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The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers and
suppliers of technology. Its mission is to cause the development of a viable global information
infrastructure that is ubiquitous, trusted, reliable, and as easy-to-use as the telephone. The
essential functionality embedded in this infrastructure is what we term the IT DialTone. The
Open Group creates an environment where all elements involved in technology development
can cooperate to deliver less costly and more flexible IT solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the Open
Software Foundation (founded in 1988), The Open Group is supported by most of the world’s
largest user organizations, information systems vendors, and software suppliers. By combining
the strengths of open systems specifications and a proven branding scheme with collaborative
technology development and advanced research, The Open Group is well positioned to meet its
new mission, as well as to assist user organizations, vendors, and suppliers in the development
and implementation of products supporting the adoption and proliferation of systems which
conform to standard specifications.

With more than 200 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

- consolidating, prioritizing, and communicating customer requirements to vendors

« conducting research and development with industry, academia, and government agencies to
deliver innovation and economy through projects associated with its Research Institute

- managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

- adopting, integrating, and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

- licensing and promoting the Open Brand, represented by the ‘X" mark, that designates
vendor products which conform to Open Group Product Standards

- promoting the benefits of the IT DialTone to customers, vendors, and the public.

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development, and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trademark on behalf of the industry.
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The Development of Product Standards

This process includes the identification of requirements for open systems and, now, the IT
DialTone, development of CAE and Preliminary Specifications through an industry consensus
review and adoption procedure (in parallel with formal standards work), and the development
of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product. There are currently two forms of Product Standard, namely the
Profile Definition and the Component Definition, although these will eventually be merged into
one.

The “X’ mark is used by vendors to demonstrate that their products conform to the relevant
Product Standard. By use of the Open Brand they guarantee, through the X/Open Trade Mark
Licence Agreement (TMLA), to maintain their products in conformance with the Product
Standard so that the product works, will continue to work, and that any problems will be fixed
by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on specification development and product documentation, but which also includes
Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry surveys,
and business titles.

There are several types of specification:
« CAE Specifications

CAE (Common Applications Environment) Specifications are the stable specifications that
form the basis for our Product Standards, which are used to develop X/Open branded
systems. These specifications are intended to be used widely within the industry for product
development and procurement purposes.

Anyone developing products that implement a CAE Specification can enjoy the benefits of a
single, widely supported industry standard. Where appropriate, they can demonstrate
product compliance through the Open Brand. CAE Specifications are published as soon as
they are developed, so enabling vendors to proceed with development of conformant
products without delay.

« Preliminary Specifications

Preliminary Specifications usually address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations. They are
published for the purpose of validation through implementation of products. A Preliminary
Specification is not a draft specification; rather, it is as stable as can be achieved, through
applying The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organizations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a CAE Specification.
While the intent is to progress Preliminary Specifications to corresponding CAE
Specifications, the ability to do so depends on consensus among Open Group members.
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« Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif, and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as CAE Specifications, in which case the relevant Technology
Specification is superseded by a CAE Specification.

In addition, The Open Group publishes:
« Product Documentation

This includes product documentation—programmer’s guides, user manuals, and so on—
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

- Guides

These provide information that is useful in the evaluation, procurement, development, or
management of open systems, particularly those that relate to the CAE Specifications. The
Open Group Guides are advisory, not normative, and should not be referenced for purposes
of specifying or claiming conformance to a Product Standard.

- Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Program. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new developments
and associated international standards. To distinguish between revised specifications which are
fully backwards compatible and those which are not:

- A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

« A new lIssue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://mvww.opengroup.org/public/pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://mvww.opengroup.org/public/pubs.
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This Document

This document is a CAE Specification (see above). It specifies Remote Procedure Call (RPC)
services, interface, protocols, encoding rules and the Interface Definition Language (IDL).

The purpose of this document is to provide a portability guide for RPC application programs
and a conformance specification for RPC implementations.

Structure

This document is organised into four parts.

Part 1, Remote Procedure Call Introduction describes this document in detail, covering
application portability, services and protocols, and conformance requirements. It contains
material relevant to both application programmers and implementors.

Part 2, RPC Application Programmer’s Interface specifies a portable RPC Application
Programmer’s Interface (API). It contains material relevant both to application programmers
and implementors.

Part 3, Interface Definition Language and Stubs specifies the IDL and stubs. It contains material
relevant both to application programmers and implementors.

Part 4, RPC Services and Protocols specifies RPC services and protocols. It contains material
mainly relevant to implementors.

This document also includes a series of appendixes containing material that supplements the
main text. These contain material relevant both to application programmers and implementors.
Intended Audience

This document is written for RPC application programmers and developers of RPC
implementations.

Typographical Conventions

The following typographical conventions are used throughout this document:

- Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

. Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— variable names, for example, substitutable argument prototypes
— environment variables, which are also shown in capitals
— utility names
— external variables, such as errno
— functions; these are shown as follows: name().
» Normal font is used for the names of constants and literals.
+ The notation <file.h> indicates a header file.
- The notation [EABCD] is used to identify an error value EABCD.

« Syntax, code examples and user input in interactive examples are shown in fixed width
font.
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- Variables within syntax statements are shown in Jjtalic fixed width font

In addition to these generic conventions, several chapters of this document use conventions
specific to the topic covered, including language conventions (Chapter 4 and Chapter 5),
encoding conventions (Chapter 14), and protocol machine conventions (Chapter 8 to Chapter 11
inclusive). These conventions are specified in the relevant chapters.
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Chapter 1

Introduction to the RPC Specification

This document specifies both portability and interoperability for the Remote Procedure Call
(RPC) mechanism. The specification contains material directed at two audiences:

- It provides a portability guide for application programmers.

- It provides both portability and interoperability specifications for those who are
implementing or porting RPC or who are testing an RPC implementation.

This document may be thought of as an implementation specification, covering both portability
and interoperability, that contains within it an application portability guide. The application
portability guide consists of Part 2, RPC Application Programmer’s Interface and Part 3, Interface
Definition Language and Stubs.

Although the portability specification is part of the broader implementation specification, it has
been designed to stand alone so that it may be used by application programmers without
reference to the other parts of the implementation specification.

Note: In order to make the portability specification independent, some material is repeated,
especially between Chapter 2 and Chapter 6.
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Portability Introduction to the RPC Specification

1.1 Portability

The portability specification describes the concrete syntax and semantics of the Application
Programmer’s Interface (API) to RPC. It consists of:

- an introduction to the RPC API that describes the RPC programming model and gives
general guidelines for portable usage (see Chapter 2)

- areference section for the data types used in the RPC API (see Chapter 3)!

- aset of reference pages for the RPC run-time library routines; these specify the calling syntax
and semantics for the interfaces (see Chapter 3)

- areference to the Interface Description Language (IDL) (see Chapter 4)
- amapping of IDL data types to ISO C data types (see Appendix F)

- an RPC stub specification that defines stub characteristics required for portability (see
Section 5.1 on page 339).

The portability specification is narrowly focussed on providing a guide to portable usage of the
RPC API. It describes behaviour that is common to all implementations. Whenever
implementation-specific behaviour is referenced, it is clearly marked as such. Similarly, the
specification generally avoids examples or tutorial descriptions. Whenever usage guidelines are
provided, they are clearly marked as such.

All behaviour that is not specifically marked as implementation-specific or a usage note, is
considered to be required. All implementations must conform to the specified behaviour.
Programmers can rely on the specified behaviour to be portable among conforming
implementations.

1. This document specifies ISO C-language bindings for data types and interfaces.
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Introduction to the RPC Specification Services and Protocols

1.2

Services and Protocols

The implementation specification includes a set of service and protocol specifications. The
protocol specifications describe how implementations of the RPC client and server run-time
systems communicate. The service specifications describe a set of abstract services that the RPC
run-time system must implement.

The service and protocol specifications include:
- an abstract specification of the RPC model (see Chapter 6)
- an abstract specification of a set of RPC service primitives (see Chapter 7)

. abstract specifications of the RPC connectionless and connection-oriented communications
protocols. These are given as sets of statecharts and associated descriptive materials. This
includes an abstract specification of the underlying transport services required by the RPC
protocols. (The protocol specifications are contained in Chapter 8, Chapter 9, Chapter 10 and
Chapter 11.)

- byte stream specifications of the formats of RPC Protocol Data Units (PDUs) used by the
connectionless and connection-oriented protocols (see Chapter 12) and common
authentication verifier encodings (see Chapter 13)

- a specification of the Network Data Representation (NDR); this specifies a set of NDR data
types and the byte stream formats in which they are communicated between client and
server run-time environments (see Chapter 14)

- amapping of IDL data types to NDR data types (see Appendix F)

- an RPC stub specification that defines the stub characteristics required for interoperation (see
Section 5.2 on page 348)

- a specification of information stored in and retrieved from name services (see Section 6.2 on
page 358, Appendix I, and the DCE: Directory Services specification).

- a UUID specification (see Appendix A)

- IDL data type declarations (see Appendix N)

- the endpoint mapper protocol (see Appendix O)

- the conversation manager protocol (see Appendix P)
- the remote management interface (see Appendix Q).

The aim of the service and protocol specifications is to provide a complete mapping from RPC
call semantics to the byte streams that RPC run-time clients and servers interchange using
underlying services. The RPC service primitives provide an abstract implementation of the
specified RPC call semantics and serve to map the specified semantics to the specified protocol
machines. The PDU formats give the byte streams that the protocol machines exchange using
the underlying transport services. The NDR specification, along with the mapping of IDL to
NDR data types, defines how the call data exchanged in the RPC PDUs is encoded.

Except for the byte stream specification and the stub specification, the service and protocol
specifications are abstract. They describe the behaviour that conforming implementations must
follow, but they do not prescribe any specific means for implementing this behaviour.

Implementations that conform to this specification interoperate according to the following rule:
client and server applications, conforming to the same IDL source (but not necessarily the same
ACS), correctly implement the specified RPC interface semantics for each remote procedure call
operation specified in the IDL source.
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Except when specified otherwise, IDL compiler behaviour and the stub, including the stub to
run-time interface, are implementation-dependent. Therefore, the above rule applies when stubs
are generated using the local implementation’s IDL compiler. There is no requirement that stubs
for a given language are portable among implementations.
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Introduction to the RPC Specification Conformance Requirements

1.3 Conformance Requirements

To conform to this document, implementations must meet the following requirements;

Implementations must support the endpoint selection rules in Endpoint Selection on page
23.

Implementations must support the manager selection rules in Interface and Manager
Selection on page 24.

Implementations must support the search algorithm in Section 2.4.5.

Implementations must support the APl naming, syntax and semantics, as defined in Chapter
3. Implementations may extend the set of status codes documented in Chapter 3.

Implementations must support the naming, syntax and semantics for IDL, as given in
Chapter 4.

Implementations must support the naming, syntax, and semantics for stubs, as given in
Chapter 5.

Implementations must support the semantics defined in Chapter 6.

Implementations must support the NSI syntax and naming, as defined in Section 6.2 on page
358.

Implementations must support the service semantics defined in Chapter 7.
Implementations must follow the conformance rules specified in Chapter 9.
Implementations must support the syntax of the PDU encodings in Chapter 12.

Implementations must support the Authentication Verifier encodings, as defined in Chapter
13.

Implementations must support the rules and encodings for NDR, as given in Chapter 14.

Implementations must support the syntax, semantics and encoding for UUIDs, as defined in
Appendix A.

Implementations must support the naming and semantics for protocol sequence strings, as
defined in Appendix B.

Implementations must support the naming and semantics for the name_syntax arguments, as
defined in Appendix C.

Implementations must support the naming and semantics for security parameters, as defined
in Appendix D.

Implementations must support the naming and encodings for comm_status and fault_status,
as defined Appendix E.

Implementations must support the mapping from IDL types to NDR types, and from NDR
types to defined I1SO C types, as defined in Appendix F.

Implementations must support the portable character set, as defined in Appendix G.

Implementations must use the endpoint mapper ports, as defined in Appendix H for the
corresponding protocols.

Implementations must adhere to the rules for protocol identifier assignment, as defined in
Appendix I.

Part 1 Remote Procedure Call Introduction 7
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- Implementations must adhere to the mappings for Directory Service attributes, as defined in
the DCE: Directory Services specification.

- Implementations must provide defaults for the protocol machine values specified in
Appendix K.

- Implementations must obey the special protocol tower encoding rules specified in Appendix
L.

- Implementations must support the syntax and semantics of the dce_error_ing_text routine
specified in Appendix M.

- Implementations must adhere to the mappings for transfer syntax UUIDs, as defined in
Appendix N.

- Implementations must support the endpoint mapper semantics, as defined in Appendix O.

- Implementations must support the conversation manager semantics, as defined in Appendix
P.

- Implementations must support the remote management semantics as defined in Appendix

Q.
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Chapter 2

Introduction to the RPC API

This chapter provides a general description of the programming model implemented by the RPC
Application Programming Interface (API). This description includes definitions of many of the
concepts used throughout the RPC APl manual pages. As such, it is a necessary prerequisite to
the understanding of the manual pages, and the manual pages assume knowledge of this
chapter, even when they do not make explicit reference to it.

The description serves three purposes:

- It provides general information that is relevant to many of the routines in the RPC API, but is
not specified in the individual manual pages.

- It provides a rationale for the set of RPC APIs included in this document.
- It provides general guidelines for the intended use of the RPC APIs.

The general information covers topics, such as binding and name service usage, that are relevant
to many of the manual pages. Typically, several routines perform tasks related to a given topic.
This introduction provides a general model within which the tasks performed by individual
routines and suites of routines can be understood. This general model also provides a rationale
for the set of routines included in this document. It describes the underlying operations required
for RPC programming and shows how the set of RPC APIs included in this document gives
access to these operations.

In showing how the RPC API routines are meant to be used, this chapter provides certain
guidelines for consistent RPC client/server interface usage. These guidelines cover such areas as
using the naming services and organising server resources. By following them, programmers
can simplify the task of maintaining and enhancing server interfaces and writing client
programs.

Part 2 RPC Application Programmer’s Interface 11
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RPC Programming Model Overview

The RPC programming model can be viewed along two axes:
« client/server
« program/stub/run-time system.

Each view describes important aspects of the use of the RPC API.

Client/Server Model

The client/server view of RPC programming describes the distributed resource model
implemented by the RPC mechanism. In this view, programming tasks are divided between
servers, which provide services or make resources available to remote clients, and clients, which
seek and make use of these services or resources.

Interfaces

The central component of the client/server model is the interface. An interface is a set of
remotely callable operations offered by a server and invokable by clients. Interfaces are
implemented by managers, which are sets of server routines that implement the interface
operations. RPC offers an extensive set of facilities for defining, implementing and binding to
interfaces.

The RPC mechanism itself imposes few restrictions on the organisation of operations into
interfaces. RPC does provide a means to specify interface versions and a protocol to select a
compatible interface version at bind time (see Chapter 4 and Chapter 6). When an interface is
specified as a new version of an existing interface, the server manager code must provide the
required version compatibility. Beyond this restriction, the programmer is free to place any set
of remotely callable operations in a given interface.

Remoteness

The RPC paradigm makes remote calls an extension of the familiar local procedure call
mechanism. Specifically, the call itself is made as a local procedure call, and the underlying RPC
mechanism handles the remoteness transparently. Server interface programming is thus similar
to local procedure call programming, except that the handler of the call runs in a separate
address space and security domain.

From this point of view, a local procedure call is a special simple case of the more general call
mechanism provided by RPC. RPC semantics extend local procedure call semantics in a variety
of ways:

Reliability Network transports may offer varying degrees of reliability. The RPC
run-time system handles these transport semantics transparently, but
RPC call specifications include a specification of execution semantics that
indicates to the RPC protocols the required guarantees of success and the
permissibility of multiple executions on a possibly unreliable transport.
Server application code must be appropriate for the specified execution
semantics.

Binding RPC binding occurs at run time and is under program control. Client and
server use of the RPC binding mechanism is discussed extensively in this
chapter.

No Shared Memory Because calling and called procedures do not share the same address
space, remote procedure calls with input/output parameters use copy-in,
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copy-out semantics. For the same reason, RPC has no notion of “‘global
data structures’” shared between the caller and callee; data must be
passed via call parameters.

Failure Modes A number of failure possibilities arise when the caller and callee are on
physically separate machines. These include remote system or server
crashes, communications failures, security problems and protocol
incompatibilities. RPC includes a mechanism to return such remote
errors to the caller.

Cancels RPC extends the local cancel mechanism by forwarding cancels that occur
during an RPC to the server handling the call, allowing the server
application code to handle the cancel. RPC adds a cancel time-out
mechanism to ensure that a caller can regain control within a specified
amount of time if a cancelled call should fail to return.

Security Executing procedures across physical machine boundaries and over a
network creates additional requirements for security. The RPC API
includes an interface to the underlying security services.

The RPC API provides programmers with the means to apply these extended semantics, but it
shields applications from the rigours of transport level send-and-receive programming. The
RPC programming paradigm gives the programmer control of the remote semantics at two
points: in the interface specification and through the RPC API.

- The interface specification, while it is principally used to specify the local calling syntax of an
interface, also allows programmers to specify the desired execution semantics, the degree to
which binding is under program control and error semantics. Interface specification is
described in Chapter 4.

- The RPC API gives applications access to a variety of run-time services and control of many
client/server interactions at run time. Its most important function is to control the process of
binding between clients and servers. Other functions include authentication, server
concurrency and server management.

Binding

A remote procedure call requires a remote binding. The calling client must bind to a server that
offers the interface it wants, and the client’s local procedure call must invoke the correct
manager operation on the bound-to server. Because the various parts of this process occur at
run time, it becomes possible to exercise nearly total programmatic control of binding. The RPC
API provides access to all aspects of the binding process.

Each binding consists a set of components that can be separately manipulated by applications,
including protocol and addressing information, interface information and object information.
This allows servers to establish many binding paths to their resources and allows clients to make
binding choices based on all of the components. These capabilities are the basis for defining a
variety of server resource models.

Name Services

Servers need to make their resources widely available, and clients need some way to find them
without knowing the details of network configuration and server installation. Hence, the RPC
mechanism supports the use of name services, where servers can advertise their bindings and
clients can find them, based on appropriate search criteria. The RPC API provides clients and
servers with a variety of routines that can be used to export and import bindings to and from
name services.
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Resource Models

The client/server model views servers as exporters of services—via RPC interfaces—and clients
as importers of those services. Exported services typically take the form of access to resources,
such as computational procedures, data, communications facilities, hardware facilities, or any
other capabilities available to an application on a networked host. The RPC mechanism does not
distinguish among such resource types in any way. On the contrary, it provides a uniform
means of access—the remote procedure call—and allows the programmer to define the
underlying resource model freely.

RPC does, however, provide specific mechanisms that implicitly support different approaches to
resource modeling. These mechanisms take advantage of the flexibility of the binding process
and the name services. The RPC mechanism supports three basic resource models:

By Server In this model, clients seek to bind to a specific server instance that
provides an interface of interest.

By Service In this model, clients seek a service—as represented by an interface—
without concern for the specific server instance that provides that service
or any objects that the server manages.

By Object In this model, clients seek a binding to any server that manages a specific
object. An object may be any computational resource available to a
server.

The RPC programming mechanism does not explicitly enforce these models. Instead, they are
supported implicitly by making available a set of run-time binding and name service facilities
through the RPC API. Programmers may use these facilities according to their application
requirements. However, this document recommends that programs follow the models specified
here in order to ensure consistent use of the client/server interface.

Security Services

The RPC API provides access to a variety of security services: client-to-server and server-to-
client authentication, authorisation of access to server resources (which may carry delegation
information inserted by security routines), and varying degrees of cryptographic protection of
client/server communications.

Server Implementation

The client/server view of RPC is necessarily asymmetric. The model is based on providing
services remotely via the export of RPC interfaces. Since servers are the means for
implementing remote interfaces, the model is server-centred. The RPC architecture provides
certain server facilities that make the implementation of servers more efficient. These include

Server Concurrency Implementations may buffer RPC requests at the server and
automatically provide multiple threads to handle concurrent requests,
relieving the application programmer of these tasks.

Remote Management The RPC run-time system automatically offers a set of remote server
management interfaces that can be used for such purposes as querying
and stopping servers.
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2.1.2.2

2.1.2.3

Application/Stub/Run-time System

The application/stub/run-time system view of RPC describes the division of labour between
application code and other RPC components in implementing a remote procedure call.

RPC Run Time

At the core of this model is the RPC run-time system, which is a library of routines and a set of
services that handle the network communications that underlie the RPC mechanism. In the
course of an RPC call, client-side and server-side run-time systems’ code handle binding,
establish communications over an appropriate protocol, pass call data between the client and
server, and handle communications errors.

The RPC API is the programmer’s interface to the run-time system. The run-time system makes
use of a number of services, such as the endpoint mapper, name services and security services.
The RPC API also provides an interface to these services for carrying out RPC-specific
operations. Portable usage of the RPC API is fully specified in this section of this document.

Stubs

The stub is application-specific code, but it is not directly generated by the application writer
and therefore appears as a separate layer from the programmer’s point of view. The function of
the stub is to provide transparency to the programmer-written application code. On the client
side, the stub handles the interface between the client’s local procedure call and the run-time
system, marshaling and unmarshaling data, invoking the RPC run-time protocol, and if
requested, carrying out some of the binding steps. On the server side, the stub provides a
similar interface between the run-time system and the local manager procedures that are
executed by the server.

RPC transparency to the application programmer is provided by the interface specification
mechanism. The programmer specifies interfaces using an Interface Definition Language (IDL),
and the IDL compiler generates stubs automatically from the specification. Thus, the actual
operations performed by the stub are largely invisible to the programmer, although they form
part of the application-specific program code.

This chapter does not cover the interface specification mechanism itself; this is documented in
Chapter 4. What is covered here are the assumptions that the RPC programming model makes
about stubs, such as well-known stub names and stub memory management.

Application Code
RPC application code falls into two categories:
« remote procedure calls and manager code

- optional calls to the RPC API, mainly to set up the run-time system state required by remote
procedure calls.

In the first category are the procedures written by the programmer to implement the client and
server operations of the remote procedure call. On the client side, these are simply local calls to
the stub interfaces for the remote procedures. On the server side, these are a set of manager
routines that implement the operations of the interface. In most applications, manager routines
are presumably a major part of the server code. Recall that, aside from requiring managers to
conform to the specified execution semantics and version behaviour, the RPC mechanism
imposes no specific constraints on manager implementations.
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The programmer-written application code interacts with the RPC run-time system principally
through the stub. This makes run-time operations largely transparent to the application code.
Nevertheless, in order to control binding, security and other aspects of the RPC mechanism, the
application often needs direct access to run-time operations. The RPC API provides applications
with such access to the RPC run-time system and related services.
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2.2
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2.2.2

2.2.3

API Operations

The RPC API provides access to an extensive set of run-time operations. Section 2.12 on page 41
provides a detailed taxonomy of APIs according to the operations performed. This section offers
an overview, based on a somewhat broader set of categories.

- binding-related operations

« Name service operations

- endpoint operations

- security operations

- stub memory management operations
« management operations

« UUID operations.

Subsequent sections of this chapter cover many of these groups of operations in detail.

Binding-related Operations

Binding-related operations establish a relationship between a client and server that makes
possible a remote procedure call. These operations may be roughly divided into two categories:

- operations to establish client/server communications using an appropriate protocol
. operations that establish internal call routing information for the server.

Operations in the first category include the creation of communications endpoints by the server
for the set of protocols over which it wishes to receive remote procedure calls. Servers typically
export information about the bindings thus created to a name service and an endpoint map.
Clients typically import such binding information from a name service and an endpoint map
(see Section 2.2.2 on page 13 and Section 2.2.3 on page 13).

Operations in the second category establish a set of mappings that the server can use to route
calls internally to the appropriate manager routine. This routing is based on the interface and
version, operation and any object requested by the call.

Name Service Operations

The RPC name service API includes an extensive set of operations for exporting and importing
binding information to and from name services. These operations make use of a set of RPC-
specific name service entry attributes to structure the exported binding information so that it can
easily be found and interpreted by clients.

Endpoint Operations

Servers listen for remote procedure call requests over one or more protocol-specific endpoints.
Typically, such endpoints are allocated dynamically when a server begins to listen, and their
lifetime is only a single server instantiation. RPC provides an endpoint mapper mechanism that
allows such volatile endpoint information to be maintained separately from the more stable
components of a binding. Typically, servers export stable binding information to a name service
and register their volatile endpoints with the local endpoint mapper. The endpoint mapper then
resolves endpoints for calls made on bindings that do not contain them.

Endpoint operations are used by servers to register their endpoints with the endpoint mapper.
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Security Operations

These operations establish the authentication and authorisation services and protection levels
used by remote procedure calls.

Internationalisation Support Operations

These operations are used by applications to implement character and code set interoperability,
which permits clients and servers to transfer international character data in a heterogeneous
character set and code sets environment.

Stub Memory Management Operations

These operations are used by applications to manage stub memory. They are typically used by
RPC applications that pass pointer data.

Management Operations

Management operations include a variety of operations with the potential to affect applications
other than the one making the management call. Servers automatically export a set of remote
management functions.

UUID Operations

UUIDs (Universal Unique Identifiers) are used frequently by the RPC mechanism for a variety of
purposes. The UUID operations enable applications to manipulate UUIDs.
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2.3 Binding

Binding refers to the establishment of a relationship between a client and a server that permits
the client to make a remote procedure call to the server. In this document, the term “‘binding”
usually refers specifically to a protocol relationship between a client and either the server host or
a specific endpoint on the server host, and ‘‘binding information’ means the set of protocol and
addressing information required to establish such a binding. But, for a remote procedure call,
such a binding occurs in a context that involves other important elements, paralleling the notion
of a binding in a local procedure call. In order for an RPC to occur, a relationship must be
established that ties a specific procedure call on the client side with the manager code that it
invokes on the server side. This requires both the binding information itself and a number of
additional elements (see Figure 2-1 on page 16). The complete list is as follows:

1. aprotocol sequence that identifies the RPC and underlying transport protocols
an RPC protocol version identifier
a transfer syntax identifier

2

3

4. aserver host network address

5. anendpoint of a server instance on the host
6

an object UUID that can optionally be used for selection among servers and/or manager
routines

~

an interface UUID that identifies the interface to which the called routine belongs
8. an interface version number that defines compatibility between interface versions

9. an operation number that identifies a specific operation within the interface.
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Binding Information

Protocol Sequence

Protocol Version

Partial
>

Binding
Transfer Syntax FEJ" i
Binding May Be Referred to

by Binding Handle

Host Address

Endpoint

Object UUID

Other Information

Operation Number

Interface UUID
Interface Identifier

Interface Version

Figure 2-1 Information Required to Complete an RPC

Note: The discussion in this chapter is intentionally vague about how any of this
information is communicated between client and server. The underlying RPC
protocol packages the required information for transmission. However, APl usage is
protocol-independent, and this chapter provides a protocol-independent description
of RPC. Hence, this chapter typically refers to the binding information ‘‘contained”’
in a call without specifying how such information is actually transmitted or received.
This is left to the RPC protocol specifications in Part 4, RPC Services and Protocols.

The binding information itself covers the first five elements of the list—the protocol and address
information required for RPC communications to occur between a client and server.

Figure 2-1 on page 16 also shows the object UUID as part of the binding information. This is
explained in Section 2.3.1 on page 17.

In RPC terminology, such a binding can be partial or full. A partial binding is one that contains
the first four elements of the list, but lacks an endpoint. A full binding contains an endpoint as
well. The distinction is that a partial binding is sufficient to establish communications between a
client and a server host, whereas a full binding allows communications to a specific endpoint on
the server host.
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23.1.2

2.3.2

Binding Handles

The binding information required to make remote procedure calls is maintained by the client
and server run-time systems on behalf of applications. The run-time system provides
applications with opaque binding handles to refer to locally maintained binding information.
Applications use binding handles to manipulate bindings via calls to the RPC API.

It is important to understand that binding handles are only valid in the context of the local client
or server instance that created them. They are not used directly to communicate binding
information between servers and clients. Typically, servers advertise binding information by
exporting it to name service entries. When a client imports binding information from a name
service, it receives a binding handle from the client run-time system that refers to the local copy
of the imported binding information.

Note: On the server side, such a binding handle refers to the first five elements shown in
Figure 2-1 on page 16. On the client side, such a binding handle also refers to an
object UUID associated with the binding information. For this reason, the figure
includes the object UUID with the binding information even though it is not part of
the protocol and address information required to establish communications between
the client and server. The role of the object UUID is described in Interface and
Manager Selection on page 24.

Client and Server Binding Handles

Binding information may refer either to a server or a client. Most of the time, binding
information refers to servers, since it is servers to which clients need to bind in order to make
remote procedure calls. When a binding refers to a server, a binding handle for it is called a
server binding handle. Server binding handles are used both by clients and servers in the course of
the binding process.

In some cases, servers need binding information for clients that call them. A binding handle that
refers to such binding information is called a client binding handle. A small number of RPC APIs
take client binding handles as arguments.

Obtaining Binding Handles

Applications obtain server binding handles by calling any of several RPC API routines. (See
Section 3.1 on page 51 for a list of routines that return server binding handles.)

A server obtains a client binding handle as the first argument passed by the run-time system to a
server manager routine.

String Bindings

A string binding is a string representation of binding information, including an optional object
UUID. String bindings provide binding information in human-readable form. Applications can
use RPC API calls to request a string binding from the run-time system or convert a string
binding into a binding that the runtime system can use to make a remote procedure call. String
binding format is specified in Section 3.1 on page 51.
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Binding Steps

In order to complete an RPC call, all of the elements listed in Figure 2-1 on page 16 must be
present. RPC divides the process of assembling these elements into several steps and organises
the assembled information in a way that provides maximum flexibility to the binding process.
To understand this, consider the opposite possibility: a binding mechanism that seeks to imitate
a local procedure call’s static binding to a local library routine. In this case, all the elements
would be preassembled into a well-known binding to which the calling program would bind in
an all-or-nothing fashion.

RPC is close to the other dynamic extreme. It purposely avoids creating static links among all
the elements so that a final routing—from the client procedure call to the server manager routine
invoked—can be dynamically determined at the time of the RPC. From the programmer’s point
of view, one of the principal differences between a local procedure call and a remote procedure
call is that the binding process—the way all these components are linked together—occurs at
run time and can be carried out, optionally, under application program control.

This serves several purposes:

. Itincreases the location transparency of applications. Because clients do not need to know all
the binding information before a call is actually made, applications can run successfully on
systems with widely different configurations.

« It increases the maintainability of server installations because there are few a priori
restrictions on the locations of server resources.

. It increases the probability of success in the face of partial failures because applications can
look for bindings to servers in different locations and choose among a variety of RPC and
network protocols.

- It makes possible a variety of server resource models by allowing servers to organise and
advertise binding information in a variety of ways.

The binding process consists of a series of steps taken by the client and server to create, make
available and assemble all the necessary information, followed by the actual RPC, which creates
the final binding and routing using the elements established by the previous steps. To break the
process down in more detail:

- The server takes a series of steps that establish binding-related state for the server side of the
call.

- The server optionally exports binding information to a name service.

- The client takes a series of steps that establish binding-related state for the client side of the
call. Binding information used in this process may be imported from a name service.

- The client makes a call, which is able to invoke the correct operation in the server by making
use of the binding-related state established on the client and server sides.

Each of the components listed in Figure 2-1 on page 16 is involved at some stage of this process.
Some components are involved at more than one stage and may be used in more than one way.
The following sections consider each stage and component in some detail.
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2.3.3.1 Server Binding Steps

The server takes a number of steps to establish binding state in the server side run-time system,
the name service and the endpoint mapper. The server’s basic task is to acquire a set of
endpoints from the run time and set up a series of relationships among binding elements that
will then be used to construct the final routing at call time.

Figure 2-2 on page 20 shows the set of relationships that a server must establish to receive
remote procedure calls. As the figure indicates, these are maintained in several places:

- by the server run-time system

in the stub and application code
« by the endpoint mapper

- by a name service.

Stub and Application Code Maintained by Server Runtime

1. Define the EPV for each manager. 2. Register the Object UUID/Type UUID

associations.
Code for Interface foo

Object UUID Type UUID
foo Manager A uuib1 UUID A
EPV A Oneration 0 UUID 2 UUID A
> rati
> 11 P UuUID 3 UuUID B
. UuID 4 UUID B
| ———> Operation 1
UuUID 5 UUID B
[T Operation 2 ,
3. Register the IF ID/Type UUID/EPV
[~ associations.
[~ Operation 3
\\ foo's IF ID UuID A EPV A
> Operation 4 foo's IF ID UuUID B EPV B 1
4. Get the bindings.
foo Manager B Endpoints
EPV B | Operation 0 L Binding ] Binding
| Information Handle
| L+ Operation 1
Operation 2 L Binding ™ Binding
Information Handle
[T T operation 3
~_|
™ Operation 4 1] Binding ] Binding
Information Handle

Go to Step 5 —>»
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5. Export the endpoint information.

Full Binding Full Binding Full Binding
Information Information Information
foo's IF ID foo's IF ID foo's IF ID

Object UUID 1 Object UUID 2 Object UUID 3
Full Binding Full Binding
Information Information
foo's IF ID foo's IF ID

Object UUID 4 Object UUID 5

Name Service

6. Export the binding information to a name
service.

Partial Binding
Information

Object UUID 1

Object UUID 2
foo's IF ID

Object UUID 3

Partial Binding
Information

Object UUID 4

foo's IF ID Object UUID 5

Partial Binding
Information

foo's IF ID

Figure 2-2 Server Binding Relationships

The server takes several steps (some of them optional) to establish the necessary relationships,
as indicated in Figure 2-2 on page 20. The steps are as follows:

1.

24

The server application or stub code defines a manager Entry Point Vector (EPV) for each
manager that the server implements. Recall that a manager is a set of routines that
implements the operations of an interface and that servers may implement more than one
manager for an interface; for example, to provide for different versions or object types.
Each EPV is a vector of pointers to the operations of the manager. When an RPC request
arrives, the operation number is used to select an element from one of the manager EPVs.
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2. The server registers a set of object UUID/type UUID associations with the RPC run-time
system.

3. The server registers interface identifier/type UUID/EPV associations with the RPC run-
time system. Together with the previous step, this establishes the mappings that permit
the run-time system to select the appropriate manager, based on the interface ID and any
object UUID contained in a call.

4. The server application tells the run-time system what protocol sequences to use, and the
run-time system establishes a set of endpoints for the protocol sequences requested. The
server may ask the run-time system for its bindings, and the run time will return a set of
binding handles that refer to the binding information for these endpoints.

5. The server may register binding information, consisting of a set of interface
identifier/binding information/object UUID tuples, with the endpoint mapper. For each
interface, the registered data consists of a cross product of the bindings and object UUIDs
that the server wants to associate with that interface. When a call is received with a partial
binding (that is, one lacking an endpoint) the endpoint mapper is able to use this
information to select an endpoint that is capable of handling the call.

6. The server may export binding information to one or more name service entries. The
information exported here looks quite similar to the information registered in the endpoint
map in the previous step, with one important difference. The binding information
exported to the name service generally lacks an endpoint, consisting of protocol and host
address information only. Therefore the name service contains only the most persistent
part of the binding information while the endpoint map contains the volatile endpoint
portion.

(The format is also different. See Section 2.4 on page 27 for information about the format of
server entries.)

Note that not all of these steps are required. Servers may construct their own bindings, by using
string bindings, rather than request them from the run-time system as described in step 4.
Servers may also avoid exporting binding information to a name service and endpoint map as
described in steps 5 and 6. In such a case, clients must then construct bindings from string
bindings obtained by some other means.

Having completed the required steps, the server has established a set of relationships that allows
the server run-time system to construct a complete binding, with routing to a specific server
operation, for a call that contains the following information:

« full or partial binding information
- an interface identifier
« an object UUID, which may be nil
+ an operation number.

The algorithms used are described in some detail in Section 2.4.5 on page 30. That discussion
will show how the relationships established make possible a large number of paths to the
interface and manager that are ultimately selected.

Note that the server run-time enironment itself maintains only a very limited set of
relationships: interface identifier/type UUID/manager EPV and object UUIDs/type UUIDs. It is
especially worth noting that the run-time system maintains no relationships between the
protocol-address bindings it has created and any of the other information. The server merely
advertises the relationships it want