
X/Open Developers’ Specification

Indexed Sequential Access Method (ISAM)

X/Open Company, Ltd.

 1990, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior permission of the copyright
owners.

X/Open Developers’ Specification

Indexed Sequential Access Method (ISAM) ISBN: 1 872630 03 0

Set in Palatino by X/Open Company Ltd., U.K.
Printed by Maple Press, Slough, U.K.
Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to
X/Open at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

X/Open Developers’ Specification (1990)
Page : ii Indexed Sequential Access Method (ISAM)

Contents

INDEXED SEQUENTIAL ACCESS METHOD (ISAM)

Chapter 1 INTRODUCTION

1.1 OVERVIEW

1.2 DOCUMENT HISTORY
1.2.1 Notes on XPG1 and XPG2
1.2.2 Notes on XPG3
1.2.3 Notes on This Developers’ Specification

Chapter 2 ISAM OVERVIEW

Chapter 3 DATA TYPES

3.1 CHARTYPE

3.2 INTTYPE AND LONGTYPE

3.3 FLOATTYPE AND DOUBLETYPE

Chapter 4 INDEXING

4.1 INDEX DEFINITION AND MANIPULATION

4.2 INDEX COMPRESSION

Chapter 5 LOCKING

5.1 EXCLUSIVE FILE LOCKING

5.2 MANUAL FILE LOCKING

5.3 RECORD LEVEL LOCKING
5.3.1 Automatic Record Locking
5.3.2 Manual Record Locking

5.4 COMBINING MANUAL FILE AND RECORD LOCKING

5.5 LOCKING MATRIX

Chapter 6 C AND COBOL EXAMPLES

6.1 ACCESSING THE SAME FILE USING COBOL
AND C

6.2 C PROGRAM EXAMPLES
6.2.1 Building a File
6.2.2 Adding Secondary Indexes
6.2.3 Adding Data

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : iii

Contents

6.2.4 Sequential Access
6.2.5 Random Access
6.2.6 Chaining

6.3 COBOL PROGRAM EXAMPLES
6.3.1 Adding Data
6.3.2 Sequential Access

Chapter 7 EXCEPTION HANDLING

7.1 ISAM CODES

7.2 ISSTAT1 AND ISSTAT2 CODES

7.3 ISSTAT3 AND ISSTAT4 CODES

Chapter 8 THE <ISAM.H> HEADER

Chapter 9 GENERAL INFORMATION

9.1 RETURN VALUE/EXCEPTION REPORTING

9.2 KEY STRUCTURE

9.3 RECORD NUMBER OF LAST CALL

9.4 CURRENT RECORD POSITION

9.5 PHYSICAL ORDER

9.6 ACCESS MODE

9.7 FILES

9.8 RECORDS

Chapter 10 ISAM FUNCTION DEFINITIONS

X/Open Developers’ Specification (1990)
Page : iv Indexed Sequential Access Method (ISAM)

Contents

INDEXED SEQUENTIAL ACCESS METHOD (ISAM)
isaddindex()
isbuild()
isclose()
isdelcurr()
isdelete()
isdelindex()
isdelrec()
iserase()
isindexinfo()
islock()
isopen()
isread()
isrelease()
isrename()
isrewcurr()
isrewrec()
isrewrite()
isstart()
isunlock()
iswrcurr()
iswrite()

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : v

Contents

X/Open Developers’ Specification (1990)
Page : vi Indexed Sequential Access Method (ISAM)

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of
the world’s largest information systems suppliers, user organisations and software
companies. Its mission is to bring greater value to users through the practical
implementation of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards
into a comprehensive, integrated, high-value and usable system environment, called the
Common Applications Environment (CAE). This environment covers all the standards,
above the hardware level, that are needed to support open systems. It ensures portability
and connectivity of applications, and allows users to move between systems without
retraining.

The interfaces identified as components of the Common Applications Environment are
defined in the X/Open Portability Guide. This guide contains an evolving portfolio of
practical applications programming interface standards (APIs), which significantly
enhance portability of application programs at the source code level. The interfaces
defined in the X/Open Portability Guide are supported by an extensive set of
conformance tests and a distinct trademark - the X/Open brand - that is carried only on
products that comply with the X/Open definitions.

X/Open is thus primarily concerned with standards selection and adoption. The policy is
to use formal approved de jure standards, where they exist, and to adopt widely
supported de facto standards in other cases.

Where formal standards do not exist, it is X/Open policy to work closely with standards
development organizations to encourage the creation of formal standards covering the
needed functionalities, and to make its own work freely available to such organizations.
Additionally, X/Open has a commitment to align its definitions with formal approved
standards.

The X/Open Product Family - XPG

There is a single family of X/Open products, which has the generic name ‘‘XPG’’.

XPG Versions

There are different numbered versions of XPG within the XPG family (XPG1, XPG2, XPG3).
Each XPG version is an integrated set of elements supporting the development,
procurement and implementation of open systems products, and each comprises its
own:

• XPG Specifications

• XPG Verification Suite

• XPG descriptive guides

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : vii

Preface

• XPG trademark licensing materials

The XPG trademark (or ‘‘brand’’) licensed by X/Open always contains a particular XPG
version number (e.g., ‘‘XPG3’’) and, when associated with a vendor’s system,
communicates clearly and unambiguously to a procurer that the software bearing the
trademark correctly implements the corresponding XPG specifications. Users specifying
particular XPG versions in their procurements are therefore certain as to the XPG
specifications to which vendors’ systems conform.

XPG Specifications

There are four types of XPG specification:

• XPGn Formal Specifications

These are the long-life XPG specifications that form the basis for conformant/branded
X/Open systems, and are the only type of XPG specification released with an XPG
version number (e.g., ‘‘XPG3’’). They are intended to be used widely within the
industry for product development and procurement purposes. Currently, all XPG
Formal Specifications are included in Issue 3 of the X/Open Portability Guide.

Individual XPG specifications are released as Formal Specifications only as part of the
formal release of the complete XPG version to which they belong. However, prior to
the launch of that XPG version, they may be made available as:

• XPG Developers’ Specifications

These are specifically designed to allow developers to create X/Open-compliant
products and applications in advance of the formal launch of a future version of the
XPG.

Developers’ Specifications may be relied on by product developers as the final, base
specification that will appear in a future XPG. They are made available beforehand in
order to meet the need of product developers for advance notification of the contents
of XPG Formal Specifications, to assist in their product planning and development
activities.

By providing such advance notification, X/Open makes it possible for products
conforming to future XPG Formal Specifications to be developed as soon as
practicable, enhancing the value of XPG itself as a procurement aid to users.

• XPG Preliminary Specifications

These are XPG specifications, usually addressing an emerging area of technology, and
consequently not yet supported by a base of conformant product implementations,
that are released in a controlled manner for validation purposes. A Preliminary
Specification is not a ‘‘draft’’ specification. Indeed, it is as stable as X/Open can make
it, and on publication will have gone through the same rigorous X/Open
development and review procedures as XPG Formal and Developers’ Specifications.

Preliminary Specifications are analogous with the ‘‘trial-use’’ standards issued by
formal standards organizations, and product development teams are intended to
develop product on the basis of them. Because of the nature of the technology they
are addressing, they are untried in practice, and they may therefore change before
being published as an XPG Formal or Developers’ Specification.

X/Open Developers’ Specification (1990)
Page : viii Indexed Sequential Access Method (ISAM)

Preface

• Snapshot Specifications

These are ‘‘draft’’ documents, that provide a mechanism for X/Open to disseminate
information on its current direction and thinking to a limited audience, in advance of
formal publication, with a view to soliciting feedback and comment.

This Document

This document is an XPG Developers’ Specification (see above for the implications of
this).

Data management is a key element in the integration of applications. Applications,
written in a variety of languages, must be able to work on the same basic data in the same
form, and data must be passed easily and efficiently between applications.

As a first step towards addressing these issues, X/Open defines an interface for the
creation, management and manipulation of indexed files, generally known as the
Indexed Sequential Access Method (ISAM). The availability of this interface on X/Open
compliant systems not only provides application portability, but eases and encourages
integration.

The ISAM definition published in XPG3 was not fully compatible with the IS 1989:1985
(identical to ANS X3.23-1985) COBOL standard.

This Developers’ Specification contains the necessary extensions. The variable length
extension is marked as optional, i.e. it is not required in a C programming environment,
but it is needed in a mixed C and COBOL environment.

It is intended to make the extension mandatory in the next issue of this specification.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : ix

Preface

X/Open Developers’ Specification (1990)
Page : x Indexed Sequential Access Method (ISAM)

Trademarks

X/OpenTM is a trademark of the X/Open Company Limited.

UNIXTM is a registered trademark of AT&T in the USA and other countries.

C-ISAMTM is a trademark of Informix Software Inc..

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : xi

Acknowledgements

X/Open gratefully acknowledges:

• Informix Software Inc. of Menlo Park, California for permission to use material from
the specification of their C - ISAM product and for provision of that material in machine
readable form.

X/Open Developers’ Specification (1990)
Page : xii Indexed Sequential Access Method (ISAM)

Referenced Documents

The following documents are referenced in this guide:

• Informix Software Inc. C-ISAM Reference Manual
(Version 2.10 - January 1985);

• Standard for COBOL (IS 1989:1974, identical to ANS X3.23-1974);

• Standard for COBOL (IS 1989:1985, identical to ANS X3.23-1985).

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : xiii

Chapter 1

Introduction

1.1 OVERVIEW

The input /output facilities supported by the operating system consist only of byte-
stream read and write operations on files. No facilities are provided for operating on
files as sets of records. This leads to application writers having to make their own
arrangements for record handling, resulting in both a multiplication of effort and a
proliferation of non-standard methods.

Data management is a key element in the integration of applications. Applications,
written in a variety of languages, must be able to work on the same basic data in the same
form, and data must be passed easily and efficiently between applications.

As a first step towards addressing these issues, X/Open defines an interface for the
creation, management and manipulation of indexed files, generally known as the
Indexed Sequential Access Method (ISAM). The availability of this interface on X/Open
compliant systems will not only provide application portability, but will ease and
encourage integration.

The X/Open ISAM Definition is structured as follows:

Chapter 2 gives an overview of ISAM.

Chapter 3 describes data types supported by the X/Open ISAM definition.

Chapter 4 describes the definition and manipulation of indexes and techniques for
key compression.

Chapter 5 describes file and record locking techniques to ensure reliable updating
in multi-user environments.

Chapter 6 contains a comprehensive set of C and COBOL program examples
designed to illustrate all the facilities of the ISAM interface.

Chapter 7 describes the handling of exception conditions.

Chapter 8 describes the <isam.h> header containing definitions of various macros
and symbolic constants.

Chapter 9 contains general notes on the interfaces in the X/Open ISAM definition,
detailed in Chapter 10.

Chapter 10 contains detailed specifications of the interfaces in the X/Open ISAM
definition.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 1

Document History Introduction

1.2 DOCUMENT HISTORY

1.2.1 Notes on XPG1 and XPG2

The X/Open ISAM definition is a major subset of the specification of the C-ISAM product,
version 2.10, published by Informix Software Inc. of Menlo Park, California.

The X/Open definition omits parts of the C-ISAM specification which are
implementation-specific. An example is the audit trail facility which is defined in the C-
ISAM document without any interfaces for recovery. Internal file formats are given and
the user has to make direct use of these to effect recovery. As alternative
implementations may exist, these internal file formats are not part of the X/Open
standard, and neither, therefore, are the audit trail definitions. (Any use of these facilities
on a system that includes them will imply that such applications are not totally portable
across X/Open compliant systems.)

Version 2.10 of the C-ISAM product introduced new functions, and a set of decimal data
types. The new functions were included in XPG1 in the ‘‘optional’’ category, but this
limitation was removed in XPG2. The decimal types were excluded.

1.2.2 Notes on XPG3

The ISAM definition published in XPG2 did not include detailed descriptions of certain
functions with respect to locking and error handling. In some cases the status of the
current record pointer is not precisely defined.

The XPG3 specification contained more detailed descriptions of certain areas, like current
record position, locking, access mode compatibility and physical order.

There is great interest among customers and vendors in making it possible to access the
same ISAM file from both C and COBOL indexed I-O. To achieve this goal some changes
in the behaviour of ISAM were made in XPG3. These changes are described in detail
below.

The XPG3 ISAM definition is compatible with the IS 1989:1974 (identical to ANS X3.23-
1974) COBOL standard. It also conforms to the IS 1989:1985 (identical to ANS X3.23-1985)
standard with the exception that variable length records are not supported. Also, the
values of the I-O status information variables, isstat1 and isstat2, conform to IS 1989:1974
(identical to ANS X3.23-1974), but compliance to IS 1989:1985 (identical to ANS X3.23-
1985) can be achieved by a COBOL run-time system that sets the appropriate value of the
I-O status.

Changes

isopen()

In previous issues of the Guide this function call positioned the current record
pointer to the first record in the order of the primary index. In XPG3, the isopen()
definition was changed to meet the IS 1989:1985 (identical to ANS X3.23-1985)
requirement that the current record pointer be positioned just before any possible
first record in the order of the primary key. More detailed information on this topic
can be found under Section 9.4, Current Record Position.

X/Open Developers’ Specification (1990)
Page : 2 Indexed Sequential Access Method (ISAM)

Introduction Document History

isrelease(), isunlock()

The previous issues stated that isrelease () unlocks records that have been previously
locked with manual record locking while isunlock() unlocks a file that has been
previously locked with manual file locking. Because the two levels of locking could
be used together and because C-ISAM and other existing ISAM implementations
work in a different way to the above, in XPG3 the behaviour has been changed so that
both functions can be used as synonyms to unlock files and records. Further
information on this topic can be found in Chapter 5, Locking.

isrewcurr()

The previous issues stated that isrewcurr() rewrites the current record, whose
position is left unchanged. In XPG3, the description was stated more precisely, so
that the current record position always points to the rewritten record. In other
words, if the key value of the current record is changed for the selected index, the
current record position is changed to point to the record with the new key value.
This behaviour is consistent with the current C-ISAM implementation. In order to
meet the IS 1989:1985 (identical to ANS X3.23-1985) requirement that the file position
indicator should not be affected by a COBOL REWRITE statement, the isrewrec() or
isrewrite() function calls must be used instead.

Additions

CHARTYPE

Data of type CHARTYPE are stored as non-terminated character strings padded with
trailing blanks. The following two conversion routines for characters were added in
XPG3:

ldchar() returns a null-terminated character array without trailing spaces from
CHARTYPE.

stchar() stores a null-terminated character array into CHARTYPE by removing
the null character and padding the string with trailing blanks.

isread()

In default mode isread() does not change the current record pointer if the record to
be read is locked by another process. An additional flag, ISSKIPLOCK, was been
introduced, as an option of the mode parameter, to enable skipping a locked record.

isstart()

In automatic record locking mode, isstart() by default unlocks the locked record as
any other function call does. An additional flag, ISKEEPLOCK, was been introduced,
as an option of the mode parameter, to enable the record lock to be kept. This is
necessary to be consistent with current COBOL run-time systems that do not unlock
the record after a START statement.

1.2.3 Notes on This Developers’ Specification

The ISAM definition published in XPG3 was not fully compatible with the IS 1989:1985
(identical to ANS X3.23-1985) COBOL standard.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 3

Document History Introduction

This issue contains the necessary extensions. The variable length extension is marked as
optional, i.e. it is not required in a C programming environment, but it is needed in a
mixed C and COBOL environment.

It is intended to make the extension mandatory in the next issue of this Guide.

Additions

Two I-O status information variables, isstat3 and isstat4, have been added whose values
conform to the IS 1989:1985 (identical to ANS X3.23-1985) COBOL standard.

The definition has been extended with the facility to support files having records of
variable length. This extension is described in Section 9.8, Records.

X/Open Developers’ Specification (1990)
Page : 4 Indexed Sequential Access Method (ISAM)

Chapter 2

ISAM Overview

The X/Open ISAM definition specifies a set of C language functions that create and
manipulate indexed files.

These functions provide for:

• the creation of files and associated primary indexes;

• the addition and deletion of further indexes;

• the opening, closing and deletion of existing files;

• the selection of the index to be used for subsequent reading and/or writing of records,
and the start point within the file;

• the reading, writing and updating of data records, and

• the locking and unlocking of files and records.

When a file is created, two conceptual entities are formed, the container for holding data
records and a primary index. The programmer can specify the field, or fields, of each
record that is to be used as the primary key for distinguishing the records within the file.
As each record is written to the file, an entry is made in the index which stores key
value(s) together with the location of the data record in the file. For subsequent reads on
the file, individual records are located by searching the index for the required key and
using the location stored with it to go straight to the data. Access to a file can be
sequential or random.

Indexes additional to the primary index can be created. These provide alternative access
paths to the same data records by allowing different fields to be used as the keys. The
definition puts no limit on the number of alternative indexes that can be created for a file.
In an additional index, the same key value is allowed to occur in different records,
‘‘duplicates’’, although a facility is provided to inhibit this on any particular file.
Duplicates are allowed for the primary key in ISAM. However, this feature should not be
used if the file is ever to be accessed by a COBOL program.

The definition includes the facility to specify index key compression. This allows the
density of key storage in an index to be increased by the use of such techniques as
suppression of redundant spaces at the beginning and end of keys and by the elimination
of duplicate entries. Only no compression and maximum compression are fully defined.
However, it is recognised that intermediate levels may be provided on any particular
member system, and mode values are defined to allow for this. All X/Open compliant
systems will accept these values to ensure application portability, although the degree of
resulting compression may vary.

Facilities are defined for the locking of files and records, to ensure reliable update and
access in the multi-user environment. File locking locks out a whole file. It may be
exclusive, in that all other accesses to the file are inhibited, or it may be write-only,
allowing read accesses to continue. Record level locking may be automatic. In this case
it is specified at file open time and a record is automatically locked before it is read, and
remains locked until the next function call (except for isstart() with option ISKEEPLOCK),

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 5

ISAM Overview

is executed successfully. It is implementor-defined whether or not an unsuccessful
execution releases the lock. Alternatively, it may be manual in that it is actioned as a
result of a parameter of a read call.

The definition includes the optional facility to support files having records of variable
length. When a file is built it is declared to contain either fixed length or variable length
records. Fixed length records must contain the same number of bytes for all the records
in the file. Variable length records may contain differing numbers of bytes among the
records on the file.

The following functions are included in the X/Open ISAM definition:

Function Name Purpose

isaddindex() add index to an ISAM file
isbuild() create an ISAM file
isclose() close an ISAM file
isdelcurr() delete current record
isdelete() delete record specified by primary key
isdelindex() remove index from an ISAM file
isdelrec() delete record specified by record number
iserase() remove an ISAM file
isindexinfo() access file information
islock() lock an ISAM file
isopen() open an ISAM file
isread() read records
isrelease() unlock records
isrename() rename an ISAM file
isrewcurr() rewrite current record
isrewrec() rewrite record specified by record number
isrewrite() rewrite record specified by primary key
isstart() select an index
isunlock() unlock an ISAM file
iswrcurr() write record and set current position
iswrite() write record

The following C-ISAM facilities are not included within the X/Open ISAM definition and
their use will impede portability:

Function Name Purpose

isaudit() perform operations on audit trail
isflush() flushe buffered index pages
issetunique() set unique identifier
isuniqueid() return unique identifier

Also excluded are the decimal data types and associated manipulation routines.

X/Open Developers’ Specification (1990)
Page : 6 Indexed Sequential Access Method (ISAM)

Chapter 3

Data Types

The types of data that can be defined and manipulated are described in this chapter.
Descriptions of how each data type is stored in files and how each data type must be
treated are also included.

The data types for which properly ordered indexes are maintained are type character, 2-
byte integers, 4-byte integers, machine float (floating point) and machine double (double
precision floating point). The macro definitions used to describe these types are shown
below. These definitions can also be found in <isam.h>.

CHARTYPE character
INTTYPE 2-byte integer
LONGTYPE 4-byte integer
FLOATTYPE machine float
DOUBLETYPE machine double

3.1 CHARTYPE

The data type CHARTYPE comprises a string of characters, for example, a city name or an
address.

Two routines are supplied for the conversion to and from ISAM character storage format.
These routines are:

ldchar(p, l, s) transfers data of CHARTYPE to the C array of char s; p is a char pointer
to the starting byte of format CHARTYPE. The transfer stops after l
characters, trailing spaces are removed and the string is null-
terminated.

stchar(s, p, l) stores a C array of char s at location p, where p is a char pointer to the
starting byte of format CHARTYPE. The data starting at location p is
padded with trailing spaces up to but not including position p + l.

3.2 INTTYPE AND LONGTYPE

The data types INTTYPE and LONGTYPE consist of 2 and 4-byte binary signed integer
data. Integer data is always stored in files as high/low, most significant byte first, least
significant byte last. This storage technique is independent of the form in which integers
are stored in the machine on which the system is executing. Therefore, depending on the
operating environment, the format of storage for integers in the files may differ from the
format of storage for integers stored in executing programs. For this reason, four
routines are supplied for the conversion to and from ISAM integer storage format.

The four format conversion routines for integers are:

ldint(p) returns a machine-format short integer; p is a char pointer to the starting
byte of format INTTYPE.

stint(i, p) stores a machine-format short integer i as format INTTYPE at location p,
where p is a char pointer to the first byte of format INTTYPE.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 7

INTTYPE and LONGTYPE Data Types

ldlong(p) returns a machine-format long integer; p is a char pointer to the first byte of
format LONGTYPE.

stlong(l, p) stores a machine-format long integer l as format LONGTYPE at location p,
where p is a char pointer to the first byte of format LONGTYPE.

These routines are either macros defined in <isam.h> or are in the ISAM library.

The typical use for the above routines occurs after a data record has been read into the
user buffer. Integer values that are to be used by the user program first have to be
converted to machine-usable format by using ldint() for type INTTYPE and ldlong() for
LONGTYPE.

Similarly, storage of machine-format integer data requires the use of the stint() and
stlong() routines.

Note that the formatted integers need not be aligned along word boundaries as do
machine-formatted integers.

3.3 FLOATTYPE AND DOUBLETYPE

The data types FLOATTYPE and DOUBLETYPE are the two floating point data types. The
data type FLOATTYPE is the same as the C data type float, while the data type
DOUBLETYPE is the same as the C data type double. Both data types differ in length and
format from machine to machine. There is no difference between the floating point
format used and its counterpart in the C language except that floating point numbers
may be placed on non-word boundaries. For this reason, four more routines allow the
user to retrieve or replace these non-aligned floating point numbers from their positions
in data records. These routines are:

ldfloat(p) returns a machine-format float; p is a char pointer to the starting (leftmost)
byte of format FLOATTYPE.

stfloat(f, p) stores a machine-format float f at location p, where p is a char pointer to the
starting (leftmost) byte of format FLOATTYPE.

lddbl(p) returns a machine-format double; p is a char pointer to the starting
(leftmost) byte of format DOUBLETYPE.

stdbl(d, p) stores a machine-format double d as format DOUBLETYPE at location p,
where p is a char pointer to the starting (leftmost) byte of format
DOUBLETYPE.

The use of the floating point load and store routines is analogous to the use of the integer
load and store routines.

X/Open Developers’ Specification (1990)
Page : 8 Indexed Sequential Access Method (ISAM)

Chapter 4

Indexing

4.1 INDEX DEFINITION AND MANIPULATION

The C language structures that describe an index to any given function call are the
keydesc and keypart structures. These structures are shown below. They are defined in
the header <isam.h>, which must be included in any program which uses the function
calls.

The structure keydesc contains the following members:

short k_flags; /∗ flags ∗/
short k_nparts; /∗ number of parts in key ∗/
struct keypart k_part[NPARTS]; /∗ each key part ∗/

The structure keypart contains the following members:

short kp_start; /∗ starting byte of key part ∗/
short kp_leng; /∗ length in bytes of key part ∗/
short kp_type; /∗ type of key part ∗/

It is the purpose of this chapter to show how to initialise the keydesc structure for use
with any of the functions that require it as a parameter.

The first sample index to be described here has one part which has the data type of
INTTYPE. Integers are 2 bytes; therefore, the length of the index is 2 bytes. The index
begins in the first byte of the record. No data compression is desired for keys stored in
this index. The order of the index is to be ascending (lowest key value to highest key
value). Finally, duplicate key values for this index are not to be allowed.

The C program to add the index described above is shown below. It is assumed that the
file myfile has already been created using the isbuild() function call.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 9

Index Definition and Manipulation Indexing

#include <isam.h>

struct keydesc first_key;
int fd;

main()
{

/∗ In order to add an index to the file
"myfile", the file must be opened with
exclusive access. Therefore, ISEXCLLOCK
must be arithmetically added to the mode
parameter. ∗/

if ((fd = isopen("myfile", ISINOUT+ISEXCLLOCK)) < 0)
{

printf("Open error %d on myfile.\n", iserrno);
exit(1);

}
mkfirst_key();
if (isclose(fd))
{

printf("Close error %d on myfile.\n", iserrno);
exit(1);

}
}

mkfirst_key()
{

first_key.k_flags = ISNODUPS; /∗ no dups, no compression ∗/
first_key.k_nparts = 1; /∗ this index has one part ∗/

/∗The starting byte of an index is always defined
as the byte offset from the beginning of the
record. Since this index begins at the begin-
ning of the record, its byte offset is zero. ∗/

first_key.k_part[0].kp_start = 0; /∗ offset is zero ∗/
first_key.k_part[0].kp_type = INTTYPE; /∗ data type is integer ∗/
first_key.k_part[0].kp_leng = INTSIZE; /∗ 2 byte integer ∗/

if(isaddindex(fd, &first_key)) /∗ add the index ∗/
{

printf("Error %s iserrno = %d.\n",
"in adding first_key index: ", iserrno);

}
}

X/Open Developers’ Specification (1990)
Page : 10 Indexed Sequential Access Method (ISAM)

Indexing Index Definition and Manipulation

Note that, in the above example, the structure element k_flags is initialised to zero. This
indicates that no special characteristics are to be attributed to this index. Since k_flags is
zero, duplicate key values will not be allowed, and no compression will be performed on
key values as they are placed in the index.

If duplicate key values were to have been allowed, k_flags should have been initialised to
ISDUPS as in the following statement:

/∗ allow duplicate key values ∗/
first_key.k_flags = ISDUPS;

If key value compression had been desired, k_flags should have been initialised to
ISDUPS+COMPRESS. This would allow duplicate key values and would indicate that
they be compressed in the index.

first_key.k_flags = ISDUPS+COMPRESS;

Note, also, that the index defined by the keydesc structure first_key has only one part.
The number of key parts that make up the index is defined by the structure element
k_nparts, which in the above example is initialised to one.

/∗ this index has one part ∗/
first_key.k_nparts = 1;

In the previous example, the index defined had only one part. That part had a data type
of INTTYPE. However, a particular application could require that a multi-part index be
used. Within the keydesc structure there exists an array of keypart structures. Each
keypart structure defines one part of the index. It holds the starting byte offset from the
beginning of the record, the part’s length, and the part’s data type. In order for a multi-
part index to be described, the user’s program must initialise each of these structures to
reflect the desired position, length and data type for each index part.

In the following example program, a 3-part index is defined. The index consists of a
CHARTYPE field, a LONGTYPE field and another CHARTYPE field. It is important to note
that the parts of an index need not be contiguous within a record, nor do the parts of an
index have to exist in any particular order within the record. However, the maximum
number of key parts that can be defined for an index is {NPARTS}, and the total number of
bytes within an index cannot exceed {MAXKEYSIZE}. The number of keys that can be
added to a file is guaranteed to be not less than 15.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 11

Index Definition and Manipulation Indexing

#include <isam.h>

struct keydesc second_key;
int fd;

main()
{

if ((fd = isopen("myfile", ISINOUT+ISEXCLLOCK)) < 0)
{

printf("Open error %d on myfile.\n", iserrno);
exit(1);

}
mksecond_key();
if (isclose(fd))
{

printf("Close error %d on myfile.\n", iserrno);
exit(1);

}
}

mksecond_key()
{

/∗ allow dups, full compression ∗/
second_key.k_flags = ISDUPS+COMPRESS;

/∗ this index has 3 parts ∗/
second_key.k_nparts = 3;

/∗ define the first index part ∗/
second_key.k_part[0].kp_start = 15;
second_key.k_part[0].kp_leng = 8;
second_key.k_part[0].kp_type = CHARTYPE;

/∗ define the second index part ∗/
second_key.k_part[1].kp_start = 30;
second_key.k_part[1].kp_leng = LONGSIZE;
second_key.k_part[1].kp_type = LONGTYPE;

/∗ define the third index part ∗/
second_key.k_part[2].kp_start = 3;
second_key.k_part[2].kp_leng = 6;
second_key.k_part[2].kp_type = CHARTYPE+ISDESC;

if (isaddindex(fd, &second_key))
{

printf("Error %s iserrno = %d.\n",
"in adding second_key index: ", iserrno);

}
}

X/Open Developers’ Specification (1990)
Page : 12 Indexed Sequential Access Method (ISAM)

Indexing Index Compression

4.2 INDEX COMPRESSION

This section discusses key value compression. This allows the density of key storage in
an index to be increased by the use of such techniques as suppression of redundant
spaces at the beginning and end of keys and the elimination of duplicate entries.

Using these techniques, significant savings can be made in disc space, and substantial
improvements obtained in response to random access requests.

Different levels of compression may be available on different machines. To allow for this,
the X/Open definition is non-specific, but ensures that applications will run across
X/Open compliant systems without change.

Two levels of space compression are defined: no compression and maximum compression.
The latter calls for the maximum level of space compression available on the machine on
which the application is running. The levels apply to each index individually.

In addition, an application can specify whether duplicates are to be allowed for each
index.

Duplicates are allowed by setting the value ISDUPS into the k_flags field of the keydesc
structure for a given index, and are inhibited by the value ISNODUPS. (As no default
value is defined, either ISDUPS or ISNODUPS must be specified.) Space compression is
specified by adding the value COMPRESS to ISDUPS or ISNODUPS. All other values in the
k_flags field are implementation-defined, but an X/Open compliant system will accept
such values as advisory (i.e., applications will not fail, but the level of compression
obtained may vary from machine to machine).

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 13

Index Compression Indexing

X/Open Developers’ Specification (1990)
Page : 14 Indexed Sequential Access Method (ISAM)

Chapter 5

Locking

Two levels of locking are defined: file level locking and record level locking. Within
these two levels the user can choose from among several methods the one which best
suits application requirements.

5.1 EXCLUSIVE FILE LOCKING

File locking may be accomplished in two ways. One method prevents other processes
from reading from or writing to a given file. This method is referred to as an exclusive
lock and remains in effect from the moment the file is opened, using isopen() or isbuild(),
until the file is closed using isclose (). Exclusive file locking is specified by adding
ISEXCLLOCK to the mode parameter of the isopen() or isbuild() function call. If a file is
opened in exclusive mode, any function calls for manual file or record locking (for this
file) are treated as no operation.

Exclusive file level locking is not necessary for most situations, but it must be used when
an index is being added using isaddindex() or when an index is being deleted using
isdelindex().

The skeleton program shown below illustrates how exclusive file level locking is done:

myfd = isopen("myfile", ISEXCLLOCK+ISINOUT);
.
.
.

isclose(myfd);

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 15

Manual File Locking Locking

5.2 MANUAL FILE LOCKING

Manual file level locking prevents other processes from writing to a given file but allows
them to read the locked file. This kind of file level locking is specified by use of the
islock () and isunlock() function calls. When a file is to be locked in this manner,
ISMANULOCK must be added to the mode parameter of the isopen() or isbuild() call. Later
in the program, when locking is desired, islock () should be called to lock the file. When
the file is to be unlocked, isunlock() should be called. If no previous lock occurred,
isunlock() is treated as no operation, and thus returns no error.

Example for manual file locking:

myfd = isopen("myfile", ISMANULOCK+ISINOUT);
.
. /∗ "myfile" is unlocked here ∗/
.

islock(myfd);
.
. /∗ "myfile" is locked here ∗/
.

isunlock(myfd);
.
. /∗ "myfile" is unlocked here ∗/
.

isclose(myfd);

X/Open Developers’ Specification (1990)
Page : 16 Indexed Sequential Access Method (ISAM)

Locking Record Level Locking

5.3 RECORD LEVEL LOCKING

There are two basic types of record level locking: automatic and manual.

Automatic record locking locks a record just before it is read using the isread() call. It
unlocks the record after the next call has completed. Automatic record locking is used
when the user wants to lock one record at a time and is unconcerned about when or for
how long that record will be locked.

Manual record locking, on the other hand, can lock any number of records. Manual
locking locks a record when that record is read using isread(). It unlocks that record, and
any other records that are currently locked, when isrelease () is called. Manual record
locking is used when more control is required over when a record, or set of records, is to
be locked and unlocked.

Both automatic and manual locking techniques allow other processes to read records
locked by the current process as long as the other processes are not trying to lock those
records (either manually or automatically). However, processes cannot lock, re-write or
delete records locked by another process.

5.3.1 Automatic Record Locking

Automatic record locking must be specified when the file is opened. This is done by
adding ISAUTOLOCK to the mode parameter of the isopen() or isbuild() function call.
From when the file is opened until it is closed, every record will be locked automatically
before it is read. Each record remains locked until the next function call (except isstart()
with option ISKEEPLOCK) is completed without errors for the current file. It is
implementor-defined whether an unsuccessful execution releases the lock. Therefore,
while using the automatic record locking mechanism, only one record per file may be
locked at a given time. If the option ISKEEPLOCK is used with isstart() the record will not
be unlocked, i.e., it remains locked. Without this option isstart() will unlock the record as
any other ISAM function call does (including isindexinfo() and isrelease ()). The function
calls islock () and isunlock() should not be used in automatic record locking mode.

The following illustration shows how automatic record locking is used:

myfd = isopen("myfile", ISINOUT+ISAUTOLOCK);
.
.
.

isread(myfd, myrecord, ISNEXT);
. /∗ record locked here ∗/
. /∗ before record is read ∗/
.

isrewcurr(myfd, myrecord);
. /∗ record unlocked here ∗/
. /∗ after completion ∗/
.

isclose(myfd);

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 17

Record Level Locking Locking

5.3.2 Manual Record Locking

The user’s intention to use manual record locking must be specified before any
processing takes place. This is done by adding ISMANULOCK to the mode parameter of
isopen() or isbuild() function calls when the file is opened. After the file is open, if the
user wishes a record to be locked, ISLOCK must be added to the mode parameter of the
isread() function call that is reading that record. Each and every record that is read in this
manner remains locked until they are all unlocked by a call of the isrelease () function.
The number of records that may be locked in this manner at any one time is system
dependent. Manual record locking has no effect (is treated as no operation) if
ISMANULOCK has not been specified at the isopen() or isbuild() call for that file
descriptor. Calling isread() with the ISLOCK option has no locking effect if the file is
exclusively locked. If no previous lock occurred isrelease () is treated as no operation, and
thus returns no error.

The following illustration shows how a number of records in a particular file are locked
and unlocked using manual record locking:

myfd = isopen("myfile", ISINOUT+ISMANULOCK);
.
.
.

isread(myfd, first_record, ISEQUAL+ISLOCK);
.
.
.

isread(myfd, second_record, ISEQUAL+ISLOCK);
.
.
.

isread(myfd, third_record, ISEQUAL+ISLOCK);
.
.
.

isrelease(myfd);
/∗ unlock all three records ∗/

.

.
isclose(myfd);

X/Open Developers’ Specification (1990)
Page : 18 Indexed Sequential Access Method (ISAM)

Locking Combining Manual File and Record Locking

5.4 COMBINING MANUAL FILE AND RECORD LOCKING

Manual file and record locking may be used together. In this case, the isunlock() and the
isrelease () function calls both have the same behaviour: they unlock both the file and all
records for that file.

5.5 LOCKING MATRIX

The following table shows the effect of several function calls in combination with the
three different locking modes:

Function call EXCLUSIVE MANUAL AUTOMATIC

islock() no operation locks file implementor defined
isunlock() no operation unlocks file & records implementor defined
isrelease() no operation unlocks file & records unlocks record

unlocks previous,
locks current record

isread() no lock effect no lock effect

unlocks previous,
locks current record

isread (ISLOCK) no lock effect locks record

unlocks previous recordisstart() no lock effect no lock effect

isstart (ISKEEPLOCK) no lock effect no lock effect no lock effect
unlocks previous recordall others no lock effect no lock effect

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 19

Locking Matrix Locking

X/Open Developers’ Specification (1990)
Page : 20 Indexed Sequential Access Method (ISAM)

Chapter 6

C and COBOL Examples

This chapter discusses the creation and manipulation of ISAM files through C and COBOL
language examples. These examples are based on a very simple personnel system. The
goal of the personnel system is to keep up to date information on employees. This
information includes the names, addresses, job titles and salary histories for all
employees.

The personnel system consists of two files, the employee file and the performance file. The
employee file holds personal information about each employee. Each record holds the
employee number, name and address for a single worker. The performance file holds
information pertaining to each job performance review an employee has had. There is
one record for each performance review, job title change or salary change an employee
has had. For every employee record in the employee file there may be many records in the
performance file. The field definitions for the records in both the employee and performance
files are shown below:

EMPLOYEE FILE DEFINITION

FIELD NAME LOCATION IN RECORD TYPE

Employee number 0 - 3 LONGTYPE
Last name 4 - 23 CHARTYPE
First name 24 - 43 CHARTYPE
Address 44 - 63 CHARTYPE
City 64 - 83 CHARTYPE

PERFORMANCE FILE DEFINITION

FIELD NAME LOCATION IN RECORD TYPE

Employee number 0 - 3 LONGTYPE
Review date 4 - 9 CHARTYPE
Job rating 10 CHARTYPE
Salary after review 11 - 18 DOUBLETYPE
Title after review 19 - 48 CHARTYPE
Department number 49 - 50 INTTYPE
Job code 51 - 54 LONGTYPE

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 21

C and COBOL Examples

In COBOL, the file’s definition including the definition of the primary and secondary
indexes in the file-control-entry and FILE SECTION is:

SELECT EMP-FILE ASSIGN TO "employee"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS EMP-NO
ALTERNATE RECORD KEY IS LAST-NAME WITH DUPLICATES
FILE STATUS IS EMP-FILE-STATUS.

SELECT PERF-FILE ASSIGN TO "perform"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS EMP-REVIEW
ALTERNATE RECORD KEY IS SALARY WITH DUPLICATES
FILE STATUS IS PERF-FILE-STATUS.

FD EMP-FILE.
01 EMP-RECORD.

03 EMP-NO PIC X(4).
03 LAST-NAME PIC X(20).
03 FIRST-NAME PIC X(20).
03 ADDRESS PIC X(20).
03 CITY PIC X(20).

FD PERF-FILE.
01 PERF-RECORD.

03 EMP-REVIEW.
05 EMP-NR PIC X(4).
05 REV-DATE PIC X(6).

03 JOB-RATE PIC X.
03 SALARY PIC X(8).
03 TITLE PIC X(30).
03 DEPARTMENT PIC S9(4) BINARY.
03 JOB-CODE PIC S9(9) BINARY.

X/Open Developers’ Specification (1990)
Page : 22 Indexed Sequential Access Method (ISAM)

C and COBOL Examples Accessing the Same File Using COBOL and C

6.1 ACCESSING THE SAME FILE USING COBOL AND C
(PROGRAMMING GUIDELINES)

The ISAM files can be handled both via the C calling interface and via COBOL, if it is
possible to exchange the COBOL run-time for indexed file handling by an X/Open
compatible ISAM. In order to access the files and the data via COBOL, the following
requirements must be met that are imposed by the ANS X3.23 standard:

1. COBOL keys are required to be of CHARTYPE and may not consist of more than one
part. If the key-parts are adjacent, this condition is easily met. However, constructing
a key that consists of two adjacent parts via C and using the key with one part defined
via COBOL may result in errors. All keys created via ISAM function calls that are to be
used via COBOL must meet these requirements.

2. The COBOL language requires an indexed file to have a primary key, and the key must
be defined to have unique values. Hence the key defined as a parameter of the
isbuild() call should not specify ISDUPS, and k_nparts should not be set to 0.

3. The ISAM INTTYPE corresponds to PIC S9(4) BINARY in COBOL and the ISAM
LONGTYPE corresponds to PIC S9(9) BINARY in COBOL. In COBOL-74 either a non-
portable type is provided or COMP is defined to be identical to BINARY of COBOL-85.
These COBOL types should be used to define integer data in the record. All other
positions in the record should be of CHARTYPE which corresponds to PIC X(n) in
COBOL.

Note that the COBOL file definition has been changed to meet the above restrictions. The
file definition used in Section 6.2, C Program Examples does not reflect the COBOL
requirements in order to be able to illustrate additional ISAM features.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 23

C Program Examples C and COBOL Examples

6.2 C PROGRAM EXAMPLES

6.2.1 Building a File

The following C language example creates both the employee and the performance files. It
is important to note that the primary keys must be defined for every file created.

#include <isam.h>

#define SUCCESS 0

struct keydesc key;
int cstart, nparts;
int cc, fdemploy, fdperform;

/∗
This program builds the file systems for the
data files employees and performance.

∗/

main()
{

mkemplkey();
fdemploy = cc = isbuild("employee", 84, &key, ISINOUT+ISEXCLLOCK);
if (cc < SUCCESS)
{

printf("isbuild error %d for %s\n",
iserrno, "employee file");

exit(1);
}
isclose(fdemploy);

mkperfkey();
fdperform = cc = isbuild("perform", 55, &key, ISINOUT+ISEXCLLOCK);
if (cc < SUCCESS)
{

printf("isbuild error %d for %s\n",
iserrno, "performance file");

exit(1);
}
isclose(fdperform);

}

X/Open Developers’ Specification (1990)
Page : 24 Indexed Sequential Access Method (ISAM)

C and COBOL Examples C Program Examples

mkemplkey()
{

key.k_flags = ISNODUPS;
key.k_nparts = 0;
cstart = 0;
nparts = 0;

addpart(&key, LONGSIZE, LONGTYPE);
}

mkperfkey()
{

key.k_flags = COMPRESS;
key.k_nparts = 0;
cstart = 0;
nparts = 0;

addpart(&key, LONGSIZE, LONGTYPE);
addpart(&key, 6, CHARTYPE);

}

addpart(keyp, len, type)
register struct keydesc ∗keyp;
int len;
int type;
{

keyp-> k_part[nparts].kp_start = cstart;
keyp-> k_part[nparts].kp_leng = len;
keyp-> k_part[nparts].kp_type = type;
keyp-> k_nparts = ++nparts;
cstart += len;

}

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 25

C Program Examples C and COBOL Examples

6.2.2 Adding Secondary Indexes

Often the indexes defined to be primary indexes are not adequate for some applications.
In the case of this application, two secondary indexes are desirable, an index on the last
name field in the employee file and an index on the salary field in the performance file. The
following program creates these two indexes. It is important to note that while adding
indexes, the file must be opened with an exclusive lock. Exclusive file locks are specified
in the mode parameter of the isopen() call by initialising that parameter to
ISINOUT+ISEXCLLOCK. The ISINOUT specifies that the file is to be opened for both input
and output, and the ISEXCLLOCK constant added to ISINOUT indicates that the file is to
be exclusively locked for the current process and that no other process will be allowed to
access this file. Note also that duplicates are to be allowed for both secondary indexes
and that last name is to have full compression for its values stored in the index file.

#include <isam.h>

#define SUCCESS 0

struct keydesc key;
int cstart, nparts;
int fdemploy, fdperform;

/∗
This program adds secondary indexes for the last name
field in the employee file, and the salary field in
the performance file.

∗/

main()
{

int cc;

fdemploy = cc = isopen("employee", ISINOUT+ISEXCLLOCK);
if (cc < SUCCESS)
{

printf("isopen error %d %s\n",
iserrno, "for employee file");

exit(1);
}

X/Open Developers’ Specification (1990)
Page : 26 Indexed Sequential Access Method (ISAM)

C and COBOL Examples C Program Examples

mklnamekey();
cc = isaddindex(fdemploy, &key);
if (cc != SUCCESS)
{

printf("isaddindex error %d for %s\n",
iserrno, "employee last-name key");

isclose(fdemploy);
exit(1);

}
isclose(fdemploy);

fdperform = cc = isopen("perform", ISINOUT+ISEXCLLOCK);
if (cc < SUCCESS)
{

printf("isopen error %d for %s\n",
iserrno, "performance file");

exit(1);
}

mksalkey();
cc = isaddindex(fdperform, &key);
if (cc != SUCCESS)
{

printf("isaddindex error %d for %s\n",
iserrno, "perform salary key");

isclose(fdperform);
exit(1);

}
isclose(fdperform);

}

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 27

C Program Examples C and COBOL Examples

mklnamekey()
{

key.k_flags = ISDUPS + COMPRESS;
key.k_nparts = 0;
cstart = 4;
nparts = 0;

addpart(&key, 20, CHARTYPE);
}

mksalkey()
{

key.k_flags = ISDUPS;
key.k_nparts = 0;
cstart = 11;
nparts = 0;

addpart(&key, DOUBLESIZE, DOUBLETYPE);
}

addpart(keyp, len, type)
register struct keydesc ∗keyp;
int len;
int type;
{

keyp-> k_part[nparts].kp_start = cstart;
keyp-> k_part[nparts].kp_leng = len;
keyp-> k_part[nparts].kp_type = type;
keyp-> k_nparts = ++nparts;
cstart += len;

}

X/Open Developers’ Specification (1990)
Page : 28 Indexed Sequential Access Method (ISAM)

C and COBOL Examples C Program Examples

6.2.3 Adding Data

The following program simply adds records to the employee file by prompting standard
input for values of the fields in the data record. Note that the employee file is opened with
the ISOUTPUT flag as its mode parameter.

#include <isam.h>
#include <stdio.h>

#define SUCCESS 0
#define TRUE 1
#define FALSE 0

char emprec[84];
char perfrec[55];
char line[80];
long empnum;
long jcod;
short dept;

struct keydesc key;
int cstart, nparts;
int fdemploy, fdperform;
int finished = FALSE;

/∗
This program adds a new employee record to the employee
file. It also adds that employee’s first employee
performance record to the performance file.

∗/

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 29

C Program Examples C and COBOL Examples

main()
{

int cc;

fdemploy = cc = isopen("employee", ISMANULOCK + ISOUTPUT);
if (cc < SUCCESS)
{

printf("isopen error %d %s\n",
iserrno, "for employee file");

exit(1);
}
fdperform = cc = isopen("perform", ISMANULOCK + ISOUTPUT);
if (cc < SUCCESS)
{

printf("isopen error %d %s\n",
iserrno, "for performance file");

exit(1);
}
getemployee();

while(!finished)
{

addemployee();
getemployee();

}
isclose(fdemploy);
isclose(fdperform);

}

X/Open Developers’ Specification (1990)
Page : 30 Indexed Sequential Access Method (ISAM)

C and COBOL Examples C Program Examples

getperform()
{

double new_salary;

if (empnum == 0)
{

finished = TRUE;
return(0);

}
stlong(empnum, perfrec);

printf("Start Date: ");
fgets(line, 80, stdin);
stchar(line, perfrec+4, 6);

stchar("g", perfrec+10, 1);

printf("Starting salary: ");
fgets(line, 80, stdin);
sscanf(line, "%lf", &new_salary);
stdbl(new_salary, perfrec+11);

printf("Title : ");
fgets(line, 80, stdin);
stchar(line, perfrec+19, 30);

printf("Department number: ");
fgets(line, 80, stdin);
sscanf(line, "%d", &dept);
stint(dept, perfrec+49);

printf("Job code: ");
fgets(line, 80, stdin);
sscanf(line, "%ld", &jcod);
stlong(jcod, perfrec+51);

printf("\n\n\n");
}

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 31

C Program Examples C and COBOL Examples

addemployee()
{

int cc;

cc = iswrite(fdemploy, emprec);
if (cc != SUCCESS)
{

printf("iswrite error %d %s\n",
iserrno, "for employee");

isclose(fdemploy);
exit(1);

}
}

addperform()
{

int cc;

cc = iswrite(fdperform, perfrec);
if (cc != SUCCESS)
{

printf("iswrite error %d %s\n",
iserrno, "for performance");

isclose(fdperform);
exit(1);

}
}

X/Open Developers’ Specification (1990)
Page : 32 Indexed Sequential Access Method (ISAM)

C and COBOL Examples C Program Examples

getemployee()
{

printf("Employee number (enter 0 to exit): ");
fgets(line, 80, stdin);
sscanf(line, "%ld", &empnum);
if (empnum == 0)
{

finished = TRUE;
return(0);

}
stlong(empnum, emprec);

printf("Last name: ");
fgets(line, 80, stdin);
stchar(line, emprec+4, 20);

printf("First name: ");
fgets(line, 80, stdin);
stchar(line, emprec+24, 20);

printf("Address: ");
fgets(line, 80, stdin);
stchar(line, emprec+44, 20);

printf("City: ");
fgets(line, 80, stdin);
stchar(line, emprec+64, 20);

getperform();
addperform();
printf("\n\n\n");

}

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 33

C Program Examples C and COBOL Examples

6.2.4 Sequential Access

The next C language example shows how to read a file sequentially. In this particular
case the employee file is being read in order of the primary key employee number. Since the
employee number index is defined as ascending with no duplicate key values allowed, the
sequence of records will print from the lowest value of employee number to the highest
value of employee number. This will continue until the isread() call using ISNEXT returns
the value [EENDFILE], which indicates that the end-of-file has been reached.

#include <isam.h>

#define SUCCESS 0
#define TRUE 1
#define FALSE 0

char emprec[84];

struct keydesc key;
int cstart, nparts;
int fdemploy, fdperform;
int eof = FALSE;

/∗
This program sequentially reads through the employee
file by employee number, printing each record to
stdout as it goes.

∗/

X/Open Developers’ Specification (1990)
Page : 34 Indexed Sequential Access Method (ISAM)

C and COBOL Examples C Program Examples

main()
{

int cc;

fdemploy = cc = isopen("employee", ISINPUT+ISAUTOLOCK);
if (cc < SUCCESS)
{

printf("isopen error %d %s\n",
iserrno, "for employee file");

exit(1);
}
mkemplkey();
cc = isstart(fdemploy, &key, WHOLEKEY, emprec, ISFIRST);
if (cc != SUCCESS)
{

printf("isstart error %d\n", iserrno);
isclose(fdemploy);
exit(1);

}
getfirst();
while (!eof)
{

showemployee();
getnext();

}
isclose(fdemploy);

}

showemployee()
{

printf("Employee number: %ld", ldlong(emprec));
printf("\nLast name: "); putnc(emprec+4, 20);
printf("\nFirst name: "); putnc(emprec+24, 20);
printf("\nAddress: "); putnc(emprec+44, 20);
printf("\nCity: "); putnc(emprec+64, 20);
printf("\n\n\n");

}

putnc(c, n)
char ∗c;
int n;
{

while (n - -) putchar(∗(c++));
}

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 35

C Program Examples C and COBOL Examples

getfirst()
{

int cc;

if (cc = isread(fdemploy, emprec, ISFIRST))
{

switch(iserrno)
{

case EENDFILE:
eof = TRUE;
break;

default:
printf("isread ISFIRST error %d\n", iserrno);
eof = TRUE;
return(1);

}
}
return(0);

}

getnext()
{

int cc;

if (cc = isread(fdemploy, emprec, ISNEXT))
{

switch(iserrno)
{

case EENDFILE:
eof = TRUE;
break;

default:
printf("isread ISNEXT error %d\n", iserrno);
eof = TRUE;
return(1);

}
}
return(0);

}

X/Open Developers’ Specification (1990)
Page : 36 Indexed Sequential Access Method (ISAM)

C and COBOL Examples C Program Examples

mkemplkey()
{

key.k_flags = ISNODUPS;
key.k_nparts = 0;
cstart = 0;
nparts = 0;

addpart(&key, LONGSIZE, LONGTYPE);
}

addpart(keyp, len, type)
register struct keydesc ∗keyp;
int len;
int type;
{

keyp-> k_part[nparts].kp_start = cstart;
keyp-> k_part[nparts].kp_leng = len;
keyp-> k_part[nparts].kp_type = type;
keyp-> k_nparts = ++nparts;
cstart += len;

}

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 37

C Program Examples C and COBOL Examples

6.2.5 Random Access

The following program is an example of how random access to a file can be
accomplished. This program interactively retrieves an employee number from standard
input, searches for it in the employee file, and prints the results of its search to standard
output.

Note that the ISEQUAL constant is used to specify the read mode to isread() in the C
function called reademp(). If no record corresponding to the value entered by the user is
found for employee number, a condition code of [ENOREC] is returned by isread(). It is the
responsibility of the C programmer to handle that return code in an appropriate manner.
If [ENOREC] is returned, the record buffer sent as the record parameter to the isread() call
will not have been changed (i.e., no record will have been read).

#include <isam.h>
#include <stdio.h>

#define SUCCESS 0
#define TRUE 1
#define FALSE 0

char emprec[84];
char line[80];
long empnum;

struct keydesc key;
int cstart, nparts;
int fdemploy, fdperform;

/∗
This program interactively retrieves an employee’s employee
number from stdin, searches for it in the employee file,
and prints the employee record that has that value as its
employee number field.

∗/

X/Open Developers’ Specification (1990)
Page : 38 Indexed Sequential Access Method (ISAM)

C and COBOL Examples C Program Examples

main()
{

int cc;

fdemploy = cc = isopen("employee", ISINPUT+ISAUTOLOCK);
if (cc < SUCCESS)
{

printf("isopen error %d %s\n",
iserrno, "for employee file");

exit(1);
}
getempnum();
while (empnum != 0)
{

if (reademp() == SUCCESS) showemployee();
getempnum();

}
isclose(fdemploy);

}

getempnum()
{

printf("Enter the employee number (0 to quit): ");
fgets(line, 80, stdin);
sscanf(line, "%ld", &empnum);
stlong(empnum, emprec);

}

showemployee()
{

printf("Employee number: %ld", ldlong(emprec));
printf("\nLast name: "); putnc(emprec+4, 20);
printf("\nFirst name: "); putnc(emprec+24, 20);
printf("\nAddress: "); putnc(emprec+44, 20);
printf("\nCity: "); putnc(emprec+64, 20);
printf("\n\n\n");

}

putnc(c, n)
char ∗c;
int n;
{

while (n - -) putchar(∗(c++));
}

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 39

C Program Examples C and COBOL Examples

reademp()
{

int cc;

cc = isread(fdemploy, emprec, ISEQUAL);
if (cc != SUCCESS)
{

switch (iserrno)
{

case ENOREC:
case EENDFILE:

printf("Employee doesn’t exist; try again\n");
return(1);

default:
printf("isread ISEQUAL error %d\n", iserrno);
exit(1);

}
}
return(0);

}

X/Open Developers’ Specification (1990)
Page : 40 Indexed Sequential Access Method (ISAM)

C and COBOL Examples C Program Examples

6.2.6 Chaining

The following example shows how to chain to a record that is the last record in a chain of
associated records, illustrating how the performance records appear logically by the
primary key. The primary index is a composite index made up of the employee number
and review date.

employee review job new new
number date rating salary title

1 790501 g 20000 PA
1 800106 g 23000 PA
1 800505 f 24725 PA
2 760301 g 18000 JP
2 760904 g 20700 PA
2 770305 g 23805 PA
2 770902 g 27376 SPA
3 800420 f 18000 JP
4 800420 f 18000 JP

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 41

C Program Examples C and COBOL Examples

#include <isam.h>
#include <stdio.h>

#define SUCCESS 0
#define TRUE 1
#define FALSE 0

char perfrec[55];
char operfrec[55];
char line[80];
long empnum;
long jcod;
short dept;
double new_salary, old_salary;

struct keydesc key;
int cstart, nparts;
int fdemploy, fdperform;
int finished = FALSE;

/∗
This program interactively reads data from stdin and adds
performance records to the "perform" file. Depending on
the rating given the employee on job performance, the
following salary increases are placed in the salary field
of the performance file.

rating percent increase
p (poor) 0.0 %
f (fair) 7.5 %
g (good) 13.5 %

∗/

X/Open Developers’ Specification (1990)
Page : 42 Indexed Sequential Access Method (ISAM)

C and COBOL Examples C Program Examples

main()
{

int cc;

fdperform = cc = isopen("perform", ISINOUT+ISAUTOLOCK);
if (cc < SUCCESS)
{

printf("isopen error %d %s\n",
iserrno, "for performance file");

exit(1);
}
mkperfkey();
getperformance();
while (!finished)
{

if (get_old_salary())
{

finished = TRUE;
}
else
{

addperformance();
getperformance();

}
}
isclose(fdperform);

}

addperformance()
{

int cc;

cc = iswrite(fdperform, perfrec);
if (cc != SUCCESS)
{

printf("iswrite error %d\n", iserrno);
isclose(fdperform);
exit(1);

}
}

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 43

C Program Examples C and COBOL Examples

getperformance()
{

printf("Employee number (enter 0 to exit): ");
fgets(line, 80, stdin);
sscanf(line, "%ld", &empnum);
if (empnum == 0)
{

finished = TRUE;
return(0);

}
stlong(empnum, perfrec);

printf("Review Date: ");
fgets(line, 80, stdin);
stchar(line, perfrec+4, 6);

printf("Job rating (p = poor, f = fair, g = good): ");
fgets(line, 80, stdin);
stchar(line, perfrec+10, 1);

printf("Salary After Review: ");
printf("(Sorry, you do not get to add this)\n");
new_salary = 0.0;
stdbl(new_salary, perfrec+11);
printf("Title After Review: ");
fgets(line, 80, stdin);
stchar(line, perfrec+19, 30);

printf ("Department number: ");
fgets(line, 80, stdin);
sscanf(line, "%d", &dept);
stint(dept, perfrec+49);

printf("Job code: ");
fgets(line, 80, stdin);
sscanf(line, "%ld", &jcod);
stlong(jcod, perfrec+51);

printf("\n\n\n");
}

X/Open Developers’ Specification (1990)
Page : 44 Indexed Sequential Access Method (ISAM)

C and COBOL Examples C Program Examples

get_old_salary()
{

int mode, cc;

/∗ get employee id no. ∗/
bytecpy(perfrec, operfrec, 4);

/∗ largest possible date ∗/
bytecpy("999999", operfrec+4, 6);

cc = isstart(fdperform, &key,
WHOLEKEY, operfrec, ISGTEQ);
if (cc != SUCCESS)
{

switch(iserrno)
{

case ENOREC:
case EENDFILE:

mode = ISLAST;
break;

default:
printf("isstart error %d\n", iserrno);
return(1);

}
}
else
{

mode = ISPREV;
}
cc = isread(fdperform, operfrec, mode);
if (cc != SUCCESS)
{

printf("isread error %d %s\n",
iserrno, "in get_old_salary");

return(1);
}

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 45

C Program Examples C and COBOL Examples

if (cmpnbytes(perfrec, operfrec, 4))
{

printf("%s for employee number %ld\n",
"No performance record", ldlong(perfrec));

return(1);
}
else
{

printf("\nPerformance record found.\n\n");
old_salary = new_salary = lddbl(operfrec+11);
printf("Rating: ");
switch(∗(perfrec+10))
{

case ’p’:
printf("poor\n");
break;

case ’f’:
printf("fair\n");
new_salary ∗= 1.075;
break;

case ’g’:
printf("good\n");
new_salary ∗= 1.135;
break;

default:
printf("no rating available\n");
break;

}
stdbl(new_salary, perfrec+11);
printf("Old salary was %f\n", old_salary);
printf("New salary is %f\n", new_salary);
return(0);

}
}

bytecpy(src,dest,n)
register char ∗src;
register char ∗dest;
register int n;
{

while (n-- > 0)
{

∗dest++ = ∗src++;
}

}

X/Open Developers’ Specification (1990)
Page : 46 Indexed Sequential Access Method (ISAM)

C and COBOL Examples C Program Examples

cmpnbytes(byte1, byte2, n)
register char ∗byte1, ∗byte2;
register int n;
{

if (n <= 0) return(0);
while (∗byte1 == ∗byte2)
{

if (- - n == 0) return(0);
++byte1;
++byte2;

}
return(((∗byte1 & BYTEMASK) <

(∗byte2 & BYTEMASK)) ? -1 : 1);
}

mkperfkey()
{

key.k_flags = COMPRESS;
key.k_nparts = 0;
cstart = 0;
nparts = 0;

addpart(&key, LONGSIZE, LONGTYPE);
addpart(&key, 6, CHARTYPE);

}

addpart(keyp, len, type)
register struct keydesc ∗keyp;
int len;
int type;
{

keyp-> k_part[nparts].kp_start = cstart;
keyp-> k_part[nparts].kp_leng = len;
keyp-> k_part[nparts].kp_type = type;
keyp-> k_nparts = ++nparts;
cstart += len;

}

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 47

COBOL Program Examples C and COBOL Examples

6.3 COBOL PROGRAM EXAMPLES

For COBOL, two of the preceding examples will be given: Adding Data (see example in
Section 6.2.3 for analogy) and Sequential Access (see example in Section 6.2.4 for
analogy). Only the relevant parts of the programs are shown.

Building the file and creating the primary and alternate record keys is done automatically
by opening a non-existent file (see examples in Section 6.2.1, Building a File and Section
6.2.2, Adding Secondary Indexes).

The error handling in COBOL would make use of the following declarations and piece of
code:

01 EMP-FILE-STATUS PIC XX.
88 EOF VALUE "10".

01 PERF-FILE-STATUS PIC XX.
88 EOF VALUE "10".

01 iserrno PIC S9(9) COMP-5 EXTERNAL.

DECLARATIVES.
EMP-DECL SECTION.

USE AFTER EXCEPTION PROCEDURE ON EMP-FILE.
EMP-PAR.

DISPLAY "Error " EMP-FILE-STATUS
" on employee file".

IF EMP-FILE-STATUS (1:1) EQUAL "9"
THEN DISPLAY "isam code " iserrno

END-IF.
MOVE 1 TO RETURN-CODE.
STOP RUN.

PERF-DECL SECTION.
USE AFTER EXCEPTION PROCEDURE ON PERF-FILE.

PERF-PAR.
DISPLAY "Error " PERF-FILE-STATUS

" on performance file".
IF PERF-FILE-STATUS (1:1) EQUAL "9"

THEN DISPLAY "isam code " iserrno
END-IF.
MOVE 1 TO RETURN-CODE.
STOP RUN.

END DECLARATIVES.

The following local data is used in the examples:

01 LOC-EMP-NO
88 FINISHED

01 EMP-NO-EDITED PIC Z(4).
01 LOC-SALARY

X/Open Developers’ Specification (1990)
Page : 48 Indexed Sequential Access Method (ISAM)

C and COBOL Examples COBOL Program Examples

6.3.1 Adding Data

OPEN I-O EMP-FILE, PERF-FILE.
PERFORM ADD-EMPLOYEE WITH TEST AFTER UNTIL FINISHED.
CLOSE EMP-FILE, PERF-FILE.
STOP RUN.

ADD-EMPLOYEE SECTION.
ADD-PAR.

DISPLAY "Employee number (enter 0 to exit): "
WITH NO ADVANCING.

ACCEPT LOC-EMP-NO.
IF FINISHED GO TO ADD-EXIT.
MOVE LOC-EMP-NO TO EMP-NO.
DISPLAY "Last name: " WITH NO ADVANCING.
ACCEPT LAST-NAME.
DISPLAY "First name: " WITH NO ADVANCING.
ACCEPT FIRST-NAME.
DISPLAY "Address: " WITH NO ADVANCING.
ACCEPT ADDRESS.
DISPLAY "City: " WITH NO ADVANCING.
ACCEPT CITY.
WRITE EMP-RECORD.
PERFORM ADD-PERFORM.

ADD-EXIT. EXIT.

ADD-PERFORM SECTION.
ADD-PAR.

MOVE LOC-EMP-NO TO EMP-NR.
DISPLAY "Start date: " WITH NO ADVANCING.
ACCEPT REV-DATE.
MOVE "g" TO JOB-RATE.
DISPLAY "Starting Salary: " WITH NO ADVANCING.
ACCEPT LOC-SALARY.
MOVE LOC-SALARY TO SALARY
DISPLAY "Title: " WITH NO ADVANCING.
ACCEPT TITLE.
DISPLAY "Department Number: " WITH NO ADVANCING.
ACCEPT DEPARTMENT.
DISPLAY "Job Code: " WITH NO ADVANCING.
ACCEPT JOB-CODE.
WRITE PERF-RECORD.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 49

COBOL Program Examples C and COBOL Examples

6.3.2 Sequential Access

OPEN INPUT EMP-FILE.
MOVE LOW-VALUE TO EMP-NO.
START EMP-FILE KEY IS NOT LESS EMP-NO.
PERFORM WITH TEST AFTER UNTIL EOF OF EMP-FILE-STATUS

READ EMP-FILE NEXT RECORD
AT END CONTINUE;
NOT AT END MOVE EMP-NO TO EMP-NO-EDITED

DISPLAY "Employee number: " EMP-NO-EDITED
DISPLAY "Last name: " LAST-NAME
DISPLAY "First name: " FIRST-NAME
DISPLAY "Address: " ADDRESS
DISPLAY "City: " CITY

END-READ
END-PERFORM.
CLOSE EMP-FILE.
STOP RUN.

X/Open Developers’ Specification (1990)
Page : 50 Indexed Sequential Access Method (ISAM)

Chapter 7

Exception Handling

Calls to ISAM functions generally return a value of 0 to indicate success or -1 to indicate
some kind of exception. In the latter case, the global int iserrno is set to a meaningful
value to define the nature of the condition. When testing return values in iserrno, it is
recommended that the symbolic names defined in <isam.h> be used, rather than
absolute values. The global chars isstat1 , isstat2 , isstat3 and isstat4 , that are characters,
are always set to meaningful values.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 51

ISAM Codes Exception Handling

7.1 ISAM CODES

ISAM codes indicate the following:

COBOL I-O STATUS
NAME TEXT

ISSTAT1 ISSTAT2 ISSTAT3 ISSTAT4

An attempt was made to
add a duplicate value (via
isrewcurr(), isrewrec(),
isrewrite(), iswrcurr() or
iswrite()) to an index with
no duplicates allowed, or
to add an index (via
isaddindex()) with no
duplicates allowed, while
there are duplicate values
for that key in the file.

2 2 2 2

[EDUPL]

An attempt was made to
perform some operation
on a file that was not
previously opened using
the isopen() or isbuild() call
or that was not opened
with the appropriate
access mode for this
function call.

4
4
4
4
9

2
7
8
9

9

[ENOTOPEN]

One of the arguments of
the call is not within the
range of acceptable values
for that argument, or the
value of the global integer
isreclen is outside the range
of acceptable values.

3
3
4
9

7
9
4

9

[EBADARG]

One or more of the
elements that make up the
key description is outside
the range of acceptable
values for that element.

9 9

[EBADKEY]

X/Open Developers’ Specification (1990)
Page : 52 Indexed Sequential Access Method (ISAM)

Exception Handling ISAM Codes

COBOL I-O STATUS
NAME TEXT

ISSTAT1 ISSTAT2 ISSTAT3 ISSTAT4

The maximum number of
files that may be open at
one time would be
exceeded if this request
were processed.

9 9

[ETOOMANY]

The format of the file has
been corrupted.

9 9
[EBADFILE]

In order to add or delete an
index, the file must have
been opened with
exclusive access.

9 9

[ENOTEXCL]

The record requested by
this call cannot be accessed
because either it or the
entire file has been locked
by another user.

9 9

[ELOCKED]

An attempt was made to
add an index that has been
defined previously.

9 9

[EKEXISTS]

An attempt was made to
delete the primary key
value. The primary key
may not be deleted by the
isdelindex() call.

9 9

[EPRIMKEY]

The beginning or end-of-
file was reached.

1
4

0
6

1 0
[EENDFILE]

No record could be found
that contained the
requested value in the
specified position or
identified by isrecnum.

2 3 2 3

[ENOREC]

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 53

ISAM Codes Exception Handling

COBOL I-O STATUS
NAME TEXT

ISSTAT1 ISSTAT2 ISSTAT3 ISSTAT4

This call must operate on
the current record. One
has not been defined or the
current record has been
deleted.

4
4

3
6

[ENOCURR] 2 1

The file is exclusively
locked by another user.

[EFLOCKED] 9 9

The filename is too long or
otherwise invalid.

[EFNAME] 9 9

Adequate memory cannot
be allocated for execution
of the function call.

[EBADMEM] 9 9

For the meaning of the values in the columns of the COBOL I-O Status see Section 7.2,
Isstat1 and Isstat2 Codes, and Section 7.3, Isstat3 and Isstat4 Codes.

For system call errors iserrno is set to the error code returned by the system and isstat1 is
set to 9. In this case isstat3 is set to 9 except for the error conditions that are described by
the entries 3 5 and 3 7 in Section 7.3, Isstat3 and Isstat4 Codes, that should set isstat3 and
isstat4 to 3 and 5, or 3 and 7, respectively.

X/Open Developers’ Specification (1990)
Page : 54 Indexed Sequential Access Method (ISAM)

Exception Handling Isstat1 and Isstat2 Codes

7.2 ISSTAT1 AND ISSTAT2 CODES

Two global chars isstat1 and isstat2 are used to hold status information after calls. They
are related in the following way. The first one holds status information of a general
nature, such as success or failure of a call. The second one contains more specific
information that has meaning based on the status code in isstat1. The values conform to
the I-O status values defined for COBOL by the IS 1989:1974 (identical to ANS X3.23-1974)
standard. The values are:

isstat1

0 Successful Completion
1 End of File
2 Invalid Key
9 Implementor-defined Errors

isstat2

When isstat1 isstat2
is: indicates:

No further information is available0 - 9 0

Duplicate key indicator:

— After an isread() this indicates that the key value
for the current key is equal to the value of that
same key in the next record. If the ISPREV mode
is specified, it applies to the next record to be
read with that mode.

— After an iswrite() or isrewrite() this indicates that
the record just written created a duplicate key
value for at least one alternate record key for
which duplicates are allowed.

0 2

2 1 This call must operate on the current record. One has
not been defined, or the current record has been
deleted.

An attempt has been made to write or rewrite a
record that would create a duplicate key in an
indexed file.

2

No record with the specified key can be found.3

The value of isstat2 is implementor-defined.9

The relation between isstat1 and isstat2 and the ISAM codes is given in the table in Section
7.1, ISAM Codes.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 55

Isstat1 and Isstat2 Codes Exception Handling

7.3 ISSTAT3 AND ISSTAT4 CODES

Two global chars isstat3 and isstat4 are used to hold status information after calls. The
values conform to the I-O status values defined for COBOL by the IS 1989:1985 (identical
to ANS X3.23-1985) standard. The values are:

isstat3 isstat4

0 0 Successful completion and no further information is available.

Successful completion, but a duplicate key is detected:

— After an isread() this indicates that the key value for the
current key is equal to the value of that same key in the
next record. If the ISPREV mode is specified, it applies to
the next record to be read with that mode.

— After an iswrite() or isrewrite() this indicates that the record
just written created a duplicate key value for at least one
alternate record key for which duplicates are allowed.

0 2

At end condition with unsuccessful completion.1 0

An attempt has been made to write or rewrite a record that
would create a duplicate key for a key that does not allow
duplicate values.

2 2

No record with the specified key can be found.2 3

A permanent error exists because the filename specified in the
isopen() function is not present.

3 5

A permanent error exists because the mode parameter
specified in the isopen() function is not allowed for the file.

3 7

A permanent error exists because a conflict has been detected
between the fixed file attributes and the mode parameter
specified in the isopen() function.

3 9

The isclose() function is attempted for a file that is not open.4 2

This call must operate on the current record. One has not
been defined, or the current record has been deleted.

4 3

An attempt is made to write or rewrite a record that is larger
or smaller than is allowed on the file.

4 4

The isread() function with option ISNEXT is attempted and no
valid next record has been established because there is no
current record defined, or the previous isread() caused an at
end condition.

4 6

X/Open Developers’ Specification (1990)
Page : 56 Indexed Sequential Access Method (ISAM)

Exception Handling Isstat3 And Isstat4 Codes

isstat3 isstat4

The isread() or isstart() function is attempted on a file not
opened with mode ISINPUT or ISINOUT.

4 7

The iswrite() or iswrcurr() function is attempted on a file not
opened with mode ISOUTPUT or ISINOUT.

4 8

The isdelete(), isdelrec(), isdelcurr(), isrewrite(), isrewrec() or
isrewcurr() function is attempted on a file not opened with
mode ISINOUT.

4 9

Implementor-defined errors: the value of isstat4 is
implementor-defined.

9

The relation between isstat3 and isstat4 and the ISAM codes is given in Section 7.1, ISAM
Codes.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 57

Isstat3 And Isstat4 Codes Exception Handling

X/Open Developers’ Specification (1990)
Page : 58 Indexed Sequential Access Method (ISAM)

Chapter 8

The <isam.h> Header

This chapter defines the minimum contents of the header <isam.h>. The header contains
definitions that are used for the mode arguments and also definitions of structures that
are used in the calls. The structures may contain additional fields.

The numeric values shown in the definitions are purely illustrative; actual values are
implementor-defined. Other additional options may be provided by an implementation.
If additional bits are set this will have no effect to a portable application, i.e., will not be
treated as an error. However, the access and lock modes used by isopen() and isbuild(),
and the position and lock modes used by isread() and isstart(), should not overlap. Only
the names and types of the functions are defined. They might be replaced by macro
definitions. Definitions that specify limits ({NPARTS} and {MAXKEYSIZE}) give the limit
that can be assumed by applications for full portability across X/Open machines. There
will be at least that number on a given system, although there may in fact be more.

For example, {NPARTS} gives the maximum number of key parts, and it is set to 8. This
means that all X/Open systems will allow at least 8 key parts. It also means that, for full
portability, an application should not require more than this number. A particular
X/Open machine may allow more than 8 and, on that system, the definition will be set to
a higher value. However, applications relying on this higher value are not guaranteed to
be portable.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 59

The <isam.h> Header

The <isam.h> header:

#define CHARTYPE 0
#define CHARSIZE 1

#define INTTYPE 1
#define INTSIZE 2

#define LONGTYPE 2
#define LONGSIZE 4

#define DOUBLETYPE 3
#define DOUBLESIZE (sizeof(double))

#define FLOATTYPE 4
#define FLOATSIZE (sizeof(float))

#define MAXTYPE 5
#define ISDESC 0x80 /∗ add to make ∗/

/∗ descending type ∗/
#define TYPEMASK 0x7F /∗ type mask ∗/

#define BYTEMASK 0xFF /∗ mask for one byte ∗/
#define BYTESHFT 8 /∗ shift for one byte ∗/

/∗ the following might also be macro definitions ∗/
short ldint();
long ldlong();
double ldfloat();
double lddbl();

#define ISFIRST 0 /∗ first record ∗/
#define ISLAST 1 /∗ last record ∗/
#define ISNEXT 2 /∗ next record ∗/
#define ISPREV 3 /∗ previous record ∗/
#define ISCURR 4 /∗ current record ∗/
#define ISEQUAL 5 /∗ equal value ∗/
#define ISGREAT 6 /∗ greater value ∗/
#define ISGTEQ 7 /∗ >= value ∗/

/∗ isread lock modes ∗/
#define ISLOCK 0x100 /∗ lock record before reading ∗/
#define ISSKIPLOCK 0x1000 /∗ advance record pointer to locked record ∗/

X/Open Developers’ Specification (1990)
Page : 60 Indexed Sequential Access Method (ISAM)

The <isam.h> Header

/∗ isopen, isbuild lock modes ∗/
#define ISAUTOLOCK 0x200 /∗ automatic record lock ∗/
#define ISMANULOCK 0x400 /∗ manual record lock ∗/
#define ISEXCLLOCK 0x800 /∗ exclusive isam file lock ∗/

/∗ isopen, isbuild file types ∗/
#define ISVARLEN 0x10000 /∗ variable length records ∗/
#define ISFIXLEN 000 /∗ fixed length records only ∗/

/∗ isstart lock mode for automatic record locking ∗/
#define ISKEEPLOCK 0x2000 /∗ keep record locked ∗/

#define ISINPUT 0 /∗ open for input only ∗/
#define ISOUTPUT 1 /∗ open for output only ∗/
#define ISINOUT 2 /∗ open for input and output ∗/

#define MAXKEYSIZE 120 /∗ max number of bytes in key ∗/
#define NPARTS 8 /∗ max number of key parts ∗/

struct keypart
{

short kp_start; /∗ starting byte of key part ∗/
short kp_leng; /∗ length in bytes ∗/
short kp_type; /∗ type of key part ∗/

};

struct keydesc
{

short k_flags; /∗ flags ∗/
short k_nparts; /∗ number of parts in key ∗/
struct keypart
k_part[NPARTS]; /∗ each key part ∗/

};

#define k_start k_part[0].kp_start
#define k_leng k_part[0].kp_leng
#define k_type k_part[0].kp_type

#define ISNODUPS 000 /∗ no duplicates and no ∗/
/∗ compression allowed ∗/

#define ISDUPS 001 /∗ duplicates allowed ∗/
#define COMPRESS 016 /∗ full compression ∗/

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 61

The <isam.h> Header

struct dictinfo
{

short di_nkeys; /∗ number of keys defined ∗/
/∗ msb set for variable length files ∗/

short di_recsize; /∗ (maximum) data record size ∗/
short di_idxsize; /∗ index record size ∗/
long di_nrecords; /∗ number of records ∗/

/∗ ISAM errors must not overlap with system call error numbers ∗/
#define EDUPL 100 /∗ duplicate record ∗/
#define ENOTOPEN 101 /∗ file not open ∗/
#define EBADARG 102 /∗ illegal argument ∗/
#define EBADKEY 103 /∗ illegal key desc ∗/
#define ETOOMANY 104 /∗ too many files open ∗/
#define EBADFILE 105 /∗ bad ISAM file format ∗/
#define ENOTEXCL 106 /∗ non-exclusive access ∗/
#define ELOCKED 107 /∗ record locked ∗/
#define EKEXISTS 108 /∗ key already exists ∗/
#define EPRIMKEY 109 /∗ is primary key ∗/
#define EENDFILE 110 /∗ end/begin of file ∗/
#define ENOREC 111 /∗ no record found ∗/
#define ENOCURR 112 /∗ no current record ∗/
#define EFLOCKED 113 /∗ file locked ∗/
#define EFNAME 114 /∗ filename too long ∗/
#define EBADMEM 116 /∗ cannot allocate memory ∗/

/∗
∗ For system call errors
∗ iserrno = errno (system error code 1-99)
∗/

extern int iserrno; /∗ isam error return code ∗/
extern long isrecnum; /∗ record number of last call ∗/
extern int isreclen; /∗ actual record length or ∗/

/∗ minimum (isbuild, isindexinfo) ∗/
/∗ or maximum (isopen) ∗/

extern char isstat1; /∗ COBOL-74 status characters ∗/
extern char isstat2;
extern char isstat3; /∗ COBOL-85 status characters ∗/
extern char isstat4;

X/Open Developers’ Specification (1990)
Page : 62 Indexed Sequential Access Method (ISAM)

Chapter 9

General Information

This chapter contains general information that is relevant for the detailed description of
the X/Open ISAM functions in Chapter 10, ISAM Function Definitions.

9.1 RETURN VALUE/EXCEPTION REPORTING

Most calls return either a 0 or a -1 as the value of the function and set the global integer
iserrno either to 0 or to an error indicator. In the case of isbuild() or isopen(), the return
value will be a legal file descriptor (which is not an XSI file descriptor) or a -1. A -1
indicates that an error has occurred and iserrno has been set. The iserrno variable is not
cleared on successful calls, so it should only be tested after an error has been indicated.
Also, the global characters isstat1 , isstat2 , isstat3 and isstat4 are set for the convenience of
integration with COBOL. See Chapter 7, Exception Handling, for more information.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 63

Key Structure General Information

9.2 KEY STRUCTURE

The structures keydesc and keypart, defined in <isam.h>, are used for index definition
and are further explained below:

The structure keydesc contains the following members:

short k_flags; /∗ flags ∗/
short k_nparts; /∗ number of parts in key ∗/
struct keypart k_part[NPARTS]; /∗ each key part ∗/

The structure keypart contains the following members:

short kp_start; /∗ starting byte of key part ∗/
short kp_leng; /∗ length in bytes ∗/
short kp_type; /∗ type of key part ∗/

In the keydesc structure, the integer k_flags is used to hold duplicate and compression
information for the index that is being added, deleted or selected. The symbolic values
that are defined in <isam.h> should be used to indicate the compression techniques that
are desired. If more than one feature is specified, the values are logically-or’ed together.
The meaning of these symbolic values is:

ISDUPS Duplicate values are allowed for this index.
ISNODUPS No duplicates.
COMPRESS Full compression for this index.

One of ISDUPS and ISNODUPS must be specified. Compression is requested by the
addition of COMPRESS.

The k_nparts integer indicates how many parts make up the index. These parts must be
described in the k_part array of keypart structures. A keypart structure defines each part
of the index individually. The number of elements in the k_part array should be equal to
the integer value in k_nparts .

The elements in the keypart structure are used as follows. The kp_start field indicates the
starting byte of the key part that is being defined. The kp_leng field is a count of the
number of bytes in the part, and kp_type designates the data type of the part. The types
allowed are defined in the header, <isam.h>, see Chapter 8, The <isam.h> Header. If
this part of the key is in descending order, the type constant should be logically-or’ed to
the ISDESC constant (defined in <isam.h>). For more information about creating and
manipulating indexes, see Chapter 4, Indexing.

X/Open Developers’ Specification (1990)
Page : 64 Indexed Sequential Access Method (ISAM)

General Information Record Number of Last Call

9.3 RECORD NUMBER OF LAST CALL

The record number is a unique identification of a record. It is guaranteed that a record
keeps the same record number until the record is deleted or the ISAM file is closed. If the
file allows variable length records, it is implementor-defined whether a record keeps the
same record number after it is rewritten using a different length than the original record
had. The isrecnum variable is a long integer global variable that is set to this identification
following the successful completion of all record based calls. It identifies, in an
implementation-dependent, shorthand way, the record just referenced. This returned
value may be used as an input parameter to the isdelrec() and isrewrec() calls, and as an
implicit input parameter to the isread() call to perform optimised deletes, updates and
reads. If used to perform sequential processing, the records will be read according to
their physical layout on disc, and not according to any logical key order. Note that as the
actual value returned is implementation-dependent, the user should not attempt to
interpret its actual value, as this could compromise portability.

The following calls set isrecnum:

isdelcurr() isdelete() isdelrec() isread()
isrewcurr() isrewrec() isrewrite() isstart()
iswrcurr() iswrite()

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 65

Current Record Position General Information

9.4 CURRENT RECORD POSITION

The current record position should not be confused with isrecnum (see above). The
current record position is a logical pointer that allows sequential processing to be
performed according to a logical key order. The mode parameters ISNEXT and ISPREV
are thus always relative to this value, while ISCURR indicates that this (the current)
record should be read.

The current record position is:

• either directly on a record;
• just before a record;
• just after a record, or
• undefined.

If the pointer is directly on a certain record, that record is the current record and may be
accessed or manipulated with the function calls isdelcurr(), isrewcurr() or isread() using
mode ISCURR.

If the pointer is just before a record, the designated record cannot be manipulated
directly but may be accessed with isread() modes ISCURR or ISNEXT.

If the pointer is just after a record, the designated record cannot be manipulated directly
but may be accessed with isread() mode ISPREV.

If the current record position is undefined, a function call using it as input returns an
error [ENOCURR].

The isread() and the iswrcurr() function calls position the current record pointer directly
on a certain record. The isstart() function call positions the current record pointer just
before (with mode ISFIRST, ISEQUAL, ISGREAT or ISGTEQ) or just after (with mode
ISLAST) the selected record. If no record matches the selection the position of the current
record pointer is undefined and the function call returns an error [ENOREC]. The isopen()
function call positions the current record pointer just before any possible first record in
the order of the primary index.

The difference between the positioning via isstart() and isopen() is: if using isstart(), the
position is set to point just before the first record at the time this function call is executed;
if using isopen(), the position is set to point just before any first record. So, if a new
record is added (using the iswrite() function call) with a lower value for the currently
selected index than the old first record, the record position remains unchanged following
an isstart(), but is pointing just before this new record following an isopen() call. A call to
isread() (with mode ISCURR or ISNEXT) will always read the record selected at the time
isstart() was called, but will always read the newest first record at read time if isopen()
was called before. If isstart() is called after isopen() the rules for isstart() will be applied.

If the key value of the current record is changed for the selected index by an isrewrec() or
isrewrite() function call, the current record position remains unchanged. A read next or
read previous record (isread(), ISNEXT or ISPREV) results in reading the next or previous
record in relation to the old key value.

However isrewcurr() sets the current record position on the record with the new key
value. In other words, if the key value for the selected index is changed, the current
record position is set differently than for the other rewrite functions.

X/Open Developers’ Specification (1990)
Page : 66 Indexed Sequential Access Method (ISAM)

General Information Current Record Position

If the current record is deleted (by using any delete record function), the current record
position remains unchanged. The current record is no longer accessible. The subsequent
function calls isdelcurr(), isrewcurr() or isread() mode ISCURR will return an error
[ENOCURR]. A read next or read previous record (isread(), ISNEXT or ISPREV) results in
reading the next or previous record in relation to the deleted key value.

If the current record position points just before or after a record and that record is locked
by another process, trying to read that record (without ISSKIPLOCK flag) with manual or
automatic record locking results in an error [ELOCKED] and the current record position
remains unchanged. If the flag ISSKIPLOCK is specified both isrecnum and the current
record position will point to the locked record. The parameter record does not point to
any valid data.

If the current record position is directly on a record and the next/previous record is
locked by another process, trying to read that next/previous record (without ISSKIPLOCK
flag) with manual or automatic record locking results in an error [ELOCKED]. Both
isrecnum and the current record position remain unchanged. If the flag ISSKIPLOCK is
specified both isrecnum and the current record position will point to the locked record.
The parameter record does not point to any valid data.

The current record position is set after successful completion of the following calls:

isopen() isstart() (pointing just before/after a record)
isread() iswrcurr() (pointing directly on the record)

and used in input to:

(if pointing directly on a record)isdelcurr() isrewcurr()
isread() with modes (if pointing directly on or just
ISCURR, ISNEXT or ISPREV before/after a record)

The current record position is undefined in the following situations:

• using isstart() with modes ISEQUAL, ISGREAT or ISGTEQ and no record is found
whose key value satisfies the condition;

• using isread() with modes ISEQUAL, ISGREAT or ISGTEQ and no record is found
whose key value satisfies the condition;

• after an unsuccessful call to iswrcurr() returning an error different from [EDUPL],and

• using isstart() with k_nparts=0 (physical order) with modes ISEQUAL, ISGREAT or
ISGTEQ and no record is found satisfying the condition with isrecnum.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 67

Physical Order General Information

9.5 PHYSICAL ORDER

If building a file, setting k_nparts=0 in the keydesc parameter results in a file having no
primary key. If such a file is opened, or, for any file isstart() is called setting k_nparts=0 ,
the file is accessed in physical order. The record number defines the key order in this
case; it may be regarded as a kind of physical index. Using isstart() with modes
ISFIRST/ISLAST results in setting the current record position to point just before/after the
first / last valid record in physical order. With modes ISEQUAL, ISGREAT or ISGTEQ the
current record position is set to point just before the record satisfying the condition for
isrecnum.

Using modes ISEQUAL, ISGREAT or ISGTEQ causes isread() to look at isrecnum for
determining the desired record. If using isread() with modes ISFIRST/ISLAST the
corresponding record is read and the current record position is set directly on the
first / last valid record in physical order. With modes ISNEXT/ISPREV the next / previous
valid record in physical order will be read.

The current record position is undefined if no record is found satisfying the condition
with isrecnum (using isread() or isstart()).

9.6 ACCESS MODE

While building or opening a file with isbuild() or isopen(), a mode parameter is used to
specify the locking and the access mode for that file. See Chapter 5, Locking, for more
information about the locking mode. The access modes ISINPUT, ISOUTPUT or ISINOUT
are used to open the file for reading, writing or both kinds of operations. Not all ISAM
function calls can be used with each access mode. The following table shows which
access mode is compatible with which function call. The ISINOUT access mode implies
both the ISINPUT and the ISOUTPUT mode. If a function is called while the file had been
opened with an incompatible access mode the error [ENOTOPEN] is returned.

Access Mode Any Mode ISINPUT ISOUTPUT ISINOUT

Functions: isbuild() isread() iswrcurr() isaddindex()
isclose() isstart() iswrite() isdelindex()
iserase() isdelcurr()
isindexinfo() isdelete()
islock() isdelrec()
isopen() isrewcurr()
isrelease() isrewrec()
isrename() isrewrite()
isunlock()

X/Open Developers’ Specification (1990)
Page : 68 Indexed Sequential Access Method (ISAM)

General Information Files

9.7 FILES

The two conceptual entities, data records and indexes, are stored in an implementor-
defined way in file(s). The user gets transparent access to these entities by handling one
logical ISAM file that is identified by a filename.

A file name must be a legal operating system filename. The maximum length of a
filename is four characters shorter than the operating system limit for characters in a
filename ({NAME_MAX}, see <limits.h>). A pathname may be used instead of a filename.
It is implementor-defined whether the indexes are stored in a separate file and/or
directory.

ISAM must allow an application program to have at least ten ISAM files open at one time.
However, this does not guarantee that an application program can open this number of
ISAM files at any one time. If the program has opened a number of other files or the
operating system limit of files per process ({OPEN_MAX}, see <limits.h>) is exceeded, no
more ISAM files can be opened.

The effects of opening a currently open file again by the same process are implementor-
defined.

Access to a file is granted via isbuild() or isopen() and remains valid until isclose (). It is
mandatory to close ISAM files after processing has finished. Failure to do so causes
unpredictable results. Closing a file releases all locks for that file and its records that are
set by the current process.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 69

Records General Information

9.8 RECORDS

The definition includes the optional facility to support files having records of variable
length. When a file is built it is declared to contain either fixed length or variable length
records. Fixed length records must contain the same number of bytes for all the records
in the file. Variable length records may contain differing numbers of bytes among the
records on the file. To create a file that allows variable length records, the ISVARLEN
option must be added to the mode parameter of the isbuild() function call.

The maximum number of bytes is specified by the recordlength parameter of the isbuild()
function call, whereas the minimum number of bytes is specified by the global integer
isreclen.

When opening such files, the ISVARLEN option must be added to the mode parameter of
the isopen() function call. If neither ISFIXLEN nor ISVARLEN is specified, ISFIXLEN is
assumed.

The minimum length defines the part of the record, that must be present for all records of
the file. All indexes defined on the file must occupy character position(s) in the fixed part
of the record and will be defined with the same attributes for all record types in that file.
This is checked by the isaddindex() function call.

The global integer isreclen is used as an implicit input parameter to the following calls:

(indicating the minimum record length of the file)isbuild()

iswrite() iswrcurr()
isrewrite() isrewcurr()
isrewrec()

(indicating the actual number of bytes to be written)

and is set after successful completion of:

(indicating the actual number of bytes in the record returned)isread()

isopen() (indicating the maximum record length supported by the file)

(indicating the minimum record length supported by the file)isindexinfo()

The contents of isreclen are implementor-defined if the file does not allow variable length
records.

X/Open Developers’ Specification (1990)
Page : 70 Indexed Sequential Access Method (ISAM)

ISAM isaddindex()

NAME
isaddindex - add a secondary index to an ISAM file

SYNOPSIS
int isaddindex (isfd, keydesc)
int isfd;
struct keydesc ∗keydesc;

DESCRIPTION
The isaddindex() function is used to add a secondary index to an ISAM file. The index will
be built for the file indicated by the isfd parameter and will be defined according to the
information in the keydesc structure. This call will execute only if the file has been opened
for exclusive access.

The number of indexes that can be added to a file is guaranteed to be not less than 15. The
maximum number of parts that may be defined for an index is {NPARTS}, and the
maximum number of bytes that can exist in an index is {MAXKEYSIZE} (see Chapter 8, The
<isam.h> Header).

Use of this call and index use in general are explained in Chapter 4, Indexing.

RETURN VALUE
A value of -1 is returned if an error was detected and iserrno is set to indicate the error.
Otherwise a value of 0 is returned.

ERRORS
The following ISAM errors are possible, under the conditions given:

[EBADKEY] Error in key description; one of the elements of the key description has an
unacceptable value or, in the case of a file allowing variable length records,
the character positions specified in the key description conflict with the
minimum record size defined for that file.

[EDUPL] The key description specifies that no duplicates are allowed; however, there
are duplicate key values in the file.

[EKEXISTS] The index corresponding to the specified key already exists.

[ENOTEXCL] The file was not opened in the exclusive mode, which is required for this
routine.

[ENOTOPEN] The ISAM file descriptor isfd does not correspond to an open ISAM file or the
file has not been opened with access mode ISINOUT.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 73

isbuild() ISAM

NAME
isbuild - create an ISAM file

SYNOPSIS
int isbuild (filename, recordlength, keydesc, mode)
char ∗filename;
int recordlength;
struct keydesc ∗keydesc;
int mode;

DESCRIPTION
The isbuild() function is used to create an ISAM file. Depending on the particular
implementation, this call will create and initialise appropriate disc structures to contain
data and indexes.

After isbuild() has completed successfully, the file will remain open for further processing.
The isbuild() function returns a file descriptor that should be used in subsequent accesses
to the file.

The filename parameter should contain a null-terminated character string which is at least
four characters shorter than the longest legal operating system filename.

The recordlength parameter is the length of the record. Its value is the sum of the number
of bytes in each field of the record. See Chapter 3, Data Types, for the length of each data
type.

All ISAM files are required formally to have a primary index. The keydesc parameter of this
call is used to specify the structure of the primary index. However, setting k_nparts=0
means that there is actually no primary key. Additional indexes may be added later using
isaddindex(). See Chapter 4, Indexing, and Chapter 6, C and COBOL Examples, for more
details on key definition and use. The mode parameter is used to indicate whether the file
allows variable length records. Selecting variable length records indicates that the user
wishes to indicate at each write or rewrite operation the actual number of bytes to be
stored, and wishes to be informed after a successful read operation about the actual
number of bytes returned. If neither ISFIXLEN nor ISVARLEN is specified, ISFIXLEN is
assumed.

For a file allowing variable length records, recordlength indicates the maximum length of
the record, whereas the minimum length is specified in the global integer isreclen.

The mode parameter is also used to specify locking information. The user has three
options: manual, automatic or exclusive. Selecting the manual option indicates that the
user wishes to be responsible for locking records at the appropriate times using either the
islock () and isunlock() calls or the ISLOCK mode flag of the isread() call and the isrelease ()
function call. Selecting automatic locking indicates that the user wishes to lock each
record at the time it is read and unlock each record after the next function call is made.
Selection of exclusive locking will deny file access to anyone other than this process. More
information about locking can be found in Chapter 5, Locking. The mode is specified by
using the define macros that are found in the header <isam.h>, for which a complete
listing can be found in Chapter 8, The <isam.h> Header.

X/Open Developers’ Specification (1990)
Page : 74 Indexed Sequential Access Method (ISAM)

ISAM isbuild()

Modes that are used in the isbuild() call are the arithmetic sum of a lock mode, an access
mode and optionally a record type:

Lock Modes Access Modes Record Types

ISEXCLLOCK ISINPUT ISFIXLEN
ISMANULOCK ISOUTPUT ISVARLEN
ISAUTOLOCK ISINOUT

RETURN VALUE
Upon successful completion, the file descriptor is returned. Otherwise a value of -1 is
returned and iserrno is set to indicate the error.

ERRORS
The following ISAM errors are possible, under the conditions given:

[EBADARG] One of the parameter values specified is illegal. In particular, this error
will occur if an improper value is used for the mode parameter.

[EBADKEY] Error in key description; one of the elements of the key description has
an unacceptable value or, in the case of a file allowing variable length
records, the character positions specified in the key description conflict
with the minimum record size defined for that file.

[EFNAME] The ISAM filename is too long or otherwise invalid.

[ETOOMANY] The maximum number of open files would be exceeded if the ISAM file
were created and opened.

WARNING
If ISVARLEN is specified and the implementation does not support files having variable
length records, no error might be returned, and applications depending on the setting of
isreclen will not function correctly.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 75

isclose() ISAM

NAME
isclose - close an ISAM file

SYNOPSIS
int isclose (isfd)
int isfd;

DESCRIPTION
The isclose () function is used to close an ISAM file. Any locks that are held for the file by
this file descriptor are released.

NOTE: it is mandatory to close ISAM files after processing has finished. Failure to do so
could cause unpredictable results.

RETURN VALUE
A value of -1 is returned if an error was detected and iserrno is set to indicate the error.
Otherwise a value of 0 is returned.

ERRORS
The following ISAM error is possible, under the condition given:

[ENOTOPEN] The ISAM file descriptor isfd does not correspond to an open ISAM file.

X/Open Developers’ Specification (1990)
Page : 76 Indexed Sequential Access Method (ISAM)

ISAM isdelcurr()

NAME
isdelcurr - delete current record

SYNOPSIS
int isdelcurr (isfd)
int isfd;

DESCRIPTION
The isdelcurr() function differs from isdelete() in that it deletes the current record from the
file, rather than the record indicated by the primary key. The appropriate values will be
deleted from each index that is defined. The current record position must be directly on a
valid record for a successful execution of the isdelcurr() function call. After a record is
deleted successfully it cannot be accessed again. The isdelcurr() function is useful when
the primary key is not unique and the record cannot be located and deleted in one call.

The isrecnum variable is set to indicate the current record, the record just deleted. A read
next / previous record (isread(), ISNEXT or ISPREV) results in reading the next / previous
record in relation to the old deleted key value. This is consistent with COBOL requirements
that the file position indicator is not affected.

RETURN VALUE
A value of -1 is returned if an error was detected and iserrno is set to indicate the error.
Otherwise a value of 0 is returned.

ERRORS
The following ISAM errors are possible, under the conditions given:

[ELOCKED] The record or the entire file is locked by another process.

[ENOCURR] The current record pointer has not been set, or is invalid, or the current
record has been deleted by another process.

[ENOTOPEN] The ISAM file descriptor isfd does not correspond to an open ISAM file or the
file has not been opened with access mode ISINOUT.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 77

isdelete() ISAM

NAME
isdelete - delete record specified by primary key

SYNOPSIS
int isdelete (isfd, record)
int isfd;
char ∗record;

DESCRIPTION
The isdelete() function deletes a record specified by a primary key from the file indicated
by isfd. The appropriate values will also be deleted from each index that is defined. After a
successful execution the deleted record can no longer be accessed. The primary index
definition for the file must not allow duplicates. The primary key field in the record
parameter is used to identify the record to be deleted, while the other fields have no
significance. If the primary key index allows duplicates, then the deletion fails. In that case
the deletion can be done using isread() and isdelcurr() instead.

The isrecnum variable is set to indicate the record just deleted, while the current record
position remains unchanged. If the current record is deleted, a read next/previous record
(isread(), ISNEXT or ISPREV) results in reading the next / previous record in relation to the
old deleted key value. This is consistent with COBOL requirements that the file position
indicator is not affected.

RETURN VALUE
A value of -1 is returned if an error was detected and iserrno is set to indicate the error.
Otherwise a value of 0 is returned.

ERRORS
The following ISAM errors are possible, under the conditions given:

[ELOCKED] The record or the entire file has been locked by another process.

[ENOREC] The specified record cannot be found or the file has been created without a
primary key.

[ENOTOPEN] The ISAM file descriptor isfd does not correspond to an open ISAM file or the
file has not been opened with access mode ISINOUT.

X/Open Developers’ Specification (1990)
Page : 78 Indexed Sequential Access Method (ISAM)

ISAM isdelindex()

NAME
isdelindex - remove index from an ISAM file

SYNOPSIS
int isdelindex (isfd, keydesc)
int isfd;
struct keydesc ∗keydesc;

DESCRIPTION
The isdelindex() function is used to remove an existing index. The index will be removed
from the file indicated by isfd . The index to be removed will be defined by the information
in the keydesc structure. All indexes may be deleted except the primary index. Attempts
to delete the primary index will cause an error code -1 to be returned and the iserrno global
integer to be set. This call will execute only if the file has been opened for exclusive access.

RETURN VALUE
A value of -1 is returned if an error was detected and iserrno is set to indicate the error.
Otherwise a value of 0 is returned.

ERRORS
The following ISAM errors are possible, under the conditions given:

[EBADKEY] Error in key description; one of the elements of the key description has an
unacceptable value, or the index to be deleted is the current index, or no
index (neither primary nor secondary) is defined for the file.

[ENOTEXCL] The file was not opened in the exclusive mode, which is required for this
routine.

[ENOTOPEN] The ISAM file descriptor isfd does not correspond to an open ISAM file, or the
file has not been opened with access mode ISINOUT.

[EPRIMKEY] The primary index is specified (for deletion); it may not be deleted.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 79

isdelrec() ISAM

NAME
isdelrec - delete record specified by record number

SYNOPSIS
int isdelrec (isfd, recnum)
int isfd;
long recnum;

DESCRIPTION
The isdelrec () function differs from isdelete() in that it deletes the record specified by
recnum from the file indicated by isfd, rather than the record indicated by the primary key.
The appropriate values will be deleted from each index that is defined. The parameter
recnum must be a previously obtained isrecnum value that identifies an existing record.

This call will set isrecnum to the value of recnum, while the current record position will
remain unchanged. If the current record is deleted, a read next/previous record (isread(),
ISNEXT or ISPREV) results in reading the next/previous record in relation to the old
deleted key value. This is consistent with COBOL requirements that the file position
indicator is not affected.

RETURN VALUE
A value of -1 is returned if an error was detected and iserrno is set to indicate the error.
Otherwise a value of 0 is returned.

ERRORS
The following ISAM errors are possible, under the conditions given:

[ELOCKED] The record or the entire file has been locked by another process.

[ENOREC] No record could be found using the specified recnum.

[ENOTOPEN] The ISAM file descriptor isfd does not correspond to an open ISAM file or the
file has not been opened with access mode ISINOUT.

X/Open Developers’ Specification (1990)
Page : 80 Indexed Sequential Access Method (ISAM)

ISAM iserase()

NAME
iserase - remove an ISAM file

SYNOPSIS
int iserase (filename)
char ∗filename;

DESCRIPTION
The iserase () function will remove the file specified by filename.

RETURN VALUE
A value of -1 is returned if an error was detected and iserrno is set to indicate the error.
Otherwise a value of 0 is returned.

ERRORS
The following ISAM errors are possible, under the conditions given:

[EFNAME] The ISAM filename is too long or otherwise invalid.

[EFLOCKED] The ISAM file is locked by another process.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 81

isindexinfo() ISAM

NAME
isindexinfo - access file information

SYNOPSIS
int isindexinfo (isfd, buffer, number)
int isfd;
struct keydesc ∗buffer;
/∗ buffer may be a pointer to ∗/
/∗ a dictinfo structure instead. ∗/
int number;

DESCRIPTION
The isindexinfo() function gives the caller access to information about the file, such as
information about the defined indexes, their location within the record, their length, and
whether duplicate values are allowed.

Information about a particular index is obtained by specifying the number of the index
using the number parameter. For a file without primary index, number set to 1 identifies the
physical index; in the information that is returned, k_nparts is set to 0. General information
such as (maximum) data record size, indication of variable length records allowance (the
most significant bit of di_nkeys being set), the number of indexes, index record size, and
data record size is obtained by calling isindexinfo() with the number parameter set to 0 and
reading the buffer into a structure of type dictinfo. The minimum record length is returned
in the global integer isreclen. If the file was built without specification of a primary index,
the physical index is included in the dictinfo information.

The buffer parameter can contain information in the format of either keydesc or dictinfo
depending on whether the number parameter is positive or 0, respectively. As indexes are
added and deleted, the number of a particular index may vary. To ensure review of all
indexes, loop over the number of indexes indicated in dictinfo (see structure definitions in
Chapter 8, The <isam.h> Header).

RETURN VALUE
A value of -1 is returned if an error was detected and iserrno is set to indicate the error.
Otherwise a value of 0 is returned.

ERRORS
The following ISAM errors are possible, under the conditions given:

[EBADARG] This error will occur if an improper value is used for the number parameter.

[ENOTOPEN] The ISAM file descriptor isfd does not correspond to an open ISAM file.

X/Open Developers’ Specification (1990)
Page : 82 Indexed Sequential Access Method (ISAM)

ISAM islock()

NAME
islock - lock an ISAM file

SYNOPSIS
int islock (isfd)
int isfd;

DESCRIPTION
The islock () function will lock the entire file that is specified by isfd . More discussion of
locking can be found in Chapter 5, Locking.

RETURN VALUE
A value of -1 is returned if an error was detected and iserrno is set to indicate the error.
Otherwise a value of 0 is returned.

ERRORS
The following ISAM errors are possible, under the conditions given:

[ELOCKED] The entire file or at least one record of the file has been locked by another
process.

[ENOTOPEN] The ISAM file descriptor isfd does not correspond to an open ISAM file.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 83

isopen() ISAM

NAME
isopen - open an ISAM file

SYNOPSIS
int isopen (filename, mode)
char ∗filename;
int mode;

DESCRIPTION
The isopen() function is used to open an ISAM file for processing. The function will return
the file descriptor that should be used in subsequent accesses to the file.

This call will automatically position the current record pointer just before any possible
first record in the order of the primary index. If another ordering is desired, the isstart()
call can be used to select another index. More information about the difference between
positioning with isopen() and isstart() can be found in Section 9.4, Current Record
Position.

The filename parameter must contain a null-terminated string, which is the name of the file
to be processed.

The mode parameter determines the locking information. The user has three options:
manual, automatic or exclusive. Selecting the manual option indicates that the user
wishes to be responsible for locking records at the appropriate times. Selecting automatic
locking indicates that the user wishes to lock each record as it is read and unlock it after
any subsequent function calls. Selection of exclusive locking will deny file access to
anyone other than this process. More information about locking can be found in Chapter
5, Locking. The mode parameter also specifies whether the file is to be opened for read,
write or read/write access.

If the file allows variable length records, the ISVARLEN option must be added to the mode
parameter. In this case the global integer isreclen is set to indicate the maximum record
length allowed for the file. If neither ISFIXLEN nor ISVARLEN is specified, ISFIXLEN is
assumed.

The mode is specified by using the define macros that are found in the header <isam.h>,
for which a complete listing can be found in Chapter 8, The <isam.h> Header. Modes that
are used in the isopen() function are the arithmetic sum of a lock mode, an access mode
and optionally a record type:

Lock Modes Access Modes Record Types

ISEXCLLOCK ISINPUT ISFIXLEN
ISMANULOCK ISOUTPUT ISVARLEN
ISAUTOLOCK ISINOUT

RETURN VALUE
Upon successful completion, the file descriptor is returned. Otherwise a value of -1 is
returned and iserrno is set to indicate the error.

X/Open Developers’ Specification (1990)
Page : 84 Indexed Sequential Access Method (ISAM)

ISAM isopen()

ERRORS
The following ISAM errors are possible, under the conditions given:

[EBADARG] One of the parameter values specified is illegal. In particular, this error
will occur if an improper value is used for the mode parameter or if the
file type indication stored in the file conflicts with the mode parameter.

[EFLOCKED] The file has been exclusively locked by another process.

[EFNAME] The ISAM filename is too long or otherwise invalid.

[ETOOMANY] The maximum number of open files would be exceeded if the ISAM file
were opened.

WARNING
If ISVARLEN is specified and the implementation does not support files having variable
length records, no error might be returned, and applications depending on the setting of
isreclen will not function correctly.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 85

isread() ISAM

NAME
isread - read records

SYNOPSIS
int isread (isfd, record, mode)
int isfd;
char ∗record;
int mode;

DESCRIPTION
The isread() function is used to read records sequentially or randomly as indicated by the
mode parameter.

When sequential processing is desired, mode must specify which record is to be read. It
may take one of the following values:

ISCURR current
ISFIRST first record
ISLAST last record
ISNEXT next record
ISPREV previous record

When random selection is desired, mode must specify the value of the record to be
returned relative to the specified search value. This value may be one of:

ISEQUAL equal to
ISGREAT greater than
ISGTEQ greater than or equal to

The search value is placed in the record buffer in the correct byte positions.

The isread() function will fill in the record with the results of the search. The mode is
specified by using the define macros that are found in the header <isam.h>. Refer to
Chapter 8, The <isam.h> Header, for the contents of this file.

The isread() function can also read records specified by a previously set isrecnum. First,
call isstart() with k_nparts=0 so that the file is set to read in physical order. Then call
isread() with mode=ISEQUAL. This will cause isread() to look at isrecnum for the desired
record.

Following the successful execution of this call, the current record position and isrecnum
will both be set to indicate the record just read.

If the file allows variable length records, the global integer isreclen is set after a successful
call to indicate the number of bytes in the record buffer that define the actual record
returned.

The contents of the bytes in the record buffer beyond the value of isreclen are implementor-
defined.

If manual locking was specified when the file was opened and the record is to be locked
before being read, the ISLOCK flag may be arithmetically added to one of the above
macros. The record will then remain locked until unlocked with the isrelease () or

X/Open Developers’ Specification (1990)
Page : 86 Indexed Sequential Access Method (ISAM)

ISAM isread()

isunlock() function call. Entire files may be locked and unlocked by using the islock () and
isunlock() or isrelease () calls.

If isread(), with flag ISLOCK and modes ISCURR, ISNEXT or ISPREV, tries to access a record
locked by another process both isrecnum and the current record pointer remains
unchanged. An error [ELOCKED] will be returned.

If isread(), with flag ISLOCK and modes ISFIRST, ISLAST, ISEQUAL, ISGREAT or ISGTEQ,
tries to access a record locked by another process both isrecnum and the current record
position will point to the locked record. The iserrno variable will be set to [ELOCKED] and
record will not point to any valid data.

If the ISLOCK flag is used with modes ISNEXT or ISPREV, an ISSKIPLOCK option is
provided giving the capability to read past/before a locked record by two successive
isread() calls. Using this option both isrecnum and the current record position will point to
the locked record. The iserrno variable will be set to [ELOCKED] and record will not point to
any valid data. Using automatic lockmode, the option ISSKIPLOCK may be used (without
the ISLOCK flag being set) to achieve the same behaviour as just described for manual
locking mode.

Using manual lockmode it is always possible to read a record locked by another process if
no ISLOCK flag is specified. But it is not possible to lock, rewrite or delete such a record.
Thus locking is an advisory and not a mandatory feature for read access within ISAM.

Modes that are used in the isread() call are the arithmetic sum of a read mode and one or
both of the optional lock modes:

Read Modes Lock Modes

ISCURR ISLOCK
ISNEXT ISSKIPLOCK (with ISNEXT or ISPREV)
ISPREV
ISFIRST
ISLAST
ISEQUAL
ISGREAT
ISGTEQ

RETURN VALUE
A value of -1 is returned if an error was detected and iserrno is set to indicate the error.
Otherwise a value of 0 is returned.

ERRORS
The following ISAM errors are possible, under the conditions given:

[EBADARG] One of the parameter values specified is illegal. In particular, this error will
occur if an improper value is used for the mode parameter.

[EENDFILE] The end of the file has been reached. This error can occur if the sequential
processing modes ISNEXT or ISPREV are used; or if the modes ISFIRST or
ISLAST are used while accessing an empty file.

[ELOCKED] The record or the entire file has been locked by another process. This error
can occur only if the read is done with locking; a read without locking will

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 87

isread() ISAM

not be blocked. (A read is done with locking if the file has been opened in the
ISAUTOLOCK mode, or if it has been opened in the ISMANULOCK mode, and
ISLOCK is used in the mode specification of isread().)

[ENOCURR] The current record pointer has not been set, or is invalid, or the current
record has been deleted by another process. In the last case this error can
occur only if the mode ISCURR is used.

[ENOREC] The specified record cannot be found. This error can occur only if the
random access modes ISEQUAL, ISGREAT or ISGTEQ are used.

[ENOTOPEN] The ISAM file descriptor isfd does not correspond to an open ISAM file, or the
file has been opened with access mode ISOUTPUT.

X/Open Developers’ Specification (1990)
Page : 88 Indexed Sequential Access Method (ISAM)

ISAM isrelease()

NAME
isrelease - unlock records

SYNOPSIS
int isrelease (isfd)
int isfd;

DESCRIPTION
The isrelease () function unlocks records that have been locked using the ISMANULOCK
mode in the isread() call (when in manual locking mode) or the currently locked records, if
any (when in automatic locking mode). All locked records in the file indicated by isfd will
be unlocked. More information, including examples of how to use isrelease (), can be found
in Chapter 5, Locking.

RETURN VALUE
A value of -1 is returned if an error was detected and iserrno is set to indicate the error.
Otherwise a value of 0 is returned.

ERRORS
The following ISAM error is possible, under the condition given:

[ENOTOPEN] The ISAM file descriptor isfd does not correspond to an open ISAM file.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 89

isrename() ISAM

NAME
isrename - rename an ISAM file

SYNOPSIS
int isrename (oldname, newname)
char ∗oldname;
char ∗newname;

DESCRIPTION
The isrename() function will rename the file specified by the oldname parameter to the
name specified by the newname parameter.

RETURN VALUE
A value of -1 is returned if an error was detected and iserrno is set to indicate the error.
Otherwise a value of 0 is returned.

ERRORS
The following ISAM errors are possible, under the conditions given:

[EFNAME] The ISAM filename oldname or newname is too long, or otherwise invalid.

[EFLOCKED] The ISAM file is locked by another process.

X/Open Developers’ Specification (1990)
Page : 90 Indexed Sequential Access Method (ISAM)

ISAM isrewcurr()

NAME
isrewcurr - rewrite current record

SYNOPSIS
int isrewcurr (isfd, record)
int isfd;
char ∗record;

DESCRIPTION
The isrewcurr() function is used to rewrite the current record of the file indicated by isfd
with the contents of the character array record. All fields, including primary key fields, can
be changed. Each index (primary inclusive) will be appropriately updated. The current
record position must be directly on a valid record for a successful execution of the
isrewcurr() function call. It is not possible to rewrite a previously deleted record.

If the file allows variable length records, the global integer isreclen must be set prior to the
call to indicate the number of bytes in the record buffer that define the actual record to be
written.

The isrewcurr() function is useful when the primary key is not unique and the record
cannot be located and rewritten in one call. The current record position points to the new
position of the record after the successful execution of this function call.

The isrecnum variable is set to indicate the current record. Its position is left unchanged
unless the key value of the current record is changed for the selected index. In the latter
case the current record position is changed to point to the record with the new key value.
A read next/previous record (isread(), ISNEXT or ISPREV) results in reading the
next/previous record in relation to the new key value. This is not consistent with COBOL
requirements that the file position indicator should not be affected. The isrewrec() or
isrewrite() function calls can be used instead to fulfil that requirement.

When the value of a specific index that allows duplicates is changed, the record is logically
positioned last within the set of duplicate records containing that value.

RETURN VALUE
A value of -1 is returned if an error was detected and iserrno is set to indicate the error.
Otherwise a value of 0 is returned.

ERRORS
The following ISAM errors are possible, under the conditions given:

[EBADARG] The value of the global integer isreclen is unacceptable.

[EDUPL] The rewrite would add a duplicate value in an index, in which duplicates are
not allowed.

[ELOCKED] The record or the entire file has been locked by another process.

[ENOCURR] The current record pointer has not been set, or is invalid, or the current
record has been deleted by another process.

[ENOTOPEN] The ISAM file descriptor isfd does not correspond to an open ISAM file, or the
file has not been opened with access mode ISINOUT.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 91

isrewrec() ISAM

NAME
isrewrec - rewrite record specified by record number

SYNOPSIS
int isrewrec (isfd, recnum, record)
int isfd;
long recnum;
char ∗record;

DESCRIPTION
The isrewrec() function is used to rewrite the record specified by recnum in the file
indicated by isfd with the contents of the character array record.

If the file allows variable length records, the global integer isreclen must be set prior to the
call to indicate the number of bytes in the record buffer that define the actual record to be
written.

The recnum argument must be a previously obtained isrecnum value that identifies an
existing record. Each index (primary inclusive) will be appropriately updated.

The isrewrec() function is useful when the primary key is not unique and the record cannot
be located and rewritten in one call while the current record position should remain
unchanged.

The isrecnum variable will be set to the value of recnum, while the current record position
will remain unchanged.

If the key value of the current record is changed for the selected index, a read
next/previous record (isread(), ISNEXT or ISPREV) results in reading the next/previous
record in relation to the old key value. This is consistent with COBOL requirements that
the file position indicator is not affected.

When the value of a specific index that allows duplicates is changed, the record is logically
positioned last within the set of duplicate records containing that value. This is consistent
with COBOL requirements for maintaining the order of records in duplicate chains.

RETURN VALUE
A value of -1 is returned if an error was detected and iserrno is set to indicate the error.
Otherwise a value of 0 is returned.

ERRORS
The following ISAM errors are possible, under the conditions given:

[EBADARG] The value of the global integer isreclen is unacceptable.

[EDUPL] The rewrite would add a duplicate value in an index, in which duplicates are
not allowed.

[ELOCKED] The record or the entire file has been locked by another process.

[ENOREC] No record could be found using the specified recnum.

[ENOTOPEN] The ISAM file descriptor isfd does not correspond to an open ISAM file, or the
file has not been opened with access mode ISINOUT.

X/Open Developers’ Specification (1990)
Page : 92 Indexed Sequential Access Method (ISAM)

ISAM isrewrite()

NAME
isrewrite - rewrite record specified by primary key

SYNOPSIS
int isrewrite (isfd, record)
int isfd;
char ∗record;

DESCRIPTION
The isrewrite() function is used to change one or more values for a record that is already in
a file identified by isfd . All fields but the primary key field can be changed. The primary
index definition for the file must not allow duplicates. The record parameter contains the
changes. The primary key field is used to identify the record to be changed, while the
other fields contain the changes.

If the file allows variable length records, the global integer isreclen must be set prior to the
call to indicate the number of bytes in the record buffer that define the actual record to be
written.

The isrewrite() function does not change the position of the current record pointer, while
isrecnum is set to indicate this record.

If the key value of the current record is changed for the selected index, a read
next/previous record (isread(), ISNEXT or ISPREV) results in reading the next/previous
record in relation to the old key value. This is consistent with COBOL requirements that the
file position indicator is not affected.

When the value of a specific alternate index that allows duplicates is changed, the record is
logically positioned last within the set of duplicate records containing that value. This is
consistent with COBOL requirements for maintaining the order of records in duplicate
chains.

RETURN VALUE
A value of -1 is returned if an error was detected and iserrno is set to indicate the error.
Otherwise a value of 0 is returned.

ERRORS
The following ISAM errors are possible, under the conditions given:

[EBADARG] The value of the global integer isreclen is unacceptable.

[EDUPL] The rewrite would add a duplicate value in an index, in which duplicates are
not allowed.

[ELOCKED] The record or the entire file has been locked by another process.

[ENOREC] The specified record cannot be found or no primary key is defined for this
file.

[ENOTOPEN] The ISAM file descriptor isfd does not correspond to an open ISAM file, or the
file has not been opened with access mode ISINOUT.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 93

isstart() ISAM

NAME
isstart - select an index

SYNOPSIS
int isstart (isfd, keydesc, length, record, mode)
int isfd;
struct keydesc ∗keydesc;
int length;
char ∗record;
int mode;

DESCRIPTION
The isstart() function selects the index to be used in subsequent operations. The key value
to be sought should be placed in the record parameter, in the positions described by the
keydesc parameter. The keydesc structure must describe an index that has been added
previously using the isaddindex() call.

The length parameter is used to specify the part of the key to be considered significant
when doing the search. A zero indicates that the whole key is significant; a positive value
is used to indicate a shorter length. If length is greater than zero, the response during
searches will be as if the index were originally defined to have that shorter length.

The mode parameter may be ISFIRST, ISLAST, ISEQUAL, ISGREAT or ISGTEQ. It is used to
position the user in the file in association with the index selected by the keydesc argument.
An additional flag ISKEEPLOCK may be arithmetically added to the mode macros. With
automatic record locking this flag is used to enable the record lock to be kept.

ISFIRST positions the user’s program in the file just before the first record in the ordering of
the index specified in the keydesc parameter. A subsequent call to isread() using the
ISNEXT mode parameter reads the first record in the current ordering.

ISLAST positions the user’s program just after the last record in that ordering. A
subsequent call to isread() using the ISPREV mode parameter reads the last record in the
current ordering.

Note that if mode is ISFIRST or ISLAST, the parameters length and record are not needed and
are not used by the isstart() call.

Use of the ISEQUAL, ISGREAT or ISGTEQ modes is different from the use of the ISFIRST or
ISLAST modes. When using the former modes, the user’s program must place the key
value to be searched for in the record buffer before calling isstart(). The value to be
searched for must be placed in the location in the record buffer where the keydesc parameter
claims the index exists.

ISEQUAL will give one of two possible results. It will either find a record whose key value
is equal to that found in the appropriate positions of the record buffer parameter, or it will
return an error code -1 and set iserrno to [ENOREC]. The error code [ENOREC] indicates
that no record with the key value specified in the record buffer parameter exists in the file.

ISGREAT will also give one of two responses. It will either find the first record whose key
value is greater than the key value specified in the appropriate positions of the record
buffer parameter, or isstart() will return an error condition -1 and set iserrno to [ENOREC].

X/Open Developers’ Specification (1990)
Page : 94 Indexed Sequential Access Method (ISAM)

ISAM isstart()

The ISGTEQ mode parameter finds the first record whose key value is greater than or equal
to the key value specified in the appropriate positions of the record buffer parameter. If no
such record is found, isstart() returns an error code -1 and sets iserrno to [ENOREC]. If
isstart() returns an error code the current record position is undefined.

If ISKEEPLOCK is specified isstart() will not unlock any record lock using automatic record
locking. Without this option isstart() will unlock any record if executed successfully.

The above macros, ISFIRST, ISLAST, ISEQUAL, ISGREAT and ISGTEQ and the lock option
ISKEEPLOCK are defined in the header <isam.h>.

The isstart() function can also be used for sequential access in physical order by specifying
a previously defined key that has zero parts; i.e., give a value to keydesc to designate a
structure in which k_nparts=0 (see isread()).

The isstart() function performs two basic functions. It selects the index that is to be used
for subsequent reads, and it finds (but does not read) a record in the file. The isstart()
function need not be used to find each record before it is read using isread().

Following the successful execution of this call, the current record position and isrecnum
will both be set to indicate this record. The current record position is set just before (using
modes ISFIRST, ISEQUAL, ISGREAT and ISGTEQ) or just after (mode ISLAST) the record
found. This means that the selected record cannot directly be manipulated by an
isdelcurr() or isrewcurr() function call, but it can be read with isread() to set the current
record pointer directly on the record for further manipulation.

More information about positioning the current record pointer with isstart() can be found
in Section 9.4, Current Record Position.

RETURN VALUE
A value of -1 is returned if an error was detected and iserrno is set to indicate the error.
Otherwise a value of 0 is returned.

ERRORS
The following ISAM errors are possible, under the conditions given:

[EBADARG] One of the parameter values specified is illegal. In particular, this error will
occur if an improper value is used for the mode parameter.

[EBADKEY] Error in key description; one of the elements of the key description has an
unacceptable value.

[ENOREC] The specified record cannot be found. This error can occur only if the
random access modes ISEQUAL, ISGREAT or ISGTEQ are used.

[ENOTOPEN] The ISAM file descriptor isfd does not correspond to an open ISAM file, or the
file has been opened with access mode ISOUTPUT.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 95

isunlock() ISAM

NAME
isunlock - unlock an ISAM file

SYNOPSIS
int isunlock (isfd)
int isfd;

DESCRIPTION
The isunlock() function is used to release an existing file-level lock for the file specified by
the file descriptor isfd . Further discussion of locking can be found in Chapter 5, Locking.

RETURN VALUE
A value of -1 is returned if an error was detected and iserrno is set to indicate the error.
Otherwise a value of 0 is returned.

ERRORS
The following ISAM error is possible, under the condition given:

[ENOTOPEN] The ISAM file descriptor isfd does not correspond to an open ISAM file.

X/Open Developers’ Specification (1990)
Page : 96 Indexed Sequential Access Method (ISAM)

ISAM iswrcurr()

NAME
iswrcurr - write record and set current position

SYNOPSIS
int iswrcurr (isfd, record)
int isfd;
char ∗record;

DESCRIPTION
The iswrcurr() function writes the record passed to it in the record parameter to the data
file identified by isfd . The appropriate values will be inserted into each index that is
defined.

If the file allows variable length records, the global integer isreclen must be set prior to the
call to indicate the number of bytes in the record buffer that define the actual record to be
written.

Following the successful execution of this call, the current record position and isrecnum
will both be set to indicate this record.

If the error [EDUPL] is returned the current record position and isrecnum remain
unchanged. If other kinds of errors are returned the current record position is undefined.

RETURN VALUE
A value of -1 is returned if an error was detected and iserrno is set to indicate the error.
Otherwise a value of 0 is returned.

ERRORS
The following ISAM errors are possible, under the conditions given:

[EBADARG] The value of the global integer isreclen is unacceptable.

[EDUPL] The write would add a duplicate value in an index, in which duplicates are
not allowed.

[ELOCKED] The file has been locked by another process.

[ENOTOPEN] The ISAM file descriptor isfd does not correspond to an open ISAM file, or the
file has been opened with access mode ISINPUT.

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 97

iswrite() ISAM

NAME
iswrite - write record

SYNOPSIS
int iswrite (isfd, record)
int isfd; char ∗record;

DESCRIPTION
The iswrite() function writes the record passed to it in the record parameter to the file. The
appropriate values will be inserted into each index that is defined.

If the file allows variable length records, the global integer isreclen must be set prior to the
call to indicate the number of bytes in the record buffer that define the actual record to be
written.

The iswrite() function does not change the position of the current record pointer, but
isrecnum is set to indicate this record.

RETURN VALUE
A value of -1 is returned if an error was detected and iserrno is set to indicate the error.
Otherwise a value of 0 is returned.

ERRORS
The following ISAM errors are possible, under the conditions given:

[EBADARG] The value of the global integer isreclen is unacceptable.

[EDUPL] The write would add a duplicate value in an index, in which duplicates are
not allowed.

[ELOCKED] The file has been locked by another process.

[ENOTOPEN] The ISAM file descriptor isfd does not correspond to an open ISAM file, or the
file has been opened with access mode ISINPUT.

X/Open Developers’ Specification (1990)
Page : 98 Indexed Sequential Access Method (ISAM)

Index

access mode: 2, 52, 68, 73, 77-80, 88, 91-93,
95, 97

application portability: 1, 5
array: 7, 11, 64
automatic record locking: 3, 17, 61, 67,

94-95
buffer: 8, 38, 82, 86, 94-95
byte: 1, 7-10, 60-61, 64, 86
C: 1-2, 5, 7-9, 21-23, 38, 74

function: 38
language: 5, 8-9, 24, 34
language examples: 21
program: 9, 24-39, 41-47

chaining: 41
char: 7, 29, 34-35, 39, 47, 51, 55, 74, 78, 84,

86, 90-94, 97
char pointer: 7
character array: 91-92
CHARSIZE: 60
CHARTYPE: 3, 7, 12, 21, 23, 25, 28, 47, 60
COBOL: 1, 22-23, 48, 55-56, 63

language examples: 21
program: 48

COBOL I-O status: 52
COMPRESS: 11-13, 25, 28, 47, 61, 64
conversion routines: 7
current record: 78, 91
current record pointer: 2
current record position: 2-3, 66-68, 77, 80,

86-87, 91-92, 95, 97
data types: 1-2, 6-8
decimal: 2, 6
dictinfo: 62, 82
double: 8
DOUBLESIZE: 28, 60
DOUBLETYPE: 7-8, 21, 28, 60
duplicates: 5
errno: 62
errno.h: 71
error code: 54, 62, 79, 94-95
error handling: 48
exception handling: 51
exception reporting: 63
exclusive file locking: 15

exclusive lock: 15, 26
file: 5, 10-11, 15-19, 21, 23-24, 26, 29, 34, 38,

52, 55, 61, 68-69, 73-75, 77-98
file and record locking: 1
file descriptor: 18, 63, 73-74, 76-80, 82-83,

88-89, 91-93, 95-98
file formats: 2
file level locking: 15
file position indicator: 3
filename: 52, 62, 69, 74-75, 81, 84-85, 90
files: 1, 7, 21, 23-24, 52, 69, 74-76, 85
float: 8
FLOATSIZE: 60
FLOATTYPE: 7-8, 60
format: 7
function: 2-3, 5, 9, 15-19, 23, 52, 63, 66-68,

73-74, 76-84, 86-87, 89-97
implementor: 17, 19, 69
implementor-defined: 55, 59
index:

compression: 13
primary: 2, 5, 41, 66, 74, 78-79, 82, 84,
93
secondary: 73

indexing: 9
int: 10, 91, 97
integer: 7-8, 23, 63-65, 79
interface: 1
INTSIZE: 10, 60
INTTYPE: 7, 10, 21, 23, 60
isaddindex: 10, 12, 15, 27, 73-74, 94
ISAM codes: 52
ISAM function: 71
isam.h: 1, 7-10, 12, 24, 26, 29, 34, 38, 42, 51,

59-60, 64, 71, 73-74, 82, 84, 86, 95
isaudit: 6
ISAUTOLOCK: 17, 35, 39, 43, 61, 75, 84
isbuild: 9, 15-18, 23-24, 59, 61, 63, 68-70,

74-75
isclose: 10, 12, 15-18, 24, 27, 30, 32, 35, 39,

43, 69, 76
ISCURR: 60, 66-67, 86-87
isdelcurr: 66-67, 77-78, 95
isdelete: 77-78, 80

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 99

Index

isdelindex: 15, 79
isdelrec: 80
ISDESC: 12
ISDUPS: 11-13, 28, 61, 64
ISEQUAL: 18, 40, 60, 66, 68, 86-87, 94-95
iserase: 81
iserrno: 10, 12, 24, 26-27, 30, 32, 35-36, 39-

40, 43, 45, 48, 51, 54, 62-63, 73, 75-84,
87, 89-98

ISEXCLLOCK: 10, 12, 15, 24, 26-27, 61, 75,
84

ISFIRST: 35-36, 60, 66, 68, 86-87, 94-95
ISFIXLEN: 61, 70, 74-75, 84
isflush: 6
ISGREAT: 60, 66, 68, 86-87, 94-95
ISGTEQ: 45, 60, 66, 68, 86-87, 94-95
isindexinfo: 70, 82
ISINOUT: 10, 12, 15-18, 24, 26-27, 43, 61,

68, 75, 84
ISINPUT: 35, 39, 61, 68, 75, 84
ISKEEPLOCK: 3, 6, 17, 19, 61, 94-95
ISLAST: 45, 60, 66, 68, 86-87, 94-95
islock: 16-17
ISLOCK: 18-19
islock: 19
ISLOCK: 60, 74
islock: 74, 83
ISLOCK: 86-87
islock: 87
ISMANULOCK: 16, 18, 30, 61, 75, 84, 89
ISNEXT: 17, 36, 60, 66-68, 86-87
ISNODUPS: 10, 13, 61, 64
isopen: 2, 10, 12, 15-18, 26-27, 30, 35, 39,

43, 59, 61, 63, 66, 68-70, 84
ISOUTPUT: 29-30, 61, 68, 75, 84
ISPREV: 45, 60, 66-68, 86-87, 94
isread: 3, 17-19, 36, 38, 40, 45, 59-60, 66-68,

70, 74, 77-78, 80, 86-89, 91-95
isreclen: 62, 70, 82, 86, 91
isrecnum: 62, 65-68, 77-78, 80, 86-87, 91-

93, 97
isrelease: 3, 17-19, 74, 86-87, 89
isrename: 90
isrewcurr: 3, 17, 66-67, 91, 95
isrewcurr(): 70
isrewrec: 3, 66, 91-92
isrewrec(): 70
isrewrite: 3, 66, 91, 93
isrewrite(): 70

issetunique: 6
ISSKIPLOCK: 3, 60, 67, 87
isstart: 3, 5, 17, 19, 35, 45, 59, 61, 66, 68, 84,

86, 94-95
isstat1: 2, 52-55, 62-63
isstat2: 2, 52-55, 62-63
isstat3: 4, 52-54, 56, 62-63
isstat4: 4, 52-54, 56, 62-63
isuniqueid: 6
isunlock: 3, 16-17, 19, 74, 87, 96
ISVARLEN: 61, 70, 74-75, 84
iswrcurr: 66, 97
iswrcurr(): 70
iswrite: 32, 43, 66, 98
iswrite(): 70
key compression: 1
key structure: 64
keydesc: 9-11, 13, 24-26, 28-29, 34, 37-38,

42, 47, 61, 64, 68, 73-74, 79, 82, 94-95
keypart: 9, 11, 61, 64
ldchar: 3, 7
lddbl: 8, 46, 60
ldfloat: 8, 60
ldint: 7, 60
ldlong: 8, 35, 39, 46, 60
lock: 3, 6, 15-19, 60-61, 74, 83-84, 87, 94-96
locking: 1-3, 5, 15-18, 61, 67-68, 74, 83-84,

86-88, 94-96
locks: 76
LONGSIZE: 12, 25, 47, 60
LONGTYPE: 7, 12, 21, 23, 25, 37, 47, 60
manual file locking: 3, 16, 19
manual record locking: 3, 17-19
maximum compression: 13
MAXKEYSIZE: 11, 59, 61, 73
mode parameter: 10
no compression: 13
NPARTS: 9, 11, 59, 61, 64, 73
null character: 3
null-terminated: 7, 74

character array: 3
string: 84

OPEN_MAX: 69
physical order: 2, 68, 86, 95
primary key: 41, 77
primary key field: 78
random access:

C: 38
record length: 70

X/Open Developers’ Specification (1990)
Page : 100 Indexed Sequential Access Method (ISAM)

Index

record level locking: 15, 17
record number of last call: 65
Record Types: 75
recordlength: 74
records: 70
return value: 63
secondary indexes: 26
sequential access: 95

C: 34
COBOL: 50

starting byte: 11
stchar: 3, 7, 31, 33, 44
stdbl: 8, 31, 44, 46
stfloat: 8
stint: 7-8, 31, 44
stlong: 8, 31, 33, 39, 44
string: 3, 7, 74
unlock: 3, 17-19, 74, 84, 89, 95
variable length: 4, 6, 70

X/Open Developers’ Specification (1990)
Indexed Sequential Access Method (ISAM) Page : 101

Index

X/Open Developers’ Specification (1990)
Page : 102 Indexed Sequential Access Method (ISAM)

