CAE Specification

DCE 1.1: Remote Procedure Call

The Open Group

O October 1997, The Open Group
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise,

without the prior permission of the copyright owners.

This document and the software to which it relates are derived in part from materials which are copyright
0 1990, 1991 Digital Equipment Corporation and copyright [0 1990, 1991 Hewlett-Packard Company.

CAE Specification
DCE 1.1: Remote Procedure Call
Document Number: C706

Published in the U.K. by The Open Group, October 1997.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading

Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

CAE Specification (1997)

Contents

Part 1

Chapter 1
1.1
1.2
1.3

Part 2

Chapter 2

2.1
211
2111
2112
2113
2114
2115
2.1.1.6
2.1.1.7
212
2121
2122
2123
2.2
221
222
223
224
225
226
227
228
2.3
231
23.1.1
23.1.2
232
233
2331
2.33.2
2333

DCE 1.1: Remote Procedure Call

Remote Procedure Call Introduction ... 1
Introduction to the RPC Specification ..., 3
00 7= o 1 11 YT 4
Services and ProtOCOIS ... e 5
Conformance REQUITEMENTS..........ccvvviiriieierireiseesesee s 7
RPC Application Programmer’s Interface...........cooe.o. 9
Introduction to the RPC APL.........ccccoooeiiieiiecieeseseeeeesi, 11
RPC Programming Model OVENVIEWccoccovvvierireinnenseeseeneeesesens 12
Client/Server Model ... 12
INTEITACES ... 12
REMOTENESS ...ttt 12
271 0T 1T Vo SRR 13
INAIME SEIVICES ..ottt ettt 13
RESOUICE MOAEIS........ocecieieicee e 14
SECUILY SEIVICES ..veviieriietie sttt tee st st s e s ene e s 14
Server IMplemeNntation ... 14
Application/Stub/Run-time SYStemccccccvvevvieisieiseiseesee e 15
RPC RUN TIME ...t 15
STUDS .. 15
AN o] o] 1107 11 [] 0 o [- TSRS 15
Y I @] o =T -1 1 To] T SRR 17
Binding-related Operations..........c.cccvverrieiseinscinseee s 17
Name Service OPEratioNsccccivrreerereiersierseeses s senes 17
ENdpoint OPerations.........ccovvceirierinieineine s 17
SECUNItY OPEIAtiONS.cvcvevieceiseceieree et es 18
Internationalisation SUPPOrt OPErationsccocveerviereiereinrereserennn, 18
Stub Memory Management OpPerationsccovevvrervsensieneeinseernnenns 18
Management OPEratioNScccvvevrieirrseeie et seees 18
UUID OPEIatiONS......ccviveveirieriisieesestereseseeesestesesaesessssssesessesesessssesesssssssssenes 18
2715 T 1T SRS 19
BindingHAaNAIESc.ccoviiicicce s 21
Clientand Server Binding Handlesccccocoovveivveivccivccnsceccenn, 21
Obtaining Binding Handles............cccoccovveirincienccinccc e 21
S T o 1 21T gV [T T ST 21
27T o LT a7] =] o 1SR 22
Server BiNdiNG STEPS ..o et 23
Client BiNdiNg STEPS.....cvivciriciiirce e 26
Call Routing AlQOrithmS.........ccocciviciircece s 27

iii

234
24
241
242
243
2431
2432
2433
2434
244
245
246
25
251
252
2.6
26.1
2.6.2
2.6.3
2.7

2.8

29
2.10
211
2111
2112
2113
2114
2.12
2121
2.12.2
2.12.3
2124
2125
2126
2126.1
2.126.2
2.12.6.3
21264
2.12.7
2.12.8
2.12.9
2.12.10
2.12.11
2.12.12
2.12.13
2.12.14
2.12.15

Contents

Binding MEthOds.........ccccciiiiisces e 30
Name Service INLErface. ... 31
Name Service MOEl ... 31
NAME SYNTAX TAGS ..vrrvrreerereeriererieseeieesieneeresteseeessesseseesessessesessessessssessesennens 32
Name Service AttHDULES ... e 32
SEIVEN ENTIIES ...t 32

LT o 0] o1 = 11 =TSR 33
PrOTHES. ..ot 33
(@00 (IS K AN 4 - | TS 33
Binding SEArches.........cccocvicciiicii e 34
Search AlgOrithM.........cocicc s 34
Name Service Cachingcccoccvevieiereiinse s 36
SEIVEN MOGEL.......cuiiiiii s 38
Server Concurrency and Request BUffering.........ccoccoveevcevcen e, 38
Management INTEIrfaCE........ccovveereree e e 38
Server ReSOUrce MOEIS.......ccooviciiiiee s 39
The Server-Oriented Model............coeiiiiiniin e 39
The Service-Oriented Model ... 39
The Object-Oriented MOEL.........ccooiiiveiiicise e 39
3= o] | 4 SRS 40
Internationalisation Support Model ... 41
(ST a o) gl - U To | T T [0SR 43
Cancel NOLTICALION.cviiii e 43
STUDS .. 44
IDL to Stub Data Type Mappings........ccccceeveeveiereneieseeseieseesseessesenens 44
MaNAGEI EPVS ..ot e 44
INterface HandIES..........ccviiiircee s 44
Stub Memory Management..........cocevveenieineseiese e 44
RPC API ROULINE TAXONOMYcoctiiieiiieteesiee s esstere e s snese s 45
BindiNg OPerationscccceiiieiiiieiisees e 45
INterface OPEratioNs.........cccciviieiiieieiee e e 45
Protocol Sequence OPerations..........ccccvceevreieneiessiesesie s 46
Local ENdpoint Operations..........coccvveevieiensiiseises e sses s 46
(0] o] 1=Te1 KO o1- - 1 [0] 1RSSO 47
Name Service Interface OPerations............cceceevveevesereseieseiesee e, 47
NSIBIiNding OPErationsccovvveuiriieiesisieiseiese e 47
NSIENTry OPErationsccccovvviiierieinieieisee s 48
NSI Group OPEratioNS........cccccceivieirieisieire e es 48
NSI Profile Operations.........cccccccovveeviieiieiiseere e 48
Authentication OPErations...........ccovciivieireieieisiersee e 49
Internationalisation Support OPerationsccccocevvereereiesereseeenens 49
The Server Listen OPerationccccceovvevinenieineeseiesee e 50
The String Free OPeration.........ccceovicieieieiseese s 50
UUID OPEIAtiONS.....c.cvcvieeicieiiietee sttt se e es 50
Stub Memory Management..........cccocvveeriiiieseiessee e 51
Endpoint Management OPerationsccoccoveivieieneenieeneeenesiesesenennns 51
Name Service Management Operations...........ccocccvveeeveievecesisesesiesennns 52
Local Management SENVICESccoevricerieerisese et 52

CAE Specification (1997)

Contents

2.12.16
2.12.17

Chapter 3

3.1
3.11
312
3.13
3.14
315
3.16
3.17
3.18
3.19
3.1.10
3.1.11
3.1.12
3.1.13
3.1.14
3.1.15
3.1.16
3.1.17
3.1.18
3.1.19
3.1.20

DCE 1.1: Remote Procedure Call

Local/Remote Management SErVICESccvcvreereeseiesene s 52
g o] Y (21T Lo TSRS 53
RPC APl Manual Pages ... 55
R O T U= T 1Y/ o =P 55
L0 TR T aTcTo I g (=T o[- g Y o =T 55

Y Lo g 1cTo B [gl =T LT g)Y o1 S 55
Unsigned Character StriNgcoccovveercierreinnsee e 55
277 o [Tl o - 1 To | 1= 56
27T o LT V=T (o] 58
2T0T0] [-T=T o T 1Y/ o1 T 58
Endpoint Map Inquiry Handle ... 58
INterface Handle ... 59
Interface Identifier ... 59
Interface ldentifier VECLOr ... 60
Manager ENtry POINT VECLONcccvvevicirsecsee et 60
Name Service HandIe ... s 61
Protocol SEQUENCE StIiNG.......ccovveirieeircers e 61
Protocol SEQUENCE VECIONocvcvveeicceeres et 62
SEALISTICS VECTON ...ttt 62

] (T o 1 21T 0T T Vo T 62
SEINGUUID ..ottt 64
UUIDS...c ittt ettt 64
UUID VECEOK ...ttt 64
(000 [T=] A)Y o1 RS 65
CS_Dyte frOmM _NELCS() ovvrveeiriririeiie ettt 66
o 0}V (= (01 U - (T 68
CS_DYLE NEL SIZE() croveiirieeeie et 71
o 0}V (= (T (-1 (0] (T 74
o (ot ot (ool (O (0)V (ST 76
o (ot ot o VA (TN (0T (T 78
L oTo o] g To [T aTo T oTo] o)V () TR 80
FPC_DINAING_fIEE () ..voveeeerieeece st 81
rpc_binding_from_string_binding () ...ccccovveinvseire e 82
rpc_binding_ing_auth_caller () ..o 83
rpc_binding_ing_auth_ClIeNt ()ccoveeiiircce e 85
rpc_binding_ing_auth_info () ... 87
rpc_binding_iNG_00JECT().vevrvrreri e 89
L oTo o] L To [T g Yo T =EST-1 o () T 90
rpc_binding_server_from_ClieNt()ococcovreeieivsecre e 91
rpc_binding_set auth_iNfo (). 93
rpc_binding_Set 0DJECT() .vvvrvrvvciiirece e 95
rpc_binding_to_string_binding ()coccvovveeiirsccre e 96
rpc_binding_VECtOr fre8() oo vcireiiece e 97
(g oTo oI o] T o [l g To TR = To Y (T 98
rpc_cs_char_set_compat _CheCK () .oovvvveeiirireciirsccre e 100
rpc_cs_eval With _UNIVEISAl () ...cevvvveciieeceee e 102
rpc_cs_eval Without_UNIVErSal ()...ccvoveveererireeeieiisiseesesseee e 104

\Y

Vi

Contents

L oTo oo (=1 A (o1 () TR 106
L o To =T T =151 (-1 (SR STS 109
rpc_ep_register N0 _Feplace () .ocvovvreererirsee st 112
rpc_ep_resolve_biNdiNg () .oocovvveeiiriecirersee s 114
L oTo =T T =T 1) (=1 () TR 116
FPC_if 1d_ VECTOr frEE () vivieiieisccie st 118
Lo To L1 T o I (TSR 119
rpc_mgmt_ep_elt ing_begin() .o 120
rpc_mgmt_ep_elt ing_doNe()....ccoervrreiieirccer e 123
rpc_mgmt_ep_elt iNg_NEXE() .o 124
FPC_MgME_eP_UNTEQISTEN () cvevirieeeeririercerisieiee sttt e 126
rpc_mgmt_ing_ComM_tiMEOUL()..cvvrvreeeirirsee et 128
rpc_mgmt_ing_dflt_protect 1eVel () .occccovvecierscce e 129
rpc_mgMmt_iNG_if TAS() cvvvvveirrrrcee e s 130
rpc_mgmt_ing_Server_Princ_Name() ..oooeeeererneeresnieere e sesessesenes 132
L oTo 100 0L Ao TS LY () T 134
rpc_mgmt_is_Server_LSteniNGg () .oooveeoererseeierseere e 136
rpc_mgmt_set authorization N ().....ccccorivciirsccr e 138
rpc_mgmt_set_cancel _timeoUL()..cccoveeivrreeieirseere e 140
rpc_mgmt_Set COM_EIMEOUL() .vovvrvreereirirseeee e e 141
rpc_mgmt_set Server_Stack SIZE() ...ccovovvreierrseire e 143
rpc_mgmt_stats VeCtor free()...cccoveiirirseeie e 144
rpc_mgmt_stop_Server_liSteNiNg ()ccccovvveererrseere e 145
rpc_Network _iNQ_ProtSas () v reeerermriseeresisieeesesesseseesesseseesesessesesesensesenes 146
rpc_network_is_ protseq Valid ()..coovcceerrseienirseere e 147
L oTo R oY o [T T TR = 4 10 o A (T 149
rpc_ns_hinding_import_Begin() «cooveeoireeerrseere e 152
rpc_ns_hinding_import_done () .o 154
rpc_ns_binding_import_NEXE() .ccovveeriirreeierseere e 155
rpc_ns_hinding_ing_entry _Name () ..ccccovveeieinrsecie e 158
rpc_ns_hinding_100KUP_begin () .ccovveeeriiscec e 160
rpc_ns_hinding _100KUP_dONE ()....cccovrireereririeeieisseeeeseseeee e 162
rpc_ns_binding _100KUP_ NEXL() .cvvrvrieeriririsieeierseere e 163
L oTo SN o1 o 11 o JREST-] T (T 166
rpc_Ns_Hinding_UNEXPOIT()..covveeererireeieriseeeeie s ssenes 168
rpc_ns_entry expand_Name () ...cccoeoeerirmrseernrseere e sesenes 170
rpc_ns_entry ing_reSOIULION () c.ovovvvveeeeiririsieere e 171
rpc_ns_entry 0bject iNg_BEgIN (). covvveererreeieirseeers e 173
rpc_ns_entry 0bject iNG_dONE()..covvveererirneeiersecre e e 175
rpc_ns_entry 0bjeCt iNG_NEXE() cvvvrveeeierirseeie e 176
FPC_NS_group_AEIETE () cvvvvveeeerrcce e 178
rpc_Ns_group_MBr_add () .o s 180
rpc_ns_group_mbr_ing_Begin (). .o 182
rpc_Nns_group_mbr_iNg_dONE() ... s 184
rpc_Ns_group_mMBr_iNG_NEXE() .covovrreeirirseeiersecre e 185
FPC_NS_group_MBr_FEMOVE() ..ovveeeeieieiceririsiee sttt 187
rpc_ns_import_ctx_add eval () ..o 189
rpc_ns_mgmt_binding_UNEXPOrt()......ccccrvrreeieririesiererseeesese e sesessenes 191

CAE Specification (1997)

Contents

DCE 1.1: Remote Procedure Call

rpc_NS_MgMt_eNtry _Create() ..occvrvrriereriririseerersierere et 194
rpc_ns_mgmt_entry _delete() .oovvrreciirseer e 196
rpc_ns_mgmt_entry ing_if 1dS() ..o 198
rpc_ns_mMgmt_free COUESEIS() vvvvrrrrririnrririrsee et 200
rpc_ns_mgmt_handle_Set eXp_age()...ccccrerereerermrneernrinieeereseeere e seesees 201
rpc_Ns_MgMt_iNGg_EXP_A0E () .ovvrerrrrererreirerinieereresierereseseeree e sessenenes 203
rpc_ns_mMgmt_read_COUESEIS() .vvrvrvrrrrrrrriririsieeririsieeere e 205
rpc_ns_mgmt_remove_attribUte()ccccovveeiinirsecie e 207
rpc_ns_mgmt_set_ attribUte()......ccovveerirrscir e 209
rpc_NS_MOMt_SEt EXP_A0E () rrvrrerrrrreriereiririsieereristsrere st 211
rpc_NS_Profile_delete() . 213
rpc_ns_profile_elt_ add () ...cccovvveiriirece s 215
rpc_ns_profile_elt_ing_begin() ..ccovveeriirseii e 217
rpc_ns_profile_elt_iNg_doNe()...ccceovrreeririrseeierseere e s 220
rpc_ns_profile_elt_iNG_NEXT() oo s 221
rpc_ns_profile eIt reMOVE () .ooovcevireciirsee s 223
L oToo] o =Tot fl [1o Y/ 0L (SRS 225
rpc_object Set ING FN().roccierircccierseere e 227
L oTo o] o eTot A ST=) A Y 0L () TR 228
FPC_Protseq _VECLOr fIrEE() .vvvvvrieeiririecirersiee et 230
L o To () o A o0 [oTST=) Y () T 231
rpc_rgy_get MaxX_DBYLES () .cvovrreeriiirieceriretee sttt 233
rpc_server_ing_DiNdINGS (). oo 235
FPC_SEIVEr INC_IT() coeererreiie st 237
o To LT YT VTS) (=1 oY () TSRS 238
rpc_server_register_auth iNfo().....ccooieoiinciirsccre e 240
FPC_SErVer_regiSter if() . i 242
rPc_server_UNTegiSter if() .o e 246
rpc_server_USe all_ProtSeOS() .vcevieerrrmriseiieriseseere s 248
rpc_server_use_all_protSeqs_if()..ccvcorrneiirsecie e 250
FPC_SEIVEr_USE PrOtSEO() veeeererrerrmrerinrereresinsesesesesssseesessesesesessesesesesessesesesensesenes 252
FPC_SErVer_USE ProtSEO_EP() «veveerrerereeeermrisieserssesieseesessesessessesesesesessesssesensesenes 254
rpc_server_Use ProtSeq_if().e e 256
FPC_SM_AHOCALE () vvvveveeiieece ettt 258
FPC_SM_CHENT _frEE () .eererieeie e 259
rpc_sm_destroy_clienNt CONTEXE () .cvivvveeriririreiiirreere e 260
rpc_sm_disable_alloCate ()....ccovevrerrieciirsee s 261
rpc_sm_enable_allocate ()....covvveervirieiciiirsee e 262
FPC_SM_FTEE() tvveriirieece ettt 263
rpc_sm_get_thread_handle ()cccovveviiniisciii e 264
rpc_sm_set_client_alloc_free () .o 265
rpc_sm_set_thread_handle()ccovverinnscir e 266
rpc_sm_swap_client_alloc_free () .cooveerrrnieiirsecre e 267
rpc_ss_bind_authn_CHENT() ..o 268
rpc_string_binding_ COMPOSE ()...veervrvreeeeririreeeierisse et eesenes 270
rpc_string_biNdiNg Parse (). ccorreerirrseererssere e 272
FPC_SEFNG_FrEE()uevvieiiirieeeie et 274
rpc_tower_t0_ DiNAING () .oceoerrcrie e 276

Vii

viii

Part

Chapter

3

4
41
4.2
421
4211
4212
4213
4214
4215
422
423
424
4241
4242
4243
4244
4245
4246
425
426
427
4271
4272
428
429
4291
4292
4293
4294
4295
4296

Contents

FPC_tOWEr _VECIOr B () ivveiieireie et 277
rpc_tower_vector_from_binding ()ccccovvvieinrsscr e 278
WU To B oTa] 0] o7 T £-T (TP 279
U TUTTo I =T - () 280
U TUTTo Bt =T =T oL S 281
WU To IR0 LU L (ST 282
OO To B (0T TS o (S 283
WU To I T 1 (TP 284
WU To I T o 1L T 285
WU To I (TS g To T 286
WChAr_t from _NEECS () vevieircceii e 287
WChAr_t 10Cal_SIZE () vvvveveeiereiceie et 289
1T T U A Vo T 4 (T 291
1T T U A (o T 13 (o () T 293
Interface Definition Language and Stubs............... 295
Interface Definition Language..........ccooceveeviieciiseeiosscssessionn, 297
NOTALION ...ttt 297
IDL Language SPeCifiCationccoccovreiiieinnscic e 298
IDL LEXEIMIES ..ottt bbbttt 298
Keywords and Reserved WOords..........ccovevveinncinsein s, 298
TABNTIIEES. ...t 298

IDL PUNCLUALION ..ottt e 298
Alternate Representation of Braces...........cccccovvevevieincinseneseneseseeennans 299
WHITE SPACE ...cviiiceicec et 299
COMIMEBNTS ...ttt sr e e 299
Interface Definition StrUCtUre ... 300
INterface HEAdEN ... s 300
The uuid ATFIDULE. ..o e 300

The version AttHDULE..........coeiiiiecc e 300

The endpoint AFDULE. ... 301

The exceptions AribDULE..........cccco e 301
Thelocal ArDULE.........cccooic s 301

The pointer_default AtrIDULE...........ccooveiicicc e 301
INErfaCe BOAY.......ccoovcveiiccicccce et 301
IMPOrt DECIAratioNcccvceeviiiicesiseeee e 302
Constant DeClaration ... e 302
SYNMEAX ettt bbbt 302
Semantics and ReSLFICLIONS ..o 303
Type Declarations and Tagged Declarationsc.ccecoveevveivrcienieenan, 304
BaSE TS ..ttt bbb 304
SYNMEAX ettt bbb 304
INTEQET TYPES .ottt b e 305
THECHAI TYPES ..t 305
TheboOoIEaAN TYPE...cviicecce e 306
THEDYLE TYPE oot 306

QI 2RV 1o I 1Y 1= TSR 306

CAE Specification (1997)

Contents

4297
4.2.10
4211
4212
42121
42122
4213
4214
42141
42.14.2
4.2.15
42151
4.2.15.2
4.2.15.3
4.2.16
42.16.1
4.2.16.2
4.2.16.3
42.16.4
4.2.16.5
4.2.16.6
4.2.17
4217.1
4.2.17.2
4.2.17.3
4.2.18
42181
4.2.18.2
4.2.18.3
42.18.4
4.2.19
4.2.19.1
4.2.19.2
4.2.19.3
42.19.4
4.2.20
42.20.1
4.2.20.2
4.2.20.3
4.2.20.4
4.2.205
4221
42211
42212
4222
42221
42222
42223

DCE 1.1: Remote Procedure Call

Thehandle t TYPE ..o 306
(©0] 015 1 0 [o1 (=T 0 N Y o 1= ST 306
STIUCTUIES ...ttt et 306
UNHONS ...ttt 307

RV P 307

Semantics and ReSLFICLIONScccoovieeiriree e 308
ENUMEIated TYPES ..o sisees ettt 308
PIIDES .ttt nren 308

RV P 308

Semantics and ReSLFICLIONS ..o 309
N -\ £ S 309

RV P 309

Semantics and ReSLFICLIONS ..o 309

ATTAYS OF ATTAYS ..ottt 310
TYPE ALLFIDULEScooiieiecesc e 310

RV P 310

Semantics and ReSLFICLIONScccooveeiriree e 310

Thetransmit_as AtribUte.........ccoovveice e 310

The handle AtFDULE...........ccoiiiii e 311

The string ALFIDULE.......c.ocoi e 311

The context_handle Attribute ..., 311
FIeld ALLFIDULESooveiiii e 312

RSV TP 312

Semantics and ReSLFICLIONS ... 312

Theignore AtrDULE.. ... 312
Field Attributes in Array Declarations...........ccccocceviernivnsinncinneinsennenns 312

(01001 {01 T L AN - |V PSR 312

Varying and Conformant Varying Arrays.......cccecoeveevneiesernnennsnnens 314

Relationships Between AttribUtes.........ccccocvvvvcivcisersc s 315

Negative Size and Length Specifications............cccccovevvvievcivveineinnnn, 315
Field Attributes in String Declarationsc.ccoceevveincincnsen s 315

Thefirst_is, last_is and length_is Attributes..........ccccoveviiviivnccnnennns 315

The Max_iS AFDULEccccv v 315

Themin_is AttrDULE ..o s 315

Thesize IS ATIDULE ..o 316
POINTEIS .ottt 316

RSV TP 316

Semantics and ReSLFICLIONS ..o 316

Attributes Applicable t0 POINTES..........cccovivveiiveinsce e 317

Varying Arrays Of POINTETScccocovviiiviieiseisee s 319

RESLFICtIONS ON POINTEIS.......ciiieieieiiieie e 319
o1 (=] ESR R AN =\ V£ 320

Pointers with the string Attribute ..o 320

Possible Ambiguity ReSOIVEdccccovvevveiiiiceceeeee e 320
(@] 0= - 1[0 1< TSR 33?1

The idempotent AttriDULE ..o 321

The broadcast ALrDULE ..o 321

Themaybe AttriDULE ..o 321

iX

Chapter

42224
4.2.23
42231
42232
42.23.3
42234
4.2.24
42241
42.24.2
42.24.3
4.2.25
4.2.26
4.2.27
4.2.28
4.3
431
432
433
434
435
4351
4352
4353
4354
43.6
43.7
438
4338.1
43.8.2
43.8.3
4384
439
43.10
4311
43111
43.11.2
43113
44
441
4472
4.5

4.6

51
511
5111
5112

Contents

The reflect_deletions Attribute ..., 322
Parameter DeClarationsccccceieirnnnieeinnreeee e 322
RSV TP 322
Semantics and ReSLFICLIONScccooviieiiiiee e 322
Directional AttriDULESooveieirre e 322
Aliasing in Parameter LiStS.......cccvovivveivieinnieienenseeseseses e sesesesesessenens 323
FUNCLION POINEEIS ..ot 323
YL S 323
SEIMANTICS. ...ttt ettt bbb 323
RESTIICTIONS ...t 323
Predefined TYPES. ..ot 323
The error_Status Tt TYPE. . i ceireereire e 324
International Character TYPESccccvvvervriririe e 324
ANONYMOUS TYPES....cueeiertireeieeerisreseeseesesseseesieseesesse e sesessessessessesessessesseneens 324
The Attribute Configuration SOUICE............ccoveriveiiiciesce e 325
COMIMEBNTS ...ttt e 325
TABNTIFIEIS. ...t 325
Y 1= SR PRSRS 325
INCIUAE DECIAratioNc.cvviicieeirrce e 327
Specifying Binding Handles..........cccccovvviiiieiscisee e 327
The explicit_handle Attribute ..o 328
The implicit_handle AribULeccoeeevvei i 328
Theauto_handle AHDULEccooveevcicccc e 328
The binding_callout ArbULE ..o 328
The represent_as AttribULEccovveiveiircc e 329
The code and nocode ALLHDULES ... 329
RETUIN STALUSESocviiieiiiieieee et 329
The comm_status AttribuUte.........cccov v 329
The fault_status Attribute...........ccooveirccc e 330
Interaction of the comm_status and fault_status Attributes............ 330
The extern_exceptions Attribute.........c.ccocevveivci e, 331
The heap ALFDULE ... 331
The enable_allocate Attribute ... 331
International Character Transfer ... 331
Thecs_char AtHDULE...........cceicecee e 331
Thecs_stag, cs_drtag, and cs_rtag Attributesccoecvvecvrvevcnnennns 333
Thecs_tag rth AtribULEccocvevic e 333
IDL Grammar SYNOPSIS......coviueerurieirieriresieesesesesiessssssessssesessssessssessssesessssenes 334
GrammMar SYNOPSIS ...cvvvreeireeereeteresieesierene e see e sesessesesseseseseesessesesssseseses 334
Alphabetic Listing of Productionsc...ccevveviivcieneinvs s 338
IDL Constructed [dentifiers.........cooieiinnnneicise s 342
IDL and ACS ReServed WOIdS...........ccviriirninieeiinnsiseeeesesesisisseenens 343
STUDS ... 345
The Application/Stub INterfaceccoveivveiiveivsiersecee e 345
ParBMETEIS. .. .o e 345
Parameter Memory Managementccocvvvvereneiereeieneseseeseseeseeneas 346
Client-side AHOCALION ..o s 346

CAE Specification (1997)

Contents

5113
5114
512
513
514
515
5151
5152
5153
5154
5155

5156

5.1.6
52

521
522

Part 4

Chapter 6

6.1
6.1.1
6.1.1.1
6.1.1.2
6.1.2
6.1.2.1
6.1.2.2
6.1.2.3
6.1.3
6.1.4
6.15
6.1.6
6.1.7
6.1.8
6.2
6.2.1
6.2.2
6.2.2.1
6.2.2.2
6.2.3
6.2.3.1
6.2.3.2
6.2.3.3
6.2.3.4
6.2.3.5
6.2.3.6

DCE 1.1: Remote Procedure Call

Server-side AlIOCALIONc.cceeiririieec e 347
N L T= 1] 1 o S 347
Default Manager EPVS.........ciiic s 347
INterface Handle ... 347
T =TSR 348
IDL and ACS Type AHDULES ..o 350
The IDL transmit_as AttribULe.........cccceivieiireiececc e 350
The IDL handle AtribDULE...........ccooviiice e 351
Interaction of IDL transmit_as and IDL handle Attributes.............. 351
The ACS represent_as Attribute........ccocccveiveieveiecccnce e 351
Interaction of the ACS represent_as Attribute and the IDL handle
ATFIDULE ..ot 352
Interaction of the ACS represent_as Attribute with the IDL
transmit_as AttrDULE ..o 352
Context Handle RUNAOWN..........coviiiiineee e 352
Interoperability Requirements on StUbS.........ccccovivvieicivvccevecsecse 354
Operation NUMDEIS ..o 354
Error Handling During Floating-Point Unmarshalling..............c......... 354
RPC Services and Protocols............eeevvvvcciiiisssssn. 355
Remote Procedure Call Model ..., 357
Client/Server EXecution MOdEL............cccourviriiininnicineessees 358
RPC Interface and RPC ODJECL........cccccivveivirii s 358
RPC INTEITACES ... 358
O @] o] T £ TSRS 358
Interface Version NUMDbBEING.........ccovviiirisine e 359
Rules for Changing Version NUMDEIScccccccovveeivcivveie v 359
Definition of an Upwardly Compatible Change.........c.ccoccevvivneivnennns 359
Non-upwardly Compatible Changes.........c..ccocvovrvvieneiencievcie v, 359
Remote Procedure CallS ... 360
NESIEA RPCS ...ttt 360
EXECULION SEMANTICSoveviiiiiiiieicc s 360
CoNteXt HANAIES ..o 361
TRFEAAS ...t 362
CANCEIS ..t 364
Binding, Addressing and Name SEervicescccoevrervreienennsenesenesenens 366
271 o [T 366
Endpoints and the ENApoint Mapper........ccccoceevvvrerenesennseie e seeeseeens 367
(@4 [7=T o1 @] o 1=1 =11 o] o [0SR 368
1T YT @] o1=] -1 4 o] o SR 368
NSEINTEITACE ... 368
CommOoN DeClarations..........ccocirrieeeie e 369
ProtoCOl TOWELSooviiiiiiriiieietee et 370
The server_name Object Attributes.........ccccovcveivcivci v 371
The group Object AHDULESccccovveviericec e 372
The profile Object AttribULes........ccccveivveie i 373
=g Tolo T 11 o SRR 373

Xi

xii

Chapter

Chapter

Chapter

6.2.3.7
6.3

7.1

7.2

721
722
723
724
725

8.1

8.2

8.3

8.4
8.4.1
8.4.2
8.4.3
8.5
851
8.5.2
8.5.3
8.5.4
8.6
8.6.1
8.6.2
8.6.3
8.6.4
8.6.4.1
8.6.4.2
8.6.4.3

9.1

9.2
9.21
9.2.2
9.3
931
9.3.2
9.33
9.33.1
9.3.3.2
9.34
9.35
9.4

Contents

Name Service Class ValUes..........ccoveininneensse e 373
Error Handling MOdEcoovieiicicce s 374
RPC Service Definition ... 375
Call Representation Data StrUCtUIEccceevveevee s 375
SEIVICE PrIMITIVES ..ot e 375
INVOKE ... bbbttt bbbt 376
RESUIL. ...t 377
CANCEL ..o 378
ETOT e 379
(=] =T SR 380
Statechart Specification Language Semantics....................... 381
The Elements of StateCharts ... 381
State HIerarChies.........ccooiiiiicce e 383
L0] o To1 U] g =1 T Y2 383
Graphical EXPreSSIONScovveviieiieieiseeesesenesie e seee st ssesesessenenens 384
DefaUult ENIaNCES ...t 384
Conditional CONNECLONScceiiririiieieee e 384
Terminal CONNECTOIS. ..o 384
Semantics that Require Special Consideration...........ccccocevevveieveinieinnnns 385
Implicit Exits and Entrances (Scope of Transitions).........cc.cceceevvvnienens 385
Conflicting TranSItiONSvcvvvicivee e 385
Execution Steps and TiMe.......cccovveiieerrseie e 385
Synchronisation and Race Conditions...........ccocevvereiereinneinneinnennenns 386
Summary of Language EIEMENTSccccccvvveieveinnsc e 387
EVENT EXPreSSIONS.....coivivierieiietii st ree st sessese e 387
(©0] o L1 1 o] gl =0 o] =T15] [0 13 388
ACHION EXPrESSIONSvcviieviesicesieies ettt ssene s 388
Data tem EXPreSSIONScccovvveiieceirieisietere st 389
ALOMIC NUMENIC EXPreSSIONScvcviveeivicereee e 389
Compound NUMEriC EXPreSSIONS.covveireereeereseiesieneseesieseseeseneens 389
SHING EXPrESSIONS ..ottt 389
RPC Protocol DefinitioNs............ccoocoieciinnciesieecseessssesssesnions 391
CONFOMMANCE ... 391
RPC Stub to Run-time Protocol Machine Interactionscc.ccccceevnee. 392
Client Protocol Machings ... 392
Server Protocol MAacChingS ..o s 393
Connection-oriented ProtoCol ... 395
CHENT/SEIVEN ...ttt 395
YA T T T L [0 € 01U o J TS 395
ASSOCTALION ... 3%
Association Management POLICYccccovveivneiineiincen e 396
Primary and Secondary Endpoint Addresses..........ccocevvvervrereeeseeens 396

O 1 TS RT 397
Transport Service REQUITEMENTSccoveivieereeesee e 397
Connection-oriented Protocol Machings ... 398

CAE Specification (1997)

Contents

9.4.1
9.4.2
9.43
9.43.1
9.43.2
9.43.3
9.43.4
9.4.4
9.45
9.45.1
9.45.2
9.45.3
9.45.4
9.5
951
9.5.2
953
9.54
955
9.5.6
9.6
9.6.1
9.6.2
9.6.2.1
9.6.2.2
9.6.2.3
9.6.2.4
9.6.2.5
9.6.2.6
9.6.3
9.6.3.1
9.6.3.2
9.6.3.3
9.6.3.4
9.7

Chapter 10
10.1
10.1.1
10.1.2
10.1.3
10.1.4
10.15
10.1.6
10.2
10.2.1
10.2.2
10.2.3

DCE 1.1: Remote Procedure Call

CO_CLIENT_ALLOC ...ttt ssnsss st sesesens 398
CO_CLIENT_GROUP ...ttt eneses 398
CO _CLIENT oottt ettt ssen 399
ASSOCIATION ..ottt sesens 399
CONTROL ..ottt sasenenes 399

L@ A N [1 = TR 399

L A I TR 399
CO_SERVER_GROUP ..ottt 400
CO_SERVER ...ttt nen 400
ASSOCIATION ..ottt sesens 400
CONTROL ..ottt ssse s ssenesssesenes 400

L@ AN N [1 = TS 400
WORKING ...ttt sss s sensenes 400
Connectionless ProtoCol..........cccuvcioiciicieiscisccne e 401
O 1= o1 AT YT TS 401
o 1LY/ | TS 401
- | TSR 401
Maintaining Execution Context and Monitoring Liveness.................. 401
SErIAl NUMDETS ... 402
Transport Service REQUITEMENTSccovvevrveerseisce e 402
Connectionless Protocol Machings..........ccccveevvivniciscciscei e 403
RPC Stub to Run Time Protocol Machine Interactions......................... 403
O I O I 1N O T 403
CONTROL ..ottt sse e sesesenes 403
AUTHENTICATION ..ottt ssesssesens 403
CALLBACK ...ttt 403
PING ...ttt ettt 404

L@ AN N [1 = TS 404

D AN T 404

O I o AV = T 404
CONTROL ..ottt ssse s sssesenes 404
AUTHENTICATION ...ooiicieieirieirssse s snesssesenes 404

L@ AN N [1 = TS 404
WORKING ...ttt sns s sensenes 404

N E=Ta VT To @] 01 V/=T o] 4 o] o I 405
Connectionless RPC Protocol Machines..........cccoeivienevnnne, 407
CL_CLIENT MaACHINEvcviiiciicce et 408
CL_CLIENT ACHIVITIES.ecvirceceseceeseiseere s et 408
O I O I 1N S =T 411
CL_CLIENT EVENTS....oeieieicie et eenennas 416
(O I O I | =3\l O] T 11 o] g 420
CL_CLIENT ACLIONS ..ottt 425
CL_CLIENT Data-1temMsS......ccccviereerierrerereee e e s sse e seene s 429
CL_SERVER MAaCKHINE ..ottt 439
CL_SERVER ACLIVITIEScvviceiiciee e 439
CL_SERVER STALEScvveererereeirireriresesereseeses e isesssesesssssessssssssssssssssesessseseenes 445
CL_SERVER EVENTSoviiciseeeee sttt 451

Xiii

Xiv

Chapter

Chapter

10.2.4
10.2.5
10.2.6

11
111
1111
11.1.2
11.1.3
11.1.4
11.15
11.1.6
11.2
11.21
11.2.2
11.2.3
11.2.4
11.25
11.2.6
11.3
1131
11.3.2
11.3.3
114
11.4.1
11.4.2
1143
11.4.4
1145
11.4.6
115
1151
1152
1153
1154

12
12.1
12.2
12.3
12.4
12.4.1
12.4.2
12.43
12.4.4
12.5
1251
12.5.2

Contents

CL_SERVER ACLIONS.....cctiiiiiseisetiietce e nenees 455
CL_SERVER CONAItIONScviveivieieiiciieere e 462
CL_SERVER DAta-1temMScccveieeieireicieee e se et 468
Connection-oriented RPC Protocol Machines....................... 481
CO_CLIENT MaACHINE......cciiriciicce e 482
CO_CLIENT ACHIVILIEScveceie et 483
CO_CLIENT SEALES....c.ecvieriirieieesisiesieeeesre e iesee e sse e e saese e e seensesessesees 485
CO_CLIENT EVENTS ..ot nnes 492
CO_CLIENT ACLIONS ..ottt 498
CO_CLIENT CoNditiONS.....ccoccviereiricirieere et 504
CO_CLIENT Data-Itemsccccueieeeeerierieieei e seneeesse e e seesee e ssees 508
CO_CLIENT_ALLOC MaChine.......cccceuriririrrinieieeinensis et 519
CO_CLIENT_ALLOC ACHVILIES ...o.vcveveeveisieesee e ses e 520
CO_CLIENT_ALLOC SEAtEScoeveveriririririsieieieene sttt 521
CO_CLIENT_ALLOC EVENLSoccviivive e se e 523
CO_CLIENT_ALLOC ACLIONS......ccooviiririeirieesieesieesiereneeresesenesesesseenes 526
CO_CLIENT_ALLOC CoNditionsccoverirernsiennieessreseeesesesesseseneens 527
CO_CLIENT_ALLOC Data-Itemsccccoveeveerinereneneeeeesesesseeseneeseenas 528
CO_CLIENT_GROUP MaChINEccervrieirciieseinsees s 529
CO_CLIENT_GROUP STatesccceeiiriririnieieeene st 530
CO_CLIENT_GROUP EVENLS....c.oooviiieieiiniriieee s 531
CO_CLIENT_GROUP Data-Items........ccccevveerinrrnreneieesese e e seenas 533
CO_SERVER MACKHINEcuiiieiisice sttt 534
CO_SERVER ACLIVILIEScvvcviiiee et 535
CO_SERVER SEALESooveeeiiiieieeeiee ettt nnas 537
CO_SERVER EVENLS.....cooiiiieieieeee et nnes 543
CO_SERVER ACLIONScoiiiiirieietie et ses e 549
CO_SERVER CONAItIONS....c.occiiecieiriciicicre e 555
CO_SERVER Data-1tems........ccceoeiiiiriciee e e e 559
CO_SERVER_GROUP MaChINEccccovvieirciieseiesees e 569
CO_SERVER_GROUP SEAtESceueeeiiiriririsieieee st 570
CO_SERVER_GROUP EVENLS......ccoiiiiiiriieeeinniee e 571
CO_SERVER_GROUP ACLIONScciiiriiiiirieeinsse e 573
CO_SERVER_GROUP Data-Items..........ccccoevierirerieeeenersesesesseeeeesnnns 573
RPC PDU ENCOQINGS........covviirriieieeiessiesesesisessss s 575
GENENiC PDU SEIUCLUIEc.eviviiiiieieicis et 575
ENcoding CONVENLIONScovviviirece et 576
N 1T |1 o SO T 576
COMMON FIEIAS ... 577
PDU TYPES...c ittt sttt st st nbenre s 577
Protocol Version NUMDETS...........covininee e 577
Data Representation Format Labels ..o, 577
REJECE StAtUS COAESo.vveveeeeisce e 577
ConNectionless RPC PDUS ...t 578
Connectionless PDU STIUCLUIE ..o s 578
Header ENCOAINGcooviieiirici e e st seens 578

CAE Specification (1997)

Contents

125.2.1 Protocol Version NUMDET ... 579
12522 5 L I/ o1 SRS 579
125.2.3 [=T [S3 T=1 [0 PSRN 579
125.2.4 Data Representation Format Labelccccocoovevvinccinccncincnnenns 580
125.2.5 SEral NUMDEL ...t 580
125.2.6 (@] o] 1=Tox 8 o [=1 o1 1) 1= RS 581
125.2.7 Interface Identifier ... 581
125.2.8 ACHVILY IAeNTIfIErceoeece e 581
125.2.9 =T Y= g =T o A T o - 581
12.5.2.10 INTErTACE VEISION ... 581
125.2.11 SeqUENCE NUMDETcviicecirecee e 582
12.5.2.12 OPeratioNn NUMDET ..o 582
12.5.2.13 INTErfACe HiNL.....co e 582
12.5.2.14 ACHVILY HINU....coieee e 582
12.5.2.15 PDUBOAY LENGLN.....coiicicece e 582
12.5.2.16 Fragment NUMDEKccccoiiee e 582
12.5.2.17 Authentication Protocol Identifier.........ccoooveivciicininccscecesenns 583
1253 Connectionless PDU DefinitioNns........cccccovvvivveincnisennseseeesee s 583
12531 THEACK PDU ...t 583
1253.2 Thecancel_ack PDU..........ccooeiiiincieenesee s 583
12533 The CaNCEl PDU.........cooiice ettt s 584
12.5.34 THETACK PDU....c.oiiiiiicieeee et 584
12.5.35 The fAUIt PDU ...t 586
125.3.6 TheNOCAIl PDUococieice et s 586
125.3.7 TREPING PDU ...t 586
125.3.8 QLI L] (=101 0 o 5 L R 586
125.3.9 The reqUEST PD Uo.oceicie ettt 586
12.5.3.10 THe reSPONSE PDUccociiciccc et 587
1253.11 The WOrKIiNG PDU........cciiiire et s 587
12.6 Connection-oriented RPC PDUS ... 588
12.6.1 Connection-oriented PDU StrUCtUIecccccovveivrienvieeseeseeee e 588
12.6.2 Fragmentation and ReassembIyccccccvveineiirciencie s 588
12.6.3 Connection-oriented PDU Data TYPES.....ccccivrveivrieerieenieeneseneseenesesenens 589
12.6.3.1 DECIAratiONS.cvvceieseeee e e 590
12.6.3.2 Connection-Oriented Protocol VErsions.........cccccveevennsenesenseneeenns 592
12.6.3.3 Thefrag_length Field........ccooooiiiic i 593
12.6.3.4 ConteXt IAeNtIfIErs ... s 593
12.6.3.5 Thecall_id FIeld......cccooiieeice e 593
12.6.3.6 Theassoc_group_id Field ... 593
12.6.3.7 Thealloc_ hint FIeld..........ccoovieieirireeee e 594
12.6.3.8 AULhentication Data..........cccooveiiieiinsiiese e 594
12.6.3.9 Optional Connect Reject and Disconnect Data........ccccooeevveveiereennne 594
12.6.4 Connection-oriented PDU Definitions.........ccccocevvevnivneinncinncinsensiennns 595
12.6.4.1 Thealter_conteXt PDU ... 595
12.6.4.2 Thealter_context_resp PDUcccccovvveniinescnnneie e 596
12.6.4.3 The BINA PDU ...t 597
12.6.4.4 ThebiNd_aCK PDU........cco i 599
12.6.4.5 ThebiNd_NaK PDU ... 600

DCE 1.1: Remote Procedure Call XV

XVi

Chapter

Chapter

Contents

12.6.4.6 The CanCel PDU ... 601
12.6.4.7 The fAUIt PDU ...t 602
12.6.4.8 The orphaned PDU..........ccccoiieininiieree s 604
12.6.4.9 The reqUEST PD Uooceicie ettt 605
12.6.4.10 THE reSPONSE PDUccocuiiciccc et 607
12.6.4.11 The ShUtdOWN PDU.......cccooiiiiiiiiisee e 608
13 SECUNILY ..o 609
13.1 The Generic RPC Security Model.........cccoooveivviiiiiccscccesee e 610
13.1.1 (LT g Tl @] 0 -] =11 o o [T 610
13.1.2 (LT l=) ool =l aToloTo [1aTo 0TS 611
13.1.21 ProteCtion LEVEIS.........cceeiiiiieeeer e 611
13.1.2.2 AULNENTICAtION SEIVICESovveiveiiiiiiee e 612
13.1.2.3 AULNOFISAtION SEIVICES ... e 612
13.1.3 Underlying Security Services ReqUIred..........cccoeevvvenvernneinnennseennns 612
13.2 Security Services for Connection-oriented Protocolc..cceceevveivvnnns 614
13.2.1 Client Association State Machine...........cccccovvieinnnnnei e 614
13.2.2 Server Association State Machine...........cccccooovviiiiinnncn 614
13.2.3 SEQUENCE NUMDETS....c.ociieietectce e 614
13.2.4 The auth_context_id Field ... 615
13.2.5 LY C=To | YA o 0] =T« o] o 615
13.2.6 Connection-oriented ENCOAINGSccovveiveiinnincisce e 616
13.2.6.1 Common Authentication Verifier ENcOdings........cc.covevveivivnicinniennns 616
13.2.6.2 Encoding for Per-PDU SEIVICEScccvvrieerieresenesereseesee e 617
13.2.6.3 Credentials ENCOAING........ccveiriieiricirce e 619
13.3 Security Services for Connectionless Protocolcccoccoveviviiniciennns 621
13.3.1 Server RECEIVE PrOCESSING......ccivicirieirisieesseesteeseeresestesesiesessssesesseseseesens 621
13.3.2 Client RECEIVE PrOCESSING ..cvvvcvivieeirieeisierestetesese st sesseneseens 621
13.3.3 Conversation Manager ENCOdINgGS......cc.covveineenisineseniseneseneseesiene s 621
13.33.1 Challenge Request Data ENCOdiNg..........ccoocervvennicinnicnnieeneeereseneseenns 621
13.3.3.2 Response Data ENCOAINGcovvviviiireieriee e 622
13.34 Authentication Verifier ENCOAINGS.......coccivveivieiencirsee s 622
13.3.4.1 dce_c_authn_level NONE.......cccv e 623
13.3.4.2 dce_c_authn_level CONNECT..........ccccovveiivcinseicec e 623
13.3.4.3 dce_c_authn_level Call.........cccooiivieicceiccccc e 623
13.3.4.4 dce_c_authn_level PKL........cccoviciiicienccces e 623
13.3.4.5 dce_c_authn_level iNtegrity......ccccoeovveiveiieissesee e 623
13.3.4.6 dce_c_authn_level Privacy ... 623
14 Transfer SyNtaX NDR ... 625
14.1 Data Representation Format Labelccocoovvviveinncinieinsceee e 626
14.2 NDR PrimitiVe TYPES....ccvieiierisieesietinesee e sesieseseseesessesessssesesessesessssessssesenens 627
14.2.1 Representation CONVENLIONS.........cccivieiriserisce s 627
14.2.2 Alignment of Primitive TYPES. ..o 628
14.2.3 BOOIBANS. ..ottt 628
14.2.4 CRAFACTEIS ..ot 628
14.2.5 Integers and ENUMeErated TYPES.....ccvvvrvrierirriiesieereresie s 628
14.25.1 ENUMErated TYPES. ...ciivivieriee sttt st nenes 629

CAE Specification (1997)

Contents

14.2.6
14.26.1
14.2.6.2
14.2.6.3
14.2.6.4
14.2.7
14.3
1431
14.3.2
14.3.3
14331
14332
14.3.3.3
14334
14335
14.3.3.6
14.3.3.7
14.3.3.8
14.3.3.9
14.3.4
14341
14342
14.3.5
14.3.6
14.3.7
143.7.1
14.3.7.2
14.3.8
14.3.9
14.3.10
14.3.11
143.11.1
143.11.2
14.3.12
143.12.1
14.3.12.2
14.3.12.3
14.4

Appendix A
Al
A2
A21
A22
A23
A24
A25
A3

DCE 1.1: Remote Procedure Call

Floating-point NUMDENS.........cccoieiicercee e 630
IEEEFOIMAL ..o 630
VAX FOIMMAL ..ottt 631
(O - |V o] 0 | S 633
IBMFOIMNAL ...ttt 633

Uninterpreted OCLELS ..o 634

NDR CONSLrUCtEd TYPES ...vevverireeieirierisietisestee s e tese e e ssene s 635

Representation CONVENLIONS.........ccccivieiisiresee s 635

Alignment of Constructed TYPEScovcevvierererireerees e 635

N g -\ £ S 636
Uni-dimensional FiXed AITaYS........ccccoveiiriiensieneseieseeseeseseseesesessenes 636
Uni-dimensional Conformant Arrays.......ccoccoveevsienesienenenessnesenennens 637
Uni-dimensional Varying Arrays.........ccococevernernseressiessesssenesenenees 637
Uni-dimensional Conformant-varying Arrayscccceceeeeveieneinnienens 637
Orderingof Elements in Multi-dimensional Arrays..........cc.ccoceevveene. 638
Multi-dimensional FIXed ArTayS.......ccccovierierneieseinneieseesesenese e 638
Multi-dimensional Conformant Arrays........cccovceivveieneienerensenesens 639
Multi-dimensional Varying Arrays........ccccoveirniensienesienssenssenessnenes 639
Multi-dimensional Conformant and Varying Arrays........cccceceeennas 640

3] 1] o TR 641
VarYiNG SIHNQGS .o.vcviicicee e 641
Conformantand Varying Stringscccoeevveieneiennieneniesesie e 641

ATTAYS OF STIINGS oo 642

SEFUCTUIES ... e e 643

Structures ContaiNiNg ATTAYScovcveivieeseieieie e 643
Structures Containing a Conformant Arraycccocceeevvevveeneinsennns 643
Structures Containing a Conformant and Varying Array................. 644

UNHONS ...ttt 645

IS et 645

POINTETSviviiiiis et bbbt 646

TOP-IEVEI POINTEIS ...t 646
Top-level FUIl POINTEIS.........cccoiiiicecce e 646
Top-level Reference POINTErS.........ccccovveivcie e 647

EMbedded POINEIS ..ot 648
Embedded FUll POINEEIS ..o s 648
Embedded Reference POINErS ..o 649
Algorithm for Deferral of Referents.......ccccccocevvviinenseccceccesee 650

NDR Input and OUtPULt SLFEaMSccccceiivieiriccie e 651
Universal Unique Identifier..........cooieciceccisciieseseseenns 653
FOIMNAL ...t 654
Algorithms for Creating @ UUID........cccccoveiiiniennceneee e 656

(O [0t S T=To [11 o TS 656

SYStEM REDOOL ..o 656

ClOCK AJUSTMENL........oicicce e 657

ClOCK OVEITUN ...ttt 657

UUID GENEFALION......cocuiiiiiiiririsisieieieie ettt 657

String Representation Of UUIDS..........ccccoveineiieinneeeesees e 659
XVii

XViii

Appendix
Appendix
Appendix

Appendix

Appendix

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

Appendix

Appendix

A4
B
C
D

D.1
D.2
D.3
D.4
D.5
D.6
D.7

E.l
E.2
E21
E22

F.1
F.2

rm X R < -
=

<

Contents

ComMPAriNG UUIDScooviiiicie ettt es 660
Protocol SequUEeNCE STINGS. ..o 661
Name Syntax CONSTANTS ... 663
Authentication, Authorisation and
Protection-level Arguments...........cccreiieerissciisesssssesninns 665

The authn_SVC ArQUMENT ..o 665

The authz_SVC ArQUMENT.......ccvcieecce e 665

The protect_level ArgUMENT ..o 666

THe Privs AFQUMENT........vciicecceses e 667

The server_princ_name ArguMENT.........ccocoivreierniereseresesseere e seesenens 667

The auth_identity ArgUMENT.........ccoovveirieire e 667

KEY FUNCLIONS ..ot 667
Reject Status Codes and Parameters........cccoecovevvieeriinecirennnnn. 669

REJECE STALUS COUEBScvvvcveriieiersee et 669

POSSIDIE FAIIUIES.......cocieci e 671

COMIM_SEAtUS PAramMEter........cccoiiiiiieii st 671
fault_Status Parameter..........ccoveiieiisie e 671
IDL to C-language Mappings........ccoceererinnsssssisssssssnnn, 673

Data Type BiNAINGS.....ccoociiiieisce e 673

YL R\, =T o] o 11 o RS 676
Portable Character Set...........ooeceoeeieceeeeccee e, 679
Endpoint Mapper Well-known PoOrts............cccoirrinncirennnnn. 681
Protocol 1dentifiers..........coeecvoeeecceeeeecceeeeee e 683
DCE CDS Attribute Names ... 685
Architected and Default Values for Protocol Machines...... 686
Architected and Default Values for Protocol Machines...... 687
Protocol Tower ENCOAING ... 689

Protocol TOWEr CONENTS.......cccvveireieeieiieee et 690
The dce_error_ing_text Manual Page........cccccovmveerinnrrneenn, 691
o (ol o g (o)4 () T T 692
IDL Data Type Declarations ..., 693

Basic Type DecClarations.........cccocoviieinicinsenn e 693

R3] 7 {0 3 0o o (-SSR 695

RPC-SPECITIC DAta TYPES ..vcvvvreereieririeriiesieesieenesesssee e sessesesieressssessssesessesenens 697

CAE Specification (1997)

Contents

Appendix O

Appendix P
P.1
P.2

Appendix Q

List of Figures

2-1
2-2
2-3
2-4
6-1
6-2
10-1
10-2
11-1
11-2
11-3
11-4
11-5
14-1
14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9
14-10
14-11
14-12
14-13
14-14
14-15
14-16
14-17
14-18
14-19
14-20
14-21
14-22
14-23

DCE 1.1: Remote Procedure Call

Endpoint Mapper Interface Definition.............cccooeevivevirennnnn. 699
Conversation Manager Interface Definition............c..cccc....... 703
SErVEN INTEITACE ...oiiicecc e 703
CHENt INTEITACEcecveieieii e 706
Remote Management Interface ..., 707
FNABX ..o 709
Information Required to Complete an RPC..........ccccoeevvivviinccencerenene 20
Server Binding Relationshipscccov e 24
Decisions in Looking Up an ENApointcccoeevvviinninincnscnnseeseeens 28
Decisions for Selecting @ Managercccovivrverineieseinsee e sesreseennens 29
Execution Phases of an RPC Thread...........cccocecvninveinnnncienneeene 362
Concurrent Call Threads Executing in Shared Execution Context..... 363
CL_CLIENT StateChart.........ccccovvvviiirseisces s eese s 408
CL_SERVER Statechart...........cccovvviiiriviinciin e 439
CO_CLIENT StateChartcccceovieerireiisceseseess e 482
CO_CLIENT_ALLOC Statechart.........cccceervverersieniseeneeseseeses s 519
CO_CLIENT_GROUP Statechartcccovvvievnerineinnsie e 529
CO_SERVER Statechart..........cccovvviiveiiscessees e 534
CO_SERVER_GROUP Statechart........c.cccccoveierverencinnecne e 569
NDR FOrmat Label.........cccoeuiiiiisceeec e 626
The Boolean Data TYPE.....cccvvreerireeisieesesee s ee et sesesessenes 628
Character Data TYPE......covveerireeererieiesieeseseresie s ses e se s sessesessssenesens 628
NDR INteQEr FOIMALSc.ccvieieeesieieerie et 629
IEEE Single-precision Floating-point Formatccccoceevievviensininnnnns 631
IEEE Double-precision Floating-point Format...........ccccccveivvcinncinnnnnns 631
VAX Single-precision (F) Floating-point Formatcccccccoeevvvnvcnnen 632
VAX Double-precision (G) Floating-point Formatcccccccoceevvenvennne. 632
Cray Floating-point FOrMALScccovveireiirireineee e 633
IBM Floating-point FOrMALtScccoovveinieinrseie e 634
Uninterpreted Octet Representationcccccovevverveinneinneinneeseeeenens 634
Uni-dimensional Fixed Array Representation............c.ccooceevveevncinniennnn 636
Uni-dimensional Conformant Array Representationcccccevvenine 637
Uni-dimensional Varying Array Representationcc.ccoceevveevneniennns 637
Uni-dimensional Conformant and Varying Array Representation..... 638
Multi-dimensional Fixed Array Representationccccocevvvievervreennnn, 638
Multi-dimensional Conformant Array Representation..............cc.co...... 639
Multi-dimensional Varying Array Representation............ccccoceveevvennn, 640
Multi-dimensional Conformant and Varying Array Representation. 640
Varying String Representationc.covcivveiineienesene e 641
Conformant and Varying String Representationcccoceeeevnceninnnns 641
Multi-dimensional Conformant and Varying Array of Strings............ 642
Structure RePresentation..........covvivreinerciessiess s 643

XiX

XX

14-24
14-25

14-26
14-27
14-28
14-29
14-30
14-31
14-32
14-33

List of Tables

31
3-2
41
4-2
4-3
44
51
5-2
5-3
6-1
6-2
6-3
6-4
6-5
6-6
6-7
71
7-2
7-3
7-4
7-5
8-1
8-2
8-3
8-4
8-5
8-6
12-1
12-2
12-3
12-4
14-1
14-2
A-1

Contents

Representation of a Structure Containing a Conformant Array.......... 644
Representation of a Structure Containing a Conformant

T aTo IV -1V o Vo AN o - YT 644
(@] TTo] g R LT o] =TSY=T g v=1 1 {0 o ST 645
Pipe REPIeSENTALIONc.ocveieeieicee et 646
Top-level Full Pointer Representation..........ccoccovveivveineiensenesieneseneseens 647
Top-level Reference Pointer Representation..........c.ccovceevvcivncinncereenenn 648
Embedded Full Pointer Representationsc.cccveevreieneseneseneseereseenns 649
Embedded Reference Pointer Representationccovceevvcivncivsiennnnns 650
NDR INPUL SIFEAMvviiiceeceees et 651
NDR OULPUL SEFEAIM ...t 651
Client and Server Binding Handles..........cc.ccocoeivrvienncinsin e 57
Rules for Returning an ObJeCt’s TYPEccovvervveiereinreereee e 225
INTEQET BASE TYPES ...vieeieee ettt 305
IDL Directional AtriBULESccceveeiirirreeeee e 322
Alphabetic Listing of ProdUctions..........c.ccccvvivveinsinniensesees e 338
Constructed ldentifier CIaSSES ... 342
Transmitted TYPe ROULINES........cccvvveierieiisce e 350
Transferred TYPe ROULINES........ccccvrvveircensce et 352
Floating Point Error Handling ..o 354
EXECULION SEMANTICS ...ovviieeeeeiee e 361
Protocol TOWET STFUCLUIEcvviiieieei e 370
The server_name Object Attributes ..o 371
RPC-specific Protocol TOWEr LAYEIS........ccovvevrieienieinisinescneseeseseeeseeenens 371
Example ProtoCol TOWE ..o e 372
Service Group Object AttribULeS ... 372
Configuration Profile Object AttribULeS.........ccccovveivveireecc s 373
INVOKE PAIAMELEIS ...ttt 376
RESUIL PArameterscovivrriiciceecein bt 377
CaNCEl PArAMELETScvoveeeeiiiriiirirss e 378
ErrOr PArameters ..ot 379
REJECE PArAMELErS.....c.ovcviiecie et s 380
Events Related to Other EIements.........cccoovviinnnecinnneeeeneeeee, 387
COMPOUNT EVENLS ..ot seens 387
Conditions Related to Other Elements..........ccocovviinnnnceinnssccns 388
Compound CONAILIONS.........ccovvreirieire e 388
Actions Related to Other EIemMeNntS.........cccovvieeiennnneenrseeee s 388
COoMPOUNT ACLIONSocviicviireseee e 389
RPC Protocol Data UNitS.........ccceeeeiiiinininiseee e 575
The First Set of PDU FIagScooovcvviiiiiisise e 580
Second Set Of PDU FIAQS ..o 580
Authentication Protocol Identifiers..........ccooveeinnninicinnneeinnns 583
NDR Format Label Values ... 626
NDR Floating POINt TYPES ...cvoveviiree e seee s 630
UUID FOIMAL ...ttt e 654

CAE Specification (1997)

Contents

A-3
A-4

B-1
C-1

D-2
E-1

E-3
F-1
F-2
G-1
H-1
I-1
I-2

K-2
K-1

L-1
L-2

DCE 1.1: Remote Procedure Call

UUID Version Field.........coviiieec s 654
UUID variant FIeld ... 655
The 2 msb of clock_seq_hi_and_reservedccccoceovveiniieinieisininnnnns 658
(S T=1 o @] o (=T = oo I 1Y/ o - TSR 660
RPC Protocol SEqQUENCE STINGS.....ccovevieirisieisieesesesesiereses e seeesesseseseens 661
RPC Name Syntax Defined Constantsccccoceevvvivveivnninnnienssnenenns 663
Casts for Authorisation Information ... 667
RPC Key Acquisition for Authentication Servicescccccveevvvrvcnnen, 668
REJECE StAtUS COAES ..ot 669
Failures Returned in a comm_status Parametercc.cccoceevvervrcrnnnene, 671
Failures Returned in a fault_status Parameterccccccevvvveevrcrvneennn, 672
IDL/NDR/C Type MappingSccccerureirieinrseieseneseseesseesesseseseeesessenenns 674
Recommended Boolean Constant Values.........c.c.coccovvnvneeiennnnceenen, 675
Portable Character Set NDR ENCOAINGS.......ccooevvveirsiernerisereseesiennens 680
Endpoint Mapper Well-Known POIS.........ccccoovvviennierinenesee e 681
NDR Transfer Syntax ldentifierccoooeoveinvciseiencce e 683
Registered Single Octet Protocol Identifiersccocoovvivveivrcininininnnns 684
Default Protocol Maching Values ..., 686
Definition of MUStRECVFIagSIzZe........covvvvvieiisciericcre s 686
Default Protocol Maching Values ..., 687
Definition of MUStRECVFIagSIzZe........covvvvvieiisciericcre s 687
FIOOrS 1 10 3 INCIUSIVEveviiiiiiiieee e 690
Floors 4 and 5 for TCP/IP ProtocCols ..., 690
Floors 4, 5 and 6 for DECnet Protocol..........cccoveivinnieeiinnneeensiiee 690

XXi

Contents

XXil CAE Specification (1997)

The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers and
suppliers of technology. Its mission is to cause the development of a viable global information
infrastructure that is ubiquitous, trusted, reliable, and as easy-to-use as the telephone. The
essential functionality embedded in this infrastructure is what we term the IT DialTone. The
Open Group creates an environment where all elements involved in technology development
can cooperate to deliver less costly and more flexible IT solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the Open
Software Foundation (founded in 1988), The Open Group is supported by most of the world’s
largest user organizations, information systems vendors, and software suppliers. By combining
the strengths of open systems specifications and a proven branding scheme with collaborative
technology development and advanced research, The Open Group is well positioned to meet its
new mission, as well as to assist user organizations, vendors, and suppliers in the development
and implementation of products supporting the adoption and proliferation of systems which
conform to standard specifications.

With more than 200 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

- consolidating, prioritizing, and communicating customer requirements to vendors

« conducting research and development with industry, academia, and government agencies to
deliver innovation and economy through projects associated with its Research Institute

- managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

- adopting, integrating, and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

- licensing and promoting the Open Brand, represented by the ‘X" mark, that designates
vendor products which conform to Open Group Product Standards

- promoting the benefits of the IT DialTone to customers, vendors, and the public.

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development, and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trademark on behalf of the industry.

DCE 1.1: Remote Procedure Call XXiii

XXIV

Preface

The Development of Product Standards

This process includes the identification of requirements for open systems and, now, the IT
DialTone, development of CAE and Preliminary Specifications through an industry consensus
review and adoption procedure (in parallel with formal standards work), and the development
of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product. There are currently two forms of Product Standard, namely the
Profile Definition and the Component Definition, although these will eventually be merged into
one.

The “X’ mark is used by vendors to demonstrate that their products conform to the relevant
Product Standard. By use of the Open Brand they guarantee, through the X/Open Trade Mark
Licence Agreement (TMLA), to maintain their products in conformance with the Product
Standard so that the product works, will continue to work, and that any problems will be fixed
by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on specification development and product documentation, but which also includes
Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry surveys,
and business titles.

There are several types of specification:
« CAE Specifications

CAE (Common Applications Environment) Specifications are the stable specifications that
form the basis for our Product Standards, which are used to develop X/Open branded
systems. These specifications are intended to be used widely within the industry for product
development and procurement purposes.

Anyone developing products that implement a CAE Specification can enjoy the benefits of a
single, widely supported industry standard. Where appropriate, they can demonstrate
product compliance through the Open Brand. CAE Specifications are published as soon as
they are developed, so enabling vendors to proceed with development of conformant
products without delay.

« Preliminary Specifications

Preliminary Specifications usually address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations. They are
published for the purpose of validation through implementation of products. A Preliminary
Specification is not a draft specification; rather, it is as stable as can be achieved, through
applying The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organizations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a CAE Specification.
While the intent is to progress Preliminary Specifications to corresponding CAE
Specifications, the ability to do so depends on consensus among Open Group members.

CAE Specification (1997)

Preface

« Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif, and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as CAE Specifications, in which case the relevant Technology
Specification is superseded by a CAE Specification.

In addition, The Open Group publishes:
« Product Documentation

This includes product documentation—programmer’s guides, user manuals, and so on—
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

- Guides

These provide information that is useful in the evaluation, procurement, development, or
management of open systems, particularly those that relate to the CAE Specifications. The
Open Group Guides are advisory, not normative, and should not be referenced for purposes
of specifying or claiming conformance to a Product Standard.

- Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Program. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new developments
and associated international standards. To distinguish between revised specifications which are
fully backwards compatible and those which are not:

- A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

« A new lIssue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://mvww.opengroup.org/public/pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://mvww.opengroup.org/public/pubs.

DCE 1.1: Remote Procedure Call XXV

XXVi

Preface

This Document

This document is a CAE Specification (see above). It specifies Remote Procedure Call (RPC)
services, interface, protocols, encoding rules and the Interface Definition Language (IDL).

The purpose of this document is to provide a portability guide for RPC application programs
and a conformance specification for RPC implementations.

Structure

This document is organised into four parts.

Part 1, Remote Procedure Call Introduction describes this document in detail, covering
application portability, services and protocols, and conformance requirements. It contains
material relevant to both application programmers and implementors.

Part 2, RPC Application Programmer’s Interface specifies a portable RPC Application
Programmer’s Interface (API). It contains material relevant both to application programmers
and implementors.

Part 3, Interface Definition Language and Stubs specifies the IDL and stubs. It contains material
relevant both to application programmers and implementors.

Part 4, RPC Services and Protocols specifies RPC services and protocols. It contains material
mainly relevant to implementors.

This document also includes a series of appendixes containing material that supplements the
main text. These contain material relevant both to application programmers and implementors.
Intended Audience

This document is written for RPC application programmers and developers of RPC
implementations.

Typographical Conventions

The following typographical conventions are used throughout this document:

- Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

. Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— variable names, for example, substitutable argument prototypes
— environment variables, which are also shown in capitals
— utility names
— external variables, such as errno
— functions; these are shown as follows: name().
» Normal font is used for the names of constants and literals.
+ The notation <file.h> indicates a header file.
- The notation [EABCD] is used to identify an error value EABCD.

« Syntax, code examples and user input in interactive examples are shown in fixed width
font.

CAE Specification (1997)

Preface

- Variables within syntax statements are shown in Jjtalic fixed width font

In addition to these generic conventions, several chapters of this document use conventions
specific to the topic covered, including language conventions (Chapter 4 and Chapter 5),
encoding conventions (Chapter 14), and protocol machine conventions (Chapter 8 to Chapter 11
inclusive). These conventions are specified in the relevant chapters.

DCE 1.1: Remote Procedure Call XXVl

Trademarks

MotifD, OSF/lD, and UNIXD are registered trademarks and the IT DialTone™, The Open
Group™, and the ““X Device’’™ are trademarks of The Open Group.

XXviii CAE Specification (1997)

Referenced Documents

The following documents are referenced in this specification:

DCE Directory
The Open Group CAE Specification, October 1997, The Open Group DCE 1.1
Authentication and Security Services (Publication number: C311).

DCE Directory
The Open Group CAE Specification, October 1997, The Open Group DCE 1.1: Directory
Services (Publication number: C705).

ANSI/IEEE Std 754-1985
Standard for Binary Floating-Point Arithmetic.

I1SO 8823
ISO 8823:1988, Information Processing Systems — Open Systems Interconnection —
Connection-oriented Presentation Protocol Specification.

ISOC

ISO/IEC 9899: 1990: Programming Languages — C, including:
Amendment 1: 1995 (E), C Integrity (Multibyte Support Extensions (MSE) for ISO C).

ISO/TR 8509
ISO/TR 8509:1987, Information Processing Systems — Open Systems Interconnection —
Service Conventions.

System/370
IBM System/370 Principles of Operation, 1974, International Business Machines
Corporation.

VAX11 Architecture
VAX11 Architecture Handbook, 1979, Digital Equipment Corporation.
The following documents were used in the development of this specification, but are not directly
referenced:
Harel, D. On Visual Formalisms. Communications of the ACM 31, 5 (May 1988), pp. 514-530.

Harel, D. Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming 8 (1987), pp. 231-274.

Harel, Pnueli, Schmidt, Sherman On the Formal Semantics of Statecharts Proceedings of the 2nd
IEEE Symposium on Logic in Computer Science (Ithaca, NY, June 22-24). IEEE Press New
York, 1987, pp. 54-64.

i-Logix Inc., The Languages of Statemate Documentation for the Statemate System, January
1991, Burlington, MA.

i-Logix Inc., The Semantics of Statecharts Documentation for the Statemate System, January
1991, Burlington, MA.

DCE 1.1: Remote Procedure Call XXiX

Referenced Documents

XXX CAE Specification (1997)

CAE Specification

Part 1

Remote Procedure Call Introduction

The Open Group

Part 1 Remote Procedure Call Introduction

CAE Specification (1997)

Chapter 1

Introduction to the RPC Specification

This document specifies both portability and interoperability for the Remote Procedure Call
(RPC) mechanism. The specification contains material directed at two audiences:

- It provides a portability guide for application programmers.

- It provides both portability and interoperability specifications for those who are
implementing or porting RPC or who are testing an RPC implementation.

This document may be thought of as an implementation specification, covering both portability
and interoperability, that contains within it an application portability guide. The application
portability guide consists of Part 2, RPC Application Programmer’s Interface and Part 3, Interface
Definition Language and Stubs.

Although the portability specification is part of the broader implementation specification, it has
been designed to stand alone so that it may be used by application programmers without
reference to the other parts of the implementation specification.

Note: In order to make the portability specification independent, some material is repeated,
especially between Chapter 2 and Chapter 6.

Part 1 Remote Procedure Call Introduction 3

Portability Introduction to the RPC Specification

1.1 Portability

The portability specification describes the concrete syntax and semantics of the Application
Programmer’s Interface (API) to RPC. It consists of:

- an introduction to the RPC API that describes the RPC programming model and gives
general guidelines for portable usage (see Chapter 2)

- areference section for the data types used in the RPC API (see Chapter 3)!

- aset of reference pages for the RPC run-time library routines; these specify the calling syntax
and semantics for the interfaces (see Chapter 3)

- areference to the Interface Description Language (IDL) (see Chapter 4)
- amapping of IDL data types to ISO C data types (see Appendix F)

- an RPC stub specification that defines stub characteristics required for portability (see
Section 5.1 on page 339).

The portability specification is narrowly focussed on providing a guide to portable usage of the
RPC API. It describes behaviour that is common to all implementations. Whenever
implementation-specific behaviour is referenced, it is clearly marked as such. Similarly, the
specification generally avoids examples or tutorial descriptions. Whenever usage guidelines are
provided, they are clearly marked as such.

All behaviour that is not specifically marked as implementation-specific or a usage note, is
considered to be required. All implementations must conform to the specified behaviour.
Programmers can rely on the specified behaviour to be portable among conforming
implementations.

1. This document specifies ISO C-language bindings for data types and interfaces.

4 CAE Specification (1997)

Introduction to the RPC Specification Services and Protocols

1.2

Services and Protocols

The implementation specification includes a set of service and protocol specifications. The
protocol specifications describe how implementations of the RPC client and server run-time
systems communicate. The service specifications describe a set of abstract services that the RPC
run-time system must implement.

The service and protocol specifications include:
- an abstract specification of the RPC model (see Chapter 6)
- an abstract specification of a set of RPC service primitives (see Chapter 7)

. abstract specifications of the RPC connectionless and connection-oriented communications
protocols. These are given as sets of statecharts and associated descriptive materials. This
includes an abstract specification of the underlying transport services required by the RPC
protocols. (The protocol specifications are contained in Chapter 8, Chapter 9, Chapter 10 and
Chapter 11.)

- byte stream specifications of the formats of RPC Protocol Data Units (PDUs) used by the
connectionless and connection-oriented protocols (see Chapter 12) and common
authentication verifier encodings (see Chapter 13)

- a specification of the Network Data Representation (NDR); this specifies a set of NDR data
types and the byte stream formats in which they are communicated between client and
server run-time environments (see Chapter 14)

- amapping of IDL data types to NDR data types (see Appendix F)

- an RPC stub specification that defines the stub characteristics required for interoperation (see
Section 5.2 on page 348)

- a specification of information stored in and retrieved from name services (see Section 6.2 on
page 358, Appendix I, and the DCE: Directory Services specification).

- a UUID specification (see Appendix A)

- IDL data type declarations (see Appendix N)

- the endpoint mapper protocol (see Appendix O)

- the conversation manager protocol (see Appendix P)
- the remote management interface (see Appendix Q).

The aim of the service and protocol specifications is to provide a complete mapping from RPC
call semantics to the byte streams that RPC run-time clients and servers interchange using
underlying services. The RPC service primitives provide an abstract implementation of the
specified RPC call semantics and serve to map the specified semantics to the specified protocol
machines. The PDU formats give the byte streams that the protocol machines exchange using
the underlying transport services. The NDR specification, along with the mapping of IDL to
NDR data types, defines how the call data exchanged in the RPC PDUs is encoded.

Except for the byte stream specification and the stub specification, the service and protocol
specifications are abstract. They describe the behaviour that conforming implementations must
follow, but they do not prescribe any specific means for implementing this behaviour.

Implementations that conform to this specification interoperate according to the following rule:
client and server applications, conforming to the same IDL source (but not necessarily the same
ACS), correctly implement the specified RPC interface semantics for each remote procedure call
operation specified in the IDL source.

Part 1 Remote Procedure Call Introduction 5

Services and Protocols Introduction to the RPC Specification

Except when specified otherwise, IDL compiler behaviour and the stub, including the stub to
run-time interface, are implementation-dependent. Therefore, the above rule applies when stubs
are generated using the local implementation’s IDL compiler. There is no requirement that stubs
for a given language are portable among implementations.

6 CAE Specification (1997)

Introduction to the RPC Specification Conformance Requirements

1.3 Conformance Requirements

To conform to this document, implementations must meet the following requirements;

Implementations must support the endpoint selection rules in Endpoint Selection on page
23.

Implementations must support the manager selection rules in Interface and Manager
Selection on page 24.

Implementations must support the search algorithm in Section 2.4.5.

Implementations must support the APl naming, syntax and semantics, as defined in Chapter
3. Implementations may extend the set of status codes documented in Chapter 3.

Implementations must support the naming, syntax and semantics for IDL, as given in
Chapter 4.

Implementations must support the naming, syntax, and semantics for stubs, as given in
Chapter 5.

Implementations must support the semantics defined in Chapter 6.

Implementations must support the NSI syntax and naming, as defined in Section 6.2 on page
358.

Implementations must support the service semantics defined in Chapter 7.
Implementations must follow the conformance rules specified in Chapter 9.
Implementations must support the syntax of the PDU encodings in Chapter 12.

Implementations must support the Authentication Verifier encodings, as defined in Chapter
13.

Implementations must support the rules and encodings for NDR, as given in Chapter 14.

Implementations must support the syntax, semantics and encoding for UUIDs, as defined in
Appendix A.

Implementations must support the naming and semantics for protocol sequence strings, as
defined in Appendix B.

Implementations must support the naming and semantics for the name_syntax arguments, as
defined in Appendix C.

Implementations must support the naming and semantics for security parameters, as defined
in Appendix D.

Implementations must support the naming and encodings for comm_status and fault_status,
as defined Appendix E.

Implementations must support the mapping from IDL types to NDR types, and from NDR
types to defined I1SO C types, as defined in Appendix F.

Implementations must support the portable character set, as defined in Appendix G.

Implementations must use the endpoint mapper ports, as defined in Appendix H for the
corresponding protocols.

Implementations must adhere to the rules for protocol identifier assignment, as defined in
Appendix I.

Part 1 Remote Procedure Call Introduction 7

Conformance Requirements Introduction to the RPC Specification

- Implementations must adhere to the mappings for Directory Service attributes, as defined in
the DCE: Directory Services specification.

- Implementations must provide defaults for the protocol machine values specified in
Appendix K.

- Implementations must obey the special protocol tower encoding rules specified in Appendix
L.

- Implementations must support the syntax and semantics of the dce_error_ing_text routine
specified in Appendix M.

- Implementations must adhere to the mappings for transfer syntax UUIDs, as defined in
Appendix N.

- Implementations must support the endpoint mapper semantics, as defined in Appendix O.

- Implementations must support the conversation manager semantics, as defined in Appendix
P.

- Implementations must support the remote management semantics as defined in Appendix

Q.

8 CAE Specification (1997)

CAE Specification

Part 2

RPC Application Programmer’s Interface

The Open Group

Part 2 RPC Application Programmer’s Interface

10

CAE Specification (1997)

Chapter 2

Introduction to the RPC API

This chapter provides a general description of the programming model implemented by the RPC
Application Programming Interface (API). This description includes definitions of many of the
concepts used throughout the RPC APl manual pages. As such, it is a necessary prerequisite to
the understanding of the manual pages, and the manual pages assume knowledge of this
chapter, even when they do not make explicit reference to it.

The description serves three purposes:

- It provides general information that is relevant to many of the routines in the RPC API, but is
not specified in the individual manual pages.

- It provides a rationale for the set of RPC APIs included in this document.
- It provides general guidelines for the intended use of the RPC APIs.

The general information covers topics, such as binding and name service usage, that are relevant
to many of the manual pages. Typically, several routines perform tasks related to a given topic.
This introduction provides a general model within which the tasks performed by individual
routines and suites of routines can be understood. This general model also provides a rationale
for the set of routines included in this document. It describes the underlying operations required
for RPC programming and shows how the set of RPC APIs included in this document gives
access to these operations.

In showing how the RPC API routines are meant to be used, this chapter provides certain
guidelines for consistent RPC client/server interface usage. These guidelines cover such areas as
using the naming services and organising server resources. By following them, programmers
can simplify the task of maintaining and enhancing server interfaces and writing client
programs.

Part 2 RPC Application Programmer’s Interface 11

RPC Programming Model Overview Introduction to the RPC API

2.1

2.1.1

2111

2112

12

RPC Programming Model Overview

The RPC programming model can be viewed along two axes:
« client/server
« program/stub/run-time system.

Each view describes important aspects of the use of the RPC API.

Client/Server Model

The client/server view of RPC programming describes the distributed resource model
implemented by the RPC mechanism. In this view, programming tasks are divided between
servers, which provide services or make resources available to remote clients, and clients, which
seek and make use of these services or resources.

Interfaces

The central component of the client/server model is the interface. An interface is a set of
remotely callable operations offered by a server and invokable by clients. Interfaces are
implemented by managers, which are sets of server routines that implement the interface
operations. RPC offers an extensive set of facilities for defining, implementing and binding to
interfaces.

The RPC mechanism itself imposes few restrictions on the organisation of operations into
interfaces. RPC does provide a means to specify interface versions and a protocol to select a
compatible interface version at bind time (see Chapter 4 and Chapter 6). When an interface is
specified as a new version of an existing interface, the server manager code must provide the
required version compatibility. Beyond this restriction, the programmer is free to place any set
of remotely callable operations in a given interface.

Remoteness

The RPC paradigm makes remote calls an extension of the familiar local procedure call
mechanism. Specifically, the call itself is made as a local procedure call, and the underlying RPC
mechanism handles the remoteness transparently. Server interface programming is thus similar
to local procedure call programming, except that the handler of the call runs in a separate
address space and security domain.

From this point of view, a local procedure call is a special simple case of the more general call
mechanism provided by RPC. RPC semantics extend local procedure call semantics in a variety
of ways:

Reliability Network transports may offer varying degrees of reliability. The RPC
run-time system handles these transport semantics transparently, but
RPC call specifications include a specification of execution semantics that
indicates to the RPC protocols the required guarantees of success and the
permissibility of multiple executions on a possibly unreliable transport.
Server application code must be appropriate for the specified execution
semantics.

Binding RPC binding occurs at run time and is under program control. Client and
server use of the RPC binding mechanism is discussed extensively in this
chapter.

No Shared Memory Because calling and called procedures do not share the same address
space, remote procedure calls with input/output parameters use copy-in,

CAE Specification (1997)

Introduction to the RPC API RPC Programming Model Overview

2113

2114

copy-out semantics. For the same reason, RPC has no notion of “‘global
data structures’” shared between the caller and callee; data must be
passed via call parameters.

Failure Modes A number of failure possibilities arise when the caller and callee are on
physically separate machines. These include remote system or server
crashes, communications failures, security problems and protocol
incompatibilities. RPC includes a mechanism to return such remote
errors to the caller.

Cancels RPC extends the local cancel mechanism by forwarding cancels that occur
during an RPC to the server handling the call, allowing the server
application code to handle the cancel. RPC adds a cancel time-out
mechanism to ensure that a caller can regain control within a specified
amount of time if a cancelled call should fail to return.

Security Executing procedures across physical machine boundaries and over a
network creates additional requirements for security. The RPC API
includes an interface to the underlying security services.

The RPC API provides programmers with the means to apply these extended semantics, but it
shields applications from the rigours of transport level send-and-receive programming. The
RPC programming paradigm gives the programmer control of the remote semantics at two
points: in the interface specification and through the RPC API.

- The interface specification, while it is principally used to specify the local calling syntax of an
interface, also allows programmers to specify the desired execution semantics, the degree to
which binding is under program control and error semantics. Interface specification is
described in Chapter 4.

- The RPC API gives applications access to a variety of run-time services and control of many
client/server interactions at run time. Its most important function is to control the process of
binding between clients and servers. Other functions include authentication, server
concurrency and server management.

Binding

A remote procedure call requires a remote binding. The calling client must bind to a server that
offers the interface it wants, and the client’s local procedure call must invoke the correct
manager operation on the bound-to server. Because the various parts of this process occur at
run time, it becomes possible to exercise nearly total programmatic control of binding. The RPC
API provides access to all aspects of the binding process.

Each binding consists a set of components that can be separately manipulated by applications,
including protocol and addressing information, interface information and object information.
This allows servers to establish many binding paths to their resources and allows clients to make
binding choices based on all of the components. These capabilities are the basis for defining a
variety of server resource models.

Name Services

Servers need to make their resources widely available, and clients need some way to find them
without knowing the details of network configuration and server installation. Hence, the RPC
mechanism supports the use of name services, where servers can advertise their bindings and
clients can find them, based on appropriate search criteria. The RPC API provides clients and
servers with a variety of routines that can be used to export and import bindings to and from
name services.

Part 2 RPC Application Programmer’s Interface 13

RPC Programming Model Overview Introduction to the RPC API

2.1.15

2.1.1.6

2.1.1.7

14

Resource Models

The client/server model views servers as exporters of services—via RPC interfaces—and clients
as importers of those services. Exported services typically take the form of access to resources,
such as computational procedures, data, communications facilities, hardware facilities, or any
other capabilities available to an application on a networked host. The RPC mechanism does not
distinguish among such resource types in any way. On the contrary, it provides a uniform
means of access—the remote procedure call—and allows the programmer to define the
underlying resource model freely.

RPC does, however, provide specific mechanisms that implicitly support different approaches to
resource modeling. These mechanisms take advantage of the flexibility of the binding process
and the name services. The RPC mechanism supports three basic resource models:

By Server In this model, clients seek to bind to a specific server instance that
provides an interface of interest.

By Service In this model, clients seek a service—as represented by an interface—
without concern for the specific server instance that provides that service
or any objects that the server manages.

By Object In this model, clients seek a binding to any server that manages a specific
object. An object may be any computational resource available to a
server.

The RPC programming mechanism does not explicitly enforce these models. Instead, they are
supported implicitly by making available a set of run-time binding and name service facilities
through the RPC API. Programmers may use these facilities according to their application
requirements. However, this document recommends that programs follow the models specified
here in order to ensure consistent use of the client/server interface.

Security Services

The RPC API provides access to a variety of security services: client-to-server and server-to-
client authentication, authorisation of access to server resources (which may carry delegation
information inserted by security routines), and varying degrees of cryptographic protection of
client/server communications.

Server Implementation

The client/server view of RPC is necessarily asymmetric. The model is based on providing
services remotely via the export of RPC interfaces. Since servers are the means for
implementing remote interfaces, the model is server-centred. The RPC architecture provides
certain server facilities that make the implementation of servers more efficient. These include

Server Concurrency Implementations may buffer RPC requests at the server and
automatically provide multiple threads to handle concurrent requests,
relieving the application programmer of these tasks.

Remote Management The RPC run-time system automatically offers a set of remote server
management interfaces that can be used for such purposes as querying
and stopping servers.

CAE Specification (1997)

Introduction to the RPC API RPC Programming Model Overview

2.1.2

2121

2.1.2.2

2.1.2.3

Application/Stub/Run-time System

The application/stub/run-time system view of RPC describes the division of labour between
application code and other RPC components in implementing a remote procedure call.

RPC Run Time

At the core of this model is the RPC run-time system, which is a library of routines and a set of
services that handle the network communications that underlie the RPC mechanism. In the
course of an RPC call, client-side and server-side run-time systems’ code handle binding,
establish communications over an appropriate protocol, pass call data between the client and
server, and handle communications errors.

The RPC API is the programmer’s interface to the run-time system. The run-time system makes
use of a number of services, such as the endpoint mapper, name services and security services.
The RPC API also provides an interface to these services for carrying out RPC-specific
operations. Portable usage of the RPC API is fully specified in this section of this document.

Stubs

The stub is application-specific code, but it is not directly generated by the application writer
and therefore appears as a separate layer from the programmer’s point of view. The function of
the stub is to provide transparency to the programmer-written application code. On the client
side, the stub handles the interface between the client’s local procedure call and the run-time
system, marshaling and unmarshaling data, invoking the RPC run-time protocol, and if
requested, carrying out some of the binding steps. On the server side, the stub provides a
similar interface between the run-time system and the local manager procedures that are
executed by the server.

RPC transparency to the application programmer is provided by the interface specification
mechanism. The programmer specifies interfaces using an Interface Definition Language (IDL),
and the IDL compiler generates stubs automatically from the specification. Thus, the actual
operations performed by the stub are largely invisible to the programmer, although they form
part of the application-specific program code.

This chapter does not cover the interface specification mechanism itself; this is documented in
Chapter 4. What is covered here are the assumptions that the RPC programming model makes
about stubs, such as well-known stub names and stub memory management.

Application Code
RPC application code falls into two categories:
« remote procedure calls and manager code

- optional calls to the RPC API, mainly to set up the run-time system state required by remote
procedure calls.

In the first category are the procedures written by the programmer to implement the client and
server operations of the remote procedure call. On the client side, these are simply local calls to
the stub interfaces for the remote procedures. On the server side, these are a set of manager
routines that implement the operations of the interface. In most applications, manager routines
are presumably a major part of the server code. Recall that, aside from requiring managers to
conform to the specified execution semantics and version behaviour, the RPC mechanism
imposes no specific constraints on manager implementations.

Part 2 RPC Application Programmer’s Interface 15

RPC Programming Model Overview Introduction to the RPC API

16

The programmer-written application code interacts with the RPC run-time system principally
through the stub. This makes run-time operations largely transparent to the application code.
Nevertheless, in order to control binding, security and other aspects of the RPC mechanism, the
application often needs direct access to run-time operations. The RPC API provides applications
with such access to the RPC run-time system and related services.

CAE Specification (1997)

Introduction to the RPC API API Operations

2.2

221

2.2.2

2.2.3

API Operations

The RPC API provides access to an extensive set of run-time operations. Section 2.12 on page 41
provides a detailed taxonomy of APIs according to the operations performed. This section offers
an overview, based on a somewhat broader set of categories.

- binding-related operations

« Name service operations

- endpoint operations

- security operations

- stub memory management operations
« management operations

« UUID operations.

Subsequent sections of this chapter cover many of these groups of operations in detail.

Binding-related Operations

Binding-related operations establish a relationship between a client and server that makes
possible a remote procedure call. These operations may be roughly divided into two categories:

- operations to establish client/server communications using an appropriate protocol
. operations that establish internal call routing information for the server.

Operations in the first category include the creation of communications endpoints by the server
for the set of protocols over which it wishes to receive remote procedure calls. Servers typically
export information about the bindings thus created to a name service and an endpoint map.
Clients typically import such binding information from a name service and an endpoint map
(see Section 2.2.2 on page 13 and Section 2.2.3 on page 13).

Operations in the second category establish a set of mappings that the server can use to route
calls internally to the appropriate manager routine. This routing is based on the interface and
version, operation and any object requested by the call.

Name Service Operations

The RPC name service API includes an extensive set of operations for exporting and importing
binding information to and from name services. These operations make use of a set of RPC-
specific name service entry attributes to structure the exported binding information so that it can
easily be found and interpreted by clients.

Endpoint Operations

Servers listen for remote procedure call requests over one or more protocol-specific endpoints.
Typically, such endpoints are allocated dynamically when a server begins to listen, and their
lifetime is only a single server instantiation. RPC provides an endpoint mapper mechanism that
allows such volatile endpoint information to be maintained separately from the more stable
components of a binding. Typically, servers export stable binding information to a name service
and register their volatile endpoints with the local endpoint mapper. The endpoint mapper then
resolves endpoints for calls made on bindings that do not contain them.

Endpoint operations are used by servers to register their endpoints with the endpoint mapper.

Part 2 RPC Application Programmer’s Interface 17

API Operations Introduction to the RPC API

2.2.4

2.2.5

2.2.6

2.2.7

2.2.8

18

Security Operations

These operations establish the authentication and authorisation services and protection levels
used by remote procedure calls.

Internationalisation Support Operations

These operations are used by applications to implement character and code set interoperability,
which permits clients and servers to transfer international character data in a heterogeneous
character set and code sets environment.

Stub Memory Management Operations

These operations are used by applications to manage stub memory. They are typically used by
RPC applications that pass pointer data.

Management Operations

Management operations include a variety of operations with the potential to affect applications
other than the one making the management call. Servers automatically export a set of remote
management functions.

UUID Operations

UUIDs (Universal Unique Identifiers) are used frequently by the RPC mechanism for a variety of
purposes. The UUID operations enable applications to manipulate UUIDs.

CAE Specification (1997)

Introduction to the RPC API Binding

2.3 Binding

Binding refers to the establishment of a relationship between a client and a server that permits
the client to make a remote procedure call to the server. In this document, the term “‘binding”
usually refers specifically to a protocol relationship between a client and either the server host or
a specific endpoint on the server host, and ‘‘binding information’ means the set of protocol and
addressing information required to establish such a binding. But, for a remote procedure call,
such a binding occurs in a context that involves other important elements, paralleling the notion
of a binding in a local procedure call. In order for an RPC to occur, a relationship must be
established that ties a specific procedure call on the client side with the manager code that it
invokes on the server side. This requires both the binding information itself and a number of
additional elements (see Figure 2-1 on page 16). The complete list is as follows:

1. aprotocol sequence that identifies the RPC and underlying transport protocols
an RPC protocol version identifier
a transfer syntax identifier

2

3

4. aserver host network address

5. anendpoint of a server instance on the host
6

an object UUID that can optionally be used for selection among servers and/or manager
routines

~

an interface UUID that identifies the interface to which the called routine belongs
8. an interface version number that defines compatibility between interface versions

9. an operation number that identifies a specific operation within the interface.

Part 2 RPC Application Programmer’s Interface 19

Binding

20

Introduction to the RPC API

Binding Information

Protocol Sequence

Protocol Version

Partial
>

Binding
Transfer Syntax FEJ" i
Binding May Be Referred to

by Binding Handle

Host Address

Endpoint

Object UUID

Other Information

Operation Number

Interface UUID
Interface Identifier

Interface Version

Figure 2-1 Information Required to Complete an RPC

Note: The discussion in this chapter is intentionally vague about how any of this
information is communicated between client and server. The underlying RPC
protocol packages the required information for transmission. However, APl usage is
protocol-independent, and this chapter provides a protocol-independent description
of RPC. Hence, this chapter typically refers to the binding information ‘‘contained”’
in a call without specifying how such information is actually transmitted or received.
This is left to the RPC protocol specifications in Part 4, RPC Services and Protocols.

The binding information itself covers the first five elements of the list—the protocol and address
information required for RPC communications to occur between a client and server.

Figure 2-1 on page 16 also shows the object UUID as part of the binding information. This is
explained in Section 2.3.1 on page 17.

In RPC terminology, such a binding can be partial or full. A partial binding is one that contains
the first four elements of the list, but lacks an endpoint. A full binding contains an endpoint as
well. The distinction is that a partial binding is sufficient to establish communications between a
client and a server host, whereas a full binding allows communications to a specific endpoint on
the server host.

CAE Specification (1997)

Introduction to the RPC API Binding

231

23.11

23.1.2

2.3.2

Binding Handles

The binding information required to make remote procedure calls is maintained by the client
and server run-time systems on behalf of applications. The run-time system provides
applications with opaque binding handles to refer to locally maintained binding information.
Applications use binding handles to manipulate bindings via calls to the RPC API.

It is important to understand that binding handles are only valid in the context of the local client
or server instance that created them. They are not used directly to communicate binding
information between servers and clients. Typically, servers advertise binding information by
exporting it to name service entries. When a client imports binding information from a name
service, it receives a binding handle from the client run-time system that refers to the local copy
of the imported binding information.

Note: On the server side, such a binding handle refers to the first five elements shown in
Figure 2-1 on page 16. On the client side, such a binding handle also refers to an
object UUID associated with the binding information. For this reason, the figure
includes the object UUID with the binding information even though it is not part of
the protocol and address information required to establish communications between
the client and server. The role of the object UUID is described in Interface and
Manager Selection on page 24.

Client and Server Binding Handles

Binding information may refer either to a server or a client. Most of the time, binding
information refers to servers, since it is servers to which clients need to bind in order to make
remote procedure calls. When a binding refers to a server, a binding handle for it is called a
server binding handle. Server binding handles are used both by clients and servers in the course of
the binding process.

In some cases, servers need binding information for clients that call them. A binding handle that
refers to such binding information is called a client binding handle. A small number of RPC APIs
take client binding handles as arguments.

Obtaining Binding Handles

Applications obtain server binding handles by calling any of several RPC API routines. (See
Section 3.1 on page 51 for a list of routines that return server binding handles.)

A server obtains a client binding handle as the first argument passed by the run-time system to a
server manager routine.

String Bindings

A string binding is a string representation of binding information, including an optional object
UUID. String bindings provide binding information in human-readable form. Applications can
use RPC API calls to request a string binding from the run-time system or convert a string
binding into a binding that the runtime system can use to make a remote procedure call. String
binding format is specified in Section 3.1 on page 51.

Part 2 RPC Application Programmer’s Interface 21

Binding

2.3.3

22

Introduction to the RPC API

Binding Steps

In order to complete an RPC call, all of the elements listed in Figure 2-1 on page 16 must be
present. RPC divides the process of assembling these elements into several steps and organises
the assembled information in a way that provides maximum flexibility to the binding process.
To understand this, consider the opposite possibility: a binding mechanism that seeks to imitate
a local procedure call’s static binding to a local library routine. In this case, all the elements
would be preassembled into a well-known binding to which the calling program would bind in
an all-or-nothing fashion.

RPC is close to the other dynamic extreme. It purposely avoids creating static links among all
the elements so that a final routing—from the client procedure call to the server manager routine
invoked—can be dynamically determined at the time of the RPC. From the programmer’s point
of view, one of the principal differences between a local procedure call and a remote procedure
call is that the binding process—the way all these components are linked together—occurs at
run time and can be carried out, optionally, under application program control.

This serves several purposes:

. Itincreases the location transparency of applications. Because clients do not need to know all
the binding information before a call is actually made, applications can run successfully on
systems with widely different configurations.

« It increases the maintainability of server installations because there are few a priori
restrictions on the locations of server resources.

. It increases the probability of success in the face of partial failures because applications can
look for bindings to servers in different locations and choose among a variety of RPC and
network protocols.

- It makes possible a variety of server resource models by allowing servers to organise and
advertise binding information in a variety of ways.

The binding process consists of a series of steps taken by the client and server to create, make
available and assemble all the necessary information, followed by the actual RPC, which creates
the final binding and routing using the elements established by the previous steps. To break the
process down in more detail:

- The server takes a series of steps that establish binding-related state for the server side of the
call.

- The server optionally exports binding information to a name service.

- The client takes a series of steps that establish binding-related state for the client side of the
call. Binding information used in this process may be imported from a name service.

- The client makes a call, which is able to invoke the correct operation in the server by making
use of the binding-related state established on the client and server sides.

Each of the components listed in Figure 2-1 on page 16 is involved at some stage of this process.
Some components are involved at more than one stage and may be used in more than one way.
The following sections consider each stage and component in some detail.

CAE Specification (1997)

Introduction to the RPC API Binding

2.3.3.1 Server Binding Steps

The server takes a number of steps to establish binding state in the server side run-time system,
the name service and the endpoint mapper. The server’s basic task is to acquire a set of
endpoints from the run time and set up a series of relationships among binding elements that
will then be used to construct the final routing at call time.

Figure 2-2 on page 20 shows the set of relationships that a server must establish to receive
remote procedure calls. As the figure indicates, these are maintained in several places:

- by the server run-time system

in the stub and application code
« by the endpoint mapper

- by a name service.

Stub and Application Code Maintained by Server Runtime

1. Define the EPV for each manager. 2. Register the Object UUID/Type UUID

associations.
Code for Interface foo

Object UUID Type UUID
foo Manager A uuib1 UUID A
EPV A Oneration 0 UUID 2 UUID A
> rati
> 11 P UuUID 3 UuUID B
. UuID 4 UUID B
| ———> Operation 1
UuUID 5 UUID B
[T Operation 2 ,
3. Register the IF ID/Type UUID/EPV
[~ associations.
[~ Operation 3
\\ foo's IF ID UuID A EPV A
> Operation 4 foo's IF ID UuUID B EPV B 1
4. Get the bindings.
foo Manager B Endpoints
EPV B | Operation 0 L Binding] Binding
| Information Handle
| L+ Operation 1
Operation 2 L Binding ™ Binding
Information Handle
[T T operation 3
~_|
™ Operation 4 1] Binding] Binding
Information Handle

Go to Step 5 —>»

Part 2 RPC Application Programmer’s Interface 23

Binding

Endpoint Map

Introduction to the RPC API

5. Export the endpoint information.

Full Binding Full Binding Full Binding
Information Information Information
foo's IF ID foo's IF ID foo's IF ID

Object UUID 1 Object UUID 2 Object UUID 3
Full Binding Full Binding
Information Information
foo's IF ID foo's IF ID

Object UUID 4 Object UUID 5

Name Service

6. Export the binding information to a name
service.

Partial Binding
Information

Object UUID 1

Object UUID 2
foo's IF ID

Object UUID 3

Partial Binding
Information

Object UUID 4

foo's IF ID Object UUID 5

Partial Binding
Information

foo's IF ID

Figure 2-2 Server Binding Relationships

The server takes several steps (some of them optional) to establish the necessary relationships,
as indicated in Figure 2-2 on page 20. The steps are as follows:

1.

24

The server application or stub code defines a manager Entry Point Vector (EPV) for each
manager that the server implements. Recall that a manager is a set of routines that
implements the operations of an interface and that servers may implement more than one
manager for an interface; for example, to provide for different versions or object types.
Each EPV is a vector of pointers to the operations of the manager. When an RPC request
arrives, the operation number is used to select an element from one of the manager EPVs.

CAE Specification (1997)

Introduction to the RPC API Binding

2. The server registers a set of object UUID/type UUID associations with the RPC run-time
system.

3. The server registers interface identifier/type UUID/EPV associations with the RPC run-
time system. Together with the previous step, this establishes the mappings that permit
the run-time system to select the appropriate manager, based on the interface ID and any
object UUID contained in a call.

4. The server application tells the run-time system what protocol sequences to use, and the
run-time system establishes a set of endpoints for the protocol sequences requested. The
server may ask the run-time system for its bindings, and the run time will return a set of
binding handles that refer to the binding information for these endpoints.

5. The server may register binding information, consisting of a set of interface
identifier/binding information/object UUID tuples, with the endpoint mapper. For each
interface, the registered data consists of a cross product of the bindings and object UUIDs
that the server wants to associate with that interface. When a call is received with a partial
binding (that is, one lacking an endpoint) the endpoint mapper is able to use this
information to select an endpoint that is capable of handling the call.

6. The server may export binding information to one or more name service entries. The
information exported here looks quite similar to the information registered in the endpoint
map in the previous step, with one important difference. The binding information
exported to the name service generally lacks an endpoint, consisting of protocol and host
address information only. Therefore the name service contains only the most persistent
part of the binding information while the endpoint map contains the volatile endpoint
portion.

(The format is also different. See Section 2.4 on page 27 for information about the format of
server entries.)

Note that not all of these steps are required. Servers may construct their own bindings, by using
string bindings, rather than request them from the run-time system as described in step 4.
Servers may also avoid exporting binding information to a name service and endpoint map as
described in steps 5 and 6. In such a case, clients must then construct bindings from string
bindings obtained by some other means.

Having completed the required steps, the server has established a set of relationships that allows
the server run-time system to construct a complete binding, with routing to a specific server
operation, for a call that contains the following information:

« full or partial binding information
- an interface identifier
« an object UUID, which may be nil
+ an operation number.

The algorithms used are described in some detail in Section 2.4.5 on page 30. That discussion
will show how the relationships established make possible a large number of paths to the
interface and manager that are ultimately selected.

Note that the server run-time enironment itself maintains only a very limited set of
relationships: interface identifier/type UUID/manager EPV and object UUIDs/type UUIDs. It is
especially worth noting that the run-time system maintains no relationships between the
protocol-address bindings it has created and any of the other information. The server merely
advertises the relationships it want