The caller specified a directory in a non-directory
operation.

NFSERR_FBIG File too large. The operation caused a file to grow beyond the
server’s limit.

NFSERR_NOSPC No space left on device. The operation caused the server’s file
system to reach its limit.

NFSERR_ROFS Read-only file system. Write attempted on a read-only file system.

NFSERR_DQUOT Disk quota exceeded. The client’s disk quota on the server has
been exceeded.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file
referred to by that file handle no longer exists, or access to it has
been revoked.

5.5.10 NFSPROC_CREATE Specification - Create File

5.5.10.1 RPC Data Descriptions

Call Arguments

struct createargs {
diropargs where;
sattr attributes;

};

diropargs and sattr are defined in Section 5.3.2, Basic Data Types.

Return Arguments

union diropres switch (stat status) {
case NFS_OK:

struct diropok diropok;
default:

void;
};

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 73

Server Procedures Network File System: Protocol Specification

fhandle, fattr and stat are defined in Section 5.3.2, Basic Data Types.

5.5.10.2 RPC Procedure Description

diropres
NFSPROC_CREATE(createargs) = 9;

5.5.10.3 Description

The file name is created in the directory given by dir . The initial attributes of the new file
are given by diropok.attributes . A reply status of NFS_OK indicates that the file was
created, and reply diropok.file and reply attributes are its file handle and attributes. Any
other reply status means that the operation failed and no file was created.

This procedure is used to create regular files only; directories may be created by the
NFSPROC_MKDIR procedure (see Section 5.5.15, NFSPROC_MKDIR Specification -
Create Directory).

Note that this call will succeed even if the file already exists.

5.5.10.4 Return Codes

NFS_OK Indicates that the call completed successfully and the results are
valid.

It is recommended that implementations return the following error codes for the
following situations. Other error values are considered implementation-specific.

NFSERR_IO Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct
permission to perform the requested operation.

NFSERR_ISDIR Is a directory. The caller specified a directory in a non-directory
operation.

NFSERR_NOSPC No space left on device. The operation caused the server’s file
system to reach its limit.

NFSERR_ROFS Read-only file system. Write attempted on a read-only file system.

NFSERR_NAMETOOLONG
File name too long. The file name in an operation was too long.

NFSERR_DQUOT Disk quota exceeded. The client’s disk quota on the server has
been exceeded.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file
referred to by that file handle no longer exists, or access to it has
been revoked.

X/Open Developers’ Specification (1990)
Page : 74 Protocols for X/Open PC Interworking: (PC)NFS

Network File System: Protocol Specification Server Procedures

5.5.11 NFSPROC_REMOVE Specification - Remove File

5.5.11.1 RPC Data Descriptions

Call Arguments

struct diropargs {
fhandle dir;
filename name;

};

fhandle and filename are defined in Section 5.3.2, Basic Data Types.

Return Arguments

stat status;

stat is defined in Section 5.3.2, Basic Data Types.

5.5.11.2 RPC Procedure Description

stat
NFSPROC_REMOVE(diropargs) = 10;

5.5.11.3 Description

The file name is removed from the directory given by dir . A reply of NFS_OK means the
directory entry was removed. Any other return value indicates an error, and the file was
not removed. This procedure may be used to remove any of the supported file types
except directories. Removal of directories should be performed using the
NFSPROC_RMDIR procedure (see Section 5.5.16, NFSPROC_RMDIR Specification -
Remove Directory).

Note that this is generally a non-idempotent operation. A server should attempt to
provide this function in an idempotent fashion. X/Open-compliant systems allow
removal of open files. A process can open a file and, while it is open, remove it from the
directory. The file can be read and written as long as the process keeps it open, even
though the file has no name in the filesystem. It is impossible for a stateless server to
implement these semantics.

5.5.11.4 Return Codes

NFS_OK Indicates that the call completed successfully and the results are
valid.

It is recommended that implementations return the following error codes for the
following situations. Other error values are considered implementation-specific.

NFSERR_NOENT No such file or directory. The file or directory specified does not
exist.

NFSERR_IO Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 75

Server Procedures Network File System: Protocol Specification

NFSERR_ACCES Permission denied. The caller does not have the correct
permission to perform the requested operation.

NFSERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFSERR_ISDIR Is a directory. The caller specified a directory in a non-directory
operation.

NFSERR_NAMETOOLONG
File name too long. The file name in an operation was too long.

NFSERR_ROFS Read-only file system. Write attempted on a read-only file system.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file
referred to by that file handle no longer exists, or access to it has
been revoked.

5.5.12 NFSPROC_RENAME Specification - Rename File

5.5.12.1 RPC Data Descriptions

Call Arguments

struct renameargs {
diropargs from;
diropargs to;

};

diropargs is defined in Section 5.3.2, Basic Data Types.

Return Arguments

stat status;

stat is defined in Section 5.3.2, Basic Data Types.

5.5.12.2 RPC Procedure Description

stat
NFSPROC_RENAME(renameargs) = 11;

5.5.12.3 Description

The existing file from.name in the directory given by from.dir is renamed to to.name in the
directory given by to.dir. If the reply is NFS_OK, the file was renamed. The
NFSPROC_RENAME operation is required to be atomic on the server; it cannot be
interrupted in the middle, i.e., a link and unlink combination is not sufficient.

Note that this is possibly a non-idempotent operation. A server should attempt to
provide this function in an idempotent fashion.

X/Open Developers’ Specification (1990)
Page : 76 Protocols for X/Open PC Interworking: (PC)NFS

Network File System: Protocol Specification Server Procedures

5.5.12.4 Return Codes

NFS_OK Indicates that the call completed successfully and the results are
valid.

It is recommended that implementations return the following error codes for the
following situations. Other error values are considered implementation-specific.

NFSERR_NOENT No such file or directory. The file or directory specified does not
exist.

NFSERR_IO Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct
permission to perform the requested operation.

NFSERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFSERR_ISDIR Is a directory. The caller specified a directory in a non-directory
operation.

NFSERR_NOSPC No space left on device. The operation caused the server’s file
system to reach its limit.

NFSERR_ROFS Read-only file system. Write attempted on a read-only file system.

NFSERR_NAMETOOLONG
File name too long. The file name in an operation was too long.

NFSERR_NOTEMPTY Directory not empty. Attempted to remove a directory that was
not empty.

NFSERR_DQUOT Disk quota exceeded. The client’s disk quota on the server has
been exceeded.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file
referred to by that file handle no longer exists, or access to it has
been revoked.

5.5.13 NFSPROC_LINK Specification - Create Link to File

5.5.13.1 RPC Data Descriptions

Call Arguments

struct linkargs {
fhandle from;
diropargs to;

};

fhandle and diropargs are defined in Section 5.3.2, Basic Data Types.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 77

Server Procedures Network File System: Protocol Specification

Return Arguments

stat status;

stat is defined in Section 5.3.2, Basic Data Types.

5.5.13.2 RPC Procedure Description

stat
NFSPROC_LINK(linkargs) = 12;

5.5.13.3 Description

Creates the file to.name in the directory given by to.dir, which is a hard link to the existing
file given by from. If the return value is NFS_OK, a link was created. Any other return
value indicates an error, and the link was not created.

Note that this is generally a non-idempotent operation. A server should attempt to
provide this function in an idempotent fashion.

5.5.13.4 Return Codes

NFS_OK Indicates that the call completed successfully and the results are
valid.

It is recommended that implementations return the following error codes for the
following situations. Other error values are considered implementation-specific.

NFSERR_PERM Not owner. The caller does not have correct ownership to perform
the requested operation.

NFSERR_IO Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct
permission to perform the requested operation.

NFSERR_EXIST File exists. The file specified already exists.

NFSERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFSERR_NOSPC No space left on device. The operation caused the server’s file
system to reach its limit.

NFSERR_ROFS Read-only file system. Write attempted on a read-only file system.

NFSERR_NAMETOOLONG
File name too long. The file name in an operation was too long.

NFSERR_DQUOT Disk quota exceeded. The client’s disk quota on the server has
been exceeded.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file
referred to by that file handle no longer exists, or access to it has
been revoked.

X/Open Developers’ Specification (1990)
Page : 78 Protocols for X/Open PC Interworking: (PC)NFS

Network File System: Protocol Specification Server Procedures

5.5.14 NFSPROC_SYMLINK Specification - Create Symbolic Link

5.5.14.1 RPC Data Descriptions

Call Arguments

struct symlinkargs {
diropargs from;
path to;
sattr attributes;

};

diropargs, path and sattr are defined in Section 5.3.2, Basic Data Types.

Return Arguments

stat status;

stat is defined in Section 5.3.2, Basic Data Types.

5.5.14.2 RPC Procedure Description

stat
NFSPROC_SYMLINK(symlinkargs) = 13;

5.5.14.3 Description

Creates the file from.name with ftype NFLNK in the directory given by from.dir . The new
file contains the pathname to and has initial attributes given by attributes. If the return
value is NFS_OK, a link was created. Any other return value indicates an error, and the
link was not created.

A symbolic link is a pointer to another file. The name given in to is not interpreted by the
server, only stored in the newly created file. When the client references a file that is a
symbolic link, the contents of the symbolic link are normally transparently reinterpreted
as a pathname to substitute.

An NFS server need not implement symbolic links; if it does not, it should to return an
PROC_UNAVAIL error. An NFS client should be prepared to handle failures of any
symbolic link operation. The NFSPROC_READLINK operation returns the data to the client
for interpretation.

Note that servers may ignore the attributes depending on the symbolic link model they
use.

5.5.14.4 Return Codes

NFS_OK Indicates that the call completed successfully and the results are
valid.

It is recommended that implementations return the following error codes for the
following situations. Other error values are considered implementation-specific.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 79

Server Procedures Network File System: Protocol Specification

NFSERR_IO Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct
permission to perform the requested operation.

NFSERR_EXIST File exists. The file specified already exists.

NFSERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFSERR_NOSPC No space left on device. The operation caused the server’s file
system to reach its limit.

NFSERR_ROFS Read-only file system. Write attempted on a read-only file system.

NFSERR_NAMETOOLONG
File name too long. The file name in an operation was too long.

NFSERR_DQUOT Disk quota exceeded. The client’s disk quota on the server has
been exceeded.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file
referred to by that file handle no longer exists, or access to it has
been revoked.

5.5.15 NFSPROC_MKDIR Specification - Create Directory

5.5.15.1 RPC Data Descriptions

Call Arguments

struct createargs {
diropargs where;
sattr attributes;

};

diropargs and sattr are defined in Section 5.3.2, Basic Data Types.

Return Arguments

union diropres switch (stat status) {
case NFS_OK:

struct diropok diropok;
default:

void;
};

fhandle, fattr and stat are defined in Section 5.3.2, Basic Data Types.

5.5.15.2 RPC Procedure Description

diropres
NFSPROC_MKDIR (createargs) = 14;

X/Open Developers’ Specification (1990)
Page : 80 Protocols for X/Open PC Interworking: (PC)NFS

Network File System: Protocol Specification Server Procedures

5.5.15.3 Description

The new directory where.name is created in the directory given by where.dir . The initial
attributes of the new directory are given by diropok.attributes . A reply status of NFS_OK
indicates that the new directory was created, and reply diropok.file and reply
diropok.attributes are its file handle and attributes. Any other reply status means that the
operation failed and no directory was created.

5.5.15.4 Return Codes

NFS_OK Indicates that the call completed successfully and the results are
valid.

It is recommended that implementations return the following error codes for the
following situations. Other error values are considered implementation-specific.

NFSERR_IO Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct
permission to perform the requested operation.

NFSERR_EXIST File exists. The file specified already exists.

NFSERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFSERR_NOSPC No space left on device. The operation caused the server’s file
system to reach its limit.

NFSERR_ROFS Read-only file system. Write attempted on a read-only file system.

NFSERR_NAMETOOLONG
File name too long. The file name in an operation was too long.

NFSERR_DQUOT Disk quota exceeded. The client’s disk quota on the server has
been exceeded.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file
referred to by that file handle no longer exists, or access to it has
been revoked.

5.5.16 NFSPROC_RMDIR Specification - Remove Directory

5.5.16.1 RPC Data Descriptions

Call Arguments

struct diropargs {
fhandle dir;
filename name;

};

fhandle and filename are defined in Section 5.3.2, Basic Data Types.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 81

Server Procedures Network File System: Protocol Specification

Return Arguments

stat status;

stat is defined in Section 5.3.2, Basic Data Types.

5.5.16.2 RPC Procedure Description

stat
NFSPROC_RMDIR(diropargs) = 15;

5.5.16.3 Description

The existing empty directory name in the directory given by dir is removed. If the reply is
NFS_OK, the directory was removed.

Note that this is possibly a non-idempotent operation. A server should attempt to
provide this function in an idempotent fashion.

5.5.16.4 Return Codes

NFS_OK Indicates that the call completed successfully and the results are
valid.

It is recommended that implementations return the following error codes for the
following situations. Other error values are considered implementation-specific.

NFSERR_NOENT No such file or directory. The file or directory specified does not
exist.

NFSERR_IO Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct
permission to perform the requested operation.

NFSERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFSERR_ROFS Read-only file system. Write attempted on a read-only file system.

NFSERR_NAMETOOLONG
File name too long. The file name in an operation was too long.

NFSERR_NOTEMPTY Directory not empty. Attempted to remove a directory that was
not empty.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file
referred to by that file handle no longer exists, or access to it has
been revoked.

X/Open Developers’ Specification (1990)
Page : 82 Protocols for X/Open PC Interworking: (PC)NFS

Network File System: Protocol Specification Server Procedures

5.5.17 NFSPROC_READDIR Specification - Read From Directory

5.5.17.1 RPC Data Descriptions

Call Arguments

struct readdirargs {
fhandle dir;
nfscookie cookie;
unsigned count;

};

fhandle and nfscookie are defined in Section 5.3.2, Basic Data Types.

Return Arguments

struct entry {
unsigned fileid;
filename name;
nfscookie cookie;
entry ∗nextentry;

};

filename and nfscookie are defined in Section 5.3.2, Basic Data Types.

union readdirres switch (stat status) {
case NFS_OK:

struct {
entry ∗entries;
bool eof;

} readdirok;
default:

void;
};

5.5.17.2 RPC Procedure Description

readdirres
NFSPROC_READDIR (readdirargs) = 16;

5.5.17.3 Description

A variable number of directory entries, with a total size of up to count bytes, are returned
from the directory given by dir . If the returned value of status is NFS_OK, then it is
followed by a variable number of entrys. Each entry contains a fileid which consists of a
unique number to identify the file within a file system, the name of the file, and a cookie
which is an opaque pointer to the next entry in the directory. The cookie is used in the
next NFSPROC_READDIR call to get more entries starting at a given point in the directory.
The special cookie zero (all bits zero) can be used to get the entries starting at the
beginning of the directory. The fileid field should be the same number as the fileid in the
attributes of the file. The eof flag has a value of TRUE if there are no more entries in the

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 83

Server Procedures Network File System: Protocol Specification

directory. (See Section 5.3.2, Basic Data Types.)

5.5.17.4 Return Codes

NFS_OK Indicates that the call completed successfully and the results are
valid.

It is recommended that implementations return the following error codes for the
following situations. Other error values are considered implementation-specific.

NFSERR_NOENT No such file or directory. The file or directory specified does not
exist.

NFSERR_IO Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFSERR_ACCES Permission denied. The caller does not have the correct
permission to perform the requested operation.

NFSERR_NOTDIR Not a directory. The caller specified a non-directory in a directory
operation.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file
referred to by that file handle no longer exists, or access to it has
been revoked.

5.5.18 NFSPROC_STATFS Specification - Get File System Attributes

5.5.18.1 RPC Data Descriptions

Call Arguments

typedef opaque fhandle[NFS_FHSIZE];

Return Arguments

union statfsres (stat status) {
case NFS_OK:

struct {
unsigned tsize;
unsigned bsize;
unsigned blocks;
unsigned bfree;
unsigned bavail;

} info;
default:

void;
};

X/Open Developers’ Specification (1990)
Page : 84 Protocols for X/Open PC Interworking: (PC)NFS

Network File System: Protocol Specification Server Procedures

5.5.18.2 RPC Procedure Description

statfsres
NFSPROC_STATFS(fhandle) = 17;

5.5.18.3 Description

If the reply status is NFS_OK, then the reply info gives the attributes for the file system that
contains the file referred to by the input fhandle. The attribute fields contain the
following values:

tsize The optimum transfer size of the server in bytes. This is the number of
bytes the server would like to have in the data part of NFSPROC_READ and
NFSPROC_WRITE requests.

bsize The block size in bytes of the file system.

blocks The total number of bsize blocks on the file system.

bfree The number of free bsize blocks on the file system.

bavail The number of bsize blocks available to non-privileged users.

5.5.18.4 Return Codes

NFS_OK Indicates that the call completed successfully and the results are
valid.

It is recommended that implementations return the following error codes for the
following situations. Other error values are considered implementation-specific.

NFSERR_IO Some sort of hard error occurred when the operation was in
progress. This could be a disk error, for example.

NFSERR_STALE The fhandle given in the arguments was invalid. That is, the file
referred to by that file handle no longer exists, or access to it has
been revoked.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 85

Server Procedures Network File System: Protocol Specification

X/Open Developers’ Specification (1990)
Page : 86 Protocols for X/Open PC Interworking: (PC)NFS

Chapter 6

Adjunct Protocols

This chapter specifies protocols currently in use in various implementations. It specifies
protocols that are used as part of existing implementations of NFS.

6.1 INTRODUCTION

This chapter describes protocols that are related to but separate from the NFS protocol.
These protocols are not included as part of the NFS protocol to provide implementational
flexibility and to facilitate the development of new mechanisms without requiring the
revision of related protocols.

The following protocols are described in this chapter: Port Mapper Protocol, Personal
Computer NFS Daemon (PCNFSD) protocol, Mount Protocol, Network Lock Manager
(NLM) protocol.

The Port Mapper protocol translates RPC program and version numbers into network
transport addressing information.

NFS assumes that the host operating systems on client and server machines provide user
authentication and access control mechanisms. To allow single-user personal computer
systems the convenience of per-user authentication, the Personal Computer NFS Daemon
(PCNFSD) protocol supports user authentication as well as print services.

The mount protocol provides operating system specific services for the look up of server
pathnames, validation of user identity and checking of access permissions. Clients use
the mount protocol to get the first file handle, which allows them entry into a remote
filesystem. The mount protocol is separate from the NFS protocol to facilitate
implementation flexibility and to allow new access checking and validation methods to
be used.

The Network Lock Manager (NLM) protocol allows the implementation of DOS file
locking and sharing. NFS is a stateless service, which means that it cannot provide file
locking and access control synchronisation. The Network Lock Manager (see Section 6.5,
Network Lock Manager Protocol Definition) protocol allows lock managers on client
and server systems to implement these services.

Like NFS, these protocols are based on the RPC protocol, and the protocol specifications
are written using the XDR data description language. (See Chapter 3, XDR Protocol
Specification and Chapter 4, Remote Procedure Calls: Protocol Specification.)

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 87

Port Mapper Program Protocol Adjunct Protocols

6.2 PORT MAPPER PROGRAM PROTOCOL

6.2.1 Introduction to Port Mapper Program Protocol

The port mapper program maps RPC program and version numbers to transport-specific
port numbers. This program makes dynamic binding of remote programs possible. This
is desirable because the range of reserved port numbers is very small and the number of
potential remote programs is very large. By running only the port mapper on a reserved
port, the port numbers of other remote programs can be ascertained by querying the port
mapper.

The port mapper also aids in broadcast RPC. A given RPC program will usually have
different port number bindings on different machines, so there is no way to directly
broadcast to all of these programs. The port mapper, however, does have a fixed port
number. So, to broadcast to a given program, the client actually sends its message to the
port mapper located at the broadcast address. Each port mapper that picks up the
broadcast then calls the local service specified by the client. When the port mapper gets
the reply from the local service, it sends the reply on back to the client. For interoperation
with personal computer clients, the port mapper program must support the UDP/IP
protocol. The port mapper is contacted by talking to it on assigned port number 111.

6.2.2 Port Mapper Protocol Specification (in RPC Language)

const PMAP_PORT = 111; /∗ port mapper port number ∗/

/∗
∗ A mapping of (program, version, protocol) to port number
∗/
struct mapping {

unsigned int prog;
unsigned int vers;
unsigned int prot;
unsigned int port;

};

/∗
∗ Supported values for the ‘‘prot’’ field
∗/
const IPPROTO_TCP = 6; /∗ protocol number for TCP/IP ∗/
const IPPROTO_UDP = 17; /∗ protocol number for UDP/IP ∗/

/∗
∗ A list of mappings
∗/
struct ∗pmaplist {

mapping map;
pmaplist next;

};

X/Open Developers’ Specification (1990)
Page : 88 Protocols for X/Open PC Interworking: (PC)NFS

Adjunct Protocols Port Mapper Program Protocol

/∗
∗ Arguments to callit
∗/
struct call_args {

unsigned int prog;
unsigned int vers;
unsigned int proc;
opaque args<>;

};

/∗
∗ Results of callit
∗/
struct call_result {

unsigned int port;
opaque res<>;

};

6.2.3 Port Mapper Procedures

/∗
∗ Port mapper procedures
∗/
program PMAP_PROG {

version PMAP_VERS {
void PMAPPROC_NULL(void) = 0;
bool PMAPPROC_SET(mapping) = 1;
bool PMAPPROC_UNSET(mapping) = 2;
unsigned int PMAPPROC_GETPORT(mapping) = 3;
pmaplist PMAPPROC_DUMP(void) = 4;

} = 2;
} = 100000;

The port mapper program currently supports two protocols (UDP/IP and TCP/IP). The
port mapper is contacted by talking to it on assigned port number 111 on either of these
protocols. The following is a description of each of the port mapper procedures:

6.2.4 PMAPPROC_NULL Specification - Do Nothing

6.2.4.1 RPC Data Descriptions

Call Arguments

None.

Return Arguments

None.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 89

Port Mapper Program Protocol Adjunct Protocols

6.2.4.2 RPC Procedure Descriptions

void
PMAPPROC_NULL(void) = 0;

6.2.4.3 Description

This procedure does no work. By convention, procedure zero of any RPC program takes
no parameters and returns no results. It is made available to allow server response
testing and timing.

6.2.5 PMAPPROC_SET Specification - Set Mapping

6.2.5.1 RPC Data Descriptions

Call Arguments

mapping mapping;

Return Arguments

bool ret_value;

6.2.5.2 RPC Procedure Descriptions

bool
PMAPPROC_SET(mapping) = 1;

6.2.5.3 Description

When a program first becomes available on a machine, it registers itself with the port
mapper program on the same machine. The program passes its program number,
mapping.prog , version number, mapping.vers, transport protocol number, mapping.prot,
and the port, mapping.port, on which it awaits service request. The procedure returns a
boolean response whose value is TRUE if the procedure successfully established the
mapping and FALSE otherwise. The procedure refuses to establish a mapping if one
already exists for the tuple ‘‘(prog , vers , prot)’’.

6.2.6 PMAPPROC_UNSET Specification - Unset Mapping

6.2.6.1 RPC Data Descriptions

Call Arguments

mapping mapping;

Return Arguments

bool ret_val;

X/Open Developers’ Specification (1990)
Page : 90 Protocols for X/Open PC Interworking: (PC)NFS

Adjunct Protocols Port Mapper Program Protocol

6.2.6.2 RPC Procedure Descriptions

bool
PMAPPROC_UNSET(mapping) = 2;

6.2.6.3 Description

When a program becomes unavailable, it should unregister itself with the port mapper
program on the same machine. The parameters and results have meanings identical to
those of PMAPPROC_SET. The protocol and port number fields of the argument are
ignored.

6.2.7 PMAPPROC_GETPORT Specification - Get Port

6.2.7.1 RPC Data Descriptions

Call Arguments

mapping mapping;

Return Arguments

unsigned int port;

6.2.7.2 RPC Procedure Descriptions

unsigned int
PMAPPROC_GETPORT(mapping) = 3;

6.2.7.3 Description

Given a program number mapping.prog , version number mapping.vers, and transport
protocol number mapping.prot, this procedure returns the port number on which the
program is awaiting call requests. A port value of zero means the program has not been
registered. The mapping.port field of the argument is ignored.

6.2.8 PMAPPROC_DUMP Specification - Dump Mappings

6.2.8.1 RPC Data Descriptions

Call Arguments

None.

Return Arguments

pmaplist mappings;

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 91

Port Mapper Program Protocol Adjunct Protocols

6.2.8.2 RPC Procedure Descriptions

pmaplist
PMAPPROC_DUMP (void) = 4;

6.2.8.3 Description

This procedure enumerates all entries in the port mapper’s database. The procedure
takes no parameters and returns a list of program, version, protocol and port values.

X/Open Developers’ Specification (1990)
Page : 92 Protocols for X/Open PC Interworking: (PC)NFS

Adjunct Protocols PCNFSD Protocol Definition

6.3 PCNFSD PROTOCOL DEFINITION

The purpose of the PCNFSD protocol is to provide a personal computer NFS client with
the authentication and network printing services which are usually available in larger
and more capable systems. Its use, while not necessary, is highly desirable. However
personal computer NFS implementations must be prepared to work with NFS servers
which do not support PCNFSD, and vice versa . The source code for the server
implementation of PCNFSD is freely available from Sun Microsystems.

6.3.1 Authentication

The NFS file access control model is based upon the uid/gid mechanism used in
X/Open-compliant systems. All NFS remote procedure calls must be made with
AUTH_UNIX credentials from which a uid and gid can be extracted. If a client
implementation supports the use of NFS services without any form of authentication, it
should use the uid/gid pair (0xfffffffe, 0xfffffffe) (i.e., (-2, -2)), which is conventionally
associated with the identity ‘‘nobody’’. Client and server support for access as ‘‘nobody’’
is an implementation or administrative option.

Operation as ‘‘nobody’’, while feasible, is undesirable, since the client can only access
filesystem hierarchies with unlimited ‘‘other’’ permissions, and administrators of server
systems have no way of controlling resource usage. For this reason, it is expected that
personal computer NFS implementations will require or encourage users to establish
valid access credentials. A typical implementation might be to prompt the user to enter a
username and password, which could then be validated using the PCNFSD_AUTH
procedure, which will return a uid/gid pair. The client can then use this information to
synthesise the AUTH_UNIX credentials for subsequent RPC requests.

Since it is undesirable to pass clear-text passwords over a network, both the username
and the password are mildly scrambled using a simple exclusive-or operation. The
intent is not to be secure but to defeat ‘‘browsers’’.

6.3.2 Print Spooling

The availability of NFS file operations simplifies the print spooling mechanism. There are
two remote procedures involved. The client begins by calling PCNFSD_PR_INIT, which
returns the name of a directory on the server which is exported via NFS and in which the
client may create spool files. When the client has written the text to be printed to a spool
file in the designated directory, the PCNFSD_PR_START procedure instructs the server to
print the file on a specific printer.

Version 1 of the PCNFSD protocol is used with any version of the NFS protocol.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 93

RPC Information Adjunct Protocols

6.4 RPC Information

Authentication

The PCNFSD service uses AUTH_UNIX style authentication only.

Transport Protocols

The PCNFSD service is currently supported on UDP/IP only.

Port Number

Consult the server’s port mapper, described in Section 6.2, Port Mapper Program
Protocol, to find the port number on which the PCNFSD service is registered.

6.4.1 Sizes of XDR Structures

These are the sizes, given in decimal bytes, of various XDR structures used in the
protocol:

/∗ The maximum number of bytes in a user name argument ∗/
const IDENTLEN = 32;

/∗ The maximum number of bytes in a password argument ∗/
const PASSWORDLEN = 64;

/∗ The maximum number of bytes in a print client name argument ∗/
const CLIENTLEN = 64;

/∗ The maximum number of bytes in a printer name argument ∗/
const PRINTERNAMELEN = 64;

/∗ The maximum number of bytes in a print user name argument ∗/
const USERNAMELEN = 64;

/∗ The maximum number of bytes in a print spool file name argument ∗/
const SPOOLNAMELEN = 64;

/∗ The maximum number of bytes in a print options argument ∗/
const OPTIONSLEN = 64;

/∗ The maximum number of bytes in a print spool directory path ∗/
const SPOOLDIRLEN = 255;

6.4.2 Basic Data Types

This section presents the data types used by the PCNFSD protocol.

6.4.2.1 ident

typedef string ident<IDENTLEN>;

X/Open Developers’ Specification (1990)
Page : 94 Protocols for X/Open PC Interworking: (PC)NFS

Adjunct Protocols RPC Information

The type ident is used for passing an encoded user name for authentication. The server
should decode the string by replacing each octet with the value formed by performing an
exclusive-or of the octet value with the value 0x5b, and anding the result with 0x7f.

6.4.2.2 password

typedef string password<PASSWORDLEN>;

The type password is used for passing an encode password for authentication. The
server should decode the password as described above.

6.4.2.3 client

typedef string client<CLIENTLEN>;

The type client is used for passing the hostname of a client for printing. The server may
use this name in constructing the spool directory name.

6.4.2.4 printername

typedef string printername<PRINTERNAMELEN>;

The type printername is used for passing the name of a printer on which the client
wishes to print.

6.4.2.5 username

typedef string username<USERNAMELEN>;

The type username is used for passing the user name for a print job. The server may use
this in any way it chooses: it may attempt to change the effective identity with which it is
running to username or may simply arrange for the text to be printed on the banner page.

6.4.2.6 spoolname

typedef string spoolname<SPOOLNAMELEN>;

The type spoolname is used for passing the name of a print spool file (a simple filename
not a pathname) within the spool directory.

6.4.2.7 options

typedef string options<OPTIONSLEN>;

The type options is used for passing implementation-specific print control information.

The option string is a set of printable ASCII characters.

The first character should be ignored by the server; it is reserved for client use. The
second character specifies the type of data in the print file. The following types are
defined (an implementation may define additional values):

p PostScript data. The client will ensure that a valid PostScript header is included.

d Diablo 630 data.

x Generic printable ASCII text. The client will have filtered out all non-printable
characters other than CR, LF, TAB, BS and VT.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 95

RPC Information Adjunct Protocols

r Raw print data. The client performs no filtering.

If diablo data (type d) is specified, a formatting specification string will be appended.
This has the form:

ppnnnbbb

pp Pitch - 10, 12 or 15.

nnn The ‘‘normal’’ font to be used - encoded as follows:

PostScript font name Value of nnn
Courier crn
Courier-Bold crb
Courier-Oblique con
Courier-BoldOblique cob
Helvetica hrn
Helvetica-Bold hrb
Helvetica-Oblique hon
Helvetica-BoldOblique hob
Times-Roman trn
Times-Bold trb
Times-Italic ton
Times-BoldItalic tob

bbb The ‘‘bold’’ font to be used - encoded in the same way.

For example, the string nd10hrbcob specifies that the print data is in Diablo 630 format, it
should be printed at 10 pitch, ‘‘normal’’ text should be printed in Helvetica-Bold, and
‘‘bold’’ text should be printed in Courier-BoldOblique.

6.4.2.8 arstat

enum arstat {
AUTH_RES_OK = 0,
AUTH_RES_FAKE = 1,
AUTH_RES_FAIL = 2

};

The type arstat is returned by PCNFSD_AUTH. A value of AUTH_RES_OK indicates that
the server was able to verify the ident and password successfully. AUTH_RES_FAIL is
returned if a verification failure occurred. The value AUTH_RES_FAKE may be used if the
server wishes to indicate that the verification failed, but that the server has synthesised
acceptable values for uid and gid which the client may use if it wishes.

6.4.2.9 pirstat

enum pirstat {
PI_RES_OK = 0,
PI_RES_NO_SUCH_PRINTER = 1,
PI_RES_FAIL = 2

};

The type pirstat is returned by PCNFSD_PR_INIT. A value of PI_RES_OK indicates that the
server has set up a spool directory for the client to use. PI_RES_FAIL is returned if spool

X/Open Developers’ Specification (1990)
Page : 96 Protocols for X/Open PC Interworking: (PC)NFS

Adjunct Protocols RPC Information

directory could not be created. The value PI_RES_NO_SUCH_PRINTER indicates that the
printer name was not recognised.

6.4.2.10 psrstat

enum psrstat {
PS_RES_OK = 0,
PS_RES_ALREADY = 1,
PS_RES_NULL = 2,
PS_RES_NO_FILE = 3,
PS_RES_FAIL = 4

};

The type psrstat is returned by PCNFSD_PR_START. A value of PS_RES_OK indicates that
the server has started printing the job. It is possible that the reply from a
PCNFSD_PR_START call may be lost, in which case the client will repeat the call. If the
spool file is still in existence, the server will return PS_RES_ALREADY indicating that it has
already started printing. If the file cannot be found, PS_RES_NO_FILE is returned.
PS_RES_NULL indicates that the spool file was empty, while PS_RES_FAIL denotes a
general failure. PI_RES_FAIL is returned if spool directory could not be created. The value
PI_RES_NO_SUCH_PRINTER indicates that the printer name was not recognised.

6.4.3 PCNFSD Server Procedures

The following sections define the RPC procedures supplied by a PCNFSD server.

/∗
Protocol description for the PCNFSD program
∗/
program PCNFSDPROG {
/∗
Version 1 of the PCNFSD protocol.
∗/
!version PCNFSDVERS {

void PCNFSD_NULL(void) = 0;
auth_results PCNFSD_AUTH(auth_args) = 1;
pr_init_results PCNFSD_PR_INIT(pr_init_args) = 2;
pr_start_results PCNFSD_PR_START(pr_start_args) = 3;

} = 1;
} = 150001;

6.4.4 PCNFSD_NULL Specification - Do Nothing

6.4.4.1 RPC Data Descriptions

Call Arguments

None.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 97

RPC Information Adjunct Protocols

Return Arguments

None.

6.4.4.2 RPC Procedure Description

void
PCNFSD_NULL(void) = 0;

6.4.4.3 Description

This procedure does no work. By convention, procedure zero of any RPC program takes
no parameters and returns no results. It is made available to allow server response
testing and timing.

6.4.4.4 Return Codes

None.

6.4.5 PCNFSD_AUTH Specification - Perform User Authentication

6.4.5.1 RPC Data Descriptions

Call Arguments

struct auth_args {

ident id; /∗ user name (encoded) ∗/
password pw; /∗ user password (encoded) ∗/

};

Return Arguments

struct auth_results {
arstat stat;
unsigned int uid;
unsigned int gid;

};

6.4.5.2 RPC Procedure Description

auth_results
PCNFSD_AUTH(auth_args) = 1;

6.4.5.3 Description

This procedure is used to verify that the id and pw strings correspond to a user identity
using the server operating system conventions. If the verification succeeds, the
corresponding uid and gid values are returned. The id and pw are both encoded. The
server should decode these strings by replacing each octet with the value formed by

X/Open Developers’ Specification (1990)
Page : 98 Protocols for X/Open PC Interworking: (PC)NFS

Adjunct Protocols RPC Information

performing an exclusive-or of the octet value with the value 0x5b, and anding the result
with 0x7f. If the verification succeeds, the corresponding uid and gid values are returned.

Caveat: This implies that the username and password are restricted to 7 bit ASCII
characters. A future protocol revision may lift this 7 bit restriction, but due to the
number of existing clients with this restriction, an X/Open-compliant server must accept
7 bit characters in the username and password.

6.4.5.4 Return Codes

When the procedure returns, stat is set to one of the following values:

AUTH_RES_OK Indicates that the call completed successfully and that uid and gid
are valid.

AUTH_RES_FAKE Indicates that the call failed, but that the server has set uid and gid
to acceptable values.

AUTH_RES_FAIL Indicates that the authentication request failed. For security
reasons the return status does not identify the precise reasons for
the failure.

6.4.6 PCNFSD_PR_INIT Specification - Initialise Remote Printing

6.4.6.1 RPC Data Descriptions

Call Arguments

struct pr_init_args {
client system;
printername pn;

};

Return Arguments

struct pr_init_results {
pirstat stat;
spooldir dir;

};

6.4.6.2 RPC Procedure Description

pr_init_results
PCNFSD_PR_INIT(pr_init_args) = 2;

6.4.6.3 Description

This procedure is invoked by the client system when it wishes to spool print files to the
server for subsequent printing on the printer pn. The server should create a directory
which the client can mount using NFS and return its full pathname as dir .

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 99

RPC Information Adjunct Protocols

6.4.6.4 Return Codes

When the procedure returns, stat is set to one of the following values:

PI_RES_OK Indicates that the call completed successfully and that dir is valid.

PI_RES_NO_SUCH_PRINTER
Indicates that the call failed because pn did not name a suitable
printer.

PI_RES_FAIL Indicates that the call failed for some reason other than an invalid
pr. The most common reason is that the server was unable to
create a spool directory.

6.4.7 PCNFSD_PR_START Specification - Print a Spooled File

6.4.7.1 RPC Data Descriptions

Call Arguments

struct pr_start_args {
client system;
printername pr;
username user;
spoolname file;
options opts;

};

Return Arguments

struct pr_start_results {
psrstat stat;

};

6.4.7.2 RPC Procedure Description

pr_start_results
PCNFSD_PR_START(pr_start_args) = 3;

6.4.7.3 Description

This procedure is invoked by the client when it has placed a file containing printable data
in the spool directory returned by PCNFSD_PR_INIT and wishes the server to print it. The
arguments system and pr must be the same as passed to PCNFSD_PR_INIT since the server
will normally use this information to locate the spool directory. file is a simple name (not
a path) which identifies a file within this directory. The server should delete this file
when it has been printed.

One possible implementation of PCNFSD_PR_START is as follows:

1. Change directory to the spool directory derived from system and pr.

X/Open Developers’ Specification (1990)
Page : 100 Protocols for X/Open PC Interworking: (PC)NFS

Adjunct Protocols RPC Information

2. If the file file .SPL exists, return PS_RES_ALREADY indicating that the file is already
being printed.

3. If file does not exist, return PS_RES_NO_FILE.

4. Rename file to file .SPL.

5. Spawn a sub-process to perform the printing and return PS_RES_OK.

6. In the sub-process, change effective user identity to that given by user if possible.

7. Examine the opts string to determine if special processing is required.

8. Print the file file .SPL on the printer pr.

9. Remove the file file .SPL and terminate the sub-process.

Other errors which may occur result in the value PS_RES_FAIL.

6.4.7.4 Return Codes

When the procedure returns, stat is set to one of the following values:

PR_RES_OK Indicates that the call completed successfully and that
responsibility for printing the file has been transferred to the
server’s local print system.

PR_RES_ALREADY Indicates that the server determined that the file was already being
printed and that no further action was taken. the client will
usually interpret this to mean that the request had been
retransmitted because an original response with status PR_RES_OK
was lost.

PR_RES_NULL Indicates that the server determined that the file was empty, and
was therefore not printed. The server deletes the file before
returning this status.

PR_RES_NO_FILE Indicates that the call failed because the print file could not be
found.

PR_RES_FAIL Indicates that the call failed for some other unspecified reason.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 101

Mount Protocol Definition Adjunct Protocols

6.5 MOUNT PROTOCOL DEFINITION

6.5.1 Introduction

The mount protocol is separate from, but related to, the NFS protocol. It provides
operating system-specific services to get the NFS off the ground - looking up server
pathnames, validating user identity, and checking access permissions. Clients use the
mount protocol to get the first file handle, which allows them entry into a remote file
system.

Notice that the protocol definition implies stateful servers because the server maintains a
list of client’s mount requests. This corresponds to current implementations which hold
the mount list on stable storage. However, the mount list information is not critical for
the correct functioning of either the client or the server. It is intended for advisory use
only; for example, to warn possible clients when a server is going down. The server must
provide a mechanism to eliminate redundant information from the mount list.

Version 1 of the mount protocol is used with version 2 of the NFS protocol. The only
connecting point is the fhandle structure, which is the same for both protocols.

X/Open Developers’ Specification (1990)
Page : 102 Protocols for X/Open PC Interworking: (PC)NFS

Adjunct Protocols RPC Information

6.6 RPC Information

Authentication

The mount service uses AUTH_UNIX style authentication only.

Transport Protocols

The mount service is currently supported on UDP/IP only.

Port Number

Consult the server’s port mapper, described in Section 6.2, Port Mapper Program
Protocol, to find the port number on which the mount service is registered.

6.6.1 Sizes of XDR Structures

These are the sizes, given in decimal bytes, of various XDR structures used in the
protocol:

/∗ The maximum number of bytes in a pathname argument ∗/
const MNTPATHLEN = 1024;

/∗ The maximum number of bytes in a name argument ∗/
const MNTNAMLEN = 255;

/∗ The size in bytes of the opaque file handle ∗/
const FHSIZE = 32;

6.6.2 Basic Data Types

This section presents the data types used by the mount protocol. In many cases they are
similar to the types used in NFS.

6.6.2.1 fhandle

The type fhandle is the file handle that the server passes to the client. All file operations
are done using file handles to refer to a file or directory. The file handle can contain
whatever information the server needs to distinguish an individual file.

This is the same as the fhandle XDR definition in version 2 of the NFS protocol; see
Section 5.3.2, Basic Data Types.

6.6.2.2 fhstatus

union fhstatus switch (unsigned status) {
case 0:

fhandle directory;
default:

void;
};

The type fhstatus is a union. If a status of zero is returned, the call completed
successfully, and a file handle for the directory follows. A non-zero status indicates that

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 103

RPC Information Adjunct Protocols

an error occurred. The following recommended error codes are derived from related
UNIX error numbers.

const EPERM = 1;
const ENOENT = 2;
const EACCES = 13;
const EINVAL = 22;

6.6.2.3 dirpath

typedef string dirpath<MNTPATHLEN>;

The type dirpath is a server pathname of a directory.

6.6.2.4 name

typedef string name<MNTNAMLEN>;

The type name is an arbitrary string used for various names.

6.6.3 Server Procedures

The following sections define the RPC procedures supplied by a mount server.

/∗
∗ Protocol description for the mount program
∗/
program MOUNTPROG {
/∗
∗ Version 1 of the mount protocol used with
∗ version 2 of the NFS protocol.
∗/

version MOUNTVERS {
void MOUNTPROC_NULL(void) = 0;
fhstatus MOUNTPROC_MNT(dirpath) = 1;
mountlist MOUNTPROC_DUMP(void) = 2;
void MOUNTPROC_UMNT(dirpath) = 3;
void MOUNTPROC_UMNTALL(void) = 4;
exportlist MOUNTPROC_EXPORT(void) = 5;

} = 1;
} = 100005;

6.6.4 MNTPROC_NULL Specification - Do Nothing

6.6.4.1 RPC Data Descriptions

Call Arguments

None.

X/Open Developers’ Specification (1990)
Page : 104 Protocols for X/Open PC Interworking: (PC)NFS

Adjunct Protocols RPC Information

Return Arguments

None.

6.6.4.2 RPC Procedure Description

void
MNTPROC_NULL(void) = 0;

6.6.4.3 Description

This procedure does no work. By convention, procedure zero of any RPC program takes
no parameters and returns no results. It is made available to allow server response
testing and timing.

6.6.4.4 Return Codes

None.

6.6.5 MNTPROC_MNT Specification - Add Mount Entry

6.6.5.1 RPC Data Descriptions

Call Arguments

dirpath dirname;

Return Arguments

union fhstatus switch (unsigned status) {
case 0:

fhandle directory;
default:

void;
};

fhandle is defined in Section 5.4.2, Basic Data Types.

6.6.5.2 RPC Procedure Description

fhstatus
MNTPROC_MNT(dirname) = 1;

6.6.5.3 Description

If the reply status is 0, then the reply directory contains the file handle for the directory
dirname. This file handle may be used in the NFS protocol. This procedure also adds a
new entry to the mount list for this client mounting dirname.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 105

RPC Information Adjunct Protocols

6.6.5.4 Return Codes

<Zero> Indicates that the call completed successfully and the results are
valid.

It is recommended that implementations return the following error codes for the
following situations.

EPERM Indicates that the call failed because the mount server did not have
the required privileges to perform the mount. (Most
implementations require that the mount server run with uid 0.)
This generally indicates a server configuration error.

EACCES Indicates that the call failed because access to the specified
directory was denied. Either no directory in the path dirname is
exported, or the client system is not permitted to mount this
directory.

ENOENT Indicates that the call failed because the specified directory does
not exist. If the server exports only /a/b, an attempt to mount
/a/b/c will fail with ENOENT if the directory does not exist; on the
other hand, an attempt to mount /a/x would fail with EACCES.

EINVAL Indicates that the call failed because the mount daemon was
unable to translate the path into a file handle. This may indicate a
server configuration error, or may occur if the directory is
removed before the mount is complete.

6.6.6 MNTPROC_DUMP Specification - Return Mount Entries

6.6.6.1 RPC Data Descriptions

Call Arguments

None.

Return Arguments

struct ∗mountlist {
name hostname;
dirpath dirname;
mountlist nextentry;

};

name and dirpath are defined in Section 5.3.2, Basic Data Types.

6.6.6.2 RPC Procedure Description

mountlist
MNTPROC_DUMP(void) = 2;

X/Open Developers’ Specification (1990)
Page : 106 Protocols for X/Open PC Interworking: (PC)NFS

Adjunct Protocols RPC Information

6.6.6.3 Description

Returns the list of remote mounted file systems. The mountlist contains one entry for
each hostname and dirname pair.

6.6.6.4 Return Codes

None.

6.6.7 MNTPROC_UMNT Specification - Remove Mount Entries

6.6.7.1 RPC Data Descriptions

Call Arguments

dirpath dirname;

Return Arguments

None.

6.6.7.2 RPC Procedure Description

void
MNTPROC_UMNT(dirname) = 3;

6.6.7.3 Description

Removes the mount list entry for the input dirname that records the fact that dirname has
been mounted by the client. dirname should be identical to the argument used in the
corresponding MNTPROC_MNT call.

6.6.7.4 Return Codes

None.

6.6.8 MNTPROC_UNMNTALL Specification - Remove all Mount Entries

6.6.8.1 RPC Data Description

Call Arguments

None.

Return Arguments

None.

6.6.8.2 RPC Procedure Descriptions

void
MNTPROC_UMNTALL(void) = 4;

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 107

RPC Information Adjunct Protocols

Removes all of the mount list entries for this client.

6.6.8.3 Return Codes

None.

6.6.9 MNTPROC_EXPORT Specification - Return Export List

6.6.9.1 RPC Data Descriptions

Call Arguments

None.

Return Arguments

struct ∗expinfo {
name expitem;
expinfo expnext;

};

struct ∗exportlist {
dirpath filesys;
expinfo expinfo;
exportlist next;

};

name and dirpath are defined in Section 5.3.2, Basic Data Types.

6.6.9.2 RPC Procedure Description

exportlist
MNTPROC_EXPORT(void) = 5;

6.6.9.3 Description

Returns a variable number of export list entries. Each entry contains a filesystem name,
filesys , and a list of text items describing how it may be mounted and by whom. Each
item is encoded as an expitem in the list expinfo . The information is implementation
specific, and while it may be meaningful to the user of the NFS client system it is not
necessarily interpretable by client software. Typical information might include the names
of systems, or groups of systems, which are allowed to mount the filesystem, or options
describing access control or uid mapping.

6.6.9.4 Return Codes

None.

X/Open Developers’ Specification (1990)
Page : 108 Protocols for X/Open PC Interworking: (PC)NFS

Adjunct Protocols Network Lock Manager Protocol Definition

6.7 NETWORK LOCK MANAGER PROTOCOL DEFINITION

6.7.1 Introduction

The Network Lock Manager (NLM) is an RPC service that provides advisory locking of
files across the network. There are multiple versions of the NLM; this specification
describes version 3.

This service makes advisory DOS 3.1 file sharing and locking possible in an NFS
environment. Its use is strongly encouraged but not mandatory, and NFS clients must be
prepared to interoperate with servers which do not support this service. It is also
recommended, but not required, that locks created by DOS processes be honoured by
processes running on the server systems and vice versa.

Because the NFS protocol is stateless and has no knowledge of locks that may or may not
have been granted, clients that wish exclusive access to a particular file must call the
Network Lock Manager on the server to request access. The server Network Lock
Manager is responsible for creating and destroying locks on files, as well as mediating
requests for shared or exclusive file access.

6.7.2 Versions

6.7.2.1 Versions 1 and 2

Versions 1 and 2 of the Network Lock Manager are identical. Each provide the necessary
services for implementing file and record locking across a network. However, these
versions do not support personal computer clients.

6.7.2.2 Version 3

Version 3 includes the calls in version 2 of the Lock Manager and adds support for
personal computers; non-monitored locks and DOS-compatible file sharing. These calls
are used by personal computer implementations of NFS to access shared files while
preserving the semantics of DOS versions 3.1 and later.

This specification describes version 3.

6.7.3 Synchronisation of Lock Managers

Due to the stateless nature of NFS servers it is difficult to incorporate a stateful service.
The Lock Manager relies on the machine holding the locks as the keeper of the state.
When an NFS server crashes and is rebooted, locks which it had granted may be recreated
by the lock holders during a user-definable grace period. During the grace period no
new locks are accepted, although NFS requests are accepted.

A client holding non-monitored locks or file shares may inform the lock manager, via the
NLM_FREE_ALL procedure, that it has been rebooted and all locks and file shares are to be
released.

Non-monitored locks

To support personal computer clients, the Network Lock Manager provides ‘‘non-
monitored locks’’. This means that the server will not monitor the client to ensure that it

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 109

Network Lock Manager Protocol Definition Adjunct Protocols

is still operational: it is the responsibility of the client system to advise the Network Lock
Manager if it is rebooted so that the Network Lock Manager can discard any locks or file
sharing reservations being held on behalf of the client.

6.7.4 DOS File Sharing Support

Version 3 of the protocol supports file locking and sharing for DOS machines on the net.
File sharing is a mechanism which allows a DOS process to open or create a file and to
restrict the way in which subsequent processes may access the file. For example, a DOS
client may request that a file be opened for reading and writing, and that subsequent
users may only open it for reading. To implement this feature an NLM_SHARE request is
issued when a file is opened, and a corresponding NLM_UNSHARE is performed when it
is closed. These procedures rely on the nlm_share structure, defined below. The precise
semantics of the file sharing modes are described in the IBM Disk Operating System
Technical Reference, IBM part number 6138536.

6.7.5 RPC Information

Authentication

The NLM service uses AUTH_UNIX style authentication only.

Transport Protocols

(PC)NFS clients use UDP/IP only.

Port Number

Consult the server’s port mapper, described in Section 6.2, Port Mapper Program
Protocol, to find the port number on which the NLM service is registered.

6.7.5.1 Sizes of XDR Structures

These are the sizes, given in decimal bytes, of various XDR structures used in the
protocol.

/∗ The maximum length of the string identifying the caller ∗/
const LM_MAXSTRLEN = 1024;

/∗ The maximum number of bytes in the nlm_notify name argument ∗/
const MAXNAMELEN = LM_MAXSTRLEN+1;

const MAXNETOBJ_SZ = 1024;

6.7.5.2 Basic Data Types for Locking

The following XDR definitions are the basic structures and types used in the parameters
passed to and returned from the Network Lock Manager.

netobj

const netobj<MAXNETOBJ_SZ>

X/Open Developers’ Specification (1990)
Page : 110 Protocols for X/Open PC Interworking: (PC)NFS

Adjunct Protocols Network Lock Manager Protocol Definition

netobj is used to identify an object, generally a transaction, owner or file.

nlm_stats

enum nlm_stats {
nlm_granted = 0,
nlm_denied = 1,
nlm_denied_nolocks = 2,
nlm_blocked = 3,
nlm_denied_grace_period = 4

};

nlm_stats are returned whenever the Network Lock Manager is called upon to create or
test a lock on a file. Generally, the result is self explanatory; the only two codes that bear
clarification are nlm_denied_nolocks, which is returned when a lock could not be created
on the requested file (usually an error), and nlm_denied_grace_period which is returned
when the server has recently been rebooted and is re-establishing existing locks.

nlm_holder

struct nlm_holder {
bool exclusive;
int uppid;
netobj oh;
unsigned l_offset;
unsigned l_len;

};

The nlm_holder structure identifies the holder of a particular lock. The integer uppid
provides a unique per-process identifier for lock differentiation. The values l_offset and
l_len define the region of the file locked by this holder.

nlm_stat

struct nlm_stat {
nlm_stats stat;

};

The nlm_stat structure returns lock status.

nlm_res

struct nlm_res {
netobj cookie;
nlm_stat stat;

};

The nlm_res structure is returned by the main lock routines of the Network Lock
Manager. Note that clients should not rely upon the cookie being the same as that passed
in the corresponding request.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 111

Network Lock Manager Protocol Definition Adjunct Protocols

nlm_lock

struct nlm_lock {
string caller_name<LM_MAXSTRLEN>;
netobj fh; /∗ identify a file ∗/
netobj oh; /∗ identify owner of a lock ∗/
int uppid; /∗ generated from e.g., PSP in DOS ∗/
unsigned l_offset; /∗ File offset (for record locking) ∗/
unsigned l_len; /∗ Length (size of record) ∗/

};

The nlm_lock structure defines the information needed to uniquely specify a lock. The
netobj’s fh and oh define the file and owner, caller_name uniquely identifies the host. uppid
uniquely describes the process owning the file on the calling host, and the offset and length
determine which bytes of the file are locked.

nlm_lockargs

struct nlm_lockargs {
netobj cookie;
bool block; /∗ Flag to indicate blocking behaviour ∗/
bool exclusive; /∗ If exclusive access is desired ∗/
struct nlm_lock alock; /∗ The actual lock data (see above) ∗/
bool reclaim; /∗ used for recovering locks ∗/
int state; /∗ specify local status monitor state ∗/

};

The nlm_lockargs structure defines the information needed to request a lock on a server.
The reclaim field should only be set to true if the client is attempting to reclaim a lock
held on a lock daemon which has been restarted (due to a server crash etc).

nlm_unlockargs

struct nlm_unlockargs {
netobj cookie;
struct nlm_lock alock;

};

The nlm_unlockargs structure defines the information needed to remove a previously
established lock.

X/Open Developers’ Specification (1990)
Page : 112 Protocols for X/Open PC Interworking: (PC)NFS

Adjunct Protocols Network Lock Manager Protocol Definition

6.7.6 DOS 3.1 File Sharing

The following data types are used in version 3 of the lock manager to support DOS 3.1
compatible file sharing control.

6.7.6.1 fsh_mode

enum fsh_mode {
fsm_DN = 0, /∗ deny none ∗/
fsm_DR = 1, /∗ deny read ∗/
fsm_DW = 2, /∗ deny write ∗/
fsm_DRW = 3 /∗ deny read/write ∗/

};

fsh_mode defines the legal sharing modes.

6.7.6.2 fsh_access

enum fsh_access {
fsa_NONE = 0, /∗ for completeness ∗/
fsa_R = 1, /∗ read only ∗/
fsa_W = 2, /∗ write only ∗/
fsa_RW = 3 /∗ read/write ∗/

};

fsh_access defines the legal file access modes.

6.7.6.3 nlm_share

struct nlm_share {
string caller_name<LM_MAXSTRLEN>;
netobj fh;
netobj oh;
fsh_mode mode;
fsh_access access;

};

The nlm_share structure defines the information needed to uniquely specify a share
operation. The netobj’s define the file, fh, and owner, oh ; caller_name uniquely identifies
the host. mode and access define the file sharing and the access modes.

6.7.6.4 nlm_shareargs

struct nlm_shareargs {
netobj cookie;
nlm_share share; /∗ actual share data ∗/
bool reclaim; /∗ used for recovering shares ∗/

};

The nlm_shareargs structure encodes the arguments for a share or unshare request. The
boolean reclaim should be TRUE if the client is attempting to reclaim a previously-granted
sharing request and FALSE otherwise.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 113

Network Lock Manager Protocol Definition Adjunct Protocols

6.7.6.5 nlm_shareres

struct nlm_shareres {
netobj cookie;
nlm_stats stat;
int sequence;

};

The nlm_shareres structure encodes the results of a share or unshare request. The cookie
and sequence should be ignored; they are required only for compatibility reasons. The
result of the request is given by stat.

6.7.6.6 nlm_notify

struct nlm_notify {
string name<MAXNAMELEN>;
long state;

};

This structure encodes the arguments for releasing all locks and shares a client holds.

6.7.7 Server Procedures

The following sections summarise the protocol used by the Network Lock Manager
using RPC Language.

/∗
∗ Over-the-wire protocol used between the network lock managers
∗/
program NLM_PROG {

version NLM_VERS {
void NLM_NULL(void) = 0;
nlm_res NLM_UNLOCK(struct nlm_unlockargs) = 4;
nlm_shareres NLM_SHARE(nlm_shareargs) = 20;
nlm_shareres NLM_UNSHARE(nlm_shareargs) = 21;
nlm_res NLM_NM_LOCK(nlm_lockargs) = 22;
void NLM_FREE_ALL(nlm_notify) = 23;

} = 3;
} = 100021;

6.7.8 NLM_NULL Specification - Do Nothing

6.7.8.1 RPC Data Descriptions

Call Arguments

None.

X/Open Developers’ Specification (1990)
Page : 114 Protocols for X/Open PC Interworking: (PC)NFS

Adjunct Protocols Network Lock Manager Protocol Definition

Return Arguments

None.

6.7.8.2 RPC Procedure Description

void
NLM_NULL(void) = 0;

6.7.8.3 Description

This procedure does no work. By convention, procedure zero of any RPC program takes
no parameters and returns no results. It is made available to allow server response
testing and timing.

6.7.8.4 Return Codes

None.

6.7.9 NLM_UNLOCK Specification - Unlock File

6.7.9.1 RPC Data Descriptions

Call Arguments

struct nlm_unlockargs {
netobj cookie;
struct nlm_lock alock;

};

Return Arguments

struct nlm_res {
netobj cookie;
nlm_stat stat;

};

6.7.9.2 RPC Procedure Description

nlm_res
NLM_UNLOCK (nlm_unlockargs) = 4;

6.7.9.3 Description

This routine will remove the specified lock from the file identified by alock .

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 115

Network Lock Manager Protocol Definition Adjunct Protocols

6.7.9.4 Return Codes

When the procedure returns, stat will be set to the following value:

nlm_granted Indicates that the call completed successfully.

6.7.10 NLM_SHARE Specification - Share a File

6.7.10.1 RPC Data Descriptions

Call Arguments

struct nlm_shareargs {
netobj cookie;
nlm_share share; /∗ actual share data ∗/
bool reclaim; /∗ used for recovering shares ∗/

};

Return Arguments

struct nlm_shareres {
netobj cookie;
nlm_stats stat;
int sequence;

};

6.7.10.2 RPC Procedure Description

nlm_shareres
NLM_SHARE (nlm_shareargs) = 20;

6.7.10.3 Description

This procedure indicates that the client wishes to open the file share_fh for access
share.access in sharing mode share.mode . If this does not conflict with existing use of the
file, the request will be granted. If a conflict does exist, the request is rejected
immediately. It is the responsibility of the client to retry any rejected requests. The
server will examine any entry sharing reservations for this file to determine if the share is
permitted. If it is, a sharing reservation is created for this file.

Once a sharing reservation has been established, the lock manager will make no attempt
to verify that the reservation is still valid; if the client system crashes and restarts while
the reservation is still in effect, it should call the NLM_FREE_ALL procedure to release the
reservation.

6.7.10.4 Return Codes

When the procedure returns, stat will be set to the following value:

nlm_granted Indicates that the call completed successfully.

X/Open Developers’ Specification (1990)
Page : 116 Protocols for X/Open PC Interworking: (PC)NFS

Adjunct Protocols Network Lock Manager Protocol Definition

nlm_denied Indicates that the call failed because the request conflicted with
existing sharing reservations for the file.

nlm_denied_no_locks Indicates that the call failed because the lock manager could not
allocate the resources needed to process the request.

nlm_denied_grace_period
Indicates that the call failed because the lock manager was not yet
ready to accept normal service requests.

6.7.11 NLM_UNSHARE Specification - Unshare a File

6.7.11.1 RPC Data Descriptions

Call Arguments

struct nlm_shareargs {
netobj cookie;
nlm_share share; /∗ actual share data ∗/
bool reclaim; /∗ used for recovering shares ∗/

};

Return Arguments

struct nlm_shareres {
netobj cookie;
nlm_stats stat;
int sequence;

};

6.7.11.2 RPC Procedure Description

nlm_shareres
NLM_UNSHARE (nlm_shareargs) = 21;

6.7.11.3 Description

This procedure informs the lock manager that the client has closed the file share.fh , and
any corresponding share reservations should be released.

6.7.11.4 Return Codes

When the procedure returns, stat will be set to the following value:

nlm_granted Indicates that the call completed successfully.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 117

Network Lock Manager Protocol Definition Adjunct Protocols

6.7.12 NLM_NM_LOCK Specification - Non-monitored Lock

6.7.12.1 RPC Data Descriptions

Call Arguments

struct nlm_lockargs {
netobj cookie;

bool block;
bool exclusive;
struct nlm_lock alock;
bool reclaim;
int state;

};

Return Arguments

struct nlm_res {
netobj cookie;
nlm_stat stat;

};

6.7.12.2 RPC Procedure Description

nlm_res
NLM_NM_LOCK (nlm_lockargs) = 22;

6.7.12.3 Description

This procedure establishes a non-monitored lock on alock.l_len bytes starting at offset
alock.l_offset in the file identified by alock.fh . The phrase ‘‘non-monitored’’ refers to the
fact that the lock manager will make no attempt to verify that the lock is still valid; if the
client system crashes and restarts while the lock is still in effect, it should call the
NLM_FREE_ALL procedure to release the lock.

6.7.12.4 Return Codes

When the procedure returns, stat will be set to the following value:

nlm_granted Indicates that the call completed successfully.

nlm_denied Indicates that the call failed because the request conflicted with
existing locks for the file.

nlm_denied_no_locks Indicates that the call failed because the lock manager could not
allocate the resources needed to process the request.

nlm_denied_grace_period
Indicates that the call failed because the lock manager was not yet
ready to accept normal service requests.

X/Open Developers’ Specification (1990)
Page : 118 Protocols for X/Open PC Interworking: (PC)NFS

Adjunct Protocols Network Lock Manager Protocol Definition

6.7.13 NLM_FREE_ALL Specification - Free All

6.7.13.1 RPC Data Descriptions

Call Arguments

struct nlm_notify {
string name<MAXNAMELEN>;
unsigned int state;

};

Return Arguments

void

6.7.13.2 RPC Procedure Description

void
NLM_FREE_ALL (nlm_notify) = 23;

6.7.13.3 Description

The NLM_FREE_ALL procedure informs the server that the client name has been rebooted
and that all file sharing reservations and file locks currently being held on behalf of the
client should be discarded. The state field is unused.

6.7.13.4 Return Codes

None.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 119

Network Lock Manager Protocol Definition Adjunct Protocols

X/Open Developers’ Specification (1990)
Page : 120 Protocols for X/Open PC Interworking: (PC)NFS

Chapter 7

RPC Interface to UDP Transport Services

7.1 INTRODUCTION

The purpose of this specification is to describe how NFS interfaces with the underlying
transport. The NFS protocol provides transparent remote access to shared filesystems
over local networks. The NFS protocol is designed to be machine, operating system,
network architecture and transport protocol independent. The independence is achieved
through the use of Remote Procedure Call (RPC) primitives built on top of an eXternal
Data Representation (XDR). This specification will deal with the interface between RPC
and the underlying transport.

Though NFS is designed to be transport independent, this specification will only deal
with the implementation of RPC on top of UDP/IP. It should also be noted that this
specification contains no mention of the programmatic interface to UDP, as this is
implementation-specific.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 121

RPC and Transport Requirements RPC Interface to UDP Transport Services

7.2 RPC AND TRANSPORT REQUIREMENTS

The RPC protocol is independent of transport protocols; that is, RPC does not care how a
message is passed from one process to another. The protocol deals only with
specification and interpretation of messages.

It is important to note that RPC does not try to implement any kind of reliability and that
the application must be aware of the type of transport protocol underneath RPC. If the
application knows it is running on top of a reliable transport such as TCP/IP, then most of
the work is already done for it. If, however, it is running on top of an unreliable transport
such as UDP/IP, the application must implement its own retransmission and time-out
policy, as the RPC layer does not provide this service.

Because of transport independence, the RPC protocol does not attach specific semantics
to the remote procedures or their execution. Semantics can be inferred from (but should
be explicitly specified by) the underlying transport protocol. For example, consider RPC
running on top of an unreliable transport such as UDP/IP. If an application retransmits
RPC messages after short time-outs, the only thing it can infer if it receives no reply is that
the procedure was executed zero or more times. If it does receive a reply, then it can
infer that the procedure was executed at least once.

X/Open Developers’ Specification (1990)
Page : 122 Protocols for X/Open PC Interworking: (PC)NFS

RPC Interface to UDP Transport Services UDP as a Transport Protocol

7.3 UDP AS A TRANSPORT PROTOCOL

UDP (User Datagram Protocol) is a datagram-based protocol that relies on the Internet
Protocol (IP) transport for packet delivery. Because it is a datagram service without any
connection, retransmission or ordering information, UDP delivery is unreliable. Although
packets generally reach their destination, it cannot be guaranteed. They may be lost,
duplicated or arrive out of order.

A UDP packet consists of a UDP header followed by data. The whole is passed to the IP
layer for transmission. The IP layer delivers the data packet to the correct host specified
by the destination IP address and the UDP layer targets the specific destination within the
host, specified by a destination port number.

Full specifications of the UDP and IP protocols is contained in RFC 768 User Datagram
Protocol and RFC 791 Internet Protocol .

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 123

RPC Interface RPC Interface to UDP Transport Services

7.4 RPC INTERFACE

7.4.1 The RPC request

A UDP packet containing an RPC request would be as follows:

0 15 16 31

Source Port Destination Port
Length Checksum
Data octets

• Source Port
The 16-bit port number the NFS client is using.

• Destination Port
The 16-bit port number on the destination host. This must be specified by the
protocol layer above UDP, either when the port is allocated or on a per-datagram basis
depending on the protocol implementation. For NFS version 2, described in this
specification, this is the port the NFS server resides at 2049 (decimal).

• Length
The number of bytes in the packet. This includes the UDP header and the data (RPC
packet in this case).

• Checksum
The checksum is the 16 bit one’s complement of the one’s complement sum of all 16
bit words in the pseudo-header, UDP header and raw data.

The UDP pseudo-header consists of the source and destination IP addresses, the
Internet Protocol Number for UDP (17 decimal) and the UDP length (see RFC 768). An
implementation may choose not to compute a UDP checksum when transmitting a
packet, in which case it should set the checksum field to zero.

• Data Octets
Provided by the protocol layer above UDP. In this case, this is the RPC request itself.

In addition, the destination of the UDP packet must be specified as an IP address.

7.4.2 The RPC reply

Once the RPC request has been received and processed by the NFS server, a reply packet
must be constructed and sent to the NFS client.

In most implementations, the IP protocol layer will provide the upper layer protocols
with the source and destination IP addresses of the request packet. This information can
be used to construct the return packet. The source port and IP address from the RPC
request become destination port and IP address of the RPC reply.

The data in the UDP packet is the RPC reply which will contain results and return data
from the NFS server.

X/Open Developers’ Specification (1990)
Page : 124 Protocols for X/Open PC Interworking: (PC)NFS

RPC Interface to UDP Transport Services RPC Interface

7.4.3 Receiving a UDP Reply Packet

Due to the unreliability inherent in a connectionless transport, implementations should
handle waiting for a packet which will complete by receipt of a packet, a timeout or some
form of exception (e.g., termination of the application).

7.4.4 Closing

Since UDP is a connectionless transport, no explicit actions are required to terminate the
client/server relationship, although particular implementations may require the freeing
of data structures, etc.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 125

RPC Interface RPC Interface to UDP Transport Services

X/Open Developers’ Specification (1990)
Page : 126 Protocols for X/Open PC Interworking: (PC)NFS

Appendix A

Mapping Filenames and Attributes

A.1 INTRODUCTION

In a homogeneous network - for example, one consisting entirely of DOS systems -
filename and file attribute mapping is not an issue; there is a one-to-one correspondence
between names and attributes on client and server. In a heterogeneous network - in the
current context, one which includes DOS- and X/Open-compliant systems - the situation
is more complicated. The semantics of the virtual file system provided by the server
must be as close as possible to the semantics implemented by the client’s local operating
system. Since it is desirable to facilitate the sharing of files between applications running
on the client and the server, any mapping should introduce as little inconsistency as
possible, and should follow the principle of ‘‘least surprise’’. For example, users of DOS
and UNIX will generally employ filenames which they can specify by typing a lower-case
alphanumeric string, such as abc. In UNIX, the corresponding filename is abc, but under
DOS it is translated to ABC. It is desirable that the same filename should identify the
same file on each system.

There are two ways in which dissimilar file system semantics can be resolved. If the
server performs the resolution, presenting a virtual file system view which is compatible
with the client OS, the mapping becomes part of the server and protocol architecture and
can be standardised. However, in NFS every server presents a common virtual file
system model to all clients, and it is the responsibility of each client system to map the
NFS semantics into its local operating system. Since the intent of this standard is to
specify the server functionality necessary to create an X/Open-compliant system server
for (PC)NFS clients, client implementation issues are formally outside the scope of this
standard. Nonetheless, interoperability may be enhanced by reducing inconsistencies
between implementations, and the following description is therefore presented as an
illustration and recommendation.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 127

Context Mapping Filenames and Attributes

A.2 CONTEXT

Filename and attribute translations occur in two ways.

1. When a client system retrieves information from the server, the server names and
attributes must be translated into those of the client. This is referred to here as
‘‘mapping’’. For example, if a DOS application issues a series of DOS
FindFirst/FindNext requests to retrieve the contents of a directory, each NFS
filename and the corresponding file attributes must be mapped into the
corresponding DOS elements.

2. When a client system changes the virtual file store by creating or renaming a file, or
by changing a file’s attributes, it is necessary to translate the DOS name and
attributes into the equivalent NFS elements. This is referred to here as ‘‘back-
mapping’’.

We now consider each case in turn.

X/Open Developers’ Specification (1990)
Page : 128 Protocols for X/Open PC Interworking: (PC)NFS

Mapping Filenames and Attributes Mapping File Names

A.3 MAPPING FILE NAMES

The following procedure may be used in mapping NFS files to DOS:

1. The special names ‘‘ . ’’ and ‘‘ . . ’’ are not translated in any way.

2. The NFS name is case-inverted.

3. If the resulting name is a legal DOS name and contains no lower-case letters, the
process is complete. A legal DOS name may not include the following characters:

. , + [] ∗ ? : \ / ; = < >

A legal DOS filename must be 1 to 8 characters long, optionally followed by a
period (.) and an extension of 1 to 3 characters. (To avoid back-mapping problems,
any NFS name which includes a tilde (˜) as the sixth character is also mapped.)

4. If the resulting name has a legal DOS extension, the extension and period (.) are
removed and saved. The corresponding characters are also trimmed from the NFS
name.

5. The NFS name is then mapped to generate a new filename. The first five characters
of the NFS name are copied to the new filename. All lower-case letters are
translated to upper-case. All illegal DOS characters are replaced by tilde characters.
If necessary, the new filename is padded to five characters with tilde characters.

6. The new filename is now extended to eight characters by the addition of a tilde and
two legal DOS characters. These characters are the ‘‘mapping key’’. They should be
chosen to facilitate the back-mapping process while minimising duplications. If the
NFS name is already stored, the same mapping key should be used.

7. The NFS name is now stored using all or part of the new filename as a key.

8. Finally, if an extension was saved in step 4, it is appended to the new filename.

Note that this mapping process always yields a name with an eight-character filename
component in which the sixth character is a tilde.

Sample UNIX Mapped DOS
file name file name Notes
abc123.def ABC123.DEF No mapping required.
a A No mapping required.
A A˜˜˜˜˜XX Upper-case mapping.
a_long_name A_LON˜XX Using first 5 characters.
AB.c AB˜˜˜˜XX.C Using all characters, padding with tildes.

Note that the XX value will be different
from the last example.

Ab.c AB˜˜˜˜XX.C

Illegal because of multiple extensions.
The first period is replaced by a tilde; the
extension is OK.

a.b.c A˜B˜˜˜XX.C

abcd.efgh ABCD˜˜XX The extension is illegal.
.login ˜LOGI˜XX The ‘‘hidden’’ attribute will also be set.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 129

Back-Mapping Filenames Mapping Filenames and Attributes

A.4 BACK-MAPPING FILENAMES

The following procedure may be used in translating a DOS name into NFS form:

1. If the DOS name has an eight-character filename component in which the sixth
character is a tilde, back-mapping is required. If not, all upper-case letters are
converted to lower-case and the process is complete.

2. The ‘‘mapping key’’ is extracted from the DOS filename and used as a key to
retrieve the NFS name. If a corresponding NFS name cannot be found, the DOS
system call is terminated with an error.

3. If the DOS name included an extension, it is appended (with its leading period) to
the NFS name, converting any upper-case letters to lower-case.

X/Open Developers’ Specification (1990)
Page : 130 Protocols for X/Open PC Interworking: (PC)NFS

Mapping Filenames and Attributes Mapping File Attributes

A.5 MAPPING FILE ATTRIBUTES

The following procedure may be used to map NFS file attributes into the DOS equivalent.

1. Using implementation-dependent authentication information, determine which set
of NFS access permissions (owner, group or other) apply to this file for the current
user.

2. If the NFS read and execute permission bits are both clear, hide this file completely
from directory searches.

3. If the NFS execute permission is set but read is clear, do not hide the file from
directory searches, but do not allow this file to be opened for reading except as part
of an exec DOS function.

4. If the NFS write permission is clear, set the DOS read-only attribute.

5. If the NFS setuid attribute is set, set the DOS hidden attribute.

6. If the NFS directory attribute is set, set the DOS directory attribute.

7. Clear the DOS system and volume label attributes (but if requested in a FindFirst
directory search, return the NFS server name as the volume label).

8. Set the DOS archive attribute. (This may be a configurable option.)

In addition, if this mapping occurs as part of a directory search, and if the
corresponding NFS name begins with a ‘‘ . ’’ and was mapped, the principle of least
surprise suggests that the DOS hidden attribute be set.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 131

Back-mapping File Attributes Mapping Filenames and Attributes

A.6 BACK-MAPPING FILE ATTRIBUTES

The following procedure may be used to set NFS file attributes based on DOS settings.

1. If a file is being created, set the NFS access permissions based upon the current
umask.

2. If the DOS read-only attribute is being set, clear the NFS write permission for all
classes of access (owner, group, other). Note that if a file is created read-only, the
client may choose to defer setting this attribute until file close.

3. If the DOS read-only attribute is being cleared, set the NFS write permission for all
classes of access (owner, group, other), except where the current umask value
would disallow this.

4. If the DOS hidden attribute is being set, set the NFS setuid attribute.

5. If the DOS hidden attribute is being cleared, clear the NFS setuid attribute.

X/Open Developers’ Specification (1990)
Page : 132 Protocols for X/Open PC Interworking: (PC)NFS

Appendix B

NFS Transmission Analysis

B.1 INTRODUCTION

This appendix describes the DOS system calls which are intercepted by PC-NFS and
translated into NFS Remote Procedure Calls. In most cases the need to intercept and
emulate these calls is obvious, although one or two may be less intuitive. The general
flow is indicated, but this is not claimed to be anywhere near an exhaustive description.
Note that cache logic may cause the equivalent of a write function (0x40) to occur at
almost any time.

It should also be noted that there are a number of features of the PC-NFS redirector which
represent proprietary intellectual property. For example, PC-NFS intercepts and
emulates a number of additional DOS system calls and software interrupts; in addition it
processes certain combinations or varieties of DOS system calls using techniques which
may differ from the basic model presented herein. Nonetheless, this description
adequately captures the mapping between DOS file system services and NFS RPC
requests, including some of the subtlety and complexity of the architecture, while at the
same time preserving the confidentiality of any proprietary technology.

This material only refers to the DOS Functions available via DOS interrupt 0x21.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 133

DOS Functions NFS Transmission Analysis

B.2 DOS FUNCTIONS

This section contains a table of DOS Functions ordered by function number, followed by a
list of DOS Functions in alphabetic order.

Function Number DOS Call
0x00 Terminate Program
0x01 Read Keyboard and Echo
0x02 Display Character
0x03 Auxiliary Input
0x04 Auxiliary Output
0x05 Print Character
0x06 Direct Console I/O
0x07 Direct Console Input
0x08 Read Keyboard
0x09 Display String
0x0a Buffered Keyboard Input
0x0b Check Keyboard Buffer Status
0x0c Flush Buffer, Read Keyboard
0x0d Reset Disk
0x0e Select Disk
0x0f Open File (FCB I/O)
0x10 Close File (FCB I/O)
0x11 Search For First Entry
0x12 Search For Next Entry
0x13 Delete File (FCB I/O)
0x14 Sequential Read (FCB I/O)
0x15 Sequential Write (FCB I/O)
0x16 Create File (FCB I/O)
0x17 Rename File (FCB I/O)
0x19 Get Current Disk
0x1b Get Default Drive Data
0x1c Get Drive Data
0x21 Random Read (FCB I/O)
0x22 Random Write (FCB I/O)
0x23 Get File Size (FCB I/O)
0x27 Random Block Read (FCB I/O)
0x28 Random Block Write (FCB I/O)
0x36 Get Disk Free Space
0x39 Create Directory
0x3a Remove Directory
0x3b Change Current Directory
0x3c Create File Handle
0x3d Open File Handle
0x3e Close File Handle

X/Open Developers’ Specification (1990)
Page : 134 Protocols for X/Open PC Interworking: (PC)NFS

NFS Transmission Analysis DOS Functions

Function Number DOS Call
0x3f Read Via File Handle
0x40 Write Via File Handle
0x41 Delete Directory Entry
0x42 Move File Pointer
0x43 Set/Get File Attributes
0x44 IOCTL
0x45 Duplicate File Handle
0x46 Force Duplicate File Handle
0x47 Get Current Directory
0x4b Load and Execute Program/Load Overlay
0x4c End Process
0x4e Find First File
0x4f Find Next File
0x56 Change Directory Entry
0x57 Set/Get Date/Time of File
0x59 Get Extended Error
0x5a Create Temporary File Handle
0x5b Create New File
0x5c Unlock/Lock File
0x5e Get Machine Name
0x5f Get Assign List Entry
0x68 Flush Buffer

Auxiliary Input

Function number 0x03

Description Auxiliary Input

Reason Handles standard I/O redirection; mapped into function 0x14 if handle
is remote.

Auxiliary Output

Function number 0x04

Description Auxiliary Output

Reason Handles standard I/O redirection; mapped into an internal version of
function 0x15 if handle is remote.

Buffered Keyboard Input

Function number 0x0a

Description Buffered Keyboard Input

Reason Handles standard I/O redirection; mapped into an internal version of
function 0x14 and/or 0x15 if one or both handles are remote.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 135

DOS Functions NFS Transmission Analysis

Change Current Directory

Function number 0x3b

Description Change Current Directory

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

NFSPROC_LOOKUP Lookup the path.

NFSPROC_READLINK If necessary, read a symbolic link.

Change Directory Entry

Function number 0x56

Description Change Directory Entry

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

NFSPROC_LOOKUP Lookup the path.

NFSPROC_READLINK If necessary read any symbolic links.

NFSPROC_RENAME Rename the file or directory.

Check Keyboard Buffer Status

Function number 0x0b

Description Check Keyboard Buffer Status

Reason Handles standard I/O redirection; checks FCB file position if handle is
remote.

Close File (FCB I/O)

Function number 0x10

Description Close File (FCB I/O)

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

NFSPROC_WRITE Write file data.

NFSPROC_GETATTR Get file attributes.

NFSPROC_SETATTR Set file attributes.

If sharing/locking is configured, the following Network Lock Manager
call is also made:

NLM_UNSHARE Release sharing mode access to file.

X/Open Developers’ Specification (1990)
Page : 136 Protocols for X/Open PC Interworking: (PC)NFS

NFS Transmission Analysis DOS Functions

Close File Handle

Function number 0x3e

Description Close File Handle

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

NFSPROC_GETATTR If the file was ‘‘create-RO’’, we must ...

NFSPROC_SETATTR ... update the file attributes.

If sharing/locking is configured, the following Network Lock Manager
calls may also be made:

NLM_UNLOCK Release any locks.

NLM_UNSHARE Release sharing mode access to file.

Create Directory

Function number 0x39

Description Create Directory

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

NFSPROC_LOOKUP Lookup the path.

NFSPROC_READLINK If necessary, read a symbolic link.

NFSPROC_MKDIR Create the directory.

Create File (FCB I/O)

Function number 0x16

Description Create File (FCB I/O)

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

First, close the file if it was open (see function 0x10). Then attempt to
create it:

NFSPROC_CREATE Create a file.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 137

DOS Functions NFS Transmission Analysis

Create File Handle

Function number 0x3c

Description Create File Handle

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

NFSPROC_LOOKUP Lookup the path.

NFSPROC_READLINK If necessary read any symbolic links.

NFSPROC_REMOVE Remove the file (if it exists).

NFSPROC_CREATE Create the file.

If sharing/locking is configured, the following Network Lock Manager
call is also made:

NLM_SHARE Request sharing mode access to file.

Create New File

Function number 0x5b

Description Create New File

Reason Emulate DOS file system function; (see function 0x39 for details).

Create Temporary File Handle

Function number 0x5a

Description Create Temporary File Handle

Reason Emulate DOS file system function; (see function 0x39 for details).

Delete Directory Entry

Function number 0x41

Description Delete Directory Entry

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

NFSPROC_LOOKUP Lookup the path.

NFSPROC_READLINK If necessary read any symbolic links.

NFSPROC_REMOVE Remove (unlink) the file.

X/Open Developers’ Specification (1990)
Page : 138 Protocols for X/Open PC Interworking: (PC)NFS

NFS Transmission Analysis DOS Functions

Delete File (FCB I/O)

Function number 0x13

Description Delete File (FCB I/O)

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls, depending on search criteria and directory contents:

NFSPROC_GETATTR Get file attributes (for directory).

NFSPROC_READDIR Read a directory (as often as needed).

NFSPROC_LOOKUP Lookup a name in a directory (for matches).

If the name was a symbolic link:

NFSPROC_READLINK If necessary read a symbolic link, and ...

NFSPROC_LOOKUP Lookup the name in a directory.

NFSPROC_REMOVE Remove (unlink) a file.

Direct Console I/O

Function number 0x06

Description Direct Console I/O

Reason Handles standard I/O redirection; mapped into an internal version of
function 0x14 and/or 0x15 if one or both handles are remote.

Direct Console Input

Function number 0x07

Description Direct Console Input

Reason Handles standard I/O redirection; mapped into an internal version of
function 0x14 and/or 0x15 if one or both handles are remote.

Display Character

Function number 0x02

Description Display Character

Reason Handles standard I/O redirection; mapped into an internal version of
function 0x15 if handle is remote.

Display String

Function number 0x09

Description Display String

Reason Handles standard I/O redirection; mapped into an internal version of
function 0x15 if handle is remote.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 139

DOS Functions NFS Transmission Analysis

Duplicate File Handle

Function number 0x45

Description Duplicate File Handle

Reason Emulate DOS file system function; no network calls.

End Process

Function number 0x4c

Description End Process

Reason Emulate DOS file system function; invokes a variety of operations
which may include function 0x3e.

Find First File

Function number 0x4e

Description Find First File

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

First, find the directory to be searched using:

NFSPROC_LOOKUP Lookup the path.

NFSPROC_READLINK If necessary read any symbolic links.

Then proceed as in function 0x11 (Search for list): depending on search
criteria and directory contents:

NFSPROC_GETATTR Get file attributes (for directory).

NFSPROC_READDIR Read a directory (as often as needed).

NFSPROC_LOOKUP Lookup a name in a directory (for matches).

If the name is a symbolic link:

NFSPROC_READLINK If necessary read a symbolic link, and ...

NFSPROC_LOOKUP ... lookup the name in a directory.

X/Open Developers’ Specification (1990)
Page : 140 Protocols for X/Open PC Interworking: (PC)NFS

NFS Transmission Analysis DOS Functions

Find Next File

Function number 0x4f

Description Find Next File

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls, depending on search criteria and directory contents:

NFSPROC_GETATTR Get file attributes (for directory).

NFSPROC_READDIR Read a directory (as often as needed).

NFSPROC_LOOKUP Lookup a name in a directory (for matches).

If the name is a symbolic link:

NFSPROC_READLINK If necessary read a symbolic link, and ...

NFSPROC_LOOKUP ... lookup the name in a directory.

Flush Buffer

Function number 0x68

Description Flush Buffer

Reason Emulate DOS file system function; may invoke the function 0x40.

Flush Buffer, Read Keyboard

Function number 0x0c

Description Flush Buffer, Read Keyboard

Reason Handles standard I/O redirection; mapped into an internal version of
function 0x14 and/or 0x15 if one or both handles are remote.

Force Duplicate File Handle

Function number 0x46

Description Force Duplicate File Handle

Reason Emulate DOS file system function; no network calls.

Get Assign List Entry

Function number 0x5f

Subfunction number 0x02

Description Get Assign List Entry

Reason Emulated locally, no network calls.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 141

DOS Functions NFS Transmission Analysis

Get Current Directory

Function number 0x47

Description Get Current Directory

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

First, loop back to the root of this drive using:

NFSPROC_GETATTR Get directory attributes.

NFSPROC_LOOKUP Lookup ‘‘..’’ to find the parent.

Next, loop back down to the current directory using:

NFSPROC_READDIR Read the names.

Get Current Disk

Function number 0x19

Description Get Current Disk

Reason Emulate DOS file system function; no network calls.

Get Default Drive Data

Function number 0x1b

Description Get Default Drive Data

Reason Emulate DOS file system function; subset of function 0x36.

Get Disk Free Space

Function number 0x36

Description Get Disk Free Space

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

NFSPROC_STATFS Get file system status.

Get Drive Data

Function number 0x1c

Description Get Drive Data

Reason Emulate DOS file system function; subset of function 0x36.

X/Open Developers’ Specification (1990)
Page : 142 Protocols for X/Open PC Interworking: (PC)NFS

NFS Transmission Analysis DOS Functions

Get Extended Error

Function number 0x59

Description Get Extended Error

Reason Emulate DOS extended error handling.

Get File Size (FCB I/O)

Function number 0x23

Description Get File Size (FCB I/O)

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

NFSPROC_GETATTR Get file attributes.

Get Machine Name

Function number 0x5e

Subfunction number 0x00

Description Get Machine Name

Reason Emulated locally, no network calls.

IOCTL

Function number 0x44

Description IOCTL

Reason Emulate DOS file system function; no network calls.

Load and Execute Program/Load Overlay

Function number 0x4b

Description Load and Execute Program/Load Overlay

Reason Emulate DOS file system function; invokes a variety of operations
which may include internal versions of function 0x3d (Open File
Handle) and function 0x3f (Read via File Handle).

Move File Pointer

Function number 0x42

Description Move File Pointer

Reason Emulate DOS file system function; no network calls.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 143

DOS Functions NFS Transmission Analysis

Open File (FCB I/O)

Function number 0x0f

Description Open File (FCB I/O)

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

First close the file if it was open (see function 0x10). Then open it:

NFSPROC_LOOKUP Lookup a name in a directory.

NFSPROC_READLINK If necessary read any symbolic links.

NFSPROC_GETATTR Get file attributes.

If sharing/locking is configured, the following Network Lock Manager
call is also made:

NLM_SHARE Request sharing mode access to file.

Open File Handle

Function number 0x3d

Description Open File Handle

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

NFSPROC_LOOKUP Lookup the path.

NFSPROC_READLINK If necessary read any symbolic links.

If sharing/locking is configured, the following Network Lock Manager
call is also made:

NLM_SHARE Request sharing mode access to file.

Print Character

Function number 0x05

Description Print Character

Reason Not emulated.

Random Block Read (FCB I/O)

Function number 0x27

Description Random Block Read (FCB I/O)

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

NFSPROC_READ Read file data.

X/Open Developers’ Specification (1990)
Page : 144 Protocols for X/Open PC Interworking: (PC)NFS

NFS Transmission Analysis DOS Functions

Random Block Write (FCB I/O)

Function number 0x28

Description Random Block Write (FCB I/O)

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

NFSPROC_WRITE Write file data.

Random Read (FCB I/O)

Function number 0x21

Description Random Read (FCB I/O)

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

NFSPROC_READ Read file data.

Random Write (FCB I/O)

Function number 0x22

Description Random Write (FCB I/O)

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

NFSPROC_WRITE Write file data.

Read Keyboard

Function number 0x08

Description Read Keyboard

Reason Handles standard I/O redirection; mapped into an internal version of
0x14 if handle is remote. (Same as function 0x07 except for ctrl-break
processing).

Read Keyboard and Echo

Function number 0x01

Description Read Keyboard and Echo

Reason Handles standard I/O redirection; mapped into internal versions of
function 0x14 and/or 0x15 if one or both handles are remote.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 145

DOS Functions NFS Transmission Analysis

Read Via File Handle

Function number 0x3f

Description Read Via File Handle

Reason Emulate DOS file system function; since read data may be cached, the
following NFS Remote Procedure Call may or may not be required:

NFSPROC_READ Read file data.

Remove Directory

Function number 0x3a

Description Remove Directory

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

NFSPROC_LOOKUP Lookup the path; if necessary, we must ...

NFSPROC_READLINK ... read a symbolic link.

NFSPROC_RMDIR Remove the directory.

Rename File (FCB I/O)

Function number 0x17

Description Rename File (FCB I/O)

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls, depending on search criteria and directory contents:

NFSPROC_GETATTR Get file attributes (for directory).

NFSPROC_READDIR Read a directory (as often as needed).

NFSPROC_LOOKUP Lookup a name in a directory (for matches).

If the name was a symbolic link:

NFSPROC_READLINK If necessary read a symbolic link, and ...

NFSPROC_LOOKUP ... lookup the name in a directory

NFSPROC_RENAME Rename a file or directory.

Reset Disk

Function number 0x0d

Description Reset Disk

Reason No emulation needed as NFS is synchronous.

X/Open Developers’ Specification (1990)
Page : 146 Protocols for X/Open PC Interworking: (PC)NFS

NFS Transmission Analysis DOS Functions

Search For First Entry

Function number 0x11

Description Search For First Entry

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls, depending on search criteria and directory contents:

NFSPROC_GETATTR Get file attributes (for directory).

NFSPROC_READDIR Read a directory (as often as needed).

NFSPROC_LOOKUP Lookup a name in a directory (for matches).

If the name was a symbolic link:

NFSPROC_READLINK If necessary read a symbolic link, and ...

NFSPROC_LOOKUP ... lookup the name in a directory.

Search For Next Entry

Function number 0x12

Description Search For Next Entry

Reason Emulate DOS file system function; performs the same NFS Remote
Procedure Calls as function 0x11 above.

Select Disk

Function number 0x0e

Description Select Disk

Reason Emulate DOS file system function; no network calls generated.

Sequential Read (FCB I/O)

Function number 0x14

Description Sequential Read (FCB I/O)

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

NFSPROC_READ Read file data.

Sequential Write (FCB I/O)

Function number 0x15

Description Sequential Write (FCB I/O)

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

NFSPROC_WRITE Write file data.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 147

DOS Functions NFS Transmission Analysis

Set/Get Date/Time of File

Function number 0x57

Subfunction number 0x00

Description Get Date/Time of File

Reason Emulate DOS file system function; no network calls.

Subfunction number 0x01

Description Set Date/Time of File

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Call:

NFSPROC_SETATTR Set file attributes.

There are additional undocumented subfunctions, none of which cause
network calls to be made.

Set/Get File Attributes

Function number 0x43

Subfunction number 0x00

Description Get File Attributes

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls:

NFSPROC_LOOKUP Lookup the path.

NFSPROC_READLINK If necessary read any symbolic links.

Subfunction number 0x01

Description Set File Attributes

Reason Emulate DOS file system function; performs the following NFS Remote
Procedure Calls (but not if this is a request to set the volume label):

NFSPROC_LOOKUP Lookup the path.

NFSPROC_READLINK If necessary read any symbolic links.

NFSPROC_SETATTR Set file attributes.

Terminate Program

Function number 0x00

Description Terminate Program

Reason Process termination conditions, including releasing of locks, flushing
buffers, etc. (See function 0x4c for more details).

X/Open Developers’ Specification (1990)
Page : 148 Protocols for X/Open PC Interworking: (PC)NFS

NFS Transmission Analysis DOS Functions

Unlock/Lock File

Function number 0x5c

Subfunction number 0x00

Description Lock File

Reason Emulate DOS file system function; performs the following Network
Lock Manager call:

NLM_NM_LOCK Request (non-monitored) byte range lock.

Subfunction number 0x01

Description Unlock File

Reason Emulate DOS file system function; performs the following Network
Lock Manager call:

NLM_UNLOCK Release byte range lock.

Write Via File Handle

Function number 0x40

Description Write Via File Handle

Reason Emulate DOS file system function; since read data may be cached, the
following NFS Remote Procedure Call may or may not be required:

NFSPROC_WRITE Write file data.

In addition, the following calls may be needed to update the file size:

NFSPROC_GETATTR Get file attributes.

NFSPROC_SETATTR Set file attributes.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 149

DOS Functions NFS Transmission Analysis

X/Open Developers’ Specification (1990)
Page : 150 Protocols for X/Open PC Interworking: (PC)NFS

Appendix C

Definitions

ACL

(Access Control List)

A list used to control access to a file or resource. The list contains the user IDs and/or
group IDs that are allowed access to the file or resource.

ARP

(Address Resolution Protocol)

The protocol used to bind a high level Internet Address to a low level physical hardware
address. It can only be used on networks that support hardware broadcast. The
protocol is only across a single physical network.

ARPA

(Advanced Research Project Agency)

Part of the U.S. Department of Defense. This agency funded the ARPANET and DARPA
Internet. Its present name is DARPA. It is located at 1400 Wilson Blvd, Arlington, VA,
U.S.A..

ARPANET

A network built by BBN (Bolt, Beranek, and Newman, Incorporated) and funded by
ARPA. It was one of the first large scale packet switched networks, and was used to link
academic institutes involved with ARPA work. It helped with the early network research
and formed a basis for Internet.

baud

The unit of signaling speed, i.e, one signal unit per second. It is the number of times per
second the signal can change on a transmission line.

big-endian

The name of a particular byte order (coined by Danny Cohen). When looking at
addresses in increasing order, the most significant byte comes first. The Internet
protocols use big-endian byte order.

bps

(bits per second)

Measurement of the rate of data transmission.

bridge

A device that interconnects two or more networks at the MAC-layer (see router,
gateway).

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 151

Definitions

broadcast

The function of delivering a given packet to all hosts that are attached to the broadcasting
delivery system. Broadcasting is implemented both at the hardware and the software
levels.

byte

8 bits.

CAE

(Common Applications Environment)

chaining

Transmission of more than one SMB request in a single transport PDU.

client-server

The distributed system model where a requesting program (the client) interacts with a
program that can satisfy the request (the server). The client initiates the interaction and
may wait for the server to respond.

connection oriented service

A service provided between two endpoints along which data is passed in a sequenced
and reliable way.

connection-less service

In a connection-less service each packet is a separate entity containing a source and
destination address; therefore packets may be dropped or delivered out of sequence. The
delivery service offered by the Internet Protocol (IP) is a connection-less service.

CRC

(Cyclic Redundancy Check)

An integer calculated from a sequence of octets used to check that errors have not
occurred during their transmission. The CRC is calculated and transmitted with the
octets. At the receiving end the CRC is re-calculated and compared with the value sent.
If the values are identical the data is assumed to be error free.

DARPA

(Defense Advanced Projects Research Agency)

Formerly ARPA.

data encapsulation

The way a lower level protocol accepts a message from a higher level protocol and places
it in the data portion of the low level frame.

X/Open Developers’ Specification (1990)
Page : 152 Protocols for X/Open PC Interworking: (PC)NFS

Definitions

daemon

A process that is not associated with any user. This sort of process performs system-
wide functions, e.g., administration, control of networks and execution dependent
activities.

datagram

A packet sent independently of the others in the network. It contains the source and
destination addresses as well as the data.

DIB

(Directory Information Base)

distributed database

A distributed database which is split up into several components, with each component
on a different computer. The end-user, however, is given the impression that only a
single local database is used.

DSA

(ISO Directory Service Agent)

DSN

(Domain Service Name)

Part of the OSI naming hierarchy.

DUA

(ISO Directory User Agent)

effective group id

An attribute of a process that is used in determining various permissions, including file
access permissions. This value is subject to change during the process lifetime.

effective user id

An attribute of a process that is used in determining various permissions, including file
access permissions. This value is subject to change during the process lifetime.

ES

(End System)

Ethernet

A local area network developed by Digital Equipment Corporation, Intel and Xerox
Corporation. The Ethernet is a passive coaxial cable with the interconnections containing
all the active components.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 153

Definitions

expedited data

Data that is considered urgent. The specified semantics of expedited data are defined by
the transport provider.

exec

The XSI system call that is used to start a process running.

FCB

(File Control Block)

The area of memory holding the file information and status. It is a term associated with
DOS.

FID

(File ID)

A unique number associated with a file to enable it to be identified.

fifo

(First In First Out)

One of the file types supported on an XSI system. A fifo, the alternative name for a pipe,
differs from a regular file because its data is transient, i.e., once data is read from the pipe
it cannot be read again.

fork

The XSI system call which is used to create a new process. The process created is a
duplicate of the calling process.

full-duplex

A transmission channel that can carry signals in both directions simultaneously.

gateway

A mechanism for interconnecting two or more networks which may use dissimilar
protocols. The interconnection usually occurs at or above the transport layer (see router,
bridge).

half-duplex

A transmission channel which can carry signals in both directions but not
simultaneously.

ICMP

(Internet Control and Monitoring Protocol)

Part of the Internet Protocol Suite. ICMP is used to provide network layer management
facilities, providing an error reporting facility and routing suggestions. ICMP also
includes an echo request/reply, used to test whether a destination is reachable and
responding.

X/Open Developers’ Specification (1990)
Page : 154 Protocols for X/Open PC Interworking: (PC)NFS

Definitions

IGP

(Interior Gateway Protocol)

Any protocol used to propagate network reachability and routing information within an
autonomous system.

internet

A large virtual network made up of a series of networks interconnected by routers.

Internet, The

The cooperative virtual network that uses the TCP/IP protocol and includes the
ARPANET, MILNET and NSFnet. It provides universal connectivity and reaches many
universities, government, military and commercial establishments.

interoperability

The ability of software and hardware on multiple machines and from multiple vendors
to communicate effectively.

ioctl

A system call which allows a process to specify control information to control a device.
This function exists in both XSI and DOS.

IP

(Internet Protocol)

The protocol from the Internet Protocol Suite that provides the basis for internet
communications.

IP

(Interworking Protocol)

The OSI protocol which supports the interconnection of separate OSI networks.

IPC

(Inter-Process Communication)

Methods by which two or more processes can communicate, e.g., formatted data streams
or shared memory.

IS

(Intermediate System)

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 155

Definitions

LAN

(Local Area Network)

A physical network that operates at a high speed over short distances, e.g., Ethernet.

LAP

(Link Access Procedure)

A subset of the high-level data link control for use as the link level in X.25 networks.

little-endian

The name of a particular byte order (coined by Danny Cohen). When looking at
addresses in increasing order, the least significant byte comes first.

LMX

(LAN Manager UNIX)

The implementation of the LAN Manager on UNIX systems.

LSAP

(Link Layer Service Access Point)

MAC

(Media Access Control)

Low level interface to the hardware protocol.

MBZ

(Must Be Zero)

Reserved fields are often defined MBZ.

MID

(Multiplex Identifier)

A number which uniquely identifies a protocol request and response within a process.

multicast

A method by which copies of a single packet are passed to a selected subset of all
destinations. Broadcast is a special case of multicast whereby the subset of destinations
receiving a copy of the packet is the entire set of destinations.

named pipe

An interprocess communication mechanism defined by the extended SMB specification.
Also a fifo.

X/Open Developers’ Specification (1990)
Page : 156 Protocols for X/Open PC Interworking: (PC)NFS

Definitions

NBDD

(NetBIOS Datagram Distribution Server)

Like NBNS this is part of the underlying NetBIOS mechanism and is invisible to the
applications. The NBDD extends the NetBIOS datagram distribution service to support
broadcasting or multicasting. NBDD is defined as a separate entity from NetBIOS name
server.

NBNS

(NetBIOS Name Server)

NDSE

(NetBIOS Directory Service Entity)

NDUA

(NetBIOS Directory User Agent)

NetBIOS

(Network Basic Input Output System)

The de facto standard programatic interface to networks for DOS systems.

NFS

(Network File System)

A protocol which allows a set of computers access to each others file systems. NFS was
developed by Sun Microsystems and is used primarily on UNIX systems.

NLM

(Network Lock Manager)

An RPC based service which provides advisory DOS file locking and access control
synchronisation across the network. This service is used in conjunction with NFS.

non-secured NBNS (NetBIOS Name Server)

This server is part of the underlying NetBIOS mechanism and is invisible to the
applications. The server manages the NetBIOS names. The server does not check for
name consistency, it leaves this to the end-nodes.

NSFnet

(National Science Foundation NETwork)

The collection of networks across the U.S. sponsored by NSF.

NSP

(NetBIOS Name Service Protocol)

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 157

Definitions

NSAP

(Network Service Access Point)

NSPDU

(NetBIOS Name Service Protocol Data Unit)

octet

8 bits

opportunistic lock

The server will notify the client, allowing it to flush its dirty buffers and unlock the file,
when another client attempts to open the file.

OSI

(Open Systems Interconnect)

ISO standards for the interconnection of cooperative (open) computer systems.

packet

A block of data sent across a packet switching network.

PCNFSD

(Personal Computer NFS Daemon)

The daemon that provides personal computer NFS clients with authentication and
printing services which are usually available in larger and more capable systems.

PDU

(Protocol Data Unit)

The basic unit of data manipulated by a protocol.

PID

(Process ID)

The number assigned to a process so that it can be uniquely identified.

psel

(presentation selector)

remote mount

The process by which one machine can mount a file system that exists on a remote
machine so it can be accessed as if it were a local file system.

X/Open Developers’ Specification (1990)
Page : 158 Protocols for X/Open PC Interworking: (PC)NFS

Definitions

responder

An entity with which an initiator wishes to establish a transport connection.

RFC

(Request For Comments)

The name of a series of notes that contain surveys, measurements, ideas, techniques and
observations, as well as proposed and accepted Internet protocol standards.

root (of filesystem)

The top directory in the directory hierarchical structure.

router

A mechanism for interconnection of two or more networks at the network layer (see
bridge, gateway).

RPC

(Remote Procedure Call)

secured NBNS (NetBIOS Name Server)

Part of the underlying NetBIOS mechanism not visible to the applications above. Unlike
the un-secured NBNS, the server monitors and participates in name activity to ensure
consistency.

SMB

(Server Message Block)

A protocol which allows a set of computers to access shared resources as if they were
local. The core protocol was developed by Microsoft and Intel, and the extended
protocol was developed by Microsoft.

SNPA

(Subnetwork Point of Attachment)

SNPDU

(Subnetwork Protocol Data Unit)

socket

A program-defined endpoint for network communication between processes. Sockets
are a particular paradigm used for interprocess communication.

ssel

(session selector)

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 159

Definitions

stateful server

A stateful server is a server that maintains information about the state of the transactions
it has processed; for example, whether or not a file is currently open.

stateless server

A stateless server is a server that does not maintain state information from one
transaction to another.

TBD

(To Be Defined)

Further detail will be provided at a later time.

TCP

(Transmission Control Protocol)

The Internet standard transport level connection-oriented protocol. It provides a full
duplex, reliable stream service which allows a process on one machine to send a stream
of data to a process on another. Part of the Internet Protocol Suite.

TELNET

The protocol for remote terminal connection service that allows a user from one site to
use a remote timesharing system on another site as if the terminal was connected directly
to the remote machine. Generally implemented over TCP.

TPDU

(Transport Protocol Data Unit)

The basic unit of data manipulated by the transport layer of a protocol stack.

TSDU

(Transport Service Data Unit)

tsel

(transport selector)

TTL

(Time To Live)

Used to stop the existence of endlessly looping packets. Each packet is assigned an
integer which is decremented each time it passes through a router. If the integer reaches
zero the router discards the packet.

X/Open Developers’ Specification (1990)
Page : 160 Protocols for X/Open PC Interworking: (PC)NFS

Definitions

UDP

(User Datagram Protocol)

The Internet connection-less protocol. Part of the Internet Protocol Suite.

UID

(User Identifier)

A token representing an authenticated <username, password> tuple. UIDs are registered
by the redirectors.

umask

The XSI process’ file mode creation mask used during file and directory creation. Bit
positions that are set in the umask are cleared in the mode of the newly created file or
directory. The umask is set using the umask() call.

VC

(Virtual Circuit)

The path between two communicating systems that provides a reliable, sequenced data
delivery service.

WORD

Consists of two bytes, ordered such that the low-order byte precedes the high byte. (e.g.,
like a VAX).

working directory

A directory, associated with a process, that is used in pathname resolution for pathnames
that do not begin with a slash.

XDR

(External Data Representation)

A machine independent data representation scheme developed by Sun Microsystems.

X.25

The CCITT standard protocol for network level network service.

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 161

Definitions

X/Open Developers’ Specification (1990)
Page : 162 Protocols for X/Open PC Interworking: (PC)NFS

Index

adjunct protocols: 87
authentication using PCNFSD: 98
basic data types: 56
External Data Representation: 53
file system: 55
file system model: 55
mount data types: 103

dirpath: 104
fhandle: 103
fhstatus: 103
name: 104

mount protocol: 102
basic data types: 103
RPC information: 103
XDR structure sizes: 103

mount server procedures: 104
MNTPROC_DUMP: 106
MNTPROC_EXPORT: 108
MNTPROC_MNT: 105
MNTPROC_NULL: 104
MNTPROC_UMNT: 107
MNTPROC_UMNTALL: 107

Network File System: 53
network lock manager protocol: 109
NFS: 53, 55

implementation: 62
permission issues: 62
server/client relationship: 62

NFS data types: 56
attrstat: 61
diropargs: 61
diropres: 61
fattr: 59
fhandle: 58
filename: 60
ftype: 58
path: 60
sattr: 60
stat: 56
timeval: 58

NFS protocol definition: 55
NFS server procedures: 64

NFSPROC_CREATE: 73
NFSPROC_GETATTR: 65

NFSPROC_LINK: 77
NFSPROC_LOOKUP: 68
NFSPROC_MKDIR: 80
NFSPROC_NULL: 65
NFSPROC_READDIR: 83
NFSPROC_READLINK: 69
NFSPROC_READ: 70
NFSPROC_REMOVE: 75
NFSPROC_RENAME: 76
NFSPROC_RMDIR: 81
NFSPROC_ROOT: 67
NFSPROC_SETATTR: 66
NFSPROC_STATFS: 84
NFSPROC_SYMLINK: 79
NFSPROC_WRITECACHE: 71
NFSPROC_WRITE: 72

NFS version-2 protocol specification: 53
NFS RPC information: 56
NLM data types: 110, 113

fsh_access: 113
fsh_mode: 113
netobj: 110
nlm_holder: 111
nlm_lock: 112
nlm_lockargs: 112
nlm_res: 111
nlm_share: 113
nlm_shareargs: 113
nlm_shareres: 114
nlm_stat: 111
nlm_stats: 111
nlm_unlockargs: 112

NLM protocol:
additional data types: 113
basic data types: 110
RPC information: 110

NLM server procedures: 114
NLM_FREE_ALL: 119
NLM_NM_LOCK: 118
NLM_NULL: 114
NLM_SHARE: 116
NLM_UNLOCK: 115
NLM_UNSHARE: 117

PCNFSD data types: 94

X/Open Developers’ Specification (1990)
Protocols for X/Open PC Interworking: (PC)NFS Page : 163

Index

arstat: 96
client: 95
ident: 94
options: 95
password: 95
pirstat: 96
printername: 95
psrstat: 97
spoolname: 95
username: 95

PCNFSD protocol: 93
basic data types: 94
RPC information: 94
XDR structure sizes: 94

PCNFSD server procedures: 97
PCNFSD_AUTH: 98
PCNFSD_NULL: 98
PCNFSD_PR_INIT: 99
PCNFSD_PR_START: 100

print spooling:
initialisation: 99
printing a file: 100

Remote Procedure Call: 53
stateless servers: 54
XDR: 0

array, fixed length: 28
array, variable length: 28
basic block size: 24
block size: 24
boolean: 26
constant: 30
data types: 25
discriminated union: 29
enumeration: 26
fixed-length array: 28
fixed-length opaque data: 26
integer: 25
integer, unsigned: 25
opaque data, fixed length: 26
opaque data, variable length: 26
protocol specification: 0
string: 27
structure: 29
typedef: 30
union discriminated: 29
unsigned integer: 25
variable-length array: 28
variable-length opaque data: 26
void: 30

RFC status: 0
XDR language: 33

notation: 33
syntax: 33, 35

XDR structure sizes: 56
XDR RFC: 0

X/Open Developers’ Specification (1990)
Page : 164 Protocols for X/Open PC Interworking: (PC)NFS

