
CAE Specification

DCE 1.1: Directory Services

The Open Group

 August 1997, The Open Group

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

This document and the software to which it relates are derived in part from materials which are copyright
 1990, 1991 Digital Equipment Corporation and copyright 1990, 1991 Hewlett-Packard Company.

CAE Specification

DCE 1.1: Directory Services

Document Number: C705

Published by The Open Group

Any comments relating to the material contained in this document may be submitted to The
Open Group at:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii CAE Specification (1997)

Contents

Part 1 Introduction... 1

Chapter 1 Information Model .. 3
 1.1 Names and Identifiers .. 4
 1.2 Name Spaces .. 6
 1.2.1 Global Name Space.. 7
 1.2.2 Cell Name Space... 7
 1.2.3 Other Composite Name Spaces .. 10
 1.3 Name Syntax .. 11
 1.3.1 DCE Name Syntax ... 11
 1.3.2 DCE Composite Names .. 13
 1.3.3 Global Name Space Name Syntax.. 15
 1.3.4 Cell Name Space Name Syntax... 17
 1.4 Conformance Requirements ... 18

Chapter 2 Inter-cell Operation... 19
 2.1 Global Directory System Organization .. 20
 2.2 Global Directory Agent.. 21
 2.2.1 Hierarchical Cells ... 22
 2.3 Cell Registration in Global Name Space .. 23
 2.3.1 Cell Registration in X.500 ... 23
 2.3.2 Cell Registration in DNS... 24

Part 2 Application Programming Interfaces.. 25

Chapter 3 X/Open Directory Service API (XDS)... 27
 3.1 XDS Conformance... 28
 3.2 XDS Functions.. 29
 3.2.1 ds_abandon() .. 30
 3.2.2 ds_add_entry() ... 30
 3.2.3 ds_bind().. 31
 3.2.4 ds_compare() .. 31
 3.2.5 ds_initialize() .. 31
 3.2.6 ds_list()... 31
 3.2.7 ds_modify_entry() ... 31
 3.2.8 ds_modify_rdn() .. 32
 3.2.9 ds_read() .. 32
 3.2.10 ds_receive_result() .. 32
 3.2.11 ds_remove_entry() .. 32
 3.2.12 ds_search() .. 32
 3.2.13 ds_shutdown() ... 32

DCE 1.1: Directory Services iii

Contents

 3.2.14 ds_unbind()... 32
 3.2.15 ds_version() .. 32
 3.3 XDS Function Call Results... 33
 3.3.1 invoke_id_return Parameter .. 33
 3.4 Synchronous Operations ... 34
 3.5 Security and XDS... 34
 3.6 Automatic Connection Management.. 34
 3.7 Global Directory Service Package.. 35
 3.7.1 GDSP Attribute Types ... 35
 3.7.2 GDSP Object Classes ... 38
 3.7.3 GDS OM Class Hierarchy... 38

Chapter 4 X/Open OSI Abstract Data Manipulation (XOM)........................ 45
 4.1 XOM Conformance ... 45
 4.2 XOM Functions .. 46
 4.2.1 om_copy() ... 46
 4.2.2 om_copy_value() ... 46
 4.2.3 om_create() ... 46
 4.2.4 om_delete() ... 46
 4.2.5 om_get()... 47
 4.2.6 om_instance() ... 47
 4.2.7 om_put() .. 47
 4.2.8 om_read() .. 47
 4.2.9 om_remove() .. 48
 4.2.10 om_write()... 48

Chapter 5 XDS/XOM Convenience Functions... 49
 5.1 String Handling ... 49
 5.2 Convenience Functions .. 49
 5.2.1 dsX_extract_attr_values() .. 50
 5.2.2 omX_extract() ... 50
 5.2.3 omX_fill()... 50
 5.2.4 omX_fill_oid()... 50
 5.2.5 omX_object_to_string() .. 50
 5.2.6 omX_string_to_object() .. 50

Chapter 6 Name Service Independent Interface (NSI) 51
 6.1 Interface Functions.. 52

Part 3 Global Directory Service... 55

Chapter 7 X.500 Services and Protocols.. 57

Chapter 8 Conformance Statement for GDS... 59
 8.1 Notations and Abbreviations ... 60
 8.2 Directory Protocol Implementation Conformance .. 61
 8.2.1 Support of Attribute Syntaxes, Attribute Types and Object Classes 62
 8.2.2 DAP Protocol Implementation Conformance .. 67

iv CAE Specification (1997)

Contents

 8.2.3 DSP Protocol Implementation Conformance ... 75
 8.2.4 ACSE Protocol Implementation Conformance .. 75
 8.2.5 ROSE Protocol Implementation Conformance .. 77
 8.2.6 Presentation Service Elements Protocol Implementation Conformance.........79
 8.2.7 Session Service Elements Protocol Implementation Conformance......... 81

Part 4 Cell Directory Service.. 85

Chapter 9 CDS Service Definition... 87
 9.1 Name Syntax .. 87
 9.1.1 Filters for Enumerate Operations ... 87
 9.2 Functional Model... 88
 9.2.1 CDS Client and Clerk .. 89
 9.2.2 CDS Server... 89
 9.2.3 Global Directory Agent... 90
 9.2.4 Requirements on Components Specified Elsewhere.................................. 91
 9.2.5 Facilities and Features Excluded from the CDS Architecture................... 92
 9.2.6 Access Control and Protection Model ... 93
 9.3 Architected Default Attributes ... 96
 9.3.1 CDS_CTS Attribute.. 98
 9.3.2 CDS_UTS Attribute.. 98
 9.3.3 CDS_Class Attribute.. 98
 9.3.4 CDS_ClassVersion Attribute.. 98
 9.3.5 CDS_ObjectUUID Attribute... 98
 9.3.6 CDS_Replicas Attribute .. 99
 9.3.7 CDS_AllUpTo Attribute.. 99
 9.3.8 CDS_Convergence Attribute ... 99
 9.3.9 CDS_InCHName Attribute.. 99
 9.3.10 CDS_ParentPointer Attribute .. 99
 9.3.11 CDS_DirectoryVersion Attribute .. 100
 9.3.12 CDS_UpgradeTo Attribute... 100
 9.3.13 CDS_LinkTarget Attribute.. 101
 9.3.14 CDS_LinkTimeout Attribute.. 101
 9.3.15 CDS_Towers Attribute .. 101
 9.3.16 CDS_CHName Attribute.. 101
 9.3.17 CDS_CHLastAddress Attribute.. 102
 9.3.18 CDS_CHState Attribute.. 102
 9.3.19 CDS_CHDirectories Attribute... 102
 9.3.20 CDS_ReplicaState Attribute... 102
 9.3.21 CDS_ReplicaType Attribute... 103
 9.3.22 CDS_LastSkulk Attribute ... 103
 9.3.23 CDS_LastUpdate Attribute .. 103
 9.3.24 CDS_RingPointer Attribute.. 103
 9.3.25 CDS_Epoch Attribute.. 103
 9.3.26 CDS_ReplicaVersion Attribute .. 103
 9.3.27 CDS_NSCellname Attribute .. 103
 9.3.28 CDS_GDAPointers Attribute... 104
 9.3.29 CDS_CellAliases Attribute... 104

DCE 1.1: Directory Services v

Contents

 9.3.30 CDS_ParentCellPointers Attribute ... 104
 9.3.31 RPC_ClassVersion Attribute.. 104
 9.3.32 RPC_ObjectUUIDs Attribute... 104
 9.3.33 RPC_Group Attribute.. 104
 9.3.34 RPC_Profile Attribute.. 105
 9.3.35 RPC_Codesets Attribute... 105
 9.3.36 SEC_RepUUID Attribute.. 105
 9.4 Abstract Definitions of CDS Service Primitives.. 106
 9.4.1 Service Primitives for Manipulating Attributes... 106
 9.4.2 Service Primitives for Manipulating Object Entries.................................... 107
 9.4.3 Service Primitives for Manipulating Directory Entries.............................. 108
 9.4.4 Service Primitives for Manipulating Soft Links... 109
 9.4.5 Service Primitives for Advertisement and Solicitation 111

Chapter 10 CDS Protocol Definition .. 113
 10.1 Clerk Operation ... 114
 10.1.1 Solicitation and Clearinghouse Selection.. 114
 10.1.2 Referral Handling (Progress Record) ... 115
 10.1.3 Tree Walk Algorithm ... 117
 10.1.4 Loop Detection.. 117
 10.2 Server Operation ... 118
 10.2.1 Clearinghouse... 118
 10.2.2 Transaction Agent .. 118

Chapter 11 CDS Protocol Encodings.. 123
 11.1 Architected Limits... 123
 11.2 Encoding of Names... 124
 11.2.1 Opaque Names ... 124
 11.2.2 Single Name Components.. 125
 11.2.3 Full Names... 125
 11.3 Encoding of Time .. 127
 11.3.1 CDS Timestamps .. 127
 11.3.2 Timeout Structure .. 127
 11.4 Encoding for Operations on Attributes .. 128
 11.4.1 Atomic Attribute Values ... 128
 11.4.2 Members of Set-Valued Attributes ... 129
 11.4.3 Single and Set-Valued Attributes .. 129
 11.4.4 Values for Read Operations ... 130
 11.4.5 Values for Modify Operations ... 130
 11.5 Encoding of Progress Record.. 131
 11.6 Encoding of Replica Pointer.. 132
 11.7 Miscellaneous Data Types and Constants ... 133
 11.7.1 Boolean Values.. 133
 11.7.2 Entry Type.. 133
 11.7.3 Clearinghouse List ... 133
 11.7.4 Clearinghouse State ... 134
 11.7.5 Version Number ... 134
 11.7.6 Principal and Group Identities .. 134

vi CAE Specification (1997)

Contents

 11.7.7 Foreign Identities.. 134
 11.7.8 Error Status Returns... 135

Chapter 12 IDL Notation of CDS Operations... 137
 12.1 cds_Advertise() ... 138
 12.2 cds_CreateChild()... 139
 12.3 cds_CreateDirectory().. 141
 12.4 cds_CreateObject() ... 142
 12.5 cds_CreateSoftLink() ... 144
 12.6 cds_DeleteChild() ... 146
 12.7 cds_DeleteDirectory() .. 147
 12.8 cds_DeleteObject().. 148
 12.9 cds_DeleteSoftLink().. 149
 12.10 cds_EnumerateAttributes() .. 150
 12.11 cds_EnumerateChildren()... 152
 12.12 cds_EnumerateObjects() ... 154
 12.13 cds_EnumerateSoftLinks().. 156
 12.14 cds_ModifyAttribute()... 158
 12.15 cds_ReadAttribute()... 161
 12.16 cds_ResolveName() ... 163
 12.17 cds_Solicit().. 164
 12.18 cds_SolicitServer() .. 165
 12.19 cds_TestAttribute()... 166

Part 5 Appendices .. 169

Appendix A Valid Characters and Naming Rules... 171
 A.1 Valid Characters for GDS Naming Attributes... 173
 A.2 Country Syntax .. 173
 A.3 T.61 Syntax .. 177
 A.4 ISO 8859-1 (Latin-1) Syntax... 178
 A.4.1 Invalid Conversions from T.61 to ISO 8859-1 Syntax 178
 A.4.2 Invalid Conversions from ISO 8859-1 to T.61 Syntax 179
 A.5 Metacharacters... 180
 A.6 Additional Rules.. 181
 A.7 Maximum Name and Attribute Sizes ... 183

Appendix B Object Identifiers for CDS Attributes.. 185
 B.1 Origin of Object Identifiers.. 185
 B.2 CDS Attributes Table.. 186

Appendix C CDS Status and Error Codes .. 187

Appendix D CDS IDL Definitions.. 191
 D.1 cds_clerkserver.idl .. 192
 D.2 cds_solicit.idl.. 197
 D.3 cds_types.idl... 198
 D.4 id_base.idl... 203

DCE 1.1: Directory Services vii

Contents

Appendix E GDS Structure Rule Table... 205

Appendix F GDS Object Class Table... 207

Appendix G GDS Attribute Table... 209

Appendix H XDS/XOM Header Files ... 213
 H.1 <xdsgds.h>.. 214
 H.2 <xdscds.h>.. 217
 H.3 <xdsext.h>... 218
 H.4 <xomext.h>... 219

 Index... 221

List of Figures

1-1 DCE Name Spaces ... 6
2-1 Directory System Organization .. 20
9-1 CDS Functional Modules ... 88
A-1 Valid Characters in CDS, GDS and DNS Names 172

List of Tables

2-1 CDS-Cell Attribute format ... 23
2-2 CDS-Replica Attribute format ... 23
3-1 XDS Interface Functions ... 30
3-2 Object Identifiers for GDSP Attribute Types.. 36
3-3 Values for GDSP Attribute Types ... 36
3-4 Object Identifier for GDSP Object Classes .. 38
3-5 OM Attributes of DSX_C_GDS_ACL .. 38
3-6 OM Attributes of DSX_C_GDS_ACL_ITEM.. 39
3-7 OM Attributes of DSX_C_GDS_CONTEXT ... 40
3-8 Default DSX_C_GDS_CONTEXT... 42
3-9 OM Attributes of DSX_C_GDS_SESSION.. 43
3-10 Default DSX_C_GDS_SESSION.. 44
4-1 XOM Interface Functions.. 46
5-1 Convenience Functions... 49
6-1 NSI Binding Operations.. 52
6-2 NSI Entry Operations .. 52
6-3 NSI Group Operations .. 53
6-4 NSI Management Operations .. 53
6-5 NSI Profile Operations .. 54
8-1 X.520 Attribute Syntaxes .. 62
8-2 X.402 Attribute Syntaxes .. 62
8-3 Private Attribute Syntaxes ... 63
8-4 X.520 Attribute Types.. 63
8-5 X.402 Attribute Types.. 65
8-6 Private Attribute Types... 65

viii CAE Specification (1997)

Contents

8-7 X.521 Object Classes .. 66
8-8 X.402 Object Classes .. 66
8-9 Other Implemented Object Classes .. 66
8-10 Global Statement of Conformance for DAP... 67
8-11 Various Extra Requirements .. 67
8-12 Requirements for Signing... 68
8-13 Requirements on DirectoryBind ... 68
8-14 Requirements on DirectoryUnbind .. 69
8-15 Requirements on the Read Operation... 69
8-16 Requirements on the Compare Operation.. 69
8-17 Requirements on the Abandon Operation.. 70
8-18 Requirements on the List Operation .. 70
8-19 Requirements on the Search Operation.. 71
8-20 Requirements on the AddEntry Operation.. 71
8-21 Requirements on the RemoveEntry Operation.. 72
8-22 Requirements on the ModifyEntry Operation... 72
8-23 Requirements on the ModifyRDN Operation ... 72
8-24 Requirements on Elements in Common Arguments.................................. 73
8-25 Requirements on Elements in Common-Results... 73
8-26 Requirements on Errors and Parameters .. 74
8-27 Requirements for Supported Functions .. 75
8-28 Requirements for Normal Mode APDUs.. 75
8-29 Requirements for Normal Mode Parameters ... 76
8-30 Requirements for Association and Operation Class................................... 77
8-31 Requirements for Supported APDUs... 77
8-32 Requirements for Supported Parameters.. 78
8-33 Requirements for Supported Protocol Mechanisms................................... 79
8-34 Requirements for Supported Functional Units.. 79
8-35 Requirements for PPDUs (Kernel Function Unit) 79
8-36 Requirements for PPDU-Parameters (Kernel Function Unit)................... 80
8-37 Requirements for Supported Functional Units.. 81
8-38 Requirements for Supported Protocol Mechanisms................................... 81
8-39 Requirements for SPDUs (Kernel Function Unit).. 82
8-40 Requirements for SPDU Parameters (Kernel Function Unit).................... 82
9-1 Operational Attribute Summary... 97
9-2 Timeout Values Evaluation.. 101
12-1 Modify Operations... 159
A-1 Country Syntax... 173
A-2 Combinations of Diacritical Characters and Basic Letters 177
A-3 ISO 8859-1 (Latin-1) Code Set.. 178
A-4 Invalid ISO 8859-1 Combinations of Diacritical Characters and Letters.........179
A-5 Metacharacters and Their Meaning.. 180
A-6 Summary of CDS, GDS and DNS Characteristics 181
A-7 Maximum Sizes of Directory Service Names... 183
C-1 CDS Status Messages .. 187
E-1 SRT Entries for a DSA ... 205
E-2 SRT Entries for GDS... 205
F-1 OCT Entries ... 207

DCE 1.1: Directory Services ix

Contents

G-1 AT Entries... 209
G-2 Syntax ... 211
G-3 Phonetic Flags ... 212
G-4 Access Classes... 212
G-5 Maximum Number of Values .. 212

x CAE Specification (1997)

Preface

The Open Group

The Open Group is the leading vendor-neutral, international consortium for buyers and
suppliers of technology. Its mission is to cause the development of a viable global information
infrastructure that is ubiquitous, trusted, reliable, and as easy-to-use as the telephone. The
essential functionality embedded in this infrastructure is what we term the IT DialTone. The
Open Group creates an environment where all elements involved in technology development
can cooperate to deliver less costly and more flexible IT solutions.

Formed in 1996 by the merger of the X/Open Company Ltd. (founded in 1984) and the Open
Software Foundation (founded in 1988), The Open Group is supported by most of the world’s
largest user organizations, information systems vendors, and software suppliers. By combining
the strengths of open systems specifications and a proven branding scheme with collaborative
technology development and advanced research, The Open Group is well positioned to meet its
new mission, as well as to assist user organizations, vendors, and suppliers in the development
and implementation of products supporting the adoption and proliferation of systems which
conform to standard specifications.

With more than 200 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• consolidating, prioritizing, and communicating customer requirements to vendors

• conducting research and development with industry, academia, and government agencies to
deliver innovation and economy through projects associated with its Research Institute

• managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• adopting, integrating, and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• licensing and promoting the Open Brand, represented by the ‘‘X’’ mark, that designates
vendor products which conform to Open Group Product Standards

• promoting the benefits of the IT DialTone to customers, vendors, and the public.

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development, and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trademark on behalf of the industry.

DCE 1.1: Directory Services xi

Preface

The Development of Product Standards

This process includes the identification of requirements for open systems and, now, the IT
DialTone, development of CAE and Preliminary Specifications through an industry consensus
review and adoption procedure (in parallel with formal standards work), and the development
of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product. There are currently two forms of Product Standard, namely the
Profile Definition and the Component Definition, although these will eventually be merged into
one.

The ‘‘X’’ mark is used by vendors to demonstrate that their products conform to the relevant
Product Standard. By use of the Open Brand they guarantee, through the X/Open Trade Mark
Licence Agreement (TMLA), to maintain their products in conformance with the Product
Standard so that the product works, will continue to work, and that any problems will be fixed
by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical documentation, the main part of which is
focused on specification development and product documentation, but which also includes
Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry surveys,
and business titles.

There are several types of specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the stable specifications that
form the basis for our Product Standards, which are used to develop X/Open branded
systems. These specifications are intended to be used widely within the industry for product
development and procurement purposes.

Anyone developing products that implement a CAE Specification can enjoy the benefits of a
single, widely supported industry standard. Where appropriate, they can demonstrate
product compliance through the Open Brand. CAE Specifications are published as soon as
they are developed, so enabling vendors to proceed with development of conformant
products without delay.

• Preliminary Specifications

Preliminary Specifications usually address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations. They are
published for the purpose of validation through implementation of products. A Preliminary
Specification is not a draft specification; rather, it is as stable as can be achieved, through
applying The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organizations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a CAE Specification.
While the intent is to progress Preliminary Specifications to corresponding CAE
Specifications, the ability to do so depends on consensus among Open Group members.

xii CAE Specification (1997)

Preface

• Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif, and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as CAE Specifications, in which case the relevant Technology
Specification is superseded by a CAE Specification.

In addition, The Open Group publishes:

• Product Documentation

This includes product documentation—programmer’s guides, user manuals, and so on—
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides

These provide information that is useful in the evaluation, procurement, development, or
management of open systems, particularly those that relate to the CAE Specifications. The
Open Group Guides are advisory, not normative, and should not be referenced for purposes
of specifying or claiming conformance to a Product Standard.

• Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Program. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new developments
and associated international standards. To distinguish between revised specifications which are
fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/public/pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.opengroup.org/public/pubs.

DCE 1.1: Directory Services xiii

Preface

About This Document

This document is a CAE Specification (see above). It specifies the Directory Services in X/Open
DCE. It is a portability guide for application programs using Directory Services, and a
conformance specification for implementations.

Structure

This document is organised into five parts:

Part 1 is an introduction:

• Chapter 1 describes the information model.

• Chapter 2 describes inter-cell operation.

Part 2 defines the application programming interfaces:

• Chapter 3 describes changes to the X/Open Directory Service (XDS) interface.

• Chapter 4 describes changes to the X/Open OSI-Abstract-Data Manipulation (XOM)
interface.

• Chapter 5 describes the XDS/XOM convenience functions.

• Chapter 6 describes the Name Service Independent (NSI) interface.

Part 3 defines the Global Directory Service (GDS):

• Chapter 7 lists X.500 services and protocols.

• Chapter 8 is a conformance statement for GDS.

Part 4 defines the Cell Directory Service (CDS):

• Chapter 9 is the service definition.

• Chapter 10 provides the protocol definition.

• Chapter 11 specifes the encodings for the transaction protocol and the solicitation protocol.

• Chapter 12 presents the CDS operations in Interface Definition Language (IDL).

Part 5 contains the appendices:

• Appendix A defines valid characters and naming rules for DCE Directory Service names.

• Appendix B defines object identifiers for CDS attributes.

• Appendix C lists CDS status and error codes.

• Appendix D provides CDS IDL definitions.

• Appendix E contains the GDS structure rule table.

• Appendix F contains the GDS object class table.

• Appendix G contains the GDS attribute table.

• Appendix H contains the header files for the DCE extensions to XDS.

An index is provided.

xiv CAE Specification (1997)

Preface

Intended Audience

This document is written for application programmers who need to make use of directory
services, and implementation developers.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— variable names, for example, substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name().

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• The notation [EABCD] is used to identify an error value EABCD.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font.

• Variables within syntax statements are shown in italic fixed width font .

DCE 1.1: Directory Services xv

Trade Marks

X/Open is a registered trademark, and the ‘‘X’’ device is a trademark, of X/Open Company
Limited.

xvi CAE Specification (1997)

Referenced Documents

The following standards and external related documents are referenced in this specification:

ASN.1
ISO 8824: 1990, Information Technology — Open Systems Interconnection — Specification
of Abstract Syntax Notation One (ASN.1).

BER
ISO/IEC 8825: 1990 (ITU-T Recommendation X.209 (1988)), Information Technology —
Open Systems Interconnection — Specification of Basic Encoding Rules for Abstract Syntax
Notation One (ASN.1).

CCITT T.61
CCITT Recommendation T.61: 1984, Character Repertoire and Coded Character Sets for the
International Teletex Service, Geneva, 1980, amended at Malaga-Torremolinos, 1984.

ISO 3166
ISO 3166: 1988, Codes for the Representation of Names of Countries, Bilingual edition.

ISO 8326
ISO 8326: 1987, Information Processing Systems — Open Systems Interconnection — Basic
Connection-oriented Session Service Definition.

ISO 8327
ISO 8327: 1987, Information Processing Systems — Open Systems Interconnection — Basic
Connection-oriented Session Protocol Specification.

ISO 8327-2 CD
ISO CD 8327-2: 1990, Information Processing Systems — Open Systems Interconnection —
Basic Connection-oriented Session Protocol Specification — Part 2: Implementation
Conformance Statement (PICS) Proforma.

ISO 8649
ISO 8649: 1988, Information Processing Systems — Open Systems Interconnection — Service
Definition for the Association Control Service Element.

ISO 8650
ISO 8650: 1992, Information Processing Systems — Open Systems Interconnection —
Protocol Specification for the Association Control Service Element.

ISO/IEC 8650-2 DIS
ISO/IEC DIS 8650-2: 1990 Information Processing Systems — Open Systems
Interconnection — ACSE Protocol Implementation Conformance Statement (PICS)
Proforma.

ISO 8822
ISO 8822: 1988, Information Processing Systems — Open Systems Interconnection —
Connection-oriented Presentation Service Definition.

ISO 8823
ISO 8823: 1988, Information Processing Systems — Open Systems Interconnection —
Connection-oriented Presentation Protocol Specification.

DCE 1.1: Directory Services xvii

Referenced Documents

ISO/IEC 8823-2 DIS
ISO/IEC DIS 8823-2: 1990 Information Processing Systems — Open Systems
Interconnection — Basic Connection-oriented Presentation Protocol Implementation
Conformance Statement (PICS) Proforma.

ISO/IEC 9072
ISO/IEC 9072: 1989, Information Processing Systems — Text Communication — Remote
Operations — Parts 1 and 2

Part 1: Model, Notation and Service Definition
Part 2: Protocol Specification.

ISO/IEC 9594
ISO/IEC 9594: 1990, Information Technology — Open Systems Interconnection — The
Directory, Parts 1 to 8:

Part 1: Overview of Concepts, Models and Services (CCITT X.500)
Part 2: Models (CCITT X.501)
Part 3: Abstract Service Definition (CCITT X.511)
Part 4: Procedures for Distributed Operation (CCITT X.518)
Part 5: Protocol Specifications (CCITT X.519)
Part 6: Selected Attribute Types (CCITT X.520)
Part 7: Selected Object Classes (CCITT X.521)
Part 8: Authentication Framework (CCITT X.509)

ISO/IEC 10021-2
ISO/IEC 10021: 1990, Information Technology — Text Communications — Message-
oriented Text Interchange System — Part 2: Overall Architecture (CCITT X.402).

PUB 217
Directory Services PICS Proforma for DAP/DUA (OSTC/DS/DUA/PICS/V1.0) Open
Systems Testing Consortium, PUB 217.

PUB 218
Directory Services PICS Proforma for DAP/DSA (OSTC/DS/DSA/PICS/V1.0) Open
Systems Testing Consortium, PUB 218.

RFC 1033
M.Lottor, Domain administrators operations guide, 11/01/1987.

RFC 1034
P. Mockapetris, Domain names — concepts and facilities, 11/01/1987. (Obsoletes RFC
0973; updated by RFC 1101.)

RFC 1035
P. Mockapetris, Domain names — implementation and specification, 11/01/1987.
(Obsoletes RFC 0973; updated by RFC 1348.)

RFC 1101
P. Mockapetris, DNS encoding of network names and other types, 04/01/1989.
(UpdatesRFC 1034.)

RFC 1348
B. Manning, DNS NSAP RRs, 07/01/1992. (Updates RFC 1035).

CCITT X.249
CCITT, 1992, Data Communication Networks: Open Systems Interconnection (OSI), Series X
Recommendations (X.220 to X.290), Draft Recommendation X.249 — Remote Operations
Service Element: Protocol Implementation Conformance Statement (PICS) Proforma.

xviii CAE Specification (1997)

Referenced Documents

The following X/Open documents are referenced in this specification:

DCE DFS
Preliminary Specification, September 1996, DCE 1.1: Distributed File Service Specification,
(P409).

DCE RPC
CAE Specification, August 1994, X/Open DCE: Remote Procedure Call
(ISBN: 1-85912-041-5, C309).

This specification is now also ISO International Standard ISO/IEC 11578:1996, Information
technology — Open Systems Interconnection — Remote Procedure Call (RPC)

DCE Security
Preliminary Specification, April 1996, X/Open DCE: Authentication and Security Services
(ISBN: 1-85912-013-X, P315).

DCE Time
CAE Specification, January 1994, X/Open DCE: Time Services (ISBN: 1-85912-067-9, C310).

X.400, Issue 3
Also known as XMHS Issue 3: CAE Specification, May 1996, API to Electronic Mail (X.400),
Issue 3 (ISBN: 1-85912-185-3, C609).

XDS, Issue 3
CAE Specification, May 1996, API to Directory Services (XDS), Issue 3 (ISBN: 1-85912-180-2,
C608).

XOM, Issue 3
CAE Specification, May 1996, OSI-Abstract-Data Manipulation API (XOM), Issue 3
(ISBN: 1-85912-175-6, C607).

DCE 1.1: Directory Services xix

Referenced Documents

xx CAE Specification (1997)

CAE Specification

Part 1

Introduction

The Open Group

Part 1 Introduction 1

2 CAE Specification (1997)

Chapter 1

Information Model

The directory is a collection of information about a set of objects. Objects are referenced in entries
of the directory service. Entries that are structured recursively in the system are called directories.
Information in directory service entries can be used for purposes such as describing resources,
location of the referenced resources, and for discovery of operations on objects.

While it is conceivable that a directory service may be built on a general purpose database, the
directory service is not conceptually such a database. The distinct characteristics of the directory
service information model are best described by the following assumptions:

• The underlying organisational structure is hierarchical.

• Queries are the dominant operations, resulting in a high ratio of look-up operations in
comparison to update operations.

• Due to the relatively slow rate of changes, instantaneous reflection of updates is usually not
required (that is, the state of transient conditions may be acceptable).

This document, which is the specification of the directory service information model, assumes
the existence of the above generic characteristics. However, the specification may be applied to
a wide variety of services, ranging from general purpose directory services to very specialised
resource managers. Information storage in logical databases is common to all of these, but this
specification does not specify the properties (such as insertion and retrieval speed, partitioning,
replication) of these information bases. The definition of these properties is subject to service-
specific specifications.

Directory entries contain attributes. Attributes are discrete items of separately accessible
information associated with a directory object. Each attribute is determined by its type, and its
value (or set of values) represents an instance of this class of information. Depending on the
specific semantics of directory services, the representation and richness of attributes varies.

The directory service specifications define the possible operations on directory entries. However,
the most rudimentary common operations, supported by every directory service, are read,
modify, create and delete (on entries and attributes).

Part 1 Introduction 3

Names and Identifiers Information Model

1.1 Names and Identifiers
A name is a string of characters that refers to an object. Directory entities are identified by names.
A name resolves a directory entry unambiguously, but does not provide for uniqueness. Multiple
names can reference the same entry, and names can be aliases or soft links. An alias expresses an
alternative name of an object, representing a possibly different hierarchical relationship.

An atomic name represents the distinguished value of a particular entry. The ingredients of an
atomic name are determined by the directory service’s rules and semantics. An atomic name can
be:

Untyped
An unambiguous string of characters determined only by its entry’s position in the
organisational structure; for example, its hierarchy level

Typed
A set of designated attribute type-value pairs, represented by multiple attribute-value-
assertions, or AVAs

A relative distinguished name is a typed atomic name describing the distinguished value of an
object entry. The relative distinguished name of an object entry is unique (in its context, relative
to its parent’s name) and must not express an alias.

A sequence of one or more atomic names that represent entries in a particular name service is a
compound name. The rules for the composition of compound names are determined by the name
service’s name syntax. A POSIX pathname, for instance, is a compound name that describes an
entry in the file system.

The rules and conventions for the DCE-defined compound names are specified in Section 1.3 on
page 11 of this document. The compound names specified there are global compound name and
cell compound name.

A compound name consists of distinguished components that are equivalent to atomic names in
the global name space (for X.500) and the cell name spaces. Internet DNS names in the global
name space consist of exactly one component that is equivalent to the compound name, where a
component is a set of . (dot) separated atomic DNS names. The contents and parsing rules for a
component are defined by the semantics of the name space of which the component is a
member.

Components may represent a single physical directory or a leaf object; they may be typed or
untyped; or they may represent complex structures such as attribute-based schemes. The present
document only specifies syntax and semantic rules for components in the global and cell name
spaces, as outlined in Section 1.3 on page 11. The semantics and syntax rules for other
composite name spaces is outlined in the corresponding documents (see Section 1.2.3 on page 10
for specific references).

A composite name consists of one (non-empty) or multiple consecutive compound names. A
composite name may thus represent multiple name services, with possibly distinct syntactic and
semantic rules. Composite names adhere to the conventions outlined in Section 1.3 on page 11.

Entities in the name system are identified by their name context. A name context has an
associated name convention, expressed by the semantic and syntax rules of the controlling name
service. The scope of a composite name is defined by its initial name context. This document
defines the following three initial contexts:

Global context
The single global root of the DCE directory information system.

4 CAE Specification (1997)

Information Model Names and Identifiers

Cell context
The context of the root of the local cell (refer to DCE Cell on page 9 for the definition of
cell).

File context
The root of the distributed file system within the local cell.

An atomic name is unambiguous only within a given name context (relative to its immediate
superior, the parent directory entry). However, a fully-qualified global name characterises an entry
unambiguously within the global context. A fully-qualified global name consists of an ordered
set of compound names, beginning from the global root.

The distinguished name of a directory service entry is a fully-qualified global name, uniquely
identifying the object (no aliases).

The uniqueness of a given directory entry may also be expressed by an identifier. Identifiers are
unique in a given context. Contexts are determined by the directory service and the type of
identifier used. This document specifies two types of identifiers: the OSI Object Identifier (OID),
and the Universal Unique Identifier (UUID).

OIDs (object identifier) are obtained from a hierarchy of allocation authorities, the highest being
the International Organisation for Standardization (ISO) and the International Telegraph and
Telephone Consultative Committee (CCITT). The printable format of object identifiers is a string
of . (dot) separated digits (see also the ASN.1 standard).

The UUID (universal unique identifier) is a fixed size identifier which is guaranteed to be unique
across both space and time. A further specification of the UUID can be found in the DCE Remote
Procedure Call specification.

Part 1 Introduction 5

Name Spaces Information Model

1.2 Name Spaces
A name space is an organisational model that describes the syntactic and semantic rules within a
particular domain. The concrete operations allowed within a name space are provided by one or
multiple associated name services that control the name space. Name spaces are hierarchically
ordered, and name space boundaries are crossed through next naming system pointers (see Next
Naming System Pointers on page 8).

Note: The notion of name spaces is derived from the conceptual model commonly known
as federated naming. Federated naming prescribes a system of heterogeneous naming
technologies that are interworking through bilateral cooperation.

The DCE directory information model consists of a set of composite name spaces. Composite
name spaces are linked together in a hierarchical order. This document specifies two types of
composite name spaces: the global name space and the cell name space (see Figure 1-1).

 name space

cell

global name space

cell name space

name space
other

composite

 name space

file service

 name space
security

Figure 1-1 DCE Name Spaces

The global name space is at the top of the hierarchical arrangement of name spaces. The global
name space, and therefore implicitly the entire DCE directory information system, is determined
by the global context, expressed by the global root.

Particular entries within the global name space identify cell name spaces; these cell name spaces
are subordinates of the global name space. Cell name spaces can also be subordinate to other cell
name spaces in a configuration called a cell hierarchy. The top-level cell in a cell hierarchy, the
parent cell, is always catalogued in the global name space. The name spaces of the child cells are
subordinates of the name space of the parent cell.

Cell name spaces, then, are either subordinates of the global name space or of other cell name
spaces. The root and attributes of the top-level cell name space are catalogued in the global name
space. The root and attributes of child cells are catalogued in the parent cell name space. Either
parent cell name spaces or child cell name spaces can be superordinates for other composite
name spaces (see Section 1.2.3 on page 10).

6 CAE Specification (1997)

Information Model Name Spaces

The entities in both the global and the cell name spaces are hierarchically structured, and
together comprise an inverse tree of nodes. These name spaces represent an acyclic directed
graph: each entity has exactly one parent at any moment, and no entity is a descendent of its
own descendents. This architecture does not impose the structural rules applied to other
composite name spaces.

1.2.1 Global Name Space

The global name space, which is the top-level name space of the DCE directory information
model, provides for a universally unique root and contains cell name spaces as subordinates.
The global name space, as specified here, is represented by two directory services:

• the international standard Directory Service CCITT X.500 or the ISO 9594 standard

• the Internet Domain Name Service (DNS) (see Internet RFC 1101, RFC 1035, RFC 1034 and
related documents).

The syntax and semantics of the global name space are in accordance with the standard
specifications of these directory services. The conformance requirements are specified in this
document.

1.2.2 Cell Name Space

The cell name space consists of hierarchically organised directory service entries of untyped
atomic names. Entries are unambiguously identified by their name and position within the
hierarchy, and are (optionally) uniquely identified by a UUID. The cell name space rules do not
enforce any particular model for organising the entries in the name space.

The cell name space defines three different types of entries1:

Directory
Directory entries represent nodes in the name space tree which contain arbitrarily many
references to subordinate entries (objects, soft links, and pointers to other directories).

References to descendent directories of a particular directory entry are called child pointers.
Child pointers link directories together into a rooted tree, in which there is a single path
from the root directory through a set of child directories, to the desired named object. Child
pointers are created internally by the directory service.

Directories can be empty, not containing any references to subordinate entries.

Every directory entry has exactly one ancestor directory. With one exception, every
directory uses a parent pointer to reference its ancestor. The top-level directory entry of the
top-level cell is the exception; in that case, the directory entry uses a global pointer to
reference the global name space.

Directory entries do not have parent pointers to soft link entries (the directory name to
which a parent pointer refers is a fully-qualified global name).

To prevent cycles in the tree structure of the cell name space, a directory must not be a child
of any of its descendents.

1. Note that the meanings of the terms directory and object, as used in this document, vary with the context in which they are used.
In the context of a cell name space, the terms refer to particular entries within that name space; in the context of the global name
space, a directory represents a set of entities.

Part 1 Introduction 7

Name Spaces Information Model

Object
Object entries represent terminal or leaf nodes in the cell name space.

Note: These leaf entries usually do not represent the target object of an operation itself
but the catalogued name of an object. These entries may control object references
and other information on behalf of the target object. DCE uses these object
entries for registering the binding information (object references) of servers and
subordinate name spaces.

Soft link
A soft link entry is a form of alias or indirect pointer that provides an alternate name for
either an object, directory, or another soft link entry. Soft links thus allow a single entry to
be reached via more than one name.

The contents of every cell name space entry consist of a set of attributes and their associated
values.

Attributes are of two types:

single-valued
A single-valued attribute can have only one value at a time.

set-valued
A set-valued attribute can have more than one value at a time. Its contents consist of a set of
unordered values, called members. These values must be distinguishable; hence, set-valued
attributes cannot have duplicated members.

From the point of view of usage, attributes can generally be divided into two categories:

operational
Operational attributes are those which are predefined by the Cell Directory Service (CDS).

application-specific
Application-specific attributes are those attributes which can be freely attached to object
and directory entries by applications or users, assuming that they have the appropriate
access privileges. (Note that soft link entries are excluded from this category.)

The set of these categories of attributes, and their applicability to distinct entries (directory,
object, soft link), is service and implementation-specific.

An attribute is identified by an attribute identifier (sometimes referred to as attribute name), which
distinguishes it from other attributes. An attribute of a given name can have only one attribute
value syntax (data type); it is not possible for a single-valued attribute and a set-valued attribute
to have the same name at the same time. Every attribute name has an OID (Object Identifier)
associated with it to ensure uniqueness among attributes.

Next Naming System Pointers

Name spaces are linked by next naming system pointers. Next naming system pointers
accomplish the concept of obtaining the "next name space" reference.

The protocols used to resolve the next name space reference pointers are not specified in this
document (though it is anticipated that such protocols will be supported in the future).

The canonical string representation of DCE names does not make a syntactical distinction
between atomic name and compound name separators for the cell name space (both use /
(slash) as the separator; see Section 1.3 on page 11). The boundaries between cell and
subordinate name spaces can only be determined by resolution. Therefore, an (untyped) name of
a cell name space entry may collide with a top-level name of a subordinate name space.

8 CAE Specification (1997)

Information Model Name Spaces

To avoid these ambiguities in a composite name, it is recommended that next naming system
pointers always be object (leaf) entries in the cell name space, which explicitly associates a name
to the name space pointer. These explicit next naming system pointers are called junctions. This
specification only supports junctions in the cell name space.

Note: This restriction does not apply to cell registration in the global name space, which
can be catalogued in any node within the global name space (global name spaces
controlled by DNS have distinct atomic name separators and those controlled by
GDS contain typed names). This permits the use of the same name for both a pointer
to another name space and to maintain other descendants within the same name
space. These implicit next naming system pointers can only point to a single
subordinate name space.

As defined in Section 1.3.2 on page 13, a composite name may consist of multiple compound
names — the global compound name, the cell compound name, and a residual that identifies
entities in subordinate composite name spaces. Each of these is a set of one or more name
components, separated by a / (slash).

If the rightmost component of a name that resides in the cell name space is not the rightmost
component of that composite name, the resolved entry represents a junction. The content of the
residual compound names of the composite name is opaque to the cell name space directory
service.

Cell name space junctions to subordinate name spaces are catalogued (that is, have a name) in
the cell name space. Pointers to and information about the resource manager of a subordinate
composite name space are registered in application-specific attributes of the junction entry.

The junction entry represents both the entry in the cell name space and the object of the
subordinate name space that this junction is bound to. This bound object is usually the root of
that subordinate name space.

This document does not specify how the cell name space junction entry and the bound object
can both be unambiguously accessed. Applications may provide programming interfaces that
disambiguate the access to these entities that are referred to by the same name. The ACL Editor,
for instance, defines a flag in the sec_acl_bind() interface that allows applications to determine
the target of the operation (the ACL of the cell name space entry or the ACL of the protected
object of a server-supported name space) — see the DCE Security Services specification.

DCE Cell

A DCE cell is an administrative and security domain within the cell name space. Servers of the
Cell Directory Service (CDS) and security authorities are instantiated on a cell-wide basis.

A cell is typically a group of users, systems and resources that are centred around a common
purpose and which share common DCE services. A minimum cell configuration includes one
CDS, one Security Service and one Time Service.

Because cells are administrative units, organisational notations such as the shorthand for the cell
root, /.: (see Section 1.3.2 on page 13), are related to the cell and not the cell name space. This may
not be visible if a cell name space consists of exactly one cell, but if hierarchies of cells are
introduced within a cell name space, the cell root always refers to the root of the local cell.

The membership of a cell is determined on a per host basis. How a host obtains information
about its cell identity is implementation-specific; for example, the cell name may be stored in a
local (host-specific) configuration file. The local cell is the cell defining the environment of the
initial user’s login session.

Part 1 Introduction 9

Name Spaces Information Model

1.2.3 Other Composite Name Spaces

This document does not specify the particular semantics and syntax rules for composite name
spaces other than the global and the cell name space. However, the DCE Security Services
specification specifies the security name space, and the DCE File Services specification specifies
the file service name space (also called filespace). Both name spaces are subordinates of the cell
name space, and are integrated through junctions.

Within each cell, the actual names for these junctions are not determined by the architecture;
they are indirectly identified in the /.:/cell-profile profile entry as having the name associated
with the UUID of the junction. However, the recommended names are /.:/sec for the security
name space, and /.:/fs for the file service name space.

Other name service or resource manager implementations may be integrated into the DCE name
space, in accordance with the rules outlined in this specification.

10 CAE Specification (1997)

Information Model Name Syntax

1.3 Name Syntax
Names defined by this syntax consist of strings of characters (elements of a character set). The
minimal set of valid characters is defined in the Portable Character Set (PCS) for the DCE directory
information system. Figure A-1 on page 172 represents this portable character set and its
applicability to the name spaces.

The PCS for directory services defines the semantics of names, rather than the actual visual or
encoded characters. For example, it specifies that a character with the semantic of backslash (that
is, the \ character) must be supported, although in some fonts the backslash glyph may have
been replaced with another glyph. Note that a similarity in visual appearance between two
glyphs does not necessarily mean that they are in fact the same semantic character.

Characters are internally associated with an opaque encoding; that is, one or more numerical
values and bit patterns. Directory service specifications for GDS and CDS specify the internal
representation of names (see Parts 3 and 4, and associated appendices).

Neither varying character sets (for example, for native language support), other than the
portable character set, nor different visual presentations (such as input through a graphical user
interface) are specified in this document.

The syntax applied when interpreting a name is dependent on whether a component refers to an
entry in the global name space, the cell name space, or another composite name space. The
common characteristics of the syntax are specified as follows:

The characters / (slash) and \ (backslash) have special properties, and are called the
metacharacters of the syntax. Additional distinct metacharacters for both the global and the cell
name space are defined in respective sections of this document. Their special properties can be
cancelled by preceding them with a \ (backslash), an operation called escaping. The sequence of
characters consisting of a \ (backslash) followed by an ordinary character (that is, by a non-
metacharacter) is reserved, and may be specified in subsequent versions of the following syntax.

1.3.1 DCE Name Syntax

Backus-Naur Format (BNF) of DCE Name Syntax on page 12 defines the DCE name syntax. The
sections that follow the table explain how the syntax is applied to the different DCE name spaces
and services. References in the text to elements defined in the BNF are in the form: <element>.

The notations used are as follows:

::= Is defined to be.

| Alternatively.

<text> Non-terminal element.

" Literal expression.

* The preceding syntactic unit can appear 0 or more times.

+ The preceding syntactic unit can appear 1 or more times.

{} The enclosed syntactic units are grouped as a single syntactic unit (can be nested).

Part 1 Introduction 11

Name Syntax Information Model

Backus-Naur Format (BNF) of DCE Name Syntax

The DCE name syntax is as follows:

PCS ::= { Portable Character Set }
SimpleChar ::= { Subset of symbols from Portable Character Set,

intersection of characters supported by
GDS, DNS and CDS -
a to z, A to Z, 0 to 9, "-" }

AlphaChar :: = { a to z, A to Z }
NumChar :: = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

WildChar :: = ? | *
EscapeChar ::= \
ComponentSep ::= /
DotSep ::= .
Quote :: = " | ’

GlobalContext ::= <ComponentSep>+ "..."
CellContext ::= <ComponentSep>+ ".:"
FileContext ::= <ComponentSep>+ ":"

DNSChar ::= <SimpleChar>
DNSAtomicName ::= <DNSChar>+
DNSComponent ::= <DNSAtomicName> {<DotSep> <DNSAtomicName>}+
DNSCompoundName ::= <DNSComponent>

GDSAVASep ::= =
GDSMultiAVASep ::= ,
GDSChar ::= <SimpleChar> | <DotSep>

| " " | ‘ | (|) | + | : | ?
GDSAttrType ::= {<AlphaChar> {<AlphaChar> | <NumChar>}*}

| {<NumChar>+ {<DotSep> <NumChar>+}*}
GDSAttrValue ::= <GDSChar>+

| {<GDSChar>* <EscapeChar> <PCS> <GDSChar>*}+
| <Quote> <PCS>+ <Quote>

GDSAVA ::= <GDSAttrType> <GDSAVASep> <GDSAttrValue>
GDSAtomicName ::= <GDSAVA> {<GDSMultiAVASep> <GDSAVA>}*
GDSComponent ::= <GDSAtomicName>
GDSCompoundName ::= <GDSComponent> {<ComponentSep>+

<GDSComponent>}*

GlobalCompoundName ::= <DNSCompoundName> | <GDSCompoundName>
GlobalCompositeName ::= <GlobalContext> <ComponentSep>+

<GlobalCompoundName> | <GlobalContext>
<ComponentSep>*

CDSChar ::= <GDSChar> | <GDSMultiAVASep> | ! | # | $ | %
| & | ; | < | > | [|] | ˆ | _ | { | }
| "|" | ˜ | *

12 CAE Specification (1997)

Information Model Name Syntax

CDSAtomicName ::= {<CDSChar> | <GDSAVASep>}+
| {{<CDSChar> | <GDSAVASep>}* <EscapeChar> <PCS>

{<CDSChar> | <GDSAVASep>}*}+
| <Quote> <PCS>+ <Quote>

CDSFirstComponent ::= <CDSChar>+
| {<CDSChar>* <EscapeChar> <PCS> <CDSChar>*}+
| <Quote> <PCS>+ <Quote>

CDSComponent ::= <CDSAtomicName> | <CDSFirstComponent>
CDSCompoundName ::= <CDSFirstComponent>

{<ComponentSep>+ <CDSAtomicName>}*

CellCompositeName ::= <CellContext> <ComponentSep>+ <CDSCompoundName>

AtomicName ::= <SimpleChar>+
| {<SimpleChar>* <EscapeChar> <PCS>

<SimpleChar>*}+
| <Quote> <PCS>+ <Quote>

CompoundName ::= <AtomicName> {<ComponentSep>+ <AtomicName>}*

FullName ::= <GlobalCompositeName>
{<ComponentSep>+ <CDSCompoundName>}*
| <GlobalCompositeName>

<ComponentSep>+ <CDSCompoundName>
{<ComponentSep>+ <CompoundName>}*

CellRelativeName ::= <CDSCompoundName>
{<ComponentSep>+ <CompoundName>}*

FileName ::= <FileContext> <ComponentSep>+ <CompoundName>

1.3.2 DCE Composite Names

This section defines the policies that are applied to composite names in DCE.

A DCE composite name is structured as a left-to-right ordered set of compound names, and a
compound name is structured as a left-to-right ordered set of components. This ordering is
intended to correspond to the top-to-bottom (parent/child, superordinate/subordinate, more-
significant/less-significant, big-endian/little-endian) lineage of the named object.

The ordering of compound names is:

global compound name, followed by
a cell compound name, followed by
compound names of other composite name spaces (including names of child cells
within a hierarchical cell configuration).

These compound names represent entries in their associated name spaces.

Multiple compound names and components of compound names are separated by / (slash)
characters (BNF element <ComponentSep>).

Note: The name syntax permits empty component and compound names — multiple
consecutive occurrences of the component separator / (slash). A trailing component
separator implies a trailing empty component. These empty components, however,
will be eliminated during canonicalisation and not further processed (see
Canonicalisation of Names on page 14).

Part 1 Introduction 13

Name Syntax Information Model

Initial contexts are special cases of reserved component names. They are logical entities
describing the name context; they do not represent actual entries in the directory services. The
initial contexts are separated from the remainder of a composite name by a / (slash). The three
defined initial contexts are:

• Global context (BNF element <GlobalContext>)

• Cell context (BNF element <CellContext>)

• File context (BNF element <FileContext>).

A fully-qualified global name (BNF element <FullName>) is a DCE composite name with the
global root at the top (left). Hence, the fully-qualified global name is a single path in a
hierarchically structured rooted tree of name spaces. The name of the global root is represented
by the character string /.... Fully-qualified global names must begin with the substring /....

The name of the cell root is /.:. This is the shorthand form for the fully-qualified global name of
the local (or current) cell. If the cell is registered in global name space, /.: resolves into /.../{global
compound name}. If the cell is registered in a cell name space (that is, the cell is a child cell within
a cell hierarchy), then /.: resolves into /.../{global compound name}/{child cell name}, where {global
compound name} refers to the parent cell. The /.: cell context provides a syntactical convenience
for establishing a composite name, but does not change the name semantics, except that a given
cell compound name (BNF element <CDSCompoundName>):

• when applied to a different cell, may resolve into an object different from that registered in
the cell in which the name was meant to be applied

• when applied to a child cell within a cell hierarchy resolves to the cell root of the child cell,
not the cell root of the parent cell.

In names specified from the global root, the name for the cell root is always placed to the left of
the rest of the cell name, as a prefix to the composite name (BNF elements
<CellCompositeName> and <CellRelativeName>).

Similarly to the cell root, the file context is a shorthand form for the cell relative name of the local
distributed file service. The name of the file context is /:, which resolves to /.:/<string> (where the
recommended name for <string> is fs).

Canonicalisation of Names

The name syntax defines the rules for names that are to be presented to the name service
interfaces. Before a name is processed by a name service, and before any of the matching rules
specified in Section 1.3.3 on page 15 are applied, the name is converted to its most primitive,
canonical form. This process is called canonicalisation; its successful completion implies that the
name is syntactically correct, according to the syntax rules that are outlined below.

Canonicalisation is performed according to the following rules:

1. Multiple successive / (slash) characters are reduced to one slash; that is, empty
components are eliminated and will not be processed.

2. Similarly, trailing / (slash) characters are eliminated and will not be processed.

3. If a typed name component, representing an X.500 RDN (Relative Distinguished Name,
BNF element <GDSComponent>), is encountered:

— Multiple successive space characters are reduced to a single space, regardless of the
applicable case matching rules, unless the name is quoted.

14 CAE Specification (1997)

Information Model Name Syntax

— Leading space characters and spaces between an attribute type and an = (equal sign)
character are removed.

— If the matching rules for the attribute type specify the value to be case insensitive, all
alphabetic characters in the value string are converted to lower case.

— If the attribute type is determined to be in object identifier syntax:

— it is converted into an object identifier representation (that is, a . (dot) separated
string of digits; note that the mapping from tag string to object identifier is based on
Table G-1 on page 209).

— otherwise, and if the case matching rule for the attribute type is determined to be
case insensitive, the attribute type is converted to an all lower-case tag string.

4. If the name component represents an Internet DNS compound name (BNF element
<DNSCompoundName>), the component name string is converted entirely to lower case.

1.3.3 Global Name Space Name Syntax

The , (comma) and = (equal sign) characters are metacharacters in the global name space syntax.
As with the other valid metacharacter (that is, the / (slash) character), these may be escaped by a
preceding \ (backslash) character. Escaping the backslash character itself (that is, having
multiple contiguous occurrences of \) within the global compound name is reserved for future
use, and is not allowed by the current version of the specification.

The global name syntax specified in this document distinguishes between the two supported
global directory services, X.500 and DNS. An X.500 component in a fully-qualified global name is
precisely and immediately identified by the occurrence of at least one = (equal sign) character in
the first name component after the global root (/...); the equal sign indicates the presence of an
attribute-value-assertion (AVA) in a GDS compound name (BNF element
<GDSCompoundName>). (See below, X.500 Typed Names.)

If the first component of the global compound name (the descendent of the global root /...) is not
identified as an X.500 name (that is, it does not contain a = (equal sign)), and if it contains at least
one . (dot) character, it is considered to be a DNS name. Names that are not identified as being
either X.500 or DNS are not specified (BNF element <GlobalCompositeName>).
Implementations may reject these as unsupported.

X.500 Typed Names

An X.500 global compound name (BNF element <GDSCompoundName>) may consist of
arbitrarily many components. Every name component represents a relative distinguished name
(RDN) according to the X.500 rules.

A component (BNF element <GDSComponent>) consists of a set of arbitrarily many (but at least
one) subcomponents, each of which represents an attribute-value-assertion (AVA).
Subcomponents are separated by the , (comma) metacharacter. The ordering of subcomponents
is significant for applying the matching rules, but the rules for ordering subcomponents are
application determined. Subcomponents within a component need not be distinct.
Subcomponents cannot be empty. Multiple successive , (comma) characters are not allowed.
Similarly, components cannot end with a comma.

Every subcomponent (BNF element <GDSComponent>) must contain exactly one = (equal sign)
character. The substring preceding the = is called the type, and the substring following is called
the value. Types and values are non-empty character strings, containing no unescaped
metacharacters, and may be arbitrarily long. Since types and values cannot be empty, multiple
successive = (equal sign) characters are not allowed. Similarly, components cannot end with an

Part 1 Introduction 15

Name Syntax Information Model

equal sign. In other words, within a component, the number of unescaped equal signs matches
exactly the number of comma characters plus 1.

Attribute types (BNF element <GDSAttrType>) must begin with an alphabetic character, can
contain alphanumerics, and cannot contain spaces.2

Two global compound names which match each other according to the following rules are
interpreted to always name the same object3:

• Two global compound names match if and only if all their components match, in sequence
(left-to-right).

• Two components match if and only if they match as ordered sets of subcomponents. The
rules for ordering subcomponents are not relevant: two logically equivalent components that
refer to the same name service entry do not match if their subcomponents are provided in a
different order. Subcomponents may be identical, but they match if and only if their order of
occurrence matches.

• Subcomponents match if and only if their attribute types and their attribute values both
match.

• Attribute types are matched case insensitively, character by character.

• Attribute values can be matched case exactly or case insensitively, depending on the rule
defined for its type at the DSA (Directory Service Agent).

DNS Names

The global compound name in DNS consists of exactly one component, which follows the global
root prefix. The full DNS name, formed in accordance with its syntax rules (that is, consisting of
domains separated by . (dot) characters, in little-endian ordering, case insensitive, and so on), is
represented in this single component (BNF elements <DNSCompoundName> and
<GlobalCompoundName>, separated by a / (slash) character).

A global DNS name (BNF element <DNSComponent>) referencing a cell name space must
contain at least one . (dot) character (that is, must be more than one level deep), and may consist
of multiple domain names, each separated by a . (dot) character.

Two global compound names which match one another according to the following rule are
interpreted to always name the same object:

• Two global compound names are matched case insensitively, character by character.

2. An alternative method of specifying attribute types is by OSI Object Identifiers (a string of digit groups, separated by . (dot)
characters).

3. It is important to recognise that the matching rules specified here define an equivalence relation on the name space, which is
different from the notion of string equality of names (character-by-character equality). Also, note that these are matching rules for
the name syntax itself, not for the named object. In particular, two non-matching names may name the same object in a given
implementation.

16 CAE Specification (1997)

Information Model Name Syntax

1.3.4 Cell Name Space Name Syntax

The * (asterisk) and ? (question mark) characters are metacharacters (BNF element <WildChar>)
for the cell name space syntax. Any valid metacharacter may be escaped by preceding it with a \
(backslash) character.

A component consists of a character string representing the (untyped) atomic name of an entry.
The ordering of components (left-to-right) represents the hierarchy (top-to-bottom) of the cell
name space organisation (BNF elements <CDSComponent> and <CDSCompoundName>).

The * (asterisk) metacharacter acts as a wildcard character matching zero or more characters.
The ? (question mark) metacharacter acts as a wildcard character matching exactly one
character. Both * and ? are interpreted as metacharacters only when they occur in the rightmost
component of a composite name. The CDS specification determines how operations interpret
these wildcard metacharacters. For example, a look-up operation may return only the first
matching entry or may return all matching entries; modify operations may reject the request;
and so on (see Section 9.1.1 on page 87).

The first component (BNF element <CDSFirstComponent>) in the cell compound name must
not contain the = (equal sign) character, unless it is escaped by a preceding \ (backslash)
metacharacter.

Two cell compound names which match one another according to the following rules are
interpreted to always name the same object:

• The global compound names match (if the cell context /.:) is used, it must resolve to the same
cell name space).

• Two cell compound names are matched case exactly, character by character (wildcard
matching is implementation-specific).

Hierarchical Cell Names

Within a cell hierarchy, the fully-qualified global name of a child cell consists of the fully-
qualified global name of the parent cell with the CDS name of the child cell appended to it.

In all cases, the cell context (/.:) resolves to the fully-qualified global name of the current cell,
whether that cell is a parent cell (registered in the global name space) or a child cell (registered in
the cell name space of the parent cell). Thus, when resolved from within a child cell, the cell
context (/.:) refers to the root of the child not to the root of the parent.

Cell Aliases

A cell can be known by (and answer to) different names, but only one can be designated as the
primary cell name. This is what the cell context (/.:) will translate to within a given cell, and is the
name that DCE services return. Alternate cell names, called cell aliases, allow cells to be
registered in more than one global namespace, and provide the means by which a cell’s name
can be changed.

Part 1 Introduction 17

Conformance Requirements Information Model

1.4 Conformance Requirements
To conform to this document, implementations must meet the following requirements:

• Implementations must conform to the rules for naming and syntax specified in this chapter
and in Section A.1 on page 173, Section A.5 on page 180, and Section A.6 on page 181.

• Implementations must conform to the semantics and data formats specified in Chapter 2.

• XDS implementations must follow the conformance rules specified in Section 3.1 on page 28
and Section 4.1 on page 45.

• XDS implementations must support the character encodings as specified in Section A.3 on
page 177 and Section A.4 on page 178.

• GDS implementations must follow the Protocol Implementation Conformance Statement
specified in Chapter 8.

• GDS implementations must support the structure rules and the associated object class and
attribute tables specified in Appendix E, Appendix F, and Appendix G.

• CDS implementations must adhere to the rules and the semantics specified in Section 9.1 on
page 87 and Section 9.2 on page 88.

• CDS implementations must support the architected default attributes specified in Section 9.3
on page 96 and Section B.2 on page 186.

• CDS implementations must conform to the service primitives specified in Section 9.4 on page
106.

• CDS implementations must support the protocol operations specified in Chapter 10 and
Chapter 12.

• CDS implementations must conform to the ordering of protocol operations as specified in
Section D.1 on page 192 and Section D.2 on page 197.

• CDS implementations must support the protocol encodings specified in Chapter 11.

• CDS implementations must support the specified size values in Section A.7 on page 183.

• CDS implementations must support the status and error code encodings specified in
Appendix C.

18 CAE Specification (1997)

Chapter 2

Inter-cell Operation

This chapter describes inter-cell name space communication. There are two modes of inter-cell
communications:

Inter-cell Communication via the Global Name Space
Standard inter-cell communication is accomplished via the global name space, where the
Cell Directory Service (CDS) that controls a cell’s name space is registered. These cell entries
in the global name space consist of information necessary for locating and accessing the
CDS of a cell. The Global Directory Agent (GDA) acts as the gateway for obtaining the
location information for a foreign cell’s CDS from the appropriate global directory service
(see Figure 2-1 on page 20).

Hierarchical Cell Communications
In a hierarchical cell configuration, one or more cells can be registered in another cell’s name
space. The parent cell, at the top of the hierarchy, must be registered in a global name space,
but the child cells are registered in the parent cell’s name space. In a hierarchical cell
configuration, the Global Directory Agent (GDA) is again the gateway for obtaining a child
cell’s location information; in this case, the GDA obtains the location information from the
CDS of the parent cell instead of from a global directory service.

Part 1 Introduction 19

Global Directory System Organization Inter-cell Operation

2.1 Global Directory System Organization
A Cell Directory Service (CDS) uses the location information in the global name space to connect
to the name spaces of foreign cells (that is, cells that are not in a hierarchical relationship with
the requesting cell). The relationship of independent, non-hierarchical cells registered in global
name spaces is illustrated in Figure 2-1.

GDA access

(equiv. to /.:)
registered cell name

global root (/...)

cell name space

global name space

cell name space

sec fs

: Other composite name spaces (opaque to cell name space)

: Logical cell root

: Junction object entry

: Node in name spaces

Figure 2-1 Directory System Organization

20 CAE Specification (1997)

Inter-cell Operation Global Directory Agent

2.2 Global Directory Agent
The Global Directory Agent (GDA) is the gateway between the cell and global name spaces; it
queries the desired foreign cell name space information (that is, the location and protocol data of
the targeted CDS) registered in the global name space. The GDA process resolves the global
compound name of any fully-qualified global name (prefixed by the global root /...) that contains
a foreign cell name space unknown to the local cell name space. This information is contained in
the lookup progress record returned by the GDA.

The GDA parses the global compound name according to the syntax rules for DCE names. If the
global compound name is identified as an X.500 name (that is, if it contains at least one = (equal
sign) character in its top-level component), the GDA extracts the global compound name from
the fully-qualified global name, discards the global root component, and issues a request to the
corresponding X.500 service.

If the global compound name is not identified as being an X.500 name, the GDA assumes that
the global compound name is an Internet DNS name, and passes the request to the DNS service.
Since the DNS global compound name always consists of exactly one component (with . (dot)
character separated subcomponents), only the first component of the unresolved name will be
extracted for the request issued to the corresponding DNS server.

The progress record, which is returned by a successful4 GDA request, contains information about
the directory service of the targeted cell name space. It also contains the unresolved residual of
the composite name (see Section 2.3 on page 23). This information can be used by the local CDS
to locate and access the targeted foreign CDS to resolve the residual of the composite name and
thus complete the requested operation.

The information returned by the GDA in the progress record is as follows:

Resolved part of name
This consists of the part of the name that was successfully resolved, and information about
it.

— global root UUID; this identifier has the architected value of:

11ed2286-49bb-11ca-8f29-08002b0dc46c

— the cell name (global compound name, including the /... prefix)

— length of the cell name.

Unresolved part of name
This consists of the part of the name that was not successfully resolved, and information
about it.

— target cell root UUID

— residual of the name (may be empty, with no leading / (slash) character)

— length of the residual.

4. A GDA operation is considered to be successful only if the entity addressed by the global compound name represents a cell entry
in the global name space, containing information about a cell.

Part 1 Introduction 21

Global Directory Agent Inter-cell Operation

Replica sets
This consists of location information for clearinghouses in the targeted CDS server (a
clearinghouse is a database containing physical instances of CDS directories). If multiple
replicated clearinghouses of the targeted cell are catalogued in the global name space entry,
multiple set members are returned.

— clearinghouse types (GDA, Master, or Read-only)

— clearinghouse UUID

— clearinghouse name

— set of protocol towers (see the DCE Remote Procedure Call specification for details).

2.2.1 Hierarchical Cells

The Global Directory Agent (GDA) is also the gateway between cells in a cell hierarchy. In a
hierarchical cell configuration, child cells are registered in the cell name space of a parent cell. The
top-level parent in a cell hierarchy must be registered in a global name space. The parent cell’s
CDS acts as a higher-level directory service for the child cells.

A child cell’s fully-qualified global name consists of the global name of the parent cell with the
CDS name of the child cell appended to it. The GDA parses the name according to the syntax
rules for DCE names; once it identifies the name of the parent cell it issues a request to that cell’s
CDS. The progress record returned by a successful GDA request corresponds to the progress
record described in Section 2.2 on page 21.

22 CAE Specification (1997)

Inter-cell Operation Cell Registration in Global Name Space

2.3 Cell Registration in Global Name Space
The location information for cells is stored in separate global name space entries in accordance
with the underlying rules of the global directory services. These entries need not be leaf nodes of
the particular directory service.

The cell entries in the global name space uniquely identify the cell itself, as well as the location
and type of CDS instances. If multiple instances of a CDS are available, the cell entry catalogues
one record for each clearinghouse. The information that is required to catalogue a cell is defined
as follows:

• the universal unique identifier (UUID) of the cell root directory, in hexadecimal notation (see
the DCE Remote Procedure Call specification)

• the name of the clearinghouse, which may be a global or cell relative composite name

• the UUID of the clearinghouse, in hexadecimal notation

This is the unique identifier of the clearinghouse in the target cell; the binding to the cell
name may not be sufficient to reach the cell, because the name of the clearinghouse may
change.

• the type of the clearinghouse (whether it is writable (master) or not (read-only))

• the network address of the clearinghouse.

2.3.1 Cell Registration in X.500

Cell information is contained in two X.500 attribute types, CDS-Cell and CDS-Replica. These
attributes are either added to an existing directory entry or created along with a new specific
directory entry. The syntax for both CDS-Cell and CDS-Replica attribute values is an octet
string (see Appendix G). A single attribute value is formed as a sequence of individual fields, as
specified below.

CDS-Cell contains the non-recurring cell information, as defined in Table 2-1.

Contents Syntax Presence
Target name space UUID Printable string terminated by \0 Mandatory
Cell root directory UUID Printable string terminated by \0 Only a \0 char if empty
Cell root directory name Printable string terminated by \0 Only a \0 char if empty

Table 2-1 CDS-Cell Attribute format

CDS-Replica contains the set of recurring cell information, as defined in Table 2-2.

Contents Syntax Presence
Clearinghouse type 1 octet GDA, Master or Read-only
Clearinghouse UUID Printable string terminated by \0 Mandatory
Clearinghouse name Printable string terminated by \0 Mandatory
Length of tower string 4 octets numeric string Value from 1-325

Octet string (with \0 separated set members)Tower set Length from previous field

Table 2-2 CDS-Replica Attribute format

The UUIDs are represented in string form, as specified in the DCE Remote Procedure Call
specification.

Part 1 Introduction 23

Cell Registration in Global Name Space Inter-cell Operation

The tower set contains network address information, consisting of a set of null-terminated RPC
string binding representations of protocol towers (see the DCE Remote Procedure Call
specification).

For both attribute types, the attribute values (represented by octet strings) will vary in length.
The current attribute value length is automatically stored in the X.500 directory system. The
maximum attribute lengths must be defined in the X.500 schema (see Chapter 8).

2.3.2 Cell Registration in DNS

Cell information is contained in a pair of resource records (see RFC 1033 for recommendations on
the contents of resource records). The resource records can be added to existing DNS nodes, or
stored in newly created Internet domain names. The NIC Registrar is responsible for registering
a domain name.

The resource records have the following type and contents:

• The type of the first record is AFSDB (AFS Data Base) or MX.

The ASFDB or MX record indicates the host system on which the CDS server (replica,
subtype 2) of the named cell exists. The DNS server also returns the associated Internet
address of this host as additional data with the reply containing the AFSDB or MX record.
The protocol class of this resource record is IN (Internet). TTL (time-to-live) is a value,
expressed in seconds, after the elapse of which the data will no longer be considered valid in
a DNS cache (the default value is set to the equivalent of one week).

• The type of the second record is TXT (text).

The TXT record contains the set of recurring cell information, as well as the clearinghouse
type and its address information. The fields in a TXT record are separated by white space,
and their contents are case-insensitive.

The first TXT field indicates the version (1). The next field contains the UUID of the cell root
directory. Following this is a three-field group defining the clearinghouse managed by the
server:

— The first field of the triplet contains the type of the clearinghouse, and must contain one of
the keywords GDA, Master or Readonly. Only the first character of the keyword is
significant.

— The second field contains the name of the clearinghouse. This name is the canonical string
representation of the fully qualified global name.

— The final field in the triplet contains the clearinghouse UUID.

The hostname of the clearinghouse is also included in the TXT record, to enable the
corresponding AFSDB and TXT records to be matched.

Additional pairs of AFSDB and TXT records are used to define multiple clearinghouses.

24 CAE Specification (1997)

CAE Specification

Part 2

Application Programming Interfaces

The Open Group

Part 2 Application Programming Interfaces 25

26 CAE Specification (1997)

Chapter 3

X/Open Directory Service API (XDS)

This chapter identifies the conformance requirements of the X/Open Directory Services (XDS)
API implementations for the DCE. For the full X/Open XDS API, see the referenced XDS
specification.

The XDS interface comprises a number of functions, together with OM classes of OM objects,
which are used as the arguments and results of the functions. Both the functions and the OM
objects are based on the Abstract Service specified in the ISO 9594-3 standard.

The interface models the directory interactions as service requests made through a number of
interface functions, which take a number of input arguments. Each valid request causes an
operation to be performed by the directory service, which eventually returns a status and any
result of the operation.

All interactions between the user and the directory service belong to a session, which is
represented by an OM object passed as the first argument to most interface functions.

The other arguments to the functions include a context and various service-specific arguments.

Part 2 Application Programming Interfaces 27

XDS Conformance X/Open Directory Service API (XDS)

3.1 XDS Conformance
The XDS interface defines an API that application programs can use to access the functionality of
the underlying directory service. The DCE XDS API conforms to the XDS specification. Both
GDS and CDS are supported by the DCE XDS API.

DCE XDS is characterised by the following:

• It supports a synchronous interface. Asynchronous operations within the same thread are not
supported.

• It supports all synchronous interface functions. The two asynchronous-specific functions are
handled as follows:

ds_abandon ()
Calling this routine does not cause a directory service abandon operation to be
performed; instead, the routine returns a [DS_C_ABANDON_FAILED]
([DS_E_TOO_LATE]) error.

ds_receive_result()
If there are any outstanding operations (when multiple threads issue XDS calls in
parallel), this functions returns [DS_SUCCESS], with the completion_flag_return argument
set to a value of DS_OUTSTANDING_OPERATIONS. If no XDS calls are outstanding,
then this function returns [DS_SUCCESS], and the completion_flag_return argument is set
to a value of DS_NO_OUTSTANDING_OPERATION.

• Automatic connection management is not provided. The ds_bind() and ds_unbind() functions
always try to set up or release directory service connections immediately.

• Support for local strings. XDS supports the mapping to/from local string formats. String
mapping is supported by the following XDS/XOM functions:

— dsX_extract_attr_values ()

— omX_object_to_string ()

— omX_string_to_object ()

— om_get()

— om_read()
String mapping is requested by setting the local_strings boolean parameter to OM_TRUE.
Currently supported mappings are:

— T.61 String to/from ISO 8859-1 (Latin-1)

DCE XDS supports five packages, one of which is mandatory and the other four of which are
optional. Use of the optional packages is negotiated through the ds_version() routine. The
packages are as follows:

• The Directory Service Package (as defined in the XDS specification) is mandatory. This also
includes the directory service errors.

• The Basic Directory Contents Package (as defined in the XDS specification) is optional.

• The Strong Authentication Package (as defined in the XDS specification) is optional.

• The MHS Directory User Package (as defined in the XDS specification) is optional.

• The Global Directory Service Package (as defined in Section 3.7 on page 35) is optional.

28 CAE Specification (1997)

X/Open Directory Service API (XDS) XDS Conformance

None of the OM classes defined in these packages are encodable. As a result, DCE XDS
application programmers do not require the use of the XOM functions om_encode() and
om_decode(), which are not supported by the DCE XOM API.

3.2 XDS Functions
The OSI Directory Service standards define Abstract Services that requestors use to interact with
the directory. Each of these Abstract Services maps to a single function call, and the detailed
specifications of the calls are given in the XDS reference pages in the XDS specification. The
services, and the function calls to which they map, are as follows:

DirectoryBind
Maps to ds_bind().

DirectoryUnbind
Maps to ds_unbind().

Read
Maps to ds_read().

Compare
Maps to ds_compare().

Abandon
Maps to ds_abandon ().

List
Maps to ds_list().

Search
Maps to ds_search().

AddEntry
Maps to ds_add_entry().

RemoveEntry
Maps to ds_remove_entry().

ModifyEntry
Maps to ds_modify_entry ().

ModifyRDN
Maps to ds_modify_rdn ().

The XDS function ds_receive_result(), which is used with asynchronous operations, has no
counterpart in the Abstract Service.

The ds_initialize (), ds_shutdown() and ds_version() functions are used to control the XDS API,
and do not initiate any directory operations.

The interface functions are summarised in Table 3-1 on page 30.

Part 2 Application Programming Interfaces 29

XDS Functions X/Open Directory Service API (XDS)

Function Description
Abandons the result of a pending asynchronous operation. This
function is not supported.

ds_abandon ()

Adds a leaf entry to the DIT (Directory Information Tree).ds_add_entry()
Opens a session with a Directory User Agent (DUA), which in turn
connects to a Directory Service Agent (DSA).

ds_bind()

Compares a purported attribute value with the attribute value stored
in the Directory Information Base (DIB) for a particular entry.

ds_compare()

Initialises the XDS interface.ds_initialize ()
Enumerates the names of the immediate subordinates of a particular
directory entry.

ds_list()

Atomically performs modification of a directory entry.ds_modify_entry ()
Changes the Relative Distinguished Name (RDN) of a leaf entry.ds_modify_rdn ()
Queries information on a particular directory entry by name.ds_read()
Retrieves the result of an asynchronously executed function. This
function is not supported.

ds_receive_result()

Removes a leaf entry from the DIT.ds_remove_entry()
Finds entries of interest in a portion of the directory information tree.ds_search()
Discards a workspace.ds_shutdown()
Unbinds from a directory session.ds_unbind()
Negotiates features of the interface and service.ds_version()

Table 3-1 XDS Interface Functions

The XDS interface functions are fully specified in the XDS specification. The following sections
specify the extensions made for the DCE XDS API for each of the interface functions.

3.2.1 ds_abandon()

The DCE XDS interface does not support asynchronous operations. Thus, ds_abandon () and
ds_receive_result() are redundant. A ds_abandon () call always returns a
[DS_C_ABANDON_FAILED] ([DS_E_TOO_LATE]) error.

3.2.2 ds_add_entry()

Note the following in regard to the ds_add_entry() operation:

• Only leaf objects (that is, objects that are not CDS directory objects) can be added to CDS
through the XDS interface.

• Only the DS_A_COMMON_NAME and DS_A_MEMBER attributes are valid for the
DS_O_GROUP_OF_NAMES object in CDS.

• GDS-structured attribute types are not supported by CDS. If an attempt is made to add a
GDS-structured attribute type to CDS, ds_add_entry() returns a [DS_C_ATTRIBUTE_ERROR]
([DS_E_CONSTRAINT_VIOLATION]) error.

Since CDS does not support the X.500 schema rules, some CDS objects may not contain GDS-
mandatory attributes, such as object class and so on.

30 CAE Specification (1997)

X/Open Directory Service API (XDS) XDS Functions

3.2.3 ds_bind()

In order to use CDS when GDS is not active, ds_bind() must be called with the value of the
session argument set to DS_DEFAULT_SESSION.

3.2.4 ds_compare()

Note the following in regard to the ds_compare() operation:

• In CDS, the naming attribute of an object is not stored in the object’s attribute list. Thus, in
CDS, an attempted ds_compare() of a naming attribute value with the naming attribute value
of the directory object always fails to yield a match.

• GDS-structured types are not supported by CDS. If a GDS-structured attribute type is used
as an argument to a ds_compare() on a CDS object, the call returns the error
[DS_C_ATTRIBUTE_ERROR] ([DS_E_CONSTRAINT_VIOLATION]).

• In CDS, ds_compare() can only be used on leaf objects; if it is called with a non-leaf object, it
returns a [DS_C_NAME_ERROR] ([DS_E_NO_SUCH_OBJECT]) error.

3.2.5 ds_initialize()

No modifications apply.

3.2.6 ds_list()

For CDS, enumeration can be performed only on directories (that is, entries that are not leaf
objects); if enumeration of a leaf object is attempted, the call returns a [DS_C_NAME_ERROR]
([DS_E_NO_SUCH_OBJECT]) error.

3.2.7 ds_modify_entry()

Note the following in regard to the ds_modify_entry () operation:

• X.500 naming schema rules do not apply in CDS. Thus, the following attribute errors are
never returned from CDS operations:

— [DS_E_NO_SUCH_ATTRIBUTE_OR_VALUE]

— [DS_E_ATTRIBUTE_OR_VALUE_EXISTS].

• Naming operations that would normally return these errors in GDS succeed when executed
in CDS. In particular, attempting to add an attribute that already exists does not cause an
error with a CDS object. Instead, the values of the attribute to be added are combined with
the values of the existing attribute.

• GDS-structured attribute types are not supported by CDS. If a GDS-structured attribute type
is used as an argument to a ds_modify_entry () call on a CDS object, the routine returns a
[DS_C_ATTRIBUTE_ERROR] ([DS_E_CONSTRAINT_VIOLATION]) error.

• In CDS, ds_modify_entry () can be used only on leaf objects; otherwise, it returns a
[DS_C_NAME_ERROR] ([DS_E_NO_SUCH_OBJECT]) error.

Part 2 Application Programming Interfaces 31

XDS Functions X/Open Directory Service API (XDS)

3.2.8 ds_modify_rdn()

CDS does not support the ds_modify_rdn () operation. Attempting this operation on a CDS object
results in an error return of [DS_C_SERVICE_ERROR] ([DS_E_UNWILLING_TO_PERFORM]).

3.2.9 ds_read()

Note the following in regard to the ds_read() operation:

• Since CDS does not support the X.500 schema rules, some CDS objects may not contain
GDS-mandatory attributes, such as object class, and so on. In CDS, an attempted read of a
CDS alias object fails if the DS_A_ALIASED_OBJECT_NAME does not exist in the object.
Instead, ds_read() returns a [DS_C_NAME_ERROR] ([DS_E_NO_SUCH_OBJECT]) error.

• In CDS, the naming attribute of an object is not stored in the object’s attribute list. Thus, a
ds_read() of a CDS object does not return this attribute in the object’s attribute list.

3.2.10 ds_receive_result()

The DCE XDS interface does not support asynchronous operations. Thus, ds_abandon () and
ds_receive_result() are redundant. A ds_receive_result() function call always returns with
DS_status set to [DS_SUCCESS], and the completion_flag_return argument set to
DS_NO_OUTSTANDING_OPERATION.

3.2.11 ds_remove_entry()

No modifications apply.

3.2.12 ds_search()

CDS does not support the ds_search() operation. An attempt to perform a ds_search() in CDS
results in an error of [DS_C_SERVICE_ERROR] ([DS_E_UNWILLING_TO PERFORM]) being
returned.

3.2.13 ds_shutdown()

No modifications apply.

3.2.14 ds_unbind()

No modifications apply.

3.2.15 ds_version()

No modifications apply.

32 CAE Specification (1997)

X/Open Directory Service API (XDS) XDS Function Call Results

3.3 XDS Function Call Results
All XDS functions, with the exception of ds_initialize(), return a value of type DS_status, which is
the C function result of the call. If the function is successful, then DS_status returns with a value
of [DS_SUCCESS]. If the function does not complete successfully, then DS_status takes either the
error [DS_NO_WORKSPACE] or a private error object.

Most XDS functions also return data in an invoke_id_return argument, which identifies the
particular invocation; and each of the interrogation operations returns data in a result_return
argument. The invoke_id_return and result_return values are returned using pointers that are
supplied as arguments of the C function.

These three types of function results are described in the XDS specification.

3.3.1 invoke_id_return Parameter

All interface functions that invoke a directory service operation return an invoke_id_return
argument, which is an integer that identifies the particular invocation of an operation. This
information is meaningful only if asynchronous operations are supported. Since DCE XDS does
not support asynchronous operations, the invoke_id_return value is meaningless in DCE XDS.

The affected interface functions are:

• ds_add_entry()

• ds_compare()

• ds_list()

• ds_modify_entry ()

• ds_modify_rdn ()

• ds_read()

• ds_remove_entry()

• ds_search().

DCE application programmers must still supply this argument, as described in the XDS
reference pages (see the XDS specification), but the value returned therein should be ignored.

Part 2 Application Programming Interfaces 33

Synchronous Operations X/Open Directory Service API (XDS)

3.4 Synchronous Operations
Since asynchronous use of the interface within the same thread is not supported, the value of the
DS_ASYNCHRONOUS OM attribute in DS_C_CONTEXT is always OM_FALSE, causing all
operations within the same thread to be synchronous.

In synchronous mode, all functions wait until the operation is complete before returning. The
thread of control is blocked within the interface during the time which elapses between the
calling of a function and its return, and the function result can be used immediately after the
function returns.

Implementations may define a limit on the number of asynchronous operations that can be
outstanding at any one time in any one session. The limit is defined by the implementation-
defined constant DS_MAX_OUTSTANDING_OPERATIONS. In DCE XDS this constant always
has the value 0 (zero), because asynchronous operations are not supported.

All errors occurring during a synchronous request are reported when the function returns.

The DS_FILE_DESCRIPTOR OM attribute of DS_C_SESSION is not used by the DCE XDS
API. It is always set to DS_NO_VALID_FILE_DESCRIPTOR.

3.5 Security and XDS
The XDS specification does not define a security interface in order to avoid possibly constraining
the security features of existing directory implementations.

DCE GDS proves an extension to the XDS API for security support. This is achieved at the XDS
API level through a new DSX_C_GDS_SESSION session object which contains information on
the security mechanism that should be used. Simple authentication through the use of name and
password, and external authentication based on DCE security are supported. (See Section 3.7 on
page 35 for additional information.)

3.6 Automatic Connection Management
A directory service implementation can provide automatic management of the association or
connection between the user and the directory service, making and releasing connections at its
discretion.

DCE XDS does not support automatic connection management. A DSA connection is established
when ds_bind() is successfully called, and released when ds_unbind() is successfully called.

34 CAE Specification (1997)

X/Open Directory Service API (XDS) Global Directory Service Package

3.7 Global Directory Service Package
The Global Directory Service Package (GDSP) is an OSF extension to the XDS interface.
Applications must negotiate use of this package, by calling ds_version(), before using any of the
package’s features. If an application attempts to use features specific to this package without
first negotiating its use, an error (for example, [OM_NO_SUCH_CLASS]) is returned by the DCE
XOM function it attempted to execute.

The object identifier associated with the GDSP is:

{iso(1) identified-organisation(3) icd-ecma(0012) member-company(2)\
siemens-units(1107) sni(1) directory(3) xds-api(100) gdsp(0)}

It has the following encoding:

\x2B\xC\x2\x88\x53\x1\x3\x64\x0

The GDSP object identifier is represented by the constant DSX_GDS_PKG. This constant,
together with the other C constants associated with the package, are contained in the
<xdsgds.h> header file (see Appendix H).

In the following sections, the GDSP’s attribute types are introduced first; descriptions of its
object classes follow. Finally, the OM class hierarchy and OM class definitions required to
support the new attribute types are described.

3.7.1 GDSP Attribute Types

Additional directory attribute types are used with the GDS package. Each attribute type has its
own object identifier, held as the value of the OM attribute DS_ATTRIBUTE_TYPE. These
object identifiers are represented in the interface by constants with the same name as the
directory attribute they identify, prefixed by DSX_A_.

Table 3-2 on page 36 shows the names of the GDSP attribute types, together with the BER
encoding of the object identifiers associated with each of them. The third column of the table
shows the hexadecimal values of the octets of the BER encoding of the object identifier in
hexadecimal representation. All these object identifiers are derived from the root:

{iso(1) identified-organisation(3) icd-ecma(0012) member-company(2)
siemens-units(1107) sni(1) directory(3) attribute-type(4)}

Part 2 Application Programming Interfaces 35

Global Directory Service Package X/Open Directory Service API (XDS)

Object Identifier BER
Package Attribute Type (Hexadecimal Value)
GDSP DSX_A_ACL \x2B\x0C\x02\x88\x53\x01\x03\x04\x01
GDSP DSX_A_AT \x2B\x0C\x02\x88\x53\x01\x03\x04\x06
GDSP DSX_A_CDS_CELL \x2B\x0C\x02\x88\x53\x01\x03\x04\x0D
GDSP DSX_A_CDS_REPLICA \x2B\x0C\x02\x88\x53\x01\x03\x04\x0E
GDSP DSX_A_CLIENT \x2B\x0C\x02\x88\x53\x01\x03\x04\x0A
GDSP DSX_A_DEFAULT_DSA \x2B\x0C\x02\x88\x53\x01\x03\x04\x08
GDSP DSX_A_DNLIST \x2B\x0C\x02\x88\x53\x01\x03\x04\x0B
GDSP DSX_A_LOCAL_DSA \x2B\x0C\x02\x88\x53\x01\x03\x04\x09
GDSP DSX_A_MASTER_KNOWLEDGE \x2B\x0C\x02\x88\x53\x01\x03\x04\x00
GDSP DSX_A_OCT \x2B\x0C\x02\x88\x53\x01\x03\x04\x05
GDSP DSX_A_SHADOWED_BY \x2B\x0C\x02\x88\x53\x01\x03\x04\x03
GDSP DSX_A_SHADOWING_JOB \x2B\x0C\x02\x88\x53\x01\x03\x04\x0C
GDSP DSX_A_SRT \x2B\x0C\x02\x88\x53\x01\x03\x04\x04
GDSP DSX_A_TIME_STAMP \x2B\x0C\x02\x88\x53\x01\x03\x04\x02

Table 3-2 Object Identifiers for GDSP Attribute Types

Table 3-3 shows the names of the attribute types, together with the OM value syntax used in the
interface to represent each attribute’s values. The table also indicates: the range of lengths in
octets permitted for the string types; whether the attribute can be multi-valued; and which
matching rules are provided for the syntax.

Value Multi- Matching
Attribute Type OM Value Syntax Length Valued Rules

DSX_A_ACL Object (DSX_C_GDS_ACL) — no E
DSX_A_AT String (OM_S_PRINTABLE_STRING) 1-101 yes E,S
DSX_A_CDS_CELL String (OM_S_OCTET_STRING) 1-284 no E
DSX_A_CDS_REPLICA String (OM_S_OCTET_STRING) 1-905 yes E
DSX_A_CLIENT Only a cache attribute — — —
DSX_A_DEFAULT_DSA Only a cache attribute — — —
DSX_A_DNLIST Object (DS_C_DS_DN) — yes E,S
DSX_A_LOCAL_DSA Only a cache attribute — — —
DSX_A_MASTER_KNOWLEDGE Object (DS_C_DS_DN) — no E,S
DSX_A_OCT String (OM_S_PRINTABLE_STRING) 1-397 yes E,S
DSX_A_SHADOWED_BY Not used yet — — —
DSX_A_SHADOWING_JOB Not used yet — — —
DSX_A_SRT String (OM_S_PRINTABLE_STRING) 1-29 yes E,S
DSX_A_TIME_STAMP String (OM_S_UTC_TIME_STRING) 11-17 no E,O

Table 3-3 Values for GDSP Attribute Types

In the Matching Rules column, the abbreviations have the following meanings:

E The matching rule determines whether two values are equal.

S The matching rule identifies one value as a substring of the other.

O The matching rule determines the ordering of two values.

36 CAE Specification (1997)

X/Open Directory Service API (XDS) Global Directory Service Package

Descriptions of GDSP Attribute Types

See the XDS specification for information on general matching rules.

DSX_A_ACL
The contents of this attribute describe the access rights for one or more directory service
users.

DSX_A_AT
The contents of this attribute describe the attribute types permitted in GDS.

DSX_A_CDS_CELL and DSX_A_CDS_REPLICA
The contents of these attributes consist of the information necessary for contacting a remote
DCE cell. These two attributes always exist together in the same object. See Section 2.3 on
page 23 for its representation.

DSX_A_CLIENT
This attribute applies only to the cache. It identifies the entry which holds the DUA’s
Presentation Address. Its OM syntax is OM_S_PRINTABLE_STRING and its value is
CLIENT.

DSX_A_DEFAULT_DSA
This attribute applies only to the cache. It identifies an entry which holds the Distinguished
Name (DN) of the DUA’s default DSA. Its OM syntax is OM_S_PRINTABLE_STRING and
its value is DEFAULT-DSA.

DSX_A_DNLIST
The contents of this attribute are used internally by the GDS DSA.

DSX_A_LOCAL_DSA
This attribute applies only to the cache. It identifies an entry which holds the Distinguished
Name (DN) of the DUA’s local DSA. Its OM syntax is OM_S_PRINTABLE_STRING and its
value is LOCAL-DSA.

DSX_A_MASTER_KNOWLEDGE
The contents of this attribute consist of the Distinguished Name (DN) of the DSA that holds
the master copy of this entry.

DSX_A_OCT
The contents of this attribute consist of a description of the object classes supported by the
DSA.

DSX_A_SHADOWED_BY and DSX_A_SHADOWING_JOB
These two GDSP attributes are intended for future use.

DSX_A_SRT
The contents of this attribute consist of a description of the structure of the DNs
(Distinguished Names) permitted in GDS.

DSX_A_TIME_STAMP
This attribute is part of the DSX_O_SCHEMA object. It contains the creation time of the
DSX_O_SCHEMA object.

Part 2 Application Programming Interfaces 37

Global Directory Service Package X/Open Directory Service API (XDS)

3.7.2 GDSP Object Classes

The only object class specific to the GDSP is DSX_O_SCHEMA (see Table 3-4). It is stored in
GDS as an object directly under the directory root. The most important attributes of the
DSX_O_SCHEMA object are the three recurring ones DSX_A_OCT, DSX_A_AT and
DSX_A_SRT, which describe the GDS directory information tree (DIT) structure.

The third column of the table shows the hexadecimal values of the octets of the BER encoding of
the object identifier in hexadecimal representation. This object identifier is derived from the root:

{iso(1) identified-organisation(3) icd-ecma(0012) member-company(2)
siemens-units(1107) sni(1) directory(3) object-class(6)}

Object Identifier BER
Package Attribute Type (Hexadecimal Value)
GDSP DSX_O_SCHEMA \x2B\x0C\x02\x88\x53\x01\x03\x06\x00

Table 3-4 Object Identifier for GDSP Object Classes

3.7.3 GDS OM Class Hierarchy

The additional OM classes used by the GDS package are organised hierarchically. In the
following list, subclassification is indicated by indentation; it shows which classes inherit
additional OM attributes from their OM superclasses.

OM_C_OBJECT (defined in the OM package)
DS_C_SESSION (defined in the Directory Service Package)

DSX_C_GDS_SESSION
DS_C_CONTEXT (defined in the Directory Service Package)

DSX_C_GDS_CONTEXT
DSX_C_GDS_ACL
DSX_C_GDS_ACL_ITEM

None of the OM classes in the preceding list are encodable using om_encode() and om_decode().

DSX_C_GDS_ACL

An instance of OM class DSX_C_GDS_ACL describes up to five categories of rights for one or
more directory users.

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in
addition to the OM attributes listed in Table 3-5.

Value Value Value
OM Attribute Value Syntax Length Number Initially

DSX_MODIFY_PUBLIC Object (DSX_C_GDS_ACL_ITEM) — 0-4 —
DSX_READ_STANDARD Object (DSX_C_GDS_ACL_ITEM) — 0-4 —
DSX_MODIFY_STANDARD Object (DSX_C_GDS_ACL_ITEM) — 0-4 —
DSX_READ_SENSITIVE Object (DSX_C_GDS_ACL_ITEM) — 0-4 —
DSX_MODIFY_SENSITIVE Object (DSX_C_GDS_ACL_ITEM) — 0-4 —

Table 3-5 OM Attributes of DSX_C_GDS_ACL

38 CAE Specification (1997)

X/Open Directory Service API (XDS) Global Directory Service Package

The OM attributes of DSX_C_GDS_ACL are as follows:

DSX_MODIFY_PUBLIC
This attribute specifies the user, or subtree of users, that can modify attributes classified as
public attributes.

DSX_READ_STANDARD
This attribute specifies the user, or subtree of users, that can read attributes classified as
standard attributes.

DSX_MODIFY_STANDARD
This attribute specifies the user, or subtree of users, that can modify attributes classified as
standard attributes.

DSX_READ_SENSITIVE
This attribute specifies the user, or subtree of users, that can read attributes classified as
sensitive attributes.

DSX_MODIFY_SENSITIVE
This attribute specifies the user, or subtree of users, that can modify attributes classified as
sensitive attributes.

DSX_C_GDS_ACL_ITEM

An instance of OM class DSX_C_GDS_ACL_ITEM is a component of an instance of OM class
DSX_C_GDS_ACL. It specifies the user, or subtree of users, to whom an access right applies.

An instance of this OM class has the OM attributes of its superclass, OM_C_OBJECT, in
addition to the OM attributes listed in Table 3-6.

Value Value Value
OM Attribute Value Syntax Length Number Initially

DSX_INTERPRETATION Enum (DSX_Interpretation) — 1 —
DSX_USER Object(DS_C_DS_DN) — 1 —

Table 3-6 OM Attributes of DSX_C_GDS_ACL_ITEM

The OM attributes of a DSX_C_GDS_ACL_ITEM are as follows:

DSX_INTERPRETATION
This attribute specifies the scope of the access right. It can have one of the following values:

— DSX_SINGLE_OBJECT indicates that the access right is granted to the user specified in
the DSX_USER OM attribute.

— DSX_ROOT_OF_SUBTREE indicates that the access right is granted to all users in the
subtree below the name specified in the DSX_USER OM attribute.

DSX_USER
This attribute contains the Distinguished Name of the user, or subtree of users, to whom an
access right applies.

Part 2 Application Programming Interfaces 39

Global Directory Service Package X/Open Directory Service API (XDS)

DSX_C_GDS_CONTEXT

An instance of OM class DSX_C_GDS_CONTEXT comprises per-operation arguments that are
accepted by most of the interface functions. The GDS package supports additional service
controls that are defined by the DSX_C_GDS_CONTEXT OM class.

An instance of this OM class has the OM attributes of its superclasses, OM_C_OBJECT and
DS_C_CONTEXT, in addition to the OM attributes listed in Table 3-7.

Value Value Value
OM Attribute Value Syntax Length Number Initially

Service Controls
DSX_DUAFIRST OM_S_BOOLEAN — 1 OM_FALSE
DSX_DONT_STORE OM_S_BOOLEAN — 1 OM_TRUE
DSX_NORMAL_CLASS OM_S_BOOLEAN — 1 OM_FALSE
DSX_PRIV_CLASS OM_S_BOOLEAN — 1 OM_FALSE
DSX_RESIDENT_CLASS OM_S_BOOLEAN — 1 OM_FALSE
DSX_USEDSA OM_S_BOOLEAN — 1 OM_TRUE
DSX_DUA_CACHE OM_S_BOOLEAN — 1 OM_FALSE
DSX_PREFER_ADM_FUNCS OM_S_BOOLEAN — 1 OM_FALSE
DSX_SIGN_MECHANISM Enum(DSX_Sign_Mechanism) — 0-1 —
DSX_PROT_REQUEST Enum(DSX_Prot_Request) — 0-1 —

Table 3-7 OM Attributes of DSX_C_GDS_CONTEXT

The OM attributes of the DSX_C_GDS_CONTEXT OM class are as follows:

DSX_DUAFIRST
The value of this attribute defines whether the DUA cache or the DSA needs to be read first
for query operations. The default value is OM_FALSE; that is, search the DSA first, if not
found then search the DUA cache.

DSX_DONT_STORE
The value of this attribute specifies whether the information read from the DSAs by the
query functions also needs to be stored in the DUA cache. When this service control is set to
OM_TRUE (the default value), nothing is stored in the DUA cache.

When the value of this attribute is set to OM_FALSE, the information read is stored in the
DUA cache, and the objects returned by ds_list() and ds_compare() are stored in the cache
without their associated attribute information. The objects returned by ds_read() and
ds_search() are stored in the cache with all their attributes that are capable of being stored in
the cache; these are public attributes, except for the ACL attribute. This information is
stored in the cache only when a list of requested attributes is supplied. If all attributes are
requested, then nothing is stored in the cache.

The DUA cache categorises the information stored into three different memory classes. The user
specifies the category with the following service control attributes:

DSX_NORMAL_CLASS
If this attribute is set to OM_TRUE, the entry in the DUA cache is assigned to the class of
normal objects. When the number of entries in this class exceeds a maximum value, the
entry that has not been addressed for the longest period of time is removed from the DUA
cache.

DSX_PRIV_CLASS
If this attribute is set to OM_TRUE, the entry in the DUA cache is assigned to the class of

40 CAE Specification (1997)

X/Open Directory Service API (XDS) Global Directory Service Package

privileged objects. Such entries can be removed from the class in the same way as normal
objects. By using this memory sparingly, the user can protect entries from deletion.

DSX_RESIDENT_CLASS
If this attribute is set to OM_TRUE, the entry in the DUA cache is assigned to the class of
resident objects. An entry in this memory class is never removed automatically; it can only
be removed by a call to ds_remove_entry(). The number of entries is limited; if this limit is
exceeded, ds_add_entry() reports an error.

Note: Only one of the above service control attributes can be OM_TRUE at one time.
Also, the ds_add_entry() function also evaluates these service control bits if it is
used on the DUA cache.

DSX_DUA_CACHE and DSX_USEDSA
These attributes define whether the entries in the DUA cache or in the DSA, or both, need to
be used when providing the service specified in the operation. Depending on the values of
these attributes, the following situations can arise:

— If DSX_DUA_CACHE and DSX_USEDSA are both OM_TRUE, the ds_add_entry() and
ds_remove_entry() functions report an error.

The query functions evaluate the service controls DS_DONT_USE_COPY and
DSX_DUAFIRST. If DS_DONT_USE_COPY is OM_FALSE, then the value of
DSX_DUAFIRST determines whether the DUA cache or the DSA is read first. If
DS_DONT_USE_COPY is OM_TRUE, information from the DSA only is read.

— If DSX_DUA_CACHE is OM_TRUE and DSX_USEDSA is OM_FALSE, the
ds_add_entry() and ds_remove_entry() functions, as well as the query functions, go only
to the DUA cache.

— If DSX_DUA_CACHE is OM_FALSE and DSX_USEDSA is OM_TRUE, the
ds_add_entry() and ds_remove_entry() functions, as well as the query functions, go only
to the DSA.

— If DSX_DUA_CACHE and DSX_USEDSA are both OM_FALSE, the ds_add_entry() and
ds_remove_entry() functions, and the query functions, report an error.

All other functions always operate on the currently connected DSA.

DSX_PREFER_ADM_FUNCS
The value of this attribute specifies whether the three following optional attributes are
returned in an operation:

— DSX_A_MASTER_KNOWLEDGE, which contains the Distinguished Name of the DSA
that holds the master copy of an entry

— DSX_A_ACL, which is used for GDS access control

— DS_A_USER_PASSWORD is an attribute of the DS_O_DSA object class, which is used
by the GDS shadowing mechanism.

The DSX_A_MASTER_KNOWLEDGE and DSX_A_ACL attributes are present in every
GDS entry.

When an application requests that all attributes be returned in an operation, it can prevent
any of the above three optional attributes from being returned by setting the value of
DSX_PREFER_ADM_FUNCS to OM_FALSE.

If GDS applications (for example, GDS administration) require these attributes, they are
obtained by setting this service control to OM_TRUE.

Part 2 Application Programming Interfaces 41

Global Directory Service Package X/Open Directory Service API (XDS)

DSX_SIGN_MECHANISM
This attribute is reserved for future use.

DSX_PROT_REQUEST
This attribute is reserved for future use.

Applications can assume that an object of OM class DSX_C_GDS_CONTEXT, created with
default values for all its OM attributes, works with all interface functions. Note that an
application can supply the constant DS_DEFAULT_CONTEXT as the context argument to GDS
functions instead of creating a DSX_C_GDS_CONTEXT OM object with all default values.

The default form of DSX_C_GDS_CONTEXT is described in Table 3-8.

OM Attribute Default Value
Common Arguments
DS_OPERATION_PROGRESS DS_OPERATION_NOT_STARTED
DS_ALIASED_RDNS 0
Service Controls
DS_CHAINING_PROHIB OM_TRUE
DS_DONT_DEREFERENCE_ALIASES OM_FALSE
DS_DONT_USE_COPY OM_TRUE
DS_LOCAL_SCOPE OM_FALSE
DS_PREFER_CHAINING OM_FALSE
DS_PRIORITY DS_MEDIUM
Local Controls
DS_ASYNCHRONOUS OM_FALSE
DS_AUTOMATIC_CONTINUATION OM_TRUE
Private Extensions
DSX_DUAFIRST OM_FALSE
DSX_DONT_STORE OM_TRUE
DSX_NORMAL_CLASS OM_FALSE
DSX_PRIV_CLASS OM_FALSE
DSX_RESIDENT_CLASS OM_FALSE
DSX_USEDSA OM_TRUE
DSX_DUA_CACHE OM_FALSE
DSX_PREFER_ADM_FUNCS OM_FALSE
DSX_SIGN_MECHANISM Absent
DSX_PROT_REQUEST Absent

Table 3-8 Default DSX_C_GDS_CONTEXT

DSX_C_GDS_SESSION

An instance of OM class DSX_C_GDS_SESSION identifies and describes a particular link from
an application program to a GDS DSA. This additional OM class is necessary if the user or
application wants to do either or both of the following:

• specify an authentication mechanism for an authenticated bind

• specify the GDS directory identifier.

DSX_C_GDS_SESSION can be passed as an argument to ds_bind().

42 CAE Specification (1997)

X/Open Directory Service API (XDS) Global Directory Service Package

An instance of this OM class has the OM attributes of its superclasses, OM_C_OBJECT and
DS_C_SESSION, in addition to the OM attributes listed in Table 3-9.

Value Value Value
OM Attribute Value Syntax Length Number Initially

DSX_PASSWORD String(OM_S_OCTET_STRING) — 0 or 1 —
DSX_DIR_ID OM_S_INTEGER — 1 1
DSX_AUTH_MECHANISM Enum(DSX_Auth_Mechanism) — 0-1 —
DSX_AUTH_INFO String(OM_S_OCTET_STRING) — 0-1 —

Table 3-9 OM Attributes of DSX_C_GDS_SESSION

The OM attributes of DSX_C_GDS_SESSION are as follows:

DSX_PASSWORD
The contents of this attribute consist of the password for the user credentials.

DSX_DIR_ID
The contents of this attribute are an identifier for distinguishing between several
configurations of the directory service within a GDS installation. The valid range for this
value is from 1 to 20.

DSX_AUTH_MECHANISM
This attribute, if present, identifies the authentication mechanism that the application
requests. If it is absent or has the value DSX_NONE_AT_ALL, then a ds_bind() without
credentials (anonymous bind) is requested. This attribute can take the following values:

— DSX_NONE_AT_ALL requests that no authentication mechanism be used.

— DSX_DEFAULT requests the default authentication mechanism, DCE authentication
(DSX_DCE_AUTH). The value for DSX_DEFAULT can be modified through the
XDS_DEF_AUTH_MECH environment variable. This variable is checked by XDS
following a ds_initialize() function call.

— DSX_SIMPLE requests simple authentication by using the DS_REQUESTOR and
DSX_PASSWORD attributes of the DSX_C_GDS_SESSION object.

— DSX_SIMPLE_PROT1 is reserved for future use.

— DSX_SIMPLE_PROT2 is reserved for future use.

— DSX_DCE_AUTH requests the use of the DCE authentication mechanism.

— DSX_STRONG is reserved for future use.

If an authentication mechanism is selected that is not currently supported, ds_bind() returns
a [DS_E_NOT_SUPPORTED] error. If the selected authentication mechanism requires the
user’s credentials that cannot be assembled, then a [DS_E_NO_INFO] error is returned.

DSX_AUTH_INFO
This attribute is reserved for future use.

Applications can assume that an object of OM class DSX_C_GDS_SESSION, created with
default values for all its OM attributes, works with all interface functions. Note that an
application can supply the constant DS_DEFAULT_SESSION as the session argument to
ds_bind() to create a default session (instead of creating a DSX_C_GDS_SESSION OM object
with all the default values), having already negotiated the GDS package.

Part 2 Application Programming Interfaces 43

Global Directory Service Package X/Open Directory Service API (XDS)

Table 3-10 describes DS_DEFAULT_SESSION.

OM Attribute Default Value
DS_DSA_ADDRESS Value obtained from the cache or absent
DS_DSA_NAME Value obtained from the cache or absent
DS_FILE_DESCRIPTOR DS_NO_VALID_FILE_DESCRIPTOR
DSX_DIR_ID 1
DSX_AUTH_MECHANISM Absent
DSX_AUTH_INFO Absent

Table 3-10 Default DSX_C_GDS_SESSION

44 CAE Specification (1997)

Chapter 4

X/Open OSI Abstract Data Manipulation (XOM)

This chapter identifies the conformance requirements of the X/Open OSI-Abstract-Data
Manipulation (XOM) API implementations for the DCE. For the full X/Open XOM API, see the
referenced XOM specification.

The XOM specification is the specification of a general purpose API for use in conjunction with
other application-specific APIs, such as XDS.

XOM consists of the creation, examination, modification and deletion of potentially complex
information objects. It presents to the programmer a uniform model of information based on the
concept of classes of similar information objects.

The information objects to which XOM applies are those that arise in OSI — that is, those that
correspond to the types defined by, or by means of, Abstract Syntax Notation One (ASN.1). The
XOM API comprises tools for manipulating ASN.1 objects.

4.1 XOM Conformance
DCE XOM conforms to the XOM specification.

DCE XOM has the following characteristics:

• Multiple workspaces for XDS objects are supported.

• The OM package is supported.

• The om_encode() and om_decode() functions are not supported. The transfer of objects
between workspaces is not envisaged within the DCE environment, and the OM classes used
by the DCE XDS/XOM API are not encodable.

• Translation to local character sets is supported.

Part 2 Application Programming Interfaces 45

XOM Functions X/Open OSI Abstract Data Manipulation (XOM)

4.2 XOM Functions
Table 4-1 lists the functions of the XOM C interface.

Function Description
om_copy() Copies a private object.
om_copy_value () Copies a string between private objects.
om_create() Creates a private object.
om_decode() This function is not supported by the DCE XOM interface,

and returns with an [OM_FUNCTION_DECLINED] error.
om_delete() Deletes a private or service-generated object.
om_encode() This function is not supported by the DCE XOM interface,

and returns with an [OM_FUNCTION_DECLINED] error.
om_get() Gets copies of attribute values from a private object.
om_instance() Tests an object’s class.
om_put() Puts attribute values into a private object.
om_read() Reads a segment of a string in a private object.
om_remove() Removes attribute values from a private object.
om_write() Writes a segment of a string into a private object.

Table 4-1 XOM Interface Functions

The service interface comprises a number of functions, whose purpose and range of capabilities
are described in the following sections.

4.2.1 om_copy()

Creates an independent copy of an existing private object and all its subobjects. The copy is
placed in the original’s workspace, or in another workspace specified by the XOM application.

4.2.2 om_copy_value()

Replaces an existing attribute value, or inserts a new value, into a private object. The value is a
copy of an existing attribute value found in another private object. Both values must be strings.

4.2.3 om_create()

Creates a new private object that is an instance of a particular class. The object can be initialised
with the attribute values specified as initial in its class definition.

The service does not permit the API user explicitly to create instances of all classes, but rather
only those indicated by a package’s definition as having this property.

4.2.4 om_delete()

Deletes a service-generated public object, or makes a private object inaccessible.

46 CAE Specification (1997)

X/Open OSI Abstract Data Manipulation (XOM) XOM Functions

4.2.5 om_get()

Creates a new public object that is an exact but independent copy of an existing private object.
The caller can request certain exclusions, each of which reduces the copy to some part of the
original. Exclusions can be as follows:

• attributes of types other than those specified

• values at positions other than those specified within an attribute

• the values of multi-valued attributes

• copies of (but not handles for) subobjects

• all attribute values (with the result that only an attribute’s presence is indicated by the
return).

The caller can also request that values be converted from one syntax to another before they are
returned (that is, copied).

4.2.6 om_instance()

Determines whether an object is an instance of a particular class. An application can determine
an object’s immediate class simply by inspection. However, this function is useful because it can
be used to find whether an object is an instance of a particular class even if the object is an
instance of a subclass of that class.

4.2.7 om_put()

Places or replaces in a specified private object copies of the attribute values of some other
specified public or private object.

The source values can be inserted:

• before any existing values in the destination attribute

• before the value at a specified position in the destination attribute

• after any existing destination values.

Alternatively, the source values can be made to overwrite all existing destination values, or only
the values at specified positions in the destination attribute.

4.2.8 om_read()

Reads a segment of a value of an attribute of a private object. The value must be a string. The
value can first be converted from one syntax to another. This function enables the caller to read
an arbitrarily long value without requiring that the service place a copy of the entire value in
memory.

Part 2 Application Programming Interfaces 47

XOM Functions X/Open OSI Abstract Data Manipulation (XOM)

4.2.9 om_remove()

Removes and discards particular values of an attribute of a private object. The attribute itself is
removed if no values exist.

4.2.10 om_write()

Writes a segment of a value of an attribute to a private object. The value must be a string. The
segment can first be converted from one syntax to another. The written segment becomes the
value’s last segment, since any elements beyond it are truncated as a result of the call. This
function enables the caller to write an arbitrarily long value without having to place a copy of
the entire value in memory.

The intention of the interface definition is that each function be atomic; that is, that it will either
carry out its assigned task to completion and then report success, or that it fails to carry out even
a part of the task, whereupon it will report an exception. However, the service does not
guarantee that a task is always carried out in full.

48 CAE Specification (1997)

Chapter 5

XDS/XOM Convenience Functions

This chapter describes functions which are available to XDS/XOM programmers to help
simplify and speed up the development of XDS applications. The convenience functions target
two main areas:

• Filling, comparing and extracting objects

• Converting objects to and from local string formats.

5.1 String Handling
The convenience functions provide the ability to specify OM objects in string format by means of
abbreviations.

X.500 attribute types can be specified either as abbreviations or object identifier strings. The
mapping of the attribute abbreviations and object identifier strings to BER encoded object
identifiers and the associated attribute syntaxes is determined by the XOM object information
module.

The convenience functions are able to handle strings with special syntax. The strings can be
broadly classified into the following:

• strings representing GDS attribute information

• strings representing structured GDS attribute information

• strings representing a structured GDS attribute value

• strings representing a Distinguished Name (DN)

• strings representing expressions.

5.2 Convenience Functions
Table 5-1 lists the convenience functions interfaces.

Function Description
dsX_extract_attr_values () Extracts attribute values from an object.
omX_extract() Creates an exact, independent copy of an existing subobject.
omX_fill() Initializes an OM_descriptor structure.
omX_fill_oid () Initializes an OM_descriptor with an object identifier value.
omX_object_to_string () Converts an OM_object to string format.
omX_string_to_object () Converts a string to a new private object.

Table 5-1 Convenience Functions

The purpose and range of capabilities of the convenience functions are described in the
following sections.

Part 2 Application Programming Interfaces 49

Convenience Functions XDS/XOM Convenience Functions

5.2.1 dsX_extract_attr_values()

Extracts the attribute values associated with the specified attribute type from an OM object. The
OM object must be of type DS_C_ATTRIBUTE_LIST or DS_C_ENTRY_INFO. This function
returns an object containing an array of OM descriptors.

5.2.2 omX_extract()

Creates a new public object, that is an exact but independent copy of an existing subobject in a
private object. It is similiar to the om_get() function but includes an additional parameter,
navigation_path, which contains directions to the required object to be extracted. The client can
request certain exclusions, each of which reduces the copy to a part of the original.

5.2.3 omX_fill()

Initializes an OM_descriptor structure with user-supplied values for the structure’s type, syntax,
and value.

5.2.4 omX_fill_oid()

Initializes an OM_descriptor structure with user-supplied values for the structures type and
value. The syntax of the OM_descriptor is always set to
OM_S_OBJECT_IDENTIFIER_STRING.

5.2.5 omX_object_to_string()

Converts an object into a string format. The object can either be a client-generated or service-
generated public or private object.

5.2.6 omX_string_to_object()

Creates a new private object, which is built from the string and class input parameters.

50 CAE Specification (1997)

Chapter 6

Name Service Independent Interface (NSI)

This chapter describes the Name Service Independent Interface (NSI), which is the low-level
RPC-based naming interface that is fully specified in the DCE Remote Procedure Call
specification. This interface utilises the Cell Directory Service (CDS) specified in Part 4.

Part 2 Application Programming Interfaces 51

Interface Functions Name Service Independent Interface (NSI)

6.1 Interface Functions
The tables in this section summarise the NSI interface functions.

Function Description
Exports server binding information to a name
service entry.

rpc_ns_binding_export ()

Creates an import context for importing bindings
from a name service.

rpc_ns_binding_import_begin ()

Deletes a name service import context.rpc_ns_binding_import_done ()
Returns a binding handle for a compatible server
from a name service.

rpc_ns_binding_import_next ()

Returns the name of the entry in the name service
database from which the binding information
referenced by a server binding handle came.

rpc_ns_binding_inq_entry_name()

Creates a look-up context for importing bindings
from a name service.

rpc_ns_binding_lookup_begin ()

Deletes a name service look-up context.rpc_ns_binding_lookup_done ()
Returns a vector of compatible binding handles
from a name service.

rpc_ns_binding_lookup_next ()

Returns a binding handle from a vector of
compatible server binding handles.

rpc_ns_binding_select()

Removes binding information from an entry in a
name service database.

rpc_ns_binding_unexport()

Adds an evaluation routine to an import context.rpc_ns_import_ctx_add_eval ()

Table 6-1 NSI Binding Operations

Applications use the NSI binding operations to export and import bindings to and from name
service server entries. This group includes two suites of *_begin(), *_next() and *_done() routines,
which applications can use to import bindings.

Function Description
Expands the name of a name service entry.rpc_ns_entry_expand_name()
Resolves the cell namespace components of a
name and returns partial results.

rpc_ns_entry_inq_resolution()

Creates an inquiry context for viewing the objects
stored in an entry in a name service database.

rpc_ns_entry_object_inq_begin()

Deletes a name service object inquiry context.rpc_ns_entry_object_inq_done()
Returns an object stored in an entry in a name
service database.

rpc_ns_entry_object_inq_next()

Table 6-2 NSI Entry Operations

Applications use the NSI entry operations to return information about name service entries of
various types.

52 CAE Specification (1997)

Name Service Independent Interface (NSI) Interface Functions

Function Description
Deletes a group attribute.rpc_ns_group_delete()
Adds an entry name to a group; if necessary,
creates the entry.

rpc_ns_group_mbr_add()

Creates an inquiry context for viewing group
members.

rpc_ns_group_mbr_inq_begin()

Deletes the inquiry context for a group.rpc_ns_group_mbr_inq_done()
Returns a member name from a group.rpc_ns_group_mbr_inq_next()
Removes an entry name from a group.rpc_ns_group_mbr_remove()

Table 6-3 NSI Group Operations

Applications use the NSI group operations to manipulate name service group entries.

Function Description
Removes multiple binding handles, or object
UUIDs, from an entry in a name service database.

rpc_ns_mgmt_binding_unexport()

Creates an entry in a name service database.rpc_ns_mgmt_entry_create()
Deletes an entry from a name service database.rpc_ns_mgmt_entry_delete()
Returns the list of interfaces exported to an entry in
a name service database.

rpc_ns_mgmt_entry_inq_if_ids()

Frees a code sets array that has been allocated in
memory.

rpc_ns_mgmt_free_codesets()

Sets a handle’s expiration age for cached copies of
name service data.

rpc_ns_mgmt_handle_set_exp_age ()

Returns an application’s global expiration age for
cached copies of name service data.

rpc_ns_mgmt_inq_exp_age()

Reads the code sets attribute associated with a
server entry in the name service database.

rpc_ns_mgmt_read_codesets()

Removes an attribute from a server entry in the
name server database.

rpc_ns_mgmt_remove_attribute()

Adds an attribute to a server entry in the name
server database.

rpc_ns_mgmt_set_attribute()

Modifies the application’s global expiration age for
cached copies of name service data.

rpc_ns_mgmt_set_exp_age()

Table 6-4 NSI Management Operations

The NSI management operations carry out operations typically done by name service
management applications or only infrequently done by most applications.

Part 2 Application Programming Interfaces 53

Interface Functions Name Service Independent Interface (NSI)

Function Description
Deletes a profile attribute.rpc_ns_profile_delete()
Adds an element to a profile; if necessary,
creates the entry.

rpc_ns_profile_elt_add ()

Creates an inquiry context for viewing the
elements in a profile.

rpc_ns_profile_elt_inq_begin()

Deletes the inquiry context for a profile.rpc_ns_profile_elt_inq_done ()
Returns an element from a profile.rpc_ns_profile_elt_inq_next()
Removes an element from a profile.rpc_ns_profile_elt_remove()

Table 6-5 NSI Profile Operations

Applications use the NSI profile operations to manipulate name service profile entries.

54 CAE Specification (1997)

CAE Specification

Part 3

Global Directory Service

The Open Group

Part 3 Global Directory Service 55

56 CAE Specification (1997)

Chapter 7

X.500 Services and Protocols

The Global Directory Service (GDS) is based on the Directory Service standard known as X.500
and specified in the joint ISO 9594 (1990) standard and CCITT X.500 series of recommendations.
These documents specify both the services and the protocols used in X.500. Associated OSI
services and protocol standards are also referenced. All references are listed below and detailed
in Referenced Documents on page xvii.

Document Date Published
ISO 8326 1987
ISO 8327 1987
ISO 8327-2 CD 1990
ISO 8649 1988
ISO 8650 1988
ISO 8650-2 DIS 1990
ISO 8822 1988
ISO 8823 1988
ISO 8823-2 DIS 1990
ISO 8824 1990
ISO 8825 1990
ISO/IEC 9072-1 1989
ISO/IEC 9072-2 1989
ISO/IEC 9594-1 1990
ISO/IEC 9594-2 1990
ISO/IEC 9594-3 1990
ISO/IEC 9594-4 1990
ISO/IEC 9594-5 1990
ISO/IEC 9594-6 1990
ISO/IEC 9594-7 1990
ISO/IEC 9594-8 1990
ISO/IEC 10021-2 1990
PUB 217 1992
PUB 218 1992
X.249 1992

Part 3 Global Directory Service 57

X.500 Services and Protocols

58 CAE Specification (1997)

Chapter 8

Conformance Statement for GDS

This chapter specifies the requirements for conforming GDS implementations. The specification
is based on the Protocol Implementation Conformance Statement (PICS) Proformas for X.500
and the related protocol stack.

The following definitions apply to the contents of this chapter:

• An item is said to be supported for origination by an implementation if the implementation is
able to generate it under some circumstances (either automatically or as a result of a related
service being required by the user).

• An item is said to be supported for reception if it is correctly interpreted and handled, and,
when required, made available to the user.

Part 3 Global Directory Service 59

Notations and Abbreviations Conformance Statement for GDS

8.1 Notations and Abbreviations
In order to enhance the readability of the tables in this chapter, the following notations and
abbreviations are used:

Status column
This column indicates the requirements of the Open Systems Testing Consortium PICS
Proforma for DAP/DUA and DAP/DSA.

M (mandatory) The operation or protocol element is a mandatory requirement for
static conformance to the referenced capability.

O (optional) The operation is an optional requirement for static conformance to
the referenced capability.

- (not applicable) There is no static requirement associated with the related item.

Support column
This column indicates whether or not the item is supported by GDS, or if the conformance
statement is not applicable. It contains one of the following abbreviations:

Y (supported) The item is supported by GDS.

N (not supported) The item is not supported by GDS.

- (not applicable) The conformance statement is either not applicable or not required.

Value column
The value or range of values in this column shall be implemented where relevant.

Note: The Protocol Element column in the Directory Access Protocol (DAP) tables (or,
similarly, the first column in other tables) sometimes employs indentation to
indicate subordination, as follows:

• (bullet) indicates second level

— (dash) indicates third level

simple indentation indicates fourth and further levels.

Where subordination is indicated, the description of the superior element takes
precedence over the subordinate element.

60 CAE Specification (1997)

Conformance Statement for GDS Directory Protocol Implementation Conformance

8.2 Directory Protocol Implementation Conformance
The Protocol Implementation Conformance Statement Proformas (PICS) for the Global Directory
Service (GDS) consists of descriptions of the capabilities and options that are supported by the
Directory User Agent (DUA) and Directory Service Agent (DSA) of the GDS. The PICS is
designed for conformance test purposes. The PICS used for the X.500 protocols (ISO 9594-5) is
based on the ones available from the Open Systems Testing Consortium (OSTC). Their scope is
the DUA accessing the DSA in a stand-alone environment.

The PICS does not include statements about:

• strong and external credentials

• signing of values

• distributed directory features, namely:

— scoping of referrals

— continuation references.

There are no PICS available for the Directory System Protocol (DSP). The PICS used for upper
OSI layers in X.500 (ACSE, ROSE, Presentation, Session) are based on ISO and CCITT work (see
Chapter 7).

Part 3 Global Directory Service 61

Directory Protocol Implementation Conformance Conformance Statement for GDS

8.2.1 Support of Attribute Syntaxes, Attribute Types and Object Classes

Attribute syntaxes are defined in Table 8-1 for X.520, Table 8-2 for X.402, and Table 8-3 on page
63 for those that are private to GDS.

For explanations of the abbreviations used in the following tables, see Section 8.1 on page 60.

Attribute Syntax Status Support
Undefined Syntax - Y
Distinguished Name O Y
Object Identifier Syntax O Y
Case Exact String O Y
Case Ignore String O Y
Printable String O Y
Numeric String O Y
Case Ignore List O Y
Boolean Syntax - Y
Integer Syntax - Y
Octet String O Y
UTC Time - Y
Telephone Number Syntax O Y
Search Guide Syntax - Y
Postal Address Syntax O Y
Telex Number Syntax O Y
Teletex Terminal Identifier Syntax O Y
FAX Number Syntax O Y
Preferred Delivery Method Syntax O Y
Presentation Address Syntax O Y
Country Name Syntax - Y
Password Syntax - Y
Certificate Syntax - Y
Certificate Pair Syntax - Y
Certificate List Syntax - Y

Table 8-1 X.520 Attribute Syntaxes

Attribute Syntax Support
MHS DL Submit Permission Syntax Y
MHS O/R Address Syntax Y
MHS O/R Name Syntax Y
MHS Preferred Delivery Method Syntax Y

Table 8-2 X.402 Attribute Syntaxes

62 CAE Specification (1997)

Conformance Statement for GDS Directory Protocol Implementation Conformance

Attribute Syntax Support Definition
In addition to authentication, access protection
is implemented for each object at attribute level.

Access Control List Syntax Y

This dummy-syntax may be used for all
attributes whose syntax is not supported by the
DSA. Attribute values are not decoded from
ASN.1 representation to local format. No syntax
checking is performed and no matching is
allowed. This definition is the same as for ANY
in ISO 8824.

ASN1 Y

The valid character set is IA5-String for this
syntax. Matching is as defined for Case Ignore
String.

Case Ignore IA5-String Y

Table 8-3 Private Attribute Syntaxes

Attribute types are defined in Table 8-4 for X.520, Table 8-5 on page 65 for X.402, and Table 8-6 on
page 65 for those that are private to GDS.

The following abbreviations are used in Table 8-4 to Table 8-6 inclusive:

Max Nbr. The maximum number of attribute values the implementation accepts. A U in this
field means unlimited.

The values in this column are the values in the default GDS schema. This schema
can be modified using GDS administration tools.

Max Size The maximum size (in octets) the implementation accepts. The maximum size can
be expressed either as a maximum number of octets (here 180), or as a maximum
number of lines (6 for this standard) of a given maximum of octets per line (here 30
for either T61 String or Printable String).

Table 8-4 X.520 Attribute Types

Standard Implemented
Attribute Type Max Max Max Max Support

Nbr. Size Nbr. Size
System Object-Class U 28 Y
Attribute Types Aliased-Object-Name 1 1 1024 Y

Knowledge-Information U 1024 Y
Labeling Common-Name 64 2 64 Y
Attribute Types Surname 64 2 64 Y

Serial-Number 64 2 64 Y
Geographical Country-Name 1 2† 1 2 Y
Attribute Types Locality-Name 128 2 128 Y

State-or-Province-Name 128 2 128 Y
Street-Address 128 2 128 Y

Organizational Organization-Name 64 2 64 Y
Attribute Types Org.-Unit-Name 64 2 64 Y

Title 64 2 64 Y

Part 3 Global Directory Service 63

Directory Protocol Implementation Conformance Conformance Statement for GDS

Standard Implemented
Attribute Type Max Max Max Max Support

Nbr. Size Nbr. Size
Explanatory Description 1024 U 1024 Y
Attribute Types Search-Guide U 256 Y

Business-Category 2 128 Y
Postal Addressing Postal-Address 6 2 180 Y
Attribute Types T61-String 30 30 30 Y

Printable-String 30 30 30 Y
Postal-Code 40 2 40 Y
Post-Office-Box 40 2 40 Y
Phys.-Deliv.-Office-Name 128 2 128 Y

Telecommunications Telephone-Number 32 U 32 Y
Addressing Telex-Number U 26 Y
Attribute Types Telex-Number 14 14 14 Y

Country-Code 4 4 4 Y
Answerback 8 8 8 Y

TTX-Terminal-Identifier U Y
Teletex-Terminal 1024 1024 Y
Parameters Y

Fax-Telephone-Number U 37 Y
Telephone-Number 32 Y
Parameters Y

X121-Address 15 U 15 Y
Internat.-ISDN-Number 16 U 16 Y
Registered-Address 6 2 180 Y

T61-String 30 30 30 Y
Printable-String 30 30 30 Y

Destination-Indicator 128 2 128 Y
Preferences Preferred-Delivery-Method 1 1 40 Y
Attribute Types
OSI Application Presentation-Address 1 268 Y
Attribute Types Suppl.-Applic.-Context 2 28 Y
Relational Member U 1024 Y
Attribute Types Owner U 1024 Y

Role-Occupant U 1024 Y
See-Also U 1024 Y

Security User-Password 128 2 128 Y
Attribute Types User-Certificate 3024 0 3024 Y

CA-Certificate 3024 0 3024 Y
Authority-Revocation-List 32503 0 32503 Y
Certificate.-Revoc.-List 32503 0 32503 Y
Cross-Certificate-Pair 6056 0 6056 Y

† The size of a Country-Name value must be precisely 2.

64 CAE Specification (1997)

Conformance Statement for GDS Directory Protocol Implementation Conformance

Standard Implemented
Attribute Type Max Max Max Max Support

Nbr. Size Nbr. Size
MHS Attributes MHS-Deliv.-Cont.Length 1 4 1 4 Y

MHS-Deliv.-Cont.-Types 4 28 Y
MHS-Deliverable-EITs 8 28 Y
MHS-DL-Members U 3596 Y
MHS-DL-Submit-Permission U 3604 Y
MHS-Message-Store 1 1 1024 Y
MHS-OR-Address U 2564 Y
MHS-Pref.-Deliv.-Meth. 1 1 40 Y
MHS-Supp.-Autom.-Action 4 28 Y
MHS-Supp.-Content-Types 4 28 Y
MHS-Supp.-Optional-Attr. U 28 Y

Table 8-5 X.402 Attribute Types

Max Max
Attribute Type Syntax Nbr. Size Support

Master-Knowledge Distinguished Name 1 1024 Y
Access-Control-List Access Control List Syntax 1 20500 Y
Time-Stamp UTC Time 1 18 Y
Structure-Rule-Table Printable String U 29 Y
Object-Class-Table Printable String U 397 Y
Attribute-Table Printable String U 101 Y
CDS-Cell Octet String 1 284 Y
CDS-Replica Octet String 1 905 Y
Principal-Name Printable String 1 1024 Y
Authentication-Mechanism Integer Syntax 4 4 Y
Alternate-Address Octet String 1 800 Y

Table 8-6 Private Attribute Types

Part 3 Global Directory Service 65

Directory Protocol Implementation Conformance Conformance Statement for GDS

Object classes are listed in Table 8-7 for X.521, Table 8-8 for X.402, and Table 8-9 for object classes
that are private to GDS.

Object Class Status Support
Top - Y
Alias (or subclass of alias) O Y
Country O Y
Locality O Y
Organization O Y
Organizational-Unit O Y
Person - Y
Organizational-Person O Y
Organizational-Role - Y
Group-of-Names O Y
Residential-Person - Y
Application-Process - Y
Application-Entity - Y
Directory-Service-Agent - Y
Device - Y
Strong-Auth.-User - Y
Certification-Authority - Y

Table 8-7 X.521 Object Classes

Object Class Support
MHS-Distribution-List Y
MHS-Message-Store Y
MHS-Mess-Transfer-Agent Y
MHS-User Y
MHS-User-Agent Y

Table 8-8 X.402 Object Classes

Name Subclass of Must Contain May Contain
GDS-Top Top Master-Knowledge

Access-Control-List
Schema GDS-Top Common-Name Time-Stamp

Structure-Rule-Table
Object-Class-Table
Attribute-Table

Table 8-9 Other Implemented Object Classes

66 CAE Specification (1997)

Conformance Statement for GDS Directory Protocol Implementation Conformance

8.2.2 DAP Protocol Implementation Conformance

Table 8-10 shows the global conformance statement for the Directory Access Protocol (DAP).
Bind, unbind and directory operations are included.

The following tables are also included in the DAP conformance statement:

• Table 8-11

• Table 8-12 on page 68

• Table 8-24 on page 73

• Table 8-25 on page 73

• Table 8-26 on page 74.

For explanations of the abbreviations used in the following tables, see Section 8.1 on page 60.

Operation Status Support
DirectoryBind M Y
DirectoryUnbind M Y
Read M Y
Compare M Y
Abandon M Y
List M Y
Search M Y
AddEntry M Y
RemoveEntry M Y
ModifyEntry M Y
ModifyRDN M Y

Table 8-10 Global Statement of Conformance for DAP

Table 8-11 contains the conformance requirements for elements of the Directory Access Service
beyond or outside the requirements for the DAP.

Status Support
Can the DSA contain Alias entries, and handle
them appropriately?

O Y

Can the DSA contain Replicated entries, and
handle them appropriately?

O Y

(ROSE) Does the DSA support operation Class 2
(asynchronous operations)?

M Y

Does the DSA have the capability to act as a first
level DSA?

- Y

Table 8-11 Various Extra Requirements

Part 3 Global Directory Service 67

Directory Protocol Implementation Conformance Conformance Statement for GDS

Status Support
Does the DSA support Signing of:

arguments - N
results - N

Table 8-12 Requirements for Signing

DUA DSA
Protocol Element Transmit Receive Transmit Receive

Status Support Status Support Status Support Status Support

DirectoryBind Argument M Y - - - - M Y
• credentials O Y - - - - O Y

- simple O Y - - - - O Y
name M Y - - - - M Y
validity - N - - - - - N
time1 - N - - - - - N
time2 - N - - - - - N
random1 - N - - - - - N
random2 - N - - - - - N
password O Y - - - - O Y

- strong - N - - - - - N
- external procedure - N - - - - - N

• versions M Y - - - - M Y
DirectoryBind Results - - M Y M Y - -

• credentials - - O Y O Y - -
- simple - - O Y O Y - -

name - - M Y M Y - -
validity - - - N - N - -
time1 - - - N - N - -
time2 - - - N - N - -
random1 - - - N - N - -
random2 - - - N - N - -
password - - O Y O N - -

- strong - - - N - N - -
- external procedure - - - N - N - -

• versions - - M Y M Y - -
DirectoryBind Error - - M Y M Y - -

• versions - - O Y O Y - -
• Service-Error - - M Y M Y - -

- unavailable - - M Y M Y - -
• Security-Error - - M Y M Y - -

- inappropriate-authentication - - M Y M Y - -
- invalid-credentials - - M Y M Y - -

Table 8-13 Requirements on DirectoryBind

68 CAE Specification (1997)

Conformance Statement for GDS Directory Protocol Implementation Conformance

DUA DSA
Protocol Element Transmit Receive Transmit Receive

Status Support Status Support Status Support Status Support

DirectoryUnbind Argument - - - - - - - -
DirectoryUnbind Result - - - - - - - -

Table 8-14 Requirements on DirectoryUnbind

No conformance requirements are specified for DirectoryUnbind.

Directory Operations

DUA DSA
Protocol Element Transmit Receive Transmit Receive

Status Support Status Support Status Support Status Support

Read Argument M Y - - - - M Y
• Object M Y - - - - M Y
• Entry-Information-Selection M Y - - - - M Y
• Common Arguments M Y - - - - M Y

Read Result - - M Y M Y - -
• Entry-Information - - M Y M Y - -

- Object-Name - - M Y M Y - -
- From-Entry - - O Y O Y - -
- SET OF CHOICE - - M Y M Y - -

Attribute-Type - - M Y M Y - -
Attribute - - M Y M Y - -

• Common-Results - - M Y M Y - -

Table 8-15 Requirements on the Read Operation

DUA DSA
Protocol Element Transmit Receive Transmit Receive

Status Support Status Support Status Support Status Support

Compare Argument M Y - - - - M Y
• Object M Y - - - - M Y
• Purported M Y - - - - M Y
• Common Arguments M Y - - - - M Y

Compare Result - - M Y M Y - -
• Object-Name - - M Y M Y - -
• Matched - - M Y M Y - -
• From-Entry - - M Y M Y - -
• Common-Results - - M Y M Y - -

Table 8-16 Requirements on the Compare Operation

Part 3 Global Directory Service 69

Directory Protocol Implementation Conformance Conformance Statement for GDS

DUA DSA
Protocol Element Transmit Receive Transmit Receive Comment

Status Support Status Suppor. Status Support Status Support

Abandon Argument M N - - - - M Y -
• Invoke-ID M N - - - - M Y -

The DSA
returns an
Abandon-
Failed error
with
Problem
cannot-
abandon.

Abandon Result - - M N M Y - -

Table 8-17 Requirements on the Abandon Operation

DUA DSA
Protocol Element Transmit Receive Transmit Receive

Status Support Status Support Status Support Status Support

List Argument M Y - - - - M Y
• Object M Y - - - - M Y
• Common Arguments M Y - - - - M Y

List Result - - O Y O Y - -
• List-Info - - M Y M Y - -

- Object-Name - - M Y M Y - -
- Subordinates - - M Y M Y - -

RDN - - M Y M Y - -
Alias-Entry - - O Y O Y - -
From-Entry - - O Y O Y - -

- Partial-Outcome-Qualifier - - M Y M Y - -
Limit-Problem - - M Y M Y - -

time-limit-exceeded - - O Y O Y - -
size-limit-exceeded - - O Y O Y - -
administrative-limit-exceeded - - O Y O Y - -

Unexplored - - - Y - Y - -
Unavailable-Crit-Ext - - - N - N - -

- Common-Results - - M Y M Y - -
• Uncorrelated-List-Info - - O N O N - -

Table 8-18 Requirements on the List Operation

70 CAE Specification (1997)

Conformance Statement for GDS Directory Protocol Implementation Conformance

DUA DSA
Protocol Element Transmit Receive Transmit Receive

Status Support Status Support Status Support Status Support

Search Argument M Y - - - - M Y
• Object M Y - - - - M Y
• Subset M Y - - - - M Y
• Filter M Y - - - - M Y

- Filter-Item M Y - - - - M Y
equality M Y - - - - M Y
substrings M Y - - - - M Y
greater-or-equal M Y - - - - M Y
less-or-equal M Y - - - - M Y
present M Y - - - - M Y
approximate-match M Y - - - - M Y

- and M Y - - - - M Y
- or M Y - - - - M Y
- not M Y - - - - M Y

• Search-Aliases M Y - - - - M Y
• Selection M Y - - - - M Y
• Common Arguments M Y - - - - M Y

Search Result - - M Y M Y - -
• Search-Info - - M Y M Y - -

- Object-Name - - M Y M Y - -
- Entries - - M Y M Y - -

SET OF Entry-Information - - M Y M Y - -
Object-Name - - O Y O Y - -
From-Entry - - O Y O Y - -
SET OF CHOICE - - M Y M Y - -

Attribute-Type - - M Y M Y - -
Attribute - - M Y M Y - -

- Partial-Outcome-Qualifier - - M Y M Y - -
Limit-Problem - - M Y M Y - -
Unexplored - - - Y - Y - -
Unavailable-Crit-Ext - - - N - N - -

- Common-Results - - M Y M Y - -
• Uncorrelated-Search-Info - - - N - N - -

Table 8-19 Requirements on the Search Operation

DUA DSA
Protocol Element Transmit Receive Transmit Receive

Status Support Status Support Status Support Status Support

AddEntry Argument M Y - - - - M Y
• Object M Y - - - - M Y
• Entry M Y - - - - M Y
• Common Arguments M Y - - - - M Y

AddEntry Result M Y - - - - M Y

Table 8-20 Requirements on the AddEntry Operation

Part 3 Global Directory Service 71

Directory Protocol Implementation Conformance Conformance Statement for GDS

DUA DSA
Protocol Element Transmit Receive Transmit Receive

Status Support Status Support Status Support Status Support

RemoveEntry Argument M Y - - - - M Y
• Object M Y - - - - M Y
• Common Arguments M Y - - - - M Y

RemoveEntry Result M Y - - - - M Y

Table 8-21 Requirements on the RemoveEntry Operation

DUA DSA
Protocol Element Transmit Receive Transmit Receive

Status Support Status Support Status Support Status Support

ModifyEntry Argument M Y - - - - M Y
• Object M Y - - - - M Y
• Changes M Y - - - - M Y

- ADD_ATTRIBUTE M Y - - - - M Y
- REMOVE_ATTRIBUTE M Y - - - - M Y
- ADD_VALUES M Y - - - - M Y
- REMOVE_VALUES M Y - - - - M Y

• Common Arguments M Y - - - - M Y
ModifyEntry Result M Y - - - - M Y

Table 8-22 Requirements on the ModifyEntry Operation

DUA DSA
Protocol Element Transmit Receive Transmit Receive

Status Support Status Support Status Support Status Support

ModifyRDN Argument M Y - - - - M Y
• Object M Y - - - - M Y
• New-RDN M Y - - - - M Y
• Delete-Old-RDN M Y - - - - M Y
• Common Arguments M Y - - - - M Y

ModifyRDN Result M Y - - - - M Y

Table 8-23 Requirements on the ModifyRDN Operation

72 CAE Specification (1997)

Conformance Statement for GDS Directory Protocol Implementation Conformance

Common Elements

DUA DSA
Protocol Element Transmit Receive Transmit Receive Comment

Status Support Status Support Status Support Status Support

Service Controls O Y - - - - O Y -
• options O Y - - - - O Y -

- Prefer-Chaining - Y - - - - - Y -
- Chaining-Prohib - Y - - - - - Y -
- Local-Scope - Y - - - - - Y -
- Dont-Use-Copy - Y - - - - - Y -
- Dont-Dereference-Aliases M Y - - - - M Y -

Accepted
and ignored

• Priority - Y - - - - - Y

• Time-Limit O Y - - - - O Y -
• Size-Limit O Y - - - - O Y -
• Scope-Of-Referral - Y - - - - - Y -

Security Parameters - N - - - - - N -
• Cert-Path - - - - - - - - -
• Name - - - - - - - - -
• Time - - - - - - - - -
• Random - - - - - - - - -
• Target - - - - - - - - -

Accepted
and ignored

Requestor O N - - - - O Y

Operation-Progress - Y - - - - - Y -
Aliased-RDNs - Y - - - - - Y -
Extensions - N - - - - - N -

Table 8-24 Requirements on Elements in Common Arguments

DUA DSA
Protocol Element Transmit Receive Transmit Receive

Status Support Status Support Status Support Status Support

Security Parameters - - - N - N - -
• Cert-Path - - - - - - - -
• Name - - - - - - - -
• Time - - - - - - - -
• Random - - - - - - - -
• Target - - - - - - - -

Performer - - O N O N - -
Alias-Dereferenced - - O Y O Y - -

Table 8-25 Requirements on Elements in Common-Results

Part 3 Global Directory Service 73

Directory Protocol Implementation Conformance Conformance Statement for GDS

DUA DSA
Protocol Element Transmit Receive Transmit Receive

Status Support Status Support Status Support Status Support

Attribute-Error - - M Y M Y - -
• Object-Name - - M Y M Y - -
• Problems - - M Y M Y - -

- Problem - - M Y M Y - -
- Attribute-Type - - M Y M Y - -
- Attribute-Value - - M Y M Y - -

Name-Error - - M Y M Y - -
• Problem - - M Y M Y - -
• Matched - - M Y M Y - -

Referral - - M Y M Y - -
• Candidate - - M Y M Y - -

Abandoned - - M N M Y - -
Security-Error - - M Y M Y - -

• Problem - - M Y M Y - -
Service-Error - - M Y M Y - -

• Problem - - M Y M Y - -
- busy - - M Y M Y - -
- unavailable - - M Y M Y - -
- unwilling-to-perform - - M Y M Y - -
- chaining-required - - - N - N - -
- unable-to-proceed - - - Y - Y - -
- invalid-reference - - - Y - Y - -
- time-limit-exceeded - - O Y O Y - -
- administrative-limit-exceeded - - - Y - Y - -
- loop-detected - - - Y - Y - -
- unavailable-critical-extension - - - Y - Y - -
- out-of-scope - - - Y - Y - -
- dit-error - - - N - N - -

Abandon-Failed - - M N M Y - -
• Problem - - M - M Y - -

- no-such-operation - - M - M N - -
- too-late - - M - M N - -
- cannot-abandon - - M - M Y - -

• Operation - - M - M Y - -
Update-Error - - M Y M Y - -

• Problem - - M Y M Y - -
- naming-violation - - O Y O Y - -
- object-class-violation - - O Y O Y - -
- not-allowed-on-non-leaf - - O Y O Y - -
- entry-already-exists - - O Y O Y - -
- affects-multiple-DSAs - - - Y - Y - -
- object-class-modification-prohibited - - O Y O Y - -

Table 8-26 Requirements on Errors and Parameters

74 CAE Specification (1997)

Conformance Statement for GDS Directory Protocol Implementation Conformance

8.2.3 DSP Protocol Implementation Conformance

No PICS are available for the Directory System Protocol (DSP). GDS supports the DSP protocol
as defined in ISO 9594-5.

8.2.4 ACSE Protocol Implementation Conformance

Table 8-27 to Table 8-29 on page 76 inclusive contain the PICS for the Association Control Service
Element (ACSE).

For explanations of the abbreviations used in these tables, see Section 8.1 on page 60.

Protocol Mechanism Status Support
Normal-Mode O Y
X.410-1984-Mode O N
Rules-For-Extensibility M Y
Supports-Operation-Of-Session-V2 O Y

Table 8-27 Requirements for Supported Functions

Transmit Receive
APDU Status Support Status Support

A-associate-request APDU (AARQ) M Y M Y
A-associate-response APDU (AARE) M Y M Y
A-release-request APDU (RLRQ) M Y M Y
A-release-response APDU (RLRE) M Y M Y
A-abort APDU (ABRT) M Y M Y

Table 8-28 Requirements for Normal Mode APDUs

Part 3 Global Directory Service 75

Directory Protocol Implementation Conformance Conformance Statement for GDS

Transmit Receive
APDU Parameter Status Support Status Support Value & Comment

AARQ
• Protocol-Version M Y M Y -
• Application-Context-Name M Y M Y -
• Calling-AP-Title O Y O Y -
• Calling-AE-Qualifier O N O N accepted
• Calling-AP-Invokation-Identifier O N O N accepted
• Calling-AE-Invokation-Identifier O N O N accepted
• Called-AP-Title O Y O Y -
• Called-AE-Qualifier O N O N accepted
• Called-AP-Invokation-Identifier O N O N accepted
• Called-AE-Invokation-Identifier O N O N accepted
• Implementation-Information O N M N accepted
• User-Information M Y M Y -

AARE
• Protocol-Version M Y M Y -
• Application-Context-Name M Y M Y -
• Responding-AP-Title O Y O Y -
• Responding-AE-Qualifier O N O N accepted
• Responding-AP-Invokation-Identifier O N O N accepted
• Responding-AE-Invokation-Identifier O N O N accepted
• Result M Y M Y -
• Result-Source-Diagnostic M Y M Y -
• Implementation-Information O N M N accepted
• User-Information M Y M Y -

RLRQ
Transmit specify
Reason = normal
(0)

• Reason M Y M Y

• User-Information M Y M Y -
RLRE

Transmit specify
Reason = normal
(0)

• Reason M Y M Y

• User-Information M Y M Y -
ABRT

• Abort-Source M Y M Y -
• User-Information O Y O Y -

Table 8-29 Requirements for Normal Mode Parameters

76 CAE Specification (1997)

Conformance Statement for GDS Directory Protocol Implementation Conformance

8.2.5 ROSE Protocol Implementation Conformance

Table 8-30 to Table 8-32 on page 78 inclusive contain the PICS for the Remote Operation Service
Elements (ROSE).

For explanations of the abbreviations used in the following tables, see Section 8.1 on page 60.

Class Code Support
Association Class for DAP 1 Y
Association Class for DSP 3 Y
Operation Class for DAP 1 or 2 Y
Operation Class for DSP 2 Y

Table 8-30 Requirements for Association and Operation Class

Transmit Receive
APDU Status Support Status Support

RO-Invoke APDU (ROIV) M Y M Y
RO-Result APDU (RORS) M Y M Y
RO-Error APDU (ROER) M Y M Y
RO-Reject APDU (RORJ) M Y M Y

Table 8-31 Requirements for Supported APDUs

Part 3 Global Directory Service 77

Directory Protocol Implementation Conformance Conformance Statement for GDS

Transmit Receive
APDU Parameter Status Support Status Support Value & Comment

ROIV
• Invoke-ID M Y M Y -

The Directory does not
use the Linked-ID
parameter.

• Linked-ID M Y M Y

• Operation-Value M Y M Y -
Transmit Argument is
Directory Operation
Argument.

• Argument O Y O Y

RORS
• Invoke-ID M Y M Y -
• Operation-Value O Y O Y -

Transmit Result is
Directory Operation
Result.

• Result O Y O Y

ROER
• Invoke-ID M Y M Y -
• Error-Value M Y M Y -
• Error-Parameter O Y O Y -

RORJ
• Invoke-ID M Y M Y -

- Invoke-ID-Type O Y M Y -
- NULL M Y M Y -

• Problem (choice of) M Y M Y -
- General-Problem M Y M Y All values (0-2) supported.
- Invoke-Problem M Y M Y All values (0-7) supported.
- Return-Result-Problem O Y M Y All values (0-2) supported.
- Return-Error-Problem O Y M Y All values (0-4) supported.

Table 8-32 Requirements for Supported Parameters

78 CAE Specification (1997)

Conformance Statement for GDS Directory Protocol Implementation Conformance

8.2.6 Presentation Service Elements Protocol Implementation Conformance

Table 8-33 to Table 8-36 on page 80 inclusive contain the PICS for the Presentation Service
Elements.

For explanations of the abbreviations used in the following tables, see Section 8.1 on page 60.

Mode Status Support
Normal O Y
X.410-1984 O N

Table 8-33 Requirements for Supported Protocol Mechanisms

Functional Unit Status Support Comment
Kernel M Y -
Presentation-Context-Management O N Not used by X.500.
Presentation-Context-Restoration - N Not used by X.500.

Table 8-34 Requirements for Supported Functional Units

Transmit Receive
PPDU Status Support Status Support Comment
CP M Y M Y -
CPA M Y M Y -
CPR M Y M Y -
ARU M Y M Y -
ARP M Y M Y -
TD M Y M Y -
TE - - Not used by X.500.
TTD - - Not used by X.500.
TC - - Not used by X.500.
TCC - - Not used by X.500.

Table 8-35 Requirements for PPDUs (Kernel Function Unit)

Part 3 Global Directory Service 79

Directory Protocol Implementation Conformance Conformance Statement for GDS

Transmit Receive
PPDU Parameter Status Support Status Support Value & Comment

CP
• Calling-Presentation-Selector O Y M Y -
• Called-Presentation-Selector O Y M Y -
• Mode-Selector M Y M Y normal mode

abstract-syntax-
names, transfer-
syntax-names (up
to five names)

• Presentation-Context-Definition-List O Y M Y

• Default-Context-Name O N M Y -
• Protocol-Version O Y M Y -

kernel, In Transmit
all bits = 0

• Presentation-Requirements O N M Y

• User-Session-Requirements O N M Y kernel, duplex
• User-Data O Y M Y -

CPA
• Responding-Presentation-Selector O Y M Y -
• Mode-Selector M Y M Y normal mode
• Presentation-Context-Definition-Result-List O Y M Y -
• Protocol-Version O Y M Y -

kernel, In Transmit
all bits = 0

• Presentation-Requirements O Y M Y

• User-Session-Requirements O N M Y kernel, duplex
• User-Data O Y M Y -

CPR
• Response-Presentation-Selector O Y M Y -
• Presentation-Context-Definition-Result-List O Y M Y -
• Default-Context-Result O Y M Y provider rejection
• Protocol-Version O Y M Y -
• Provider-Reason O Y M Y -
• User-Data O Y M Y -

ARU
• Presentation-Context-Identifier-List O Y M Y -
• User-Data O Y M Y -

ARP
• Provider-Reason O Y M Y -
• Event-Identifier O Y M Y -

TD
• User-Data O Y M Y -

Table 8-36 Requirements for PPDU-Parameters (Kernel Function Unit)

80 CAE Specification (1997)

Conformance Statement for GDS Directory Protocol Implementation Conformance

8.2.7 Session Service Elements Protocol Implementation Conformance

Table 8-37 to Table 8-40 on page 82 inclusive contain the PICS for the Session Service Elements.

For explanations of the abbreviations used in the following tables, see Section 8.1 on page 60.

Functional Unit Status Support Comment
Kernel M Y -
Negotiated-Release O N Not used by X.500
Half-Duplex O N Not used by X.500
Duplex O Y -
Expedited-Data O N Not used by X.500
Typed-Data O N Not used by X.500
Capability-Data-Exchange O N Not used by X.500
Minor-Synchronize O N Not used by X.500
Symmetric-Synchronize O N Not used by X.500
Major-Synchronize O N Not used by X.500
Resynchronize O N Not used by X.500
Exceptions O N Not used by X.500
Activity-Management O N Not used by X.500

Table 8-37 Requirements for Supported Functional Units

Protocol Mechanism Status Support
Use of transport expedited data (Extended
Control Quality of Service)

O N

Refuse of transport connection (sending) O N
Refuse of transport connection (receiving) O Y
Basic concatenation M Y
Extended concatenation (sending) O N
Extended concatenation (receiving) O N
Segmenting (sending) O N
Segmenting (receiving) O N
Segmenting for unlimited user data (sending) O N
Segmenting for unlimited user data (receiving) O N

Table 8-38 Requirements for Supported Protocol Mechanisms

Part 3 Global Directory Service 81

Directory Protocol Implementation Conformance Conformance Statement for GDS

Transmit Receive
SPDU Status Support Status Support Comment

Connect SPDU (CN) M Y M Y -
Accept SPDU (AC) M Y M Y -
Refuse SPDU (RF) M Y M Y -
Finish SPDU (FN) O Y M Y -
Disconnect SPDU (DN) O Y O Y -
Abort SPDU (AB) M Y M Y -
Data Transfer SPDU (DT) O Y M Y -
Connect Data Overflow SPDU (CDO) O - O - Not used by X.500.
Overflow Accept SPDU (CDO) O - O - Not used by X.500.
Abort Accept SPDU (CDO) O - O - Not used by X.500.
Prepare SPDU (CDO) - - - - Not used by X.500.

Table 8-39 Requirements for SPDUs (Kernel Function Unit)

Table 8-40 Requirements for SPDU Parameters (Kernel Function Unit)

Transmit Receive
SPDU Parameter Status Support Status Support Value & Comment

Connect
• Connection-Identifier O Y M Y -

- PGI-Default (absent) O Y M Y -
- PGI-Default (empty) O Y M Y -
- Calling-SS-User-Reference O Y M Y -
- Common-Reference O Y M Y -
- Additional-Reference-Information O Y M Y -

• Connect-Accept-Item O Y M Y -
- PGI-Default (absent) O Y M Y -
- PGI-Default (empty) O Y M Y -
- PGI-Default (not empty) O Y M Y -
- Protocol-Options M Y M Y -
- TSDU-Maximum-Size O N M Y -
- Version-Number M Y M Y -
- Initial-Serial-Number O Y M Y -
- Token-Setting-Item O Y M Y -
- Second-Initial-Serial-Number - N - N -

• Session-User-Requirements O Y M Y -
• Calling-SSAP-Identifier O Y M Y -
• Called-SSAP-Identifier O Y M Y -

max size is 512
octets

• User-Data O Y M Y

• Data-Overflow O N M Y -
max size is 10240
octets

• Extended-User-Data O N M Y

82 CAE Specification (1997)

Conformance Statement for GDS Directory Protocol Implementation Conformance

Transmit Receive
SPDU Parameter Status Support Status Support Value & Comment

Accept
• Connection-Identifier O Y M Y -

- PGI-Default (absent) O Y M Y -
- PGI-Default (empty) O Y M Y -
- Called-SS-User-Reference O Y M Y -
- Common-Reference O Y M Y -
- Additional-Reference-Information O Y M Y -

• Connect-Accept-Item O Y M Y -
- PGI-Default (absent) O Y M Y -
- PGI-Default (empty) O Y M Y -
- PGI-Default (not empty) O Y M Y -
- Protocol-Options M Y M Y -
- TSDU-Maximum-Size O N M Y -
- Version-Number M Y M Y -
- Initial-Serial-Number O Y M Y -
- Token-Setting-Item O Y M Y -
- Second-Initial-Serial-Number - N - N -

• Token-Item O Y M Y -
• Session-User-Requirements O Y M Y -
• Calling-SSAP-Identifier O Y O Y -
• Called-SSAP-Identifier O Y M Y -

max size is 10240
octets

• User-Data O Y M Y

• Enclosure-Item - N - N -
Refuse

• Connection-Identifier O Y M Y -
- PGI-Default (absent) O Y M Y -
- PGI-Default (empty) O Y M Y -
- Called-SS-User-Reference O Y M Y -
- Common-Reference O Y M Y -
- Additional-Reference-Information O Y M Y -

• Transport-Disconnect O N M Y -
• Session-User-Requirements O Y M Y -
• Version-Number O Y M Y -
• Reason-Code M Y M Y -
• Enclosure-Item - N - N -

Finish
• Transport-Disconnect O N M Y -

max size is 10240
octets

• User-Data O Y M Y

• Enclosure-Item - N - N -
Disconnect

max size is 10240
octets

• User-Data O Y M Y

• Enclosure-Item - N - N -

Part 3 Global Directory Service 83

Directory Protocol Implementation Conformance Conformance Statement for GDS

Transmit Receive
SPDU Parameter Status Support Status Support Value & Comment

Abort
• Transport-Disconnect M Y M Y -
• Reflect-Parameter-Values O Y M Y -

max size is 10240
octets

• User-Data O Y M Y

• Enclosure-Item - N - N -
Data Transfer

• Enclosure-Item - N - N -
• User-Information-Field O Y M Y -

84 CAE Specification (1997)

CAE Specification

Part 4

Cell Directory Service

The Open Group

Part 4 Cell Directory Service 85

86 CAE Specification (1997)

Chapter 9

CDS Service Definition

This chapter contains the abstract service definition of the Cell Directory Service (CDS).

The scope of CDS within the DCE Directory Service is best described by a cell. CDS consists of a
set of facilities that control the directory service entries within the cell of a cell name space.

The common semantics and syntax rules for cell name spaces are defined in Chapter 1.
Conformance to this CDS specification includes conformance to the Directory Service
Information Model specified in Chapter 1.

Implementations that conform to this specification interoperate according to the following rule:
any conforming CDS clerk implementation interoperates with any conforming CDS server or
GDA implementations, and any conforming CDS server implementations interoperate.

9.1 Name Syntax
The syntax for names presented to CDS is specified in Section 1.3 on page 11. Before names are
processed by CDS, they are converted to their canonical form as specified in Canonicalisation of
Names on page 14.

The canonical string representation of names defines the wire format of both the atomic name
component and the composite name. Its encodings are specified in the data structures
cds_Name_t and cds_FullName_t in Section 11.2.2 on page 125 and Section 11.2.3 on page 125
respectively.

9.1.1 Filters for Enumerate Operations

The general matching rules for names are specified in Section 1.3.4 on page 17.

If a component of a name passed as input to a CDS enumeration operation contains one of the
wildcard metacharacters (that is, unescaped * (asterisk) or ? (question mark)), and if this
component is the terminal component of a CDS name, then the following filter algorithm is
applied to the component:

• The parent directory of the wildcarded name component is searched for any matching entry
name (either object, child pointer or soft link), by:

— substituting any occurrence of a ? (question mark) metacharacter with exactly one
character of the entry name

— substituting any occurrence of a * (asterisk) metacharacter with a substring (zero or
multiple characters) of the entry name.

• The complete set of entry names that pass the filter is said to be matched.

Part 4 Cell Directory Service 87

Functional Model CDS Service Definition

9.2 Functional Model
The functional model of CDS, as described in this chapter, includes the modular composition of
CDS, its integration with other DCE services, a list of the facilities that are excluded from this
specification, and a description of the security model of CDS.

Implementations intended to comply with the X/Open DCE shall adhere to this specified
functional model. The internal design of facilities may vary, but they shall provide the defined
semantics to ensure interoperability.

CDS is functionally divided into a number of major modules:

• CDS client

• CDS clerk

• CDS server, including the Transaction Agent and Clearinghouses.

Figure 9-1 illustrates the relationship between these modules and shows the appropriate
communication protocols. The Global Directory Agent, although not directly part of CDS, is also
accessed by the CDS clerk and shown in the figure.

CDS Server n+m

Clearing-

CDS Client

CDS Clerk

Transaction
Agent

Transaction
Agent

Clearing-
househouse

Transaction Protocol

Transaction Protocol

Transaction Protocol

Access to

Global Namespace
Agent

Directory

Global

Application Programming Interface

Solicitation Protocol

CDS Server n CDS Server n+1

Figure 9-1 CDS Functional Modules

The following sections summarise the functions of these CDS modules. For further information,
see Section 9.4 on page 106 for CDS services specifications, Chapter 10 for the protocol
specification and Section 2.2 on page 21 for the Global Directory Agent specification.

88 CAE Specification (1997)

CDS Service Definition Functional Model

Note: The Global Directory Agent provides for inter-cell operations by connecting the cell
name spaces to the global name space and, in the case of cell hierarchies, to other cell
name spaces within the hierarchy. It does not provide generic access to GDS. For
information about accessing and manipulating the X.500 GDS and the X.500
conformance statements refer to Chapter 3, Chapter 4 and Part 3, Global Directory
Service.

9.2.1 CDS Client and Clerk

A client accesses CDS through the client application programming interface. This interface is
provided by a CDS module called clerk.

Note: The immediate API to CDS is not further specified in X/Open DCE. A higher-level
programming interface, the X/Open Directory Service (XDS) interface, is specified in
Chapter 3.

The clerk is the only CDS module that must reside on all DCE nodes. The clerk ascertains an
appropriate CDS server to process a request, and then invokes the clerk/server operations of the
transaction protocol to communicate to as many CDS servers (including the Global Directory
Agent) as necessary to satisfy the request. The clerk presents the client’s login context to the RPC
interface.

Clerks are responsible for initially learning about at least one CDS server that is able either to
process a complete request or provide information (referrals) about other candidate CDS servers.
This initial information is obtained via the solicitation protocol. CDS servers periodically advertise
their availability using the RPC broadcast execution semantic. Clerks listen for these CDS server
advertisements and thereby learn of the existence of servers and name spaces.

To improve responsiveness when CDS is initialised, a clerk is also permitted (although not
required) to issue a single solicitation request (using the RPC broadcast execution semantic) to
provoke announcements from CDS servers that may be waiting to advertise.

In order to maximise performance, it is likely that a clerk implementation maintains a cache of
recently accessed information; the algorithm for managing such a cache is not specified in this
document. Also, the clerk may execute a number of management operations to initialise itself;
these operations are not further specified in this document.

9.2.2 CDS Server

Each CDS consists of one or multiple instances of servers that provide the services requested by
clerks. CDS servers communicate with clerks and other servers via the transaction protocol.

The transaction agent is the main CDS server module. It processes the CDS server side of the
transaction protocol, performing operations requested by clients. The transaction agent is also
responsible for coordinating the creation, deletion and modification of directories, using the
server-to-server operations of the transaction protocol for communicating with other transaction
agents, as necessary. In order to perform these maintenance operations, the server accesses other
servers in a manner identical to the way clients access servers — namely, through a clerk. Thus,
each CDS server logically contains a clerk which provides all the functions of the normal client
clerk, plus a number of special functions relevant only to server-to-server communication.

Part 4 Cell Directory Service 89

Functional Model CDS Service Definition

The CDS server supports the solicitation protocol specified in Chapter 10. Servers send
advertisements under the following circumstances:

• when the advertisement timer expires

• when a solicitation request is received

• when the server is enabled.

CDS stores name space data in a partitioned and possibly partially replicated database. The
database is partitioned because parts of the name space are stored in different locations. The
database may be partially replicated because parts of the name space may be simultaneously
stored in multiple locations. The unit of both partitioning and replication is the directory; a
collection of directories stored on a particular node is called a clearinghouse. Clearinghouses are
integral to CDS servers. Partitioning is accomplished by controlling which directories are stored
in which clearinghouse. Replication is accomplished by storing a directory in more than one
clearinghouse.

attributes that are specified in All clearinghouses are catalogued in object entries in the cell root
directory. Clearinghouses thus have names so that clients may conveniently refer to them, and
so that CDS itself can find clearinghouses by looking up their names in the name space.
Information which controls the operation of the clearinghouse as a whole is stored in a pseudo-
directory entry in the clearinghouse. This clearinghouse pseudo-directory contains the same
attributes as a normal directory, as well as a number of additional Section 9.3 on page 96.

Any copy of a directory (including the original copy) stored in a particular clearinghouse is
called a replica. In order to simplify the algorithms for name creation and general name space
maintenance, one of the replicas of a directory must be designated to be the master replica.

Conforming CDS implementations may provide replication services that maintain other types of
replicas (such as read-only replicas). These services must ensure that the contents of all replicas
of a directory remain consistent.

Further control functions of the CDS server, such as the overall coordination of the server
operation (bringing clearinghouses on line, and so on) are implementation-specific and thus not
specified in this document.

9.2.3 Global Directory Agent

The Global Directory Agent (GDA) handles CDS clerk requests for CDS entries that are not local
to the requesting cell (that is, any global compound name that does not match the name of the
local cell). The GDA returns an updated progress record whose replica pointers (on successful
GDA look-up operations) contain information about the appropriate clearinghouses in the
targeted foreign cell. This is true as well if the targeted foreign cell is, in fact, another cell within
a cell hierarchy.

Any CDS clerk may treat the GDA as a special-case server which it invokes to resolve the global
compound name of an unresolved fully-qualified name. The fact that a replica set returned by a
CDS server identifies a set of GDAs rather than CDS servers is transparent to the clerk. In the
case mentioned here, the global root /... may be returned in the progress record as the resolved
part of the name, and the remaining composite name as the unresolved part of the name.

90 CAE Specification (1997)

CDS Service Definition Functional Model

This behaviour is based on the assumption that the clerk has been referred to, or a priori knows
of, a CDS server that holds a replica of the cell’s root directory. The directory entry is referenced
by the cell’s root directory via a GDA pointer (instead of a child pointer entry) containing a set-
valued attribute CDS_GDAPointers. Each value in CDS_GDAPointers identifies a GDA.5

Progress records returned by the GDA only return partial results; the PR_done flag in the
progress record always has the value FALSE.

The status returned by the GDA can be one of the following:

[CDS_SUCCESS]
If the unresolved name (residual) in the progress record is not empty, the client’s operation
request can proceed to resolve it.

If the unresolved name in the progress record becomes empty, and the type is not
PR_directory, it should be treated as [CDS_UNKNOWNENTRY], as all cell names must be
directories.

[CDS_UNKNOWNENTRY]
The requested entry could not be found (for example, DNS returned error status
[NXDOMAIN]).

[CDS_UNDERSPECIFIEDNAME]
The composite name of the request contained an existing entry in the global name space,
but the specified object is not a cell name.

[CDS_NOTSUPPORTED]
The name service (GDS, DNS, or CDS) is not reachable, or the requested operation is
unsupported.

9.2.4 Requirements on Components Specified Elsewhere

This section specifies the external requirements of CDS for other services, as specified in other
volumes of X/Open DCE. The usage of CDS by other services is specified in the service
specifications.

Remote Procedure Call

CDS utilises RPC for communication, as specified in the DCE Remote Procedure Call
specification. CDS uses authenticated RPC (protection level may be protect_level_none, for
instance, for the clerk initialisation, at which an unauthenticated RPC requests the cell
configuration information in the name space).

The protocols are encoded as RPC interfaces in IDL notation. Protocol Data Units (PDUs) are
represented as operations of RPC interfaces.

5. The child pointer for the global root is generated by initialising the GDA by means of the cds_CreateChild operation.

Part 4 Cell Directory Service 91

Functional Model CDS Service Definition

Time

CDS relies on the distributed time provided by the DCE Distributed Time Service, as specified in
the DCE Time Services specification, to maintain synchronised clocks in the network for use in
the sequencing of updates in the name space. It is not guaranteed that the CDS protocol works
correctly if server clocks differ by more than five minutes.

Security

CDS uses the Security Service and authenticated RPC, as specified in the DCE Security Services
specification and the DCE Remote Procedure Call specification respectively, for mutual
authentication and authorisation of CDS entities.

CDS clerks, the mediators between clients and servers, are authenticated by impersonating their
clients’ identity.

CDS servers of a cell are registered in an authorisation group which puts all cell servers within a
single protection boundary. This allows for obtaining the required credentials in inter-server
communication. Servers accept peer update requests from servers who are recognised as peers.

CDS entities are protected by Access Control Lists that are maintained and verified through the
Common ACL Manager interface, as specified in the DCE Security Services specification.

9.2.5 Facilities and Features Excluded from the CDS Architecture

CDS accommodates the architecture as outlined in Chapter 1. Thus, the following features and
facilities are explicitly excluded from the specification of CDS (implementations may include
these features and facilities, but no conformance guarantees are made about them whatsoever):

Typed Names
CDS does not recognise any form of typed names directly, nor is the simulation of typed
names using attribute-based searches of the cell name space efficient.

Local Names
CDS is not designed completely to replace the local names used by operating systems and
applications to refer to their abstract objects.

Distributed Database
CDS is not designed as a generalised distributed database and must not be used as such. It
provides few of the usual capabilities associated with database systems, and offers very
weak consistency guarantees to its clients, in order to provide high levels of replication and
rapid access.

CDS does not guarantee things such as external consistency, atomic transactions, and so on.

Storing in Cache
The model and algorithm for storing relevant information in the cache at the CDS clerks is
not specified. However, it is likely that implementations make use of sophisticated storing
in cache for improved efficiency.

92 CAE Specification (1997)

CDS Service Definition Functional Model

9.2.6 Access Control and Protection Model

CDS uses the DCE Security Service for controlling user access to its protected objects. Protected
objects consist of the following:

• all clerk and server instances

• all name entries that are stored in clearinghouses — that is, all directories, soft links, object
entries and child pointers.

These objects are protected by Access Control Lists (ACLs), as specified in the DCE Security
Services specification.

ACLs attached to CDS clerks and servers exist for maintenance purposes, and are local to those
facilities.

ACL Manager Types Supported by CDS

The protected objects of CDS are supported by its ACL Managers, which are derived from the
Common ACL Manager. For the algorithm used by the Common ACL Manager, and for further
details on the access control model, refer to the DCE Security Services specification. The CDS
ACL Manager types are as follows:

Objects
Controls ACLs on CDS object entries. This ACL manager type supports the following
permission set:

read
write
delete
test
control.

The UUID of this ACL manager type is:

c2e7e53c-4455-11ca-99bd-08002b1c8f1f

Directories
Controls ACLs on CDS directory entries. This ACL manager type supports the following
permission set:

read
write
delete
test
control
insert
admin.

The UUID of this ACL manager type is:

d1a74194-4455-11ca-b064-08002b1c8f1f

Part 4 Cell Directory Service 93

Functional Model CDS Service Definition

Clearinghouses
Controls ACLs on CDS clearinghouse entries. This ACL manager type supports the
following permission set:

read
write
delete
test
control.

The UUID of this ACL manager type is:

d645d095-4455-11ca-b028-08002b1c8f1f

Server management
Controls ACLs on CDS servers. This ACL manager type supports the following permission
set:

read
write
control.

The UUID of this ACL manager type is:

faf2e540-58b8-11ca-a04a-08002b12a70d

Clerk management
Controls ACLs on CDS clerks. This ACL manager type supports the following permission
set:

read
write
control.

The UUID of this ACL manager type is:

dc8c6fc0-6143-11ca-b4b9-08002b1bb4f5

ACL Types

To protect both terminal object and directory entries, and to enable newly created entries
automatically to inherit default ACLs from their parent directory, the CDS ACL facility supports
the following DCE ACL types. For further information on these ACL types as defined by the
access control model, refer to the DCE Security Services specification.

Object ACL
The Object ACL type grants permissions for any CDS name (object entries, soft links, child
pointers, clearinghouses and directories), as well as to clerks and servers. When associated
with a CDS directory, the permissions granted with the Object ACL type apply only to the
directory itself, not to the directory’s contents or to any child directories.

Initial Object Creation ACL
The Initial Object Creation ACL type applies only to CDS directory names. This ACL type
defines the initial permissions specifically for a directory’s future contents (soft links,
application-defined object entries, child pointers and clearinghouse object entries). The
permissions granted using the Initial Object Creation ACL type apply only to the future
contents of the directory, not to the directory itself. The permissions are propagated only to
names that are created in the directory after the ACL entry is created; permissions are not
propagated to names that already exist in the directory.

94 CAE Specification (1997)

CDS Service Definition Functional Model

Initial Container Creation ACL
The Initial Container Creation ACL type applies only to CDS directory names. This ACL
type defines the initial permissions for a directory that automatically propagate (by default)
to all child directories that may later be created under that directory. The permissions
granted using the Initial Container Creation ACL type apply only to the child directories
that are created after the ACL entry is created; permissions are not propagated to child
directories that already exist.

ACL Entry Types

ACL entry types are used to specify the category of principal for which the ACL entry is created.
See the DCE Security Services specification for a description of DCE ACL entry types.

Permissions Supported by CDS

CDS supports the following DCE permissions:

printstring bit representation

Read 0x00000001
Write 0x00000002
Control 0x00000008
Insert 0x00000010
Delete 0x00000020
Test 0x00000040
Administer 0x00008000

Each permission has a slightly different meaning, depending on the kind of CDS name with
which it is associated. In general, the permissions are defined as follows:

Read Allows a principal to look up a name and view the attribute values associated with
it.

Write Allows a principal to change the modifiable attributes associated with a name,
except for its ACLs.

Control Allows a principal to modify the ACL entries associated with a name. (Control
permission is automatically granted to the creator of a CDS name.)

Insert Allows a principal to create new names in a directory. (For use within directory
entries only.)

Delete Allows a principal to delete a name from the name space controlled by CDS.

Test Allows a principal to test whether an attribute of a name has a particular value,
without being able actually to see any of the values (that is, without having read
permission for the name).

Administer Allows a principal to issue CDS commands that control the replication of
directories. (For use with directory entries only.)

The required permissions for successful invocation of RPC interface operations on CDS
protected objects are specified in Chapter 12 of this document.

Part 4 Cell Directory Service 95

Functional Model CDS Service Definition

CDS Servers Authorisation Group and Cell Creation

Inter-server communication runs within one protection boundary. Each CDS server of a
particular cell is registered in a single authorisation group, and is permitted access to peer
servers through its group permission rights.

This authorisation group has the well known relative name subsys/dce/cds-server at the top
level in the security name space. Whenever a CDS server is created, it must be added to this
group.

The cell creation procedure must grant full permission on the cell root directory to this group.
Object ACL and Initial Container Creation ACL entries are also created specifying
subsys/dce/cds-server as the principal in each ACL entry, to ensure that the group has full access
to all future directories and their contents.

9.3 Architected Default Attributes
All CDS name entries (objects, directories, soft links and child pointers) consist of a set of
attributes and their associated value or values. For more information on attributes and their
names, types and identifiers, refer to Chapter 1.

Table 9-1 on page 97 lists the operational attributes defined by CDS, together with the following
information about them: whether the attribute is single-valued or set-valued; whether it is read-
only or modifiable by a client (a CDS server may modify any attribute); its usage for different
entry types; and whether the attribute is always or optionally present. The object identifiers
associated with these attributes are listed in Appendix B. The encodings of the attribute
syntaxes are defined in Chapter 11. The sections following the table describe each of the
attributes in detail.

Table 9-1 on page 97 enforces a schema for operational attributes used by CDS. Any attribute
that has only read permission and is associated with a specified set of entry types cannot be
created and used on any entry type. Attributes that have write permission and are only specified
for specific entry types, however, can be used by applications in entry types that do not use these
as operational attributes. This specification does not define the meaning of these attribute names,
if used by applications.

In Table 9-1 on page 97, the following abbreviations are used in the Permissions column:

R read
W write
D delete.

96 CAE Specification (1997)

CDS Service Definition Architected Default Attributes

Attribute Per- Usage
Name Type Syntax missions Entry Type Presence

CDS_CTS Single VT_Timestamp R All Mandatory
CDS_UTS Single VT_Timestamp R All Mandatory
CDS_Class Single VT_byte RW Object Optional
CDS_ClassVersion Single VT_Version RW Object Optional
CDS_ObjectUUID Single VT_uuid RW * Object Optional

Directory,
Child Pointer

R Mandatory

Directory,
Child Pointer

CDS_Replicas Set VT_ReplicaPointer R Mandatory

CDS_AllUpTo Single VT_Timestamp R Directory Mandatory
CDS_Convergence Single VT_small RW Directory Mandatory
CDS_InCHName † Single VT_small R Directory Conditional
CDS_ParentPointer Set VT_ParentPointer R Directory Mandatory

Directory,
Clearinghouse

CDS_DirectoryVersion Single VT_Version R Mandatory

CDS_UpgradeTo † Single VT_Version RWD Directory Conditional
CDS_LinkTarget Single VT_FullName RW Soft Link Mandatory
CDS_LinkTimeout Single VT_Timeout RW Soft Link Mandatory

Object,
Clearinghouse

CDS_Towers Set VT_byte RWD Optional

CDS_CHName Set VT_FullName R Clearinghouse Mandatory
CDS_CHLastAddress Single VT_byte R Clearinghouse Mandatory
CDS_CHState Single VT_small R Clearinghouse Mandatory
CDS_CHDirectories Set VT_CHDirectory R Clearinghouse Mandatory
CDS_ReplicaState Single VT_small R Directory Mandatory
CDS_ReplicaType Single VT_small R Directory Mandatory
CDS_LastSkulk Single VT_Timestamp R Directory Mandatory
CDS_LastUpdate Single VT_Timestamp R Directory Mandatory
CDS_RingPointer †† Set VT_uuid R Directory Conditional
CDS_Epoch Single VT_uuid R Directory Mandatory
CDS_ReplicaVersion Single VT_Version R Directory Mandatory
CDS_NSCellname Single VT_char R Clearinghouse Mandatory
CDS_GDAPointers † Set VT_gdaPointer R Directory Conditional
CDS_CellAliases Set VT_GroupMember RWD Directory Conditional
CDS_ParentCellPointers Single VT_ReplicaPointer RWD Directory Conditional
RPC_ClassVersion Single VT_byte RWD Object Optional
RPC_ObjectUUIDs Single VT_byte RWD Object Optional
RPC_Group Set VT_byte RWD Object Optional
RPC_Profile Set VT_byte RWD Object Optional
RPC_Codesets Set VT_byte RWD Object Optional
SEC_RepUUID Single VT_byte R Object Conditional

Table 9-1 Operational Attribute Summary

* The CDS_ObjectUUID attribute is writable only once, during creation time.

† The CDS_InCHName, CDS_UpgradeTo and CDS_GDAPointers attributes are present
only in cell root directory entries.

†† The CDS_RingPointer attribute is obsolete in DCE 1.1.

Part 4 Cell Directory Service 97

Architected Default Attributes CDS Service Definition

9.3.1 CDS_CTS Attribute

CDS_CTS (Creation Time Stamp) is a single-valued attribute which is present and non-null in
every entry. It contains a space- and time-unique handle on the entry, which is assigned when
the entry is made and which is never changed. This attribute is also used as a timestamp
marking the creation time of the entry.

This attribute is read-only across the clerk-to-server RPC interface.

9.3.2 CDS_UTS Attribute

CDS_UTS (Update Time Stamp) is a single-valued attribute which is present and non-null in
any entry that has been updated. The time portion of the UTS gives the time at which the most
recent update to any attribute of the entry took place. For object entries, the UTS gives the
timestamp of the most recent update to any attribute of the object entry. For directory entries,
the UTS gives the timestamp of the most recent update to an attribute of the directory.

This attribute is read-only across the clerk-to-server RPC interface.

9.3.3 CDS_Class Attribute

CDS_Class is a single-valued operational attribute which may be present and non-null in object
entries. This attribute is used to classify object entries according to the type of object being
named. Object classes have names that are printable strings (with a maximum length of 31
characters).

The usage of this attribute is application determined. The contents of this attribute are not
specified in this document.

Note that only object entries have a CDS_Class attribute. The only built-in class is for
clearinghouse objects, identified as CDS_Clearinghouse.

9.3.4 CDS_ClassVersion Attribute

CDS_ClassVersion is a single-valued attribute which may be present and non-null in object
entries. It allows the definition of an object class to be evolved over time (for example, by
changing the definition of the class-specific attributes), without confusing the clients of the CDS.
It consists of a one octet major version, and a one octet minor version. The setting and
interpretation of the class version is the responsibility of the application that defined the
corresponding object class.

9.3.5 CDS_ObjectUUID Attribute

CDS_ObjectUUID is a single-valued attribute which is present and non-null in any directory
and child pointer entry; it may be present in an object entry.

Directory and child pointer entries use this attribute internally to store the UUID that uniquely
identifies the entry.

On object entries it can optionally be used to store the UUID of the actual object being referenced
by the CDS entry. It is the responsibility of clients to properly maintain this attribute for the
object they are interested in; CDS makes no effort to ensure the correctness of the values stored
in the CDS_ObjectUUID attribute for object entries.

On object entries, this attribute can be set only on creation, and is thereafter not modifiable.

98 CAE Specification (1997)

CDS Service Definition Architected Default Attributes

9.3.6 CDS_Replicas Attribute

CDS_Replicas is a set-valued attribute which is present and non-null in every directory and
child pointer entry. Each member of the set identifies one of the clearinghouses that stores a
replica of this directory. The CDS_Replicas attribute may not be modified directly; the set is
updated as a side effect of the operations which create, destroy or change the replication of a
directory.

Each element of the set consists of four parts:

• a type value describing the capabilities of this copy of the directory-master or read-only
replica

• the UUID of the clearinghouse which stores the replica

• the fully-qualified global name of the clearinghouse which stores the replica

• the protocol towers, giving a hint for locating and accessing the clearinghouse.

See the data type definition of cds_ReplicaPointer_t in Chapter 11 for the precise encoding of
this attribute’s values.

9.3.7 CDS_AllUpTo Attribute

CDS_AllUpTo is a single-valued attribute which gives a bound on how out of date various
replicas of this directory are. This attribute is present in every directory entry. All replicas of a
directory are guaranteed to have received all updates of entries whose timestamps are less (that
is, older) than the value of CDS_AllUpTo.

This attribute is read-only across the clerk-to-server RPC interface.

The usage and maintenance of this attribute depends on the replication service.

9.3.8 CDS_Convergence Attribute

CDS_Convergence is a single-valued attribute which specifies how persistent a directory should
be in trying to keep its replica up to date.

The usage and maintenance of this attribute depends on the replication service.

9.3.9 CDS_InCHName Attribute

CDS_InCHName is a single-valued attribute which indicates whether a directory or any of its
descendants can store clearinghouse names. If this value is TRUE, the directory can store
clearinghouse names. If it is FALSE, the directory cannot store clearinghouse names. CDS will
create this attribute on the cell root directory and give it a value of TRUE, it will not appear in
any other directory.

9.3.10 CDS_ParentPointer Attribute

Note: The directory and clearinghouse structures in X/Open DCE are specified for
directory version 3.0. In addition, version 4.0 is required if either hierarchical cells or
cell aliasing functionality is to be used. The protocol version for this document,
however, is 1.0; it is expressed in the IDL definition and is not directly connected
with the directory version identified by the CDS_DirectoryVersion attribute.

Part 4 Cell Directory Service 99

Architected Default Attributes CDS Service Definition

CDS_ParentPointer is a set-valued attribute which is present in every directory entry except the
cell root (see below). It contains a set of pointers to each directory’s parent in the name space
tree. This attribute is maintained automatically by CDS servers in order to keep the graph of the
name space properly connected at all times. Only one value for the set is supported currently.

The attribute links a child directory to its parent, allowing clerks and servers to work up the tree
as well as down. The attribute is used to make sure that parent and child directories always
point to each other during normal operation, and it is used during directory creation to allow a
child directory to link itself into the tree by creating a child pointer entry in the parent directory.

Note: The cell root directory does not have a parent pointer. Its CDS_GDAPointers point
to the GDA of that cell name space.

For directory version 3.0 (value of the CDS_DirectoryVersion attribute), this set-valued attribute
contains a single value with the following information:

• the UUID of the parent directory

• the fully-qualified global name of the parent directory

• a timeout value after which the pointer must be checked to ensure that the child still points
to the parent — this is used to update replica pointers in the child pointer.

CDS_ParentPointer attributes are periodically checked to make sure that the name space
controlled by CDS remains connected and that failures are reported in a timely fashion.

This attribute is read-only across the clerk-to-server RPC interface.

9.3.11 CDS_DirectoryVersion Attribute

CDS_DirectoryVersion records the current version of a directory. Multiple directory versions
are supported in a name space in order to enable the graceful migration to newer versions. This
document specifies directory version 3.0.

Note: Any DCE configuration that uses cell aliasing or hierarchical cell functionality must
be version 4.0.

When a directory is created using a clearinghouse on a CDS server with version 3.0 (or higher) of
the directory, the value of CDS_DirectoryVersion is determined by the value of this attribute in
the pseudo-directory entry of the clearinghouse. Thus, a directory created in a clearinghouse
operating in version 3.0 is initially version 3.0.

This attribute has an additional role when present on the clearinghouse pseudo-directory. There
it controls the storage format and semantics of new directories created using that clearinghouse
master as a replica.

9.3.12 CDS_UpgradeTo Attribute

CDS_UpgradeTo is a single-valued attribute which may or may not be present in the cell root
directory entry. It is used to control the upgrading of a directory from one version of CDS to
another. By modifying this attribute, the process of upgrading a directory to a newer version of
CDS may be initiated. If the operation has not reached its commit point, the upgrade may also be
terminated by simply deleting this attribute.

Implementations must ensure that upgrade operations (proceeding in the background) in each
replica are completed before the value of CDS_DirectoryVersion reflects the upgraded status of
the directory indicated by the CDS_UpgradeTo attribute.

100 CAE Specification (1997)

CDS Service Definition Architected Default Attributes

9.3.13 CDS_LinkTarget Attribute

CDS_LinkTarget is a single-valued attribute which is present and non-null in every soft link
entry. It contains the fully-qualified global name of the entry to which the soft link points.

Note: The target entry need not necessarily exist.

9.3.14 CDS_LinkTimeout Attribute

CDS_LinkTimeout is a single-valued attribute which is present and non-null in every soft link
entry. It contains a timeout data structure with two fields, which contain the expiration and
extension time of the soft link. The algorithm that applies to the interpretation of these timeout
value fields is shown in Table 9-2. If the soft link, when checked, is found to point nowhere (is
dangling), the link is deleted.

Expiration Field Extension Field Action at Expiration Timeout
zero zero The link never expires.

Invalid. The behaviour is undefined, but
implementations may simply ignore the value.

zero non-zero

non-zero zero Entry is deleted.
If target still exists, extends life of entry by value of
extension field. Otherwise entry is deleted.

non-zero non-zero

Table 9-2 Timeout Values Evaluation

9.3.15 CDS_Towers Attribute

CDS_Towers is a set-valued attribute which does not have to be present, or which may be null
in any given object or clearinghouse entry. This attribute is further described in the DCE
Remote Procedure Call specification.

9.3.16 CDS_CHName Attribute

CDS_CHName is a set-valued attribute which is present and non-null in every clearinghouse
pseudo-directory entry. In directory version 3.0 (the value of the CDS_DirectoryVersion
attribute is 3.0), this attribute may have only one value, namely the primary fully-qualified
global name of the clearinghouse. A set of values is allowed in order to support operations such
as renaming or merging cells.

The attribute is used for the following purposes:

• to check that CDS operations are in fact directed at the correct clearinghouse

• to register correctly the clearinghouse object when the clearinghouse is created or when it
moves to another CDS server.

This attribute is read-only across the clerk-to-server RPC interface.

Part 4 Cell Directory Service 101

Architected Default Attributes CDS Service Definition

9.3.17 CDS_CHLastAddress Attribute

CDS_CHLastAddress is a single-valued attribute which is present and non-null in every
clearinghouse pseudo-directory entry. It stores the location information at which the
clearinghouse most recently reported itself to the rest of the name space. For directory version
3.0 and higher (the value of the CDS_DirectoryVersion attribute is 3.0), this value is structured
as a protocol tower.

The value of this attribute is used to determine whether the clearinghouse has moved to a new
CDS server.

This attribute is read-only across the clerk-to-server RPC interface.

9.3.18 CDS_CHState Attribute

CDS_CHState is a single-valued attribute which is present in every clearinghouse pseudo-
directory entry.

Its value describes the current state of the clearinghouse, and can be one of:

• new

• on

• dying.

The value of this attribute is used to determine whether or not the CDS server should advertise
this clearinghouse via the solicitation or advertising protocol, and whether it is permitted to
respond to look-up requests on directories it stores.

9.3.19 CDS_CHDirectories Attribute

CDS_CHDirectories is a set-valued attribute which is present in every clearinghouse pseudo-
directory entry. It contains one member for each directory replica stored in the clearinghouse.
The attribute can also exist on clearinghouse objects which can be used when restoring damaged
name spaces.

The contents of each member of the set consist of the UUID of a directory replica and its fully-
qualified global name, which can be used to look up entries in the directory.

This attribute is read-only across the clerk-to-server RPC interface.

9.3.20 CDS_ReplicaState Attribute

CDS_ReplicaState is a single-valued attribute which determines whether a directory replica can
be accessed. Its value describes the current state of the clearinghouse, and can be one of:

• new (during replica creation)

• on (normal operation)

• dying (during replica deletion).

This attribute is read-only across the clerk-to-server RPC interface.

102 CAE Specification (1997)

CDS Service Definition Architected Default Attributes

9.3.21 CDS_ReplicaType Attribute

CDS_ReplicaType is a single-valued attribute which indicates whether a directory is a master or
read-only replica.

This attribute is read-only across the clerk-to-server RPC interface.

9.3.22 CDS_LastSkulk Attribute

CDS_LastSkulk is a single-valued attribute which records the timestamp of the last skulk
performed on this directory.

This attribute is read-only across the clerk-to-server RPC interface.

9.3.23 CDS_LastUpdate Attribute

CDS_LastUpdate is a single-valued attribute which records the timestamp of the most recent
change to any attribute of the directory replica, or any change to an entry within the replica.

This attribute is read-only across the clerk-to-server RPC interface.

9.3.24 CDS_RingPointer Attribute

CDS_RingPointer is a set-valued attribute which specifies the UUID of a clearinghouse
containing another replica of this directory.

This attribute is read-only across the clerk-to-server RPC interface.

Note: This attribute will appear on older directories but not on DCE 1.1 directories.

9.3.25 CDS_Epoch Attribute

CDS_Epoch is a single-valued attribute which identifies a particular instance of the directory.

This attribute is read-only across the clerk-to-server RPC interface.

9.3.26 CDS_ReplicaVersion Attribute

CDS_ReplicaVersion is a single-valued attribute which identifies the version of a replica of the
directory.

This attribute is read-only across the clerk-to-server RPC interface.

9.3.27 CDS_NSCellname Attribute

CDS_NSCellname is a single-valued attribute which is present in every clearinghouse pseudo-
directory entry. It contains the canonical string representation of the cell name for the
clearinghouse.

Part 4 Cell Directory Service 103

Architected Default Attributes CDS Service Definition

9.3.28 CDS_GDAPointers Attribute

CDS_GDAPointers is a set-valued attribute which is present and non-null in the cell root
directory entry only. This attribute contains location information about the registered Global
Directory Agents for that cell, in the same way as the CDS_Replicas attribute. The type field in
replica pointers is always set to RT_gda.

This attribute also includes a timeout value which functions similarly to the timeout in
CDS_ParentPointer.

9.3.29 CDS_CellAliases Attribute

CDS_CellAliases is a set-valued attribute which contains alias names for the cell. This is
resident in the root directory when an alias name exists.

This attribute can be created, modified and deleted by resident applications.

Note: Any DCE configuration that uses cell aliasing functionality must be version 4.0 (the
value of the CDS_DirectoryVersion attribute is 4.0).

9.3.30 CDS_ParentCellPointers Attribute

CDS_ParentCellPointers is a single-valued attribute which contains GDA style pointers to the
parent cell. This attribute is resident in the root directory when the cell is a child in a hierarchical
cell combination.

Note: Any DCE configuration that uses hierarchical cell functionality must be version 4.0
(the value of the CDS_DirectoryVersion attribute is 4.0).

9.3.31 RPC_ClassVersion Attribute

RPC_ClassVersion is a single-valued attribute which contains the current Name Service
Interface (NSI) version. Ths attribute is created by the NSI but can be created, written, modified
and deleted by resident applications.

9.3.32 RPC_ObjectUUIDs Attribute

RPC_ObjectUUIDs is a set-valued attribute which contains optional UUIDs of the referenced
server objects. This attribute is created by the Name Service Interface but can be created, written,
modified and deleted by resident applications.

9.3.33 RPC_Group Attribute

RPC_Group is a set-valued attribute which contains server object names or service group names
for this service group. This attribute is created by the Name Service Interface but can be created,
written, modified and deleted by resident applications.

104 CAE Specification (1997)

CDS Service Definition Architected Default Attributes

9.3.34 RPC_Profile Attribute

RPC_Profile is a set-valued attribute which contains server providers compromising the
configuration profiles. This attribute is created by the Name Service Interface but can be created,
written, modified and deleted by resident applications.

9.3.35 RPC_Codesets Attribute

RPC_Codesets is a set-valued attribute which contains character code set information. This
attribute is created by the Name Service Interface but can be created, written, modified and
deleted by resident applications.

9.3.36 SEC_RepUUID Attribute

SEC_RepUUID is a set-valued attribute which contains the replica instance UUID. This is stored
in the servers name space entry.

This attribute is read-only across the clerk-to-server RPC interface.

Part 4 Cell Directory Service 105

Abstract Definitions of CDS Service Primitives CDS Service Definition

9.4 Abstract Definitions of CDS Service Primitives
CDS provides cell-level directory service primitives that:

• operate on attributes

• operate on object entries

• operate on directory entries

• operate on soft links

• locate available servers.

The sections that follow present abstract definitions of these service primitives. The concrete
specifications of these primitives, and how they map to CDS directory operations that use the
RPC interfaces, are specified in Chapter 11 and Chapter 12.

Every service primitive takes as an input parameter the fully-qualified global name of the
directory service entry. The resolution of this name may provoke a series of steps (which may
involve multiple remote operations) which is repeated until the target clearinghouse has been
located. Partial results may be evaluated and lead to a completion of the operation.

Unless the underlying operations detect a failure (valid status codes are listed in Appendix C),
the status returned is [CDS_SUCCESS].

9.4.1 Service Primitives for Manipulating Attributes

The service primitives for manipulating attributes perform operations on attributes of CDS
entries.

These primitives can only operate on entries that already exist in the name space. The operations
that manipulate the name space are specified in the appropriate subsections for object, directory
and soft link entries.

Some attributes that are mandatory for CDS entries are precluded from modification by these
service primitives; these attributes are maintained by CDS servers internally. Refer to Section 9.3
on page 96 for details.

A valid CDS entry is specified to be one of the following:

• any directory

• any clearinghouse

• any object

• any directory or object

• any child pointer

• any soft link.

Some service primitives support only a subset of the preceding list.

The following sections contain abstract descriptions of the CDS service primitives for
manipulating attributes.

106 CAE Specification (1997)

CDS Service Definition Abstract Definitions of CDS Service Primitives

Enumerate Attribute

An Enumerate Attribute operation is initiated by a client. It returns a set containing the attribute
identifiers of the specified entry.

This service primitive may incur multiple remote operations, depending on the length of the
clerk’s internal buffer.

The attribute identifiers are enumerated in the order of object identifiers.

Modify Attribute

A Modify Attribute operation is initiated by a client. It applies one update to one attribute of a
specified entry. Attributes can be added or removed from an entry with this primitive.

Any successful modification to an entry also causes the CDS_UTS timestamp of that entry to be
updated.

Note that certain directory attributes that are only maintained internally (by the CDS server)
must not be modified by this operation; CDS servers should reject any attempts otherwise.
Attempts to modify clearinghouse or soft link entries are illegal; none of their attributes are
modifiable.

This service primitive can also initiate operations to remove an object entry from the name
space, if the type of the attribute to be removed is defined as AT_none. Attempts to remove
other entry types are illegal.

Read Attribute

A Read Attribute operation is initiated by a client, and returns a set containing the values of the
specified attribute. The values are encapsulated in discriminated unions, containing the syntax
specifier and value pair.

The attribute values are enumerated in timestamp order of member creation. Those with the
oldest timestamps are returned first.

This service primitive may incur multiple remote operations for set-valued attributes,
depending on the length of the clerk’s internal buffer.

Test Attribute

A Test Attribute operation is initiated by a client, and returns a boolean value indicating whether
the supplied value was one of the values of the specified attribute.

9.4.2 Service Primitives for Manipulating Object Entries

Service primitives for manipulating object entries invoke operations that create, delete or look
up object entries in the name space.

Creation of an object entry implies the creation and initialization both of the mandatory
attributes maintained by CDS servers, and of the optional operational attributes. The
modification of these attributes (if permitted), and the creation, look-up and modification of
application-defined attributes, is controlled by the service primitives that manipulate attributes.

The following sections contain abstract descriptions of the CDS service primitives for
manipulating object entries.

Part 4 Cell Directory Service 107

Abstract Definitions of CDS Service Primitives CDS Service Definition

Create Object

A Create Object operation is initiated by the client, and creates the requested object entry.

The entry’s CDS_CTS and CDS_UTS attributes are generated automatically by the CDS server.
The entry’s optional attributes CDS_Class, CDS_ClassVersion and CDS_ObjectUUID can be
supplied by the caller. If CDS_Class is supplied, CDS_ClassVersion must also be supplied with
the appropriate value.

This service primitive succeeds only if the name of the object is new in the name space (that is, if
no entry with this name of any type exists in the name space). Furthermore, an object can be
created only if its immediate parent directory already exists.

Delete Object

A Delete Object operation is initiated by a client, and removes the specified object entry from the
name space.

Enumerate Object

An Enumerate Object operation is initiated by a client, and returns a set containing the names and
classes of objects in the specified directory. Only object names that match a supplied filter,
consisting of an atomic name (possibly wildcarded) and (optionally) the object class, are
returned. A NULL class matches a * (asterisk metacharacter) filter.

The objects are enumerated in lexical order, according to the ordering rules of the Portable
Character Set (PCS). The ordering for extended character sets is not specified.

This service primitive may incur multiple remote operations, depending on the length of the
clerk’s internal buffer.

9.4.3 Service Primitives for Manipulating Directory Entries

Service primitives for manipulating directory entries invoke operations that create, delete or
look up directory entries in the name space. Included are services that modify child pointer
entries.

Creation of a directory entry implies the creation and initialization of mandatory attributes
maintained by CDS servers. The modification of these attributes (if permitted), and the creation,
look-up and modification of application-defined attributes, is controlled by the services that
manipulate attributes.

The following sections contain abstract descriptions of the CDS service primitives for
manipulating directory entries.

Create Directory

A Create Directory operation is initiated by a client, and creates the requested directory entry in a
specified or default clearinghouse.

This service primitive succeeds only if the name of the directory is new in the name space (that
is, if no entry with this name of any type exists in the name space). Furthermore, a directory can
be created only if its immediate parent directory already exists. This service primitive specifies
the master clearinghouse.

Successful completion of the operation ensures the eventual consistency of the name space; in
particular, the child pointers in the parent directory are appropriately created.

108 CAE Specification (1997)

CDS Service Definition Abstract Definitions of CDS Service Primitives

Delete Directory

A Delete Directory operation is initiated by a client, and removes an existing directory from the
name space.

Successful completion of the operation ensures the eventual consistency of the name space; in
particular, the child pointers in the parent directory are appropriately updated.

Enumerate Children

An Enumerate Children operation is initiated by a client, and returns a set containing the names of
child pointers in the specified directory. Only child pointers that match a supplied filter
consisting of an atomic name (possibly wildcarded) are returned.

The child pointers are enumerated in lexical order, according to the ordering rules of the
Portable Character Set (PCS). The ordering for extended character sets is not specified.

This service primitive may incur multiple remote operations, depending on the length of the
clerk’s internal buffer.

Create Child

A Create Child operation is initiated by a server on a client’s behalf, and creates a child pointer
entry in the specified directory. It returns the value of the CDS_CTS attribute of the new child
pointer entry.

This service primitive is performed if a client attempts to create a new directory (using Create
Directory).

Delete Child

A Delete Child operation is initiated by a server on a client’s behalf, and deletes the specified child
pointer entry in the specified directory.

This service primitive is performed if a client attempts to delete a directory (using Delete
Directory).

9.4.4 Service Primitives for Manipulating Soft Links

Service primitives for manipulating soft link entries invoke operations that create, delete or look
up soft link entries in the name space.

Creation of a soft link entry implies the creation and initialization of mandatory attributes
maintained by CDS servers. The modification of these attributes (if permitted), and the creation,
look-up and modification of application-defined attributes, is controlled by the services that
manipulate attributes.

The following sections contain abstract descriptions of the CDS service primitives for
manipulating soft links.

Part 4 Cell Directory Service 109

Abstract Definitions of CDS Service Primitives CDS Service Definition

Create Soft Link

A Create Soft Link operation is initiated by a client, and creates the specified soft link entry.

This service primitive can optionally specify the lifespan of the newly created soft link as being
one of the following three:

temporary Soft links controlled by a timeout value for temporary use are deleted by CDS
servers after the elapse of its expiration time, and CDS clerks have to invalidate
possibly cached information about the target of the soft link.

extended The life of temporary soft links can be extended indefinitely by supplying an
extension factor along with the expiration time. After the elapse of the expiration
time, the CDS server checks for the existence of the target. If the target still exists,
the server adds the extension factor to the expiration time to obtain the new
expiration time and extend the life of the soft link. The server repeats this
procedure continuously until the target entry is deleted.

permanent If no expiration time is specified during soft link creation, the soft link’s existence is
permanent until it is explicitly deleted.

The target of a soft link may not be in existence at the creation time of the soft link. The existence
of the target is not verified by CDS servers.

Delete Soft Link

A Delete Soft Link operation is initiated by a client, and removes the specified soft link entry from
the name space.

Enumerate Soft Links

An Enumerate Soft Links operation is initiated by a client, and returns a set containing the names
of soft links in the specified directory.

Only soft links that match a supplied filter consisting of an atomic name (possibly wildcarded)
are returned.

The soft links are enumerated in lexical order, according to the ordering rules of the Portable
Character Set (PCS). The ordering for extended character sets is not specified.

This service primitive may incur multiple remote operations, depending on the length of the
clerk’s internal buffer.

Resolve Name

A Resolve Name operation is initiated by a client, and returns the resolved fully-qualified global
name of the target entry pointed to. It resolves the name by following a sequence of soft links as
specified in the fully-qualified global name input parameter.

110 CAE Specification (1997)

CDS Service Definition Abstract Definitions of CDS Service Primitives

9.4.5 Service Primitives for Advertisement and Solicitation

The service primitives for advertisement and solicitation perform operations that are necessary
in order to provide CDS clerks with binding information to available clearinghouses in the cell.

The following sections contain abstract descriptions of the CDS service primitives for
advertisement and solicitation.

Advertise

An Advertise operation is initiated by a CDS server, and advertises the availability of the server’s
clearinghouses to a broadcast address, which is listened to by CDS clerks.

This service primitive is triggered either by a CDS server internal timer or a received solicitation
request.

Solicit

A Solicit operation is initiated by a clerk, and broadcasts a request to CDS servers which triggers
their advertisements. No values are returned.

Solicit Server

A Solicit Server operation is initiated by a clerk, and returns the cell name, cell root directory
UUID, and clearinghouses of the specified server.

Part 4 Cell Directory Service 111

CDS Service Definition

112 CAE Specification (1997)

Chapter 10

CDS Protocol Definition

This chapter contains the abstract definition of the CDS transaction protocol and solicitation
protocol whose encodings are specified in Chapter 11; it is a specification of the protocol
machines employed by CDS clerks and CDS servers.

Conforming implementations shall comply with the behaviour defined in this chapter.

Part 4 Cell Directory Service 113

Clerk Operation CDS Protocol Definition

10.1 Clerk Operation
The CDS clerk communicates with one or more CDS servers (including the Global Directory
Agent) for the processing of client requests.

A clerk performs the following functions:

• discovers the existence of servers for the local cell name space

• formulates requests to be sent to CDS servers for processing, based on calls by the client

• communicates with one or more CDS servers using the transaction protocol

• receives responses from CDS servers to previously issued requests, and returns the results to
the clients who issued the calls

• maintains any credentials needed by a client for authentication purposes by CDS servers

• walks a tree of directories that comprise the relevant part of the cell when necessary for
processing of a client request

• optionally maintains a cache of recently accessed information.

10.1.1 Solicitation and Clearinghouse Selection

When requested by a client to perform some CDS operation, the clerk must first select a
clearinghouse that is likely to be able to process the request. It then has to bind to the
appropriate CDS server controlling that clearinghouse.

Since the cell’s name space database is partitioned and distributed among a number of
clearinghouses, the clerk must first decide which clearinghouses are good candidates for being
able to process a client request, and then select one of them. The algorithm for choosing a
clearinghouse is internal to the implementation of a clerk and how it caches previously received
information; only the solicitation protocol for learning about available clearinghouses is
specified in this document.

The following assumptions can be made about the location of clearinghouses:

• The clerk only needs to contact one CDS server to be able to find any clearinghouse in the
name space.

• All clearinghouses contain a replica of the cell root; therefore any clearinghouse is able to
provide location hints for any other clearinghouses that are always registered in the root
directory.

Regardless of the details of its particular implementation, a clerk has some or all of the following
information at its disposal to use in choosing a clearinghouse:

• a cached replica set for the parent directory containing the entry of interest

In this case, the clerk already knows the entire potential set of clearinghouses that might
process the request.

• a cached replica set for an ancestor directory

• binding information for clearinghouses that have advertised via the solicitation protocol

This and the next case allow the clerk to select any available clearinghouse that can provide
further guidance. This initiates a process that follows referral pointers through the name
space finally to locate the requested entity.

• statically configured binding information for CDS servers.

114 CAE Specification (1997)

CDS Protocol Definition Clerk Operation

The algorithm for selecting among multiple possible clearinghouses and CDS servers is not
specified. Implementations may follow some rules of probability that reduce the average
transactions necessary, balance the load among servers, and account for network topology.

The process of binding and establishing communication with the CDS server that supports a
particular clearinghouse is subject to the underlying RPC protocol. This process includes mutual
authentication. The clerk generally has several ways of obtaining the appropriate protocol tower
for the server. These include:

• finding it in previously cached information

This information can only be regarded as a hint; the information may be out of date. The
address can only be learned with a higher degree of certainty by looking up the
clearinghouse object with a confidence level of medium.

• finding it in data returned in the updated ReplicaPointer

• getting it by looking up the clearinghouse object in the name space.

These methods are usually tried in the order listed above, in the interest of securing the best
performance.

10.1.2 Referral Handling (Progress Record)

When a clearinghouse is requested (in the person of a CDS server) to perform a CDS operation
via the transaction protocol, it attempts to get the clerk as close to the desired result as possible,
either by performing the operation itself, or by directing the clerk to other clearinghouses (that
is, CDS servers) that can provide further guidance. A progress record returned to the clerk
indicates the status of the requested operation and contains whatever information the server
was able to resolve. The clerk is responsible for repeating the request (this time to the new
clearinghouse that it was referred to) for as many times as is necessary to complete the
information provided in the progress record.

The progress record contains the following flags and other fields:

PR_done This flag is initially set to FALSE by the clerk and subsequently set to
TRUE by the server if the operation was completed successfully.
Otherwise, if the returned flag is FALSE, the fully-qualified global
name of the request could only partially be resolved; the resolved
and residual (unresolved) parts of the fully-qualified global name are
returned in the appropriate fields of the progress record.

PR_up This flag is initially set by the clerk to TRUE, and is never reset by the
clerk. As soon as a clearinghouse for an ancestor directory is found,
the server sets this flag FALSE to prevent oscillation in the search
later on.

The server leaves this flag TRUE if the name points to another cell.
The GDA then clears this flag if the foreign cell name is successfully
looked up.

PR_linked This flag is initially set to FALSE by the clerk and then set to TRUE
whenever a soft link is followed by the clerk or server in resolving
the name.

PR_hitLink This flag is initially set to FALSE by the clerk and then set to TRUE
by a server when it detects a soft link and returns control to the clerk
to check for loops in the soft link graph. The clerk resets this flag to
FALSE before each new call to a server.

Part 4 Cell Directory Service 115

Clerk Operation CDS Protocol Definition

PR_ignoreState This flag is set to TRUE by the clerk if it wishes the server to ignore
the state of a directory/replica and return information regardless.

PR_directory This flag is set to TRUE by the server whenever the partial or full
resolved name is found to be a directory; otherwise (including the
case where the full resolved name is NULL) it is set to FALSE.

This flag is required for cache handling when the entry type
ET_dirOrObj is requested, because otherwise the clerk does not
know which entity (directory or object) was matched if a match is
reported.

Timeout This field is used by servers to compute the minimum timeout for all
soft links followed in resolving a name. This information can then be
used by the clerk to determine its policy for storing in cache, and
may also be returned to the client as an indication of how long the
supplied name is valid.

Unresolved Name This field contains the portion of the original fully-qualified global
name that has not yet been located by the servers. The servers are
responsible for maintaining this field, and clerks use the value (if
any) returned in it as input for subsequent requests for the given
operation. The clerk initially sets this field to the requested fully-
qualified global name argument of the operation. Generally the field
contains one of the following values:

— the entire fully-qualified global name, when the clerk makes its
first attempt to get the operation performed

— the entire fully-qualified global name, while the clerk is working
up the tree towards the root of the cell

— the portion of the fully-qualified global name that represents the
residual of the name (that is, the part that has yet to be resolved)

— the UUID of the last directory resolved

— an entirely new name, after the clerk has traversed a soft link.

Resolved Name This field contains the portion of the current name which has been
successfully processed (resolved) by the servers. The name in this
field may be different from the original name supplied by the client if
a soft link was traversed. The clerk is not required to do anything
with the information in this field, but it may use it for either of the
following purposes:

— returning partial information to the client if the operation status is
[CDS_UNKNOWNENTRY]

— storing additional information about intermediate names in cache
when walking the tree or traversing soft links.

Replica Pointer This field contains a set of clearinghouses which are believed to have
a good probability either of being able to perform the desired
operation or of having information about other clearinghouses closer
to ones that can actually perform the operation. The clerk initially
sets this field to NULL.

116 CAE Specification (1997)

CDS Protocol Definition Clerk Operation

10.1.3 Tree Walk Algorithm

Every client call to the clerk results in the clerk’s interactively walking the tree of interest and
causing the operation to be performed at an appropriate clearinghouse for the directory.

The abstract semantic of the tree walk algorithm is as follows:

1. Initialise the progress record and the soft link loop detector.

2. Select the initial clearinghouse.

3. Send request to clearinghouse.

If the selected clearinghouse is unavailable and the request fails, the clerk selects another
clearinghouse that is at its disposal (iterate through previous step). See also Section 10.1.1
on page 114.

4. Loop while PR_done flag of result is FALSE:

— If a soft link is encountered (that is, the flag PR_hitLink is TRUE), check for loops.

— If a loop is detected, return to the client with failure status [CDS_POSSIBLECYCLE].

— If no loop is detected, reinitialise and restart clearinghouse list for resolving new
name.

— Choose a clearinghouse from the list that was returned in Replica Pointer, until the list
is exhausted. If there are no more clearinghouses to select from, return to the client with
failure status [CDS_NOCOMMUNICATION].

— Re-request the operation, with updated progress record, from the selected
clearinghouse.

5. If PR_done flag is TRUE, return the operation result to the client.

10.1.4 Loop Detection

The clerk is responsible for detecting loops in soft links while walking the name space tree. Any
time a soft link is detected by the server, the transaction agent returns a progress record to the
clerk with the PR_hitLink flag set to TRUE. When this occurs, the clerk has to determine
whether a loop in the graph of soft links has been detected (see Section 10.1.3); if so, the clerk
returns the failure status [CDS_POSSIBLECYCLE] to the calling client.

The algorithm for loop detection and determining the depth of cycles is implementation-specific.

Part 4 Cell Directory Service 117

Server Operation CDS Protocol Definition

10.2 Server Operation
The CDS server contains two basic functional modules: the clearinghouse and the transaction
agent.

10.2.1 Clearinghouse

Clearinghouses are databases in which the contents of the cell name space controlled by a CDS
are stored. Clearinghouses accommodate partitioning and (possibly) replication.

The naming of clearinghouses follows a set of rigid rules which ensure that name lookup cannot
fail because the clearinghouse in which the directory is storing the object entry cannot be found.
In particular, CDS ensures that the following clearinghouse invariant is never violated during
normal operation:

• Each clearinghouse contains a replica of the cell root directory.

Clearinghouses are either up or down. When a clearinghouse is up at a given node, that node is
acting as a CDS server for that clearinghouse, and may advertise its availability. A server may be
controlling more than one clearinghouse simultaneously.

A clearinghouse contains the following types of information:

• operational information:

— clearinghouse global information

• directories, which contain:

— directory global information

— objects, soft links and child pointers.

Information that controls the operation of the clearinghouse as a whole is stored in a pseudo-
directory entry in the clearinghouse. The unique identifier (UUID) of this pseudo-directory has
the same value as the UUID of the clearinghouse object itself. Thus, clearinghouses can be
named and accessed the same way as regular directory entries by clients. The specific attributes
applied to these clearinghouse pseudo-directories are defined in Section 9.3 on page 96.

Every clearinghouse is catalogued in an object entry within the cell root directory. When a server
is walking the tree looking for a clearinghouse, it may encounter a clearinghouse object whose
information it needs to use for building a referral to the actual clearinghouse. Clearinghouses are
accessed by the transaction agents of CDS servers. A set of operational attributes (as determined
in Section 9.3 on page 96) are exclusively maintained by CDS servers. Any other entries and
attributes can be accessed by clerks by means of requests to CDS servers.

Clients can access the clearinghouse operational information by specifying the clearinghouse
name with the entry type ET_clearinghouse.

10.2.2 Transaction Agent

The transaction agent is responsible for processing clerk transactions, reading and writing
clearinghouses, and communicating with transaction agents at other servers.

The transaction agent processes the following two sets of the transaction protocol:

• the basic clerk/server operations for communicating with clerks

• the directory maintenance operations for synchronising the state of parent and child
directories for creation and deletion.

118 CAE Specification (1997)

CDS Protocol Definition Server Operation

Logically, there is a single transaction agent for each clearinghouse, which processes transactions
destined for it. However, the transaction agent has to multiplex the transactions of many clerks
simultaneously, and it must thus be able to manage multiple simultaneous execution contexts.
Whether this is accomplished by multi-threaded code, multiple processes or other mechanisms
is implementation-dependent.

CDS servers export the transaction agent interface with the object UUID of clearinghouses.
Clerks bind to clearinghouses using these object UUIDs.

The common operations needed for accessing clearinghouses and processing transactions are
described below, in Common Operations of the Transaction Agent. This is followed by a
specification of the protocol state model for operations on directory entries. Common
Operations of the Transaction Agent, in conjunction with Section 9.4 on page 106, fully defines
the abstract algorithm applied to any other operations.

Common Operations of the Transaction Agent

Each transaction initiated by a clerk consists of a single request. The transaction agent is
responsible for processing the request and generating an appropriate response. However, before
any request can be processed, the transaction agent must perform the following functions:

1. Determine whether the clearinghouse requested by the clerk is available.

If the clearinghouse is available, the transaction agent proceeds as described in the
following steps. Otherwise, one of the following failure statuses is returned to the clerk:

[CDS_CLEARINGHOUSEDOWN]
If the clearinghouse is known currently to reside at this transaction agent’s server.

[CDS_UNKNOWNCLEARINGHOUSE]
If the clearinghouse is not known to this transaction agent’s server.

2. Find the requested entry in the clearinghouse; if this cannot be done, return the partial
result, together with any possible location hints, in an updated progress record to the clerk.

Since a clearinghouse may contain any part of a path through the name space to the
directory which contains the entry of interest, the transaction agent implements a local
version of the tree walk algorithm used by clerks. In particular, the transaction agent must
perform the following activities:

i. Determine whether the clearinghouse contains some portion of the path provided by
the clerk.

If it does not, the clearinghouse must either return success with no additional
information, or, if the PR_up flag is set to TRUE by the clerk, return a
CDS_GDAPointer. If the CDS_GDAPointer does not exist, a [CDS_ROOTLOST]
status is returned.

ii. The transaction agent then walks the tree down from the point specified by the clerk
in the progress record supplied, until one of the following happens:

— The entry requested by the clerk is reached.

— A child pointer entry pointing to a different set of clearinghouses is encountered.

— A soft link is encountered.

— An access failure occurs, or a portion of the path is determined not to exist. In this
case, the appropriate failure status is returned.

Part 4 Cell Directory Service 119

Server Operation CDS Protocol Definition

3. Ensure that the client has sufficient permission to access the entry.

The transaction agent calls the ACL Manager (see Section 9.2.6 on page 93) to perform the
access control verification. If access is denied, the transaction agent returns the appropriate
failure status to the clerk and rejects this operation request.

4. After successful verification of access permission on the encountered entry, the transaction
agent proceeds as follows, depending on the result in step ii above:

— If the requested entry is encountered, a handle is generated that can be used to perform
the requested operation on the entry, as specified below.

— If a child pointer entry pointing to a different set of clearinghouses is encountered, the
progress record is updated and returned to the clerk.

— If a soft link is encountered, the target of the soft link is obtained, the progress record is
re-initialised with the new name, and control is returned to the clerk after setting the
PR_hitLink and PR_linked flags to TRUE.

After obtaining the handle for the target entry of the requested operation, the transaction agent
processes the request according to its service definition as follows:

• If the processing is successful, the appropriate information is updated in the clearinghouse
and the progress record, status and possibly other output information are updated and
returned to the requesting clerk.

The transaction agent is responsible for creating and updating the appropriate operational
attributes associated with entries.

• Unless the requested operation induced a manipulation of directory entries, the transaction
affects only a single clearinghouse. Otherwise, the transaction agent may invoke other
remote operations on a different clearinghouse before the request can be completed
successfully. This specific behaviour is defined below in Transactions for Manipulating
Directory Entries.

• If a failure in processing the request is detected, the appropriate failure status is returned to
the requesting clerk.

Transactions for Manipulating Directory Entries

The operations which modify directory entries may require the coordination of multiple
clearinghouses to maintain consistency in the name space structure. In general, the clerk issues
the client’s request to one clearinghouse (that is, CDS server), and the transaction agent for that
clearinghouse calls its clerk to perform special internal server transactions to manipulate state at
the other clearinghouse.

The clerk operations that may cause operations of the transaction protocol, which are originated
by the initially targeted server and the activities of the transaction agent, are as follows:

cds_CreateDirectory
This operation causes a new directory to be created. It is issued by the clerk to the
transaction agent controlling the clearinghouse that is to contain the master replica of the
new directory. This may not be the same clearinghouse which holds the master replica for
the new directory’s parent; hence synchronisation is needed.

The algorithm for creating a new directory is as follows (note that this is an asynchronous
series of actions):

1. A new directory is created at the local clearinghouse, and its CDS_ParentPointer
attribute is set to point to its (purported) parent directory. Note that it may be true

120 CAE Specification (1997)

CDS Protocol Definition Server Operation

that some directory on the specified path to the new directory may not exist, or that
the new directory has a name which conflicts with an already existing child directory.
These problems are detected when the attempt is made to create the child pointer
entry at the parent’s master replica (see the next step).

2. The transaction agent attempts to create the child pointer entry in the parent directory
by performing the cds_CreateChild operation. If this fails, the new directory entry is
destroyed and the appropriate failure status is returned to the clerk.

3. If the child pointer entry is successfully created, the CDS_ParentPointer attribute is
set to the actual name of the parent directory (resolving a possibly linked name).

4. The Access Control List for the directory is appropriately initialised.

cds_DeleteDirectory
This operation removes an existing directory. The directory must be completely empty (that
is, no object, soft link or child pointer entries can exist in the directory), or the deletion fails,
and the failure status [CDS_NOTEMPTY] is returned to the calling clerk. The operation is
issued by the clerk to the transaction agent controlling the master replica of the directory.

The algorithm for deleting a directory proceeds as follows (note that this is an asynchronous
series of actions):

1. The transaction agent attempts to delete the child pointer entry in the parent directory
by performing the cds_DeleteChild operation. If this fails, the appropriate failure status
is returned to the calling clerk.

Note: This operation is performed asynchronously in the background. The
directory is marked as dying, and a success status is returned to the clerk.
Some time may have elapsed before the child pointer entry is actually
deleted and the directory is marked dead.

2. If the child pointer entry is successfully deleted, the local replica of the directory is
placed in the dead state for processing the clean-up.

Part 4 Cell Directory Service 121

CDS Protocol Definition

122 CAE Specification (1997)

Chapter 11

CDS Protocol Encodings

This chapter specifies the encodings for both the CDS transaction protocol and the solicitation
protocol. The messages transmitted between clerks and servers, and inter-server messages are
specified as remote operations defined in RPC IDL (Interface Definition Language).

The transaction and solicitation protocols are defined in the RPC IDL files cds_clerkserver.idl
and cds_solicit.idl respectively. The CDS protocol encodings are defined in the RPC IDL file
cds_types.idl and the include file dns_records.h. The IDL definitions can be found in Appendix
D. The operations that are specified in Chapter 12 map to the definitions in this IDL
specification. The ordering of the operation declarations in the IDL specification is relevant for
determining the associated procedure numbers. For more information on the IDL notation refer
to the DCE Remote Procedure Call specification.

The cds_types.idl file defines CDS-related data structures for use as argument types in the CDS
RPC interfaces, so marshalling and unmarshalling issues take precedence and this is the only
place they are used.

The dns_record.h file defines CDS-related data structures as they are represented on the local
machine, so space and alignment issues take precedence. These are the usual data structures you
will see throughout the CDS code.

This chapter specifies the relevant data types and constants for these IDL interface definitions.
Unless noted otherwise, messages are encoded in DCE Transfer Syntax (NDR).

11.1 Architected Limits
There are two syntaxes for naming service names: the external ASCII name and the internal
opaque name. The external name is the syntax used for the human-readable form of a name. The
internal name is the syntax of the name as passed across the client interface with the naming
service. The external name is designed for readability while the internal name is designed to be
convenient to encode in programs, protocols, and databases.

The maximum lengths of internal, or opaque, names are specified as follows:

#define SIMPLENAMEMAX 255 /* Single component name max size */
#define FULLNAMEMAX 402 /* Internal fully-qualified */

/* global name max size as represented
/* in an array of single component names */

#define ATTRIBNAMEMAX 31 /* Attribute name max size */
/* Same size limitation applies to */
/* class names */

The maximum length of external names is 1023 characters including the null terminator.

Part 4 Cell Directory Service 123

Encoding of Names CDS Protocol Encodings

11.2 Encoding of Names

11.2.1 Opaque Names

Opaque names can be either simple or full. A simple opaque name is a single relative
distinguished name (RDN). A full opaque name represents a complete list of RDNs relative to
the global root.

The SimpleName_t structure defines an internal, opaque encoding of names of various kinds
(entry, attribute, class) to be passed through the CDS protocol. This structure is defined in
dns_record.h as follows:

typedef unsigned char byte_t;
typedef unsigned char byte_u[sizeof(byte_t)];
typedef unsigned char bytes_u;

typedef struct {
byte_u sn_flag;
byte_u sn_length;
bytes_u sn_name[SIMPLENAMEMAX];

} SimpleName_t;

The structure fields have the following definitions:

sn_flag This type represents a single name component, and contains one of the
following values:

SN_null 0
SN_typed 6
SN_objectid 7
SN_cds 8
SN_cdswildcard 9

The values 1, 2, 3, 4 and 5 are reserved.

SN_null Signifies an empty atomic name.

Note that empty components of external atomic names are
not allowed, but this value may be used for protocol
internal purposes.

SN_typed Signifies an atomic name representing a typed name (that is,
an X.500 relative distinguished name (RDN)).

SN_objectid Signifies an attribute name.

SN_cds Signifies an atomic name representing an entity in the cell
name space that does not contain wildcard metacharacters.

SN_cdswildcard Signifies an atomic name representing an entity in the cell
name space that contains at least one non-escaped (that is,
with no preceding \ (backslash)) wildcard metacharacter
(that is, * (asterisk) or ? (question mark)).

sn_length Contains the length of the string contained in sn_name. If the value in sn_flag
is SN_null (null opaque name), sn_length is zero.

124 CAE Specification (1997)

CDS Protocol Encodings Encoding of Names

sn_name Contains the string representation of the opaque name in question (with no
terminating NULL). If the string represents an atomic name (that is, consists of
one / (slash) separated name component), its syntax and canonical form are as
specified in Section 9.1 on page 87.

If the value of sn_flag is SN_null (null opaque name), this field contains a null
string.

The encoding of sn_name uses ISO 8859-1 code page (Latin-1) in ASCII.

The FullName_t structure defines an internal, opaque encoding of a complete global name to be
passed through the CDS protocol. This structure is defined in dns_record.h as follows:

typedef uuid_t ObjUID_t;
typedef bytes_u ObjUID_u[sizeof(uuid_t)];

typedef struct {
ObjUID_u fn_root;
word_u fn_length;
bytes_u fn_name[FULLNAMEMAX - (sizeof(word_u) + sizeof(ObjUID_u))];

} FullName_t;

The structure fields have the following definitions:

fn_root Contains the UUID of the parent node of the composite name stored in
fn_name. If an invalid name was processed (that is, there is no name in
fn_name), then this field contains a NIL UUID.

fn_length Contains the total number of bytes in structures currently stored in fn_name.

fn_name Contains an array of SimpleName_t structures forming a complete global
name.

11.2.2 Single Name Components

The structure representing the internal format of single name components is defined as follows
(this structure is also used to contain attribute identifiers and class values):

typedef struct {
unsigned short int nm_length;
[length_is(nm_length)] byte nm_name[257];
} cds_Name_t;

The structure fields have the following definitions:

nm_length Contains the length of the string in nm_name.

nm_name Contains an internal opaque name.

11.2.3 Full Names

The structure containing the string representation of the fully qualified global name is defined as
follows:

typedef struct {
uuid_t fn_root;
long int fn_length;
[length_is(fn_length)] char fn_name[1023];

} cds_FullName_t;

Part 4 Cell Directory Service 125

Encoding of Names CDS Protocol Encodings

The structure fields have the following definitions:

fn_root Contains the UUID of the parent node (name context) of the composite name
stored in fn_name. If an invalid name was processed, this field contains a NIL
UUID.

fn_length The length of the fn_name string.

fn_name The canonical string representation of the name in question, relative to the
context defined in fn_root. This is generally the global root (that is, the name
includes the /... prefix). The server-to-server operations may use a UUID in
fn_root that defines a CDS directory. The string does not include a terminating
null. Its syntax and canonical form are specified in Section 1.3.2 on page 13.

126 CAE Specification (1997)

CDS Protocol Encodings Encoding of Time

11.3 Encoding of Time

11.3.1 CDS Timestamps

The CDS timestamp structure is defined as follows:

typedef struct {
byte ts_node[6];
unsigned hyper int ts_time;
} cds_Timestamp_t;

The structure fields have the following definitions:

ts_node The node identifier, containing an IEEE 802 address.

ts_time The amount of time, expressed in 100 nanosecond units, elapsed since
00:00:00.00, 17 November 1858 (Smithsonian calendar).

Note that the UTC base timestamps provided by the DCE Distributed Time
Service are expressed as the amount of time elapsed since 15 October 1582
(Gregorian calendar).

11.3.2 Timeout Structure

The timeout structure used in operations for soft link entries is defined as follows:

typedef struct {
byte to_expire[16];
byte to_extend[16];
} cds_Timeout_t;

typedef [ptr]cds_Timeout_t *cds_TimeoutP_t;

The structure fields have the following definitions:

to_expire The absolute time determining the expiration of a soft link, encoded as
Coordinated Universal Time (UTC), as specified in the DCE Time Services
specification.

to_extend The relative time used as extension factor, encoded as UTC.

Part 4 Cell Directory Service 127

Encoding for Operations on Attributes CDS Protocol Encodings

11.4 Encoding for Operations on Attributes

11.4.1 Atomic Attribute Values

All data types recognised by CDS are encoded in the discriminated union cds_AtomicValue_t,
which is defined as follows:

typedef union switch (ValueType_t av_valuetype) av_val
{
case VT_none: ;
case VT_long: long int av_long;
case VT_short: short int av_short;
case VT_small: small int av_small;
case VT_uuid: uuid_t av_uuid;
case VT_Timestamp: cds_Timestamp_t av_timestamp;
case VT_Timeout: cds_Timeout_t av_timeout;
case VT_Version: cds_Version_t av_version;
case VT_char: [ptr]cds_OpenChar_t *av_char_p;
case VT_ASN1:
case VT_byte: [ptr]cds_OpenByte_t *av_byte_p;

/* The remaining types are for internal CDS use only */

case VT_ReplicaPointer: [ptr]cds_ReplicaPointer_t *av_rp_p;
case VT_GroupMember: [ptr]cds_GroupMember_t *av_gm_p;
case VT_ParentPointer: [ptr]cds_ParentPointer_t *av_pp_p;
case VT_FullName: [ptr]cds_FullName_t *av_fullname_p;
case VT_CHDirectory: [ptr]cds_CHDirectory_t *av_cp_p;
case VT_DACL: [ptr]sec_acl_t *av_acl_p;
case VT_gdaPointer: [ptr]cds_gdaPointer_t *av_gda_p;
} cds_AtomicValue_t;

The structure fields have the following definitions:

VT_none This indicates the absence of a value.

VT_long This signifies a signed 32-bit integer.

VT_short This signifies a signed 16-bit integer.

VT_small This signifies a signed 8-bit integer.

VT_uuid This signifies a universal unique identifier (UUID).

VT_Timestamp This signifies a CDS timestamp (unique identifier); see above for
encodings.

VT_Timeout This signifies a timeout structure; see above for encodings.

VT_Version This signifies class and replica version; see below for encodings.

VT_char This signifies a counted string of 8-bit ASCII or EBCDIC characters (see
Appendix D for encodings).

VT_ASN1 This signifies the same encoding as VT_byte, but representing ASN.1.

VT_byte This signifies a counted string of untranslated octets (see Appendix D for
encodings).

VT_ReplicaPointer This signifies a replica pointer structure; see below for encodings.

128 CAE Specification (1997)

CDS Protocol Encodings Encoding for Operations on Attributes

VT_GroupMember This signifies a group member structure (see Appendix D for encodings).

VT_ParentPointer This signifies a parent pointer structure (see Appendix D for encodings).

VT_FullName This signifies a full name structure; see above for encodings.

VT_CHDirectory This signifies a clearinghouse directory structure (see Appendix D for
encodings).

VT_DACL This signifies an Access Control List structure (see the DCE Security
Services specification for encodings).

VT_gdaPointer This signifies a GDA pointer structure (see Appendix D for encodings).

The specified attribute type codes are as follows:

AT_none 1 /* no value */
AT_single 2 /* single-valued attribute */
AT_set 3 /* set-valued attribute */

11.4.2 Members of Set-Valued Attributes

The structure defining a member of a set-valued attribute or the contents of a single-valued
attribute is defined as follows:

typedef struct {
unsigned small int sm_flag;
cds_Timestamp_t sm_ts;
cds_AtomicValue_t sm_value;
} cds_SetMember_t;

The structure fields have the following definitions:

sm_flag The value of this flag indicates whether an attribute value is present or absent.
Valid values are as follows:

SM_present 1
SM_absent 0

sm_ts Contains the member creation timestamp.

sm_value Contains the actual value of this attribute member.

11.4.3 Single and Set-Valued Attributes

The structure describing single- or set-valued attributes is defined as follows:

typedef struct {
unsigned small int set_type;
unsigned short int set_length;
[size_is(set_length)] cds_SetMember_t set_members[];

} cds_Set_t;

typedef [ptr]cds_Set_t *cds_SetP_t;

The structure fields have the following definitions:

set_type This flag describes the attribute type, and has one of the following values:

Part 4 Cell Directory Service 129

Encoding for Operations on Attributes CDS Protocol Encodings

AT_none 1 /* no value */
AT_single 2 /* single-valued attribute */
AT_set 3 /* set-valued attribute */

set_length Contains the number of elements in the array set_members.

set_members An array containing the attribute’s contents.

11.4.4 Values for Read Operations

The union that contains the value of the read attribute operation is defined as follows:

typedef union switch (unsigned small returningToClerk) {
case RA_none: ;
case RA_single: [ptr] cds_SetMember_t *value_single_p;
case RA_set: [ptr] cds_Set_t *value_set_p;
case RA_wholeSet: [ptr] cds_WholeEntry_t *wholeEntry_p;

} cds_RA_value_t;

11.4.5 Values for Modify Operations

The structure containing pertinent values for modify attribute operations is defined as follows:

typedef struct {
small int ud_operation;
cds_Timestamp_t ud_timestamp;
unsigned small int ud_type;
byte ud_attribute[33];
cds_AtomicValue_t ud_value;
} cds_Update_t;

The structure fields have the following definitions:

ud_operation A flag indicating whether the attribute is present or absent; its value is one of
the following:

UD_present 1
UD_absent 2

ud_timestamp Contains the optional modification timestamp.

ud_type A flag describing the attribute type; its value is one of the following:

AT_none 1 /* used to delete an object entry */
AT_single 2
AT_set 3

ud_attribute A string representing the attribute identifier, encoded as a SimpleName_t
structure with the value of its sn_flag being SN_objectid.

The attribute identifier represents the CCITT Object Identifier (OID) of the
attribute, encoded in ASN.1/BER (ISO 8825). The directory version specified
in this document supports only this format.

The attribute name to identifier mapping is specified in the CDS attributes
table (in Appendix B).

ud_value Contains the attribute value.

130 CAE Specification (1997)

CDS Protocol Encodings Encoding of Progress Record

11.5 Encoding of Progress Record
The structure specifying a progress record is defined as follows:

typedef struct {
unsigned small int pr_flags;
[ptr]cds_Timeout_t *pr_timeout;
cds_FullName_t pr_unresolved;
cds_FullName_t pr_resolved;
[ptr]cds_Set_t *pr_replicas_p;
} cds_Progress_t;

The structure fields have the following definitions:

pr_flags A flag whose valid values are subsets (logical OR) of the following:

PR_done 0x00000001
PR_up 0x00000010
PR_linked 0x00000100
PR_hitLink 0x00001000
PR_ignoreState 0x00010000
PR_directory 0x00100000

pr_timeout A pointer to a value specifying the minimum timeout for all soft links
followed in resolving a name.

pr_unresolved Contains the unresolved portion of the name.

pr_resolved Contains the resolved portion of the name.

pr_replicas_p A pointer to a field containing a set of clearinghouses.

Part 4 Cell Directory Service 131

Encoding of Replica Pointer CDS Protocol Encodings

11.6 Encoding of Replica Pointer
The internal CDS structure that describes replicas is defined as follows:

typedef struct {
unsigned small int rp_type;
uuid_t rp_chid;
cds_FullName_t rp_chname;
unsigned long int rp_length;
[size_is(rp_length)] byte rp_towers[];
} cds_ReplicaPointer_t;

typedef [ref]cds_ReplicaPointer_t *cds_ReplicaPointerP_t;

The structure fields have the following definitions:

rp_type A flag specifying the type of replica; it can have one of the following values:

RT_master 1
RT_readOnly 3
RT_gda 4

The value 2 is reserved.

This document further specifies the usage only of RT_master (the Master
Replica) and RT_gda (the Global Directory Agent).

rp_chid Contains the UUID of this replica.

rp_chname Contains the string representation of the name of this replica.

rp_length Contains the number of elements of the rp_towers array.

rp_towers An array containing the set of protocol towers for this replica (see the DCE
Remote Procedure Call specification for encodings).

132 CAE Specification (1997)

CDS Protocol Encodings Miscellaneous Data Types and Constants

11.7 Miscellaneous Data Types and Constants

11.7.1 Boolean Values

Any integral or pointer type that is used to represent Boolean values is encoded as follows:

FALSE equal to zero

TRUE unequal to zero.

11.7.2 Entry Type

The structure that specifies entry type is defined as follows:

typedef struct {
byte_u et_value;
} EntryType_t;

The structure fields have the following definitions:

et_value A flag that specifies the entry type; it has one of the following values:

ET_directory 1
ET_object 2
ET_childPointer 3
ET_softlink 4
ET_clearinghouse 5
ET_anyDirectName 6
ET_firstLink 7
ET_dirOrObj 8

11.7.3 Clearinghouse List

The structure that specifies a list of clearinghouses is defined as follows:

typedef struct {
unsigned short ch_length;
[size_is(ch_length)] cds_ReplicaPointerP_t ch_members[];
} cds_CH_t;

The structure fields have the following definitions:

ch_length Contains the number of elements in the array ch_members.

ch_members The array of replica pointers.

Part 4 Cell Directory Service 133

Miscellaneous Data Types and Constants CDS Protocol Encodings

11.7.4 Clearinghouse State

The structure that determines the state of a clearinghouse is defined as follows:

typedef struct {
byte_u cs_value;

} CHState_t;

The structure field has the following definition:

cs_value A flag that specifies the state, which can be one of the following:

CS_newCH 1
CS_on 2
CS_dyingCH 3

11.7.5 Version Number

The structure defining a version number is defined as follows:

typedef struct {
unsigned small int ver_major;
unsigned small int ver_minor;
} cds_Version_t;

The structure fields have the following values:

ver_major Contains the major version number.

ver_minor Contains the minor version number.

11.7.6 Principal and Group Identities

The sec_id_t structure is the basic unit for identifying principals or groups. It is defined as
follows:

typedef struct {
uuid_t uuid;
[string,ptr] char *name;
} sec_id_t;

The structure fields have the following definitions:

uuid Contains the UUID that provides an object handle for the identity.

name Contains the optional printstring name.

11.7.7 Foreign Identities

The sec_id_foreign_t structure defines an identity from a foreign realm. It is defined as follows:

typedef struct {
sec_id_t id;
sec_id_t realm;
} sec_id_foreign_t;

The structure fields have the following definitions:

id Contains the identifier of the foreign user or group.

realm Contains the identifier of the foreign realm.

134 CAE Specification (1997)

CDS Protocol Encodings Miscellaneous Data Types and Constants

11.7.8 Error Status Returns

The structure for an error status return is defined as follows:

typedef struct {
unsigned long int er_status;
[ptr] cds_FullName_t *er_name;
} cds_status_t;

The structure fields have the following definitions:

er_status Contains the status number.

er_name Contains a pointer to a full name if the status [CDS_UNKNOWN_ENTRY] is
returned.

Part 4 Cell Directory Service 135

CDS Protocol Encodings

136 CAE Specification (1997)

Chapter 12

IDL Notation of CDS Operations

This chapter contains specifications for the RPC interfaces used by CDS clerks and servers.

The RPC interfaces are specified in IDL (Interface Definition Language). Part of the information
in these IDL declarations is symbolic and need not be preserved identically. For example, the
names of procedures and parameters are a local matter. The information that must be identical
for a conforming implementation is as follows:

• the interface identifier, composed of UUID and version

• the order of procedures within the interface definition (see Appendix D)

• the order and number of parameters in procedure signatures

• the types of parameters and procedures

• the attributes of parameters and procedures.

The following sections contain the interface specifications for CDS remote operations.

Part 4 Cell Directory Service 137

cds_Advertise() IDL Notation of CDS Operations

12.1 cds_Advertise()
[broadcast,maybe] void cds_Advertise(

[in] handle_t h,
[in] cds_FullName_t *cellname_p,
[in] uuid_t cell_diruid,
[in] cds_CH_t *nscle_p
);

cds_Advertise() advertises the CDS server’s availability and the availability of each of its running
clearinghouses. CDS servers send advertisements when one of the following is true:

• The advertisement timer expires.

• A solicitation request (operation cds_Solicit ()) is received.

The advertisement intervals for CDS server advertisements are implementation-dependent. A
recommended default for advertisement intervals is five minutes. Implementations should
apply jitter to this timeout value within a cell name space that is running replicated servers to
avoid synchronised broadcasts.

No permission is required for the operation.

Input Parameters

The input parameters for cds_Advertise() are:

h RPC binding handle.

cellname_p The fully-qualified global name of the local cell.

cell_diruid The UUID of the cell.

nscle_p The list of available clearinghouses at the server, including its UUIDs, fully-
qualified global names, and exported protocol towers. The rp_type flag of this
data structure determines the replica type.

138 CAE Specification (1997)

IDL Notation of CDS Operations cds_CreateChild()

12.2 cds_CreateChild()
error_status_t cds_CreateChild(

[in] handle_t h,
[in,out] cds_Progress_t *Progress_p,
[in,ptr] sec_id_foreign_t *user_p,
[in] uuid_t *childID_p,
[in] cds_Set_t *replicaset_p,
[out] uuid_t *parentID_p,
[out] cds_status_t *cds_status_p
);

cds_CreateChild () creates a child pointer entry in the parent directory.

This operation is performed only in server-to-server communication as a result of a
cds_CreateDirectory() operation which may affect a parent directory located in a different
clearinghouse on a remote server.

The operation requires insert access permission to the parent directory.

Input Parameters

The input parameters for cds_CreateChild () are:

h RPC binding handle referring to the target server and clearinghouse.

user_p Identity of the principal that is invoking this operation.

This client’s EPAC is used at the target server to verify the initiator’s identity
and access permissions (requesting server impersonates the initiator), for
operations that set up an Access Control List on the child pointer entry. The
appropriate security service operations are assumed (refer to the DCE
Security Services specification).

childID_p The UUID of the child.

replicaset_p Replica set. Each member of the set contains one replica pointer (the sm_value
fields are of type VT_ReplicaPointer).

Input/Output Parameters

The input/output parameters for cds_CreateChild () are:

Progress_p Progress record, used at the server’s clerk for handling referrals to another
server. The pr_unresolved field of the progress record contains the portion of
the original fully-qualified global name of the child entry created.

Output Parameters

The output parameters for cds_CreateChild () are:

parentID_p The UUID of the parent directory.

cds_status_p Error status return. On [CDS_UNKNOWNENTRY], the er_name field may be
filled in with the last name the server successfully accessed.

Part 4 Cell Directory Service 139

cds_CreateChild() IDL Notation of CDS Operations

Possible status codes are (non-exclusive):

[CDS_SUCCESS]
[CDS_VERSIONSKEW]
[CDS_ACCESSDENIED]
[CDS_CANNOTAUTHENTICATE]
[CDS_UNTRUSTEDCH]
[CDS_CLEARINGHOUSEDOWN]
[CDS_POSSIBLECYCLE]
[CDS_ROOTLOST]
[CDS_UNDERSPECIFIEDNAME]
[CDS_UNKNOWNENTRY]
[CDS_ENTRYEXISTS]

140 CAE Specification (1997)

IDL Notation of CDS Operations cds_CreateDirectory()

12.3 cds_CreateDirectory()
error_status_t cds_CreateDirectory(

[in] handle_t h,
[in,out] cds_Progress_t *Progress_p,
[out] cds_Timestamp_t *actual_ts_p,
[out] cds_status_t *cds_status_p
);

cds_CreateDirectory() creates a directory entry as a child of the directory entry implied by the
fully-qualified global name of the new directory.

The operation requires insert access permission to the parent directory, and write access
permission to the clearinghouse which is to store the master replica for the directory.

Note also that this operation performs a cds_CreateChild () operation and therefore the server
requires respective access permissions to its peer server.

Input Parameters

The input parameters for cds_CreateDirectory() are:

h RPC binding handle referring to the target server and clearinghouse.

Input/Output Parameters

The input/output parameters for cds_CreateDirectory() are:

Progress_p Progress record, used at the clerk for handling referrals to another server. The
pr_unresolved field of the progress record contains the portion of the original
fully-qualified global name of the directory entry created.

Output Parameters

The output parameters for cds_CreateDirectory() are:

actual_ts_p A timestamp indicating the date and time that the directory was created.

cds_status_p Error status return. On [CDS_UNKNOWNENTRY], the er_name field may be
filled in with the last name the server successfully accessed.

Possible status codes are (non-exclusive):

[CDS_SUCCESS]
[CDS_VERSIONSKEW]
[CDS_ACCESSDENIED]
[CDS_CANNOTAUTHENTICATE]
[CDS_UNTRUSTEDCH]
[CDS_CLEARINGHOUSEDOWN]
[CDS_POSSIBLECYCLE]
[CDS_ROOTLOST]
[CDS_UNDERSPECIFIEDNAME]
[CDS_UNKNOWNENTRY]
[CDS_CANTPUTHERE]
[CDS_ENTRYEXISTS]

Part 4 Cell Directory Service 141

cds_CreateObject() IDL Notation of CDS Operations

12.4 cds_CreateObject()
error_status_t cds_CreateObject(

[in] handle_t h,
[in,out] cds_Progress_t *Progress_p,
[in,ptr] cds_Name_t *class_p,
[in,ptr] cds_Version_t *version_p,
[in, ptr] uuid_t *uuid_p,
[out] cds_Timestamp_t *actual_ts_p,
[out] cds_status_t *cds_status_p
);

cds_CreateObject() creates an object entry in the cell name space. Creating an object entry
requires meeting the following conditions:

• The name given for the object entry must be new for the cell name space. If a directory,
object entry, clearinghouse or soft link already exists with the specified name, the operation
is unsuccessful.

• All directories cited in the fully-qualified global name must exist.

The entry initially has the CDS_CTS and CDS_UTS attributes, and optionally, the CDS_Class,
CDS_ClassVersion and CDS_ObjectUUID attributes. Other attributes may be added via the
cds_ModifyAttribute () operation.

The operation requires insert access permission to the parent directory.

Input Parameters

The input parameters for cds_CreateObject() are:

h RPC binding handle referring to the target server and clearinghouse.

class_p A printable string name representing the object’s class. The nm_name field is
encoded as a SimpleName_t structure with its sn_flag set to either SN_cds or
SN_cdswildcard. This parameter is optional. If it contains a non-NULL value,
version_p is also used.

version_p The major and minor class version numbers of the application. This parameter
is used only if class_p is non-NULL.

uuid_p The optional unique identifier for the object entry.

Input/Output Parameters

The input/output parameters for cds_CreateObject() are:

Progress_p Progress record, used at the clerk for handling referrals to another server. The
pr_unresolved field of the progress record contains the portion of the original
fully-qualified global name of the object entry created.

142 CAE Specification (1997)

IDL Notation of CDS Operations cds_CreateObject()

Output Parameters

The output parameters for cds_CreateObject() are:

actual_ts_p A timestamp indicating the date and time the object entry was created.

cds_status_p Error status return. On [CDS_UNKNOWNENTRY], the er_name field may be
filled in with the last name the server successfully accessed.

Possible status codes are (non-exclusive):

[CDS_SUCCESS]
[CDS_VERSIONSKEW]
[CDS_ACCESSDENIED]
[CDS_CANNOTAUTHENTICATE]
[CDS_UNTRUSTEDCH]
[CDS_CLEARINGHOUSEDOWN]
[CDS_POSSIBLECYCLE]
[CDS_ROOTLOST]
[CDS_UNDERSPECIFIEDNAME]
[CDS_UNKNOWNENTRY]
[CDS_ENTRYEXISTS]

Part 4 Cell Directory Service 143

cds_CreateSoftLink() IDL Notation of CDS Operations

12.5 cds_CreateSoftLink()
error_status_t cds_CreateSoftLink(

[in] handle_t h,
[in,out] cds_Progress_t *Progress_p,
[in] cds_FullName_t *target_p,
[in,ptr] cds_Timeout_t *linkTimeout_p,
[out] cds_Timestamp_t *actual_ts_p,
[out] cds_status_t *cds_status_p
);

cds_CreateSoftLink () creates a soft link entry with the name as identified in the progress record
that points to another entry whose name is identified by target_p.

The operation requires insert access permission to the directory in which the soft link is created.

Input Parameters

The input parameters for cds_CreateSoftLink () are:

h RPC binding handle referring to the target server and clearinghouse.

target_p The string representation of the fully-qualified global name of an existing
entry in the cell name space to which the soft link (identified in Progress_p)
points.

linkTimeout_p A structure that specifies two values: the first value is an absolute time after
the elapse of which the soft link is deleted if its target entry no longer exists;
the second value is an extension factor for the timeout. When the time
determined by the first value expires, the CDS server attempts to verify that
the entry to which the link points still exists, and extends the life of the soft
link by the second value only if it does still exist.

If this operation parameter is set to NULL, the soft link is neither checked nor
deleted by the CDS server on the client’s behalf.

Input/Output Parameters

The input/output parameters for cds_CreateSoftLink () are:

Progress_p Progress record, used at the clerk for handling referrals to another server. The
pr_unresolved field of the progress record contains the portion of the original
fully-qualified global name of the soft link to be created.

Output Parameters

The output parameters for cds_CreateSoftLink () are:

actual_ts_p A timestamp indicating the date and time the soft link was created.

cds_status_p Error status return. On [CDS_UNKNOWNENTRY], the er_name field may be
filled in with the last name the server successfully accessed.

144 CAE Specification (1997)

IDL Notation of CDS Operations cds_CreateSoftLink()

Possible status codes are (non-exclusive):

[CDS_SUCCESS]
[CDS_VERSIONSKEW]
[CDS_ACCESSDENIED]
[CDS_CANNOTAUTHENTICATE]
[CDS_UNTRUSTEDCH]
[CDS_CLEARINGHOUSEDOWN]
[CDS_POSSIBLECYCLE]
[CDS_ROOTLOST]
[CDS_UNDERSPECIFIEDNAME]
[CDS_UNKNOWNENTRY]
[CDS_ENTRYEXISTS]

Part 4 Cell Directory Service 145

cds_DeleteChild() IDL Notation of CDS Operations

12.6 cds_DeleteChild()
error_status_t cds_DeleteChild(

[in] handle_t h,
[in,out] cds_Progress_t *Progress_p,
[out] cds_status_t *cds_status_p
);

cds_DeleteChild() deletes the child pointer entry from the parent directory as part of deleting a
directory from the cell name space.

This operation is only performed in server-to-server communication as a result of a
cds_DeleteDirectory() operation if the parent directory is located in a different clearinghouse on a
remote server.

The operation requires either delete access permission to the child pointer, or administer access
permission to the parent directory entry.

Input Parameters

The input parameters for cds_DeleteChild() are:

h RPC binding handle referring to the target server and clearinghouse.

Input/Output Parameters

The input/output parameters for cds_DeleteChild() are:

Progress_p Progress record, used at the server’s clerk for handling referrals to another
server. The pr_unresolved field of the progress record contains the portion of
the original fully-qualified global name of the child entry deleted.

Output Parameters

The output parameters for cds_DeleteChild() are:

cds_status_p Error status return. On [CDS_UNKNOWNENTRY], the er_name field may be
filled in with the last name the server successfully accessed.

Possible status codes are (non-exclusive):

[CDS_SUCCESS]
[CDS_VERSIONSKEW]
[CDS_ACCESSDENIED]
[CDS_CANNOTAUTHENTICATE]
[CDS_UNTRUSTEDCH]
[CDS_CLEARINGHOUSEDOWN]
[CDS_POSSIBLECYCLE]
[CDS_ROOTLOST]
[CDS_UNDERSPECIFIEDNAME]
[CDS_UNKNOWNENTRY]

146 CAE Specification (1997)

IDL Notation of CDS Operations cds_DeleteDirectory()

12.7 cds_DeleteDirectory()
error_status_t cds_DeleteDirectory(

[in] handle_t h,
[in,out] cds_Progress_t *Progress_p,
[out] cds_status_t *cds_status_p
);

cds_DeleteDirectory() removes the specified directory entry from the cell name space. The
directory must be empty in order to be deleted.

The operation requires delete access permission to the directory entry, and write permission to
the clearinghouse that stores the master replica.

Note also that this operation performs a cds_DeleteChild() operation, and therefore the server
requires respective access permissions to its peer server.

Input Parameters

The input parameters for cds_DeleteDirectory() are:

h RPC binding handle referring to the target server and clearinghouse.

Input/Output Parameters

The input/output parameters for cds_DeleteDirectory() are:

Progress_p Progress record, used at the clerk for handling referrals to another server. The
pr_unresolved field of the progress record contains the portion of the original
fully-qualified global name of the directory entry to be deleted.

Output Parameters

The output parameters for cds_DeleteDirectory() are:

cds_status_p Error status return. On [CDS_UNKNOWNENTRY], the er_name field may be
filled in with the last name the server successfully accessed.

Possible status codes are (non-exclusive):

[CDS_SUCCESS]
[CDS_VERSIONSKEW]
[CDS_ACCESSDENIED]
[CDS_CANNOTAUTHENTICATE]
[CDS_UNTRUSTEDCH]
[CDS_CLEARINGHOUSEDOWN]
[CDS_POSSIBLECYCLE]
[CDS_ROOTLOST]
[CDS_UNDERSPECIFIEDNAME]
[CDS_UNKNOWNENTRY]
[CDS_NOTEMPTY]

Part 4 Cell Directory Service 147

cds_DeleteObject() IDL Notation of CDS Operations

12.8 cds_DeleteObject()
error_status_t cds_DeleteObject(

[in] handle_t h,
[in,out] cds_Progress_t *Progress_p,
[out] cds_status_t *cds_status_p
);

cds_DeleteObject() removes the specified object entry from the cell name space.

The operation requires delete access permission to the object entry, or administer permission to
its parent directory.

Input Parameters

The input parameters for cds_DeleteObject() are:

h RPC binding handle referring to the target server and clearinghouse.

Input/Output Parameters

The input/output parameters for cds_DeleteObject() are:

Progress_p Progress record, used at the clerk for handling referrals to another server. The
pr_unresolved field of the progress record contains the portion of the original
fully-qualified global name of the object entry to be deleted.

Output Parameters

The output parameters for cds_DeleteObject() are:

cds_status_p Error status return. On [CDS_UNKNOWNENTRY], the er_name field may be
filled in with the last name the server successfully accessed.

Possible status codes are (non-exclusive):

[CDS_SUCCESS]
[CDS_VERSIONSKEW]
[CDS_ACCESSDENIED]
[CDS_CANNOTAUTHENTICATE]
[CDS_UNTRUSTEDCH]
[CDS_CLEARINGHOUSEDOWN]
[CDS_POSSIBLECYCLE]
[CDS_ROOTLOST]
[CDS_UNDERSPECIFIEDNAME]
[CDS_UNKNOWNENTRY]

148 CAE Specification (1997)

IDL Notation of CDS Operations cds_DeleteSoftLink()

12.9 cds_DeleteSoftLink()
error_status_t cds_DeleteSoftLink(

[in] handle_t h,
[in,out] cds_Progress_t *Progress_p,
[out] cds_status_t *cds_status_p
);

cds_DeleteSoftLink() deletes a soft link from the cell name space.

The operation requires delete access permission to the soft link, or administer permission to its
parent directory.

Input Parameters

The input parameters for cds_DeleteSoftLink() are:

h RPC binding handle referring to the target server and clearinghouse.

Input/Output Parameters

The input/output parameters for cds_DeleteSoftLink() are:

Progress_p Progress record, used at the clerk for handling referrals to another server. The
pr_unresolved field of the progress record contains the portion of the original
fully-qualified global name of the soft link to be deleted.

Output Parameters

The output parameters for cds_DeleteSoftLink() are:

cds_status_p Error status return. On [CDS_UNKNOWNENTRY], the er_name field may be
filled in with the last name the server successfully accessed.

Possible status codes are (non-exclusive):

[CDS_SUCCESS]
[CDS_VERSIONSKEW]
[CDS_ACCESSDENIED]
[CDS_CANNOTAUTHENTICATE]
[CDS_UNTRUSTEDCH]
[CDS_CLEARINGHOUSEDOWN]
[CDS_POSSIBLECYCLE]
[CDS_ROOTLOST]
[CDS_UNDERSPECIFIEDNAME]
[CDS_UNKNOWNENTRY]

Part 4 Cell Directory Service 149

cds_EnumerateAttributes() IDL Notation of CDS Operations

12.10 cds_EnumerateAttributes()
[idempotent] error_status_t cds_EnumerateAttributes(

[in] handle_t h,
[in,out] cds_Progress_t *Progress_p,
[in] unsigned small type,
[in] cds_Name_t *context_p,
[in] unsigned32 max_size,
[in,out,ptr] cds_SetP_t *attr_set,
[out] unsigned small *wholeset_p,
[out] cds_status_t *cds_status_p
);

cds_EnumerateAttributes() returns in attr_set a set whose members are the attribute identifiers of
each currently present attribute of the entry whose type is specified in type.

Note: The attribute identifiers are enumerated in lexical order of the string representation
of object identifiers (CCITT OIDs). If the call returns FALSE (parameter wholeset_p),
not all attributes have been enumerated and the client may make further calls, setting
context_p to the last attribute in the set returned, until the operation returns TRUE.

The operation requires read access permission to the entry whose attributes are to be
enumerated.

Input Parameters

The input parameters for cds_EnumerateAttributes() are:

h RPC binding handle referring to the target server and clearinghouse.

type The type of the entry for which attributes are enumerated. Valid entry types
are:

ET_directory
ET_object
ET_childPointer
ET_softlink
ET_clearinghouse
ET_dirOrObj

context_p The context of the last attribute in the previous call (the attribute identifier
returned in attr_set). The nm_name field is encoded as a SimpleName_t
structure with its sn_flag set to SN_objectid. This is used in a sequence of
calls to enumerate the whole set of attributes of this entry. If set to NULL, the
look-up operation starts at the beginning of the entry.

max_size The maximum size of values to be returned by attr_set per call instance.

Input/Output Parameters

The input/output parameters for cds_EnumerateAttributes() are:

Progress_p Progress record, used at the clerk for handling referrals to another server. The
pr_unresolved field of the progress record contains the portion of the original
fully-qualified global name of the entry for which attributes are enumerated.

attr_set A pointer to the set of the requested attribute identifiers (the attribute name to
identifier mapping is specified in Section B.2 on page 186). These attribute
identifiers are CCITT object identifiers, encoded in ASN.1, BER. The attribute

150 CAE Specification (1997)

IDL Notation of CDS Operations cds_EnumerateAttributes()

identifiers are contained in the sm_value fields (type VT_byte), encoded as
SimpleName_t structures. Attribute values are absent.

The buffer that attr_set points to must not exceed max_size.

Output Parameters

The output parameters for cds_EnumerateAttributes() are:

wholeset_p A boolean value that indicates whether this call instance returned the whole
set of enumerated attributes.

cds_status_p Error status return. On [CDS_UNKNOWNENTRY], the er_name field may be
filled in with the last name the server successfully accessed.

Possible status codes are (non-exclusive):

[CDS_SUCCESS]
[CDS_VERSIONSKEW]
[CDS_ACCESSDENIED]
[CDS_CANNOTAUTHENTICATE]
[CDS_UNTRUSTEDCH]
[CDS_CLEARINGHOUSEDOWN]
[CDS_POSSIBLECYCLE]
[CDS_ROOTLOST]
[CDS_UNDERSPECIFIEDNAME]
[CDS_UNKNOWNENTRY]
[CDS_NOTLINKED]
[CDS_DANGLINGLINK]

Part 4 Cell Directory Service 151

cds_EnumerateChildren() IDL Notation of CDS Operations

12.11 cds_EnumerateChildren()
[idempotent] error_status_t cds_EnumerateChildren(

[in] handle_t h,
[in,out] cds_Progress_t *Progress_p,
[in] cds_Name_t *wild_p,
[in] cds_Name_t *context_p,
[in] unsigned32 max_size,
[in,out,ptr] cds_SetP_t *name_set,
[out] unsigned small *wholeset_p,
[out] cds_status_t *cds_status_p
);

cds_EnumerateChildren() takes as input the name of a directory and a wildcarded component
name to match against child pointer entries in the directory. It returns a set whose members are
the component names of child directories of the directory which matched the wildcarded name.
If no children matched the wildcard or the directory has no children, a NULL set is returned.

The child pointers are enumerated in lexical order (based on the Portable Character Set (PCS)). If
the call returns FALSE (parameter wholeset_p), not all children have been enumerated and the
client may make further calls, setting context_p to the last child directory name in the set
returned, until the operation returns TRUE.

This operation requires read access permission to the parent directory and to each child pointer.

Input Parameters

The input parameters for cds_EnumerateChildren() are:

h RPC binding handle referring to the target server and clearinghouse.

wild_p A wildcard filter for the child directory names. The nm_name field is encoded
as a SimpleName_t structure with its sn_flag set to either SN_cds or
SN_cdswildcard. This operation parameter is optional, and can be set to
NULL. Specifying a NULL value is the same as specifying the string * (asterisk
character).

context_p The context of the last child directory in the previous call (the child directory
name returned in name_set). The nm_name field is encoded as a
SimpleName_t structure with its sn_flag set to SN_cds. This is used in a
sequence of calls to enumerate the whole set of child directories of this entry.
If set to NULL, the look-up operation starts at the beginning of the entry.

max_size The maximum size of values to be returned by name_set per call instance.

Input/Output Parameters

The input/output parameters for cds_EnumerateChildren() are:

Progress_p Progress record, used at the clerk for handling referrals to another server. The
pr_unresolved field of the progress record contains the portion of the original
fully-qualified global name of the directory for which the child directories are
enumerated.

name_set A pointer to the set of the requested child directories. The child directory
names are contained in the sm_value fields (type VT_byte), encoded as a
SimpleName_t structure. The buffer that name_set points to must not exceed
max_size.

152 CAE Specification (1997)

IDL Notation of CDS Operations cds_EnumerateChildren()

Output Parameters

The output parameters for cds_EnumerateChildren() are:

wholeset_p A boolean value that indicates whether this call instance returned the whole
set of enumerated child directory entries.

cds_status_p Error status return. On [CDS_UNKNOWNENTRY], the er_name field may be
filled in with the last name the server successfully accessed.

Possible status codes are (non-exclusive):

[CDS_SUCCESS]
[CDS_VERSIONSKEW]
[CDS_ACCESSDENIED]
[CDS_CANNOTAUTHENTICATE]
[CDS_UNTRUSTEDCH]
[CDS_CLEARINGHOUSEDOWN]
[CDS_POSSIBLECYCLE]
[CDS_ROOTLOST]
[CDS_UNDERSPECIFIEDNAME]
[CDS_UNKNOWNENTRY]

Part 4 Cell Directory Service 153

cds_EnumerateObjects() IDL Notation of CDS Operations

12.12 cds_EnumerateObjects()
[idempotent] error_status_t cds_EnumerateObjects(

[in] handle_t h,
[in,out] cds_Progress_t *Progress_p,
[in] cds_Name_t *wild_p,
[in] cds_Name_t *context_p,
[in] cds_Name_t *class_p,
[in] unsigned32 max_size,
[in,out,ptr] cds_SetP_t *name_set,
[out] unsigned small *wholeset_p,
[in,out] unsigned small *returnClass_p,
[out] cds_status_t *cds_status_p
);

cds_EnumerateObjects() takes as input the name of a directory, a wildcarded component name,
and optionally a filter on object class to match against object entries in the directory. It returns a
set whose members are either the component names of object entries in the directory which
matched the wildcarded name, or the object names paired with the object class, depending on
the value of the returnClass_p parameter. If no object entries matched the wildcard or the
directory contains no object entries, a NULL set is returned.

The objects are enumerated in lexical order (based on the Portable Character Set (PCS)). If the
call returns FALSE (parameter wholeset_p), not all matching objects have been enumerated, and
the client may make further calls, setting context_p to the last object name in the set returned,
until the operation returns TRUE.

If the filter class_p is specified, only those objects of the specified class are returned. The filter
may be a wildcard class.

This operation requires read access permission to the directory and objects.

Input Parameters

The input parameters for cds_EnumerateObjects() are:

h RPC binding handle referring to the target server and clearinghouse.

wild_p A wildcard filter for object entry names in the specified directory. The
nm_name field is encoded as a SimpleName_t structure with its sn_flag set to
either SN_cds or SN_cdswildcard. This operation parameter is optional and
can be set to NULL. Specifying a NULL value is the same as specifying the
string * (asterisk character).

context_p The context of the last object entry name in the previous call (the object entry
name returned in name_set). The nm_name field is encoded as a
SimpleName_t structure with its sn_flag set to SN_cds. This is used in a
sequence of calls to enumerate the whole set of object entries of the directory.
If set to NULL, the look-up operation starts at the beginning.

class_p A filter for class names (may be wildcarded) of object entries that use the
CDS_Class attribute. The nm_name field is encoded as a SimpleName_t
structure with its sn_flag set to either SN_cds or SN_cdswildcard. This
operation parameter is optional and can be set to NULL. Specifying a NULL
value is the same as specifying the string * (asterisk character).

max_size The maximum size of values to be returned by name_set per call instance.

154 CAE Specification (1997)

IDL Notation of CDS Operations cds_EnumerateObjects()

Input/Output Parameters

The input/output parameters for cds_EnumerateObjects() are:

Progress_p Progress record, used at the clerk for handling referrals to another server. The
pr_unresolved field of the progress record contains the portion of the original
fully-qualified global name of the directory for which the object entries are
enumerated.

name_set A pointer to the set of the requested object entry names. Object and class
names are contained in the sm_value fields (type VT_byte), encoded as a
SimpleName_t structure. If returnClass_p is TRUE, each member of the
returned set contains in the sm_value field a sequence of object entry name
immediately followed by class name (encoded as SimpleName_t). The buffer
that name_set points to must not exceed max_size.

returnClass_p Indicates whether the object’s class is returned. If set to TRUE, the object’s
class is returned along with the object name. If set to FALSE, the object’s class
is not returned.

Output Parameters

The output parameters for cds_EnumerateObjects() are:

wholeset_p A boolean value that indicates whether this call instance returned the whole
set of enumerated object entries.

cds_status_p Error status return. On [CDS_UNKNOWNENTRY], the er_name field may be
filled in with the last name the server successfully accessed.

Possible status codes are (non-exclusive):

[CDS_SUCCESS]
[CDS_VERSIONSKEW]
[CDS_ACCESSDENIED]
[CDS_CANNOTAUTHENTICATE]
[CDS_UNTRUSTEDCH]
[CDS_CLEARINGHOUSEDOWN]
[CDS_POSSIBLECYCLE]
[CDS_ROOTLOST]
[CDS_UNDERSPECIFIEDNAME]
[CDS_UNKNOWNENTRY]

Part 4 Cell Directory Service 155

cds_EnumerateSoftLinks() IDL Notation of CDS Operations

12.13 cds_EnumerateSoftLinks()
[idempotent] error_status_t cds_EnumerateSoftLinks(

[in] handle_t h,
[in,out] cds_Progress_t *Progress_p,
[in] cds_Name_t *wild_p,
[in] cds_Name_t *context_p,
[in] unsigned32 max_size,
[in,out,ptr] cds_SetP_t *name_set,
[out] unsigned small *wholeset_p,
[out] cds_status_t *cds_status_p
);

cds_EnumerateSoftLinks() takes as input the name of a directory and a wildcarded component
name to match against soft link entries in the directory. It returns a set whose members are the
component names of soft link entries in the directory which matched the wildcarded name. If no
soft link entries matched the wildcard or the directory contains no soft link entries, a NULL set is
returned.

The soft links are enumerated in lexical order (based on the Portable Character Set (PCS)). If the
call returns FALSE (parameter wholeset_p), not all matching soft links have been enumerated and
the client may make further calls, setting context_p to the last soft link in the set returned, until
the operation returns TRUE.

This operation requires read access permission to the directory and soft links.

Input Parameters

The input parameters for cds_EnumerateSoftLinks() are:

h RPC binding handle referring to the target server and clearinghouse.

wild_p A wildcard filter for the soft links in the specified directory. The nm_name
field is encoded as a SimpleName_t structure with its sn_flag set to either
SN_cds or SN_cdswildcard. This operation parameter is optional and can be
set to NULL. Specifying a NULL value is the same as specifying the string *
(asterisk character).

context_p The context of the last soft link in the previous call (the soft link name
returned in name_set). The nm_name field is encoded as a SimpleName_t
structure with its sn_flag set to SN_cds. This is used in a sequence of calls to
enumerate the whole set of soft link entries of the directory. If set to NULL,
the look-up operation starts at the beginning.

max_size The maximum size of values to be returned by name_set per call instance.

Input/Output Parameters

The input/output parameters for cds_EnumerateSoftLinks() are:

Progress_p Progress record, used at the clerk for handling referrals to another server. The
pr_unresolved field of the progress record contains the portion of the original
fully-qualified global name of the directory for which soft links are
enumerated.

156 CAE Specification (1997)

IDL Notation of CDS Operations cds_EnumerateSoftLinks()

name_set A pointer to the set of the requested soft link values. The soft link entry names
are contained in the sm_value fields (type VT_byte), encoded as
SimpleName_t structures. The buffer that name_set points to must not exceed
max_size.

Output Parameters

The output parameters for cds_EnumerateSoftLinks() are:

wholeset_p A boolean value that indicates whether this call instance returned the whole
set of enumerated soft links.

cds_status_p Error status return. On [CDS_UNKNOWNENTRY], the er_name field may be
filled in with the last name the server successfully accessed.

Possible status codes are (non-exclusive):

[CDS_SUCCESS]
[CDS_VERSIONSKEW]
[CDS_ACCESSDENIED]
[CDS_CANNOTAUTHENTICATE]
[CDS_UNTRUSTEDCH]
[CDS_CLEARINGHOUSEDOWN]
[CDS_POSSIBLECYCLE]
[CDS_ROOTLOST]
[CDS_UNDERSPECIFIEDNAME]
[CDS_UNKNOWNENTRY]

Part 4 Cell Directory Service 157

cds_ModifyAttribute() IDL Notation of CDS Operations

12.14 cds_ModifyAttribute()
[idempotent] error_status_t cds_ModifyAttribute(

[in] handle_t h,
[in,out] cds_Progress_t *Progress_p,
[in] unsigned small type,
[in] cds_Update_t *update_p,
[out] cds_status_t *cds_status_p
);

cds_ModifyAttribute () applies one update to the specified entry. An attribute may be removed or
added, or a value may be removed or added to the values of a set-valued attribute, or the value
of a single-valued attribute may be altered. This operation may also remove an entire object
entry from the name space.

If the target entry is a directory, only certain attributes of the directory may be directly modified
with cds_ModifyAttribute ().

This operation requires either write access permission to the entry whose attribute is being
modified (if the operation makes the attribute present or absent), or write access permission to
the parent directory.

Input Parameters

The input parameters for cds_ModifyAttribute () are:

h RPC binding handle referring to the target server and clearinghouse.

type The type of the entry for which attributes are modified. Valid entry types are:

ET_directory
ET_object
ET_childPointer
ET_softlink
ET_clearinghouse

update_p The structure defining the update operation, type, identifier, value and
timestamp of the attribute to be modified.

Valid values for the update operation flag are:

UD_present Make attribute or value (or both) present; that is, either add
attribute or alternative value.

UD_absent Make object entry, attribute or attribute value absent; that
is, remove it.

Valid values for the attribute type are:

AT_none
AT_single
AT_set

The result of this operation is determined by the combination of the three
fields defining operation, type and value. The relationship is listed in Table
12-1 on page 159.

158 CAE Specification (1997)

IDL Notation of CDS Operations cds_ModifyAttribute()

Attribute
Operation Type Value Result

Invalid: returns status
[CDS_WRONGATTRIBUTETYPE].

UD_present AT_none -

Creates new attribute or
replaces value if attribute exists.

AT_single value

Invalid: returns status
[CDS_INVALIDUPDATE].

AT_single empty

Creates new attribute or adds
value to existing attribute.

AT_set value

Creates new attribute (empty
set). Invalid if attribute exists
(returns status
[CDS_INVALIDUPDATE]).

AT_set empty

Deletes object entry (invalid on
other entry types).

UD_absent AT_none ignored

Removes attribute from entry.AT_single ignored
Removes value from attribute.AT_set any value (except VT_none)
Removes attribute from entry.AT_set value type VT_none

Table 12-1 Modify Operations

The update_p data structure contains a field in which the client may supply a
timestamp to be used for the update. If the client chooses not to supply its
own timestamp, this field (ud_timestamp) must be set to all zeros
(NullTimestamp).

If the client chooses to supply a timestamp and the CDS server considers the
timestamp invalid, the [CDS_BADCLOCK] failure status is returned.

Input/Output Parameters

The input/output parameters for cds_ModifyAttribute () are:

Progress_p Progress record, used at the clerk for handling referrals to another server. The
pr_unresolved field of the progress record contains the portion of the original
fully-qualified global name of the target entry of which the attribute is to be
modified.

Output Parameters

The output parameters for cds_ModifyAttribute () are:

cds_status_p Error status return. On [CDS_UNKNOWNENTRY], the er_name field may be
filled in with the last name the server successfully accessed.

Part 4 Cell Directory Service 159

cds_ModifyAttribute() IDL Notation of CDS Operations

Possible status codes are (non-exclusive):

[CDS_SUCCESS]
[CDS_VERSIONSKEW]
[CDS_ACCESSDENIED]
[CDS_CANNOTAUTHENTICATE]
[CDS_UNTRUSTEDCH]
[CDS_CLEARINGHOUSEDOWN]
[CDS_POSSIBLECYCLE]
[CDS_ROOTLOST]
[CDS_UNDERSPECIFIEDNAME]
[CDS_UNKNOWNENTRY]
[CDS_UNKNOWNATTRIBUTE]
[CDS_WRONGATTRIBUTETYPE]
[CDS_NOTSUPPORTED]
[CDS_INVALIDUPDATE]
[CDS_BADCLOCK]

160 CAE Specification (1997)

IDL Notation of CDS Operations cds_ReadAttribute()

12.15 cds_ReadAttribute()
[idempotent] error_status_t cds_ReadAttribute(

[in] handle_t h,
[in,out] cds_Progress_t *Progress_p,
[in] unsigned small type,
[in] cds_Name_t *att_p,
[in] cds_Timestamp_t *context_p,
[in] unsigned32 max_size,
[in] unsigned32 maybemore,
[out] cds_RA_value_t *value_p,
[out] unsigned small *wholeset_p,
[out] cds_status_t *cds_status_p
);

cds_ReadAttribute() returns the values of the specified attribute. If maybemore is set to TRUE, the
whole set of attributes contained in the specified entry may be returned (this behaviour is
implementation-dependent).

The attribute values are returned in timestamp order (oldest timestamp first). If all values have
not been returned and the client makes further calls, context_p must be set to the timestamp of
the last attribute in the set returned.

The operation requires read access permission to the entry whose attribute value is to be read.

Input Parameters

The input parameters for cds_ReadAttribute() are:

h RPC binding handle referring to the target server and clearinghouse.

type The type of the entry for which attributes are read. Valid entry types are:

ET_directory
ET_object
ET_childPointer
ET_softlink
ET_clearinghouse
ET_dirOrObj

att_p The identifier of the attribute. The nm_name field is encoded as a
SimpleName_t structure with its sn_flag set to SN_objectid.

This attribute identifier may have been previously obtained through the
cds_EnumerateAttributes operation.

context_p The context (timestamp) of the last attribute in the previous call (the
timestamp sm_ts returned in value_p). This is used in a sequence of calls to
read the whole set of set-valued attributes. If set to NULL, the look-up
operation starts at the beginning of the specified attribute value set.

max_size The maximum size of values to be returned by value_p per call instance.

maybemore This is a boolean flag to indicate (if set to TRUE) that the client intends to read
the attribute values of the whole entry, and requests optimised use of
resources.

If the clerk sets the maybemore parameter to TRUE, the CDS server may do
extra work to attempt to make subsequent cds_ReadAttribute() calls for the

Part 4 Cell Directory Service 161

cds_ReadAttribute() IDL Notation of CDS Operations

same entry more efficient. If the buffer determined by max_size is big enough,
the server may return the attribute values of the whole entry in value_p. In this
case, the parameters att_p and context_p are ignored.

The clerk may set this argument to TRUE on any call, but improved
performance may result only if the clerk’s cache is large enough to hold all the
relevant information.

CDS server implementations may not support this behaviour and instead
always return only the values of a maximum of one attribute.

Input/Output Parameters

The input/output parameters for cds_ReadAttribute() are:

Progress_p Progress record, used at the clerk for handling referrals to another server. The
pr_unresolved field of the progress record contains the portion of the original
fully-qualified global name of the entry whose attribute is read.

Output Parameters

The output parameters for cds_ReadAttribute() are:

value_p A pointer to the set of the requested attribute values.

If the attribute is not present in the entry, the sm_flag of value_p has the value
SM_absent, and the set contents are NULL.

An empty set-valued attribute is indicated by the sm_flag having the value
SM_present, and the set contents being NULL.

The buffer that value_p points to must not exceed max_size.

wholeset_p Not supported (reserved for future use).

cds_status_p Error status return. On [CDS_UNKNOWNENTRY], the er_name field may be
filled in with the last name the server successfully accessed.

Possible status codes are (non-exclusive):

[CDS_SUCCESS]
[CDS_NONSRESOURCES]
[CDS_VERSIONSKEW]
[CDS_ACCESSDENIED]
[CDS_CANNOTAUTHENTICATE]
[CDS_UNTRUSTEDCH]
[CDS_CLEARINGHOUSEDOWN]
[CDS_POSSIBLECYCLE]
[CDS_ROOTLOST]
[CDS_UNDERSPECIFIEDNAME]
[CDS_UNKNOWNENTRY]
[CDS_UNKNOWNATTRIBUTE]
[CDS_WRONGATTRIBUTETYPE]
[CDS_NOTLINKED]
[CDS_DANGLINGLINK]
[CDS_NAMESERVERBUG]

162 CAE Specification (1997)

IDL Notation of CDS Operations cds_ResolveName()

12.16 cds_ResolveName()
[idempotent] error_status_t cds_ResolveName(

[in] handle_t h,
[in,out] cds_Progress_t *Progress_p,
[out] cds_status_t *cds_status_p
);

cds_ResolveName() follows a chain of soft links until it reaches an entry that is not a soft link. It
returns the fully-qualified global name of that entry so that future calls by the client may use the
direct name without incurring the overhead of following the link.

If the target of any of the chain of soft links followed does not exist, the
[CDS_DANGLINGLINK] failure status is returned.

This operation requires read access permission to each of the soft links in the chain.

Input Parameters

The input parameters for cds_ResolveName() are:

h RPC binding handle referring to the target server and clearinghouse.

Input/Output Parameters

The input/output parameters for cds_ResolveName() are:

Progress_p Progress record, used at the clerk for handling referrals to another server. The
pr_unresolved field of the progress record contains the portion of the original
fully-qualified global name of the soft link to be resolved.

Output Parameters

The output parameters for cds_ResolveName() are:

cds_status_p Error status return. On [CDS_UNKNOWNENTRY], the er_name field may be
filled in with the last name the server successfully accessed.

Possible status codes are (non-exclusive):

[CDS_SUCCESS]
[CDS_VERSIONSKEW]
[CDS_ACCESSDENIED]
[CDS_CANNOTAUTHENTICATE]
[CDS_UNTRUSTEDCH]
[CDS_CLEARINGHOUSEDOWN]
[CDS_POSSIBLECYCLE]
[CDS_ROOTLOST]
[CDS_UNDERSPECIFIEDNAME]
[CDS_UNKNOWNENTRY]
[CDS_NOTLINKED]
[CDS_DANGLINGLINK]

Part 4 Cell Directory Service 163

cds_Solicit() IDL Notation of CDS Operations

12.17 cds_Solicit()
[broadcast,maybe] void cds_Solicit(

[in] handle_t h
);

cds_Solicit () is used to provoke advertisement and carries no information of its own. Therefore it
has the very simple structure of just the operation header.

No permissions are required for the operation.

Input Parameters

The input parameters for cds_Solicit () are:

h RPC binding handle referring to the target.

164 CAE Specification (1997)

IDL Notation of CDS Operations cds_SolicitServer()

12.18 cds_SolicitServer()
[idempotent] error_status_t cds_SolicitServer(

[in] handle_t h,
[out] cds_FullName_t *cellname_p,
[out] uuid_t *cell_diruid_p,
[in,out,ptr] cds_CHP_t *nscle_p
);

cds_SolicitServer() is a directed solicitation request to obtain availability information about
clearinghouses of a particular CDS server. The data structures in the response message (output
parameters) are similar to those transmitted in the cds_Advertise() operation.

No permissions are required for the operation.

Input Parameters

The input parameters for cds_SolicitServer() are:

h RPC binding handle referring to the target server.

Input/Output Parameters

The input/output parameters for cds_SolicitServer() are:

nscle_p If provided as an input parameter, the information contained is a list of
requested clearinghouses.

The output parameter contains the list of available clearinghouses at the
server, including its UUIDs, fully-qualified global name, and exported
protocol towers. The rp_type flag of this data structure determines the replica
type.

Output Parameters

The output parameters for cds_SolicitServer() are:

cellname_p The fully-qualified global name of the local cell.

cell_diruid_p The UUID of the cell name space.

Part 4 Cell Directory Service 165

cds_TestAttribute() IDL Notation of CDS Operations

12.19 cds_TestAttribute()
[idempotent] error_status_t cds_TestAttribute(

[in] handle_t h,
[in,out] cds_Progress_t *Progress_p,
[in] unsigned small type,
[in] cds_Name_t *att_p,
[in] cds_AtomicValue_t *value_p,
[out] unsigned small *result_p,
[out] cds_status_t *cds_status_p
);

cds_TestAttribute() returns a boolean value in result_p which is TRUE if one of the following is
true:

• The specified attribute is single attribute and its value matches the client-specified value.

• The specified attribute is a set-valued attribute and it contains the client-specified value as
one of its members.

If the attribute is not present in the entry, the operation returns FALSE.

The operation requires read or test access permission to the entry whose attribute is to be tested.

Input Parameters

The input parameters for cds_TestAttribute() are:

h RPC binding handle referring to the target server and clearinghouse.

type The type of the entry for which attributes are tested. Valid entry types are:

ET_directory
ET_object
ET_childPointer
ET_softlink
ET_clearinghouse
ET_dirOrObj

att_p The identifier of the attribute. The nm_name field is encoded as a
SimpleName_t structure with its sn_flag set to SN_objectid.

value_p The attribute value to be tested. The data in this operation parameter is a
discriminated union, consisting of a syntax identifier and value.

Input/Output Parameters

The input/output parameters for cds_TestAttribute() are:

Progress_p Progress record, used at the clerk for handling referrals to another server. The
pr_unresolved field of the progress record contains the portion of the original
fully-qualified global name of the entry for which an attribute value is tested.

166 CAE Specification (1997)

IDL Notation of CDS Operations cds_TestAttribute()

Output Parameters

The output parameters for cds_TestAttribute() are:

result_p The boolean value indicating the result of the test operation.

cds_status_p Error status return. On [CDS_UNKNOWNENTRY], the er_name field may be
filled in with the last name the server successfully accessed.

Possible status codes are (non-exclusive):

[CDS_SUCCESS]
[CDS_VERSIONSKEW]
[CDS_ACCESSDENIED]
[CDS_CANNOTAUTHENTICATE]
[CDS_UNTRUSTEDCH]
[CDS_CLEARINGHOUSEDOWN]
[CDS_POSSIBLECYCLE]
[CDS_ROOTLOST]
[CDS_UNDERSPECIFIEDNAME]
[CDS_UNKNOWNENTRY]
[CDS_NOTLINKED]
[CDS_DANGLINGLINK]

Part 4 Cell Directory Service 167

IDL Notation of CDS Operations

168 CAE Specification (1997)

CAE Specification

Part 5

Appendices

The Open Group

Part 5 Appendices 169

170 CAE Specification (1997)

Appendix A

Valid Characters and Naming Rules

This appendix summarises the valid character sets for DCE Directory Service names, defined in
the Portable Character Set (PCS). It also explains some characters that have special meaning and
describes some restrictions and rules regarding case matching, syntax and size limits.

The use of names in X/Open DCE often involves more than one directory service. For example,
CDS interacts with either GDS or DNS to find names outside the local cell.

Note: Because CDS, GDS and DNS all have their own valid character sets and syntax rules,
the best way to avoid problems is to keep names short and simple, consisting of a
minimal set of characters common to all three services. The recommended set is the
letters A to Z, a to z, and the digits 0 to 9. In addition to making directory service
interoperations easier, use of this subset decreases the probability that users in a
heterogeneous hardware and software environment encounter problems creating
and using names.

Figure A-1 on page 172 details the valid characters in CDS names, and the valid characters in
GDS and DNS names as used by CDS:

• Characters in white boxes are valid in all three kinds of names.

• Characters in light shaded boxes are valid only in CDS and GDS names.

• Characters in dark shaded boxes are valid only in CDS names.

Implementations may support additional national character sets to be used in names and
attribute values. However, implementations that provide for support of additional character
sets may lose interoperability to other implementations that conform to this specification.

Part 5 Appendices 171

Valid Characters and Naming Rules

SP 0 @ P � p

! 1 A Q a q

“ 2 B R b r

3 C S c s

$ 4 D T d t

% 5 E U e u

& 6 F V f v

’ 7 G W g w

(8 H X h x

) 9 I Y i y

* : J Z j z

+ ; K [k {

, < L \ l |

- = M] m }

. > N ^ n ~

/ ? O _ o

Key: Valid in CDS, GDS and DNS names
Valid only in CDS and GDS names
Valid only in CDS names

Figure A-1 Valid Characters in CDS, GDS and DNS Names

172 CAE Specification (1997)

Valid Characters and Naming Rules Valid Characters for GDS Naming Attributes

A.1 Valid Characters for GDS Naming Attributes
The values of the country attributes are restricted to the ISO 3166 Alpha-2 code representation of
country names.

The character set for all other naming attributes is chosen by the user of the XDS interface. The
character set is dependent on the syntax of the selected attribute:

• For printable strings, the valid characters are those that are displayed as valid characters for
GDS as shown in Figure A-1 on page 172.

• The T.61 graphical character set is specified in Section A.3 on page 177.

• The ISO 8859-1 (Latin-1) graphical character set is specified in Section A.4 on page 178.

• For numeric strings, the valid character set is 0-9 and the space character.

• For the IA5 character set, all characters with a coded representation of lower than or equal to
0x7f are valid. The GDS restricts the valid characters to range from 0x07 to 0x7f inclusive.

The default schema of GDS contains only naming attributes that specify character sets of type
Printable string or T.61 graphical character set.

A.2 Country Syntax
Country names are represented by a two-letter sequence. GDS does not distinguish between
lower case and upper case for country names. The complete list of valid combinations is shown
in Table A-1 together with the respective names.

Table A-1 Country Syntax

Country Name Code Country Name Code
AFGHANISTAN AF ALBANIA AL
ALGERIA DZ AMERICAN SAMOA AS
ANDORRA AD ANGOLA AO
ANGUILLA AI ANTARCTICA AQ
ANTIGUA AND BARBUDA AG
ARGENTINA AR ARUBA AW
AUSTRALIA AU AUSTRIA AT
BAHAMAS BS BAHRAIN BH
BANGLADESH BD BARBADOS BB
BELGIUM BE BELIZE BZ
BENIN BJ BERMUDA BM
BHUTAN BT BOLIVIA BO
BOTSWANA BW BOUVET ISLAND BV
BRAZIL BR BRITISH INDIAN OCEAN IO

TERRITORY
BRUNEI DARUSSALAM BN BULGARIA BG
BURKINA FASO BF BURMA BU
BURUNDI BI BYELORUSSIAN SSR BY
CAMEROON CM CANADA CA
CAPE VERDE CV CAYMAN ISLANDS KY

Part 5 Appendices 173

Country Syntax Valid Characters and Naming Rules

Country Name Code Country Name Code
CENTRAL AFRICAN REPUBLIC CF CHAD TD
CHILE CL CHINA CN
CHRISTMAS ISLAND CX COCOS (KEELING)

ISLANDS CC
COLOMBIA CO COMOROS KM
CONGO CG COOK ISLANDS CK
COSTA RICA CR COTE D’IVOIRE CI
CUBA CU CYPRUS CY
CZECHOSLOVAKIA CS DENMARK DK
DJIBOUTI DJ DOMINICA DM
DOMINICAN REPUBLIC DO EAST TIMOR* TP
ECUADOR EC EGYPT EG
EL SALVADOR SV EQUATORIAL GUINEA GQ
ETHIOPIA ET FALKLAND ISLANDS FK

(MALVINAS)
FAROE ISLANDS FO FIJI FJ
FINLAND FI FRANCE FR
FRENCH GUIANA GF FRENCH POLYNESIA PF
FRENCH SOUTHERN TF GABON GA
TERRITORIES
GAMBIA GM GERMAN DEMOCRATIC DD

REPUBLIC
GERMANY, FEDERAL DE GHANA GH
REPUBLIC OF
GIBRALTAR GI GREECE GR
GREENLAND GL GRENADA GD
GUADELOUPE GP GUAM GU
GUATEMALA GT GUINEA GN
GUINEA-BISSAU GW GUYANA GY
HAITI HT HEARD AND MC HM

DONALD ISLANDS
HONDURAS HN HONG KONG HK
HUNGARY HU ICELAND IS
INDIA IN INDONESIA ID
IRAN (ISLAMIC REPUBLIC OF) IR IRAQ IQ
IRELAND IE ISRAEL IL
ITALY IT JAMAICA JM
JAPAN JP JORDAN JO
KAMPUCHEA, DEMOCRATIC KH KENYA KE
KIRIBATI KI KOREA, DEMOCRATIC KP

PEOPLE’S REPUBLIC OF
KOREA, REPUBLIC OF KR KUWAIT KW
LAO PEOPLE’S DEMOCRATIC LA LEBANON LB
REPUBLIC
LESOTHO LS LIBERIA LR
LIBYAN ARAB JAMAHIRIYA LY LIECHTENSTEIN LI
LUXEMBOURG LU MACAU MO
MADAGASCAR MG MALAWI MW
MALAYSIA MY MALDIVES MV

174 CAE Specification (1997)

Valid Characters and Naming Rules Country Syntax

Country Name Code Country Name Code
MALI ML MALTA MT
MARSHALL ISLANDS MH MARTINIQUE MQ
MAURITANIA MR MAURITIUS MU
MEXICO MX MICRONESIA FM
MONACO MC MONGOLIA MN
MONTSERRAT MS MOROCCO MA
MOZAMBIQUE MZ NAMIBIA NA
NAURU NR NEPAL NP
NETHERLANDS NL NETHERLANDS ANTILLES AN
NEUTRAL ZONE NT NEW CALEDONIA NC
NEW ZEALAND NZ NICARAGUA NI
NIGER NE NIGERIA NG
NIUE NU NORFOLK ISLAND NF
NORTHERN MARIANA ISLANDS MP NORWAY NO
OMAN OM PAKISTAN PK
PALAU PW PANAMA PA
PAPUA NEW GUINEA PG PARAGUAY PY
PERU PE PHILIPPINES PH
PITCAIRN PN POLAND PL
PORTUGAL PT PUERTO RICO PR
QATAR QA REUNION RE
ROMANIA RO RWANDA RW
ST. HELENA SH SAINT KITTS AND NEVIS KN
SAINT LUCIA LC ST. PIERRE AND MIQUELON PM
SAINT VINCENT AND THE VC SAMOA WS
GRENADINES
SAN MARINO SM SAO TOME AND PRINCIPE ST
SAUDI ARABIA SA SENEGAL SN
SEYCHELLES SC SIERRA LEONE SL
SINGAPORE SG SOLOMON ISLANDS SB
SOMALIA SO SOUTH AFRICA ZA
SPAIN ES SRI LANKA LK
SUDAN SD SURINAME SR
SVALBARD AND JAN SJ
MAYEN ISLANDS
SWAZILAND SZ SWEDEN SE
SWITZERLAND CH SYRIAN ARAB REPUBLIC SY
TAIWAN, PROVINCE TW TANZANIA, UNITED TZ
OF CHINA REPUBLIC OF
THAILAND TH TOGO TG
TOKELAU TK TONGA TO
TRINIDAD AND TOBAGO TT TUNISIA TN
TURKEY TR TURKS AND CAICOS ISLANDS TC
TUVALU TV UGANDA UG
UKRAINIAN SSR UA UNITED ARAB AE

EMIRATES
UNITED KINGDOM GB UNITED STATES US

Part 5 Appendices 175

Country Syntax Valid Characters and Naming Rules

Country Name Code Country Name Code
UNITED STATES MINOR UM URUGUAY UY
OUTLYING ISLANDS
USSR SU VANUATU VU
VATICAN CITY STATE VA VENEZUELA VE
VIET NAM VN VIRGIN ISLANDS (BRITISH) VG
VIRGIN ISLANDS (U.S.) VI WALLIS AND FUTUNA WF

ISLANDS
WESTERN SAHARA* EH YEMEN YE
YEMEN, DEMOCRATIC YD YUGOSLAVIA YU
ZAIRE ZR ZAMBIA ZM
ZIMBABWE ZW

* Provisional name.

176 CAE Specification (1997)

Valid Characters and Naming Rules T.61 Syntax

A.3 T.61 Syntax
The set of T.61 characters supported are depicted in CCITT T.61. The XDS interface supports the
full T.61 range as indicated there.

The optional use of additional character repertoires is permitted and provided for, according to
the CCITT T.61 specification. However, neither the composition and allocation of these
character sets nor the specific conformance requirements are specified here.

Some T.61 alphabetical characters have a two-byte representation. For example, a lower-case
letter a with acute accent is represented by 0xc2 (code for acute accent) followed by 0x61 (code
for lower-case a).

Only certain combinations of diacritical characters and basic letters are valid. They are shown in
Table A-2.

Name Repr. Code Valid Basic Letters Following
grave accent ` 0xc1 a, A, e, E, i, I, o, O, u, U
acute accent ´ 0xc2 a,A,c,C,e,E,g,i,I,l,L,n,N,o,O,r,R,

s,S,u,U,y,Y,z,Z
circumflex ˆ 0xc3 a,A,c,C,e,E,g,G,h,H,i,I,j,J,o,O,s,S,
accent u,U,w,W,y,Y
tilde ˜ 0xc4 a,A,i,I,n,N,o,O,u,U
macron 0xc5 a,A,e,E,i,I,o,O,u,U
breve ˘ 0xc6 a, A, g, G, u, U
dot above 0xc7 c,C,e,E,g,G,I,z,Z
umlaut ¨ 0xc8 a,A,e,E,i,I,o,O,u,U,y,Y
ring ° 0xca a,A,u,U
cedilla ¸ 0xcb c,C,G,k,K,l,L,n,N,r,R,s,S,t,T
double accent " 0xcd o, O, u, U
ogonek 0xce a, A, e, E, i, I, u, U
caron ˇ 0xcf c,C,d,D,e,E,l,L,n,N,r,R,s,S,t,T,z,Z

Table A-2 Combinations of Diacritical Characters and Basic Letters

The non-spacing underline (code 0xcc) must be followed by a Latin alphabetical character; that
is, a basic letter (a-z or A-Z), or a valid diacritical combination.

Bold characters cannot be reverse mapped.

All characters that stand alone must be followed by a space.

Part 5 Appendices 177

ISO 8859-1 (Latin-1) Syntax Valid Characters and Naming Rules

A.4 ISO 8859-1 (Latin-1) Syntax
GDS external interfaces support the use of ISO 8859-1 (Latin-1) syntax. When GDS receives
8859-1 input from administrative programs or XDS/XOM functions, it converts the input to T.61
format. Output is converted back to 8859-1 syntax.

Table A-3 shows the valid set of ISO 8859-1 characters. (The row headings indicate the lower
four bits and the column headings show the higher four bits of the encoding in hexadecimal.)

2 3 4 5 6 7 A B C D E F
0 SP 0 @ P ‘ p NBSP ° À D à d

1 ! 1 A Q a q ¡ ± Á Ñ á ñ

2 " 2 B R b r ¢ 2 Â Ò â ò

3 # 3 C S c s £ 3 Ã Ó ã ó

4 $ 4 D T d t ¤ ´ Ä Ô ä ô

5 % 5 E U e u ¥ µ Å Õ å õ

6 & 6 F V f v A ¶ Æ Ö æ ö

7 ’ 7 G W g w § • Ç × ç ÷
8 (8 H X h x ¨ ¸ È Ø è ø

9) 9 I Y i y 1 É Ù é ù

A * : J Z j z ª º Ê Ú ê ú

B + ; K [k { << >> Ë Û ë û

C , < L \ l | ¬ ⁄1
4 Ì Ü ì ü

D - = M] m } SHY ⁄1 2 Í Ý í ý

E . > N ˆ n ˜ ⁄3
4 Î PI î lpp

F / ? O _ o DEL - ¿ Ï ß ï ÿ

Table A-3 ISO 8859-1 (Latin-1) Code Set

A.4.1 Invalid Conversions from T.61 to ISO 8859-1 Syntax

If the following diacritical characters are followed by a space, they cannot be mapped from T.61
to the ISO 8859-1 codeset:

• c6 (breve)
• c7 (dot above)
• c8 (umlaut)
• ca (ring)
• cd (double accent)
• ce (ogonek)
• cf (caron)

Table A-4 on page 179 shows the invalid combinations of diacritical letters when converting
from the T.61 codeset to the ISO 8859-1 codeset. GDS displays a ? (question mark) when it
encounters a combination that is not defined in the ISO 8859-1 codeset.

178 CAE Specification (1997)

Valid Characters and Naming Rules ISO 8859-1 (Latin-1) Syntax

Name Repr. Code Valid Basic Letters Following
grave accent ` 0xc1
acute accent ´ 0xc2 c,C,g,l,L,n,N,r,R,s,S,z,Z
circumflex ˆ 0xc3 c,C,g,G,h,H,j,J,s,S,w,W,y,Y
accent
tilde ˜ 0xc4 i,I,u,U
macron 0xc5 a,A,e,E,i,I,o,O,u,U
breve ˘ 0xc6 a,A,g,G,u,U
dot above 0xc7 c,C,e,E,g,G,I,z,Z
umlaut ¨ 0xc8 Y
ring ° 0xca u,U
cedilla ¸ 0xcb G,k,K,l,L,n,N,r,R,s,S,t,T
double accent " 0xcd o,O,u,U
ogonek 0xce a,A,e,E,i,I,u,U
caron ˇ 0xcf c,C,d,D,e,E,l,L,n.N,r,R,s,S,t,T,z,Z

Table A-4 Invalid ISO 8859-1 Combinations of Diacritical Characters and Letters

A.4.2 Invalid Conversions from ISO 8859-1 to T.61 Syntax

The following characters cannot be converted from ISO 8859-1 syntax to T.61 syntax; GDS
generates an error when it attempts to perform the conversion:

• 5c (\)
• 7b ({)
• 7d (})
• a6 (A)
• a9 ()
• ac (¬)
• ad (SHY)
• ae ()
• b9 (1)

Part 5 Appendices 179

Metacharacters Valid Characters and Naming Rules

A.5 Metacharacters
Certain characters have special meaning to the directory services; these are known as
metacharacters. Table A-5 lists and explains the CDS, GDS and DNS metacharacters.

Directory
Service Character Meaning

Separates components of a name (atomic names).CDS /
When used in the rightmost atomic name of a name, acts as a
wildcard, matching zero or more characters.

*

When used in the rightmost atomic name of a name, acts as a
wildcard, matching exactly one character.

?

Used where necessary in front of a / (slash), an * (asterisk) or a ?
(question mark) to escape the character (indicates that the
following character is not a metacharacter).

\

Separates Relative Distinguished Names (RDNs).GDS /
Separates multiple attribute type/value pairs (attribute value
assertions) within an RDN.

,

Separates an attribute type and value in an attribute value
assertion.

=

Used in front of a / (slash), a , (comma) or an = (equal sign) to
escape the character (indicates that the following character is not
a metacharacter).

\

Separates elements of a name.DNS .

Table A-5 Metacharacters and Their Meaning

Some metacharacters are not permitted as normal characters within a name. For example, a \
(backslash) cannot be used as anything but an escape character in GDS.

180 CAE Specification (1997)

Valid Characters and Naming Rules Additional Rules

A.6 Additional Rules
Table A-6 summarises major points about CDS, GDS and DNS character sets, metacharacters,
restrictions, case-matching rules, internal storage of data, and ordering of elements in a name.

Table A-6 Summary of CDS, GDS and DNS Characteristics

Characteristic CDS GDS DNS
Character Set a to z, A to Z, 0 to 9 plus

space and special characters
shown in Figure A-1

a to z, A to Z, 0 to 9 plus . : ,

a to z, A to Z, 0 to 9 plus . -

Metacharacters / * ? \ / , = \ .

Restrictions Atomic names cannot
contain a / (slash).

The first atomic name
following the global cell
name (or /.: prefix) cannot
contain an = (equal sign).

For enumeration operations,
a \ (backslash) must be used
to escape any * (asterisk) or
? (question mark) character
in the rightmost atomic
name. Otherwise (if not
escaped in the rightmost
atomic name), the character
is interpreted as a wildcard.

Relative distinguished
names cannot begin or end
with a / (slash).

Attribute types must begin
with an alphabetic
character, can contain only
alphanumerics, and cannot
contain spaces. An
alternative method of
specifying attribute types is
by object identifier, a
sequence of digits separated
by . (dots).

A \ (backslash) must be
used to escape a / (slash), a ,
(comma), and an = (equal
sign) when using them as
anything other than
metacharacters.

Multiple consecutive
unescaped instances of /
(slashes), , (commas), =
(equal signs) and \ (back-
slashes) are not allowed.

Each attribute value
assertion contains exactly
one unescaped = (equal
sign).

The first character must be
alphabetic.

The first and last characters
cannot be a . (dot) or a -
(dash).

Cell names in DNS must
contain at least one . (dot);
they must be more than one
level deep.

Part 5 Appendices 181

Additional Rules Valid Characters and Naming Rules

Characteristic CDS GDS DNS
Case-Matching
Rules

Case exact Attribute types are matched
case insensitive. The case-
matching rule for an
attribute value can be case
exact or case insensitive,
depending on the rule
defined for its type at the
DSA.

Case insensitive

Internal
Representation

Case exact Depends on the case-
matching rule defined at
DSA. If the rule says case
insensitive, alphabetic
characters are converted to
all lower-case characters.
Spaces are removed
regardless of the case-
matching rule.

Alphabetic characters are
converted to all lower-case
characters.

Ordering of
Name
Elements

Big endian (left to right from
root to lower-level names).

Big endian (left to right from
root to lower-level names).

Little endian (right to left
from root to lower-level
names).

182 CAE Specification (1997)

Valid Characters and Naming Rules Maximum Name and Attribute Sizes

A.7 Maximum Name and Attribute Sizes
Table A-7 lists maximum sizes for Directory Service names and attributes in CDS.

Notes:

1. Implementations must support these sizes and must not exceed these limits in
remote operations.

2. The defined sizes determine the actual contents of the string, not including the
terminating null.

Maximum Size
Name Type (octets)

CDS atomic name (character string between two slashes) 254
CDS full name (including global or local prefix, cell name and
slashes separating atomic names)

1023

CDS attribute name 31
CDS class name 31
GDS distinguished name 1023
DNS relative name (character string between two dots) 64
DNS fully qualified name (sum of all relative names) 255

Table A-7 Maximum Sizes of Directory Service Names

Part 5 Appendices 183

Valid Characters and Naming Rules

184 CAE Specification (1997)

Appendix B

Object Identifiers for CDS Attributes

The X/Open Directory Services (XDS) interface offers client application programmers the ability
to create and maintain names in either CDS or GDS. Programmers also can create new CDS
attribute names or GDS attribute type labels. In the DCE Directory Service, every CDS attribute
name and GDS attribute type label has a corresponding unique number called an object identifier.

B.1 Origin of Object Identifiers
The purpose of object identifiers is to ensure uniqueness among the attribute types that many
different applications generate and use. Object identifiers are typically obtained from a hierarchy
of allocation authorities, the highest being the International Organization for Standardization
(ISO) and the International Telegraph and Telephone Consultative Committee (CCITT).
Individual application developers do not usually have to contact ISO or CCITT directly to obtain
unique numbers. Application developers are more likely to request object identifiers from a
person within their company who is in charge of allocating them. The company authority would
in turn contact a higher authority to obtain a unique company prefix.

The hierarchy of allocation authorities is indicated by dots that separate portions of an object
identifier. Each string of numbers delineated by dots represents a level of the allocation
hierarchy, going left to right from the highest authority down. For example, the object identifier
1.3.22.1.1.2 consists of the following levels:

1 ISO

3 Identified organisation

22 Open Software Foundation

1 Distributed Computing Environment

1 Remote Procedure Call

2 RPC Object UUIDs

Part 5 Appendices 185

CDS Attributes Table Object Identifiers for CDS Attributes

B.2 CDS Attributes Table
The following table lists the currently registered object identifiers for CDS attributes:

The derivation of the stem of these object ids is:
#
{iso(1) identified-org(3) osf(22) dce(1) cds(3)}
#
OID LABEL SYNTAX
#
1.3.22.1.3.10 CDS_Members VT_GroupMember
1.3.22.1.3.11 CDS_GroupRevoke VT_Timeout
1.3.22.1.3.12 CDS_CTS VT_Timestamp
1.3.22.1.3.13 CDS_UTS VT_Timestamp
1.3.22.1.3.15 CDS_Class VT_byte (ASCII encoding, ISO 8859-1)
1.3.22.1.3.16 CDS_ClassVersion VT_Version
1.3.22.1.3.17 CDS_ObjectUUID VT_uuid
1.3.22.1.3.19 CDS_Replicas VT_ReplicaPointer
1.3.22.1.3.20 CDS_AllUpTo VT_Timestamp
1.3.22.1.3.21 CDS_Convergence VT_small
1.3.22.1.3.22 CDS_InCHName VT_small
1.3.22.1.3.23 CDS_ParentPointer VT_ParentPointer
1.3.22.1.3.24 CDS_DirectoryVersion VT_Version
1.3.22.1.3.25 CDS_UpgradeTo VT_Version
1.3.22.1.3.27 CDS_LinkTarget VT_FullName
1.3.22.1.3.28 CDS_LinkTimeout VT_Timeout
1.3.22.1.3.30 CDS_Towers VT_byte
1.3.22.1.3.32 CDS_CHName VT_FullName
1.3.22.1.3.34 CDS_CHLastAddress VT_byte
1.3.22.1.3.36 CDS_CHState VT_small
1.3.22.1.3.37 CDS_CHDirectories VT_CHDirectory
1.3.22.1.3.40 CDS_ReplicaState VT_small
1.3.22.1.3.41 CDS_ReplicaType VT_small
1.3.22.1.3.42 CDS_LastSkulk VT_Timestamp
1.3.22.1.3.43 CDS_LastUpdate VT_Timestamp
1.3.22.1.3.44 CDS_RingPointer VT_uuid
1.3.22.1.3.45 CDS_Epoch VT_uuid
1.3.22.1.3.46 CDS_ReplicaVersion VT_Version
1.3.22.1.3.48 CDS_NSCellname VT_char
1.3.22.1.3.52 CDS_GDAPointers VT_gdaPointer
1.3.22.1.3.53 CDS_CellAliases VT_GroupMember
1.3.22.1.3.54 CDS_ParentCellPointers VT_ReplicaPointer
1.3.22.1.1.1 RPC_ClassVersion VT_byte
1.3.22.1.1.2 RPC_ObjectUUIDs VT_byte
1.3.22.1.1.3 RPC_Group VT_byte (ASCII encoding, ISO 8859-1)
1.3.22.1.1.4 RPC_Profile VT_byte (ASCII encoding, ISO 8859-1)
1.3.22.1.1.5 RPC_Codesets VT_byte
1.3.22.1.5.1 SEC_RepUUID VT_byte

The first column contains the object identifier (OID), the second column contains a label (the
name to which the identifier is mapped), and the third column indicates the data type (defined in
Chapter 11).

186 CAE Specification (1997)

Appendix C

CDS Status and Error Codes

Table C-1 lists the set of defined status messages that may be returned by the CDS protocol.

Table C-1 CDS Status Messages

Status Name Code Description
Operation completed successfully.[CDS_SUCCESS] 1
Invalid argument.[CDS_INVALIDARGUMENT] 1001
Invalid name.[CDS_INVALIDNAME] 1002
Insufficient local resources to process request.[CDS_NONSRESOURCES] 1003
Unable to communicate with any CDS server.[CDS_NOCOMMUNICATION] 1004
Insufficient rights to perform requested
operation.

[CDS_ACCESSDENIED] 1005

Requesting principal could not be authenticated
to the clearinghouse.

[CDS_CANNOTAUTHENTICATE] 1006

Conflicting arguments specified.[CDS_CONFLICTINGARGUMENTS] 1007
Timeout occurred, operation not performed.[CDS_TIMEOUTNOTDONE] 1008
Timeout occurred, operation may have
completed.

[CDS_TIMEOUTMAYBEDONE] 1009

Specified fully-qualified global name already
exists.

[CDS_ENTRYEXISTS] 1011

Requested entry does not exist.[CDS_UNKNOWNENTRY] 1012
Requested function not supported by this
version of the architecture.

[CDS_NOTSUPPORTED] 1013

Requested optional function is not implemented.[CDS_NOTIMPLEMENTED] 1014
Specified attribute cannot be modified.[CDS_INVALIDUPDATE] 1015
Specified clearinghouse does not exist.[CDS_UNKNOWNCLEARINGHOUSE] 1016
Specified clearinghouse does not contain a copy
of the directory.

[CDS_NOTAREPLICA] 1017

Specified clearinghouse already contains a copy
of the directory.

[CDS_ALREADYREPLICA] 1018

Cannot delete crucial replica.[CDS_CRUCIALREPLICA] 1019
Directory must be empty to be deleted.[CDS_NOTEMPTY] 1020
Specified name exists but is not a soft link.[CDS_NOTLINKED] 1021
Possible cycle in soft links detected.[CDS_POSSIBLECYCLE] 1022
Specified soft link points to non-existent entry.[CDS_DANGLINGLINK] 1023
Not a group.[CDS_NOTAGROUP] 1024
Requested clearinghouse exists but is not
available.

[CDS_CLEARINGHOUSEDOWN] 1025

Directory replicas are not synchronised.[CDS_BADEPOCH] 1026
Server clocks are not synchronised.[CDS_BADCLOCK] 1027
Data corruption detected at clearinghouse.[CDS_DATACORRUPTION] 1028
Specified attribute type is incorrect.[CDS_WRONGATTRIBUTETYPE] 1029
Replica set of specified directory contains more
than one replica.

[CDS_MORETHANONEREPLICA] 1030

Replica of specified directory cannot be created
in old clearinghouse.

[CDS_CANTPUTHERE] 1031

Part 5 Appendices 187

CDS Status and Error Codes

Status Name Code Description
Skulk in progress terminated, superseded by
more recent skulk.

[CDS_OLDSKULK] 1032

Server process has insufficient access to
clearinghouse.

[CDS_UNTRUSTEDCH] 1033

Replica cannot be added to old clearinghouse.[CDS_VERSIONSKEW] 1034
Old replica cannot be included in new replica set.[CDS_NEWVERSIONSKEW] 1035
Operation can only be performed on a server
node.

[CDS_NOTNAMESERVER] 1100

Responding entity in wrong state to process
requested operation.

[CDS_WRONGSTATE] 1101

Specified nickname already assigned to another
namespace.

[CDS_BADNICKNAME] 1102

This operation cannot be performed remotely.[CDS_LOCALONLY] 1103
This operation must be performed on master
copy of root directory.

[CDS_NOTROOT] 1104

Specified directory does not allow clearinghouse
name storage.

[CDS_NOTCHDIRECTORY] 1105

Requested operation would result in lost
connectivity to root directory.

[CDS_ROOTLOST] 1106

Cannot upgrade replica in old clearinghouse.[CDS_CANNOTUPGRADE] 1107
Specified name is not stored in a clearinghouse.[CDS_UNDERSPECIFIEDNAME] 1108
Requested attribute does not exist.[CDS_UNKNOWNATTRIBUTE] 1109
The name provided is not a part of the current
cell.

[CDS_NOTINCELL] 1110

The name provided was not an alias or the
current cell name.

[CDS_NOT_AN_ALIAS] 1111

You cannot supersede a primary cell alias with a
normal cell alias of the same name.

[CDS_PREFERRED_EXISTS] 1112

You cannot remove the current primary cell alias
(current cell name).

[CDS_CANNOT_REM_PREFERRED] 1113

Unable to modify the cell aliases because the root
directory is missing the AllUpTo attribute.

[CDS_MISSING_ALLUPTO] 1114

You cannot remove an alias until the primary
alias is considered safe.

[CDS_REM_NOT_SAFE] 1115

Multiple primary aliases have been detected in
the CDS_CellAliases attribute.

[CDS_MULT_PREFERRED] 1116

You cannot remove the current cellname alias.[CDS_CANNOT_REM_CELLNAME] 1117
The supplied cellname is required to be < 255
bytes in length.

[CDS_ALIASTOOLONG] 1118

For cellname commands, the
CDS_DirectoryVersion attribute is required to be
4.0 or greater.

[CDS_LOWDIRVERSION] 1119

The supplied cellname would result in a
hierarchical cycle.

[CDS_ALIASCYCLE] 1120

Unable to modify the cell aliases because the root
directory is missing the DirectoryVersion
attribute.

[CDS_MISSING_DIRECTORYVERSION] 1121

The supplied cellname is required to have two
simple names for an alias and three simple names
for a child alias.

[CDS_ALIASTOOSHORT] 1122

The proposed parent name is not its cellname or
primary alias.

188 CAE Specification (1997)

CDS Status and Error Codes

[CDS_NOTPREFERREDHIERARCHY] 1123

Status Name Code Description
There is no existing primary alias for the local
cell.

[CDS_NOPREFERRED_EXISTS] 1124

Implementation-speci fic error.[CDS_CLERKBUG] 1998
Software error detected in server.[CDS_NAMESERVERBUG] 1999
Access violation.[CDS_ACCESSVIOLATION] 2000
Insufficient resources to process request.[CDS_RESOURCEERROR] 2001
Insufficient room in buffer.[CDS_NOROOM] 2025

Part 5 Appendices 189

CDS Status and Error Codes

190 CAE Specification (1997)

Appendix D

CDS IDL Definitions

This appendix gives the IDL specification of the CDS remote interface, including:

cds_clerkserver.idl The remote interface for the transaction protocol.

cds_solicit.idl The remote interface for the solicitation protocol.

cds_types.idl Header file for basic CDS types.

id_base.idl Base type definitions for identities.

Notes:

1. The listings of *.idl definitions in this appendix provide supplementary
information. In particular, the ordering of operations is significant for
conforming implementations. For further information about the semantics of
operations and encodings refer to Chapter 11 and Chapter 12.

2. The cds_clerkserver.idl definition contains the following operations that are
not further specified in this document:

cds_AddReplica
cds_AllowClearinghouses
cds_Combine
cds_DisallowClearinghouses
cds_DoUpdate
cds_LinkReplica
cds_ModifyReplica
cds_NewEpoch
cds_RemoveReplica
cds_Skulk
cds_TestGroup

These operations are used by the CDS replication service that is not specified in
this document. However, in order to preserve the ordering of IDL operations, it
is necessary to maintain these operations in the *.idl definition.

Part 5 Appendices 191

cds_clerkserver.idl CDS IDL Definitions

D.1 cds_clerkserver.idl
[uuid(257df1c9-c6d3-11ca-8554-08002b1c8f1f), version(1.0)]

interface cds_clerkserver

{
import "dce/cds_types.idl";
import "dce/id_base.idl";

error_status_t cds_AddReplica(
[in] handle_t h,
[in] cds_FullName_t *directory_p,
[in] unsigned small type,
[out] cds_status_t *cds_status_p
);

[idempotent] error_status_t cds_AllowClearinghouses(
[in] handle_t h,
[in,out]cds_Progress_t *Progress_p,
[out] cds_status_t *cds_status_p
);

error_status_t cds_Combine(
[in] handle_t h,
[in] uuid_t *dir_p,
[in] cds_Timestamp_t *skulk_p,
[in] cds_Timestamp_t *allupto_p,
[in] uuid_t *epoch_p,
[in] cds_FullName_t *to_p,
[out] uuid_t *next_p,
[out] cds_status_t *cds_status_p
);

error_status_t cds_CreateChild(
[in] handle_t h,
[in,out] cds_Progress_t *Progress_p,
[in,ptr]sec_id_foreign_t *user_p,
[in] uuid_t *childID_p,
[in] cds_Set_t *replicaset_p,
[out] uuid_t *parentID_p,
[out] cds_status_t *cds_status_p

);

error_status_t cds_CreateDirectory(
[in] handle_t h,
[in,out]cds_Progress_t *Progress_p,
[out] cds_Timestamp_t *actual_ts_p,
[out] cds_status_t *cds_status_p
);

192 CAE Specification (1997)

CDS IDL Definitions cds_clerkserver.idl

error_status_t cds_CreateSoftLink(
[in] handle_t h,
[in,out]cds_Progress_t *Progress_p,
[in] cds_FullName_t *target_p,
[in,ptr] cds_Timeout_t *linkTimeout_p,
[out] cds_Timestamp_t *actual_ts_p,
[out] cds_status_t *cds_status_p
);

error_status_t cds_CreateObject(
[in] handle_t h,
[in,out]cds_Progress_t *Progress_p,
[in,ptr] cds_Name_t *class_p,
[in,ptr] cds_Version_t *version_p,
[in, ptr] uuid_t *uuid_p,
[out] cds_Timestamp_t *acutal_ts_p,
[out] cds_status_t *cds_status_p
);

error_status_t cds_DeleteChild(
[in] handle_t h,
[in,out] cds_Progress_t *Progress_p,
[out] cds_status_t *cds_status_p

);

error_status_t cds_DeleteObject(
[in] handle_t h,
[in,out]cds_Progress_t *Progress_p,
[out] cds_status_t *cds_status_p
);

error_status_t cds_DeleteSoftLink(
[in] handle_t h,
[in,out]cds_Progress_t *Progress_p,
[out] cds_status_t *cds_status_p
);

error_status_t cds_DeleteDirectory(
[in] handle_t h,
[in,out]cds_Progress_t *Progress_p,
[out] cds_status_t *cds_status_p
);

[idempotent] error_status_t cds_DisallowClearinghouses(
[in] handle_t h,
[in,out]cds_Progress_t *Progress_p,
[out] cds_status_t *cds_status_p
);

[idempotent] error_status_t cds_DoUpdate(
[in] handle_t h,
[in] uuid_t *epoch_p,
[in] cds_UpdatePkt_t *update_p,
[out] cds_status_t *cds_status_p
);

Part 5 Appendices 193

cds_clerkserver.idl CDS IDL Definitions

[idempotent] error_status_t cds_EnumerateAttributes(
[in] handle_t h,
[in,out]cds_Progress_t *Progress_p,
[in] unsigned small type,
[in] cds_Name_t *context_p,
[in] unsigned32 max_size,
[in,out,ptr] cds_SetP_t *attr_set,
[out] unsigned small *wholeset_p,
[out] cds_status_t *cds_status_p
);

[idempotent] error_status_t cds_EnumerateChildren(
[in] handle_t h,
[in,out]cds_Progress_t *Progress_p,
[in] cds_Name_t *wild_p,
[in] cds_Name_t *context_p,
[in] unsigned32 max_size,
[in,out,ptr] cds_SetP_t *name_set,
[out] unsigned small *wholeset_p,
[out] cds_status_t *cds_status_p
);

[idempotent] error_status_t cds_EnumerateObjects(
[in] handle_t h,
[in,out]cds_Progress_t *Progress_p,
[in] cds_Name_t *wild_p,
[in] cds_Name_t *context_p,
[in] cds_Name_t *class_p,
[in] unsigned32 max_size,
[in,out,ptr] cds_SetP_t *name_set,
[out] unsigned small *wholeset_p,
[in,out] unsigned small *returnClass_p,
[out] cds_status_t *cds_status_p
);

[idempotent] error_status_t cds_EnumerateSoftLinks(
[in] handle_t h,
[in,out]cds_Progress_t *Progress_p,
[in] cds_Name_t *wild_p,
[in] cds_Name_t *context_p,
[in] unsigned32 max_size,
[in,out,ptr] cds_SetP_t *name_set,
[out] unsigned small *wholeset_p,
[out] cds_status_t *cds_status_p
);

194 CAE Specification (1997)

CDS IDL Definitions cds_clerkserver.idl

[idempotent] error_status_t cds_LinkReplica(
[in] handle_t h,
[in,out] cds_Progress_t *Progress_p,
[in] uuid_t *directory_p,
[in] cds_Update_t *update_p,
[out] uuid_t *epoch_p,
[out] uuid_t *ring_p,
[out] cds_Version_t *rpversion_p,
[out] cds_status_t *cds_status_p

);

[idempotent] error_status_t cds_ModifyAttribute(
[in] handle_t h,
[in,out]cds_Progress_t *Progress_p,
[in] unsigned small type,
[in] cds_Update_t *update_p,
[out] cds_status_t *cds_status_p
);

[idempotent] error_status_t cds_ModifyReplica(
[in] handle_t h,
[in] uuid_t *dir_p,
[in] cds_Update_t *update_p,
[out] cds_status_t *cds_status_p

);

error_status_t cds_NewEpoch(
[in] handle_t h,
[in] cds_FullName_t *dirname_p,
[in] cds_Set_t *readonlies_p,
[in] cds_Set_t *secondaries_p,
[out] cds_status_t *cds_status_p
);

const unsigned small RA_none = 1;
const unsigned small RA_single = 2;
const unsigned small RA_set = 3;
const unsigned small RA_wholeSet = 4;

typedef struct {
cds_Name_t name;
union switch (unsigned small type) {
case RA_none:

;
case RA_single:

[ptr] cds_SetMember_t *single_p;
case RA_set:

[ptr] cds_Set_t *set_p;
} value;

} cds_WE_entry_t;

Part 5 Appendices 195

cds_clerkserver.idl CDS IDL Definitions

typedef struct {
unsigned small numberOfAttributes;
[size_is(numberOfAttributes)] cds_WE_entry_t entry[];

} cds_WholeEntry_t;

typedef union switch (unsigned small returningToClerk) {
case RA_none:

;
case RA_single:

[ptr] cds_SetMember_t *value_single_p;
case RA_set:

[ptr] cds_Set_t *value_set_p;
case RA_wholeSet:

[ptr] cds_WholeEntry_t *wholeEntry_p;
} cds_RA_value_t;

[idempotent] error_status_t cds_ReadAttribute(
[in] handle_t h,
[in,out]cds_Progress_t *Progress_p,
[in] unsigned small type,
[in] cds_Name_t *att_p,
[in] cds_Timestamp_t *context_p,
[in] unsigned32 max_size,
[in] unsigned32 maybemore,
[out] cds_RA_value_t *value_p,
[out] unsigned small *wholeset_p,
[out] cds_status_t *cds_status_p
);

error_status_t cds_RemoveReplica(
[in] handle_t h,
[in] cds_FullName_t *directory_p,
[out] cds_status_t *cds_status_p
);

[idempotent] error_status_t cds_ResolveName(
[in] handle_t h,
[in,out]cds_Progress_t *Progress_p,
[out] cds_status_t *cds_status_p
);

[idempotent] error_status_t cds_Skulk(
[in] handle_t h,
[in,out]cds_Progress_t *Progress_p,
[out] cds_status_t *cds_status_p
);

196 CAE Specification (1997)

CDS IDL Definitions cds_clerkserver.idl

[idempotent] error_status_t cds_TestAttribute(
[in] handle_t h,
[in,out]cds_Progress_t *Progress_p,
[in] unsigned small type,
[in] cds_Name_t *att_p,
[in] cds_AtomicValue_t *value_p,
[out] unsigned small *result_p,
[out] cds_status_t *cds_status_p
);

[idempotent] error_status_t cds_TestGroup(
[in] handle_t h,
[in,out]cds_Progress_t *Progress_p,
[in] cds_FullName_t *member_p,
[in,out] uuid_t *loop_p,
[in,out] unsigned small *direct_p,
[out] unsigned small *result_p,
[in,out,ptr] cds_TimeoutP_t *outTimeout_p,
[out] cds_status_t *cds_status_p
);

}

D.2 cds_solicit.idl
[uuid(d5579459-8bca-11ca-b771-08002b1c8f1f), version(1.0)]
interface cds_solicit
{
import "cds_types.idl";

typedef [ref]cds_ReplicaPointer_t *cds_ReplicaPointerP_t;

typedef struct {
unsigned short ch_length;
[size_is(ch_length)] cds_ReplicaPointerP_t ch_members[];

} cds_CH_t;

typedef [ptr]cds_CH_t *cds_CHP_t;

[broadcast,maybe] void cds_Solicit(
[in] handle_t h);

[broadcast,maybe] void cds_Advertise(
[in] handle_t h,
[in] cds_FullName_t *cellname_p,
[in] uuid_t cell_diruid,
[in] cds_CH_t *nscle_p);

[idempotent] error_status_t cds_SolicitServer(
[in] handle_t h,
[out] cds_FullName_t *cellname_p,
[out] uuid_t *cell_diruid_p,
[in,out,ptr] cds_CHP_t *nscle_p);

}

Part 5 Appendices 197

cds_solicit.idl CDS IDL Definitions

D.3 cds_types.idl
interface cds_types
{

#ifdef DCE_SEC
import "dce/aclbase.idl";
#endif

const small VT_none = 0;
const small VT_long = 1;
const small VT_short = 2;
const small VT_small = 3;
const small VT_uuid = 4;
const small VT_Timestamp = 5;
const small VT_Timeout = 6;
const small VT_Version = 7;
const small VT_char = 8;
const small VT_byte = 9;
const small VT_ReplicaPointer = 10;
const small VT_GroupMember = 11;
const small VT_ParentPointer = 12;
const small VT_FullName = 13;
const small VT_CHDirectory = 14;
const small VT_ASN1 = 15;
const small VT_DACL = 16;
const small VT_gdaPointer = 18;

typedef small ValueType_t;

/*
* CDS timestam p - 6 byte node id followed by time based on smithsonian
* zero
*/

typedef struct {
byte ts_node[6];
unsigned hyper int ts_time;

} cds_Timestamp_t;

/*
* 2 utc values. First is absolute time, second is relative
*/

typedef struct {
byte to_expire[16];
byte to_extend[16];

} cds_Timeout_t;

typedef [ptr]cds_Timeout_t *cds_TimeoutP_t;

198 CAE Specification (1997)

CDS IDL Definitions cds_types.idl

/*
* Can be used for software version numbers
*/

typedef struct {
unsigned small int ver_major;
unsigned small int ver_minor;

} cds_Version_t;

/*
* Represents Simplenames, attributenames and class values as input to
* RPC routines. These names are passed in their internal opq format.
* within the nm_name array.
*/

typedef struct {
unsigned short int nm_length;
[length_is(nm_length)] byte nm_name[257];

} cds_Name_t;

/*
* The global root and the string representation of the pathname.
* CDS server-server operations may use a directory uuid in the fn_root
* and the fn_name is the entry name relative to fn_root (ie, not global)
* fn_name does not include terminating null
*/

typedef struct {
uuid_t fn_root;
long int fn_length;
[length_is(fn_length)] char fn_name[1023];

} cds_FullName_t;

/*
* Error status return. On Unknownentry, the er_name may be filled in
* with the last name the server successfully accessed.
*/

typedef struct {
unsigned long int er_status;
[ptr]cds_FullName_t *er_name;

} cds_status_t;

/*
* Internal CDS structure that describes the replicas of directory
*
* const small RT_master = 1;
* const small RT_readOnly = 3;
* const small RT_gda = 4;
*/

typedef struct {
unsigned small int rp_type;
uuid_t rp_chid;
cds_FullName_t rp_chname;
unsigned long int rp_length;
[size_is(rp_length)] byte rp_towers[];

} cds_ReplicaPointer_t;

Part 5 Appendices 199

cds_types.idl CDS IDL Definitions

/*
* Internal CDS structure to describe the members of a CDS group
* Members may by other group names in which isaGroup would be true
*/

typedef struct {
boolean gm_isaGroup;
cds_FullName_t gm_member;

} cds_GroupMember_t;

/*
* Internal CDS structure that describes the parent of a directory
* The timeout value is used to update replica pointers in the
* child ptr.
*/

typedef struct {
uuid_t pp_parentID;
cds_Timeout_t pp_timeout;
cds_FullName_t pp_myName;

} cds_ParentPointer_t;

/*
* Uppointers to the GDA
*/

typedef struct {
cds_Timeout_t gp_timeout;
cds_ReplicaPointer_t gp_replica;

} cds_gdaPointer_t;

/*
* Internal CDS attribute that defines the directories within a
* clearinghouse
*/

typedef struct {
uuid_t cp_dirID;
cds_FullName_t cp_directory;

} cds_CHDirectory_t;

/*
* Structure for transporting opaque variable length user data
*/

typedef struct {
unsigned short int op_length;
[size_is(op_length)] byte op_array[];

} cds_OpenByte_t;

/*
* Structure for transporting char variable length user data
*/

typedef struct {
unsigned short int op_length;
[size_is(op_length)] char op_array[];

} cds_OpenChar_t;

200 CAE Specification (1997)

CDS IDL Definitions cds_types.idl

/* All the data types CDS recognizes */
typedef union switch (ValueType_t av_valuetype) av_val

{
case VT_none: ;
case VT_long: long int av_long;
case VT_short: short int av_short;
case VT_small: small int av_small;
case VT_uuid: uuid_t av_uuid;
case VT_Timestamp: cds_Timestamp_t av_timestamp;
case VT_Timeout: cds_Timeout_t av_timeout;
case VT_Version: cds_Version_t av_version;
case VT_char: [ptr]cds_OpenChar_t *av_char_p;
case VT_ASN1:
case VT_byte: [ptr]cds_OpenByte_t *av_byte_p;

/* The remaining types are for internal CDS use only */
case VT_ReplicaPointer: [ptr]cds_ReplicaPointer_t *av_rp_p;
case VT_GroupMember: [ptr]cds_GroupMember_t *av_gm_p;
case VT_ParentPointer: [ptr]cds_ParentPointer_t *av_pp_p;
case VT_FullName: [ptr]cds_FullName_t *av_fullname_p;
case VT_CHDirectory: [ptr]cds_CHDirectory_t *av_cp_p;

#ifdef DCE_SEC
case VT_DACL: [ptr]sec_acl_t *av_acl_p;

#endif
case VT_gdaPointer: [ptr]cds_gdaPointer_t *av_gda_p;

} cds_AtomicValue_t;

/*
* Set member contains a present/absent flag, timestamp member
* was created and the value
* The flag is actually a bitmask with only bit 0 currently in use.
* const small SM_present=1;
* const small SM_absent=0;
*/

typedef struct {
unsigned small int sm_flag;
cds_Timestamp_t sm_ts;
cds_AtomicValue_t sm_value;

} cds_SetMember_t;

/*
* Sets describe single or set valued attributes. They contain a
* a list of members
* const small AT_none=1;
* const small AT_single=2;
* const small AT_set=3;
*/

typedef struct {
unsigned small int set_type;
unsigned short int set_length;
[size_is(set_length)] cds_SetMember_t set_members[];

} cds_Set_t;
typedef [ptr]cds_Set_t *cds_SetP_t;

Part 5 Appendices 201

cds_types.idl CDS IDL Definitions

/*
* Progress record is used to direct the clerk from one server
* to another.
* Flags is a bitmask.
* const small PR_done=1; Got results
* const small PR_up =2; returning ptr up the tree
* const small PR_linked=4; Link was found in name
* const small PR_hitLink=8; Link just found, new name returned
* const small PR_ignoreState=16; ignore directory state
* const small PR_directory =32;
*/

typedef struct {
unsigned small int pr_flags;
[ptr]cds_Timeout_t *pr_timeout;
cds_FullName_t pr_unresolved;
cds_FullName_t pr_resolved;
[ptr]cds_Set_t *pr_replicas_p;

} cds_Progress_t;

/*
* Update an attribute
* const small UD_present=1;
* const small UD_absent=2;
*/

typedef struct {
small int ud_operation;
cds_Timestamp_t ud_timestamp;
unsigned small int ud_type; /* attribute type */
byte ud_attribute[33];
cds_AtomicValue_t ud_value;

} cds_Update_t;

/*
* Structure used to bundle multiple updates to one entry. Used in
* DoUpdate function. Name is relative to a directory.
* const small int ET_directory=1;
* const small int ET_object=2;
* const small int ET_childPointer=3;
* const small int ET_softlink=4;
* const small int ET_clearinghouse=5;
* const small int ET_anyDirectName=6;
* const small int ET_firstLink=7;
* const small int ET_dirOrObj=8;
*/

typedef struct {
cds_FullName_t pkt_name;
cds_Timestamp_t pkt_cts;
small int pkt_type; /* EntryType */
unsigned small int pkt_cnt;
[size_is(pkt_cnt)] cds_Update_t pkt_data[];

} cds_UpdatePkt_t;

}

202 CAE Specification (1997)

CDS IDL Definitions cds_types.idl

D.4 id_base.idl
/* Identity base type definitions
**
*/

[
uuid(47EAABA3-3000-0000-0D00-01DC6C000000)

]

interface sec_id_base {

import "dce/nbase.idl";

/* s e c _ i d _ t
*
* A sec_id_t is the basic unit for identifying principals or groups etc.
* It contains the uuid (object handle for the identity) and an optional
* printstring name.
*
* This datatype requires a destructor function since the printstring
* name is dynamically allocated. Generally this datatype is embedded
* in other datatypes (like acl’s) which have their own destructor which
* will release the printstring storage as well.
*/

typedef struct {
uuid_t uuid;
[string,ptr] char *name;

} sec_id_t;

/* s e c _ i d _ f o r e i g n _ t
*
* A foreign id (sec_id_foreign_t) is an identity from a foreign realm.
* It contains a sec_id_t for the foreign user or group and a sec_id_t
* for the foreign realm.
*/

typedef struct {
sec_id_t id;
sec_id_t realm;

} sec_id_foreign_t;

/* Set of groups all associated with the same foreign cell */
typedef struct {

sec_id_t realm;
unsigned16 num_groups;
[size_is(num_groups), ptr]

sec_id_t *groups;
} sec_id_foreign_groupset_t;

/* s e c _ i d _ p a c _ f o r m a t _ t
*
* A format label to indicate which EPAC format is being used.
*/

typedef enum {
sec_id_pac_format_v1

} sec_id_pac_format_t;

Part 5 Appendices 203

id_base.idl CDS IDL Definitions

/* s e c _ i d _ p a c _ t (sec_id_pac_format_v1)
*
* A privilege attribute certificate contains the principal’s identity
* along with the current group and concurrent group set. The pac is
* generally not directly visible to applications. It is normally included
* in an authentication ticket where it appears as a sealed certificate.
* Anticipating future systems that wish to extend the EPAC structure, we
* include a format label (which takes the value sec_id_pac_format_t)
* and we also add version specific encodings of the type. Applications
* that wish to provide persistent storage of a EPAC should
* use the version specific type name, applications that wish the latest
* version should use the simple sec_id_pac_t generic type name.
*
* The pac contains an "authenticated" field which when set indicates that
* the certificate was obtained from an authenticated source. When unset
* the certificate should not be trusted. (The field is unset - false -
* when it is obtained from the rpc_auth layer and the "assert_id" mode
* was selected. This indicates that no authentication protocol was
* actually used in the rpc, the identity was simply transmitted from the
* caller to the callee. If an authentication protocol was used, then
* the flag is set to true)
*/

typedef struct {
sec_id_pac_format_t pac_type;
boolean32 authenticated;
sec_id_t realm;
sec_id_t principal;
sec_id_t group;
unsigned16 num_groups;
unsigned16 num_foreign_groups;
[size_is(num_groups), ptr]

sec_id_t *groups;
[size_is(num_foreign_groups), ptr]

sec_id_foreign_t *foreign_groups;
} sec_id_pac_t, sec_id_pac_format_v1_t;

/* s e c _ i d _ p i c k l e d _ p a c _ t
*
* An pickled privilege attribute certificate is a labeled pac. It
* contains an ndr_format_t label which describes the pickle format.
* Generally a pickled pac occurs in an authentication ticket where
* the data is also encrypted.
*/

typedef struct {
ndr_format_t format_label;
unsigned32 num_bytes;
[size_is(num_bytes)]

byte pickled_data[];
} sec_id_pickled_pac_t;

}

204 CAE Specification (1997)

Appendix E

GDS Structure Rule Table

The Structure Rule Table (SRT) supplied with the GDS default schema contains the following
entries. This SRT is defined for a DSA.

Rule Superior Acronyms of Acronym of
Number Rule Number Naming Attribute Structural Object Class

1 0 CN SCH
2 0 C C
3 2 O ORG
4 3 OU OU
5 4 CN ORP
6 4 CN ORR
7 4 CN APP
8 4 CN MDL
9 4 CN,OU ORP

10 7 CN APE
11 7 CN DSA
12 7 CN MMS
13 7 CN MTA
14 7 CN MUA
15 7 CN DNA
16 2 L LOC
17 16 CN REP
18 16 CN,STA REP

Table E-1 SRT Entries for a DSA

For an explanation of the acronyms of the naming attribute, see Table G-1 on page 209. For an
explanation of the acronyms of object classes, see Table F-1 on page 207.

The following SRT is defined for the GDS administration programs.

Rule Superior Acronyms of Acronym of
Number Rule Number Naming Attribute Structural Object Class

1 0 CN SCH
2 0 C C
3 2 O ORG
4 3 OU OU
5 4 CN ORP,APP,ORR,MDL
6 4 CN, OU ORP
7 5 CN DSA,APE,MMS,MTA,MUA,DNA
8 2 L LOC
9 8 CN REP

10 8 CN,STA REP

Table E-2 SRT Entries for GDS

Part 5 Appendices 205

GDS Structure Rule Table

206 CAE Specification (1997)

Appendix F

GDS Object Class Table

The object class table (OCT) supplied with the GDS default schema contains the following
entries:

Table F-1 OCT Entries

Acr. Acr. Acronym Acronym Acronym
of of Kind of of Auxiliary of of

Object Super Object Name of Object File Object Mandatory Optional
Class Classes ID Object Class Class No. Classes Attributes Attributes

TOP 85.6.0 Top Abstract -1 - OCL

ALI TOP 85.6.1 Alias Alias -1 - AON

C GTP 85.6.2 Country Structural 1 - C DSC SG CDC CDR

LOC GTP 85.6.3 Locality Structural 4 - DSC L SPN STA
SEA SG CDC CDR

ORG GTP 85.6.4 Organization Structural 1 - O DSC L SPN STA
PDO PA PC POB
FTN IIN TN TTI
TXN X1A PDM DI
RA SEA UP BC
SG CDC CDR

OU GTP 85.6.5 Organizational- Structural 1 - OU DSC L SPN STA
Unit PDO PA PC POB

FTN IIN TN TTI
TXN X1A PDM DI
RA SEA UP BC
SG CDC CDR

PER GTP 85.6.6 Person Abstract -1 - CN SN DSC TN SEA UP
CDC CDR

ORP PER 85.6.7 Organizational- Structural 1 CA MUS L SPN STA PDO
Person SAU PA PC POB FTN

IIN TTI TXN X1A
PDM DI RA OU TIT

ORR GTP 85.6.8 Organizational- Structural 1 - CN DSC L SPN STA
Role PDO PA PC POB

FTN IIN TN TTI
TXN X1A PDM DI
RA OU SEA RO
CDC CDR

GON GTP 85.6.9 Group-of- Structural 3 - CN MEM DSC O OU SEA
Names BC OWN CDC CDR

REP PER 85.6.10 Residential- Structural 4 - L SPN STA PDO PA
Person PC POB FTN IIN

TTI TXN X1A PDM
DI RA BC

Part 5 Appendices 207

GDS Object Class Table

Acr. Acr. Acronym Acronym Acronym
of of Kind of of Auxiliary of of

Object Super Object Name of Object File Object Mandatory Optional
Class Classes ID Object Class Class No. Classes Attributes Attributes
APP GTP 85.6.11 Application- Structural 2 - CN DSC L OU

Process SEA CDC CDR

APE GTP 85.6.12 Application- Structural 2 - CN PSA DSC L O OU SEA
Entity SAC CDC CDR

DSA APE 85.6.13 Directory- Structural 2 - AM KNI PN UP
Service-
Agent

DEV GTP 85.6.14 Device Structural 2 - CN DSC L O OU SEA
OWN SER CDC CDR

SAU TOP 85.6.15 Strong-Auth.- Auxiliary -1 - UC
User

CA TOP 85.6.16 Certification- Auxiliary -1 - CAC CRL CCP
Authority ARL

MDL GTP 86.5.1.0 MHS- Structural 2 - CN MDS DSC O OU SEA
Distribution- MOA OWN MDT MDE
List MDM MPD

MMS APE 86.5.1.1 MHS- Structural 2 - OWN MSO MSA MSC
Message-Store

MTA APE 86.5.1.2 MHS- Structural 2 - OWN MDL
Mess-
Transfer-
Agent

MUS TOP 86.5.1.3 MHS- Auxiliary -1 - MOA MDL MDT MDE
User MMS MPD

MUA APE 86.5.1.4 MHS- Structural 2 - OWN MDL MDT
User- MDE MOA
Agent

SCH GTP 43.12.2. Schema Structural 0 - CN TST SRT OCT AT
1107.1.3.
6.0

GTP TOP None GDS-Top Abstract -1 - ACL MK

For an explanation of acronyms of the mandatory attribute and the optional attribute, see Table
G-1 on page 209.

Notes:

• Although the object class Locality (acronym = LOC) does not have a specific set
of mandatory attributes, either the Locality-Name (acronym = L) or the State-or-
Province-Name (acronym = SPN) attribute must be present (for further
information, see Appendix G.

• Every object class inherits all mandatory and optional attributes of its superior
object classes.

• The object classes Group-of-Names (GON) and Device (DEV) are object classes
defined in the X.500 standard. They are part of the OCT, but they are not assigned
to any structure rule of the SRT of the GDS default schema.

208 CAE Specification (1997)

Appendix G

GDS Attribute Table

The attribute table (AT) supplied with the GDS default schema contains the following entries
(see the tables at the end of this appendix for explanations of abbreviations and values):

Table G-1 AT Entries

Acr. Name Max.
of Object of Lower Upper No. of Phon. Access Index

Attr. ID Attribute Bound Bound Values Syntax Flag Class Level
OCL 85.4.0 Object-Class 1 28 0 2 0 0 0
AON 85.4.1 Aliased-

Object-Name 1 1024 1 1 0 0 0
KNI 85.4.2 Knowledge-

Information 1 1024 0 4 0 0 0
CN 85.4.3 Common-

Name 1 64 2 4 1 0 1
SN 85.4.4 Surname 1 64 2 4 1 0 0
SER 85.4.5 Serial-Number 1 64 2 5 0 0 0
C 85.4.6 Country-Name 2 2 1 1010 1 0 1
L 85.4.7 Locality-Name 1 128 2 4 1 0 1
SPN 85.4.8 State-or-

Province-
Name 1 128 2 4 1 0 0

STA 85.4.9 Street-Address 1 128 2 4 1 0 0
O 85.4.10 Organization-

Name 1 64 2 4 1 0 1
OU 85.4.11 Org.-

Unit-Name 1 64 2 4 1 0 1
TIT 85.4.12 Title 1 64 2 4 1 0 0
DSC 85.4.13 Description 1 1024 0 4 0 0 0
SG 85.4.14 Search-Guide 1 256 0 1000 0 0 0
BC 85.4.15 Business-

Category 1 128 2 4 1 0 0
PA 85.4.16 Postal-Address 1 180 2 1001 1 1 0
PC 85.4.17 Postal-Code 1 40 2 4 1 0 0
POB 85.4.18 Post-

Office-Box 1 40 2 4 1 0 0
PDO 85.4.19 Phys.-Deliv.-

Office-Name 1 128 2 4 1 0 0
TN 85.4.20 Telephone-Number 1 32 0 12 0 0 0
TXN 85.4.21 Telex-Number 1 26 0 1002 0 0 0
TTI 85.4.22 TTX-Terminal-

Identifier 1 1024 0 1003 0 0 0
FTN 85.4.23 Fax-Telephone-

Number 1 37 0 1004 0 0 0
X1A 85.4.24 X121-Address 1 15 0 6 0 0 0
IIN 85.4.25 Internat.-

ISDN-Number 1 16 0 6 0 0 0
RA 85.4.26 Registered-Address 1 180 2 1001 1 0 0
DI 85.4.27 Destination-

Indicator 1 128 2 4 1 0 0

Part 5 Appendices 209

GDS Attribute Table

Acr. Name Max.
of Object of Lower Upper No. of Phon. Access Index

Attr. ID Attribute Bound Bound Values Syntax Flag Class Level
PDM 85.4.28 Preferred-

Delivery-Method 1 10 1 1005 0 0 0
PSA 85.4.29 Presentation-

Address 1 268 1 1006 0 0 0
SAC 85.4.30 Suppl.-

Applic.-Context 1 28 2 2 0 0 0
MEM 85.4.31 Member 1 1024 0 1 0 0 0
OWN 85.4.32 Owner 1 1024 0 1 0 0 0
RO 85.4.33 Role-Occupant 1 1024 0 1 0 0 0
SEA 85.4.34 See-Also 1 1024 0 1 0 0 0
UP 85.4.35 User-Password 0 128 2 1011 0 2 0
US 85.4.36 User-Certificate 1 3024 0 0 0 0
CAC 85.4.37 CA-Certificate 1 3024 0 0 0 0
ARL 85.4.38 Authority-

Revocation-
List 1 32503 0 0 0 0

CRL 85.4.39 Certificate.-
Revoc.-List 1 32503 0 0 0 0

CCP 85.4.40 Cross-
Certificate-Pair 1 6056 0 0 0 0

MDL 86.5.2.0 MHS-Deliv.-
Cont.-Length 4 4 1 9 0 0 0

MDT 86.5.2.1 MHS-Deliv.-
Cont.-Types 1 28 4 2 0 0 0

MDE 86.5.2.2 MHS-
Deliverable-
EITs 1 28 8 2 0 0 0

MDM 86.5.2.3 MHS-DL-
Members 1 3596 0 102 0 0 0

MDS 86.5.2.4 MHS-DL-
Submit-
Permission 1 3604 0 100 0 0 0

MMS 86.5.2.5 MHS-Message-
Store 1 1024 1 1 0 0 0

MOA 86.5.2.6 MHS-OR-
Address 1 2564 0 101 0 0 0

MPD 86.5.2.7 MHS-Pref.-
Deliv.-Meth. 1 10 1 103 0 0 0

MSA 86.5.2.8 MHS-Supp.-
Autom.-Action 1 28 4 2 0 0 0

MSC 86.5.2.9 MHS-Supp.-
Content-Types 1 28 4 2 0 0 0

MSO 86.5.2.10 MHS-Supp.-
Optional-Attr. 1 28 0 2 0 0 0

MK 43.12.2.11 Master-
07.1.3.4.0 Knowledge 1 1024 1 1 0 0 0

ACL 43.12.2.11 Access-
07.1.3.4.1 Control-List 1 20500 1 10000 0 0 0

TST 43.12.2.11 Time-Stamp 11 18 1 11 0 0 0
07.1.3.4.2

SRT 43.12.2.11 Structure-
07.1.3.4.4 Rule-Table 1 29 0 5 0 0 0

OCT 43.12.2.11 Object-Class-
07.1.3.4.5 Table 1 397 0 5 0 0 0

210 CAE Specification (1997)

GDS Attribute Table

Acr. Name Max.
of Object of Lower Upper No. of Phon. Access Index

Attr. ID Attribute Bound Bound Values Syntax Flag Class Level
AT 43.12.2.11 Attribute-

07.1.3.4.6 Table 1 101 0 5 0 0 0
CDC 43.12.2.11 CDS-Cell 1 284 1 10 0 0 0

07.1.3.4.13
CDR 43.12.2.11 CDS-Replica 1 905 0 10 0 0 0

07.1.3.4.14
PN 43.12.2.11 Principal-Name 1 1024 1 5 0 0 0

07.1.3.4.15
AM 43.12.2.11 Authentication-

07.1.3.4.16 Mechanism 4 4 7 9 0 0 0
AA 43.22.2.1.2.1.1 Alternate-Address 1 800 0 10 0 0 0

Explanations

The following tables provide explanations of the syntaxes, phonetic flags, maximum number of
values, and access classes used in Table G-1 on page 209.

Digit Explanation
0 Any Syntax
1 Distinguished Name
2 Object Identifier Syntax
3 Case Exact String
4 Case Ignore String
5 Printable String
6 Numeric String
7 Case Ignore List
8 Boolean Syntax
9 Integer Syntax

10 Octet String
11 UTC Time
12 Telephone Number Syntax

100 MHS DL Submit Permission Syntax
101 MHS O/R Address Syntax
102 MHS O/R Name Syntax
103 MHS Preferred Delivery Method Syntax

1000 Search Guide Syntax
1001 Postal Address Syntax
1002 Telex Number Syntax
1003 Teletex Terminal Identifier Syntax
1004 Fax Number Syntax
1005 Preferred Delivery Method Syntax
1006 Presentation Address Syntax
1007 Certificate Syntax
1008 Certificate Pair Syntax
1009 Certificate List Syntax
1010 Country Name Syntax
1011 Password Syntax

10000 Access Control List Syntax
10001 Shadowed By Syntax

Table G-2 Syntax

Part 5 Appendices 211

GDS Attribute Table

Digit Explanation
0 No phonetic matching
1 Phonetic matching

Table G-3 Phonetic Flags

Digit Explanation
0 Public
1 Standard
2 Sensitive

Table G-4 Access Classes

Digit Explanation
0 Unlimited number of values

>0 Upper bound for number of values

Table G-5 Maximum Number of Values

212 CAE Specification (1997)

Appendix H

XDS/XOM Header Files

This appendix lists the header files used for the DCE extensions to XDS/XOM: <xdsgds.h>,
<xdscds.h>, <xdsext.h> and <xomext.h>. For information on the X/Open standard header files
refer to:

• the XDS specification

• the XOM specification

• the X.400 specification.

Part 5 Appendices 213

<xdsgds.h> XDS/XOM Header Files

H.1 <xdsgds.h>
The <xdsgds.h> header declares the object identifiers of directory attribute types and directory
object classes supported by the GDS Package (GDSP). It also defines OM classes used to
represent the values of the attribute types.

All application programs that include this header must first include the <xom.h> header and the
<xds.h> header.

#ifndef _XDSGDS_H
#define _XDSGDS_H

#ifndef XDSGDS_HEADER
#define XDSGDS_HEADER

/* GDS package object identifier */
/* iso(1) identified-organization(3) icd-ecma(0012)

member-company(2) siemens-units(1107) sni(1) directory(3)
xds-api(100)gdsp(0) */

#define OMP_O_DSX_GDS_PKG \
"\x2B\x0C\x02\x88\x53\x01\x03\x64\x00"

/*Intermediate object identifier macros */

/* iso(1) identified-organization(3) icd-ecma(0012)
member-company(2) siemens-units(1107) sni(1) directory(3)
attribute-type(4) ...*/

#define dsP_GDSattributeType(X) \
("\x2B\x0C\x02\x88\x53\x01\x03\x04" #X)

/* iso(1) identified-organization(3) icd-ecma(0012)
member-company(2) siemens-units(1107) sni(1) directory(3)
object-class(6) ...*/

#define dsP_GDSobjectClass(X) \
("\x2b\x0c\x02\x88\x53\x01\x03\x06" #X)

#define dsP_gdsp_c(X) OMP_O_DSX_GDS_PKG #X

/* OM class names (prefixed by DSX_C_)
Directory attribute types (prefixed by DSX_A_)
Directory object classes (prefixed by DSX_O_)

*/

/* Directory attribute types */

#define OMP_O_DSX_A_MASTER_KNOWLEDGE dsP_GDSattributeType(\x00)
#define OMP_O_DSX_A_ACL dsP_GDSattributeType(\x01)
#define OMP_O_DSX_A_TIME_STAMP dsP_GDSattributeType(\x02)
#define OMP_O_DSX_A_SHADOWED_BY dsP_GDSattributeType(\x03)
#define OMP_O_DSX_A_SRT dsP_GDSattributeType(\x04)
#define OMP_O_DSX_A_OCT dsP_GDSattributeType(\x05)

214 CAE Specification (1997)

XDS/XOM Header Files <xdsgds.h>

#define OMP_O_DSX_A_AT dsP_GDSattributeType(\x06)
#define OMP_O_DSX_A_DEFAULT_DSA dsP_GDSattributeType(\x08)
#define OMP_O_DSX_A_LOCAL_DSA dsP_GDSattributeType(\x09)
#define OMP_O_DSX_A_CLIENT dsP_GDSattributeType(\x0A)
#define OMP_O_DSX_A_DNLIST dsP_GDSattributeType(\x0B)
#define OMP_O_DSX_A_SHADOWING_JOB dsP_GDSattributeType(\x0C)
#define OMP_O_DSX_A_CDS_CELL dsP_GDSattributeType(\x0D)
#define OMP_O_DSX_A_CDS_REPLICA dsP_GDSattributeType(\x0E)

/* Directory object classes */

#define OMP_O_DSX_O_SCHEMA dsP_GDSobjectClass(\x00)

/* OM class names */

#define OMP_O_DSX_C_GDS_SESSION dsP_gdsp_c(\x00)
#define OMP_O_DSX_C_GDS_CONTEXT dsP_gdsp_c(\x01)
#define OMP_O_DSX_C_GDS_ACL dsP_gdsp_c(\x02)
#define OMP_O_DSX_C_GDS_ACL_ITEM dsP_gdsp_c(\x03)

/* OM attribute names */

#define DSX_PASSWORD ((OM_type) 850)
#define DSX_DIR_ID ((OM_type) 851)
#define DSX_DUAFIRST ((OM_type) 852)
#define DSX_DONT_STORE ((OM_type) 853)
#define DSX_NORMAL_CLASS ((OM_type) 854)
#define DSX_PRIV_CLASS ((OM_type) 855)
#define DSX_RESIDENT_CLASS ((OM_type) 856)
#define DSX_USEDSA ((OM_type) 857)
#define DSX_DUA_CACHE ((OM_type) 858)
#define DSX_MODIFY_PUBLIC ((OM_type) 859)
#define DSX_READ_STANDARD ((OM_type) 860)
#define DSX_MODIFY_STANDARD ((OM_type) 861)
#define DSX_READ_SENSITIVE ((OM_type) 862)
#define DSX_MODIFY_SENSITIVE ((OM_type) 863)
#define DSX_INTERPRETATION ((OM_type) 864)
#define DSX_USER ((OM_type) 865)
#define DSX_PREFER_ADM_FUNCS ((OM_type) 866)
#define DSX_AUTH_MECHANISM ((OM_type) 867)
#define DSX_AUTH_INFO ((OM_type) 868)
#define DSX_SIGN_MECHANISM ((OM_type) 869)
#define DSX_PROT_REQUEST ((OM_type) 870)

/* DSX_Interpretation */

enum DSX_Interpretation {
DSX_SINGLE_OBJECT = 0,
DSX_ROOT_OF_SUBTREE = 1

};

Part 5 Appendices 215

<xdsgds.h> XDS/XOM Header Files

/* DSX_Auth_Mechanism */

enum DSX_Auth_Mechanism {
DSX_NONE_AT_ALL = 0,
DSX_DEFAULT = 1,
DSX_SIMPLE = 2,
DSX_SIMPLE_PROT1 = 3,
DSX_SIMPLE_PROT2 = 4,
DSX_DCE_AUTH = 5,
DSX_STRONG = 6

};

/* DSX_Prot_Request */

enum DSX_Prot_Request {
DSX_NONE = 0,
DSX_SIGNED = 1

};

/* upper bound on string lengths*/

#define DSX_VL_PASSWORD ((OM_value_length) 16)

#endif /* XDSGDS_HEADER */

#endif /* _XDS_GDS_H */

216 CAE Specification (1997)

XDS/XOM Header Files <xdscds.h>

H.2 <xdscds.h>
The <xdscds.h> header declares the object identifiers of directory attribute types supported by
the Cell Directory Service (CDS).

All application programs that include this header must first include the <xom.h> header and the
<xds.h> header.

#ifndef _XDSCDS_H
#define _XDSCDS_H

#ifndef XDSCDS_HEADER
#define XDSCDS_HEADER

/* {iso(1) identified-org(3) osf(22) dce(1) cds(3)
= "\x2B\x16\x01\x03" */

/* Cell Directory Service attribute types */

#define OMP_O_DSX_A_CDS_Members "\x2B\x16\x01\x03\x0A"
#define OMP_O_DSX_A_CDS_GroupRevoke "\x2B\x16\x01\x03\x0B"
#define OMP_O_DSX_A_CDS_CTS "\x2B\x16\x01\x03\x0C"
#define OMP_O_DSX_A_CDS_UTS "\x2B\x16\x01\x03\x0D"
#define OMP_O_DSX_A_CDS_Class "\x2B\x16\x01\x03\x0F"
#define OMP_O_DSX_A_CDS_ClassVersion "\x2B\x16\x01\x03\x10"
#define OMP_O_DSX_A_CDS_ObjectUUID "\x2B\x16\x01\x03\x11"
#define OMP_O_DSX_A_CDS_Address "\x2B\x16\x01\x03\x12"
#define OMP_O_DSX_A_CDS_Replicas "\x2B\x16\x01\x03\x13"
#define OMP_O_DSX_A_CDS_AllUpTo "\x2B\x16\x01\x03\x14"
#define OMP_O_DSX_A_CDS_Convergence "\x2B\x16\x01\x03\x15"
#define OMP_O_DSX_A_CDS_InCHName "\x2B\x16\x01\x03\x16"
#define OMP_O_DSX_A_CDS_ParentPointer "\x2B\x16\x01\x03\x17"
#define OMP_O_DSX_A_CDS_DirectoryVersion "\x2B\x16\x01\x03\x18"
#define OMP_O_DSX_A_CDS_UpgradeTo "\x2B\x16\x01\x03\x19"
#define OMP_O_DSX_A_CDS_LinkTarget "\x2B\x16\x01\x03\x1B"
#define OMP_O_DSX_A_CDS_LinkTimeout "\x2B\x16\x01\x03\x1C"
#define OMP_O_DSX_A_CDS_Towers "\x2B\x16\x01\x03\x1E"
#define OMP_O_DSX_A_CDS_CHName "\x2B\x16\x01\x03\x20"
#define OMP_O_DSX_A_CDS_CHLastAddress "\x2B\x16\x01\x03\x22"
#define OMP_O_DSX_A_CDS_CHUpPointers "\x2B\x16\x01\x03\x23"
#define OMP_O_DSX_A_CDS_CHState "\x2B\x16\x01\x03\x24"

/* {iso(1) identified-org(3) osf(22) dce(1) gds(2)
= "\x2B\x16\x01\x02" */

#define OMP_O_DSX_UUID "\x2B\x16\x01\x02\x01"
#define OMP_O_DSX_TYPELESS_RDN "\x2B\x16\x01\x02\x02"

#define OMP_O_DSX_NORMAL_SIMPLE_NAME "\x2B\x16\x01\x03\x00"
#define OMP_O_DSX_BINARY_SIMPLE_NAME "\x2B\x16\x01\x03\x02"

#endif /* XDSCDS_HEADER */
#endif /* _XDSCDS_H */

Part 5 Appendices 217

<xdscds.h> XDS/XOM Header Files

H.3 <xdsext.h>
The <xdsext.h> header, along with the <xomext.h> header, contain all the defines and function
prototypes for the XDS/XOM convenience routines.

All application programs that include this header must first include the <xom.h>, <xds.h>,
<xdsgds.h>, and <xdscds.h> headers.

#ifndef _XDSEXT_H
#define _XDSEXT_H

/*-- Function Prototypes --*/

OM_return_code
dsX_extract_attr_values(

OM_private_object object, /* IN-The source object */
OM_object_identifier attribute_type, /* IN-Attribute to be extracted */
OM_boolean local_strings, /* IN-Local strings required */
OM_public_object *values, /* OUT-Extracted Attribute Values */
OM_value_position *total_number); /* OUT-Number of extracted values */

#endif /* ifndef _XDSEXT_H */

218 CAE Specification (1997)

XDS/XOM Header Files <xomext.h>

H.4 <xomext.h>
The <xomext.h> header, along with the <xdsext.h> header, contain all the defines and function
prototypes for the XDS/XOM convenience routines.

All application programs that include this header must first include the <xom.h>, <xds.h>,
<xdsgds.h>, and <xdscds.h> headers.

#ifndef _XOMEXT_H
#define _XOMEXT_H

/*-- Defines for error returns related to XOI ------------------------ */

#define OMX_SUCCESS ((OM_integer) 0)
#define OMX_CANNOT_READ_SCHEMA ((OM_integer) -1)
#define OMX_SCHEMA_NOT_READ ((OM_integer) -2)
#define OMX_NO_START_OBJ_BLOCK ((OM_integer) -3)
#define OMX_NO_END_OBJ_BLOCK ((OM_integer) -4)
#define OMX_EMPTY_OBJ_BLOCK ((OM_integer) -5)
#define OMX_OBJ_FORMAT_ERROR ((OM_integer) -6)
#define OMX_DUPLICATE_OBJ_ABBRV ((OM_integer) -7)
#define OMX_DUPLICATE_OBJ_OBJ_ID ((OM_integer) -8)
#define OMX_NO_START_ATTR_BLOCK ((OM_integer) -9)
#define OMX_NO_END_ATTR_BLOCK ((OM_integer) -10)
#define OMX_EMPTY_ATTR_BLOCK ((OM_integer) -11)
#define OMX_ATTR_FORMAT_ERROR ((OM_integer) -12)
#define OMX_DUPLICATE_ATTR_ABBRV ((OM_integer) -13)
#define OMX_DUPLICATE_ATTR_OBJ_ID ((OM_integer) -14)
#define OMX_NO_START_CLASS_BLOCK ((OM_integer) -15)
#define OMX_NO_END_CLASS_BLOCK ((OM_integer) -16)
#define OMX_EMPTY_CLASS_BLOCK ((OM_integer) -17)
#define OMX_CLASS_FORMAT_ERROR ((OM_integer) -18)
#define OMX_NO_CLASS_NAME ((OM_integer) -19)
#define OMX_DUPLICATE_CLASS_BLOCK ((OM_integer) -20)
#define OMX_CLASS_BLOCK_UNDEFINED ((OM_integer) -21)
#define OMX_INVALID_ABBRV ((OM_integer) -22)
#define OMX_INVALID_OBJ_ID ((OM_integer) -23)
#define OMX_INVALID_CLASS_NAME ((OM_integer) -24)
#define OMX_INVALID_SYNTAX ((OM_integer) -25)
#define OMX_MEMORY_INSUFFICIENT ((OM_integer) -26)
#define OMX_INVALID_PARAMETER ((OM_integer) -27)
#define OMX_UNKNOWN_ABBRV ((OM_integer) -28)
#define OMX_UNKNOWN_OBJ_ID ((OM_integer) -29)
#define OMX_UNKNOWN_OMTYPE ((OM_integer) -30)

/*-- Defines for error returns related to convenience library ----------*/

#define OMX_MISSING_AVA ((OM_integer) -101)
#define OMX_MISSING_ABBRV ((OM_integer) -102)
#define OMX_FORMAT_ERROR ((OM_integer) -103)
#define OMX_UNKNOWN_ERROR ((OM_integer) -104)
#define OMX_MISSING_RDN_DELIMITER ((OM_integer) -105)
#define OMX_MISMATCHED_QUOTES ((OM_integer) -106)
#define OMX_MISSING_EQUAL_OPERATOR ((OM_integer) -107)
#define OMX_MISSING_ATTR_VALUE ((OM_integer) -108)
#define OMX_MISSING_ATTR_INFO ((OM_integer) -109)
#define OMX_MISSING_CLASS_START_OP ((OM_integer) -110)
#define OMX_MISSING_CLASS_END_OP ((OM_integer) -111)
#define OMX_MISSING_CLASS_VALUE ((OM_integer) -112)

Part 5 Appendices 219

<xomext.h> XDS/XOM Header Files

#define OMX_MISSING_COMP_VALUE ((OM_integer) -113)
#define OMX_MISMATCHED_BRACKETS ((OM_integer) -114)
#define OMX_UNEXPECTED_OPERATOR ((OM_integer) -115)
#define OMX_WRONG_VALUE ((OM_integer) -116)
#define OMX_UNKNOWN_KEYWORD ((OM_integer) -117)
#define OMX_MISSING_OPERATOR ((OM_integer) -118)
#define OMX_MISSING_COMPOUND_OP ((OM_integer) -119)

/*- Additional Errors returned by the omX_object_to_string function -*/

#define OMX_CLASS_NOT_FOUND_IN_SCHEMA_FILE ((OM_return_code) 31)

/*-- Function Prototypes --*/

OM_return_code omX_fill(
OM_type type, /* IN - Type of Object */
OM_syntax syntax, /* IN - Syntax of the object */
OM_uint32 length, /* IN - Data length */
void *elements, /* IN - Data Value */
OM_descriptor *destination); /* OUT - The filled up descriptor */

OM_return_code omX_fill_oid(
OM_type type, /* IN - Type of Object */
OM_object_identifier object_id, /* IN - Value of the object */
OM_descriptor *destination); /* OUT - The filled up descriptor */

OM_return_code omX_extract(
OM_private_object object, /* IN - Extract from this object */
OM_type_list navigation_path, /* IN - Leads to the target object */
OM_exclusions exclusions, /* IN - Scope of extraction */
OM_type_list included_types, /* IN - Objects to be extracted */
OM_boolean local_strings, /* IN - Local strings required */
OM_value_position initial_value, /* IN - First value to be extracted */
OM_value_position limiting_value, /* IN - Last value to be extracted */
OM_public_object *values, /* OUT - Array of extracted objects */
OM_value_position *total_number); /* OUT - Count of extracted objects */

OM_return_code omX_string_to_object(
OM_workspace workspace, /* IN - The workspace */
OM_string *string, /* IN - The string to be converted */
OM_object_identifier class, /* IN - The OM Class to be created */
OM_boolean local_strings, /* IN - Local strings specified */
OM_private_object *object, /* OUT - The converted Object */
OM_integer *error_position,/* OUT - Error Position in I/P string*/
OM_integer *error_type); /* OUT - Type of error */

OM_return_code omX_object_to_string(
OM_object object, /* The Object to be converted */
OM_boolean local_strings, /* To indicate local string conversion */
OM_string *string); /* The converted DN string */

#endif /* ifndef _XOMEXT_H */

220 CAE Specification (1997)

Index

Abandon operation ..29, 70
Abstract Service ..27
Access Control List (ACL)................92-94, 120, 139
ACLs..92-94, 120, 139
AddEntry operation...29, 71
Advertise primitive..111
Association Control Service Element (ACSE)75
asynchronous operations28, 33-34
atomic names...4
attribute

CDS-Cell...23
CDS-Replica...23
CDS_AllUpTo..99
CDS_CellAliases...104
CDS_CHDirectories...102
CDS_CHLastAddress..102
CDS_CHName..101
CDS_CHState ..102
CDS_Class..98
CDS_ClassVersion..98
CDS_Convergence ...99
CDS_CTS..98
CDS_DirectoryVersion100
CDS_Epoch..103
CDS_GDAPointers...104
CDS_InCHName ..99
CDS_LastSkulk ...103
CDS_LastUpdate ..103
CDS_LinkTarget..101
CDS_LinkTimeout..101
CDS_NSCellname ..103
CDS_ObjectUUID...98
CDS_ParentCellPointers104
CDS_ParentPointer ..99
CDS_Replicas ..99
CDS_ReplicaState...102
CDS_ReplicaType...103
CDS_ReplicaVersion..103
CDS_RingPointer ...103
CDS_Towers..101
CDS_UpgradeTo...100
CDS_UTS..98
DSX_A_ACL..37
DSX_A_AT ...37
DSX_A_CDS_CELL ...37
DSX_A_CDS_REPLICA......................................37

DSX_A_CLIENT...37
DSX_A_DEFAULT_DSA.....................................37
DSX_A_DNLIST ...37
DSX_A_LOCAL_DSA ...37
DSX_A_MASTER_KNOWLEDGE37
DSX_A_OCT..37
DSX_A_SHADOWED_BY..................................37
DSX_A_SHADOWING_JOB37
DSX_A_SRT...37
DSX_A_TIME_STAMP..37
RPC_ClassVersion..104
RPC_Codesets...105
RPC_Group ...104
RPC_ObjectUUIDs...104
RPC_Profile..105
SEC_RepUUID..105

attribute-value-assertion (AVA)4, 15
attributes...3

application-specific ..8
CDS................96, 106, 128, 150, 158, 161, 166, 186
GDS ...35-37, 62, 209
operational...8, 97, 118
set-valued...8, 129
single-valued...8, 129
sizes ...183
syntax ..62-63
types..........................16, 35-37, 62-63, 65, 214, 217
values..16, 128

authentication..34, 42-43
automatic connection management34
AVA ...4, 15
Backus-Naur Format (BNF)....................................11
Basic Directory Contents Package28
boolean values...133
canonicalisation ..14
CDS..9, 17, 19

advertisements111, 138, 164
API...89
attribute types ...217
attributes96, 106, 128, 150, 158, 161, 166, 186
cache..92
conformance..87, 113
error returns ..135, 187
permissions..95
protocols ..113, 123
service primitives ...106

DCE 1.1: Directory Services 221

Index

solicitation111, 114, 164-165
CDS clerk88-89, 94, 114, 137
CDS client ...88-89
CDS server88-89, 94, 96, 118, 137-138
cds_Advertise() ..138, 197
cds_clerkserver.idl ...123, 192
cds_CreateChild()..139, 192
cds_CreateDirectory()120, 141, 192
cds_CreateObject() ..142, 193
cds_CreateSoftLink()144, 193
cds_DeleteChild() ..146, 193
cds_DeleteDirectory()121, 147, 193
cds_DeleteObject() ..148, 193
cds_DeleteSoftLink().....................................149, 193
cds_EnumerateAttributes()150, 194
cds_EnumerateChildren()............................152, 194
cds_EnumerateObjects()154, 194
cds_EnumerateSoftLinks()156, 194
cds_ModifyAttribute()158, 195
cds_ReadAttribute()......................................161, 196
cds_ResolveName()163, 196
cds_Solicit()...164, 197
cds_solicit.idl...123, 197
cds_SolicitServer()...165, 197
cds_TestAttribute()..166, 197
cds_types.idl..123, 198
cell aliases...17, 99-100, 104
cell compound name..4
cell context ...5, 14, 17
Cell Directory Service (CDS)9, 17, 19, 87
cell hierarchy...................6, 9, 17, 19, 22, 99-100, 104
cell name space..6-7, 17, 19
cell registration..23
cell root...5, 9, 14, 23, 90
cells ..87

child...6, 19, 22
definition of..9
parent..6, 19, 22

character conversion28, 45, 49, 178
character sets11, 105, 171, 173
child cell ...6, 19, 22
child pointers..............................7, 109, 139, 146, 152
clearinghouses........22, 88, 90, 94, 114, 118, 133-134
Common Arguments...73
Common-Results ..73
Compare operation ..29, 69
composite names..4, 9, 13
compound names...4, 9, 13
conformance..18, 87, 113

ACSE ...75
CDS..137

DAP...67
DSP ..75
GDS ...59
Presentation Service Elements...........................79
ROSE ...77
Session Service Elements81
XDS..28
XOM..45

convenience functions49, 218-219
Create Child primitive...109
Create Directory primitive108
Create Object primitive...108
Create Soft Link primitive110
Delete Child primitive...109
Delete Directory primitive....................................109
Delete Object primitive ...108
Delete Soft Link primitive110
directory

entries.......3, 7, 93, 99-100, 108, 120-121, 141, 147
version...99-100

Directory Access Protocol (DAP)..........................67
Directory Service Agent (DSA)..............................61
Directory Service Package28
Directory System Protocol (DSP)75
Directory User Agent (DUA)61
DirectoryBind operation29, 68
DirectoryUnbind operation..............................29, 69
distinguished names4-5, 14, 124
distinguished value..4
distributed databases...92
Distributed Time Service (DTS).............................92
DNS names ..15-16, 21, 24
dns_records.h ..123
Domain Name Service (DNS)24
dsX_extract_attr_values()50
ds_abandon() ..28, 30
ds_add_entry() ...30
ds_bind()..28, 31
ds_compare() ..31
ds_initialize() ..31
ds_list()...31
ds_modify_entry() ...31
ds_modify_rdn() ..32
ds_read() ..32
ds_receive_result() ..28, 32
ds_remove_entry()...32
ds_search()...32
ds_shutdown()..32
DS_status..33
ds_unbind()...28, 32
ds_version() ..28, 32, 35

222 CAE Specification (1997)

Index

Enumerate Attribute primitive............................107
Enumerate Children primitive109
Enumerate Object primitive.................................108
Enumerate Soft Links primitive110
EPAC...139
federated naming..6
file context ..5, 14
file root ..5
File Service ...10
files

cds_attributes ..186
header...35, 123, 191, 213
IDL...123, 191

full names...125
GDS

attribute table ..209
attribute types35-37, 62, 214
conformance ..59
object class table ...207
object classes ...38, 62, 214
protocols...57, 61
session...27, 42
structure rule table ...205

GDSP...28, 35
global compound name...4
global context ..4, 6, 14
Global Directory Agent (GDA)............19, 21-22, 90
Global Directory Service Package (GDSP)....28, 35
global name space...........................6-7, 15, 19-21, 23
global names ...5, 15, 125
global pointers...7
global root...4, 6-7
hierarchical cells.............6, 9, 17, 19, 22, 99-100, 104
IA5 character set ...173
IDL ..123, 137, 191
id_base.idl ..203
Interface Definition Language (IDL)..123, 137, 191
invoke_id_return ..33
ISO 8859-1 (Latin-1) character set28, 178
junctions..9-10
List operation ..29, 70
master replica ..90
metacharacters11, 15, 17, 87, 180
MHS Directory User Package28
Modify Attribute primitive107
ModifyEntry operation29, 72
ModifyRDN operation29, 72
name canonicalisation ...14
name components ..4
name context..4
Name Service Interface (NSI)51, 104

name space...6
cell ..6-7, 17, 19
composite ...6, 10
global ...6-7, 15, 19-21, 23

names
atomic..4
composite...4, 9, 13
compound..4, 9, 13
distinguished4-5, 14-15, 124
DNS ...15-16, 21, 24
encoding...11, 87, 123-124
full..125
global ..5, 15, 125
maximum sizes ...183
opaque...123-124
residual ...21
resolved ...21, 110, 116, 163
syntax..11, 14-15, 87, 123
typed ...4, 14-15, 92
unresolved...21, 116
untyped...4
X.500..14-15, 21, 23

next naming system pointers8
NSI...51, 104

binding operations ...52
entry operations..52
group operations ..53
management operations53
profile operations ...54

object class
DSX_C_GDS_ACL ...38
DSX_C_GDS_ACL_ITEM...................................39
DSX_C_GDS_CONTEXT....................................40
DSX_C_GDS_SESSION.......................................42
DSX_O_SCHEMA ..38

object classes38, 62, 66, 98, 207
object entries.................8, 93, 107-108, 142, 148, 154
object identifiers.............................5, 36, 38, 150, 185
OIDs ..5, 150
omX_extract() ...28, 50
omX_fill() ...50
omX_fill_oid()...50
omX_object_to_string()28, 50
omX_string_to_object()28, 50
om_copy()..46
om_copy_value() ...46
om_create()..46
om_delete()..46
om_get()...28, 47
om_instance() ...47
om_put() ..47

DCE 1.1: Directory Services 223

Index

om_read() ..28, 47
om_remove()...48
om_write() ...48
opaque names..123-124
OSI Object Identifier (OID).......................................5
parent cell...6, 19, 22
parent pointers..7, 99, 104
permissions..95
PICS ...59
Portable Character Set (PCS)11, 171
Presentation Service Elements...............................79
progress record...21, 115, 131
Protocol Implementation Conformance
Statement59
protocols ..57, 61, 89, 113, 123
pseudo-directory90, 101-103, 118
RDN...14-15, 124
Read Attribute primitive.......................................107
Read operation..29, 69
relative distinguished names4, 14-15, 124
Remote Operation Service Elements (ROSE)77
RemoveEntry operation....................................29, 72
replicas22, 90, 99, 102-103, 116, 132
residual names ..21
Resolve Name primitive110
resource records..24
RPC ...51, 91, 104-105, 137
Search operation ...29, 71
Security Service9-10, 34, 92-93, 139
service controls..40-41
service primitives ...106

Advertise..111
Create Child...109
Create Directory ...108
Create Object ...108
Create Soft Link ..110
Delete Child...109
Delete Directory..109
Delete Object ...108
Delete Soft Link ..110
Enumerate Attribute..107
Enumerate Children ..109
Enumerate Object ...108
Enumerate Soft Links ..110
Modify Attribute ..107
Read Attribute...107
Resolve Name ...110
Solicit...111
Solicit Server..111
Test Attribute ..107

session...27, 42

Session Service Elements ..81
skulks ..103
soft links......8, 101, 109-110, 117, 144, 149, 156, 163
Solicit primitive...111
Solicit Server primitive..111
solicitation protocol89, 113, 123, 191
Strong Authentication Package28
structure

cds_AtomicValue_t....................................128, 201
cds_CH_t ...133, 197
cds_FullName_t ...125, 199
cds_Name_t...125, 199
cds_Progress_t ..131, 202
cds_RA_value_t ..130
cds_ReplicaPointer_t.........................132, 197, 199
cds_SetMember_t.......................................129, 201
cds_Set_t ..129, 201
cds_status_t ...135, 199
cds_Timeout_t ..127, 198
cds_Timestamp_t127, 198
cds_Update_t ..130, 202
cds_Version_t..134, 199
CHState_t ...134
EntryType_t ...133
FullName_t ..125
sec_id_foreign_t ...134, 203
sec_id_t...134, 203
SimpleName_t ..124

synchronous operations....................................28, 34
T.61 character set ..28, 177
Test Attribute primitive ..107
threads..28, 34, 119
Time Service ..9, 92
timestamps ..98, 103, 127
transaction agent.................................88-89, 118-120
transaction protocol89, 113, 118, 123, 191
typed names...4, 14-15, 92
Universal Unique Identifier (UUID).......................5
untyped names..4
UUIDs...............................5, 23, 98, 103-105, 118, 137
wildcards..17, 87
X.500 names ...14-15, 21, 23
XDS

API...27, 213
conformance ..28
convenience functions.........................49, 218-219
packages...28, 35
returns...33

xdscds.h ..217
xdsext.h...218
xdsgds.h ...35, 214

224 CAE Specification (1997)

Index

XOM
API...45-46, 213
conformance ..45

xomext.h ...219

DCE 1.1: Directory Services 225

Index

226 CAE Specification (1997)

