
Technical Standard

Resource ReSerVation Protocol API (RAPI)

The Open Group

 December 1998, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owners.

Technical Standard

Resource ReSerVation Protocol API (RAPI)

ISBN: 1-85912-226-4
Document Number: C809

Published in the U.K. by The Open Group, December 1998.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii Technical Standard

Contents

Chapter 1 Introduction... 1
 1.1 Purpose and Scope.. 1
 1.2 Terminology... 1
 1.3 Namespace Use... 2

Chapter 2 Overview... 3
 2.1 Positioning.. 3
 2.2 Reservation Model.. 3
 2.3 API Outline .. 4

Chapter 3 Event Upcall .. 7
 rapi_event_rtn_t() ... 8

Chapter 4 Client Library Services ... 11
 rapi_release().. 12
 rapi_reserve() ... 13
 rapi_sender() .. 15
 rapi_session() ... 17
 rapi_strerror() .. 19
 rapi_version ()... 20

Chapter 5 RAPI Formatting Routines ... 21
 rapi_fmt_adspec () .. 22
 rapi_fmt_filtspec() ... 23
 rapi_fmt_flowspec()... 24
 rapi_fmt_tspec ()... 25

Chapter 6 RAPI Objects .. 27
 6.1 Flowspecs ... 27
 6.1.1 RAPI_FLOWSTYPE_Simplified.. 27
 6.1.2 RAPI_FLOWSTYPE_Intserv.. 27
 6.1.3 Upcalls.. 27
 6.2 Sender Tspecs... 28
 6.2.1 RAPI_TSPECTYPE_Simplified ... 28
 6.2.2 RAPI_TSPECTYPE_Intserv ... 28
 6.2.3 Upcalls.. 28
 6.3 Adspecs... 28
 6.3.1 RAPI_ADSTYPE_Simplified ... 28
 6.3.2 RAPI_ADSTYPE_Intserv ... 28
 6.3.3 Upcalls.. 28
 6.4 Filter Specs and Sender Templates.. 29
 6.5 Policy Data Objects... 29

Resource ReSerVation Protocol API (RAPI) iii

Contents

Chapter 7 Use with select() or poll().. 31
 rapi_dispatch ()... 32
 rapi_getfd () .. 33

Chapter 8 Error Handling... 35
 8.1 Introduction ... 35
 8.2 RAPI Error Codes ... 35
 8.3 RSVP Error Codes... 36

Chapter 9 Header File ... 37
 9.1 Integer and Floating Point Types... 37
 9.2 The <rapi.h> Header .. 37
 9.2.1 General Definitions.. 37
 9.2.2 Tspec Definitions.. 38
 9.2.3 Flowspec Definitions... 39
 9.2.4 Adspec Definitions .. 41
 9.2.5 Filter Spec Definitions... 42
 9.2.6 Policy Definitions... 43
 9.2.7 Reservation Style Definitions .. 44
 9.2.8 Function Interface Definitions... 44
 9.3 Integrated Services Data Structures and Macros 46
 9.3.1 General Definitions.. 46
 9.3.2 Generic Tspec format .. 48
 9.3.3 Formats for Controlled-Load Service .. 49
 9.3.4 Formats for Guaranteed Service ... 50
 9.3.5 Basic Adspec Pieces... 51
 9.3.6 Integrated Services Flowspec.. 51
 9.3.7 Integrated Services Tspec... 52
 9.3.8 Integrated Services Adspec ... 52

Appendix A Example Implementation.. 53
 A.1 Protocols ... 53
 A.2 RAPI Sessions .. 54
 A.3 Implementation Restrictions .. 54
 A.4 Implementation Model.. 55

 Glossary ... 57

 Index... 61

List of Figures

2-1 RAPI State Diagram .. 5
A-1 ISI RAPI Implementation Model .. 55

iv Technical Standard

Preface

The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers and
suppliers of technology. Its mission is to cause the development of a viable global information
infrastructure that is ubiquitous, trusted, reliable, and as easy-to-use as the telephone. The
essential functionality embedded in this infrastructure is what we term the IT DialTone. The
Open Group creates an environment where all elements involved in technology development
can cooperate to deliver less costly and more flexible IT solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the Open
Software Foundation (founded in 1988), The Open Group is supported by most of the world’s
largest user organizations, information systems vendors, and software suppliers. By combining
the strengths of open systems specifications and a proven branding scheme with collaborative
technology development and advanced research, The Open Group is well positioned to meet its
new mission, as well as to assist user organizations, vendors, and suppliers in the development
and implementation of products supporting the adoption and proliferation of systems which
conform to standard specifications.

With more than 200 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• Consolidating, prioritizing, and communicating customer requirements to vendors

• Conducting research and development with industry, academia, and government agencies to
deliver innovation and economy through projects associated with its Research Institute

• Managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• Adopting, integrating, and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• Licensing and promoting the Open Brand, represented by the ‘‘X’’ Device, that designates
vendor products which conform to Open Group Product Standards

• Promoting the benefits of the IT DialTone to customers, vendors, and the public

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development, and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trademark on behalf of the industry.

Resource ReSerVation Protocol API (RAPI) v

Preface

Development of Product Standards

This process includes the identification of requirements for open systems and, now, the IT
DialTone, development of Technical Standards (formerly CAE and Preliminary Specifications)
through an industry consensus review and adoption procedure (in parallel with formal
standards work), and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product.

The ‘‘X’’ Device is used by vendors to demonstrate that their products conform to the relevant
Product Standard. By use of the Open Brand they guarantee, through the Open Brand Trade
Mark License Agreement (TMLA), to maintain their products in conformance with the Product
Standard so that the product works, will continue to work, and that any problems will be fixed
by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on development of Technical Standards and product documentation, but which also
includes Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry
surveys, and business titles.

There are several types of specification:

• Technical Standards (formerly CAE Specifications)

The Open Group Technical Standards form the basis for our Product Standards. These
Standards are intended to be used widely within the industry for product development and
procurement purposes.

Anyone developing products that implement a Technical Standard can enjoy the benefits of a
single, widely supported industry standard. Where appropriate, they can demonstrate
product compliance through the Open Brand. Technical Standards are published as soon as
they are developed, so enabling vendors to proceed with development of conformant
products without delay.

• CAE Specifications

CAE Specifications and Developers’ Specifications published prior to January 1998 have the
same status as Technical Standards (see above).

• Preliminary Specifications

Preliminary Specifications have usually addressed an emerging area of technology and
consequently are not yet supported by multiple sources of stable conformant
implementations. They are published for the purpose of validation through implementation
of products. A Preliminary Specification is as stable as can be achieved, through applying
The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organizations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a Technical Standard.
While the intent is to progress Preliminary Specifications to corresponding Technical
Standards, the ability to do so depends on consensus among Open Group members.

vi Technical Standard

Preface

• Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif, and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as Technical Standards, in which case the relevant Technology
Specification is superseded by a Technical Standard.

In addition, The Open Group publishes:

• Product Documentation

This includes product documentation—programmer’s guides, user manuals, and so on—
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides

These provide information that is useful in the evaluation, procurement, development, or
management of open systems, particularly those that relate to the Technical Standards or
Preliminary Specifications. The Open Group Guides are advisory, not normative, and should
not be referenced for purposes of specifying or claiming conformance to a Product Standard.

• Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Program. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

Versions and Issues of Specifications

As with all live documents, Technical Standards and Specifications require revision to align with
new developments and associated international standards. To distinguish between revised
specifications which are fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/corrigenda.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.opengroup.org/pubs.

Resource ReSerVation Protocol API (RAPI) vii

Preface

This Document

This Technical Standard is based on the Internet Engineering Task force (IETF) Internet Draft
version 5 for RAPI, which is a specific Application Programming Interface (API) for the Resource
ReSerVation Protocol (RSVP). Rather than develop this into an IETF RFC document, the IETF
have deferred to The Open Group to develop RAPI into an open systems standard.

The RAPI interface is one realization of the generic API contained in the RSVP Functional
Specification (see referenced document RFC 2205).

Intended Audience

This specification is intended for programmers who wish to implement RAPI, and those who
wish to write applications to use it.

Structure

• Chapter 1 defines key terminology usage, and describes the compilation environment,
namespace use and reserved identifiers.

• Chapter 2 provides an overview of the RAPI subject area.

• Chapter 3 gives the reference page definition for Event Upcalls.

• Chapter 4 gives the reference page definitions for the Client Library Services.

• Chapter 5 gives the reference page definitions for the RAPI Formatting Routines.

• Chapter 6 describes flowspecs, filter specs, sender templates, and sender Tspecs, which are
encoded as variable-length RAPI objects.

• Chapter 7 describes the use of RAPI with select() and/or poll ().

• Chapter 8 describes Error Handling.

• Chapter 9 defines what the header file <rapi.h> must contain.

• Appendix A gives some general information on the implementation of RAPI which is
distributed with the ISI release of RSVP code.

A Glossary and Index are also provided.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, and type names.

• Italic strings are used for emphasis. Italics in text also denote:

— command operands, command option-arguments or variable names, for example,
substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name(); names without parentheses are C external
variables, C function family names, utility names, command operands or command
option-arguments.

viii Technical Standard

Preface

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

• The notation [ABCD] is used to identify an error value ABCD.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [] , are part of the syntax and do not indicate optional
items. In syntax, the | symbol is used to separate alternatives, and ellipses (...) are used to
show that additional arguments are optional. Bold fixed width font is used to identify
brackets that surround optional items in syntax, [] , and to identify system output in
interactive examples.

Resource ReSerVation Protocol API (RAPI) ix

Trademarks

Motif, OSF/1, UNIX, and the ‘‘X Device’’ are registered trademarks and IT DialToneTM

and The Open GroupTM are trademarks of The Open Group in the U.S. and other countries.

x Technical Standard

Acknowledgements

The Open Group gratefully acknowledges the permission of the authors—R.Braden (ISI) and
D.Hoffman (Sun Microsystems)—of the IETF Internet Draft for RAPI (An RSVP Application
Programming Interface, Version 5, June 16, 1997), for their approval to use their draft as the basis
for this RAPI Technical Standard.

Resource ReSerVation Protocol API (RAPI) xi

Referenced Documents

The following documents are referenced in this Technical Standard:

RFC 791
Internet Protocol, J. Postel, September 1981. Status: Standard.

RFC 1700
Assigned Numbers, J Reynolds, J. Postel, October 1994. Status: Standard.

RFC 2205
Resource ReSerVation Protocol (RSVP) — Version 1 Functional Specification, R. Braden, L.
Zhang, S. Berson, September 1997. Status: Proposed Standard.

RFC 2210
The Use of RSVP with IETF Integrated Services, J. Wroclawski, September 1997. Status:
Proposed Standard.

RFC 2211
Specification of the Controlled-Load Network Element Service, J. Wroclawski. September
1997. Status: Proposed Standard.

RFC 2212
Specification of Guaranteed Quality of Service, S. Shenker, C. Partridge, R. Guerin,
September 1997. Status: Proposed Standard.

RFC 2215
General Characterization Parameters for Integrated Service Network Elements, S. Shenker,
J. Wroclawski, September 1997. Status: Proposed Standard.

XNS, Issue 5
CAE Specification, February 1997, Networking Services, Issue 5 (ISBN: 1-85912-165-9, C523),
published by The Open Group.

XSH, Issue 5
CAE Specification, January 1997, System Interfaces and Headers, Issue 5
(ISBN: 1-85912-181-0, C606), published by The Open Group.

The following referenced documents are not necessary for implementation of the specification,
but provide additional information likely to be of value to implementors or application writers:

RFC 1825
Security Architecture for the Internet Protocol, commonly known as IPSEC, R. Atkinson,
August 1995. Status: Proposed Standard.

RFC 1826
Internet Protocol Authentication Header, R. Atkinson, August 1995. Status: Draft Standard.

RFC 1827
Internet Protocol Encapsulating Security Payload (ESP), R. Atkinson, August 1995. Status:
Draft Standard.

RFC 2207
RSVP Extensions for IPSEC Data Flows, L. Berger, T. O’Malley, September 1997.

xii Technical Standard

Referenced Documents

RFC 2208
Resource ReSerVation Protocol (RSVP) — Version 1 Applicability Statement: Some
Guidelines on Deployment, A. Mankin, Ed., F. Baker, B. Braden, S. Bradner, M. O‘Dell, A.
Romanow, A. Weinrib, L. Zhang, September 1997. Status: Informational.

RFC 2209
Resource ReSerVation Protocol (RSVP) — Version 1: Message Processing Rules, R. Braden, L.
Zhang, September 1997. Status: Informational.

RFC 2216
Network Element Service Specification Template, S. Shenker, J. Wroclawski, September
1997. Status: Informational.

Resource ReSerVation Protocol API (RAPI) xiii

Referenced Documents

xiv Technical Standard

Chapter 1

Introduction

1.1 Purpose and Scope
RAPI is a specific Application Programming Interface (API) for the Resource ReSerVation
Protocol (RSVP).

The RAPI interface is one realization of the generic API contained in the RSVP Functional
Specification (see reference RFC 2205). This Resource ReSerVation Protocol (RSVP) describes a
resource reservation setup protocol designed for an integrated services Internet. RSVP provides
receiver-initiated setup of resource reservations for multicast or unicast data flows. See the
RSVP applicability statement in reference RFC 2210.

RSVP is designed to be used in conjunction with the Internet Protocol (IP, see reference RFC
791). It may be used in conjunction with either IP version 4 (IPv4) or IP version 6 (IPv6) of that
protocol. The definition of RAPI assumes use of RSVP in conjunction with IP, and contains some
provisions that are IP-specific.

The RAPI interface is a set of C language bindings whose calls are defined in this specification.

1.2 Terminology
The following terms are used in this specification:

can
This describes a permissible optional feature or behavior available to the user or application; all
systems support such features or behavior as mandatory requirements.

implementation-dependent
The value or behavior is not consistent across all implementations. The provider of an
implementation normally documents the requirements for correct program construction and
correct data in the use of that value or behavior. When the value or behavior in the
implementation is designed to be variable or customizable on each instantiation of the system,
the provider of the implementation normally documents the nature and permissible ranges of
this variation. Applications that are intended to be portable must not rely on implementation-
dependent values or behavior.

may
With respect to implementations, the feature or behavior is optional. Applications should not
rely on the existence of the feature. To avoid ambiguity, the reverse sense of may is expressed as
need not , instead of may not .

must
This describes a requirement on the application or user.

should
With respect to implementations, the feature is recommended, but it is not mandatory.
Applications should not rely on the existence of the feature.

With respect to users or applications, the word means recommended programming practice that
is necessary for maximum portability.

Resource ReSerVation Protocol API (RAPI) 1

Terminology Introduction

undefined
A value or behavior is undefined if this document imposes no portability requirements on
applications for erroneous program constructs or erroneous data. Implementations may specify
the result of using that value or causing that behavior, but such specifications are not guaranteed
to be consistent across all implementations. An application using such behavior is not fully
portable to all systems.

unspecified
A value or behavior is unspecified if this document imposes no portability requirements on
applications for correct program construct or correct data. Implementations may specify the
result of using that value or causing that behavior, but such specifications are not guaranteed to
be consistent across all implementations. An application requiring a specific behavior, rather
than tolerating any behavior when using that functionality, is not fully portable to all systems.

will
This means that the behavior described is a requirement on the implementation and applications
can rely on its existence.

1.3 Namespace Use
Feature test macro _XOPEN_SOURCE is used to control use of the namespace by
implementations of this specification.

All identifiers used in the normative sections of this specification are defined in <rapi.h> (see
Chapter 9 on page 37). In order to use the API defined in this specification, an application
should define macro _XOPEN_SOURCE with a value of at least 500 before including header file
<rapi.h>. When this is done:

• The symbols specified in Chapter 9 on page 37 are made visible to the application.

• identifiers with the prefixes or suffix shown below are reserved for any use by the
implementation: applications must not define or declare identifiers beginning with any of
these prefixes or ending with this suffix.

• all other identifiers except those reserved to the implementation by the ISO C Standard are
available for use by the application or by implementations of services other than RAPI.

Header Prefix Suffix
<rapi.h> RAPI_, rapi_, RSVP_, rsvp_, IS_, is_ _t

The behavior of the implementation when _XOPEN_SOURCE is not defined, or is defined with a
value of less than 500, is unspecified.

2 Technical Standard

Chapter 2

Overview

2.1 Positioning
An Internet application uses some API (Application Programming Interface) in order to request
enhanced quality-of-service (QoS). The local implementation then uses the RSVP protocol to
propagate the QoS request through the routers along the path(s) for the data flow. Each router
may accept or deny the request, depending upon its available resources. In the case of failure,
the local implementation will return the decision to the requesting application via the API.

This specification describes a particular RSVP API known as RAPI. Applications use RSVP to
obtain consistent QoS for end systems in packet-switched internetworking.

2.2 Reservation Model
RSVP is a receiver-oriented signalling protocol that enables applications to request quality of
service on an IP network. The types of quality of service applications may request are defined
by Integrated Services. RSVP signalling applies to simplex unicast or multicast data flows.
Although RSVP distinguishes senders from receivers, the same application may act in both roles.

RSVP assigns QoS to specific IP data flows which can be either multipoint-to-multipoint or
point-to-point and are known as sessions. A session is defined by a particular transport protocol,
IP destination address, and destination port. In order to receive data packets for a particular
multicast session, a host must have joined the corresponding IP multicast group.

A data source, or sender, is defined by an IP source address and a source port or, alternatively, by
an IPv6 source address and flowlabel. A given session may have multiple senders S1, S2, ... Sn,
and if the destination is a multicast address, multiple receivers R1, R2, ... Rm.

Under RSVP, QoS requests are made by the data receivers. A QoS request contains a flowspec ,
together with a filter spec. The flowspec includes an Rspec, which defines the desired QoS and is
used to control the packet scheduling mechanism in the router or host, and also a Tspec, which
defines the traffic expected by the receiver. The filter spec controls packet classification to
determine which senders’ data packets receive the corresponding QoS.

The detailed manner in which reservations from different receivers are shared in the Internet is
controlled by a reservation parameter known as the reservation style . The RSVP Functional
Specification (see referenced document RFC 2205) contains a definition and explanation of the
different reservation styles.

Resource ReSerVation Protocol API (RAPI) 3

API Outline Overview

2.3 API Outline
Using the RAPI interface, an application uses the rapi_session() call to define an API session for
sending a single simplex data flow and/or receiving such a data flow. The rapi_sender() call may
then be used to register as a data sender, and/or the rapi_reserve() call may be used to make a
QoS reservation as a data receiver.

The rapi_sender() or rapi_reserve() calls may be repeated with different parameters to
dynamically modify the state at any time or they can be issued in null forms that retract the
corresponding registration. The application can call rapi_release() to close the session and delete
all of its resource reservations. The relationship among the RAPI calls is summarized by the
RAPI state diagram shown in Figure 2-1. The calls rapi_sender() and rapi_reserve() represent null
calls in that diagram.

Note that a single API session, defined by a single rapi_session() call, can define only one sender
at a time. More than one API session may be established for the same RSVP session. For
example, suppose an application sends multiple UDP data flows, distinguished by source port.
It will call rapi_session() and rapi_sender() separately for each of these flows.

The rapi_session() call allows the application to specify an upcall (or callback) routine that will be
invoked to signal RSVP state changes and error events. There are five types of event:

• RAPI_PATH_EVENT signals the arrival or change of path state.

• RAPI_RESV_EVENT signals the arrival or change of reservation state.

• RAPI_PATH_ERROR signals the corresponding path error.

• RAPI_RESV_ERROR signals the corresponding reservation error.

• RAPI_RESV_CONFIRM signals the arrival of a CONFIRM message.

Each RAPI implementation must provide and document a mechanism to receive the incoming
asynchronous events and call the application upcall function. Those systems which provide
either the select() or poll () functions must provide the mechanism described in Chapter 7.

4 Technical Standard

Overview API Outline

Closed

Closed

Send Rcv

SendRcv

Session

rapi_session()

rapi_sender(0)

rapi_sender(0)

rapi_sender()

rapi_sender or
rapi_reserve or

RAPI_PATH_EVENT or
RAPI_RESV_EVENT or

RAPI_RESV_CONFIRM
or RAPI_PATH_ERROR
or RAPI_RESV_ERROR

rapi_sender()
rapi_sender or
RAPI_PATH_EVENT or
RAPI_RESV_EVENT or
RAPI_PATH_ERROR

RAPI_PATH_EVENT

rapi_release()
rapi_release()rapi_release()

rapi_reserve(0)

rapi_reserve(0)

rapi_reserve()

rapi_reserve()
rapi_reserve or
RAPI_PATH_EVENT or
RAPI_RESV_CONFIRM
or RAPI_RESV_ERROR

rapi_release()

Figure 2-1 RAPI State Diagram

A synchronous error in a RAPI routine returns an appropriate error code. Asynchronous RSVP
errors are delivered to the application via the RAPI upcall routine.

Error handling is described in Chapter 8.

Resource ReSerVation Protocol API (RAPI) 5

Overview

6 Technical Standard

Chapter 3

Event Upcall

Each RAPI implementation must provide and document a mechanism to receive the incoming
asynchronous RSVP events. Those systems which provide either the select() or poll () function
must provide the mechanism described in Chapter 7 on page 31.

An upcall is invoked by the implementation’s asynchronous event mechanism. It executes the
function whose address was specified in the Event_rtn parameter in the rapi_session() call.

The event upcall function template rapi_event_rtn_t() is defined in reference manual page
format, in the following pages.

Resource ReSerVation Protocol API (RAPI) 7

rapi_event_rtn_t() Event Upcall

NAME
rapi_event_rtn_t — event upcall function template

SYNOPSIS
#include <rapi.h>

typedef void rapi_event_rtn_t(
rapi_sid_t Sid, /* Session ID */
rapi_eventinfo_t EventType, /* Event type */
rapi_styleid_t Style, /* Reservation style */
int ErrorCode, /* Error event: code */
int ErrorValue, /* Error event: value */
rapi_addr_t *ErrorNode, /* Node detecting error */
unsigned int ErrorFlags, /* Error flags */
int FilterSpecNo, /* number of filterSpecs */
rapi_filter_t *FilterSpec_list,
int FlowspecNo, /* number of flowspecs */
rapi_flowspec_t *Flowspec_list,
int AdspecNo, /* number of adspecs */
rapi_adspec_t *Adspec_list,
void *Event_arg /* application argument */

);

DESCRIPTION
This is the template for the function the address of which each application must supply as an
argument to rapi_session() and which the implementation will call when asynchronous RAPI
events occur. The event upcall function is invoked from the implementation’s asynchronous
RSVP event mechanism when an event occurs. See rapi_session() for more details.

PARAMETERS

Sid
This parameter must be a session ID returned by a successful rapi_session() call.

EventType
Upcall event type.

Style
This parameter contains the style of the reservation; it is non-zero only for a
RAPI_RESV_EVENT or RAPI_RESV_ERROR event.

ErrorCode, ErrorValue
These values encode the error cause, and they are set only for a RAPI_PATH_ERROR or
RAPI_RESV_ERROR event. See rapi_strerror() and Chapter 8 on page 35 (Error Handling)
for interpretation of these values.

ErrorNode
This is the IP (V4 or V6) address of the node that detected the error, and it is set only for a
RAPI_PATH_ERROR or RAPI_RESV_ERROR event. The format of a rapi_addr_t is
implementation-dependent. See Chapter 9.

ErrorFlags
These error flags are set only for a RAPI_PATH_ERROR or RAPI_RESV_ERROR event.

RAPI_ERRF_InPlace
The reservation failed, but another (presumably smaller) reservation is still in place on
the same interface.

8 Technical Standard

Event Upcall rapi_event_rtn_t()

RAPI_ERRF_NotGuilty
The reservation failed, but the request from this client was merged with a larger
reservation upstream, so this client’s reservation might not have caused the failure.

FilterSpec_list, FilterSpecNo
The FilterSpec_list parameter is a pointer to an area containing a sequential vector of RAPI
filter spec or sender template objects. The number of objects in this vector is specified in
FilterSpecNo . If FilterSpecNo is zero, the FilterSpec_list parameter will be NULL.

Flowspec_list, FlowspecNo
The Flowspec_list parameter is a pointer to an area containing a sequential vector of RAPI
flowspec or Tspec objects. The number of objects in this vector is specified in FlowspecNo . If
FlowspecNo is zero, the Flowspec_list parameter will be NULL.

Adspec_list, AdspecNo
The Adspec_list parameter is a pointer to an area containing a sequential vector of RAPI
adspec objects. The number of objects in this vector is specified in AdspecNo. If AdspecNo is
zero, the Adspec_list parameter will be NULL.

Event_arg
This is the value supplied in the rapi_session() call.

RESULT
When the application’s upcall function returns, any areas pointed to by Flowspec_list ,
FilterSpec_list or Adspec_list become invalid for further reference. The upcall function must copy
any values it wants to save.

The specific parameters depend upon EventType, which may have one of the following values:

RAPI_PATH_EVENT
A path event indicates that RSVP sender ("Path") state from a remote node has arrived or
changed at the local node. A RAPI_PATH_EVENT event containing the complete current
list of senders (or possibly no senders, after a path teardown) in the path state for the
specified session will be triggered whenever the path state changes.

FilterSpec_list , Flowspec_list , and Adspec_list will be of equal length, and corresponding
entries will contain sender templates , sender Tspecs, and Adspecs, respectively, for all senders
known at this node. In general, a missing object will be indicated by an empty RAPI object.

RAPI_PATH_EVENT events are enabled by the initial rapi_session() call.

RAPI_RESV_EVENT
A reservation event indicates that reservation state has arrived or changed at the node,
implying (but not assuring) that reservations have been established or deleted along the
entire data path to one or more receivers. RAPI_RESV_EVENT events containing the
current reservation state for the API session will be triggered whenever the reservation state
changes.

Flowspec_list will either contain one flowspec object or be empty (if the state has been torn
down), and FilterSpec_list will contain zero or more corresponding filter spec objects.
Adspec_list will be empty.

RAPI_RESV_EVENT events are enabled by a rapi_sender() call; the sender template from the
latter call will match the filter spec returned in the upcall triggered by a reservation event.

RAPI_PATH_ERROR
A path error event indicates that an asynchronous error has been found in the sender
information specified in a rapi_sender() call.

Resource ReSerVation Protocol API (RAPI) 9

rapi_event_rtn_t() Event Upcall

The ErrorCode and ErrorValue parameters will specify the error. FilterSpec_list and
Flowspec_list will each contain one object, the sender template and corresponding sender Tspec
(if any) in error, while Adspec_list will be empty. If there is no sender Tspec, the object in
Flowspec_list will be an empty RAPI object. The Adspec_list will be empty.

RAPI_PATH_ERROR events are enabled by a rapi_sender() call, and the sender Tspec in that
call will match the sender Tspec returned in a subsequent upcall triggered by a
RAPI_PATH_ERROR event.

RAPI_RESV_ERROR
A reservation error event indicates that an asynchronous reservation error has occurred.

The ErrorCode and ErrorValue parameters will specify the error. Flowspec_list will contain one
flowspec , while FilterSpec_list may contain zero or more corresponding filter specs.
Adspec_list will be empty.

RAPI_RESV_ERROR events are enabled by a call to rapi_reserve().

RAPI_RESV_CONFIRM
A RAPI_RESV_CONFIRM event indicates that a reservation has been made at least up to an
intermediate merge point, and probably (but not necessarily) all the way to at least one
sender. A RAPI_RESV_CONFIRM event is enabled by a rapi_reserve() call with the
RAPI_REQ_CONFIRM flag set, and at most one confirmation event will result from each
such call.

The parameters of a RAPI_RESV_CONFIRM event upcall are the same as those for a
RAPI_RESV_EVENT event upcall.

The accompanying table summarizes the events. Here, "n" is a non-negative integer.

Event Enabled by FilterSpecNo FlowspecNo AdspecNo
RAPI_PATH_EVENT rapi_session n n n

RAPI_PATH_ERROR rapi_sender 1 1 0

RAPI_RESV_EVENT rapi_sender n 1 or 0 0

RAPI_RESV_ERROR rapi_reserve n 1 0

RAPI_RESV_CONFIRM rapi_reserve 1 1 0

10 Technical Standard

Chapter 4

Client Library Services

The RSVP API provides the following client library calls:

• rapi_release()

• rapi_reserve()

• rapi_sender()

• rapi_session()

• rapi_strerror()

• rapi_version ()

These are defined in the following reference pages.

To use these calls, the application must include the file <rapi.h>. See Chapter 9.

Resource ReSerVation Protocol API (RAPI) 11

rapi_release() Client Library Services

NAME
rapi_release — remove a session

SYNOPSIS
#include <rapi.h>

int rapi_release (rapi_sid_t Sid)

DESCRIPTION
The rapi_release() call removes the reservation, if any, and the state corresponding to a given
session handle. This call will be made implicitly if the application terminates without closing its
RSVP sessions.

PARAMETERS

Sid
This parameter must be a session ID returned by a successful rapi_session() call.

RESULT
If the session handle is invalid, the call returns a corresponding RAPI error code; otherwise, it
returns zero.

12 Technical Standard

Client Library Services rapi_reserve()

NAME
rapi_reserve — make, modify, or delete a reservation

SYNOPSIS
#include <rapi.h>

int rapi_reserve(
rapi_sid_t Sid, /* Session ID */
unsigned int Flags, /* Flags */
rapi_addr_t *RHost, /* Receive host addr */
rapi_styleid_t StyleId, /* Style ID */
rapi_stylex_t *Style_Ext, /* Style extension */
rapi_policy_t *Rcvr_Policy, /* Receiver policy */
int FilterSpecNo, /* Number of filter specs */
rapi_filter_t *FilterSpec_list, /* List of filter specs */
int FlowspecNo, /* Number of flowspecs */
rapi_flowspec_t *Flowspec_list /* List of flowspecs */

)

DESCRIPTION
The rapi_reserve() function is called to make, modify, or delete a resource reservation for a
session. The call may be repeated with different parameters, allowing the application to modify
or remove the reservation; the latest call will take precedence.

PARAMETERS

Sid
This parameter must be a session ID returned by a successful rapi_session() call.

Flags
Setting the RAPI_REQ_CONFIRM flag requests confirmation of the reservation, by means
of a confirmation upcall (type RAPI_RESV_CONFIRM).

RHost
This parameter may be used to define the interface address on which data will be received
for multicast flows. It is useful for a multi-homed host. If it is NULL or the host address is
INADDR_ANY, an implementation-defined interface will be chosen. The format of a
rapi_addr_t is implementation-dependent, see Chapter 9.

StyleId
This parameter specifies the reservation style id (values defined below).

Style_Ext
This parameter is a pointer to a style-dependent extension to the parameter list, or NULL.

Rcvr_Policy
This parameter is a pointer to a policy data structure, or it is NULL.

FilterSpec_list, FilterSpecNo
The FilterSpec_list parameter is a pointer to an area containing a sequential vector of RAPI
filter spec objects. The number of objects in this vector is specified in FilterSpecNo . If
FilterSpecNo is zero, the FilterSpec_list parameter is ignored and can be NULL.

Resource ReSerVation Protocol API (RAPI) 13

rapi_reserve() Client Library Services

Flowspec_list, FlowspecNo
The Flowspec_list parameter is a pointer to an area containing a sequential vector of RAPI
flow spec objects. The number of objects in this vector is specified in FlowspecNo . If
FlowspecNo is zero, the Flowspec_list parameter is ignored and can be NULL.

If FlowspecNo is zero, the rapi_reserve() call will remove the current reservation(s) for the
specified session, and FilterSpec_list and Flowspec_list will be ignored. Otherwise, the
parameters depend upon the style, as follows:

Wildcard Filter (WF)
Use StyleId = RAPI_RSTYLE_WILDCARD. The Flowspec_list parameter may be NULL
(to delete the reservation) or else point to a single flowspec. The FilterSpec_list
parameter may be empty or it may point to a single filter spec containing appropriate
wildcard(s).

Fixed Filter (FF)
Use StyleId = RAPI_RSTYLE_FIXED. FilterSpecNo must equal FlowspecNo . Entries in
Flowspec_list and FilterSpec_list parameters will correspond in pairs.

Shared Explicit (SE)
Use StyleId = RAPI_RSTYLE_SE. The Flowspec_list parameter should point to a single
flowspec. The FilterSpec_list parameter may point to a list of any length.

RESULT
Depending upon the parameters, each call may or may not result in new admission control calls,
which could fail asynchronously.

If there is a synchronous error in this call, rapi_reserve() returns a RAPI error code; otherwise, it
returns zero.

Applications that make use of the RAPI_RESV_CONFIRM flag will normally receive positive
acknowledgement that the QoS request succeeded. Otherwise, applications measure success in
the form of errors returned when making QoS requests. No final positive acknowledgement will
occur.

An admission control failure (for example, refusal of the QoS request) is reported asynchronously
by an upcall of type RAPI_RESV_ERROR. A RSVP_Err_NO_PATH error code indicates that
RSVP state from one or more of the senders specified in FilterSpec_list has not (yet) propagated
all the way to the receiver; it may also indicate that one or more of the specified senders has
closed its API session and that its RSVP state has been deleted from the routers.

14 Technical Standard

Client Library Services rapi_sender()

NAME
rapi_sender — specify sender parameters

SYNOPSIS
#include <rapi.h>

int rapi_sender(
rapi_sid_t Sid, /* Session ID */
unsigned int Flags, /* Flags */
rapi_addr_t *LHost, /* Local Host */
rapi_filter_t *SenderTemplate, /* Sender template */
rapi_tspec_t *SenderTspec, /* Sender Tspec */
rapi_adspec_t *SenderAdspec, /* Sender Adspec */
rapi_policy_t *SenderPolicy, /* Sender policy data */
int TTL /* Multicast data TTL */

)

DESCRIPTION
An application must issue a rapi_sender() call if it intends to send a flow of data for which
receivers may make reservations. This call defines, redefines, or deletes the parameters of that
flow. A rapi_sender() call may be issued more than once for the same API session; the most
recent one takes precedence.

Once a successful rapi_sender() call has been made, the application may receive upcalls of type
RAPI_RESV_EVENT or RAPI_PATH_ERROR.

PARAMETERS

Sid
This parameter must be a session ID returned by a successful rapi_session() call.

Flags
No flags are currently defined for this call.

LHost
This parameter may point to a rapi_addr_t structure specifying the IP (v4 or v6) source
address and, if applicable, the source port or flowlabel from which data will be sent, or it
may be NULL. The format of a rapi_addr_t is implementation-dependent, see Chapter 9.

If the IP source address is INADDR_ANY, the API will use the default IP address of the
local host. This is sufficient unless the host is multi-homed. The port number may be zero if
the protocol for the session does not have ports.

A NULL LHost parameter indicates that the application wishes to withdraw its registration
as a sender. In this case, the following parameters will all be ignored.

SenderTemplate
This parameter may be a pointer to a RAPI filter specification structure (see Chapter 6)
specifying the format of data packets to be sent, or it may be NULL.

If this parameter is NULL, a sender template will be created internally from the Dest and
LHost parameters. The Dest parameter was supplied in an earlier rapi_session() call. If a
SenderTemplate parameter is present, the (non-NULL) LHost parameter is ignored.

This parameter must be non-NULL in order to declare the sender template for a session
using IPSEC, that is, a session created with the RAPI_GPI_SESSION flag set.

Resource ReSerVation Protocol API (RAPI) 15

rapi_sender() Client Library Services

SenderTspec
This parameter is a pointer to a Tspec that defines the traffic that this sender will create, and
must not be NULL.

SenderAdspec
This parameter may point to a RAPI Adspec structure (see Chapter 6), or it may be NULL.

SenderPolicy
This parameter may be a pointer to a sender policy data structure, or it may be NULL.

TTL
This parameter specifies the IP TTL (Time-to-Live) value with which multicast data will be
sent. It allows RSVP to send its control messages with the same TTL scope as the data
packets.

RESULT
If there is a synchronous error, rapi_sender() returns a RAPI error code; otherwise, it returns zero.

16 Technical Standard

Client Library Services rapi_session()

NAME
rapi_session — create a session

SYNOPSIS
#include <rapi.h>

rapi_sid_t rapi_session(
rapi_addr_t *Dest, /* Session: (Dst addr, port) */
int Protid, /* Protocol Id */
unsigned int Flags, /* Flags */
rapi_event_rtn_t *Event_rtn, /* Address of upcall routine */
void *Event_arg, /* App argument to upcall */
int *Errnop /* Place to return error code */

)

DESCRIPTION
The rapi_session() call creates an API session.

After a successful rapi_session() call has been made, the application may receive upcalls of type
RAPI_PATH_EVENT for the API session.

PARAMETERS
The parameters are as follows:

Dest
This parameter points to a rapi_addr_t structure defining the destination IP (V4 or V6)
address and a port number to which data will be sent. The Dest and Protid parameters
define an RSVP session. If the Protid specifies UDP or TCP transport, as specified in the
Assigned Numbers RFC 1700, the port corresponds to the appropriate transport port
number. The format of a rapi_addr_t is implementation-dependent, see Chapter 9.

Protid
The IP protocol ID for the session. If it is omitted (that is, zero), 17 (UDP) is assumed.

Flags

RAPI_GPI_SESSION
If set, this flag requests that this API session be defined in the GPI format used by the
IPSEC extension of RSVP. If this flag is set, the port number included in Dest is
considered "virtual" (see the IPSEC specification, reference RFC 1825 for details), and
any sender template and filter specifications must be in GPI format.

RAPI_USE_INTSERV
If set, IntServ formats are used in upcalls; otherwise, the Simplified format is used (see
Chapter 6).

Event_rtn
This parameter is a pointer to an upcall function that will be invoked to notify the
application of RSVP errors and state change events. Pending events cause the invocation of
the upcall function — see Chapter 7). The application must supply an upcall routine for
event processing. See Chapter 3.

Event_arg
This parameter is an argument that will be passed to any invocation of the upcall routine.
See Chapter 3.

Errnop
The address of an integer into which a RAPI error code will be returned.

Resource ReSerVation Protocol API (RAPI) 17

rapi_session() Client Library Services

RESULT
If it succeeds, the rapi_session() call returns an opaque but non-zero session handle for use in
subsequent calls related to this API session.

If the call fails synchronously, it returns zero (RAPI_NULL_SID) and stores a RAPI error code
into the integer variable pointed to by the Errnop parameter.

EXTENDED DESCRIPTION
An application can have multiple API sessions registered for the same or different RSVP sessions
at the same time. There can be at most one sender associated with each API session; however,
an application can announce multiple senders for a given RSVP session by announcing each
sender in a separate API session.

Two API sessions for the same RSVP session, if they are receiving data, are assumed to have
joined the same multicast group and will receive the same data packets. An implementation
should disallow multiple API sessions for the same sender within one RSVP session (see Section
2.2 on page 3). The behavior of an implementation that allows multiple API sessions for the
same sender is unspecified.

18 Technical Standard

Client Library Services rapi_strerror()

NAME
rapi_strerror — get RAPI error message string

SYNOPSIS
#include <rapi.h>

const char *rapi_strerror(int ErrorCode, int ErrorValue)

DESCRIPTION
This call maps the error code and value to an error message string, and returns a pointer to that
string.

RESULT
This call returns NULL if the arguments are out of bounds, otherwise a pointer to an error
message string.

Resource ReSerVation Protocol API (RAPI) 19

rapi_version() Client Library Services

NAME
rapi_version — RAPI version

SYNOPSIS
#include <rapi.h>

int rapi_version(void)

DESCRIPTION
This call obtains the version of the interface. It may be used by an application to adapt to
different versions.

RESULT
This call returns a single integer that defines the version of the interface. The returned value is
composed of a major number and a minor number, encoded as:

100 * major + minor

The API described in this specification has major version number 6.

20 Technical Standard

Chapter 5

RAPI Formatting Routines

For convenience of applications, RAPI includes standard routines for displaying the contents of
RAPI objects. These functions are optional; a conforming implementation need not provide
them.

These standard formatting routines are:

• rapi_fmt_adspec ()

• rapi_fmt_filtspec()

• rapi_fmt_flowspec()

• rapi_fmt_tspec ()

This Chapter presents the reference pages which define these standard formatting routines.

To use these routines, the application must include the header file <rapi.h>. See Chapter 9.

Resource ReSerVation Protocol API (RAPI) 21

rapi_fmt_adspec() RAPI Formatting Routines

NAME
rapi_fmt_adspec — format an adspec

SYNOPSIS
#include <rapi.h>

void rapi_fmt_adspec(
rapi_adspec_t *adspecp, /* Addr of RAPI Adspec */
char *buffer, /* Addr of buffer */
int length /* Length of buffer */

)

DESCRIPTION
The rapi_fmt_adspec () call formats a given RAPI Adspec into a buffer of given address and length.
The output is truncated if the length is too small.

22 Technical Standard

RAPI Formatting Routines rapi_fmt_filtspec()

NAME
rapi_fmt_filtspec — format a filter spec

SYNOPSIS
#include <rapi.h>

void rapi_fmt_filtspec(
rapi_filter_t *filtp, /* Addr of RAPI Filt Spec */
char *buffer, /* Addr of buffer */
int length /* Length of buffer */

)

DESCRIPTION
The rapi_fmt_filtspec() call formats a given RAPI filter spec into a buffer of given address and
length. The output is truncated if the length is too small.

Resource ReSerVation Protocol API (RAPI) 23

rapi_fmt_flowspec() RAPI Formatting Routines

NAME
rapi_fmt_flowspec — format a flowspec

SYNOPSIS
#include <rapi.h>

void rapi_fmt_flowspec(
rapi_flowspec_t *specp, /* Addr of RAPI flowspec */
char *buffer, /* Addr of buffer */
int length /* Length of buffer */

)

DESCRIPTION
The rapi_fmt_flowspec() call formats a given RAPI flowspec into a buffer of given address and
length. The output is truncated if the length is too small.

24 Technical Standard

RAPI Formatting Routines rapi_fmt_tspec()

NAME
rapi_fmt_tspec — format a tspec

SYNOPSIS
#include <rapi.h>

void rapi_fmt_tspec(
rapi_tspec_t *tspecp, /* Addr of RAPI Tspec */
char *buffer, /* Addr of buffer */
int length /* Length of buffer */

)

DESCRIPTION
The rapi_fmt_tspec () call formats a given RAPI Tspec into a buffer of given address and length.
The output is truncated if the length is too small.

Resource ReSerVation Protocol API (RAPI) 25

RAPI Formatting Routines

26 Technical Standard

Chapter 6

RAPI Objects

Flowspecs , filter specs, sender templates , and sender Tspecs are encoded as variable-length RAPI
objects.

Every RAPI object begins with a header of type rapi_hdr_t , which contains:

• The total length of the object in bytes.

• The type.

An empty object consists only of a header, with type zero and length sizeof (rapi_hdr_t) .

Integrated services data structures are defined in referenced document RFC 2210, which
describes the use of RSVP with the Controlled-Load and Guaranteed services. RSVP defines
several data objects which carry resource reservation information but are opaque to RSVP itself.
The usage and data format of those objects is given in the referenced document RFC 2210.

6.1 Flowspecs
There are two formats for RAPI flowspecs. For further details, see <rapi.h> in Chapter 9.

6.1.1 RAPI_FLOWSTYPE_Simplified

This is a simplified format. It consists of a simple list of parameters needed for either Guaranteed
or Controlled Load service, using the service type QOS_GUARANTEED or QOS_CNTR_LOAD,
respectively.

The RAPI client library routines map this format to/from an appropriate Integrated Services
data structure.

6.1.2 RAPI_FLOWSTYPE_Intserv

This flowspec must be a fully formatted Integrated Services flowspec data structure.

6.1.3 Upcalls

In an upcall, a flowspec is by default delivered in simplified format. However, if the
RAPI_USE_INTSERV flag was set in the rapi_session() call, then the IntServ format is used in
upcalls.

Resource ReSerVation Protocol API (RAPI) 27

Sender Tspecs RAPI Objects

6.2 Sender Tspecs
There are two formats for RAPI Sender Tspecs. For further details, see <rapi.h> in Chapter 9.

6.2.1 RAPI_TSPECTYPE_Simplified

This is a simplified format, consisting of a simple list of parameters with the service type
QOS_TSPEC. The RAPI client library routines map this format to/from an appropriate
Integrated Services data structure.

6.2.2 RAPI_TSPECTYPE_Intserv

This flowspec must be a fully formatted Integrated Services Tspec data structure.

6.2.3 Upcalls

In an upcall, a sender Tspec is by default delivered in simplified format. However, if the
RAPI_USE_INTSERV flag was set in the rapi_session() call, then the IntServ format is used in
upcalls.

6.3 Adspecs
There are two formats for RAPI Adspecs. For further details, see <rapi.h> in Chapter 9.

6.3.1 RAPI_ADSTYPE_Simplified

This is a simplified format, consisting of a list of Adspec parameters for all possible services. The
RAPI client library routines maps this format to/from an appropriate Integrated Services data
structure.

6.3.2 RAPI_ADSTYPE_Intserv

This flowspec must be a fully formatted Integrated Services Tspec data structure.

6.3.3 Upcalls

In an upcall, an Adspec is by default delivered in simplified format. However, if the
RAPI_USE_INTSERV flag was set in the rapi_session() call, then the IntServ format is used in
upcalls.

28 Technical Standard

RAPI Objects Filter Specs and Sender Templates

6.4 Filter Specs and Sender Templates
There are two formats for these objects:

• RAPI_FILTERFORM_BASE (RAPI_FILTERFORM_BASE6)
This object consists of only a socket address structure, defining the IPv4 address and port or,
alternatively, the IPv6 address and flowlabel.

• RAPI_FILTERFORM_GPI (RAPI_FILTERFORM_GPI6)
This object consists of only an address structure, defining the IP V4 (or V6) address and a 32-
bit Generalized Port Identifier. It is recommended for all IPSEC applications.

Other non-TCP/non-UDP transports may also utilize this format in the future.

6.5 Policy Data Objects
Under RSVP, applications may need to supply policy information containing permission rights
to obtain the preferential access to the network that they request. The rapi_policy_t type is a
framework to carry the aforementioned integrity policy object.

Resource ReSerVation Protocol API (RAPI) 29

RAPI Objects

30 Technical Standard

Chapter 7

Use with select() or poll()

When a system provides either select() or poll () (see the referenced XSH specification and the
referenced XNS specification), the RAPI implementation must provide two additional calls:
rapi_getfd () and rapi_dispatch ().

The upcall routine is invoked indirectly (and synchronously) by the application, using the
following mechanism:

• The application issues the RAPI library call rapi_getfd () to learn the file descriptor of the
endpoint (for example, socket) used by the API.

• The application detects read events on this file descriptor, either passing it directly in a select
or poll call or passing it to the notifier of another library (such as XLib, tk/tcl, RPC).

• When a read event on the file descriptor is signaled, the application should call
rapi_dispatch (). This causes the API to execute the upcall routine if appropriate.

The remainder of this Chapter presents the definitions for:

• rapi_dispatch ()

• rapi_getfd ()

Resource ReSerVation Protocol API (RAPI) 31

rapi_dispatch() Use with select() or poll()

NAME
rapi_dispatch — dispatch API event

SYNOPSIS
#include <rapi.h>

int rapi_dispatch(void)

DESCRIPTION
The application should call this routine whenever a read event is signaled on a file descriptor
returned by rapi_getfd (). The rapi_dispatch () routine may be called at any time, but it will
generally have no effect unless there is a pending event.

RESULT
Calling this routine may result in one or more upcalls to the application from any of the open
API sessions.

If this call encounters an error, rapi_dispatch () returns a RAPI error code; otherwise, it returns
zero. See Chapter 8 for a list of error codes.

32 Technical Standard

Use with select() or poll() rapi_getfd()

NAME
rapi_getfd — get file descriptor

SYNOPSIS
#include <rapi.h>

int rapi_getfd(rapi_sid_t Sid)

DESCRIPTION
After a rapi_session() call has completed successfully and before rapi_release() has been called,
the application may call rapi_getfd () to obtain the file descriptor associated with that session.
When a read event is signalled on this file descriptor, the application should call rapi_dispatch ().

Note: Calls to rapi_getfd () for different RAPI sessions may return the same file descriptor.

PARAMETERS

Sid
This parameter must be a session ID returned by a successful rapi_session() call.

RESULT
If Sid is illegal or undefined, this call returns −1; otherwise, it returns the file descriptor.

Resource ReSerVation Protocol API (RAPI) 33

Use with select() or poll()

34 Technical Standard

Chapter 8

Error Handling

8.1 Introduction
Errors can be detected synchronously or asynchronously.

When an error is detected synchronously, a RAPI error code is returned via the Errnop argument
of rapi_session(), or as the function return value of rapi_sender(), rapi_reserve(), rapi_release() or
rapi_dispatch ().

When an error is detected asynchronously, it is indicated by a RAPI_PATH_ERROR or
RAPI_RESV_ERROR event. An RSVP error code and error value are then contained in the
ErrorCode and ErrorValue arguments of the event upcall function. In case of an API error (RSVP
error code 20), a RAPI error code is contained in the ErrorValue argument.

A description of RSVP error codes and values can be found in Appendix B of the referenced RFC
2205.

8.2 RAPI Error Codes
[RAPI_ERR_OK] No error

[RAPI_ERR_INVAL] Invalid parameter

[RAPI_ERR_MAXSESS] Too many sessions

[RAPI_ERR_BADSID] Session identity out of legal range

[RAPI_ERR_N_FFS] Wrong filter number or flow number for style

[RAPI_ERR_BADSTYLE] Illegal reservation style

[RAPI_ERR_SYSCALL] A system error has occurred; its nature may be indicated by
errno

[RAPI_ERR_OVERFLOW] Parameter list overflow

[RAPI_ERR_MEMFULL] Not enough memory

[RAPI_ERR_NORSVP] RSVP implementation internal error

[RAPI_ERR_OBJTYPE] Invalid object type

[RAPI_ERR_OBJLEN] Invalid object length

[RAPI_ERR_NOTSPEC] No sender Tspec

[RAPI_ERR_INTSERV] Invalid Integrated Services parameter format

[RAPI_ERR_GPI_CONFLICT] IPSEC: Conflicting C-type

[RAPI_ERR_BADPROTO] IPSEC: Protocol not AH or ESP

[RAPI_ERR_BADVDPORT] IPSEC: vDstPort is zero

[RAPI_ERR_GPISESS] IPSEC: invalid parameters for GPI_SESSION flag, or other
parameter error

Resource ReSerVation Protocol API (RAPI) 35

RAPI Error Codes Error Handling

[RAPI_ERR_BADSEND] Sender address not my interface

[RAPI_ERR_BADRECV] Receiver address not my interface

[RAPI_ERR_BADSPORT] Invalid source port: the source port is non-zero when the
destination port is zero.

[RAPI_ERR_UNSUPPORTED] Unsupported feature

[RAPI_ERR_UNKNOWN] Unknown error

Note that [RAPI_ERR_BADSEND], [RAPI_ERR_BADRECV] and [RAPI_ERR_BADSPORT]
occur only asynchronously, as the ErrorValue when the ErrorCode is 20 (API error).

8.3 RSVP Error Codes

Symbol Value Meaning
RSVP_Err_NONE 0 No error (confirmation)
RSVP_Err_ADMISSION 1 Admission control failure
RSVP_Err_POLICY 2 Policy control failure
RSVP_Err_NO_PATH 3 No path information
RSVP_Err_NO_SENDER 4 No sender information
RSVP_Err_BAD_STYLE 5 Conflicting style
RSVP_Err_UNKNOWN_STYLE 6 Unknown style
RSVP_Err_BAD_DSTPORT 7 Conflicting destination port in session
RSVP_Err_BAD_SNDPORT 8 Conflicting source port

9 reserved
10 reserved
11 reserved

RSVP_Err_PREEMPTED 12 Service preempted
RSVP_Err_UNKN_OBJ_CLASS 13 Unknown object class
RSVP_Err_UNKNOWN_CTYPE 14 Unknown object C-Type

15 reserved
16 reserved
17 reserved
18 reserved
19 reserved

RSVP_Err_API_ERROR 20 API error
RSVP_Err_TC_ERROR 21 Traffic control error
RSVP_Err_TC_SYS_ERROR 22 Traffic control system error
RSVP_Err_RSVP_SYS_ERROR 23 RSVP system error

36 Technical Standard

Chapter 9

Header File

9.1 Integer and Floating Point Types
Types uint8_t, uint16_t and uint32_t which appear in the <rapi.h> header file are unsigned
integer types of length 8, 16 and 32 bits, respectively. They may be made available by inclusion
of <inttypes.h> (see the referenced XSH specification).

Type float32_t is a floating-point type of length 32 bits. It is defined by including the <rapi.h>
header file.

9.2 The <rapi.h> Header
This header file contains the definitions of the RSVP API (RAPI) library calls.

Inclusion of this header may make available other symbols in addition to those specified in this
section.

9.2.1 General Definitions

When header <rapi.h> is included:

i. Macro RAPI_VERSION is defined with value 100 * major + minor, where major is the major
version number and minor is the minor version number. The value of RAPI_VERSION is
returned by rapi_version ().

ii. Type rapi_addr_t is defined for protocol addresses. Implementations of RAPI that are
intended to be used in conjunction with the sockets interface defined in the referenced
XNS specification must define rapi_addr_t to be struct sockaddr. Implementations that are
intended to be used in conjunction with other networking APIs may define rapi_addr_t
differently.

Note: If they do so, they will need to add further members to the rapi_format_t
enumeration, and to the filt_u union in the rapi_filter_t structure, and possibly
to make further additions.

Resource ReSerVation Protocol API (RAPI) 37

The <rapi.h> Header Header File

iii. Enumeration rapi_qos_service_t is defined by typedef and has at least the following
members.

Member Meaning
RAPI_QOS_TSPEC Generic Tspec
RAPI_QOS_CNTR_LOAD Controlled-load service
RAPI_QOS_GUARANTEED Guaranteed service

iv. Enumeration rapi_format_t is defined by typedef and has at least the following members.

Member Meaning
RAPI_EMPTY_OTYPE Empty object
RAPI_FLOWSTYPE_Intserv Int-Serv format flowspec
RAPI_FLOWSTYPE_Simplified Simplified format flowspec

RAPI_TSPECTYPE_Intserv Int-Serv format (sndr)Tspec
RAPI_TSPECTYPE_Simplified Simplified format (sndr)Tspec

RAPI_ADSTYPE_Intserv Int-Serv format Adspec
RAPI_ADSTYPE_Simplified Simplified format Adspec

RAPI_FILTERFORM_BASE Simple V4: Only sockaddr
RAPI_FILTERFORM_GPI IPV4 GPI filter format
RAPI_FILTERFORM_BASE6 Simple V6: Only sockaddr
RAPI_FILTERFORM_GPI6 IPV6 GPI filter format

v. Type rapi_hdr_t is defined by typedef as a structure to represent a generic RAPI object
header. It has the following members, followed by type-specific contents.

Member Type Usage
len unsigned int Actual length in bytes
form rapi_format_t Format

vi. The following macros are defined with the values given below.

Macro Value
RAPIObj_Size(p) (((rapi_hdr_t *)(p))→len)
RAPIObj_data(p) ((rapi_hdr_t *)(p)+1)
After_RAPIObj(p) ((char *)(p) + RAPIObj_Size(p))

9.2.2 Tspec Definitions

When header <rapi.h> is included:

i. Type rapi_qos_Tspec_body is defined by typedef as a structure with at least the following
members.

Member Type Usage
spec_Tspec_b float32_t Token bucket depth in bytes
spec_Tspec_r float32_t Token bucket average rate in bytes per second
spec_Tspec_p float32_t Peak data rate in bytes per second
spec_Tspec_m uint32_t Minimum policed unit in bytes
spec_Tspec_M uint32_t Maximum packet size in bytes

38 Technical Standard

Header File The <rapi.h> Header

ii. Type rapi_qos_tspecx_t is defined by typedef as a structure that contains the generic Tspec
parameters, and has at least the following members.

Member Type Usage
spec_type rapi_qos_service_t QoS_service_type
xtspec_Tspec rapi_qos_Tspec_body Tspec

iii. The following macros are defined with the values given below.

Macro Value
xtspec_r xtspec_Tspec.spec_Tspec_r
xtspec_b xtspec_Tspec.spec_Tspec_b
xtspec_p xtspec_Tspec.spec_Tspec_p
xtspec_m xtspec_Tspec.spec_Tspec_m
xtspec_M xtspec_Tspec.spec_Tspec_M

iv. Type rapi_tspec_t is defined by typedef as a structure to represent a Tspec descriptor, and
has at least the following members.

Member Type Member Type Usage
len unsigned int Actual length in bytes
form rapi_format_t tspec format
tspecbody_u union

qosxt rapi_qos_tspecx_t Simplified format Tspec
ISt IS_tspbody_t Int-serv format Tspec

v. The following macros are defined with the values given below.

Macro Value
tspecbody_qosx tspecbody_u.qosxt
tspecbody_IS tspecbody_u.ISt

9.2.3 Flowspec Definitions

When header <rapi.h> is included:

i. Type rapi_qos_flowspecx_t is defined by typedef as a structure that contains the union of the
parameters for controlled-load service and guaranteed service models, and has at least the
following members.

Member Type Usage
spec_type rapi_qos_service_t QoS_service_type
xspec_Tspec rapi_qos_Tspec_body Tspec
xspec_R float32_t Rate in bytes per second
xspec_S uint32_t Slack term in microseconds

ii. The following macros are defined with the values given below.

Macro Value
xspec_r xspec_Tspec.spec_Tspec_r
xspec_b xspec_Tspec.spec_Tspec_b
xspec_p xspec_Tspec.spec_Tspec_p
xspec_m xspec_Tspec.spec_Tspec_m
xspec_M xspec_Tspec.spec_Tspec_M

Resource ReSerVation Protocol API (RAPI) 39

The <rapi.h> Header Header File

iii. Type rapi_flowspec_t is defined by typedef as a structure to represent a Flowspec descriptor,
and has at least the following members.

Member Type Member Type Usage
Actual length in
bytes

len unsigned int

form rapi_format_t flowspec format
specbody_u union

Simplified format
flowspec

qosx rapi_qos_flowspecx_t

Int-serv format
flowspec

IS IS_specbody_t

iv. The following macros are defined with the values given below.

Macro Value
specbody_qosx specbody_u.qosx
specbody_IS specbody_u.IS

40 Technical Standard

Header File The <rapi.h> Header

9.2.4 Adspec Definitions

When header <rapi.h> is included:

i. Type rapi_qos_adspecx_t is defined by typedef as a structure that contains the union of all
adspec parameters for controlled-load service and guaranteed service models, and has at least
the following members.

Member Type Usage
General path characterization parameters

xaspec_flags uint8_t flags(1)

xaspec_hopcnt uint16_t
xaspec_path_bw float32_t
xaspec_min_latency uint32_t
xaspec_composed_MTU uint32_t

Controlled-load service Adspec parameters

xClaspec_flags uint8_t Flags
xClaspec_override uint8_t See note(2)

xClaspec_hopcnt uint16_t
xClaspec_path_bw float32_t
xClaspec_min_latency uint32_t
xClaspec_composed_MTU uint32_t

Guaranteed service Adspec parameters

xGaspec_flags uint8_t Flags
xGaspec_Ctot uint32_t
xGaspec_Dtot uint32_t
xGaspec_Csum uint32_t
xGaspec_Dsum uint32_t
xGaspec_override uint8_t See note(2)

xGaspec_hopcnt uint16_t
xGaspec_path_bw float32_t
xGaspec_min_latency uint32_t
xGaspec_composed_MTU uint32_t

Notes:

(1) FLG_IGN is not allowed; FLG_PARM is assumed.

(2) A value of 1 means "override all generic parameters".

ii. The following macros are defined with bitwise-distinct integral values for use in the
xaspec_flags, xClaspec_flags, and xGaspec_flags fields.

Macro Meaning
RAPI_XASPEC_FLG_BRK Break bit: service unsupported in some node
RAPI_XASPEC_FLG_IGN Ignore flag: do not include this service
RAPI_XASPEC_FLG_PARM Parms-present flag: include service parameters

Resource ReSerVation Protocol API (RAPI) 41

The <rapi.h> Header Header File

iii. Type rapi_adspec_t is defined by typedef as a structure to represent an Adspec descriptor,
and has at least the following members.

Member Type Member Type Usage
Actual length in byteslen unsigned int

form rapi_format_t adspec format
adsbody_u union

Simplified format adspecadsx rapi_qos_adspecx_t
Int-serv format adspecISa IS_adsbody_t

iv. The following macros are defined with the values given below.

Macro Value
adspecbody_qosx adsbody_u.adsx
adspecbody_IS adsbody_u.ISa

9.2.5 Filter Spec Definitions

When header <rapi.h> is included:

i. Type rapi_filter_base_t is defined by typedef as a structure that contains at least the
following member:

Member Type
sender struct sockaddr_in

ii. Type rapi_filter_gpi_t is defined by typedef as a structure that contains at least the
following members.

Member Type
sender struct in_addr
gpi uint32_t

iii. Type rapi_filter_base6_t is defined by typedef as a structure that contains at least the
following member.

Member Type
sender struct sockaddr_in6

iv. Type rapi_filter_gpi6_t is defined by typedef as a structure that contains at least the
following members.

Member Type
sender struct in6_addr
gpi uint32_t

42 Technical Standard

Header File The <rapi.h> Header

v. Type rapi_filter_t is defined by typedef as a structure that contains at least the following
members.

Member Type Member Type Usage
len unsigned int Actual length in bytes
form rapi_format_t filterspec format
filt_u union(1)

base rapi_filter_base_t
gpi rapi_filter_gpi_t

base6 rapi_filter_base6_t
gpi6 rapi_filter_gpi6_t

Note:

(1) variable length

vi. The following macros are defined with the values given below.

Macro Value
rapi_filt4 filt_u.base.sender
rapi_filtbase4_addr rapi_filt4.sin_addr
rapi_filtbase4_port rapi_filt4.sin_port
rapi_filtgpi4 filt_u.gpi
rapi_filtgpi4_addr rapi_filtgpi4.sender
rapi_filtgpi4_gpi rapi_filtgpi4.gpi

rapi_filt6 filt_u.base6.sender
rapi_filtbase6_addr rapi_filt6.sin6_addr
rapi_filtbase6_port rapi_filt6.sin6_port
rapi_filtgpi6 filt_u.gpi6
rapi_filtgpi6_addr rapi_filtgpi6.sender
rapi_filtgpi6_gpi rapi_filtgpi6.gpi

9.2.6 Policy Definitions

When header <rapi.h> is included, type rapi_policy_t is defined by typedef as a structure that
contains at least the following members:

Member Type
len unsigned int
form rapi_format_t
pol_u union

Resource ReSerVation Protocol API (RAPI) 43

The <rapi.h> Header Header File

9.2.7 Reservation Style Definitions

When header <rapi.h> is included:

i. Enumeration rapi_styleid_t is defined by typedef for reservation style identifiers, and has at
least the following members.

Member Meaning
Reservation will be shared among a
wildcard selection of senders

RAPI_RSTYLE_WILDCARD

Reservation will not be shared and will be
dedicated to a particular sender

RAPI_RSTYLE_FIXED

Reservation will be shared among an
explicit list of senders

RAPI_RSTYLE_SE

ii. Type rapi_stylex_t is defined by typedef as void.

Note: It is intended that this identifier be used in future for a reservation style
extension structure that will allow passing of style-specific parameters for
possible new styles.

9.2.8 Function Interface Definitions

When header <rapi.h> is included:

i. Macro RAPI_NULL_SID is defined for error returns from rapi_session().

ii. The following macros are defined and evaluate to bitwise-distinct integral values.

Constant Meaning
RAPI_USE_INTSERV Use Int-Serv fmt in upcalls
RAPI_GPI_SESSION Use GPI session format
RAPI_REQ_CONFIRM Request confirmation

Enumeration rapi_eventinfo_t is defined by typedef for RAPI event types, and has at least
the following members.

Member
RAPI_PATH_EVENT
RAPI_RESV_EVENT
RAPI_PATH_ERROR
RAPI_RESV_ERROR
RAPI_RESV_CONFIRM

Identifiers RAPI_PATH_STATUS and RAPI_RESV_STATUS are reserved for use by the
implementation.

iii. The following macros are defined and evaluate to distinct integral values.

Constant Meaning
RAPI_ERRF_InPlace Left reservation in place
RAPI_ERRF_NotGuilty This receiver not guilty

iv. Type rapi_event_rtn_t is defined by typedef as a function that conforms to the prototype
defined in the reference manual page definition for event upcall (see Chapter 3).

44 Technical Standard

Header File The <rapi.h> Header

v. Prototypes for each function defined in this specification must be provided in <rapi.h>.

vi. The following macros are defined and evaluate to distinct integral values for use as RAPI
error codes. Macro RAPI_ERR_OK (which indicates that there is no error) evaluates to
zero. The meanings of these error codes are described in Section 8.2 on page 35.

RAPI_ERR_OK
RAPI_ERR_INVAL
RAPI_ERR_MAXSESS
RAPI_ERR_BADSID
RAPI_ERR_N_FFS
RAPI_ERR_BADSTYLE
RAPI_ERR_SYSCALL
RAPI_ERR_OVERFLOW
RAPI_ERR_MEMFULL
RAPI_ERR_NORSVP
RAPI_ERR_OBJTYPE
RAPI_ERR_OBJLEN
RAPI_ERR_NOTSPEC
RAPI_ERR_INTSERV
RAPI_ERR_GPI_CONFLICT
RAPI_ERR_BADPROTO
RAPI_ERR_BADVDPORT
RAPI_ERR_GPISESS

RAPI_ERR_BADSEND
RAPI_ERR_BADRECV
RAPI_ERR_BADSPORT

RAPI_ERR_UNSUPPORTED
RAPI_ERR_UNKNOWN

vii. The following macros are defined and evaluate to the RSVP error code values as defined in
Section 8.3 on page 36.

RSVP_Err_NONE
RSVP_Err_ADMISSION
RSVP_Err_POLICY
RSVP_Err_NO_PATH
RSVP_Err_NO_SENDER
RSVP_Err_BAD_STYLE
RSVP_Err_UNKNOWN_STYLE
RSVP_Err_BAD_DSTPORT
RSVP_Err_BAD_SNDPORT
RSVP_Err_PREEMPTED
RSVP_Err_UNKN_OBJ_CLASS
RSVP_Err_UNKNOWN_CTYPE
RSVP_Err_API_ERROR
RSVP_Err_TC_ERROR
RSVP_Err_TC_SYS_ERROR
RSVP_Err_RSVP_SYS_ERROR

Resource ReSerVation Protocol API (RAPI) 45

Integrated Services Data Structures and Macros Header File

9.3 Integrated Services Data Structures and Macros
Note: This section defines the integrated services (see reference RFC 2210) data formats.

The designers of the RAPI interface wanted to allow an application to specify either
the int-serv format of a flowspec, Tspec, or adspec, or a "simplified" version of each. It
would certainly be simpler if RAPI supported only one of these formats, but this was
not felt to be safe in the long run.

The simplified versions allow almost any int-serv version to be generated, but there
may be circumstances in which this is not adequate. For example, more general
forms of flowspec, containing more than one service, may be defined in future (so
that in case the Resv message reaches a node which does not implement service A, it
can drop back to service B). Allowing an application to specify the body of an
arbitrary int-serv data object allows for such contingencies.

Nevertheless, the result is not entirely satisfactory, and future versions of this
specification may change the definitions in this section. Application writers are
therefore advised not to use these definitions except where absolutely necessary.

These Integrated Services data structures and macros are made available when header <rapi.h>
is included.

Note that the values in the data structures defined in this section are in host byte order.

Inclusion of this header may make available other symbols in addition to those specified in this
section.

9.3.1 General Definitions

When header <rapi.h> is included:

i. The following macro is defined with the value given below.

Macro Value Usage
wordsof(x) (((x)+3)/4) Number of 32-bit words

ii. The following macros are defined with the following integer values for service numbers.

Note: The values are protocol values defined in referenced documents RFC 2211, RFC
2212, and RFC 2215.

Macro Value
GENERAL_INFO 1
GUARANTEED_SERV 2
CONTROLLED_LOAD_SERV 5

46 Technical Standard

Header File Integrated Services Data Structures and Macros

iii. Enumeration int_serv_wkp is defined for well-known parameter identities and has at least
the following members with the following integer values.

Note: The values are protocol values defined in reference RFC 2215.

Member Value Meaning
Number of network nodes supporting
Integrated Services along the flow
path

IS_WKP_HOP_CNT 4

Available bandwidth in bytes per
second throughout the flow path

IS_WKP_PATH_BW 6

Minimum end-to-end latency in
microseconds

IS_WKP_MIN_LATENCY 8

Maximum transmission unit without
causing IP fragmentation along the
flow path

IS_WKP_COMPOSED_MTU 10

Token bucket TSPEC parameterIS_WKP_TB_TSPEC 127

iv. The following macros are defined with the values given below.

Macro Value
INTSERV_VERS_MASK 0xf0
INTSERV_VERSION0 0
Intserv_Version(x) (((x)&INTSERV_VERS_MASK)>>4)
Intserv_Version_OK(x) (((x)→ismh_version&INTSERV_VERS_MASK)== \

INTSERV_VERSION0)

v. Type IS_main_hdr_t is defined by typedef as a structure to represent an Integrated Services
main header, and has at least the following members.

Member Type Usage
ismh_version uint8_t Version
ismh_unused uint8_t
ismh_len32b uint16_t Number of 32-bit words excluding this header

vi. Type IS_serv_hdr_t is defined by typedef as a structure to represent an Integrated Services
service element header, and has at least the following members.

Member Type Usage
issh_service uint8_t Service number
issh_flags uint8_t Flag byte
issh_len32b uint16_t Number of 32-bit words excluding this header

vii. The following macro is defined with the value given below to indicate the break bit in the
IS_serv_hdr_t flag byte.

Macro Value
ISSH_BREAK_BIT 0x80

viii. Type IS_parm_hdr_t is defined by typedef as a structure to represent an Integrated Services
parameter element header, and has at least the following members.

Member Type Usage
isph_parm_num uint8_t Parameter number
isph_flags uint8_t Flags
isph_len32b uint16_t Number of 32-bit words excluding this header

Resource ReSerVation Protocol API (RAPI) 47

Integrated Services Data Structures and Macros Header File

ix. The following macro is defined with the value given below to indicate the invalid bit in the
IS_parm_hdr_t flag byte.

Macro Value
ISPH_FLG_INV 0x80

x. The following macros are defined with the values given below.

Macro Value
Set_Main_Hdr(p, len) {(p)→ismh_version = INTSERV_VERSION0; \

(p)→ismh_unused = 0; \
(p)→ismh_len32b = wordsof(len); }

Set_Serv_Hdr(p, s, len) {(p)→issh_service = (s); \
(p)→issh_flags = 0; \
(p)→issh_len32b = wordsof(len); }

Set_Parm_Hdr(p, id, len) {(p)→isph_parm_num = (id); \
(p)→isph_flags = 0; \
(p)→isph_len32b = wordsof(len); }

Set_Break_Bit(p) (((IS_serv_hdr_t *)p)→issh_flags|=ISSH_BREAK_BIT)

Next_Main_Hdr(p) (IS_main_hdr_t *)((uint32_t *)(p)+1+(p)→ismh_len32b)

Next_Serv_Hdr(p) (IS_serv_hdr_t *)((uint32_t *)(p)+1+(p)→issh_len32b)

Next_Parm_Hdr(p) (IS_parm_hdr_t *)((uint32_t *)(p)+1+(p)→isph_len32b)

Non_Is_Hop(p) (((IS_serv_hdr_t *)p)→issh_flags & ISSH_BREAK_BIT)

9.3.2 Generic Tspec format

When header <rapi.h> is included:

i. The following macros define constraints on the token bucket parameters for both the
Controlled-Load and Guaranteed service. These constraints are imposed by the respective
service specifications and are not an indication of what minimum or maximum values a
RAPI implementation will accept.

The following macros are defined with values of type float32_t.

Macro Usage Value
TB_MIN_RATE Minimum token bucket rate 1 byte per second
TB_MAX_RATE Maximum token bucket rate 40 terabytes per second
TB_MIN_DEPTH Minimum token bucket depth 1 byte
TB_MAX_DEPTH Maximum token bucket depth 250 gigabyte

ii. Type TB_Tsp_parms_t is defined by typedef as a structure to represent generic Tspec
parameters, and has at least the following members.

Member Type Usage
TB_Tspec_r float32_t Token bucket rate in bytes per second
TB_Tspec_b float32_t Token bucket depth in bytes
TB_Tspec_p float32_t Peak data rate in bytes per second
TB_Tspec_m uint32_t Minimum policed unit in bytes
TB_Tspec_M uint32_t Maximum packet size in bytes

48 Technical Standard

Header File Integrated Services Data Structures and Macros

iii. Type gen_Tspec_t is defined by typedef as a structure to represent a generic Tspec, and has
at least the following members.

Member Type Usage
gen_Tspec_serv_hdr IS_serv_hdr_t (GENERAL_INFO, length)
gen_Tspec_parm_hdr IS_parm_hdr_t (IS_WKP_TB_TSPEC,)
gen_Tspec_parms TB_Tsp_parms_t

iv. The following macros are defined with the values given below.

Macro Value
gtspec_r gen_Tspec_parms.TB_Tspec_r
gtspec_b gen_Tspec_parms.TB_Tspec_b
gtspec_m gen_Tspec_parms.TB_Tspec_m
gtspec_M gen_Tspec_parms.TB_Tspec_M
gtspec_p gen_Tspec_parms.TB_Tspec_p
gtspec_parmno gen_Tspec_parm_hdr.isph_parm_num
gtspec_flags gen_Tspec_parm_hdr.isph_flags
gtspec_len (sizeof(gen_Tspec_t) - sizeof(IS_serv_hdr_t))

9.3.3 Formats for Controlled-Load Service

When header <rapi.h> is included:

i. Type CL_flowspec_t is defined by typedef as a structure to represent a controlled-load
Flowspec, and has at least the following members.

Member Type Usage
CL_spec_serv_hdr IS_serv_hdr_t (CONTROLLED_LOAD_SERV, 0, len)
CL_spec_parm_hdr IS_parm_hdr_t (IS_WKP_TB_TSPEC,)
CL_spec_parms TB_Tsp_parms_t

ii. The following macros are defined with the values given below.

Macro Value
CLspec_r CL_spec_parms.TB_Tspec_r
CLspec_b CL_spec_parms.TB_Tspec_b
CLspec_p CL_spec_parms.TB_Tspec_p
CLspec_m CL_spec_parms.TB_Tspec_m
CLspec_M CL_spec_parms.TB_Tspec_M
CLspec_parmno CL_spec_parm_hdr.isph_parm_num
CLspec_flags CL_spec_parm_hdr.isph_flags
CLspec_len32b CL_spec_parm_hdr.isph_len32b

CLspec_len (sizeof(CL_flowspec_t) - sizeof(IS_serv_hdr_t))

Resource ReSerVation Protocol API (RAPI) 49

Integrated Services Data Structures and Macros Header File

9.3.4 Formats for Guaranteed Service

When header <rapi.h> is included:

i. The following enumeration is defined for service-specific parameter identifiers and has at
least the following members with the following values:

Member Value
IS_GUAR_RSPEC 130
GUAR_ADSPARM_C 131
GUAR_ADSPARM_D 132
GUAR_ADSPARM_Ctot 133
GUAR_ADSPARM_Dtot 134
GUAR_ADSPARM_Csum 135
GUAR_ADSPARM_Dsum 136

ii. Type guar_Rspec_t is defined by typedef as a structure for guaranteed Rspec parameters,
and has at least the following members.

Member Type Usage
Guar_R float32_t Guaranteed rate in bytes per second
Guar_S uint32_t Slack term in microseconds

iii. Type Guar_flowspec_t is defined by typedef as a structure to represent a guaranteed
Flowspec, and has at least the following members.

Member Type Usage
Guar_serv_hdr IS_serv_hdr_t (GUARANTEED_SERV, 0, length)
Guar_Tspec_hdr IS_parm_hdr_t (IS_WKP_TB_TSPEC,)
Guar_Tspec_parms TB_Tsp_parms_t GENERIC Tspec parameters
Guar_Rspec_hdr IS_parm_hdr_t (IS_GUAR_RSPEC,)
Guar_Rspec guar_Rspec_t Guaranteed rate in bytes per second

iv. The following macros are defined with the values given below.

Macro Value
Gspec_r Guar_Tspec_parms.TB_Tspec_r
Gspec_b Guar_Tspec_parms.TB_Tspec_b
Gspec_p Guar_Tspec_parms.TB_Tspec_p
Gspec_m Guar_Tspec_parms.TB_Tspec_m
Gspec_M Guar_Tspec_parms.TB_Tspec_M
Gspec_R Guar_Rspec.Guar_R
Gspec_S Guar_Rspec.Guar_S
Gspec_T_parmno Guar_Tspec_hdr.isph_parm_num
Gspec_T_flags Guar_Tspec_hdr.isph_flags
Gspec_R_parmno Guar_Rspec_hdr.isph_parm_num
Gspec_R_flags Guar_Rspec_hdr.isph_flags

Gspec_len (sizeof(Guar_flowspec_t) - sizeof(IS_serv_hdr_t))

50 Technical Standard

Header File Integrated Services Data Structures and Macros

v. Type Gads_parms_t is defined by typedef as a structure for guaranteed Adspec parameters,
and has the following members which may be followed by override general parameter
values.

Member Type Usage
Gads_serv_hdr IS_serv_hdr_t (GUARANTEED_SERV, x, len)
Gads_Ctot_hdr IS_parm_hdr_t (GUAR_ADSPARM_Ctot,)
Gads_Ctot uint32_t
Gads_Dtot_hdr IS_parm_hdr_t (GUAR_ADSPARM_Dtot,)
Gads_Dtot uint32_t
Gads_Csum_hdr IS_parm_hdr_t (GUAR_ADSPARM_Csum,)
Gads_Csum uint32_t
Gads_Dsum_hdr IS_parm_hdr_t (GUAR_ADSPARM_Dsum,)
Gads_Dsum uint32_t

9.3.5 Basic Adspec Pieces

When header <rapi.h> is included:

i. Type genparm_parms_t is defined by typedef as a structure for general path characterization
parameters, and has at least the following members.

Member Type Usage
gen_parm_hdr IS_serv_hdr_t (GENERAL_INFO, len)
gen_parm_hopcnt_hdr IS_parm_hdr_t (IS_WKP_HOP_CNT,)
gen_parm_hopcnt uint32_t
gen_parm_pathbw_hdr IS_parm_hdr_t (IS_WKP_PATH_BW,)
gen_parm_path_bw float32_t
gen_parm_minlat_hdr IS_parm_hdr_t (IS_WKP_MIN_LATENCY,)
gen_parm_min_latency uint32_t
gen_parm_compmtu_hdr IS_parm_hdr_t (IS_WKP_COMPOSED_MTU,)
gen_parm_composed_MTU uint32_t

ii. Type Min_adspec_t is defined by typedef as a structure to represent a minimal Adspec per-
service fragment - an empty service header - and has at least the following member.

Member Type Usage
mads_hdr IS_serv_hdr_t (<service>, 1, len=0)

9.3.6 Integrated Services Flowspec

When header <rapi.h> is included:

i. Type IS_specbody_t is defined by typedef as a structure to represent an Integrated Services
Flowspec, and has at least the following members.

Member Type Member Type Usage
spec_mh IS_main_hdr_t
spec_u union

CL_spec CL_flowspec_t Controlled-load service
G_spec Guar_flowspec_t Guaranteed service

Resource ReSerVation Protocol API (RAPI) 51

Integrated Services Data Structures and Macros Header File

ii. The following macros are defined with the values given below.

Macro Value
ISmh_len32b spec_mh.ismh_len32b
ISmh_version spec_mh.ismh_version
ISmh_unused spec_mh.ismh_unused

9.3.7 Integrated Services Tspec

When header <rapi.h> is included:

i. Type IS_tspbody_t is defined by typedef as a structure to represent an Integrated Services
Tspec, and has at least the following members.

Member Type Member Type Usage
st_mh IS_main_hdr_t
tspec_u union(1)

gen_stspec gen_Tspec_t Generic Tspec
Note:

(1) While it is possible that there could be service-dependent Tspecs, there are in fact
none.

ii. The following macros are defined with the values given below.

Macro Value
IStmh_len32b st_mh.ismh_len32b
IStmh_version st_mh.ismh_version
IStmh_unused st_mh.ismh_unused

9.3.8 Integrated Services Adspec

When header <rapi.h> is included, type IS_adsbody_t is defined by typedef as a structure to
represent a (minimal) Integrated Services Adspec, and has the following members, followed by
variable-length fragments for some or all services. These can be minimal length fragments.

Member Type Usage
adspec_mh IS_main_hdr_t Main header
adspec_genparms genparm_parms_t General char parameter fragment

52 Technical Standard

Appendix A

Example Implementation

This Appendix contains some general remarks based on ISI’s experience in implementing this
API with their release of RSVP code.

A.1 Protocols
There are three protocol interfaces involved in invoking RSVP via the API:

• Procedure Call Interface to Application

The term RAPI (RSVP API) is used for the function call interface to applications, and for the
data structures (objects) used in that interface. This document is primarily concerned with the
RAPI interface. This interface is realized by functions included in the library routine
librsvp.a, which is compiled from rapi_lib.c and rapi_fmt.c.

• Application—Daemon Protocol

The term API is used in the code for the local protocol across the socket between the
librsvp.a routines and the RSVP daemon rsvpd. This protocol generally uses RSVP object
bodies but RAPI object framing.

• RSVP Protocol

The RSVP protocol is used in the Internet between RSVP daemon programs.

The code is organized to make these three interfaces logically independent, so they can be
changed independently. Each of these three protocol interfaces has an independent version
number, defined in <rapi.h> and <rsvp.h>, for RAPI and RSVP, respectively.

The RAPI call library librsvp.a includes routines which convert objects between RAPI and API
formats. Similarly, the file rsvp_api.c included in the RSVP daemon includes routines that
convert between the API representation and the RSVP representation. In some cases, these
conversion functions are identity transformations (that is, pure copies). However, they provide
the structure to allow any of the three interfaces to be changed in the future.

There are two different object framing conventions. RAPI and API objects have a 2-word header
— a total length in bytes, and a format code — and a body. RSVP objects have a 1-word header.
In general, objects in the API interface (that is, across the socket) carry the 2-word RAPI object
header, but their body is that of the corresponding RSVP object. Therefore, the API↔RSVP
conversion in rsvp_api.c simply maps the framing convention.

In the RAPI interface, the application is given some choice of data formats. For example, QoS
control objects (that is, flowspecs, Tspecs, and Adspecs) can be represented in either the RSVP
(really Int-Serv) format, which has complex packing, or in the more convenient Simplified format.
The RAPI library routines map between Simplified format and Int-Serv format, which is used
across the API.

Resource ReSerVation Protocol API (RAPI) 53

RAPI Sessions Example Implementation

A.2 RAPI Sessions
Each instance of the RAPI library routines keeps a local (to the application process) table of open
RAPI sessions. The index into this table is the session handle (a_sid) used locally.

The RSVP daemon keeps its own table of RAPI sessions. From the daemon’s viewpoint, a RAPI
session is defined by the triple (fd, pid, a_sid), where fd is the file descriptor for the socket, pid is
the process id, and a_sid is an application session id received over fd from pid .

The first rapi_session() call in a particular instance of the RAPI library opens a UNIX-domain
RAPI socket to the RSVP daemon and passes the session registration request across it. If the
application (or the daemon) crashes without properly closing the RAPI socket, the other side
will be notified to perform a cleanup. In particular, if the user process terminates without
explicitly closing the RAPI session, the daemon will delete the corresponding reservation state
from the routers.

A.3 Implementation Restrictions
In the ISI reference implementation of RSVP:

• The RAPI_FILTERFORM_GPI and RAPI_FILTERFORM_GPI objects and the session flag
RAPI_GPI_SESSION were implemented in RAPI and the API, but the IPSEC extensions were
not fully implemented in RSVP.

• The SenderAdspec and SenderPolicy parameters in rapi_sender() were not implemented.

• The Style_Ext and Rcvr_Policy parameters in rapi_reserve() were not implemented.

54 Technical Standard

Example Implementation Implementation Restrictions

A.4 Implementation Model
Figure A-1 shows RAPI’s implementation model.

Application
RSVP
Client

Lib
rtns RSVP

Daemon

HOST

DATA

Socket

ROUTER
(RAPI)

RSVP

USER

KERNEL

RSVP
Daemon

Packet
Classifier

& Scheduler
(if any)

Packet
Classifier

& Scheduler
(if any)

RSVP messages

DATA

Figure A-1 ISI RAPI Implementation Model

Resource ReSerVation Protocol API (RAPI) 55

Example Implementation

56 Technical Standard

Glossary

The reader is advised to consult the current list of Internet Official Protocol Standards (IETF Std
1) for the status of the RFCs listed below, and to review any RFCs that supersede them.

The reader may also want to check Internet Drafts in relevant IETF working groups for the latest
developments.

See reference RFC 2205 for a more extensive glossary of RSVP terms.

Adspec
A data element (object) in a Path message that carries a package of OPWA advertising
information. See "One Pass With Advertising ".

AH
Abbreviation for IP "Authentication Header". See reference RFC 1826.

API
Application Programming Interface

C-type
A sub-identifier within an object class. A class identifier and C-type together uniquely identify
an RSVP object.

Controlled-Load service
An integrated service that provides a quality of service that closely resembles to "best effort"
service under unloaded conditions. See reference RFC 2211.

Error term C
The rate-dependent error term of the flow in a network element. It represents the delay a
datagram in the flow might incur in a network element that can be directly attributed to the rate
parameters of the flow. The error term C is measured in units of bytes.

Error term Csum
The cumulative sum of the error terms C of the flow since the most recent reshaping point
upstream from the receiver. See reference RFC 2212.

Error term Ctot
The end-to-end sum of the error terms C of the flow. See reference RFC 2212.

Error term D
The rate-independent term of the flow in a network element. It represents the worst case non-
rate-based transit delay through the network element. The error term D is measured in units of
microseconds.

Error term Dsum
The cumulative sum of the error terms D of the flow since the most recent reshaping point
upstream from the receiver. See reference RFC 2212.

Error term Dtot
The end-to-end sum of the error terms D of the flow. See reference RFC 2212.

ESP
Abbreviation for IP "Encapsulation Security Payload". See reference RFC 1827.

Filter Spec
Together with the session information, defines the set of data packets to receive the QoS
specified in a flowspec. The filter spec is used to set parameters in the packet classifier function.

Resource ReSerVation Protocol API (RAPI) 57

Glossary

Flow
The set of data packets defined by a session specification together with a Filter Spec.

Flow descriptor
The combination of a flowspec and a filter spec.

Flowspec
Defines the QoS to be provided for a flow. The flowspec is used to set parameters in the packet
scheduling function to provide the requested quality of service.

Guaranteed service
An integrated service that guarantees both bandwidth and firm end-to-end delay bounds. See
reference RFC 2212.

GPI
Abbreviation for "Generalized Port Identifier". When it is used in the context of IP Security, it
refers to the Security Parameter Index, or SPI. See reference RFC 2207.

IETF
Internet Engineering Task Force

INTSERV
Integrated Services

IP
Internet Protocol, version 4 (IPv4, see reference RFC 791) is in current use at the time of
publication of this Technical Standard. Version 6 (IPv6) is the "new generation" Internet Protocol
being specified by the IETF to replace IPv4.

IPSEC
Abbreviation for IP Security Protocol. See reference RFC 1825.

ISI
Information Sciences Institute of the School of Engineering at the University of Southern
California

Minimum policed unit
The size in bytes of the smallest packet in the flow. The packet size includes the application data
and all protocol headers at or above the IP level. This is used by network elements to compute
maximum bandwidth overhead needed to carry a flow’s packets over a particular link
technology.

One Pass With Advertising (OPWA)
Describes a reservation setup model in which (Path) messages sent downstream gather
information that the receiver(s) can use to predict the end-to-end service. The information that
is gathered is called an advertisement. See also "Adspec".

OPWA
Abbreviation for "One Pass With Advertising".

Override
A flag indicating whether the general path characterization parameters are overridden by
parameters specific to a given QoS service. A non-zero value will indicate at least one of the
general path characterization parameters is to be overridden.

Peak data rate
Sender’s peak traffic generation rate if it is known and controlled. It may be set to the sender’s
outgoing interface link rate if it is known, or it may be set to positive infinity if no better value is
available.

58 Technical Standard

Glossary

QoS
Quality of Service.

RAPI
RSVP API

RAPI Session
A RAPI session is an API session created by a call to rapi_session() and terminated by a call to
rapi_release().

Rspec
The component of a flowspec that defines a desired QoS.

RSVP
Resource ReSerVation Protocol

RSVP Session
An RSVP session defines one simplex unicast or multicast data flow for which reservations are
required. An RSVP session is identified by the destination address, transport-layer protocol, and
an optional (generalized) destination port.

Session
See "RAPI Session" and "RSVP Session".

Slack term
The delay delta between the desired delay and the delay that can be obtained by using a
reservation bandwidth level R as specified in the Rspec. The slack term is measured in units of
microseconds. See reference RFC 2212.

Token bucket depth
Size of an abstract linear first-in-first-out buffer for holding a sender’s data before the data is
transmitted. The token bucket depth is one of the several parameters used to define the traffic
specification of a data flow. See reference RFC 2211, and reference RFC 2212.

Token bucket rate
The average data rate that a sender will be sending into the flow. The token bucket rate is
measured in bytes of IP datagrams per second. The IP header and any other upper layer
protocol header are included in this measurement.

TSpec
A traffic parameter set that describes a flow.

TTL
An abbreviation for the IP "Time to Live" field. This one-octet field in the IP protocol header
controls the maximum distance the payload datagram can be forwarded. The implication of time
is historical; in the current Internet, the TTL field is simply a count of hops the datagram may
travel before being discarded.

vDstPort
Abbreviation for "Virtual Destination Port". It is used to de-multiplex RSVP sessions beyond the
IP destination address for IPSEC flows. See reference RFC 2207.

Resource ReSerVation Protocol API (RAPI) 59

Glossary

60 Technical Standard

Index

Adspec ..57
Adspecs...28
AH..57
API ...57
API outline ...4
C-type..57
callback ...4
can..1
client library services ...11
Controlled-Load service..57
Error Handling..35
Error term C...57
Error term Csum...57
Error term Ctot ..57
Error term D...57
Error term Dsum...57
Error term Dtot..57
ESP...57
eventupcall...7
filter spec ..29
Filter Spec ...57
Flow...58
Flow descriptor ...58
Flowspec...58
flowspecs ..27
formatting routines ..21
GPI ...58
Guaranteed service...58
headers..11, 21
IETF ...58
implementation model ..55
implementation-dependent......................................1
INTSERV ..58
IP ..58
IPSEC...58
ISI ...58
library calls...11
may ..1
Minimum policed unit...58
model...55
must ...1
namespace..2
objects..27
One Pass With Advertising (OPWA)58
OPWA ...58
Override..58

overview...3
Peak data rate ..58
policy data object ..29
positioning ...3
QoS ..3, 59
quality of service...3
RAPI ..1, 59
RAPI implementation model55
RAPI objects...27
RAPI Session..59
RAPI state diagram ..5
rapi.h ...37
RAPI_ADSTYPE_Intserv ..28
RAPI_ADSTYPE_Simplified28
rapi_dispatch() ...32
rapi_event_rtn_t() ..8
RAPI_FLOWSTYPE_Intserv27
RAPI_FLOWSTYPE_Simplified27
rapi_fmt_adspec()..22
rapi_fmt_filtspec() ...23
rapi_fmt_flowspec() ..24
rapi_fmt_tspec() ...25
rapi_getfd()..33
rapi_release()...12
rapi_reserve()..13
rapi_sender() ...15
rapi_session() ..17
rapi_strerror() ...19
RAPI_TSPECTYPE_Intserv28
RAPI_TSPECTYPE_Simplified..............................28
rapi_version()..20
reservation model...3
RFC 2210...27
Rspec ...59
RSVP..1, 59
RSVP Session ...59
sender template...29
sender Tspecs...28
Session...59
should..1
Slack term...59
state diagram ...5
terminology..1
Token bucket depth..59
Token bucket rate ...59
TSpec ...59

Resource ReSerVation Protocol API (RAPI) 61

Index

TTL...59
undefined..2
unspecified...2
upcall ...4, 27-28
vDstPort..59
will ...2

62 Technical Standard

