
CAE Specification

Transport Provider Interface (TPI)

The Open Group

 February 1997, The Open Group

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

CAE Specification

Transport Provider Interface (TPI)

ISBN: 1-85912-102-0
Document Number: C615

Published in the U.K. by The Open Group, February 1997.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

ii CAE Specification

Contents

Chapter 1 Introduction... 1
 1.1 STREAMS-based Transport Provider Interface.................................... 1
 1.2 How TPI Works... 2
 1.3 Overview of Error Handling Capabilities ... 3
 1.3.1 Non-fatal Errors ... 3
 1.3.2 Fatal Errors .. 3
 1.4 Rules for Transport Service Interface Sequence of Primitives........... 4
 1.5 Rules for Precedence of TPI Primitives on a Stream 5
 1.6 Rules for Flushing Queues.. 5

Chapter 2 Transport Primitives... 7

Chapter 3 Allowable Sequence of TPI Primitives 9
 3.1 State Table... 10
 3.2 Variables.. 11
 3.3 Outgoing Events ... 11
 3.4 Incoming Events ... 12
 3.5 Transport Service State Tables ... 13

Chapter 4 Transport Primitive Precedence .. 17

Chapter 5 TPI Message Formats... 19
 T_ADDR_ACK .. 20
 T_ADDR_REQ .. 21
 T_BIND_ACK.. 22
 T_BIND_REQ.. 24
 T_CONN_CON ... 26
 T_CONN_IND .. 27
 T_CONN_REQ.. 28
 T_CONN_RES... 30
 T_DATA_IND .. 33
 T_DATA_REQ ... 34
 T_DISCON_IND... 36
 T_DISCON_REQ .. 37
 T_ERROR_ACK .. 39
 T_EXDATA_IND .. 40
 T_EXDATA_REQ ... 41
 T_INFO_ACK .. 42
 T_INFO_REQ .. 44
 T_OK_ACK .. 45
 T_OPTMGMT_ACK .. 46
 T_OPTDATA_IND ... 48

Transport Provider Interface (TPI) iii

Contents

 T_OPTDATA_REQ ... 50
 T_OPTMGMT_REQ... 52
 T_ORDREL_IND .. 54
 T_ORDREL_REQ ... 55
 T_UDERROR_IND .. 56
 T_UNBIND_REQ ... 57
 T_UNITDATA_IND ... 58
 T_UNITDATA_REQ ... 59

Appendix A Connection Acceptance .. 61
 A.1 Accepting Incoming Connections ... 61
 A.2 The Common Single Type Model Implementation 62
 A.3 Possible Multiple Type Model Implementation Methodologies 63

 Glossary ... 65

 Index... 67

List of Figures

1-1 Example of a Stream from a User to a Transport Provider................... 2

List of Tables

2-1 Transport Service Primitives ... 7
3-1 Kernel Level Transport Interface States .. 10
3-2 State Table Variables.. 11
3-3 Kernel Level Transport Interface Outgoing Events................................ 11
3-4 Kernel Level Transport Interface Incoming Events 12
3-5 Initialization State Table... 13
3-6 Data Transfer State Table for Connection Oriented Service 14
3-7 Data Transfer State Table for Connectionless Service............................ 15
4-1 Stream Write Queue Precedence Table ... 17
4-2 Stream Read Queue Precedence Table .. 18

iv CAE Specification

Preface

The Open Group

The Open Group is an international open systems organisation that is leading the way in
creating the infrastructure needed for the development of network-centric computing and the
information superhighway. Formed in 1996 by the merger of the X/Open Company and the
Open Software Foundation, The Open Group is supported by most of the world’s largest user
organisations, information systems vendors and software suppliers. By combining the strengths
of open systems specifications and a proven branding scheme with collaborative technology
development and advanced research, The Open Group is well positioned to assist user
organisations, vendors and suppliers in the development and implementation of products
supporting the adoption and proliferation of open systems.

With more than 300 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• consolidating, prioritising and communicating customer requirements to vendors

• conducting research and development with industry, academia and government agencies to
deliver innovation and economy through projects associated with its Research Institute

• managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• adopting, integrating and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• licensing and promoting the X/Open brand that designates vendor products which conform
to X/Open Product Standards

• promoting the benefits of open systems to customers, vendors and the public.

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trade mark on behalf of the industry.

The X/Open Process

This description is used to cover the whole Process developed and evolved by X/Open. It
includes the identification of requirements for open systems, development of CAE and
Preliminary Specifications through an industry consensus review and adoption procedure (in
parallel with formal standards work), and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product. There are currently two forms of Product Standard, namely the
Profile Definition and the Component Definition, although these will eventually be merged into
one.

Transport Provider Interface (TPI) v

Preface

The X/Open brand logo is used by vendors to demonstrate that their products conform to the
relevant Product Standard. By use of the X/Open brand they guarantee, through the X/Open
Trade Mark Licence Agreement (TMLA), to maintain their products in conformance with the
Product Standard so that the product works, will continue to work, and that any problems will
be fixed by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical literature, the main part of which is
focused on specification development and product documentation, but which also includes
Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry surveys
and business titles.

There are several types of specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the stable specifications that
form the basis for our product standards, which are used to develop X/Open branded
systems. These specifications are intended to be used widely within the industry for product
development and procurement purposes.

Anyone developing products that implement a CAE Specification can enjoy the benefits of a
single, widely supported industry standard. In addition, they can demonstrate product
compliance through the X/Open brand. CAE Specifications are published as soon as they
are developed, so enabling vendors to proceed with development of conformant products
without delay.

• Preliminary Specifications

Preliminary Specifications usually address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations. They are
published for the purpose of validation through implementation of products. A Preliminary
Specification is not a draft specification; rather, it is as stable as can be achieved, through
applying The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organisations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a CAE Specification.
While the intent is to progress Preliminary Specifications to corresponding CAE
Specifications, the ability to do so depends on consensus among Open Group members.

• Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as CAE Specifications, in which case the relevant Technology
Specification is superseded by a CAE Specification.

vi CAE Specification

Preface

In addition, The Open Group publishes:

• Product Documentation

This includes product documentation — programmer’s guides, user manuals, and so on —
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides

These provide information that is useful in the evaluation, procurement, development or
management of open systems, particularly those that relate to the CAE Specifications. The
Open Group Guides are advisory, not normative, and should not be referenced for purposes
of specifying or claiming conformance to a Product Standard.

• Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Programme. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

• Snapshots

These provide a mechanism to disseminate information on its current direction and thinking,
in advance of possible development of a Specification, Guide or Technical Study. The
intention is to stimulate industry debate and prototyping, and solicit feedback. A Snapshot
represents the interim results of a technical activity.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new developments
and associated international standards. To distinguish between revised specifications which are
fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/public/pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.opengroup.org/public/pubs.

Transport Provider Interface (TPI) vii

Preface

This Document

The Transport Provider Interface (TPI) defines an interface for drivers that provide transport
services. The TPI specifies the set of messages and their formats which the driver must generate
or process.

This specification has been developed from the original TPI Specification which was generated
by UNIX International (UI). UI intellectual property rights were subsequently acquired by UNIX
System Laboratories (USL), who in turn were later acquired by Novell Inc. See also the
Acknowledgements page.

Intended Audience

This specification assumes the reader is familiar with OSI Reference Model terminology, OSI
transport services and STREAMS.

Structure

The structure of this specifications is:

• Chapter 1, Introduction, describes the transport provider interface (TPI) as it is defined in the
STREAMS environment

• Chapter 2, Mapping to OSI, describes the mapping of transport primitives to OSI

• Chapter 3, Allowable Sequence of TPI Primitives, describes the possible events and states
for TPI

• Chapter 4, Transport Primitive Precedence, defines transport primitives precedence for
stream write and read queues

• Chapter 5, Message Formats, gives the man-page definitions for the TPI message formats
(structures)

• Appendix A, Connection Acceptance, offers background information to explain connection
acceptance under existing common implementations, to help understanding of existing
implementations and design of new ones.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— command operands, command option-arguments or variable names, for example,
substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name(); names without parentheses are C external
variables, C function family names, utility names, command operands or command
option-arguments.

viii CAE Specification

Preface

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [] , are part of the syntax and do not indicate optional
items. In syntax the | symbol is used to separate alternatives, and ellipses (...) are used to
show that additional arguments are optional.

Transport Provider Interface (TPI) ix

Trade Marks

Motif, OSF/1 and UNIX are registered trade marks and the ‘‘X Device’’TM and The Open
GroupTM are trade marks of The Open Group.

x CAE Specification

Acknowledgements

The original TPI Specification was produced by UNIX International (UI). UI intellectual property
rights subsequently passed to UNIX System Laboratories (USL), who in turn were acquired by
Novell Inc. The Open Group acknowledges Novell’s contribution of their TPI 2.01 specification
as the base document from which this TPI specification was developed.

Transport Provider Interface (TPI) xi

Referenced Documents

The following documents are referenced in this specification:

TPI-SMD
UNIX Press (A Prentice Hall Title) book "STREAMS Modules and Drivers", published 1992,
ISBN 0-13-066879-6.

XNS, Issue 5
CAE Specification, February 1997, Networking Services, Issue 5 (ISBN: 1-85912-165-9, C523).

xii CAE Specification

Chapter 1

Introduction

1.1 STREAMS-based Transport Provider Interface
The Transport Provider Interface (TPI) is an interface for drivers that provide transport services.
The TPI defines the set of messages and their formats that the driver must generate/process.

This chapter introduces the STREAMS-based Transport Provider Interface (TPI). TPI is a service
interface that maps to strategic levels of the Open Systems Interconnection (OSI) Reference
Model. TPI supports the services of the Transport Layer for connection-mode and
connectionless-mode services.

One advantage to using TPI is its ability to hide implementation details of a particular service
from the consumer of the service. This enables system programmers to develop software
independent of the particular protocol that provides a specific service.

This chapter focuses on TPI as it is defined within the STREAMS environment. Although there
are no formal standards for a STREAMS environment, extensive descriptions STREAMS and
STREAMS programming can be found in the referenced document TPI_SMD.

Transport Provider Interface (TPI) 1

How TPI Works Introduction

1.2 How TPI Works
TPI defines a message interface to a transport provider implemented under STREAMS. A user
communicates to a transport provider via a full duplex path known as a stream (see Figure 1-1).
This stream provides a mechanism in which messages may be passed to the transport provider
from the transport user and vice versa.

transport interface
library cooperating
streams module

. .

. .

UNIX kernel

Stream mechanism

kernel level

provider
transport

stream
full duplex

library
interface
transport

user

user level
transport

Figure 1-1 Example of a Stream from a User to a Transport Provider

The STREAMS messages that are used to communicate between the transport user and the
transport provider may have one of the following formats:

• A M_PROTO message block followed by zero or more M_DATA message blocks. The
M_PROTO message block contains the type of transport service primitive and all the
relevant arguments associated with the primitive. The M_DATA blocks contain transport
user data associated with the transport service primitive.

• One M_PCPROTO message block containing the type of transport service primitive and all
the relevant arguments associated with the primitive.

• One or more M_DATA message blocks containing transport user data.

• One M_ERROR message block indicating that an unrecoverable error has occurred.

• One M_FLUSH message block indicating that queued requests should be discarded.

Chapter 5 contains descriptions of the transport primitives which define both a connection-
mode and connectionless-mode transport service. There are also primitives that pertain to both
transport modes.

For each type of transport service, two types of primitives exist:

• Primitives which originate from the transport user.

2 CAE Specification

Introduction How TPI Works

These make requests to the transport provider or respond to an event of the transport
provider.

• Primitives which originate from the transport provider.

These are either confirmations of a request or are indications to the transport user that an
event has occurred.

For the connection-mode transport service, a connection is associated with a single stream and,
except while processing inbound connections, a stream will have at most one connection
associated with it.

Chapter 2 lists the primitive types along with the mapping of those primitives to the STREAMS
message types and the transport primitives of the ISO IS 8072 and IS 8072/DAD transport
service definitions (see referenced documents). The format of these primitives and the rules
governing the use of them are described in Chapter 3.

1.3 Overview of Error Handling Capabilities
There are two error handling facilities available to the transport user:

• one to handle non-fatal errors

• one to handle fatal errors.

1.3.1 Non-fatal Errors

The non-fatal errors are those that a transport user can correct, and are reported in the form of an
error acknowledgment to the appropriate primitive in error. Only those primitives which
require acknowledgments may generate a non-fatal error acknowledgment. These
acknowledgments always report a syntactical error in the specified primitive when the transport
provider receives the primitive. The primitive descriptions above define those primitives and
rules regarding the acknowledgment of them. These errors are reported to the transport user via
the T_ERROR_ACK primitive, and give the transport user the option of reissuing the transport
service primitive that caused the error. The T_ERROR_ACK primitive also indicates to the
transport user that no action was taken by the transport provider on receipt of the primitive
which caused the error.

These errors do not change the state of the transport service interface as seen by the transport
user. The state of the interface after the issuance of a T_ERROR_ACK primitive should be the
same as it was before the transport provider received the interface primitive that was in error.

The allowable errors that can be reported on the receipt of a transport initiated primitive are
presented in the description of the appropriate primitives.

1.3.2 Fatal Errors

Fatal errors are those which can not be corrected by the transport user, or those errors which
result in an uncorrectable error in the interface or in the transport provider.

The most common of these errors are listed under the appropriate primitives. The transport
provider should issue fatal errors only if the transport user can not correct the condition which
caused the error or if the transport provider has no means of reporting a transport user
correctable error. If the transport provider detects an uncorrectable non-protocol error internal
to the transport provider, the provider should issue a fatal error to the user.

Transport Provider Interface (TPI) 3

Overview of Error Handling Capabilities Introduction

Fatal errors are indicated to the transport user via the STREAMS message type M_ERROR with
an appropriate UNIX system error. EPROTO should be used if the user has broken the TPI
protocol. The message M_ERROR will result in the failure of all the operating system service
routines on the stream. The user must then close the stream and, if required, attempt to open a
new stream to the provider. Note that some providers may reject the ‘‘open’’ if, for example, the
reason for the fatal error is that the provider has been shut down.

1.4 Rules for Transport Service Interface Sequence of Primitives
The allowable sequence of primitives are described in the state diagrams and tables in Chapter 3,
for both the connection-mode and connectionless-mode transport services. The following are
rules regarding the maintenance of the state of the interface:

• It is the responsibility of the transport provider to keep record of the state of the interface as
viewed by the transport user.

• The state of the endpoint known by the transport user may differ from that kept by the
provider (and returned in T_INFO_ACK messages) if there are messages queued on the read
or write side of the stream.

• The transport provider must not generate a primitive that is illegal in the current state of the
endpoint.

• The uninitialized state of a stream is the initial and final state, and it must be bound (see the
T_BIND_REQ primitive, T_BIND_REQ on page 24) before the transport provider may view it
as an active stream.

• If the transport provider sends a M_ERROR upstream, it should also drop any further
messages received on its write side of the stream.

The following rules apply only to the connection-mode transport services:

• A transport connection release procedure can be initiated at any time during the transport
connection establishment or data transfer phase.

• The state tables for the connection-mode transport service providers include the
management of the sequence numbering when a transport provider sends multiple
T_CONN_IND requests without waiting for the response of the previously sent indication.
It is the responsibility of the transport providers not to change state until all the indications
have been responded to. Therefore the provider should remain in the TS_WRES_CIND state
while there are any outstanding connect indications pending response. The provider should
change state appropriately when all the connect indications have been responded to.

• The state of a transport service interface of a stream may only be transferred to another
stream when it is indicated in a T_CONN_RES primitive. The following rules then apply to
the cooperating streams:

— The stream which is to accept the current state may be unbound, or bound but not
connected to a peer.

— The user transferring the current state of a stream must have correct permissions for the
use of the protocol address bound to the accepting stream.

— The stream which transfers the state of the transport interface must be placed into an
appropriate state after the completion of the transfer.

4 CAE Specification

Introduction Rules for Precedence of TPI Primitives on a Stream

1.5 Rules for Precedence of TPI Primitives on a Stream
The following rules apply to the precedence of transport interface primitives with respect to
their position on a stream:

• The transport provider has responsibility for determining precedence on its stream write
queue, as described in the rules in Chapter 4. This section specifies the rules for precedence
for both the connection-mode and connectionless-mode transport services.

• The transport user has responsibility for determining precedence on its stream read queue, as
described in the rules in Chapter 4.

• All primitives on the stream are assumed to be placed on the queue in the correct sequence
as defined above.

Note: The stream queue which contains the transport user initiated primitives is referred to
as the stream write queue. The stream queue which contains the transport provider
initiated primitives is referred to as the stream read queue.

The following rule applies only to the connection-mode transport services:

• There is no guarantee of delivery of user data once a T_DISCON_REQ primitive has been
issued.

1.6 Rules for Flushing Queues
The following rules pertain to flushing the stream queues. No other flushes should be needed to
keep the queues in the proper condition.

• The transport providers must be aware that they will receive M_FLUSH messages from
upstream. These flush requests are issued to ensure that the providers receive certain
messages and primitives. It is the responsibility of the providers to act appropriately as
deemed necessary by the providers.

• The transport provider must send up a M_FLUSH message to flush both the read and write
queues after receiving a successful T_UNBIND_REQ message and before issuing the
T_OK_ACK primitive.

The following rules pertain only to the connection-mode transport providers.

• If the interface is in the TS_DATA_XFER, TS_WIND_ORDREL or TS_WACK_ORDREL state,
the transport provider must send up a M_FLUSH message to flush both the read and write
queues before sending up a T_DISCON_IND.

• If the interface is in the TS_DATA_XFER, TS_WIND_ORDREL or TS_WACK_ORDREL state,
the transport provider must send up a M_FLUSH message to flush both the read and write
queues after receiving a successful T_DISCON_REQ message and before issuing the
T_OK_ACK primitive.

Transport Provider Interface (TPI) 5

Introduction

6 CAE Specification

Chapter 2

Transport Primitives

The following table lists the TPI primitives with a brief description, and gives the streams
message type.

Transport Primitives Description Stream Message
Types

T_BIND_REQ Bind Protocol Address Request M_PROTO
T_BIND_ACK Bind Protocol Address Acknowledgement M_PCPROTO
T_CONN_REQ Connection Request M_PROTO
T_CONN_IND Connection Indication M_PROTO
T_CONN_RES Connection Response M_PROTO
T_CONN_CON Connection Confirm M_PROTO
T_DATA_REQ Data Request M_PROTO
T_DATA_IND Data Indication M_PROTO
T_DISCON_REQ Disconnect Request M_PROTO
T_DISCON_IND Disconnect Indication M_PROTO
T_ERROR_ACK Error Acknowledgement M_PCPROTO
T_EXDATA_REQ Expedited Data Request M_PROTO
T_EXDATA_IND Expedited Data Indication M_PROTO
T_INFO_REQ Transport Protocol Parameters Request M_PCPROTO
T_INFO_ACK Transport Protocol Parameters Acknowledgement M_PCPROTO
T_OK_ACK Success Acknowledgement M_PCPROTO
T_OPTDATA_REQ Data Request with Options M_PROTO
T_OPTDATA_IND Data Indication with Options M_PROTO
T_OPTMGMT_REQ Options Management Request M_PROTO
T_OPTMGMT_ACK Options Management Acknowledgement M_PCPROTO
T_ORDREL_REQ Orderly Release Request M_PROTO
T_ORDREL_IND Orderly Release Indication M_PROTO
T_UDERROR_IND Unitdata Error Indication M_PROTO
T_UNBIND_REQ Unbind Protocol Address Request M_PROTO
T_UNITDATA_REQ Unitdata Request M_PROTO
T_UNITDATA_IND Unitdata Indication M_PROTO

Table 2-1 Transport Service Primitives

Transport Provider Interface (TPI) 7

Transport Primitives

8 CAE Specification

Chapter 3

Allowable Sequence of TPI Primitives

The following tables describe the possible events that may occur on the interface and the
possible states as viewed by the transport user that the interface may enter due to an event. The
events map directly to the transport service interface primitives as described in Chapter 1.

Transport Provider Interface (TPI) 9

State Table Allowable Sequence of TPI Primitives

3.1 State Table

Possible States
State

Description Service Type
Name Abbreviation

TS_UNBND sta_0 unbound T_COTS, T_COTS_ORD,
T_CLTS

TS_WACK_BREQ sta_1 awaiting acknowledgment T_COTS, T_COTS_ORD,
of T_BIND_REQ T_CLTS

TS_WACK_UREQ sta_2 awaiting acknowledgment T_COTS, T_COTS_ORD,
of T_UNBIND_REQ

TS_IDLE sta_3 idle - no connection T_COTS, T_COTS_ORD,
T_CLTS

TS_WACK_OPTREQ sta_4 awaiting acknowledgment T_COTS, T_COTS_ORD,
of T_OPTMGMT_REQ T_CLTS

TS_WACK_CREQ sta_5 awaiting acknowledgment T_COTS, T_COTS_ORD
of T_CONN_REQ

TS_WCON_CREQ sta_6 awaiting confirmation T_COTS, T_COTS_ORD
of T_CONN_REQ

TS_WRES_CIND sta_7 awaiting response T_COTS, T_COTS_ORD
of T_CONN_IND

TS_WACK_CRES sta_8 awaiting acknowledgment T_COTS, T_COTS_ORD
of T_CONN_RES

TS_DATA_XFER sta_9 data transfer T_COTS, T_COTS_ORD
TS_WIND_ORDREL sta_10 awaiting T_ORDREL_IND T_COTS_ORD
TS_WREQ_ORDREL sta_11 awaiting T_ORDREL_REQ T_COTS_ORD
TS_WACK_DREQ6 sta_12 awaiting acknowledgment T_COTS, T_COTS_ORD

of T_DISCON_REQ
TS_WACK_DREQ7 sta_13 awaiting acknowledgment T_COTS, T_COTS_ORD

of T_DISCON_REQ
TS_WACK_DREQ9 sta_14 awaiting acknowledgment T_COTS, T_COTS_ORD

of T_DISCON_REQ
TS_WACK_DREQ10 sta_15 awaiting acknowledgment T_COTS, T_COTS_ORD

of T_DISCON_REQ
TS_WACK_DREQ11 sta_16 awaiting acknowledgment T_COTS, T_COTS_ORD

of T_DISCON_REQ

sta_0, sta_1, etc. are convenient abbreviations used in the state tables later in this Chapter.

Table 3-1 Kernel Level Transport Interface States

10 CAE Specification

Allowable Sequence of TPI Primitives Variables

3.2 Variables
The following table describes the variables used in the state tables.

Variable Description
q queue pair pointer of current stream

queue pair pointer of responding stream as described in the
T_CONN_RES primitive

rq

counter for the number of outstanding connection indications not
responded to by the transport user

outcnt

Table 3-2 State Table Variables

3.3 Outgoing Events
The following outgoing events are those which are initiated from the transport service user.
They either make requests of the transport provider or respond to an event of the transport
provider.

EVENT DESCRIPTION SERVICE TYPE
bind_req bind request T_COTS, T_COTS_ORD, T_CLTS
unbind_req unbind request T_COTS, T_COTS_ORD, T_CLTS
optmgmt_req options mgmt request T_COTS, T_COTS_ORD, T_CLTS
conn_req connection request T_COTS, T_COTS_ORD
conn_res connection response T_COTS, T_COTS_ORD
discon_req disconnect request T_COTS, T_COTS_ORD
data_req data request T_COTS, T_COTS_ORD
exdata_req expedited data request T_COTS, T_COTS_ORD
optdata_req data request with options T_COTS, T_COTS_ORD
ordrel_req orderly release request T_COTS_ORD
unitdata_req unitdata request T_CLTS

Table 3-3 Kernel Level Transport Interface Outgoing Events

Transport Provider Interface (TPI) 11

Incoming Events Allowable Sequence of TPI Primitives

3.4 Incoming Events
The following incoming events are those which are initiated from the transport provider. They
are either confirmations of a request or are indications to the transport user that an event has
occurred.

EVENT DESCRIPTION SERVICE TYPE
bind_ack bind acknowledgment T_COTS, T_COTS_ORD, T_CLTS
optmgmt_ack options mgmt acknowledgment T_COTS, T_COTS_ORD, T_CLTS
error_ack error acknowledgment T_COTS, T_COTS_ORD, T_CLTS
ok_ack1 ok acknowledgment T_COTS, T_COTS_ORD, T_CLTS

outcnt == 0
ok_ack2 ok acknowledgment T_COTS, T_COTS_ORD,

outcnt == 1, q == rq
ok_ack3 ok acknowledgment T_COTS, T_COTS_ORD,

outcnt == 1, q = rq
ok_ack4 ok acknowledgment T_COTS, T_COTS_ORD,

outcnt > 1
conn_ind connection indication T_COTS, T_COTS_ORD
conn_con connection confirmation T_COTS, T_COTS_ORD
data_ind data indication T_COTS, T_COTS_ORD
exdata_ind expedited data indication T_COTS, T_COTS_ORD
optdata_ind data indication with options T_COTS, T_COTS_ORD
ordrel_ind orderly release indication T_COTS_ORD
discon_ind1 disconnect indication T_COTS, T_COTS_ORD

outcnt == 0
discon_ind2 disconnect indication T_COTS, T_COTS_ORD

outcnt == 1
discon_ind3 disconnect indication T_COTS, T_COTS_ORD

outcnt > 1
pass_conn pass connection T_COTS, T_COTS_ORD
unitdata_ind unitdata indication T_CLTS
uderror_ind unitdata error indication T_CLTS

Table 3-4 Kernel Level Transport Interface Incoming Events

12 CAE Specification

Allowable Sequence of TPI Primitives Transport Service State Tables

3.5 Transport Service State Tables
The next three tables describe the possible next states the interface may enter, given a current
state and event.

The contents of each box represent the next state, given the current state (column) and the
current incoming or outgoing event (row). An empty box represents a state/event combination
that is invalid. Along with the next state, each box may include an action. The transport
provider must take the specific actions in the order specified in the state table.

STATE
TS_UNBND TS_WACK_BREQ TS_WACK_UREQ TS_IDLE TS_WACK_OPTREQ

EVENT sta_0 sta_1 sta_2 sta_3 sta_4
bind_req sta_1
unbind_req sta_2
optmgmt_req sta_4 sta_4

[5] [5]
bind_ack sta_3

[1]
optmgmt_ack sta_3
error_ack sta_0 sta_3 sta_3
ok_ack1 sta_0

[1] outcnt = 0

[5] return to previous state

sta_0, sta_1, etc. are convenient abbreviations for different states — see Table 3-1 on page 10.

Table 3-5 Initialization State Table

Transport Provider Interface (TPI) 13

Transport Service State Tables Allowable Sequence of TPI Primitives

STATE

TS_ TS_ TS_ TS_ TS_ TS_ TS_ TS_ TS_ TS_ TS_ TS_ TS_ TS_
UNBND IDLE WACK_ WCON_ WRES_ WACK_ DATA_ WIND_ WREQ_ WACK_ WACK_ WACK_ WACK_ WACK_

CREQ CREQ CIND CRES XFER ORDREL ORDREL DREQ6 DREQ7 DREQ9 DREQ10 DREQ11

EVENT sta_0 sta_3 sta_5 sta_6 sta_7 sta_8 sta_9 sta_10 sta_11 sta_12 sta_13 sta_14 sta_15 sta_16
** **

conn_req sta_5

conn_res sta_8

discon_req sta_12 sta_13 sta_14 sta_15 sta_16

data_req sta_9 sta_11

exdata_req sta_9 sta_11

** ordrel_req sta_10 sta_3

conn_ind sta_7 sta_7
[2] [2]

conn_con sta_9

data_ind sta_9 sta_10

exdata_ind sta_9 sta_10

** ordrel_ind sta_11 sta_3

discon_ind1 sta_3 sta_3 sta_3 sta_3

discon_ind2 sta_3
[3]

discon_ind3 sta_3
[3]

optmgmt_req sta_4 sta_4 sta_4 sta_4 sta_4 sta_4 sta_4
[5] [5] [5] [5] [5] [5] [5]

error_ack sta_3 sta_7 sta_6 sta_7 sta_9 sta_10 sta_11

ok_ack1 sta_6 sta_3 sta_3 sta_3 sta_3

ok_ack2 sta_9 sta_3
[3] [3]

ok_ack3 sta_3 sta_3
[3] [4] [3]

ok_ack4 sta_7 sta_7
[3] [4] [3]

pass_conn sta_9 sta_9

** Only supported if service is type T_COTS_ORD

[2] outcnt = outcnt + 1

[3] outcnt = outcnt = 1

[4] pass connection to queue as indicated in the T_CON_RES primitive

[5] return to previous state.

sta_0, sta_3, etc. are convenient abbreviations for different states — see Table 3-1 on page 10.

Table 3-6 Data Transfer State Table for Connection Oriented Service

14 CAE Specification

Allowable Sequence of TPI Primitives Transport Service State Tables

EVENT STATE
unitdata_req TS_IDLE
unitdata_ind TS_IDLE
uderror_ind TS_IDLE

Table 3-7 Data Transfer State Table for Connectionless Service

Transport Provider Interface (TPI) 15

Allowable Sequence of TPI Primitives

16 CAE Specification

Chapter 4

Transport Primitive Precedence

Table 4-1 describes the precedence of the transport primitives for stream write queues, and Table
4-2 describes this for stream read queues.

Note: The stream queue which contains the transport user initiated primitives is referred to
as the stream write queue. The stream queue which contains the transport provider
initiated primitives is referred to as the stream read queue.

t_conn_req
t_conn_res

t_discon_req
t_data_req

t_exdata_req
t_bind_req

t_unbind_req
t_info_req

t_info_req
t_unbind_req

t_bind_req
t_exdata_req
t_data_req

t_discon_req
t_conn_res
t_conn_req

Y

t_unitdata_req
t_optmgmt_req

t_ordrel_req

1
1 1

1
1

1

5

5

2

3
4

5t_ordrel_req
t_optmgmt_req
t_unitdata_req

Key

blank: not applicable / queue should be empty
1 : X has no precedence over Y
2 : X has precedence over Y
3 : X has precedence over Y

and Y must be removed
4 : X has precedence over Y and

both X and Y must be removed
5 : X may have precedence over Y

(choice of user) and if X does, then
it is the same as 3

X

Table 4-1 Stream Write Queue Precedence Table

Transport Provider Interface (TPI) 17

Transport Primitive Precedence

22

22

2

2 2
2

t_ordrel_ack
t_optmgmt_ack
t_uderror_ind
t_unitdata_ind

t_ok_ack

t_error_ack
t_bind_ack

t_info_ack
t_exdata_ind

t_data_ind
t_discon_ind
t_conn_con
t_conn_ind

Key

blank: not applicable / queue should be empty
1 : X has no precedence over Y
2 : X has precedence over Y
3 : X has precedence over Y

and Y must be removed
4 : X has precedence over Y and

both X and Y must be removed
5 : X may have precedence over Y

(choice of user) and if X does, then
it is the same as 3

X

Y

t_conn_ind
t_conn_con

t_discon_ind
t_data_ind

t_exdata_ind
t_info_ack
t_bind_ack
t_error_ack

t_ok_ack
t_unitdata_ind
t_uderror_ind

t_optmgmt_ack
t_ordrel_ack

5
5

5

4
3

1 1

1

11
11 1

1

1

1

1
1

1

1
1

1

1

1

1

1

1
1

1 1

1

1
1

1

1

Table 4-2 Stream Read Queue Precedence Table

18 CAE Specification

Chapter 5

TPI Message Formats

SYNOPSIS

include <sys/types.h>
include <sys/ddi.h>

DESCRIPTION

The Transport Provider Interface (TPI) Message Formats define the message formats (structures)
used by the service primitives. These are classified as connection-mode, connectionless-mode,
or both. They are further classified as being either user-originated or provider-originated.

Two types are used to build the TPI primitives. The normative definitions of t_scalar_t and
t_uscalar_t are to be found in the Networking Services Specification (see the referenced XNS
specification), but are repeated here for informational purposes.

t_scalar_t and t_uscalar_t are, respectively, a signed and an unsigned opaque integral type of
equal length of at least 32 bits1.

1. To forestall portability problems, it is recommended that applications should not use values larger than 232 − 1.

Transport Provider Interface (TPI) 19

T_ADDR_ACK TPI Message Formats

NAME
T_ADDR_ACK - Protocol Address Acknowledgment

SYNOPSIS
This message consists of one M_PCPROTO message block formatted as follows:

struct T_addr_ack {
t_scalar_t PRIM_type; /* Always T_ADDR_ACK */
t_scalar_t LOCADDR_length;
t_scalar_t LOCADDR_offset;
t_scalar_t REMADDR_length;
t_scalar_t REMADDR_offset;

};

DESCRIPTION
This primitive indicates to the transport user the local and remote protocol addresses currently
associated with the transport endpoint.

PARAMETERS
The fields of this message have the following meanings:

PRIM_type
the primitive type.

LOCADDR_length
the length of the local address associated with the transport endpoint.

LOCADDR_offset
the offset from the beginning of the M_PCPROTO message block where the local address
begins.

REMADDR_length
the length of the remote address associated with the transport endpoint.

REMADDR_offset
the offset from the beginning of the M_PCPROTO message block where the remote address
begins.

The proper alignment of the addresses in the M_PCPROTO message block is not guaranteed.

RULES
If the transport endpoint is not bound to a local address, the LOCADDR_length field is set to 0.

If the transport endpoint is not associated with a remote address, the REMADDR_length field is
set to 0.

MODES
Both connection-mode and connectionless-mode.

ORIGINATOR
Transport provider.

20 CAE Specification

TPI Message Formats T_ADDR_REQ

NAME
T_ADDR_REQ - Get Protocol Address Request

SYNOPSIS
This message consists of a M_PCPROTO message block formatted as follows:

struct T_addr_req {
t_scalar_t PRIM_type; /* Always T_ADDR_REQ */

};

DESCRIPTION
This primitive requests the transport provider to return the local and remote protocol addresses
currently associated with the transport endpoint.

PARAMETERS

PRIM_type
indicates the primitive type.

Note that the T_ADDR_REQ and T_ADDR_ACK primitives have no effect on the state of the
transport provider and do not appear in the state tables.

RULES
This primitive requires the transport provider to generate one of the following
acknowledgments on receipt of the primitive and that the transport user wait for the
acknowledgment before issuing any other primitives:

Successful
Acknowledgment of the primitive via T_ADDR_ACK

Non-fatal errors
These errors will be indicated via T_ERROR_ACK.

MODES
Both connection-mode and connectionless-mode.

ORIGINATOR
Transport user.

Transport Provider Interface (TPI) 21

T_BIND_ACK TPI Message Formats

NAME
T_BIND_ACK - Bind Protocol Address Acknowledgment

SYNOPSIS
This message consists of one M_PCPROTO message block formatted as follows:

struct T_bind_ack {
t_scalar_t PRIM_type; /* Always T_BIND_ACK */
t_scalar_t ADDR_length;
t_scalar_t ADDR_offset;
t_uscalar_t CONIND_number;

};

DESCRIPTION
This primitive indicates to the transport user that the specified protocol address has been bound
to the stream, that the specified number of connect indications are allowed to be queued by the
transport provider for the specified protocol address, and that the stream associated with the
specified protocol address has been activated.

PARAMETERS

PRIM_type
indicates the primitive type.

ADDR_length
is the length of the protocol address that was bound to the stream.

ADDR_offset
is the offset from the beginning of the M_PCPROTO block where the protocol address
begins.

CONIND_number
is the accepted number of connect indications allowed to be outstanding by the transport
provider for the specified protocol address.

Note that this field does not apply to connectionless transport providers.

The proper alignment of the address in the M_PCPROTO message block is not guaranteed.

RULES
The following rules apply to the binding of the specified protocol address to the stream:

• If the ADDR_length field in the T_BIND_REQ/O_T_BIND_REQ primitive is 0, then the
transport provider is to assign a transport protocol address to the user.

• The transport provider is to bind the transport protocol address as specified in the
T_BIND_REQ/O_T_BIND_REQ primitive.

• If the transport provider cannot bind the specified address, it may assign another address to
the user if the primitive O_T_BIND_REQ was used. In this case, it is the transport user’s
responsibility to check the protocol address returned in the T_BIND_ACK primitive to see if
it is the same as the one requested, and take appropriate action. If T_BIND_REQ was used,
the provider should return an error.

The following rules apply to negotiating the CONIND_number argument:

• The returned value must be less than or equal to the corresponding requested number as
indicated in the T_BIND_REQ/O_T_BIND_REQ primitive.

• If the requested value is greater than zero, the returned value must also be greater than zero.

22 CAE Specification

TPI Message Formats T_BIND_ACK

• Only one stream that is bound to the indicated protocol address may have a negotiated
accepted number of maximum connect requests greater than zero. If a O_T_BIND_REQ
primitive specifies a value greater than zero, but another stream has already bound itself to
the given protocol address with a value greater than zero, the transport provider should
assign another protocol address to the user.

• If a stream with CONIND_number greater than zero is used to accept a connection, the stream
will be found busy during the duration of that connection and no other stream may be bound
to that protocol address with a CONIND_number greater than zero. This will prevent more
than one stream bound to the identical protocol address from accepting connect indications.

• A stream requesting a CONIND_number of zero should always be valid. This indicates to the
transport provider that the stream is to be used to request connections only.

• A stream with a negotiated CONIND_number greater than zero may generate connect
requests or accept connect indications.

ERRORS
If the above rules result in an error condition, then the transport provider must issue an
T_ERROR_ACK primitive to the transport user specifying the error as defined in the description
of the T_BIND_REQ/O_T_BIND_REQ primitive.

MODES
Both connection-mode and connectionless-mode.

ORIGINATOR
Transport provider.

Transport Provider Interface (TPI) 23

T_BIND_REQ TPI Message Formats

NAME
T_BIND_REQ/O_T_BIND_REQ - Bind Protocol Address Request

SYNOPSIS
These messages consist of one M_PROTO message block formatted as follows:

struct T_bind_req {
t_scalar_t PRIM_type; /* Always T_BIND_REQ */
t_scalar_t ADDR_length;
t_scalar_t ADDR_offset;
t_uscalar_t CONIND_number;

};

DESCRIPTION
These primitives request that the transport provider bind a protocol address to the stream,
negotiate the number of connect indications allowed to be outstanding by the transport provider
for the specified protocol address, and activate the stream associated with the protocol address.

• Note that a stream is viewed as active when the transport provider may receive and transmit
TPDUs (transport protocol data units) associated with the stream.

PARAMETERS

PRIM_type
indicates the primitive type.

ADDR_length
is the length of the protocol address to be bound to the stream.

ADDR_offset
is the offset from the beginning of the M_PROTO block where the protocol address begins.

Note that all lengths, offsets, and sizes in all structures refer to the number of bytes.

CONIND_number
is the requested number of connect indications allowed to be outstanding by the transport
provider for the specified protocol address.

Note that the CONIND_number should be ignored by those providing a connectionless
transport service.

Also note that if the number of outstanding connect indications equals CONIND_number,
the transport provider need not discard further incoming connect indications, but may
choose to queue them internally until the number of outstanding connect indications drops
below CONIND_number.

The proper alignment of the address in the M_PROTO message block is not guaranteed. The
address in the M_PROTO message block is however, aligned the same as it was received from
the transport user.

RULES
For rules governing the requests made by these primitives, see the T_BIND_ACK primitive.

These primitives require the transport provider to generate one of the following
acknowledgments on receipt of the primitive, and the transport user must wait for the
acknowledgment before issuing any other primitives:

Successful
Correct acknowledgment of the primitive is indicated via the T_BIND_ACK primitive.

24 CAE Specification

TPI Message Formats T_BIND_REQ

Non-fatal errors
These errors will be indicated via the T_ERROR_ACK primitive described in reference TPI-
SMD.

ERRORS
The allowable errors are as follows:

[TACCES]
This indicates that the user did not have proper permissions for the use of the requested
address.

[TADDRBUSY]
This indicates that the requested address is in use. In other words, the transport user
attempted to bind a protocol address to a second transport end point with a
CONIND_number greater than zero. This error will only be returned for T_BIND_REQ. See
T_BIND_ACK for the behavior of O_T_BIND_REQ in this instance.

[TBADADDR]
This indicates that the protocol address was in an incorrect format or the address contained
invalid information. It is not intended to indicate protocol errors.

[TNOADDR]
This indicates that the transport provider could not allocate an address.

[TOUTSTATE]
The primitive would place the transport interface out of state.

[TSYSERR]
A system error has occurred and the UNIX system error is indicated in the primitive.

MODES
Both connection-mode and connectionless-mode.

ORIGINATOR
Transport user.

Transport Provider Interface (TPI) 25

T_CONN_CON TPI Message Formats

NAME
T_CONN_CON - Connection Confirm

SYNOPSIS
This message consists of one M_PROTO message block followed by zero or more M_DATA
blocks if any user data is associated with the primitive. The format of the M_PROTO message
block is as follows:

struct T_conn_con {
t_scalar_t PRIM_type; /* Always T_CONN_CON */
t_scalar_t RES_length; /* Responding address length */
t_scalar_t RES_offset;
t_scalar_t OPT_length;
t_scalar_t OPT_offset;

};

DESCRIPTION
This primitive indicates to the user that a connect request has been confirmed on the specified
responding address.

PARAMETERS

PRIM_type
identifies the primitive type.

RES_length
is the length of the responding address that the connection was accepted.

RES_offset
is the offset (from the beginning of the M_PROTO message block) where the responding
address begins.

OPT_length
is the length of the confirmed options associated with the primitive.

OPT_offset
is the offset from the beginning of the M_PROTO message block) of the confirmed options
associated with the primitive.

The proper alignment of the responding address and options in the M_PROTO message block is
not guaranteed.

MODES
Only connection-mode.

ORIGINATOR
Transport provider.

26 CAE Specification

TPI Message Formats T_CONN_IND

NAME
T_CONN_IND - Connect Indication

SYNOPSIS
This message consists of one M_PROTO message block followed by zero or more M_DATA
blocks if any user data is associated with the primitive. The format of the M_PROTO message
block is as follows:

struct T_conn_ind {
t_scalar_t PRIM_type; /* Always T_CONN_IND */
t_scalar_t SRC_length;
t_scalar_t SRC_offset;
t_scalar_t OPT_length;
t_scalar_t OPT_offset;
t_scalar_t SEQ_number;

};

DESCRIPTION
This primitive indicates to the transport user that a connect request to the user has been made by
the user at the specified source address.

PARAMETERS

PRIM_type
identifies the primitive type.

SRC_length
is the length of the source address

SRC_offset
is the offset (from the beginning of the M_PROTO message block) where the source address
begins.

OPT_length
is the length of the requested options associated with the primitive.

OPT_offset
is the offset (from the beginning of the M_PROTO message block) of the requested options
associated with the primitive.

SEQ_number
should be a unique number other than -1 to identify the connect indication.

The proper alignment of the source address and options in the M_PROTO message block is not
guaranteed.

MODES
Only connection-mode.

ORIGINATOR
Transport provider.

Transport Provider Interface (TPI) 27

T_CONN_REQ TPI Message Formats

NAME
T_CONN_REQ - Connect Request

SYNOPSIS
This message consists of one M_PROTO message block followed by zero or more M_DATA
blocks if any user data is specified by the transport user. The format of the M_PROTO message
block is as follows:

struct T_conn_req {
t_scalar_t PRIM_type; /* Always T_CONN_REQ */
t_scalar_t DEST_length;
t_scalar_t DEST_offset;
t_scalar_t OPT_length;
t_scalar_t OPT_offset;

};

DESCRIPTION
This primitive requests that the transport provider connect to the specified destination.

PARAMETERS

PRIM_type
identifies the primitive type.

DEST_length
is the length of the destination address

DEST_offset
is the offset (from the beginning of the M_PROTO message block) where the destination
address begins.

OPT_length
is the length of the requested options associated with the primitive.

OPT_offset
is the offset (from the beginning of the M_PROTO message block) of the requested options
associated with the primitive.

The proper alignment of the destination address and options in the M_PROTO message block is
not guaranteed. The destination address and options in the M_PROTO message block are
however, aligned the same as they were received from the transport user.

Note: The information located by the defined structures may not be in the proper alignment
in the message blocks, so the casting of structure definitions over these fields may
produce incorrect results. It is advised that the transport providers supply exact format
specifications for the appropriate information to the transport users.

RULES
This primitive requires the transport provider to generate one of the following
acknowledgments on receipt of the primitive, and the transport user must wait for the
acknowledgment before issuing any other primitives:

Successful
Correct acknowledgment of the primitive is indicated via the T_OK_ACK primitive
described in reference TPI-SMD.

28 CAE Specification

TPI Message Formats T_CONN_REQ

Non-fatal errors
These errors will be indicated via the T_ERROR_ACK primitive described in reference TPI-
SMD.

ERRORS
The allowable errors are as follows:

[TACCES]
This indicates that the user did not have proper permissions for the use of the requested
address or options.

[TADDRBUSY]
The transport provider does not support multiple connections to the same destination
address. This error indicates that a connection already exists for the requested destination.

[TBADADDR]
This indicates that the protocol address was in an incorrect format or the address contained
invalid information. It is not intended to indicate protocol connection errors, such as an
unreachable destination. Those error types are indicated via the T_DISCON_IND primitive.

[TBADDATA]
The amount of user data specified was invalid.

[TBADOPT]
This indicates that the options were in an incorrect format, or they contained invalid
information.

[TNOTSUPPORT]
This primitive is not supported by the transport provider.

[TOUTSTATE]
The primitive would place the transport interface out of state.

[TSYSERR]
A system error has occurred and the UNIX system error is indicated in the primitive.

MODES
Only connection-mode.

ORIGINATOR
Transport user.

Transport Provider Interface (TPI) 29

T_CONN_RES TPI Message Formats

NAME
T_CONN_RES - Connection Response

SYNOPSIS
This message consists of one M_PROTO message block followed by zero or more M_DATA
blocks if any user data is specified by the transport user. The format of the M_PROTO message
block is as follows:

struct T_conn_res {
t_scalar_t PRIM_type; /* always T_CONN_RES */
t_uscalar_t ACCEPTOR_id; /* accepting endpoint ID */
t_scalar_t OPT_length; /* options length */
t_scalar_t OPT_offset; /* options offset */
t_scalar_t SEQ_number; /* sequence number */

};

DESCRIPTION
This primitive is sent by a transport user to the transport provider on a listening transport
endpoint (hereafter, for brevity, referred to as the listener) on which the transport user received a
T_CONN_IND. This primitive requests that the transport provider should accept the connection
indication identified by SEQ_number on the response transport endpoint specified by
ACCEPTOR_id.

PARAMETERS

PRIM_type
identifies the primitive type.

ACCEPTOR_id
identifies the transport provider endpoint which should be used to accept the connect
request. The mapping of the contents of ACCEPTOR_id to the internal reference to a
transport endpoint (often a pointer to a streams queue) is transport-provider defined. Some
example mechanisms for using ACCEPTOR_idaregivenin Appendix A on page 61.

OPT_length
is the length of the responding options.

OPT_offset
is the offset from the beginning of the M_PROTO message block where the responding
options begin.

SEQ_number
is the sequence number which identifies the connection being responded to.

The proper alignment of the options in the M_PROTO message block is not guaranteed. The
options in the M_PROTO message block are, however, aligned the same as they were received
from the transport user.

RULES
The following rules apply when the transport endpoint referenced by ACCEPTOR_id is not the
same as the listener:

• If the endpoint referenced by ACCEPTOR_id is not bound at the time that the T_CONN_RES
primitive is received by the transport provider, the transport provider will automatically
bind that endpoint to the same protocol address as that to which the listener is bound.

• If the endpoint referenced by ACCEPTOR_id is already bound when the T_CONN_RES
primitive was received by the transport provider, it must be bound to a protocol address
with a CONIND_number of zero and must be in the TS_IDLE state.

30 CAE Specification

TPI Message Formats T_CONN_RES

In all cases, this primitive requires the transport provider to generate one of the following
acknowledgments on receipt of the primitive, and the transport user wait for the
acknowledgment before issuing any other primitives:

Successful
Correct acknowledgment of the primitive is indicated via the T_OK_ACK primitive
described in reference TPI-SMD.

Non-fatal errors
These errors will be indicated via the T_ERROR_ACK primitive described in reference TPI-
SMD.

ERRORS
The allowable errors are as follows:

[TACCES]
This indicates that the user did not have proper permissions for the use of the options or
response id.

[TBADADDR]
The specified protocol address (the one bound to the endpoint referenced by
ACCEPTOR_id) was in an incorrect format or contained illegal information.

[TBADDATA]
The amount of user data specified was invalid.

[TBADF]
This indicates that the response acceptor identifier was invalid.

[TBADOPT]
This indicates that the options were in an incorrect format, or they contained invalid
information.

[TBADSEQ]
The sequence number specified in the primitive was incorrect or invalid.

[TNOTSUPPORT]
This primitive is not supported by the transport provider.

[TOUTSTATE]
The primitive would place the transport interface out of state.

[TPROVMISMATCH] This indicates that the response ACCEPTOR_Id does not identify a
transport provider of the same type as the listener.

[TRESADDR]
The transport provider requires both transport endpoints (that is, the one referenced by
ACCEPTOR_id and the listener) to be bound to the same address.

[TRESQLEN]
The endpoint referenced by ACCEPTOR_id was different from the listener, but was bound
to a protocol address with a CONIND_number that is greater than zero.

[TSYSERR]
A system error has occurred and the UNIX system error is indicated in the primitive.

Transport Provider Interface (TPI) 31

T_CONN_RES TPI Message Formats

MODES
Only connection-mode.

ORIGINATOR
Transport user.

32 CAE Specification

TPI Message Formats T_DATA_IND

NAME
T_DATA_IND - Data Indication

SYNOPSIS
This message consists of one M_PROTO message block followed by zero or more M_DATA
message blocks where each M_DATA message block contains at least one byte of data. The
format of the M_PROTO message block is as follows:

struct T_data_ind {
t_scalar_t PRIM_type; /* Always T_DATA_IND */
t_scalar_t MORE_flag;

};

DESCRIPTION
This primitive indicates to the transport user that this message contains a transport interface
data unit. One or more transport interface data units form a transport service data unit. This
primitive has a mechanism which indicates the beginning and end of a transport service data
unit. However, not all transport providers support the concept of a transport service data unit.

PARAMETERS

PRIM_type identifies the primitive type.

MORE_flag
when greater than zero, indicates that the next T_DATA_IND primitive is also part of this
transport service data unit.

RULES
If a TSDU spans multiple T_DATA_IND message blocks, then an ETSDU may be placed in
between two T_DATA_IND message blocks. Once an ETSDU is started, then the ETSDU must
be completed before any T_DATA_IND message blocks defining a TSDU is resumed.

MODES
Only connection-mode.

ORIGINATOR
Transport provider.

Transport Provider Interface (TPI) 33

T_DATA_REQ TPI Message Formats

NAME
T_DATA_REQ - Data Request

SYNOPSIS
This message consists of one M_PROTO message block followed by zero or more M_DATA
message blocks where each M_DATA message block contains zero or more bytes of data. The
format of the M_PROTO message block is as follows:

struct T_data_req {
t_scalar_t PRIM_type; /* Always T_DATA_REQ */
t_scalar_t MORE_flag;

};

DESCRIPTION
This primitive indicates to the transport provider that this message contains a transport interface
data unit. One or more transport interface data units form a transport service data unit (TSDU).

Note that the maximum transport service data unit size allowed by the transport provider is
indicated to the transport user via the T_INFO_ACK primitive.

This primitive has a mechanism which indicates the beginning and end of a transport service
data unit. However, not all transport providers support the concept of a transport service data
unit.

PARAMETERS

PRIM_type
identifies the primitive type.

MORE_flag
when greater than zero, indicates that the next T_DATA_REQ primitive is also part of this
transport service data unit.

RULES
The transport provider must also recognize a message of one or more M_DATA message blocks
without the leading M_PROTO message block as a T_DATA_REQ primitive. This message type
will be initiated from the write(2) operating system service routine.

For example, on systems that support the tirdwr STREAMS module, if that module is pushed
onto a stream corresponding to a transport provider supporting the TPI, then the write(2)
operating system service routine may be used to send data on that transport endpoint. In this
case there are no implied transport service data unit boundaries. Data is passed down the stream
as a series of M_DATA messages.

This primitive does not require any acknowledgments, although it may generate a fatal error.
This is indicated via a M_ERROR message type which results in the failure of all operating
system service routines on the stream.

ERRORS
The allowable errors are as follows:

[EPROTO]
This indicates one of the following unrecoverable protocol conditions:

• The transport service interface was found to be in an incorrect state. If the interface is in
the TS_IDLE state when the provider receives the T_DATA_REQ primitive, then the
transport provider should just drop the message without generating a fatal error.

• The amount of transport user data associated with the primitive defines a transport
service data unit larger than that allowed by the transport provider.

34 CAE Specification

TPI Message Formats T_DATA_REQ

MODES
Only connection-mode.

ORIGINATOR
Transport user.

Transport Provider Interface (TPI) 35

T_DISCON_IND TPI Message Formats

NAME
T_DISCON_IND - Disconnect Indication

SYNOPSIS
This message consists of a M_PROTO message block formatted as follows:

struct T_discon_ind {
t_scalar_t PRIM_type; /* Always T_DISCON_IND */
t_scalar_t DISCON_reason;
t_scalar_t SEQ_number;

};

DESCRIPTION
This primitive indicates to the user that either a request for connection has been denied or an
existing connection has been disconnected. The format of this message is one M_PROTO
message block possibly followed by one or more M_DATA message blocks if there is any user
data associated with the primitive.

PARAMETERS

PRIM_type
identifies the primitive type

DISCON_reason
is the reason for disconnect. The reason codes are protocol specific.

SEQ_number
is the sequence number which identifies which connect indication was denied, or it is -1 if
the provider is disconnecting an existing connection.

RULES
The SEQ_number is only meaningful when this primitive is sent to a passive user who has the
corresponding connect indication outstanding. It allows the transport user to identify which of
its outstanding connect indications is associated with the disconnect.

MODES
Only connection-mode.

ORIGINATOR
Transport provider.

36 CAE Specification

TPI Message Formats T_DISCON_REQ

NAME
T_DISCON_REQ - Disconnect Request

SYNOPSIS
This message consists of one M_PROTO message block followed by one or more M_DATA
message blocks if there is any user data specified by the transport user. The format of the
M_PROTO message block is as follows:

struct T_discon_req {
t_scalar_t PRIM_type; /* Always T_DISCON_REQ */
t_scalar_t SEQ_number;

};

DESCRIPTION
This primitive requests that the transport provider deny a request for connection, or disconnect
an existing connection.

PARAMETERS

PRIM_type
identifies the primitive type.

SEQ_number
identifies the outstanding connect indication that is to be denied. If the disconnect request
is disconnecting an already existing connection, then the value of SEQ_number will be
ignored.

RULES
This primitive requires the transport provider to generate the following acknowledgment on
receipt of the primitive, and the transport user must wait for the acknowledgment before issuing
any other primitives:

Successful
Correct acknowledgment of the primitive is indicated via the T_OK_ACK primitive
described in reference TPI-SMD.

Non-fatal errors
These errors will be indicated via the T_ERROR_ACK primitive described in reference
TPI-SMD.

ERRORS
The allowable errors are as follows:

[TBADDATA]
The amount of user data specified was invalid.

[TBADSEQ]
The sequence number specified in the primitive was incorrect or invalid.

[TNOTSUPPORT]
This primitive is not supported by the transport provider.

[TOUTSTATE]
The primitive would place the transport interface out of state.

[TSYSERR]
A system error has occurred and the UNIX system error is indicated in the primitive.

Transport Provider Interface (TPI) 37

T_DISCON_REQ TPI Message Formats

MODES
Only connection-mode.

ORIGINATOR
Transport user.

38 CAE Specification

TPI Message Formats T_ERROR_ACK

NAME
T_ERROR_ACK - Error Acknowledgment

SYNOPSIS
This message consists of a M_PCPROTO message block formatted as follows:

struct T_error_ack {
t_scalar_t PRIM_type; /* Always T_ERROR_ACK */
t_scalar_t ERROR_prim; /* Primitive in error */
t_scalar_t TLI_error;
t_scalar_t UNIX_error;

};

DESCRIPTION
This primitive indicates to the transport user that a non-fatal error has occurred in the last
transport-user-originated primitive.

For an overview of the error handling capabilities available to the transport provider see
reference TPI-SMD.

PARAMETERS

PRIM_type
identifies the primitive.

ERROR_prim
identifies the primitive type that caused the error

TLI_error
contains the Transport Level Interface error code.

UNIX_error
contains the UNIX system error code. This may only be non zero if TLI_error is equal to
TSYSERR.

RULES
This may only be initiated as an acknowledgment for those primitives that require one. It also
indicates to the user that no action was taken on the primitive that caused the error.

ERRORS
The list of Transport Level Interface error codes are listed in Appendix F of the referenced XNS
specification.

MODES
Both connection-mode and connectionless-mode.

ORIGINATOR
Transport provider.

Transport Provider Interface (TPI) 39

T_EXDATA_IND TPI Message Formats

NAME
T_EXDATA_IND - Expedited Data Indication

SYNOPSIS
This message consists of one M_PROTO message block followed by one or more M_DATA
message blocks containing at least one byte of data. The format of the M_PROTO message block
is as follows:

struct T_exdata_ind {
t_scalar_t PRIM_type; /* Always T_EXDATA_IND */
t_scalar_t MORE_flag;

};

DESCRIPTION
This primitive indicates to the transport user that this message contains an expedited transport
interface data unit. One or more expedited transport interface data units form an expedited
transport service data unit.

This primitive has a mechanism which indicates the beginning and end of an expedited
transport service data unit. However, not all transport providers support the concept of an
expedited transport service data unit.

PARAMETERS

PRIM_type
identifies the primitive type.

MORE_flag
when greater than zero, indicates that the next T_EXDATA_IND primitive is also part of this
expedited transport service data unit.

MODES
Only connection-mode.

ORIGINATOR
Transport provider.

40 CAE Specification

TPI Message Formats T_EXDATA_REQ

NAME
T_EXDATA_REQ - Expedited Data Request

SYNOPSIS
This message consists of one M_PROTO message block followed by one or more M_DATA
message blocks containing at least one byte of data. The format of the M_PROTO message block
is as follows:

struct T_exdata_req {
t_scalar_t PRIM_type; /* Always T_EXDATA_REQ */
t_scalar_t MORE_flag;

};

DESCRIPTION
This primitive indicates to the transport provider that this message contains an expedited
transport interface data unit. One or more expedited transport interface data units form an
expedited transport service data unit.

Note that the maximum size of a expedited transport service data unit is indicated to the
transport user via the T_INFO_ACK primitive.

This primitive has a mechanism which indicates the beginning and end of an expedited
transport service data unit. However, not all transport providers support the concept of an
expedited transport service data unit.

PARAMETERS

PRIM_type
identifies the primitive type.

MORE_flag
when greater than zero indicates that the next T_EXDATA_REQ primitive is also part of this
expedited transport service data unit.

RULES
This primitive does not require any acknowledgments, although it may generate a fatal error.
This is indicated via a M_ERROR message type which results in the failure of all operating
system service routines on the stream.

ERRORS
The allowable errors are as follows:

[EPROTO]
This indicates one of the following unrecoverable protocol conditions:

• The transport service interface was found to be in an incorrect state. If the interface is in
the TS_IDLE state when the provider receives the T_EXDATA_REQ primitive, then the
transport provider should just drop the message without generating a fatal error.

• The amount of transport user data associated with the primitive defines an expedited
transport service data unit larger than that allowed by the transport provider.

MODES
Only connection-mode.

ORIGINATOR
Transport user.

Transport Provider Interface (TPI) 41

T_INFO_ACK TPI Message Formats

NAME
T_INFO_ACK - Protocol Information Acknowledgment

SYNOPSIS
This message consists of a M_PCPROTO message block formatted as follows:

struct T_info_ack {
t_scalar_t PRIM_type; /* Always T_INFO_ACK */
t_scalar_t TSDU_size; /* Max TSDU size */
t_scalar_t ETSDU_size; /* Max ETSDU size */
t_scalar_t CDATA_size; /* Connect data size */
t_scalar_t DDATA_size; /* Disconnect data size */
t_scalar_t ADDR_size; /* TSAP size */
t_scalar_t OPT_size; /* Options size */
t_scalar_t TIDU_size; /* TIDU size */
t_scalar_t SERV_type; /* Service type */
t_scalar_t CURRENT_state; /* Current state */
t_scalar_t PROVIDER_flag; /* Provider flag */

};

DESCRIPTION
This primitive indicates to the transport user any relevant protocol-dependent parameters. It
should be initiated in response to the T_INFO_REQ primitive described above. The format of
this message is one M_PCPROTO message block.

PARAMETERS
The fields of this message have the following meanings:

PRIM_type
This indicates the primitive type.

TSDU_size
A value greater than zero specifies the maximum size of a transport service data unit
(TSDU); a value of zero specifies that the transport provider does not support the concept of
TSDU, although it does support the sending of a data stream with no logical boundaries
preserved across a connection; a value of -1 specifies that there is no limit on the size of a
TSDU; and a value of -2 specifies that the transfer of normal data is not supported by the
transport provider.

ETSDU_size
A value greater than zero specifies the maximum size of an expedited transport service data
unit (ETSDU); a value of zero specifies that the transport provider does not support the
concept of ETSDU, although it does support the sending of an expedited data stream with
no logical boundaries preserved across a connection; a value of -1 specifies that there is no
limit on the size of an ETSDU; and a value of -2 specifies that the transfer of expedited data
is not supported by the transport provider.

CDATA_size
A value greater than or equal to zero specifies the maximum amount of data that may be
associated with connection establishment primitives; and a value of -2 specifies that the
transport provider does not allow data to be sent with connection establishment primitives.

DDATA_size
A value greater than or equal to zero specifies the maximum amount of data that may be
associated with the disconnect primitives; and a value of -2 specifies that the transport
provider does not allow data to be sent with the disconnect primitives.

42 CAE Specification

TPI Message Formats T_INFO_ACK

ADDR_size
A value greater than or equal to zero indicates the maximum size of a transport protocol
address; and a value of -2 specifies that the transport provider does not provide user access
to transport protocol addresses.

OPT_size
A value greater than or equal to zero indicates the maximum number of bytes of protocol-
specific options supported by the provider; and a value of -2 specifies that the transport
provider does not support user-settable options.

TIDU_size
This is the amount of user data that may be present in a single T_DATA_REQ or
T_EXDATA_REQ primitive. This is the size of the transport protocol interface data unit,
and should not exceed the tunable system limit, if non-zero, for the size of a STREAMS
message.

SERV_type
This field specifies the service type supported by the transport provider, and is one of the
following:

T_COTS
The provider service is connection oriented with no orderly release support.

T_COTS_ORD
The provider service is connection oriented with orderly release support.

T_CLTS
The provider service is a connectionless transport service.

CURRENT_state
This is the current state of the transport provider.

PROVIDER_flag
This field specifies additional properties specific to the transport provider and may alter the
way the transport user communicates. The following flags may be set by the provider:

SENDZERO
This flag indicates that the transport provider supports the sending of zero-length
TSDUs.

XPG4_1
This flag indicates that the transport provider supports XPG4 semantics.

RULES
The following rules apply when the type of service is T_CLTS:

• The ETSDU_size, CDATA_size and DDATA_size fields should be -2.

• The TSDU_size should equal the TIDU_size.

MODES
Both connection-mode and connectionless-mode.

ORIGINATOR
Transport provider.

Transport Provider Interface (TPI) 43

T_INFO_REQ TPI Message Formats

NAME
T_INFO_REQ - Get Transport Protocol Parameter Sizes

SYNOPSIS
This message consists of a M_PCPROTO message block formatted as follows:

struct T_info_req {
t_scalar_t PRIM_type; /* Always T_INFO_REQ */

};

DESCRIPTION
This primitive requests the transport provider to return the sizes of all relevant protocol
parameters, plus the current state of the provider.

PARAMETERS

PRIM_type
indicates the primitive type.

Note that the T_INFO_REQ and T_INFO_ACK primitives have no effect on the state of the
transport provider and do not appear in the state tables.

RULES
This primitive requires the transport provider to generate one of the following
acknowledgments on receipt of the primitive and that the transport user wait for the
acknowledgment before issuing any other primitives:

Successful
Acknowledgment of the primitive via the T_INFO_ACK.

Non-fatal errors
There are no errors associated with this primitive.

MODES
Both connection-mode and connectionless-mode.

ORIGINATOR
Transport user.

44 CAE Specification

TPI Message Formats T_OK_ACK

NAME
T_OK_ACK - Success Acknowledgment

SYNOPSIS
This message consists of one M_PCPROTO message block formatted as follows:

struct T_ok_ack {
t_scalar_t PRIM_type; /* Always T_OK_ACK */
t_scalar_t CORRECT_prim;

};

DESCRIPTION
This primitive indicates to the transport user that the previous transport-user-originated
primitive was received successfully by the transport provider. It does not indicate to the
transport user any transport protocol action taken due to issuing the T_INFO_REQ primitive.
This may only be initiated as an acknowledgment for those primitives that require one.

PARAMETERS

PRIM_type
identifies the primitive.

CORRECT_prim
contains the successfully received primitive type.

MODES
Both connection-mode and connectionless-mode.

ORIGINATOR
Transport provider.

Transport Provider Interface (TPI) 45

T_OPTMGMT_ACK TPI Message Formats

NAME
T_OPTMGMT_ACK - Option Management Acknowledgment

SYNOPSIS
This message consists of a M_PCPROTO message block formatted as follows:

struct T_optmgmt_ack {
t_scalar_t PRIM_type; /* Always T_OPTMGMT_ACK */
t_scalar_t OPT_length;
t_scalar_t OPT_offset;
t_scalar_t MGMT_flags;

};

DESCRIPTION
This indicates to the transport user that the options management request has completed.

PARAMETERS

PRIM_type
indicates the primitive type

OPT_length
is the length of the protocol options associated with the primitive

OPT_offset
is the offset from the beginning of the M_PCPROTO block where the options begin.

The proper alignment of the options is not guaranteed. MGMT_flags should be the same as
those specified in the T_OPTMGMT_REQ primitive with any additional flags as specified below.

RULES
The following rules apply to the T_OPTMGMT_ACK primitive.

• If the value of MGMT_flags in the T_OPTMGMT_REQ primitive is T_DEFAULT, the provider
should return the default provider options without changing the existing options associated
with the stream.

• If the value of MGMT_flags in the T_OPTMGMT_REQ primitive is T_CHECK, the provider
should return the options as specified in the T_OPTMGMT_REQ primitive along with the
additional flags T_SUCCESS or T_FAILURE which indicate to the user whether the specified
options are supportable by the provider. The provider should not change any existing
options associated with the stream.

• If the value of MGMT_flags in the T_OPTMGMT_REQ primitive is T_NEGOTIATE , the
provider should set and negotiate the option as specified by the following rules:

— If the OPT_length field of the T_OPTMGMT_REQ primitive is 0, then the transport
provider is to set and return the default options associated with the stream in the
T_OPTMGMT_ACK primitive.

— If options are specified in the T_OPTMGMT_REQ primitive, then the transport provider
should negotiate those options, set the negotiated options and return the negotiated
options in the T_OPTMGMT_ACK primitive. It is the user’s responsibility to check the
negotiated options returned in the T_OPTMGMT_ACK primitive and take appropriate
action.

• If the value of MGMT_flags in the T_OPTMGMT_REQ primitive is T_CURRENT, the
provider should return the currently effective option values without changing any existing
options associated with the stream.

46 CAE Specification

TPI Message Formats T_OPTMGMT_ACK

ERRORS
If the above rules result in an error condition, the transport provider must issue a
T_ERROR_ACK primitive to the transport user specifying the error as defined in the description
of the T_OPTMGMT_REQ primitive.

MODES
Both connection-mode and connectionless-mode.

ORIGINATOR
Transport provider.

Transport Provider Interface (TPI) 47

T_OPTDATA_IND TPI Message Formats

NAME
T_OPTDATA_REQ - Data request with options

SYNOPSIS
The message consists of one M_PROTO message block followed by zero or more message
blocks, where each M_DATA message block contains zero or more bytes of data. The format of
the M_PROTO message block is as follows:
struct T_optdata_req {

t_scalar_t PRIM_type; /* always T_OPTDATA_REQ */
t_scalar_t DATA_flag; /* flag bits associated with data */
t_scalar_t OPT_length; /* options length */
t_scalar_t OPT_offset; /* options offset */

};

DESCRIPTION
The primitive indicates to the transport provider that the message contains a transport interface
data unit. One or more transport interface data units form a transport service data units (TSDU).

Note that the maximum transport service and data unit sizes allowed by transport provider is
indicated to the user by T_INFO_ACK primitive.

This primitive has a mechanism that indicates the beginning and end of a transport service data
unit. However not all transport providers support the concept of a transport service data unit.

This primitive also provides mechanisms to have options associated with the data being
transferred.

PARAMETERS
The fields of this message have the following semantics:

PRIM_type
identifies the primitive type

DATA_flag
This field specifies bit fields specific general properties associated with the data being
transferred. The following settings are currently defined:

T_ODF_MORE When set, this bit indicates that the next T_OPTDATA_REQ
primitive is also part of this transport service data unit.

OPT_length
the length of the requested options asociated with the primitive

OPT_offset
the offset (from the beginning of the M_PROTO message block) where the options asociated
with this primitive begin.

RULES
It is possible to use this primitive with no associated options, in which case the OPT_length field
is zero.

The primitive does not require any acknowledgements, although it may generate a fatal error.
This is indicated via a M_ERROR message type, which results in the failure of all operating
system service routines on the stream.

48 CAE Specification

TPI Message Formats T_OPTDATA_IND

ERRORS
The allowable errors are as follows:

[EPROTO]
This indicates of the following unrecoverable protocol conditions:

• The transport service interface was found to be in an incorrect state. If the interface is in
TS_IDLE state when the provider receives the T_OPTDATA_REQ primitive, then the
transport provider should just drop the message without generating a fatal error.

• The amount of transport user data associated with the primitive defines a transport
service data unit larger than that allowed by the transport provider.

MODES
Only connection mode.

ORIGINATOR
Transport provider.

Transport Provider Interface (TPI) 49

T_OPTDATA_REQ TPI Message Formats

NAME
T_OPTDATA_REQ - Data request with options

SYNOPSIS
The message consists of one M_PROTO message block followed by zero or more message
blocks, where each M_DATA message block contains zero or more bytes of data. The format of
the M_PROTO message block is as follows:
struct T_optdata_req {

t_scalar_t PRIM_type; /* always T_OPTDATA_REQ */
t_scalar_t DATA_flag; /* flag bits associated with data */
t_scalar_t OPT_length; /* options length */
t_scalar_t OPT_offset; /* options offset */

};

DESCRIPTION:
The primitive indicates to the transport provider that the message contains a transport interface
data unit. One or more transport interface data units form a transport service data units (TSDU).

Note that the maximum transport service and data unit sizes allowed by transport provider is
indicated to the user by the T_INFO_ACK primitive.

This primitive has a mechanism that indicates the beginning and end of a transport service data
unit. However not all transport providers support the concept of a transport service data unit.

This primitive also provides mechanisms to have options associated with the data being
transferred.

PARAMETERS
The fields of this message have the following semantics:

PRIM_type
identifies the primitive type

DATA_flag
This field specifies bit fields specific general properties associated with the data being
transferred. The following settings are currently defined:

T_ODF_MORE When set, this bit indicates that the next T_OPTDATA_REQ
primitive is also part of this transport service data unit.

OPT_length
the length of the requested options asociated with the primitive

OPT_offset
the offset (from the beginning of the M_PROTO message block) where the options asociated
with this primitive begin.

RULES
It is possible to use this primitive with no associated options, in which case the OPT_length field
is zero.

The primitive does not require any acknowledgements, although it may generate a fatal error.
This is indicated via a M_ERROR message type, which results in the failure of all operating
system service routines on the stream.

ERRORS
The allowable errors are as follows:

[EPROTO]
This indicates of the following unrecoverable protocol conditions:

50 CAE Specification

TPI Message Formats T_OPTDATA_REQ

• The transport service interface was found to be in an incorrect state. If the interface is in
TS_IDLE state when the provider receives the T_OPTDATA_REQ primitive, then the
transport provider should just drop the message without generating a fatal error.

• The amount of transport user data associated with the primitive defines a transport
service data unit larger than that allowed by the transport provider.

MODES
Only connection mode

ORIGINATOR
Transport user

Transport Provider Interface (TPI) 51

T_OPTMGMT_REQ TPI Message Formats

NAME
T_OPTMGMT_REQ - Options Management

SYNOPSIS
This message consists of a M_PROTO message block formatted as follows:

struct T_optmgmt_req {
t_scalar_t PRIM_type; /* Always T_OPTMGMT_REQ */
t_scalar_t OPT_length;
t_scalar_t OPT_offset;
t_scalar_t MGMT_flags;

};

DESCRIPTION
This primitive allows the transport user to manage the options associated with the stream. The
format of the message is one M_PROTO message block.

PARAMETERS

PRIM_type
indicates the primitive type

OPT_length
is the length of the protocol options associated with the primitive

OPT_offset
is the offset from the beginning of the M_PROTO block where the options begin.

MGMT_flags
are the flags which define the request made by the transport user. The allowable flags are:

T_NEGOTIATE
Negotiate and set the options with the transport provider

T_CHECK
Check the validity of the specified options

T_DEFAULT
Return the default options

T_CURRENT
Return the currently effective option values.

The proper alignment of the options is not guaranteed. The options are, however, aligned the
same as received from the transport user.

RULES
For the rules governing the requests made by this primitive see the T_OPTMGMT_ACK
primitive.

This primitive requires the transport provider to generate one of the following
acknowledgments on receipt of the primitive, and that the transport user wait for the
acknowledgment before issuing any other primitives:

Successful
Acknowledgment of the primitive via the T_OPTMGMT_ACK.

Non-fatal errors
These errors will be indicated via the T_ERROR_ACK primitive described in Section 1.3 on
page 3.

52 CAE Specification

TPI Message Formats T_OPTMGMT_REQ

ERRORS
The allowable errors are as follows:

TACCES
The user did not have proper permissions for the use of the requested options.

TBADFLAG
The flags as specified were incorrect or invalid.

TBADOPT
The options as specified were in an incorrect format, or they contained invalid information.

TOUTSTATE
The primitive would place the transport interface out of state.

TNOTSUPPORT
This primitive is not supported by the transport provider.

TSYSERR
A system error has occurred and the UNIX system error is indicated in the primitive.

MODES
Both connection-mode and connectionless-mode.

Originator
Transport user.

Transport Provider Interface (TPI) 53

T_ORDREL_IND TPI Message Formats

NAME
T_ORDREL_IND - Orderly Release Indication

SYNOPSIS
This message consists of a M_PROTO message block formatted as follows:

struct T_ordrel_ind {
t_scalar_t PRIM_type; /* Always T_ORDREL_IND */

};

DESCRIPTION
This primitive indicates to the transport user that the user on the other side of the connection is
finished sending data. This primitive is only supported by the transport provider if it is of type
T_COTS_ORD.

PARAMETERS

PRIM_type
identifies the primitive type.

MODES
Only connection-mode.

ORIGINATOR
Transport provider.

54 CAE Specification

TPI Message Formats T_ORDREL_REQ

NAME
T_ORDREL_REQ - Orderly Release Request

SYNOPSIS
This message consists of a M_PROTO message block formatted as follows:

struct T_ordrel_req {
t_scalar_t PRIM_type; /* Always T_ORDREL_REQ */

};

DESCRIPTION
This primitive indicates to the transport provider that the user is finished sending data. This
primitive is only supported by the transport provider if it is of type T_COTS_ORD.

PARAMETERS

PRIM_type
identifies the primitive type.

RULES
This primitive does not require any acknowledgments, although it may generate a fatal error.
This is indicated via a M_ERROR message type which results in the failure of all operating
system service routines on the stream.

ERRORS

[EPROTO]
This indicates the unrecoverable protocol condition that the primitive would place the
interface in an incorrect state.

MODES
Only connection-mode.

ORIGINATOR
Transport user.

Transport Provider Interface (TPI) 55

T_UDERROR_IND TPI Message Formats

NAME
T_UDERROR_IND - Unitdata Error Indication

SYNOPSIS
This message consists of a M_PROTO message block formatted as follows:

struct T_uderror_ind {
t_scalar_t PRIM_type; /* Always T_UDERROR_IND */
t_scalar_t DEST_length;
t_scalar_t DEST_offset;
t_scalar_t OPT_length;
t_scalar_t OPT_offset;
t_scalar_t ERROR_type;

};

DESCRIPTION
This primitive indicates to the transport user that a datagram with the specified destination
address and options produced an error.

PARAMETERS

PRIM_type
identifies the primitive type.

DEST_length
is the length of the destination address.

DEST_offset
is the offset (from the beginning of the M_PROTO message block) where the destination
address begins.

OPT_length
is the length of the requested options associated with the primitive.

OPT_offset
is the offset (from the beginning of the M_PROTO message block) of the requested options
associated with the primitive.

ERROR_type
defines the protocol dependent error code.

The proper alignment of the destination address and options in the M_PROTO message block is
not guaranteed.

MODES
Only connectionless-mode.

ORIGINATOR
Transport provider.

56 CAE Specification

TPI Message Formats T_UNBIND_REQ

NAME
T_UNBIND_REQ - Unbind Protocol Address Request

SYNOPSIS
This message consists of a M_PROTO message block formatted as follows:

struct T_unbind_req {
t_scalar_t PRIM_type; /* Always T_UNBIND_REQ */

};

DESCRIPTION
This primitive requests that the transport provider unbind the protocol address associated with
the stream and deactivate the stream.

PARAMETERS

PRIM_type
indicates the primitive type.

RULES
This primitive requires the transport provider to generate the following acknowledgments on
receipt of the primitive and that the transport user must wait for the acknowledgment before
issuing any other primitives:

Successful
Correct acknowledgment of the primitive is indicated via the T_OK_ACK primitive
described in reference TPI-SMD.

Non-fatal errors
These errors will be indicated via the T_ERROR_ACK primitive described in reference TPI-
SMD.

ERRORS
The allowable errors are as follows:

[TOUTSTATE]
The primitive would place the transport interface out of state.

[TSYSERR]
A system error has occurred and the UNIX System error is indicated in the primitive.

MODES
Both connection-mode and connectionless-mode.

ORIGINATOR
Transport user.

Transport Provider Interface (TPI) 57

T_UNITDATA_IND TPI Message Formats

NAME
T_UNITDATA_IND - Unitdata Indication

SYNOPSIS
This message consists of one M_PROTO message block followed by zero or more M_DATA
message blocks where each M_DATA message block contains at least one byte of data. The
format of the M_PROTO message block is as follows:

struct T_unitdata_ind {
t_scalar_t PRIM_type; /* Always T_UNITDATA_IND */
t_scalar_t SRC_length;
t_scalar_t SRC_offset;
t_scalar_t OPT_length;
t_scalar_t OPT_offset;

};

DESCRIPTION
This primitive indicates to the transport user that a datagram has been received from the
specified source address.

PARAMETERS

PRIM_type
identifies the primitive type.

SRC_length
is the length of the source address.

SRC_offset
is the offset (from the beginning of the M_PROTO message block) where the source address
begins.

OPT_length
is the length of the requested options associated with the primitive.

OPT_offset
is the offset (from the beginning of the M_PROTO message block) of the requested options
associated with the primitive.

The proper alignment of the source address and options in the M_PROTO message block is not
guaranteed.

MODES
Only connectionless-mode.

ORIGINATOR
Transport provider.

58 CAE Specification

TPI Message Formats T_UNITDATA_REQ

NAME
T_UNITDATA_REQ - Unitdata Request

SYNOPSIS
This message consists of one M_PROTO message block followed by zero or more M_DATA
message blocks where each M_DATA message block contains zero or more bytes of data. The
format of the M_PROTO message block is as follows:

struct T_unitdata_req {
t_scalar_t PRIM_type; /* Always T_UNITDATA_REQ */
t_scalar_t DEST_length;
t_scalar_t DEST_offset;
t_scalar_t OPT_length;
t_scalar_t OPT_offset;

};

DESCRIPTION
This primitive requests that the transport provider send the specified datagram to the specified
destination.

PARAMETERS

PRIM_type
identifies the primitive type.

DEST_length
is the length of the destination address

DEST_offset
is the offset (from the beginning of the M_PROTO message block) where the destination
address begins.

OPT_length
is the length of the requested options associated with the primitive.

OPT_offset
is the offset (from the beginning of the M_PROTO message block) of the requested options
associated with the primitive.

The proper alignment of the destination address and options in the M_PROTO message block is
not guaranteed. The destination address and options in the M_PROTO message block are,
however, aligned the same as they were received from the transport user.

This primitive does not require any acknowledgment. If a non-fatal error occurs, it is the
responsibility of the transport provider to report it via the T_UDERROR_IND indication. Fatal
errors are indicated via a M_ERROR message type which results in the failure of all operating
system service routines on the stream.

ERRORS
The allowable fatal errors are as follows:

[EPROTO]
This indicates one of the following unrecoverable protocol conditions:

• The transport service interface was found to be in an incorrect state.

• The amount of transport user data associated with the primitive defines an transport
service data unit larger than that allowed by the transport provider.

Transport Provider Interface (TPI) 59

T_UNITDATA_REQ TPI Message Formats

MODES
Only connectionless-mode.

ORIGINATOR
Transport user.

60 CAE Specification

Appendix A

Connection Acceptance

Connection acceptance with TPI is not easy to understand without the benefit of knowing how it
has evolved. This Appendix therefore offers background information to explain the state of
affairs under existing common implementations, and hence assist the reader in understanding an
existing implementation or designing a new one.

The following text is provided for informational purposes only and should not be construed as
imposing normative requirements.

For brevity in the following discussion:

user means a transport user

provider means a transport provider

address means a transport address

endpoint means a transport endpoint .

A.1 Accepting Incoming Connections
In order to field an incoming connection request, a user must establish an endpoint and use the
T_BIND_REQ message (with a CONIND_number greater than zero) to bind to the local address.
The CONIND_number in that message expresses the number of outstanding incoming
connection requests the endpoint should support. There may be more than one endpoint bound
to the same local address, but only one of them at a time may have a CONIND_number greater
than zero. Such an endpoint, if it exists, is called a listener. The other endpoints, if any, bound to
the same address will either be conducting outgoing connections or carrying out incoming
connections which were processed by a listener. There can only be one listener for each local
address because the provider needs to know where to send any T_CONN_IND messages for
that address.

Each listening endpoint can only be listening on one local address. When an incoming
connection request is detected by the provider it looks for a matching listener in the TS_BIND
state. If it does not find one, it fails the connection request, otherwise it constructs a
T_CONN_IND message and sends it up the listener to the user. The user sends a T_CONN_RES
if it wants to accept the connection, or a T_DISCON_REQ if it does not.

It is permissible for the listener to conduct the actual connection, but this is unusual in practice
because, while it is doing so, it cannot also perform its listening task because it will be in some
other state than TS_BIND. By far the more usual methodology is for the user to establish a new
endpoint and use that for conducting the actual connection while the listener continues to listen
for further incoming connections. The T_CONN_RES message contains a field ACCEPTOR_id
which is used to identify the endpoint on which the user wishes to conduct the connection. The
encoding of this field is implementation specific as are the methods of acquiring a valid value for
it, and the method employed by the provider in interpreting it.

In older versions of the TPI standard the ACCEPTOR_id field was called QUEUE_ptr and had the
type queue_t *. This unfortunately exposed an implementation detail which made the use of
TPI difficult on systems where a pointer is a different length at different times (for example a 64-
bit system supporting both 32-bit and 64-bit user applications), and also on systems where
transport provider operates in a different address space from other parts of the operating
system. Nevertheless, on many systems, the ACCEPTOR_id is still given the value of the

Transport Provider Interface (TPI) 61

Accepting Incoming Connections Connection Acceptance

provider queue pair read pointer of the endpoint which is to be used to conduct the connection.
This remains a perfectly good implementation strategy for those systems which do not suffer the
problems mentioned above. The value of the QUEUE_ptr variable was never used by the user as
any more than an opaque identifier value (in fact most implementations did not even expose the
value to the user).

A.2 The Common Single Type Model Implementation
The provider constructs a T_CONN_IND message with the source address of the originating
(usually remote) user. It includes any (protocol specific) options and creates a unique reference
number which it places in SEQ_number. The encoding and origin of this field is implementation
specific under the constraint that it must be unique during the lifetime of the connection
acceptance. Some implementations use the address of a kernel data structure associated with
the connection request. Others use an incrementing counter and trust that less than 4,294,967,296
incoming connection requests do not occur on this provider before the user responds (this is a
fairly safe assumption). The user is then sent the message on the listener.

When the user receives the T_CONN_IND message, it usually opens an entirely new endpoint
(to the same transport provider). It may choose to bind that new endpoint to a local address, or
it may leave the provider to perform that task on receipt of the T_CONN_RES. Any address it
binds to must satisfy the requirements of the provider for the connection. The new endpoint
should not have a CONIND_number greater than 0.

The user constructs a T_CONN_RES message. It copies in the SEQ_number from the
T_CONN_IND (otherwise the transport will not know to which connection it is responding),
removes (if necessary) the options it is not prepared to support, and copies the remainder into
the T_CONN_RES . The T_CONN_RES is now complete except for the ACCEPTOR_id. The
user does not directly have the information to include in this field; only the operating system
kernel can derive that. The usual solution is for the kernel to supply a special ioctl(2) call called
I_FDINSERT which expects as argument a T_CONN_RES message and the file-descriptor of the
new (accepting) endpoint. This ioctl(2) call is specially treated. Before the message is sent down
to the provider, the kernel uses the file-descriptor to access the endpoint. It extracts the value of
the provider read queue pointer from that endpoint and places its value in the ACCEPTOR_id
field. Then it sends the message to the provider.

The provider cross-references the SEQ_number and determines that it has such a pending
connection, then it checks that the ACCEPTOR_id matches the read queue pointer of a valid
endpoint (it must exist and obey all the general and provider specific rules). If it is not already
bound to a local address the provider will bind it to the same address as that to which the
listener is bound. If the ACCEPTOR_id identifies the listener, then the listener becomes the
acceptor and further incoming connection requests for its address will fail, at least until the
connection terminates. In the usual case, however, a new endpoint is used to conduct the new
connection.

If the listener concocts an ACCEPTOR_id which does not represent one of its own endpoints, and
gets it exactly correct, then it is possible that it could foist one of its own connections off onto an
unsuspecting endpoint if it was in the correct state, etc. This could be a denial of service attack.
What it cannot do, is to hijack a connection from another listener.

62 CAE Specification

Connection Acceptance Possible Multiple Type Model Implementation Methodologies

A.3 Possible Multiple Type Model Implementation Methodologies
On 64-bit systems, a decision needs to be made about how to provide a consistent
ACCEPTOR_id which has the property of being unique within each transport provider. If the
I_FDINSERT ioctl(2) call is still used, then the ACCEPTOR_id encoding must be based on data
which is accessible to the STREAM head when the I_FDINSERT call is made. It is likely to be
simplest just to encode the 64-bit value of the read queue pointer in the 32-bit ACCEPTOR_id,
possibly simply by truncation. The key is to preserve the uniqueness of the value as an
identifier.

The STREAM head generates the identifier and places the result in ACCEPTOR_id. When the
T_CONN_RES message reaches the provider, it decodes the ACCEPTOR_id to identify the
accepting endpoint.

Transport Provider Interface (TPI) 63

Connection Acceptance

64 CAE Specification

Glossary

CLTS
Connectionless mode of service, in which the origin and destination addresses are included in
each message packet so that a direct connection or established session between origin and
destination is not required.

COTS
Connection-oriented mode of service, requiring a direct connection or established session
between origin and destination.

IP
Internet Protocol

STREAMS
A feature of UNIX that provides a standard way of dynamically building and passing messages
up and down a protocol stack. Upstream messages are passed from the network driver through
the STREAMS modules to the application. Downstream messages flow from the application to
the network driver. A STREAMS module would be a transport layer protocol (e.g. TCP) or a
network layer protocol (e.g. IP).

TCP
Transmission Control Protocol

TPI
Transport Provider Interface

Type Model
A mapping of the C language fundamental types onto the data formats supported by a
computer architecture. Examples of type models are ILP32 (char 8 bits, short 16 bits, int, long
and pointer 32 bits), and LP64 (char 8 bits, short 16 bits, int 32 bits, long and pointer 64 bits).

UI
UNIX International. This organization developed the original specification for TPI. It was
subsequently acquired by UNIX System Laboratories.

USL
UNIX System Laboratories. This organization acquired the TPI specification rights from UI. It
was subsequently acquired by Novell Inc.

Transport Provider Interface (TPI) 65

Glossary

66 CAE Specification

Index

32-bit..62
64-bit..63
address..61
allowable sequence of TPI primitives9
CLTS ..65
connection acceptance ...61
connection-mode ..2, 4
connection-oriented mode......................................14
connectionless mode..15
connectionless-mode ...2, 4
COTS ...65
data transfer state table for CLTS..........................15
data transfer state table for COTS.........................14
endpoint..61
EPROTO ...4
event ..9
fatal error..3
flushing queues ...5
implementation-defined19, 61
implementations ...1
incoming events..12
initialization state table ...13
IP ..65
ISO IS 8072 ...3
ISO IS 8072/DAD ...3
kernel level incoming events..................................12
kernel level outgoing events11
kernel level states ...10
message format ...19
message interface..2
message type ...7
multiple

type..63
M_DATA...2
M_ERROR..2, 4
M_FLUSH...2, 5
M_PCPROTO ..2
M_PROTO..2
non-fatal error..3
OSI ...1
outgoing events...11
precedence ...17

rules" ...5"
stream read queue..18
stream write queue ..17

primitive...2, 4, 9, 17

primitives list...7
protocol...1
provider ..61
rules for flushing queues...5
rules for precedence ...5
rules for TPI sequence of primitives.......................4
sequence of primitives...4
single type model ...62
state..9
state table ...10, 13

data transfer for CLTS ...15
data transfer for COTS ..14
initialization...13

state table variables..11
stream read queue ..18
stream write queue...17
streams ..1-2
STREAMS...65
streams message ...2
streams message type ..7
TCP ..65
TPI..65
TPI message formats..19
transport address..61
transport endpoint

. ...61
transport layer ...1
transport primitive ...2
transport primitive precedence17
transport primitives ...7
transport provider..2, 61
transport service definitions.....................................3
transport service state table....................................13
transport user ..9, 61
Type Model ..65
T_ADDR_ACK..20
T_ADDR_REQ ..21
T_BIND_ACK..22
T_BIND_REQ ..24
T_CONN_CON ..26
T_CONN_IND ..27
T_CONN_REQ..28
T_CONN_RES...30
T_DATA_IND..33
T_DATA_REQ ...34
T_DISCON_IND...36

Transport Provider Interface (TPI) 67

Index

T_DISCON_REQ ..37
T_ERROR_ACK ..39
T_EXDATA_IND...40
T_EXDATA_REQ..41
T_INFO_ACK..42
T_INFO_REQ ..44
T_OK_ACK..45
T_OPTDATA_IND ...48
T_OPTDATA_REQ...50
T_OPTMGMT_ACK ..46
T_OPTMGMT_REQ...52
T_ORDREL_IND ..54
T_ORDREL_REQ..55
T_UDERROR_IND...56
T_UNBIND_REQ..57
T_UNITDATA_IND ...58
T_UNITDATA_REQ...59
UI..65
user ..61
USL ..65
variables..11

68 CAE Specification

