
CAE Specification

System Interface Definitions, Issue 5

The Open Group

 February 1997, The Open Group

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

CAE Specification

System Interface Definitions, Issue 5

ISBN: 1-85912-186-1
Document Number: C605

Published in the U.K. by The Open Group, February 1997.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

Portions of this document are derived from IEEE Std 1003.1-1996, copyright  1996
(incorporating ANSI/IEEE Stds 1003.1-1990, 1003.1b-1993, 1003.1c-1995 and 1003.1i-1995) by the
Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE.

Portions of this document are derived from IEEE Std P1003.2-1992 and IEEE Std P1003.2a-1992,
copyright  1992 by the Institute of Electrical and Electronics Engineers, Inc. ISO/IEC
9945-2: 1993, Information Technology — Portable Operating System (POSIX) — Part 2: Shell and
Utilities is technically identical to the IEEE standards in these areas.

Portions of this document are derived from copyrighted material owned by Hewlett-Packard
Company, International Business Machines Corporation, Novell Inc., The Open Software
Foundation, and Sun Microsystems, Inc.

ii CAE Specification (1997)

Contents

Chapter 1 Introduction... 1
 1.1 Overview .. 1
 1.2 Terminology... 1
 1.3 Portability ... 2

Chapter 2 Glossary ... 5

Chapter 3 File Format Notation .. 39

Chapter 4 Character Set ... 43
 4.1 Portable Character Set.. 43
 4.2 Character Encoding.. 44
 4.3 C Language Wide-character Codes .. 45
 4.4 Character Set Description File.. 45

Chapter 5 Locale... 49
 5.1 General.. 49
 5.2 POSIX Locale ... 50
 5.3 Locale Definition... 50
 5.3.1 LC_CTYPE... 52
 5.3.2 LC_COLLATE... 61
 5.3.3 LC_MONETARY.. 68
 5.3.4 LC_NUMERIC.. 72
 5.3.5 LC_TIME.. 73
 5.3.6 LC_MESSAGES.. 80
 5.4 Locale Definition Grammar.. 82
 5.4.1 Locale Lexical Conventions... 82
 5.4.2 Locale Grammar... 83
 5.5 Locale Definition Example.. 89

Chapter 6 Environment Variables ... 93
 6.1 Environment Variable Definition .. 93
 6.2 Internationalisation Variables .. 95
 6.3 Other Environment Variables... 98

Chapter 7 Regular Expressions ... 101
 7.1 Regular Expression Definitions ... 101
 7.2 Regular Expression General Requirements... 103
 7.3 Basic Regular Expressions .. 104
 7.3.1 BREs Matching a Single Character or Collating Element................ 104
 7.3.2 BRE Ordinary Characters... 104
 7.3.3 BRE Special Characters... 104

System Interface Definitions, Issue 5 iii

Contents

 7.3.4 Periods in BREs... 104
 7.3.5 RE Bracket Expression .. 105
 7.3.6 BREs Matching Multiple Characters.. 107
 7.3.7 BRE Precedence .. 108
 7.3.8 BRE Expression Anchoring.. 108
 7.4 Extended Regular Expressions .. 109
 7.4.1 EREs Matching a Single Character or Collating Element................ 109
 7.4.2 ERE Ordinary Characters... 109
 7.4.3 ERE Special Characters... 109
 7.4.4 Periods in EREs... 110
 7.4.5 ERE Bracket Expression.. 110
 7.4.6 EREs Matching Multiple Characters.. 110
 7.4.7 ERE Alternation.. 111
 7.4.8 ERE Precedence .. 111
 7.4.9 ERE Expression Anchoring.. 111
 7.5 Regular Expression Grammar.. 112
 7.5.1 BRE/ERE Grammar Lexical Conventions.. 112
 7.5.2 RE and Bracket Expression Grammar ... 113
 7.5.3 ERE Grammar... 115

Chapter 8 Directory Structure and Devices .. 117
 8.1 Directory Structure and Files ... 117
 8.2 Output Devices and Terminal Types .. 118

Chapter 9 General Terminal Interface.. 119
 9.1 Interface Characteristics .. 119
 9.1.1 Opening a Terminal Device File ... 119
 9.1.2 Process Groups... 119
 9.1.3 The Controlling Terminal... 119
 9.1.4 Terminal Access Control .. 120
 9.1.5 Input Processing and Reading Data... 120
 9.1.6 Canonical Mode Input Processing ... 121
 9.1.7 Non-canonical Mode Input Processing... 121
 9.1.8 Writing Data and Output Processing .. 122
 9.1.9 Special Characters.. 123
 9.1.10 Modem Disconnect.. 124
 9.1.11 Closing a Terminal Device File ... 124
 9.2 Parameters that Can be Set ... 125
 9.2.1 The termios Structure ... 125
 9.2.2 Input Modes.. 125
 9.2.3 Output Modes .. 126
 9.2.4 Control Modes.. 128
 9.2.5 Local Modes .. 129
 9.2.6 Special Control Characters .. 131

iv CAE Specification (1997)

Contents

Chapter 10 Utility Conventions .. 133
 10.1 Utility Argument Syntax ... 133
 10.2 Utility Syntax Guidelines .. 136

 Index... 139

List of Tables

2-1 Job Control Job ID Formats.. 18
3-1 Escape Sequences and Associated Actions .. 40
4-1 Portable Character Set... 43
4-2 Control Character Set.. 46
5-1 Valid Character Class Combinations... 56
8-1 Control Character Names .. 118

System Interface Definitions, Issue 5 v

Contents

vi CAE Specification (1997)

Preface

The Open Group

The Open Group is an international open systems organisation that is leading the way in
creating the infrastructure needed for the development of network-centric computing and the
information superhighway. Formed in 1996 by the merger of the X/Open Company and the
Open Software Foundation, The Open Group is supported by most of the world’s largest user
organisations, information systems vendors and software suppliers. By combining the strengths
of open systems specifications and a proven branding scheme with collaborative technology
development and advanced research, The Open Group is well positioned to assist user
organisations, vendors and suppliers in the development and implementation of products
supporting the adoption and proliferation of open systems.

With more than 300 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• consolidating, prioritising and communicating customer requirements to vendors

• conducting research and development with industry, academia and government agencies to
deliver innovation and economy through projects associated with its Research Institute

• managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• adopting, integrating and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• licensing and promoting the X/Open brand that designates vendor products which conform
to X/Open Product Standards

• promoting the benefits of open systems to customers, vendors and the public.

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trade mark on behalf of the industry.

The X/Open Process

This description is used to cover the whole Process developed and evolved by X/Open. It
includes the identification of requirements for open systems, development of CAE and
Preliminary Specifications through an industry consensus review and adoption procedure (in
parallel with formal standards work), and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product. There are currently two forms of Product Standard, namely the
Profile Definition and the Component Definition, although these will eventually be merged into
one.

System Interface Definitions, Issue 5 vii

Preface

The X/Open brand logo is used by vendors to demonstrate that their products conform to the
relevant Product Standard. By use of the X/Open brand they guarantee, through the X/Open
Trade Mark Licence Agreement (TMLA), to maintain their products in conformance with the
Product Standard so that the product works, will continue to work, and that any problems will
be fixed by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical literature, the main part of which is
focused on specification development and product documentation, but which also includes
Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry surveys
and business titles.

There are several types of specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the stable specifications that
form the basis for our product standards, which are used to develop X/Open branded
systems. These specifications are intended to be used widely within the industry for product
development and procurement purposes.

Anyone developing products that implement a CAE Specification can enjoy the benefits of a
single, widely supported industry standard. In addition, they can demonstrate product
compliance through the X/Open brand. CAE Specifications are published as soon as they
are developed, so enabling vendors to proceed with development of conformant products
without delay.

• Preliminary Specifications

Preliminary Specifications usually address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations. They are
published for the purpose of validation through implementation of products. A Preliminary
Specification is not a draft specification; rather, it is as stable as can be achieved, through
applying The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organisations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a CAE Specification.
While the intent is to progress Preliminary Specifications to corresponding CAE
Specifications, the ability to do so depends on consensus among Open Group members.

• Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as CAE Specifications, in which case the relevant Technology
Specification is superseded by a CAE Specification.

viii CAE Specification (1997)

Preface

In addition, The Open Group publishes:

• Product Documentation

This includes product documentation — programmer’s guides, user manuals, and so on —
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides

These provide information that is useful in the evaluation, procurement, development or
management of open systems, particularly those that relate to the CAE Specifications. The
Open Group Guides are advisory, not normative, and should not be referenced for purposes
of specifying or claiming conformance to a Product Standard.

• Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Programme. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

• Snapshots

These provide a mechanism to disseminate information on its current direction and thinking,
in advance of possible development of a Specification, Guide or Technical Study. The
intention is to stimulate industry debate and prototyping, and solicit feedback. A Snapshot
represents the interim results of a technical activity.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new developments
and associated international standards. To distinguish between revised specifications which are
fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/public/pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.opengroup.org/public/pubs.

System Interface Definitions, Issue 5 ix

Preface

This Specification

This specification is one of a set of CAE Specifications (see above) defining the X/Open System
Interface (XSI) operating system requirements:

• System Interface Definitions, Issue 5 (this specification)

• Commands and Utilities, Issue 5 (the XCU specification)

• System Interfaces and Headers, Issue 5 (the XSH specification).

This specification provides common definitions for the XCU specification and the XSH
specification, therefore readers should be familiar with this specification before using the XCU
specification or the XSH specification. This specification is structured as follows:

• Chapter 1 is an introduction.

• Chapter 2 defines general terms used in this specification, the XCU specification and the XSH
specification.

• Chapter 3 describes the notation used to specify file input and output formats in this
specification and the XCU specification.

• Chapter 4 describes the Portable Character Set and the process of character set definition.

• Chapter 5 describes the syntax for defining internationalisation locales as well as the POSIX
locale provided on all systems.

• Chapter 6 describes the use of environment variables for internationalisation and other
purposes.

• Chapter 7 describes the syntax of pattern matching using regular expressions employed by
many utilities and matched by the regcomp() and regexec() functions.

• Chapter 8 describes files and devices found on all systems.

• Chapter 9 describes the asynchronous terminal interface for many of the XSH specification’s
functions and the XCU specification’s stty utility.

• Chapter 10 describes the policies for command-line argument construction and parsing.

Comprehensive references are available in the index.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— command operands, command option-arguments or variable names, for example,
substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name(); names without parentheses are C external
variables, C function family names, utility names, command operands or command

x CAE Specification (1997)

Preface

option-arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

• The notation [EABCD] is used to identify an error value EABCD.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [] , are part of the syntax and do not indicate optional
items. In syntax the | symbol is used to separate alternatives, and ellipses (...) are used to
show that additional arguments are optional.

• Bold fixed width font is used to identify brackets that surround optional items in syntax,
[] , and to identify system output in interactive examples.

• Variables within syntax statements are shown in italic fixed width font .

• Ranges of values are indicated with parentheses or brackets as follows:

— (a,b) means the range of all values from a to b, including neither a nor b

— [a,b] means the range of all values from a to b, including a and b

— [a,b) means the range of all values from a to b, including a, but not b

— (a,b] means the range of all values from a to b, including b, but not a.

• Shading is used to identify extensions or warnings as detailed in Codes on page 2.

Note: A symbolic limit beginning with POSIX is treated differently, depending on context. In
a C-language header, the symbol {POSIXstring} (where string may contain underscores)
is represented by the C identifier _POSIXstring, with a leading underscore required to
prevent ISO C name space pollution. However, in this specification, the leading
underscore is not used because this requirement does not exist for languages other than
C.

System Interface Definitions, Issue 5 xi

Trade Marks

AT&T is a registered trade mark of AT&T in the U.S.A. and other countries.

HP is a registered trade mark of Hewlett-Packard.

Motif, OSF/1 and UNIX are registered trade marks and the ‘‘X Device’’TM and The Open
GroupTM are trade marks of The Open Group.

/usr/group is a registered trade mark of UniForum, the International Network of UNIX
System Users.

xii CAE Specification (1997)

Acknowledgements

The Open Group gratefully acknowledges:

• AT&T for permission to reproduce portions of its copyrighted System V Interface Definition
(SVID) and material from the UNIX System V Release 2.0 documentation.

• The Institution of Electrical and Electronics Engineers, Inc. for permission to reproduce
portions of its copyrighted material.

• The IEEE Computer Society’s Portable Applications Standards Committee (PASC), whose
Standards contributed to our work.

• The ANSI X3J11 Committees.

• The Large File Summit for their work in developing the set of changes to the X/Open Single
UNIX Specification to support large files.

• The following Base Working Group members for their valuable contribution to the
development of this specification:

Theodore P. Baker
Andre Bellotti
Mark Brown
Dave Butenhof
Dennis Chapman
Geoff Clare
Don Cragun
Jeff Denham
Rod Evans

John Farley
Eldad Ganin
Rob Gingell
Karen Gordon
J.M. Gwinn
Tim Heitz
Cathy Hughes (Editor)
Andrew Josey (Chair)
Dave Long

Scott Lurndal
Mick Meaden
Finnbarr P. Murphy
Scott Norton
Gert Presutti
Frank Prindle
Andrew Roach
Curtis Royster, Jr.
Wolfgang Sanow

Lee Schermerhorn
Thomas Shem
Andy Silverman
Dan Stein
Blue Tabor
Jim Zepeda

System Interface Definitions, Issue 5 xiii

Referenced Documents

The following documents are referenced in this specification or in one of its companion
specifications, CAE Specification, Commands and Utilities, Issue 5 or CAE Specification,
System Interfaces and Headers, Issue 5:

AIX 3.2 Manual
AIX Version 3.2 For RISC System/6000, Technical Reference: Base Operating System And
Extensions,1990,1992 (Part No. SC23-2382-00).

ANS X3.9-1978
(Reaffirmed 1989) Programming Language FORTRAN.

ANSI C
American National Standard for Information Systems: Standard X3.159-1989, Programming
Language C.

ANSI/IEEE Std 754-1985
Standard for Binary Floating-Point Arithmetic.

ANSI/IEEE Std 854-1987
Standard for Radix-Independent Floating-Point Arithmetic.

Draft ANSI X3J11.1
IEEE Floating Point draft report of ANSI X3J11.1 (NCEG).

Ethernet
ISO 8802-3: 1990, Information Processing Systems — Local Area Networks — Part 3: Carrier
Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical
Layer Specifications.

FIPS 151-2
Federal Information Procurement Standards (FIPS) 151-2.

HP-UX Manual
Hewlett-Packard HP-UX Release 9.0 Reference Manual, Third Edition, August 1992.

ISO 4217
ISO 4217: 1987, Codes for the Representation of Currencies and Funds.

ISO 6937
ISO 6937: 1983, Information Processing — Coded Character Sets for Text Communication.

ISO 8601
ISO 8601: 1988, Data Elements and Interchange Formats — Information Interchange —
Representation of Dates and Times.

ISO 8859-1
ISO 8859-1: 1987, Information Processing — 8-bit Single-byte Coded Graphic Character Sets
— Part 1: Latin Alphabet No. 1.

ISO/IEC 646
ISO/IEC 646: 1991, Information Processing — ISO 7-bit Coded Character Set for Information
Interchange.

ISO/IEC 1539
ISO/IEC 1539: 1991, Information Technology — Programming Languages — Fortran
(technically identical to ANSI standard X3.9-1978 [FORTRAN 77]).

xiv CAE Specification (1997)

Referenced Documents

ISO C
ISO/IEC 9899: 1990: Programming Languages — C, including:
Technical Corrigendum 1: 1994.
Amendment 1: 1994, Multibyte Support Extensions (MSE) for ISO C.

ISO POSIX-1
ISO/IEC 9945-1: 1996, Information Technology — Portable Operating System Interface
(POSIX) — Part 1: System Application Program Interface (API) [C Language] (identical to
ANSI/IEEE Std 1003.1-1996). Incorporating ANSI/IEEE Stds 1003.1-1990, 1003.1b-1993,
1003.1c-1995 and 1003.1i-1995.

ISO POSIX-2
ISO/IEC 9945-2: 1993, Information Technology — Portable Operating System Interface
(POSIX) — Part 2: Shell and Utilities (identical to IEEE Std 1003.2-1992 as amended by IEEE
Std 1003.2a-1992).

MSE working draft
Working draft of ISO/IEC 9899: 1990/Add3: draft, Addendum 3 — Multibyte Support
Extensions (MSE) as documented in the ISO Working Paper SC22/WG14/N205 dated 31
March 1992.

OSF AES
Application Environment Specification (AES) Operating System Programming Interfaces
Volume, Revision A (ISBN: 0-13-043522-8).

OSF/1
OSF/1 Programmer’s Reference, Release 1.2 (ISBN: 0-13-020579-6).

POSIX.1
IEEE Std 1003.1-1988, Standard for Information Technology — Portable Operating System
Interface (POSIX) — Part 1: System Application Program Interface (API) [C Language].

SunOS 5.3
SunOS 5.3 STREAMS Programmer’s Guide (Part No. 801-5305-10).

SVID Issue 1
System V Interface Definition (Spring 1985 - Issue 1).

SVID Issue 2
System V Interface Definition (Spring 1986 - Issue 2).

SVID 3rd Edition
System Interface Definitions (1989 - 3rd Edition).

System V Release 2.0

— UNIX System V Release 2.0 Programmer’s Reference Manual (April 1984 - Issue 2).

— UNIX System V Release 2.0 Programming Guide (April 1984 - Issue 2).

System V Release 4.2
Operating System API Reference, UNIX SVR4.2 (1992) (ISBN: 0-13-017658-3).

The following Open Group documents are referenced in this specification or in one of its
companion specifications, CAE Specification, Commands and Utilities, Issue 5 or CAE
Specification, System Interfaces and Headers, Issue 5:

Curses Interface, Issue 4, Version 2
CAE Specification, July 1996, X/Open Curses, Issue 4, Version 2 (ISBN: 1-85912-171-3,
C610).

System Interface Definitions, Issue 5 xv

Referenced Documents

Headers Interface
X/Open Specification, February 1992, Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213), Chapter 19, Cpio and Tar Headers; this specification was
formerly X/Open Portability Guide Issue 3, Volume 3, January 1989, XSI Supplementary
Definitions (ISBN: 0-13-685850-3, XO/XPG/89/004).

Internationalisation Guide
Guide, July 1993, Internationalisation Guide, Version 2 (ISBN: 1-859120-02-4, G304).

Issue 1
X/Open Portability Guide, July 1985 (ISBN: 0-444-87839-4).

Issue 3
See XBD, Issue 3.

Issue 4
See XBD, Issue 4.

Issue 4, Version 2
See XBD, Issue 4, Version 2.

Issue 5
See XBD, Issue 5.

Migration Guide
Guide, December 1995, XPG3-XPG4 Base Migration Guide, Version 2 (ISBN: 1-85912-156-X,
G501).

XNS, Issue 5
CAE Specification, February 1997, Networking Services, Issue 5 (ISBN: 1-85912-165-9, C523).

XBD, Issue 3
X/Open Specification, 1988, 1989, February 1992, Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213); this specification was formerly X/Open Portability Guide,
December 1988, Volume 3, (ISBN: 0-13-685850-3, XO/XPG/89/004).

XBD, Issue 4
CAE Specification, July 1992, System Interface Definitions, Issue 4 (ISBN: 1-872630-46-4,
C204).

XBD, Issue 4, Version 2
CAE Specification, August 1994, System Interface Definitions, Issue 4, Version 2
(ISBN: 1-85912-036-9, C434).

XBD, Issue 5
CAE Specification, January 1997, System Interface Definitions, Issue 5 (ISBN: 1-85912-186-1,
C605). (This specification.)

XCU, Issue 2
X/Open Portability Guide, Volume 1, January 1987, XVS Commands and Utilities
(ISBN: 0-444-70174-5).

XCU, Issue 3
X/Open Specification, 1988, 1989, February 1992, Commands and Utilities, Issue 3
(ISBN: 1-872630-36-7, C211); this specification was formerly X/Open Portability Guide,
Volume 1, January 1989 XSI Commands and Utilities (ISBN: 0-13-685835-X,
XO/XPG/89/002).

XCU, Issue 4
CAE Specification, July 1992, Commands and Utilities, Issue 4 (ISBN: 1-872630-48-0, C203).

xvi CAE Specification (1997)

Referenced Documents

XCU, Issue 4, Version 2
CAE Specification, August 1994, Commands and Utilities, Issue 4, Version 2
(ISBN: 1-85912-034-2, C436).

XCU, Issue 5
CAE Specification, January 1997, Commands and Utilities, Issue 5 (ISBN: 1-85912-191-8,
C604).

XNFS, Version 3
CAE Specification, August 1996, Protocols for X/Open Interworking: XNFS, Version 3
(ISBN: 1-85912-160-8, C525).

XPG4, Version 2
The X/Open Branding Programme, How to Brand — What to Buy, February 1995
(ISBN: 1-85912-084-9, X951).

XSH, Issue 2
X/Open Portability Guide, Volume 2, January 1987, XVS System Calls and Libraries
(ISBN: 0-444-70175-3).

XSH, Issue 3
X/Open Specification, February 1992, System Interfaces and Headers, Issue 3
(ISBN: 1-872630-37-5, C212); this specification was formerly X/Open Portability Guide,
Issue 3, Volume 2, January 1989, XSI System Interface and Headers (ISBN: 0-13-685843-0,
XO/XPG/89/003).

XSH, Issue 4
CAE Specification, July 1992, System Interfaces and Headers, Issue 4 (ISBN: 1-872630-47-2,
C202).

XSH, Issue 4, Version 2
CAE Specification, August 1994, System Interfaces and Headers, Issue 4, Version 2
(ISBN: 1-85912-037-7, C435).

XSH, Issue 5
CAE Specification, January 1997, System Interfaces and Headers, Issue 5
(ISBN: 1-85912-181-0, C606).

System Interface Definitions, Issue 5 xvii

Referenced Documents

xviii CAE Specification (1997)

Chapter 1

Introduction

1.1 Overview
This specification provides the common definitions for its companion specifications, CAE
Specification, Commands and Utilities, Issue 5 and CAE Specification, System Interfaces and
Headers, Issue 5 (see Referenced Documents on page xiv). It defines general terms, concepts
and interfaces used by both other volumes. Thus, this volume is a prerequisite for
understanding either of the other two.

1.2 Terminology
The following terms are used in this specification:

can
This describes a permissible optional feature or behaviour available to the user or application; all
systems support such features or behaviour as mandatory requirements.

implementation-dependent
The value or behaviour is not consistent across all implementations. The provider of an
implementation normally documents the requirements for correct program construction and
correct data in the use of that value or behaviour. When the value or behaviour in the
implementation is designed to be variable or customisable on each instantiation of the system,
the provider of the implementation normally documents the nature and permissible ranges of
this variation. Applications that are intended to be portable must not rely on implementation-
dependent values or behaviour.

legacy
Certain features are legacy , which means that they are being retained for compatibility with older
applications, but have limitations which make them inappropriate for developing portable
applications. New applications should use alternative means of obtaining equivalent
functionality. Legacy features are marked LEGACY.

may
With respect to implementations, the feature or behaviour is optional. Applications should not
rely on the existence of the feature. To avoid ambiguity, the reverse sense of may is expressed as
need not , instead of may not .

must
This describes a requirement on the application or user.

should
With respect to implementations, the feature is recommended, but it is not mandatory.
Applications should not rely on the existence of the feature.

With respect to users or applications, the word means recommended programming practice that
is necessary for maximum portability.

System Interface Definitions, Issue 5 1

Terminology Introduction

undefined
A value or behaviour is undefined if this document imposes no portability requirements on
applications for erroneous program constructs or erroneous data. Implementations may specify
the result of using that value or causing that behaviour, but such specifications are not
guaranteed to be consistent across all implementations. An application using such behaviour is
not fully portable to all systems.

unspecified
A value or behaviour is unspecified if this document imposes no portability requirements on
applications for correct program construct or correct data. Implementations may specify the
result of using that value or causing that behaviour, but such specifications are not guaranteed
to be consistent across all implementations. An application requiring a specific behaviour,
rather than tolerating any behaviour when using that functionality, is not fully portable to all
systems.

will
This means that the behaviour described is a requirement on the implementation and
applications can rely on its existence.

1.3 Portability
Some of the utilities in CAE Specification, Commands and Utilities, Issue 5 and functions in
CAE Specification, System Interfaces and Headers, Issue 5 describe functionality that might not
be fully portable to systems based on the ISO POSIX-1 or ISO POSIX-2 standards. Where
enhanced or reduced functionality is specified, the text is shaded and a code in the margin
identifies the nature of the extension or warning (see Codes). For maximum portability, an
application should avoid such functionality.

Unless the primary task of a utility is to produce textual material on its standard output,
application developers should not rely on the format or content of any such material that may be
produced. Where the primary task is to provide such material, but the output format is
incompletely specified, the description is marked. Application developers are warned not to
expect that the output of such an interface on one system will be any guide to its behaviour on
another system.

Codes

The codes and their meanings are as follows:

EX Extension.
The functionality described is an extension to the standards referenced above. Application
writers may confidently make use of an extension as it will be supported on all XSI-conformant
systems. These extensions are designed not to conflict with the published standards.

If an entire SYNOPSIS section is shaded and marked with one EX, all the functionality described
in that entry is an extension.

Some behaviour which is allowed to be optional in the formal standards is mandated on XSI-
conformant systems. Such behaviours (for example, those dependent on the availability of job
control) might not be individually marked as extensions, but the mandatory nature of the feature
is marked as an extension where the option is described, typically in the header where the
corresponding symbolic constant is defined.

2 CAE Specification (1997)

Introduction Portability

FIPS FIPS Requirements.
The Federal Information Processing Standards (FIPS) are a series of U.S. government
procurement standards managed and maintained on behalf of the U.S. Department of
Commerce by the National Institute of Standards and Technology (NIST). Where restrictions
have been made in order to align with the FIPS requirements, they have the special mark shown
here, and appear in the index under FIPS alignment (as well as under EX).

The following restrictions are required by FIPS 151-2:

• The implementation will support {_POSIX_CHOWN_RESTRICTED}.

• The limit {NGROUPS_MAX} will be greater than or equal to 8.

• The implementation will support the setting of the group ID of a file (when it is created) to
that of the parent directory.

• The implementation will support {_POSIX_SAVED_IDS}.

• The implementation will support {_POSIX_VDISABLE}.

• The implementation will support {_POSIX_JOB_CONTROL}.

• The implementation will support {_POSIX_NO_TRUNC}.

• The read() call returns the number of bytes read when interrupted by a signal and will not
return −1.

• The write() call returns the number of bytes written when interrupted by a signal and will
not return −1.

• In the environment for the login shell, the environment variables LOGNAME and HOME will
be defined and have the properties described in Chapter 5 of this document.

• The value of {CHILD_MAX} will be greater than or equal to 25.

• The value of {OPEN_MAX} will be greater than or equal to 20.

• The implementation will support the functionality associated with the symbols CS7, CS8,
CSTOPB, PARODD and PARENB defined in <termios.h>.

JC Job Control Extension.
Job control is an optional feature in the operating system described by the ISO POSIX-1
standard, but it is supported by all XSI-conformant systems. When interfaces rely on this
extension, they have the special mark shown here and appear in the index under JC (in addition
to being under EX).

OB Obsolescent.
Some of the interfaces describe functionality that is obsolescent. Although these are fully
portable to all current XSI-conformant systems they may be withdrawn in future issues.

OF Output format incompletely specified.
The format of the output produced by the utility is not fully specified. It is therefore not possible
to post-process this output in a consistent fashion. Typical problems include unknown length of
strings and unspecified field delimiters.

System Interface Definitions, Issue 5 3

Portability Introduction

OH Optional header.
In the SYNOPSIS section of some interfaces in CAE Specification, System Interfaces and
Headers, Issue 5 an included header is marked as in the following example:

OH #include <sys/types.h>
#include <grp.h>
struct group *getgrnam(const char *name);

This indicates that the marked header is not required on XSI-conformant systems. This is an
extension to certain formal standards where the full synopsis is required.

OP Dependent on optional service in XSI.
Typical implementations depend on an optional service and the functionality affected need not
be present if the optional service is not supported.

PI The behaviour cannot be guaranteed to be consistent.
It is not possible to guarantee that the interface behaves in the same way on all XSI-conformant
systems. This is the case if it provides functionality that is system-defined or system-specific.
Options that are used to select alternative forms of system-specific behaviour are not marked, as
it is clear from their descriptions that their use is inherently non-portable.

RT Realtime.
This identifies the interfaces and additional semantics in the Realtime Feature Group.

RTT Realtime Threads.
This identifies the interfaces and additional semantics in the Realtime Threads Feature Group.

UN Possibly unsupportable feature.
It need not be possible to implement the required functionality (as defined) on all XSI-
conformant systems and the functionality need not be present. This may, for example, be the
case where the XSI-conformant system is hosted and the underlying system provides the service
in an alternative way.

4 CAE Specification (1997)

Chapter 2

Glossary

absolute pathname
See pathname resolution on page 22.

access mode
A particular form of access permitted to a file.

additional file access control mechanism
See file access permissions on page 14.

address space
The memory locations that can be referenced by a process or the threads of a process.

affirmative response
An input string that matches one of the responses acceptable to the LC_MESSAGES category
keyword yesexpr, matching an extended regular expression in the current locale; see Section
5.3.6 on page 80.

alert
To cause the user’s terminal to give some audible or visual indication that an error or some other
event has occurred. When the standard output is directed to a terminal device, the method for
alerting the terminal user is unspecified. When the standard output is not directed to a terminal
device, the alert is accomplished by writing the alert character to standard output (unless the
utility description indicates that the use of standard output produces undefined results in this
case).

alert character
A character that in the output stream should cause a terminal to alert its user via a visual or
audible notification. The alert character is the character designated by ’\a’ in the C language. It
is unspecified whether this character is the exact sequence transmitted to an output device by
the system to accomplish the alert function.

alias name
A word consisting solely of underscores, digits and alphabetics from the portable character set
(see Section 4.1 on page 43) and any of the following characters:

! % , @

Implementations may allow other characters within alias names as an extension.

alternate file access control mechanism
See file access permissions on page 14.

alternate signal stack
EX Memory associated with a thread, established upon request by the implementation for a thread,

separate from the thread signal stack, in which signal handlers responding to signals sent to that
thread may be executed.

angle brackets
The characters "<" (left-angle-bracket) and ">" (right-angle-bracket). When used in the phrase
‘‘enclosed in angle brackets’’, the symbol "<" immediately precedes the object to be enclosed, and
">" immediately follows it. When describing these characters in the portable character set, the
names <less-than-sign> and <greater-than-sign> are used.

System Interface Definitions, Issue 5 5

Glossary

appropriate privileges
An implementation-dependent means of associating privileges with a process with regard to the
function calls and function call options defined in the XSH specification, and the commands in
the XCU specification, that need special privileges. There may be zero or more such means.

argument
In the shell, a parameter passed to a utility as the equivalent of a single string in the argv array
created by one of the exec functions. See Section 10.1 on page 133 and the XCU specification,
Command Search and Execution in Section 2.9.1. An argument is one of the options, option-
arguments or operands following the command name.

In the C language, an expression in a function call expression or a sequence of preprocessing
tokens in a function-like macro invocation.

arm (a timer)
To start a timer measuring the passage of time, enabling notifying a process when the specified
time or time interval has passed.

assignment
See variable assignment on page 35.

asterisk
The character "*".

async-cancel safe function
A function that may be safely invoked by an application while the asynchronous form of
cancellation is enabled. No function is async-cancel-safe unless explicitly described as such.

async-signal safe function
A function that may be invoked, without restriction, from signal-catching functions. No
function is async-signal safe unless explicitly described as such.

asynchronously generated signal
A signal that is not attributable to a specific thread. Examples are: signals sent via kill (), signals
sent from the keyboard, and signals delivered to process groups. Being asynchronous is a
property of how the signal was generated and not a property of the signal number. All signals
may be generated asynchronously.

asynchronous I/O operation
An I/O operation that does not of itself cause the thread requesting the I/O to be blocked from
further use of the processor.

This implies that the process and the I/O operation may be running concurrently.

asynchronous I/O completion
For an asynchronous read or write operation, when a corresponding synchronous read or write
would have completed and when any associated status fields have been updated.

background job
See background process group.

background process
A process that is a member of a background process group.

background process group
(Or background job.) Any process group, other than a foreground process group, that is a
member of a session that has established a connection with a controlling terminal.

6 CAE Specification (1997)

Glossary

backquote
The character `, also known as a grave accent .

backslash
The character "\", also known as a reverse solidus .

backspace character
A character that, in the output stream, should cause printing (or displaying) to occur one column
position previous to the position about to be printed. If the position about to be printed is at the
beginning of the current line, the behaviour is unspecified. The backspace is the character
designated by ’\b’ in the C language. It is unspecified whether this character is the exact
sequence transmitted to an output device by the system to accomplish the backspace function.
The backspace character defined here is not necessarily the ERASE special character defined in
Section 9.1.9 on page 123.

base character
One of the set of characters defined in the Latin alphabet. In Western European languages other
than English, these characters are commonly used with diacritical marks (accents, cedilla, and so
on) to extend the range of characters in an alphabet.

basename
The final, or only, filename in a pathname.

basic regular expression
A pattern constructed according to the rules defined in Section 7.3 on page 104.

blank character
One of the characters that belong to the blank character class as defined via the LC_CTYPE
category in the current locale. In the POSIX locale, a blank character is either a tab or a space
character.

blank line
A line consisting solely of zero or more blank characters terminated by a newline character. See
also empty line on page 12.

blocked process (or thread)
A process (or thread) that is waiting for some condition (other than the availability of a
processor) to be satisfied before it can continue execution.

block-mode terminal
A terminal device operating in a mode incapable of the character-at-a-time input and output
operations described by some of the standard utilities. See Section 8.2 on page 118.

block special file
A file that refers to a device. A block special file is normally distinguished from a character
special file by providing access to the device in a manner such that the hardware characteristics
of the device are not visible.

braces
The characters "{" (left brace) and "}" (right brace), also known as curly braces. When used in the
phrase ‘‘enclosed in (curly) braces’’ the symbol "{" immediately precedes the object to be
enclosed, and "}" immediately follows it. When describing these characters in the portable
character set, the names <left-brace> and <right-brace> are used.

brackets
The characters "[" (left-bracket) and "]" (right-bracket), also known as square brackets . When used
in the phrase ‘‘enclosed in (square) brackets’’ the symbol "[" immediately precedes the object to
be enclosed, and "]" immediately follows it. When describing these characters in the portable

System Interface Definitions, Issue 5 7

Glossary

character set, the names <left-square-bracket> and <right-square-bracket> are used.

break value
EX The address at which dynamic memory allocation starts.

built-in utility
(Or built-in.) A utility implemented within a shell. The utilities referred to as special built-ins
have special qualities, described in the XCU specification, Section 2.14, Special Built-in
Utilities. Unless qualified, the term built-in includes the special built-in utilities. The utilities
referred to as regular built-ins are those named in the XCU specification, Command Search and
Execution in Section 2.9.1. There is no requirement that these utilities be actually built into the
shell on the implementation, but they do have special command-search qualities.

byte
An individually addressable unit of data storage that is equal to or larger than an octet, used to
store a character or a portion of a character; see character. A byte is composed of a contiguous
sequence of bits, the number of which is implementation-dependent. The least significant bit is
called the low-order bit; the most significant is called the high-order bit. Note that this definition
of byte deviates intentionally from the usage of byte in some international standards, where it is
used as a synonym for octet (always eight bits). On a system based on the ISO/IEC 9945-2: 1993
standard, a byte may be larger than eight bits so that it can be an integral portion of larger data
objects that are not evenly divisible by eight bits (such as a 36-bit word that contains four 9-bit
bytes).

carriage-return character
A character that in the output stream indicates that printing should start at the beginning of the
same physical line in which the carriage-return character occurred. The carriage-return is the
character designated by ’\r’ in the C language. It is unspecified whether this character is the
exact sequence transmitted to an output device by the system to accomplish the movement to
the beginning of the line.

character
A sequence of one or more bytes representing a single graphic symbol or control code. This term
corresponds to the ISO C standard term multibyte character (multi-byte character), where a
single-byte character is a special case of a multi-byte character. Unlike the usage in the ISO C
standard, character here has no necessary relationship with storage space, and byte is used when
storage space is discussed.

See Section 4.1 on page 43 for a further explanation of the graphical representations of
characters, or glyphs, as opposed to character encodings.

character array
An array of type char.

character class
A named set of characters sharing an attribute associated with the name of the class. The classes
and the characters that they contain are dependent on the value of the LC_CTYPE category in
the current locale; see Section 5.3.1 on page 52.

character set
A finite set of different characters used for the representation, organisation or control of data.

character special file
A file that refers to a device. One specific type of character special file is a terminal device file,
whose access is defined in Chapter 9 on page 119.

8 CAE Specification (1997)

Glossary

character string
A contiguous sequence of characters terminated by and including the first null byte.

child process
See process on page 25.

circumflex
The character "ˆ".

clock
An object that measures the passage of time.

The current value of the time measured by a clock can be queried and, possibly, set to a value
within the legal range of the clock.

clock tick
An interval of time; an implementation-dependent number of these occur each second.

coded character set
A set of unambiguous rules that establishes a character set and the one-to-one relationship
between each character of the set and its bit representation.

codeset
The result of applying rules that map a numeric code value to each element of a character set.
An element of a character set may be related to more than one numeric code value but the
reverse is not true. However, for state-dependent encodings the relationship between numeric
code values to elements of a character set may be further controlled by state information; see
Section 4.2 on page 44. The character set may contain fewer elements than the total number of
possible numeric code values; that is, some code values may be unassigned.

collating element
The smallest entity used to determine the logical ordering of character or wide-character strings.
See collation sequence. A collating element consists of either a single character, or two or more
characters collating as a single entity. The value of the LC_COLLATE category in the current
locale determines the current set of collating elements.

collation
The logical ordering of character or wide-character strings according to defined precedence
rules. These rules identify a collation sequence between the collating elements, and such
additional rules that can be used to order strings consisting of multiple collating elements.

collation sequence
The relative order of collating elements as determined by the setting of the LC_COLLATE
category in the current locale. The character order, as defined for the LC_COLLATE category in
the current locale, defines the relative order of all collating elements, such that each element
occupies a unique position in the order. This is the order used in ranges of characters and
collating elements in regular expressions and pattern matching. In addition, the definition of the
collating weights of characters and collating elements uses collating elements to represent their
respective positions within the collation sequence.

Multi-level sorting is accomplished by assigning elements one or more collation weights, up to
the limit {COLL_WEIGHTS_MAX}; see <limits.h>. On each level, elements may be given the
same weight (at the primary level, called an equivalence class; see equivalence class on page 13)
or be omitted from the sequence. Strings that collate equal using the first assigned weight
(primary ordering) are then compared using the next assigned weight (secondary ordering), and
so on.

System Interface Definitions, Issue 5 9

Glossary

column position
A unit of horizontal measure related to characters in a line.

It is assumed that each character in a character set has an intrinsic column width independent of
any output device. Each printable character in the portable character set has a column width of
one. The standard utilities, when used as described in this specification set, assume that all
characters have integral column widths. The column width of a character is not necessarily
related to the internal representation of the character (numbers of bits or bytes).

The column position of a character in a line is defined as one plus the sum of the column widths
of the preceding characters in the line. Column positions are numbered starting from 1.

command
A directive to the shell to perform a particular task; see the XCU specification, Section 2.9, Shell
Commands.

command language interpreter
An interface that interprets sequences of text input as commands. It may operate on an input
stream or it may interactively prompt and read commands from a terminal. It is possible for
applications to invoke utilities through a number of interfaces, which are collectively considered
to act as command interpreters. The most obvious of these are the sh utility and the system()
function, although popen() and the various forms of exec may also be considered to behave as
interpreters.

composite graphic symbol
A graphic symbol consisting of a combination of two or more other graphic symbols in a single
character position, such as a diacritical mark and a basic letter.

condition variable
A synchronization object which allows a thread to suspend execution, repeatedly, until some
associated predicate becomes true.

control character
A character, other than a graphic character, that affects the recording, processing, transmission
or interpretation of text.

control operator
In the shell, a token that performs a control function. It is one of the following symbols:

& && () ; ;; newline | | |

The end-of-input indicator used internally by the shell is also considered a control operator. See
the XCU specification, Section 2.3, Token Recognition.

On some systems, the symbol ((is a control operator; its use produces unspecified results.
Applications that wish to have nested subshells, such as:

((echo Hello);(echo World))

must separate the ((characters into two tokens by including white space between them. Some
systems may treat these as invalid arithmetic expressions instead of subshells.

The ((and)) symbols are control operators in the KornShell, used for an alternative syntax of an
arithmetic expression command. A portable application cannot use ((as a single token (with the
exception of the $((form for shell arithmetic).

controlling process
The session leader that established the connection to the controlling terminal. If the terminal
ceases to be a controlling terminal for this session, the session leader ceases to be the controlling
process.

10 CAE Specification (1997)

Glossary

controlling terminal
A terminal that is associated with a session. Each session may have at most one controlling
terminal associated with it, and a controlling terminal is associated with exactly one session.
Certain input sequences from the controlling terminal (see Chapter 9 on page 119) cause signals
to be sent to all processes in the process group associated with the controlling terminal.

conversion descriptor
EX A per-process unique value used to identify an open codeset conversion.

core file
EX A file of unspecified format that may be generated when a process terminates abnormally.

current working directory
See working directory on page 36.

cursor position
The line and column position on the screen denoted by the terminal’s cursor.

data segment
EX Memory associated with a process, that may be used to contain dynamically allocated data.

device
A computer peripheral or an object that appears to the application as such.

device ID
A non-negative integer used to identify a device.

direct I/O
An operation that attempts to circumvent a system performance optimization for the
optimization of the individual I/O operation.

directory
A file that contains directory entries. No two directory entries in the same directory have the
same name.

directory entry
(Or link.) An object that associates a filename with a file. Several directory entries can associate
names with the same file.

directory stream
A sequence of all the directory entries in a particular directory. An open directory stream may
be implemented using a file descriptor.

disarm (a timer)
To stop a timer from measuring the passage of time, disabling any future process notifications
(until the timer is armed again).

display
To output to the user’s terminal. If the output is not directed to a terminal, the results are
undefined.

The XCU specification assigns precise requirements for the terms display and write. Some
historical systems have chosen to implement certain utilities without using the traditional UNIX
system file descriptor model. For example, the vi editor might employ direct screen memory
updates on a personal computer, rather than a write() system call. An instance of user
prompting might appear in a dialogue box, rather than with standard error. When the XCU
specification uses the term display, the method of outputting to the terminal is unspecified; many
historical implementations use termcap or terminfo , but this is not a requirement. The term write
is used when the XCU specification mandates that a file descriptor be used and that the output

System Interface Definitions, Issue 5 11

Glossary

can be redirected. However, it is assumed that when the writing is directly to the terminal (it
has not been redirected elsewhere), there is no practical way for a user or test suite to determine
whether a file descriptor is being used or not. Therefore, the use of a file descriptor is mandated
only for the redirection case and the implementation is free to use any method when the output
is not redirected. The verb write is used almost exclusively, with the very few exceptions of
those utilities where output redirection need not be supported: tabs, talk, tput and vi.

dollar sign
The character "$".

dot
The filename consisting of a single dot character (.). See pathname resolution on page 22. In the
context of shell special built-in utilities, see dot in the XCU specification, Section 2.14, Special
Built-in Utilities.

dot-dot
The filename consisting solely of two dot characters (. .). See pathname resolution on page 22.

double-quote
The character " " ", also known as quotation-mark .

downshifting
The conversion of an upper-case character to its lower-case representation.

(clock) drift rate
The rate at which the time measured by a clock deviates from the actual passage of real time.

A positive drift rate causes a clock to gain time with respect to real time; a negative drift rate
causes a clock to lose time with respect to real time.

driver
EX A module that controls data transferred to and received from peripheral devices. Drivers are

traditionally written to be a part of the system implementation, although they are frequently
written separately from the writing of the implementation. A driver may contain processor-
specific code, and therefore be non-portable.

effective group ID
An attribute of a process that is used in determining various permissions, including file access
permissions, described in file access permissions on page 14. See group ID on page 17. This
value is subject to change during the process lifetime, as described in the exec family of functions
and setgid().

effective user ID
An attribute of a process that is used in determining various permissions, including file access
permissions. See user ID on page 35. This value is subject to change during the process lifetime,
as described in exec and setuid().

eight-bit transparency
The ability of a software component to process 8-bit characters without modifying or utilising
any part of the character in a way that is inconsistent with the rules of the current coded
character set.

empty directory
A directory that contains, at most, directory entries for dot and dot-dot.

empty line
A line consisting of only a newline character. See also blank line on page 7.

12 CAE Specification (1997)

Glossary

empty string
(Or null string.) A string whose first byte is a null byte.

empty wide-character string
A wide-character string whose first element is a null wide-character code.

epoch
The time zero hours, zero minutes, zero seconds, on January 1, 1970 Coordinated Universal
Time. See seconds since the epoch on page 28.

equivalence class
A set of collating elements with the same primary collation weight.

Elements in an equivalence class are typically elements that naturally group together, such as all
accented letters based on the same base letter.

The collation order of elements within an equivalence class is determined by the weights
assigned on any subsequent levels after the primary weight.

era
An alternative method for counting and displaying years. See Section 5.3.5 on page 73.

executable file
A regular file acceptable as a new process image file by the equivalent of the exec family of
functions, and thus usable as one form of a utility. The standard utilities described as compilers
can produce executable files, but other unspecified methods of producing executable files may
also be provided. The internal format of an executable file is unspecified, but a conforming
application cannot assume an executable file is a text file.

execute
To perform the actions described in the XCU specification, Command Search and Execution in
Section 2.9.1. See also invoke on page 17.

expand
In the shell, when not qualified, the act of applying all the expansions described in the XCU
specification, Section 2.6, Word Expansions.

extended regular expression
A pattern constructed according to the rules defined in Section 7.4 on page 109.

extended signed integral type
EX A signed integral type or an implementation-dependent type with similar properties.

extended security controls
The access control (see file access permissions on page 14) and privilege (see appropriate
privileges on page 6) mechanisms have been defined to allow implementation-dependent
extended security controls. These permit an implementation to provide security mechanisms to
support different security policies from those described in this specification set. These
mechanisms do not alter or override the defined semantics of any of the functions or utilities in
this specification set.

extended unsigned integral type
EX An unsigned integral type or an implementation-dependent type with similar properties.

feature test macro
A macro used to determine whether a particular set of features will be included from a header.
See the XSH specification, Section 2.2, The Compilation Environment.

System Interface Definitions, Issue 5 13

Glossary

field
In the shell, a unit of text that is the result of parameter expansion (see the XCU specification,
Section 2.6.2, Parameter Expansion), arithmetic expansion (see the XCU specification, Section
2.6.4, Arithmetic Expansion), command substitution (see the XCU specification, Section 2.6.3,
Command Substitution), or field splitting (see the XCU specification, Section 2.6.5, Field
Splitting). During command processing (see the XCU specification, Section 2.9.1, Simple
Commands), the resulting fields are used as the command name and its arguments.

FIFO special file
(Or FIFO.) A type of file with the property that data written to such a file is read on a first-in-
first-out basis. Other characteristics of FIFOs are described in open(), read(), write() and lseek().

file
An object that can be written to, or read from, or both. A file has certain attributes, including
access permissions and type. File types include regular file, character special file, block special
file, FIFO special file and directory. Other types of files may be supported by the
implementation.

file access permissions
The standard file access control mechanism uses the file permission bits, as described below.
These bits are set at the time of file creation by functions such as open(), creat(), mkdir() and
mkfifo() and are changed by chmod(). These bits are read by stat() or fstat().

Implementations may provide additional or alternate file access control mechanisms, or both. An
additional access control mechanism will only further restrict the access permissions defined by
the file permission bits. An alternate file access control mechanism will:

• specify file permission bits for the file owner class, file group class, and file other class of that
file, corresponding to the access permissions, to be returned by stat() or fstat()

• be enabled only by explicit user action, on a per-file basis by the file owner or a user with the
appropriate privilege

• be disabled for a file after the file permission bits are changed for that file with chmod(). The
disabling of the alternate mechanism need not disable any additional mechanisms supported
by an implementation.

Whenever a process requests file access permission for read, write or execute/search, if no
additional mechanism denies access, access is determined as follows:

• If a process has the appropriate privilege:

— If read, write or directory search permission is requested, access is granted.

— If execute permission is requested, access is granted if execute permission is granted to at
least one user by the file permission bits or by an alternate access control mechanism;
otherwise, access is denied.

• Otherwise:

— The file permission bits of a file contain read, write and execute/search permissions for
the file owner class, file group class and file other class.

— Access is granted if an alternate access control mechanism is not enabled and the
requested access permission bit is set for the class (file owner class, file group class, or file
other class) to which the process belongs, or if an alternate access control mechanism is
enabled and it allows the requested access; otherwise, access is denied.

14 CAE Specification (1997)

Glossary

file description
See open file description on page 21.

file descriptor
A per-process unique, non-negative integer used to identify an open file for the purpose of file
access. The value of a file descriptor is from zero to {OPEN_MAX}. A process can have no more
than {OPEN_MAX} file descriptors open simultaneously. File descriptors may also be used to

EX implement message catalogue descriptors and directory streams. See open file description on
page 21 and {OPEN_MAX} in <limits.h>.

file group class
The property of a file indicating access permissions for a process related to the group
identification of a process. A process is in the file group class of a file if the process is not in the
file owner class and if the effective group ID or one of the supplementary group IDs of the
process matches the group ID associated with the file. Other members of the class may be
implementation-dependent.

file hierarchy
Files in the system are organised in a hierarchical structure in which all of the non-terminal
nodes are directories and all of the terminal nodes are any other type of file. Because multiple
directory entries may refer to the same file, the hierarchy is properly described as a directed graph.

file mode
An object containing the file mode bits and file type of a file, as described in <sys/stat.h>.

file mode bits
A file’s file permission bits, set-user-ID-on-execution bit (S_ISUID) and set-group-ID-on-
execution bit (S_ISGID); see <sys/stat.h>.

filename
A name consisting of 1 to {NAME_MAX} bytes used to name a file. The characters composing
the name may be selected from the set of all character values excluding the slash character and
the null byte. The filenames dot and dot-dot have special meaning; see pathname resolution on
page 22. A filename is sometimes referred to as a pathname component .

Filenames should be constructed from the portable filename character set because the use of
other characters can be confusing or ambiguous in certain contexts. (For instance, the use of a
colon (:) in a pathname could cause ambiguity if that pathname were included in a PATH
definition.)

file offset
The byte position in the file where the next I/O operation begins. Each open file description
associated with a regular file, block special file or directory has a file offset. A character special
file that does not refer to a terminal device may have a file offset. There is no file offset specified
for a pipe or FIFO.

file other class
The property of a file indicating access permissions for a process related to the user and group
identification of a process. A process is in the file other class of a file if the process is not in the
file owner class or file group class.

file owner class
The property of a file indicating access permissions for a process related to the user identification
of a process. A process is in the file owner class of a file if the effective user ID of the process
matches the user ID of the file.

System Interface Definitions, Issue 5 15

Glossary

file permission bits
Information about a file that is used, along with other information, to determine if a process has
read, write or execute/search permission to a file. The bits are divided into three parts: owner,
group and other. Each part is used with the corresponding file class of processes. These bits are
contained in the file mode, as described in <sys/stat.h>. The detailed usage of the file permission
bits in access decisions is described in file access permissions on page 14.

file serial number
A per-file-system unique identifier for a file.

file system
A collection of files and certain of their attributes. It provides a name space for file serial
numbers referring to those files.

file times update
Each file has three associated time values that are updated when file data has been accessed, file
data has been modified, or file status has been changed, respectively. These values are returned
in the file characteristics structure, as described in <sys/stat.h>.

For each function or utility in this specification set that reads or writes file data or changes the
file status, the appropriate time-related fields are noted as ‘‘marked for update’’. At an update
point in time, any marked fields are set to the current time and the update marks cleared. Two
such update points are when the file is no longer open by any process and when stat() or fstat()
is performed on the file. Additional update points are unspecified. Marks for update, and
updates themselves, are not done for files on read-only file systems.

file type
See file on page 14.

filter
A command whose operation consists of reading data from standard input or a list of input files
and writing data to standard output. Typically, its function is to perform some transformation
on the data stream.

first open (of a file)
When a process opens a file that is not currently an open file within any process.

foreground job
See foreground process group.

foreground process
A process that is a member of a foreground process group.

foreground process group
(Or foreground job.) A process group whose member processes have certain privileges, denied
to processes in background process groups, when accessing their controlling terminal. Each
session that has established a connection with a controlling terminal has exactly one process
group of the session as the foreground process group of that controlling terminal. See Chapter 9.

foreground process group ID
The process group ID of the foreground process group.

form-feed character
A character that in the output stream indicates that printing should start on the next page of an
output device. The form-feed is the character designated by ’\f’ in the C language. If the form-
feed is not the first character of an output line, the result is unspecified. It is unspecified whether
this character is the exact sequence transmitted to an output device by the system to accomplish
the movement to the next page.

16 CAE Specification (1997)

Glossary

graphic character
A character, other than a control character, that has a visual representation when handwritten,
printed or displayed.

group database
A system database of implementation-dependent format that contains at least the following
information for each group ID:

• Group Name

• Numerical Group ID

• List of users allowed in the group.

The list of users allowed in the group is used by the newgrp utility.

group ID
A non-negative integer that is used to identify a group of system users. Each system user is a
member of at least one group. When the identity of a group is associated with a process, a group

FIPS ID value is referred to as a real group ID, an effective group ID, one of the supplementary group
IDs or a saved set-group-ID.

group name
A string that is used to identify a group, as described in group database. To be portable across
XSI-conformant systems, the value must be composed of characters from the portable filename
character set. The hyphen should not be used as the first character of a portable group name.

hard limit
EX A system resource limitation that may be reset to a lesser or greater limit by a privileged process.

A non-privileged process is restricted to only lowering its hard limit.

hard link
The relationship between two directory entries that represent the same file; see directory entry
on page 11. This term is contrasted against symbolic link; see symbolic link on page 31.

home directory
The current directory associated with a user at the time of login.

incomplete line
A sequence of one or more non-newline characters at the end of the file.

Inf
A value representing infinity that can be stored in a floating type. Not all systems support the
Inf value.

interactive shell
A processing mode of the shell that is suitable for direct user interaction.

internationalisation
The provision within a computer program of the capability of making itself adaptable to the
requirements of different native languages, local customs and coded character sets.

invoke
To perform the actions described in the XCU specification, Command Search and Execution in
Section 2.9.1, except that searching for shell functions and special built-in utilities is suppressed.
See also execute on page 13.

ISO/IEC 646:1983
ISO 7-bit coded character set for information interchange. The reference version of the standard
contains 95 graphic characters, which are identical to the graphic characters defined in the ASCII

System Interface Definitions, Issue 5 17

Glossary

coded character set.

ISO 6937: 1983
ISO 7-bit or 8-bit coded character set for text communication using public communication
networks, private communication networks, or interchange media such as magnetic tapes and
discs.

ISO 8859-1: 1987
ISO 8-bit single-byte coded character set Part 1, Latin Alphabet No 1. This standard character set
comprises 191 graphic characters covering the requirements of most of Western Europe.

job
A set of processes, comprising a shell pipeline, and any processes descended from it, that are all
in the same process group. See the definition of pipeline in the XCU specification, Section 2.9.2,
Pipelines.

job control
A facility that allows users selectively to stop (suspend) the execution of processes and continue
(resume) their execution at a later point. The user typically employs this facility via the
interactive interface jointly supplied by the terminal I/O driver and a command interpreter.

job control job ID
A handle that is used to refer to a job. The job control job ID can be any of the forms shown in
the following table:

Job Control Job ID Meaning
%% Current job
%+ Current job
%− Previous job
%n Job number n
%string Job whose command begins with string
%?string Job whose command contains string

Table 2-1 Job Control Job ID Formats

last close (of a file)
When a process closes a file, resulting in the file not being an open file within any process.

line
A sequence of zero or more non-newline characters plus a terminating newline character.

link
See directory entry on page 11.

link count
The number of directory entries that refer to a particular file.

local customs
The conventions of a geographical area or territory for such things as date, time and currency
formats.

locale
The definition of the subset of a user’s environment that depends on language and cultural
conventions; see Chapter 5 on page 49.

localisation
The process of establishing information within a computer system specific to the operation of
particular native languages, local customs and coded character sets.

18 CAE Specification (1997)

Glossary

login
The unspecified activity by which a user gains access to the system. Each login is associated
with exactly one login name.

login name
A user name that is associated with a login.

map
To create an association between a page-aligned range of the address-space of a process and a
range of physical memory or some memory object, such that a reference to an address in that
range of the address-space results in a reference to the associated physical memory or memory
object. The mapped memory or memory object is not necessarily memory-resident.

marked message
EX A STREAMs message on which a certain flag is set. Marking a message gives the application

protocol-specific information. An application can use ioctl () to determine whether a given
message is marked.

memory object
RT Either a file orshared memory object.

When used in conjunction with mmap(), a memory object will appear in the address-space of the
calling process.

message
Information that can be transferred between processes or threads by being added to and
removed from a message queue. A message consists of a fixed-size message buffer.

message catalogue
EX A file or storage area containing program messages, command prompts and responses to

prompts for a particular native language, territory and codeset.

message catalogue descriptor
EX A per-process unique value used to identify an open message catalogue. A message catalogue

descriptor may be implemented using a file descriptor.

message queue
An object to which messages can be added and removed. Messages may be removed in the
order in which they were added or in priority order.

mode
A collection of attributes that specifies a file’s type and its access permissions. See file access
permissions on page 14.

mount point
Either the system root directory or a directory for which the st_dev field of structure stat (see
<sys/stat.h>) differs from that of its parent directory.

multi-character collating element
A sequence of two or more characters that collate as an entity. For example, in some coded
character sets, an accented character is represented by a non-spacing accent, followed by the
letter. Other examples are the Spanish elements ch and ll.

mutex
A synchronization object used to allow multiple threads to serialize their access to shared data.
The name derives from the capability it provides; namely, mutual exclusion. The thread that has
locked a mutex becomes its owner and remains the owner until that same thread unlocks the
mutex.

System Interface Definitions, Issue 5 19

Glossary

name
In the shell, a word consisting solely of underscores, digits and alphabetics from the portable
character set (see Section 4.1 on page 43). The first character of a name must not be a digit.

There are no explicit limits in this specification set on the sizes of names, words (see word on
page 36), lines or other objects. However, other implicit limits do apply: shell script lines
produced by many of the standard utilities cannot exceed {LINE_MAX} and the sum of exported
variables comes under the {ARG_MAX} limit. Historical shells dynamically allocate memory for
names and words and parse incoming lines a byte at a time. Lines cannot have an arbitrary
{LINE_MAX} limit because of historical practice such as makefiles, where make removes the
newline characters associated with the commands for a target and presents the shell with one
very long line. The text on INPUT FILES in the XCU specification, Section 1.9, Utility
Description Defaults does allow a shell to run out of memory, but it cannot have arbitrary
programming limits.

named STREAM
EX A STREAMS-based file descriptor that is attached to a name in the file-system namespace. All

subsequent operations on the named STREAM act on the STREAM that was associated with the
file descriptor until the name is disassociated from the STREAM.

NaN (not a number)
A value that can be stored in a floating type but that is not a valid floating point number. Not all
systems support the NaN value.

native language
A computer user’s spoken or written language, such as American English, British English,
Danish, Dutch, French, German, Italian, Japanese, Norwegian or Swedish.

negative response
An input string that matches one of the responses acceptable to the LC_MESSAGES category
keyword noexpr, matching an extended regular expression in the current locale. See Section
5.3.6 on page 80.

newline character
A character that in the output stream indicates that printing should start at the beginning of the
next line. The newline is the character designated by ’\n’ in the C language. It is unspecified
whether this character is the exact sequence transmitted to an output device by the system to
accomplish the movement to the next line.

non-spacing characters
A character, such as a character representing a diacritical mark in the ISO 6937: 1983 standard
coded character set, which is used in combination with other characters to form composite
graphic symbols.

NUL
A character with all bits set to zero.

null byte
A byte with all bits set to zero.

null pointer
The value that is obtained by converting the number 0 into a pointer; for example, (void *) 0.
The C language guarantees that this value will not match that of any legitimate pointer, so it is
used by many functions that return pointers to indicate an error.

null string
See empty string on page 13.

20 CAE Specification (1997)

Glossary

null wide-character code
A wide-character code with all bits set to zero.

number sign
The character #, also known as hash sign .

object file
A regular file containing the output of a compiler, formatted as input to a linkage editor for
linking with other object files into an executable form. The methods of linking are unspecified
and may involve the dynamic linking of objects at run time. The internal format of an object file
is unspecified, but a conforming application cannot assume an object file is a text file.

offset maximum
EX An attribute of an open file description representing the largest value that can be used as a file

offset.

open file
A file that is currently associated with a file descriptor.

open file description
A record of how a process or group of processes are accessing a file. Each file descriptor refers to
exactly one open file description, but an open file description can be referred to by more than
one file descriptor. A file offset, file status and file access modes are attributes of an open file
description.

operand
An argument to a command that is generally used as an object supplying information to a utility
necessary to complete its processing. Operands generally follow the options in a command line.
See Section 10.1 on page 133.

operator
In the shell, either a control operator or a redirection operator.

option
An argument to a command that is generally used to specify changes in the utility’s default
behaviour; see Section 10.1 on page 133.

option-argument
A parameter that follows certain options. In some cases an option-argument is included within
the same argument string as the option; in most cases it is the next argument. See Section 10.1
on page 133.

orphaned process group
A process group in which the parent of every member is either itself a member of the group or is
not a member of the group’s session.

page
The granularity of process memory mapping or locking.

Physical memory and memory objects can be mapped into the address-space of a process on
page boundaries and in integral multiples of pages. Process address-space can be locked into
memory (made memory-resident) on page boundaries and in integral multiples of pages.

page size
EX The size, in bytes, of the system unit of memory allocation, protection and mapping. On systems

that have segment- rather than page-based memory architectures, the term ‘‘page’’ means a
segment.

System Interface Definitions, Issue 5 21

Glossary

parameter
In the shell, an entity that stores values. There are three types of parameters: variables (named
parameters), positional parameters and special parameters. Parameter expansion is
accomplished by introducing a parameter with the "$" character. See the XCU specification,
Section 2.5, Parameters and Variables.

In the C language, an object declared as part of a function declaration or definition that acquires
a value on entry to the function, or an identifier following the macro name in a function-like
macro definition.

parent directory
When discussing a given directory, the directory that both contains a directory entry for the
given directory and is represented by the pathname dot-dot in the given directory.

When discussing other types of files, a directory containing a directory entry for the file under
discussion.

This concept does not apply to dot and dot-dot.

parent process
See process on page 25.

parent process ID
An attribute of a new process identifying the parent of the process. The parent process ID of a
process is the process ID of its creator, for the lifetime of the creator. After the creator’s lifetime
has ended, the parent process ID is the process ID of an implementation-dependent system
process.

pathname
A character string that is used to identify a file. A pathname consists of, at most, {PATH_MAX}
bytes, including the terminating null byte. It has an optional beginning slash, followed by zero
or more filenames separated by slashes. If the pathname refers to a directory, it may also have
one or more trailing slashes. Multiple successive slashes are considered to be the same as one
slash. A pathname that begins with two successive slashes may be interpreted in an
implementation-dependent manner, although more than two leading slashes are treated as a
single slash. The interpretation of the pathname is described in pathname resolution.

pathname component
See filename on page 15.

pathname resolution
Pathname resolution is performed for a process to resolve a pathname to a particular file in a file
hierarchy. There may be multiple pathnames that resolve to the same file.

Each filename in the pathname is located in the directory specified by its predecessor (for
example, in the pathname fragment a/b, file b is located in directory a). Pathname resolution
fails if this cannot be accomplished. If the pathname begins with a slash, the predecessor of the
first filename in the pathname is taken to be the root directory of the process (such pathnames
are referred to as absolute pathnames). If the pathname does not begin with a slash, the
predecessor of the first filename of the pathname is taken to be the current working directory of
the process (such pathnames are referred to as relative pathnames).

The interpretation of a pathname component is dependent on the values of {NAME_MAX} and
FIPS {_POSIX_NO_TRUNC} associated with the path prefix of that component. If any pathname

component is longer than {NAME_MAX}, because {_POSIX_NO_TRUNC} is in effect on all XSI-
conformant systems for the path prefix of that component (see pathconf ()), the implementation
will consider this an error condition.

22 CAE Specification (1997)

Glossary

EX If a symbolic link (see symbolic link on page 31) is encountered during pathname resolution,
then pathname resolution is complete if all of the following are true:

• This is the last component of the pathname.

• The pathname has no trailing slash.

• The function is required to act on the symbolic link itself, or certain arguments direct that the
function act on the symbolic link itself.

In all other cases, the system prefixes the remaining pathname, if any, with the contents of the
symbolic link. The function may fail, setting errno to [ENAMETOOLONG], if the combined
length exceeds {PATH_MAX}. Otherwise, the resolved pathname is the resolution of the
pathname just created. The result is either an absolute pathname that is resolved from the root
directory of the process or a relative pathname that is resolved from the directory containing the
symbolic link.

The special filename dot refers to the directory specified by its predecessor. The special filename
dot-dot refers to the parent directory of its predecessor directory. As a special case, in the root
directory, dot-dot may refer to the root directory itself.

A pathname consisting of a single slash resolves to the root directory of the process. A null
pathname is invalid.

path prefix
A pathname, with an optional ending slash, that refers to a directory.

pattern
A sequence of characters used either with regular expression notation (see Chapter 7 on page
101) or for pathname expansion (see the XCU specification, Section 2.6.6, Pathname Expansion),
as a means of selecting various character strings or pathnames, respectively.

The syntaxes of the two patterns are similar, but not identical; this specification set always
indicates the type of pattern being referred to in the immediate context of the use of the term.

period
The character (.). The term period is contrasted against dot, which is used to describe a specific
directory entry.

permissions
See file access permissions on page 14.

persistence
A mode for semaphores, shared memory and message queues requiring that the object and its
state (including data, if any) are preserved after the object is no longer referenced by any process.

Persistence of an object does not imply that the state of the object is maintained across a system
crash or a system reboot.

pipe
An object accessed by one of the pair of file descriptors created by the pipe() function. Once
created, the file descriptors can be used to manipulate it, and it behaves identically to a FIFO
special file when accessed in this way. It has no name in the file hierarchy.

positional parameter
In the shell, a parameter denoted by a single digit or one or more digits in curly braces. See the
XCU specification, Section 2.5.1, Positional Parameters.

System Interface Definitions, Issue 5 23

Glossary

portable character set
The collection of characters that are required to be present in all locales supported by XSI-
conformant systems:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 ! # % ˆ & * () _ + - = { } []
: " ˜ ; ’ ‘ < > ? , . | \ / @ $

Also included are the alert, backspace, tab, newline, vertical-tab, form-feed, carriage-return and
space characters and the null character, NUL.

This term is contrasted against the smaller portable filename character set. See Table 4-1 on
page 43.

portable filename character set
The set of characters from which portable filenames are constructed. For a filename to be
portable across implementations conforming to this specification set and the ISO POSIX-1
standard, it must consist only of the following characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 . _ -

The last three characters are the period, underscore and hyphen characters, respectively. The
hyphen must not be used as the first character of a portable filename. Upper- and lower-case
letters retain their unique identities between conforming implementations. In the case of a
portable pathname, the slash character may also be used.

preallocation
The reservation of resources in a system for a particular use.

Preallocation does not imply that the resources are immediately allocated to that use, but merely
indicates that they are guaranteed to be available in bounded time when needed.

preempted process (or thread)
A running thread whose execution is suspended due to another thread becoming runnable at a
higher priority.

printable character
One of the characters included in the print character classification of the LC_CTYPE category in
the current locale; see Section 5.3.1 on page 52.

printable file
A text file consisting only of the characters included in the print and space character
classifications of the LC_CTYPE category and the backspace character, all in the current locale;
see Section 5.3.1 on page 52.

priority
A non-negative integer associated with processes or threads whose value is constrained to a
range defined by the applicable scheduling policy. Numerically higher values represent higher
priorities.

priority band
EX The queueing order applied to normal priority STREAMS messages. High priority STREAMS

messages are not grouped by priority bands. The only differentiation made by the STREAMS
mechanism is between zero and non-zero bands, but specific protocol modules may differentiate
between priority bands.

24 CAE Specification (1997)

Glossary

priority-based scheduling
Scheduling in which the selection of a running thread is determined by the priorities of the
runnable threads.

privilege
See appropriate privileges on page 6.

process
An address space with one or more threads executing within that address space, and the
required system resources for those threads.

Many of the system resources defined by this specification are shared among all of the threads
within a process. These include: the process ID, the parent process ID, process group ID, session
membership, real, effective and saved-set user ID, real, effective and saved-set group ID,
supplementary group IDs, current working directory, root directory, file mode creation mask
and file descriptors.

A process is created by another process issuing the fork () function. The process that issues fork ()
is known as the parent process, and the new process created by the fork () is known as the child
process.

process group
A collection of processes that permits the signalling of related processes. Each process in the
system is a member of a process group that is identified by a process group ID. A newly created
process joins the process group of its creator.

process group ID
The unique identifier representing a process group during its lifetime. A process group ID is a
positive integer. A process group ID will not be reused by the system until the process group
lifetime ends.

process group leader
A process whose process ID is the same as its process group ID.

process group lifetime
A period of time that begins when a process group is created and ends when the last remaining
process in the group leaves the group, due either to the end of the last process’ lifetime or to the
last remaining process calling the setsid() or setpgid() functions.

process ID
The unique identifier representing a process. A process ID is a positive integer. A process ID
will not be reused by the system until the process lifetime ends. In addition, if there exists a
process group whose process group ID is equal to that process ID, the process ID will not be
reused by the system until the process group lifetime ends. A process that is not a system
process will not have a process ID of 1.

process lifetime
The period of time that begins when a process is created and ends when its process ID is
returned to the system. After a process is created with a fork () function, it is considered active.
At least one thread of control and address space exist until it terminates. It then enters an
inactive state where certain resources may be returned to the system, although some resources,

EX such as the process ID, are still in use. When another process executes a wait(), wait3(), waitid ()
or waitpid () function for an inactive process, the remaining resources are returned to the system.
The last resource to be returned to the system is the process ID. At this time, the lifetime of the
process ends.

System Interface Definitions, Issue 5 25

Glossary

process list
EX See thread list on page 34.

process virtual time
EX The measurement of time in units elapsed by the system clock while a process is executing.

program
A prepared sequence of instructions to the system to accomplish a defined task. The term
program in this specification set encompasses applications written in the XSI Shell Command
Language, complex utility input languages (for example, awk, lex, sed, and so on), and high-level
languages.

pseudo-terminal
EX A pseudo-terminal provides the process with an interface that is identical to the terminal

subsystem. A pseudo-terminal is composed of 2 devices, the master device and a slave device.
The slave device provides processes with an interface that is identical to the terminal interface,
although there need not be hardware behind that interface. Anything written on the master
device is presented to the slave as an input and anything written on the slave device is presented
as an input on the master side.

This specification requires a STREAMS-based implementation of pseudo-terminals to be
available, but does not preclude others also being available.

radix character
The character that separates the integer part of a number from the fractional part.

read-only file system
A file system that has implementation-dependent characteristics restricting modifications.

read-write lock
EX Multiple readers, single writer (read-write) locks allow many threads to have simultaneous

read-only access to data while allowing only one thread to have write access at any given time.
They are typically used to protect data that is read-only more frequently than it is changed.

Read-write locks can be used to synchronise threads in the current process and other processes if
they are allocated in memory that is writable and shared among the cooperating processes and
have been initialised for this behaviour.

real group ID
The attribute of a process that, at the time of process creation, identifies the group of the user
who created the process. See group ID on page 17. This value is subject to change during the
process lifetime, as described in setgid().

real time
EX Time measured as total units elapsed by the system clock without regard to which thread is

executing.

real user ID
The attribute of a process that, at the time of process creation, identifies the user who created the
process. See user ID on page 35. This value is subject to change during the process lifetime, as
described in setuid().

redirection
In the shell, a method of associating files with the input or output of commands. See the XCU
specification, Section 2.7, Redirection.

26 CAE Specification (1997)

Glossary

redirection operator
In the shell, a token that performs a redirection function. It is one of the following symbols:

< > >| << >> <& >& << − <>

reentrant function
A function whose effect, when called by two or more threads, is guaranteed to be as if the
threads each executed the function one after another in an undefined order, even if the actual
execution is interleaved.

referenced shared memory object
A shared memory object that is open or has one or more mappings defined on it.

refresh
To ensure that the information on the user’s terminal screen is up-to-date.

regular expression
A pattern constructed according to the rules defined in Chapter 7 on page 101.

region
In the context of the address space of a process, a sequence of addresses.

In the context of a file, a sequence of offsets.

regular file
A file that is a randomly accessible sequence of bytes, with no further structure imposed by the
system.

relative pathname
See pathname resolution on page 22.

(time) resolution
The minimum time interval that a clock can measure or whose passage a timer can detect.

root directory
A directory, associated with a process, that is used in pathname resolution for pathnames that
begin with a slash.

runnable process (or thread)
A thread that is capable of being a running thread, but for which no processor is available.

running process (or thread)
A thread currently executing on a processor. On multi-processor systems there may be more
than one such thread in a system at a time.

saved resource limits
EX An attribute of a process that provides some flexibility in the handling of unrepresentable

resource limits, as described in the exec family of functions and setrlimit().

saved set-group-ID
An attribute of a process that allows some flexibility in the assignment of the effective group ID
attribute, as described in the exec family of functions and setgid().

saved set-user-ID
An attribute of a process that allows some flexibility in the assignment of the effective user ID
attribute, as described in exec and setuid().

scheduling
The application of a policy to select a runnable process or thread to become a running process or
thread, or to alter one or more of the thread lists.

System Interface Definitions, Issue 5 27

Glossary

scheduling allocation domain
The set of processors on which an individual thread can be scheduled at any given time.

scheduling contention scope
A property of a thread that defines the set of threads against which that thread competes for
resources.

For example, in a scheduling decision, threads sharing scheduling contention scope compete for
processor resources. In this specification, a thread has scheduling contention scope of either
PTHREAD_SCOPE_SYSTEM or PTHREAD_SCOPE_PROCESS.

scheduling policy
A set of rules that is used to determine the order of execution of threads to achieve some goal.

In the context of XSI, a scheduling policy affects thread ordering:

• when a thread is a running thread and it becomes a blocked thread

• when a thread is a running thread and it becomes a preempted thread

• when a thread is a blocked thread and it becomes a runnable thread

• when a running thread calls a function that can change the priority or scheduling policy of a
thread

• in other scheduling policy-defined circumstances.

Conforming implementations are required to define the manner in which each of the scheduling
policies may modify the priorities or otherwise affect the ordering of threads at each of the
occurrences listed above. Additionally, conforming implementations will define at what other
circumstances and in what manner each scheduling policy may modify the priorities or affect
the ordering of threads.

screen
A rectangular region of columns and lines on a terminal display. A screen may be a portion of a
physical display device or may occupy the entire physical area of the display device.

scroll
To move the representation of data vertically or horizontally relative to the terminal screen.
There are two types of scrolling:

1. The cursor moves with the data.

2. The cursor remains stationary while the data moves.

seconds since the epoch
A value to be interpreted as the number of seconds between a specified time and the epoch. A
Coordinated Universal Time name (specified in terms of seconds (tm_sec), minutes (tm_min),
hours (tm_hour), days since January 1 of the year (tm_yday), and calendar year minus 1900
(tm_year)) is related to a time represented as seconds since the Epoch, according to the
expression below.

If the year < 1970 or the value is negative, the relationship is undefined. If the year ≥ 1970 and
the value is non-negative, the value is related to a Coordinated Universal Time name according
to the expression:

tm_sec + tm_min∗60 + tm_hour∗3 600 + tm_yday∗86 400 +
(tm_year−70)∗31 536 000 + ((tm_year−69)/4)∗86 400

28 CAE Specification (1997)

Glossary

semaphore
A shareable resource that has a non-negative integral value. When the value is zero, there is a
(possibly empty) set of threads awaiting the availability of the semaphore.

semaphore lock operation
An operation that is applied to a semaphore. If, prior to the operation, the value of the
semaphore is zero, the semaphore lock operation causes the calling thread to be blocked and
added to the set of threads awaiting the semaphore. Otherwise, the value is decremented.

semaphore unlock operation
An operation that is applied to a semaphore. If, prior to the operation, there are any threads in
the set of threads awaiting the semaphore, then some thread from that set will be removed from
the set and become unblocked. Otherwise, the semaphore value is incremented.

session
A collection of process groups established for job control purposes. Each process group is a
member of a session. A process is considered to be a member of the session of which its process
group is a member. A newly created process joins the session of its creator. A process can alter
its session membership; see setsid(). There can be multiple process groups in the same session.

session leader
A process that has created a session; see setsid().

session lifetime
The period between when a session is created and the end of the lifetime of all the process
groups that remain as members of the session.

shared memory object
An object that represents memory that can be mapped concurrently into the address space of
more than one process.

shell
A program that interprets sequences of text input as commands. It may operate on an input
stream or it may interactively prompt and read commands from a terminal.

shell, the
The XSI Shell Command Language Interpreter (see sh), a specific instance of a shell.

shell script
A file containing shell commands. If the file is made executable, it can be executed by specifying
its name as a simple command (see the XCU specification, Section 2.9.1, Simple Commands).
Execution of a shell script causes a shell to execute the commands within the script.
Alternatively, a shell can be requested to execute the commands in a shell script by specifying
the name of the shell script as the operand to the sh utility.

signal
A mechanism by which a process or thread may be notified of, or affected by, an event occurring
in the system. Examples of such events include hardware exceptions and specific actions by
processes. The term signal is also used to refer to the event itself.

signal stack
EX Memory established for a thread, in which signal handlers catching signals sent to that thread

are executed.

single-quote
The character "’", also known as apostrophe .

System Interface Definitions, Issue 5 29

Glossary

slash
The character "/", also known as solidus .

socket
EX A communications endpoint associated with a file descriptor that provides communications

services using a specified communications protocol. See the Networking Services specification.

soft limit
EX A resource limitation established for each process that the process may set to any value less than

or equal to the hard limit.

source code
When dealing with the XSI Shell Command Language, input to the command language
interpreter. The term shell script is synonymous with this meaning.

When dealing with the C language, input to a C compiler conforming to the ISO C standard.

When dealing with another XSI-compliant language, input to a compiler conforming to that
language standard.

Source code also refers to the input statements prepared for the following standard utilities:
awk, bc, ed, lex, localedef, make, sed and yacc.

Source code can also refer to a collection of sources meeting any or all of these meanings.

special parameter
In the shell, a parameter named by a single character from the following list:

* @ # ? ! - $ 0

See the XCU specification, Section 2.5.2, Special Parameters.

space character
The character defined in the portable character set as <space>. The space character is a member
of the space character class of the current locale, but represents the single character, and not all
of the possible members of the class. (See white space on page 36.)

standard error
An output stream usually intended to be used for diagnostic messages.

standard input
An input stream usually intended to be used for primary data input.

standard output
An output stream usually intended to be used for primary data output.

standard utilities
The utilities described in the XCU specification.

stream
Appearing in lower case, a stream is a file access object that allows access to an ordered
sequence of characters, as described by the ISO C standard. Such objects can be created by the
fdopen(), fopen() or popen() functions, and are associated with a file descriptor. A stream
provides the additional services of user-selectable buffering and formatted input and output.
See the XSH specification, Section 2.4, Standard I/O Streams.

STREAM
EX Appearing in upper case, STREAM refers to a full duplex connection between a process and an

open device or pseudo-device. It optionally includes one or more intermediate processing
modules that are interposed between the process end of the STREAM and the device driver (or
pseudo-device driver) end of the STREAM. See the XSH specification, Section 2.5, STREAMS.

30 CAE Specification (1997)

Glossary

STREAM end
EX The STREAM end is the driver end of the STREAM and is also known as the downstream end of

the STREAM.

STREAM head
EX The STREAM head is the beginning of the STREAM and is at the boundary between the system

and the application process. This is also known as the upstream end of the STREAM.

STREAMS multiplexor
EX A driver with multiple STREAMS connected to it. Multiplexing with STREAMS connected

above is referred to as N-to-1, or upper multiplexing. Multiplexing with STREAMS connected
below is referred to as 1-to-N or lower multiplexing.

string
A contiguous sequence of bytes terminated by and including the first null byte.

subshell
A shell execution environment, distinguished from the main or current shell execution
environment by the attributes described in the XCU specification, Section 2.12, Shell Execution
Environment.

successfully transferred
For a write operation to a regular file, when the system ensures that all data written is readable
on any subsequent open of the file (even one that follows a system or power failure) in the
absence of a failure of the physical storage medium.

For a read operation, when an image of the data on the physical storage medium is available to
the requesting process.

supplementary group ID
An attribute of a process used in determining file access permissions. A process has up to
{NGROUPS_MAX} supplementary group IDs in addition to the effective group ID. The
supplementary group IDs of a process are set to the supplementary group IDs of the parent
process when the process is created. Whether a process’ effective group ID is included in or
omitted from its list of supplementary group IDs is unspecified.

suspended job
A job that has received a SIGSTOP, SIGTSTP, SIGTTIN or SIGTTOU signal that caused the
process group to stop. A suspended job is a background job, but a background job is not
necessarily a suspended job.

symbolic link
EX A type of file that contains a pathname. The pathname is interpolated into a pathname being

resolved, during pathname resolution, to create a new pathname when it is encountered.

synchronised I/O completion
The state of an I/O operation that has either been successfully transferred or diagnosed as
unsuccessful.

synchronised I/O data integrity completion

• For read, when the operation has been completed or diagnosed if unsuccessful. The read is
complete only when an image of the data has been successfully transferred to the requesting
process. If there were any pending write requests affecting the data to be read at the time
that the synchronised read operation was requested, these write requests shall be
successfully transferred prior to reading the data.

• For write, when the operation has been completed or diagnosed if unsuccessful. The write is
complete only when the data specified in the write request is successfully transferred and all

System Interface Definitions, Issue 5 31

Glossary

file system information required to retrieve the data is successfully transferred.

File attributes that are not necessary for data retrieval (access time, modification time, status
change time) need not be successfully transferred prior to returning to the calling process.

synchronised I/O file integrity completion
Identical to a synchronised I/O data integrity completion with the addition that all file attributes
relative to the I/O operation (including access time, modification time, status change time) will
be successfully transferred prior to returning to the calling process.

synchronised I/O operation
An I/O operation performed on a file that provides the application assurance of the integrity of
its data and files.

synchronous I/O operation
An I/O operation that causes the thread requesting the I/O to be blocked from further use of the
processor until that I/O operation completes.

Note that a synchronous I/O operation does not imply synchronised I/O data integrity
completion or synchronised I/O file integrity completion.

synchronously generated signal
A signal that is attributable to a specific thread.

For example, a thread executing an illegal instruction or touching invalid memory causes a
synchronously generated signal. Being synchronous is a property of how the signal was
generated and not a property of the signal number.

system
An implementation of the XSI.

system crash
An interval initiated by an unspecified circumstance that causes all processes (possibly other
than special system processes) to be terminated in an undefined manner, after which any
changes to the state and contents of files created or written to by an application prior to the

EX interval are undefined, except as required elsewhere inthis specification set.

system console
EX An optional file that receives messages sent by fmtmsg() when the MM_CONSOLE flag is set.

system documentation
All documentation provided with an XSI-conformant implementation except for the
Conformance Statement Questionnaire (CSQ). Electronically distributed documents for an XSI-
conformant implementation are considered part of the system documentation.

system process
An implementation-dependent object, other than a process executing an application, that has a
process ID.

system scheduling priority
A number used as advice to the system to alter process scheduling priorities. Raising the value
should give a process additional preference when scheduling a process to run. Lowering the
value should reduce the preference and make a process less likely to run. Typically, a process
with higher system scheduling priority will run to completion more quickly than an equivalent
process with lower system scheduling priority. A scheduling priority of zero specifies the
default policy of the system.

This definition is not intended to suggest that all processes in a system have priorities that are
comparable. Scheduling policy extensions such as adding real-time priorities make the notion of

32 CAE Specification (1997)

Glossary

a single underlying priority for all scheduling policies problematic. Some systems may
implement the features related to nice to affect all processes on the system, others to affect just
the general time-sharing activities implied by this specification set, and others may have no
effect at all. Because of the use of ‘‘implementation-dependent’’ in nice and renice, a wide range
of implementation strategies is possible.

system reboot
An implementation-dependent sequence of events that may result in the loss of transitory data;
that is, data that is not saved in permanent storage. For example, message queues, shared
memory, semaphores and processes.

tab character
A character that in the output stream indicates that printing or displaying should start at the
next horizontal tabulation position on the current line. The tab is the character designated by
’\t’ in the C language. If the current position is at or past the last defined horizontal tabulation
position, the behaviour is unspecified. It is unspecified whether this character is the exact
sequence transmitted to an output device by the system to accomplish the tabulation.

terminal
(Or terminal device.) A character special file that obeys the specifications of the general
terminal interface as described in Chapter 9 on page 119.

text column
A roughly rectangular block of characters capable of being laid out side-by-side next to other
text columns on an output page or terminal screen. The widths of text columns are measured in
column positions.

text file
A file that contains characters organised into one or more lines. The lines must not contain NUL
characters and none can exceed {LINE_MAX} bytes in length, including the newline character.
Although the XSI does not distinguish between text files and binary files (see the ISO C
standard), many utilities only produce predictable or meaningful output when operating on text
files. The standard utilities that have such restrictions always specify text files in their STDIN or
INPUT FILES sections.

The term text file does not prevent the inclusion of control or other non-printable characters
(other than NUL). Therefore, standard utilities that list text files as inputs or outputs are either
able to process the special characters gracefully or they explicitly describe their limitations
within their individual sections. The only difference between text and binary files is that text
files have lines of less than {LINE_MAX} bytes, with no NUL characters, each terminated by a
newline character. The definition allows a file with a single newline character, but not a totally
empty file, to be called a text file. If a file ends with an incomplete line it is not strictly a text file
by this definition. The newline character referred to in this specification set is not some generic
line separator, but a single character; files created on systems where they use multiple characters
for ends of lines are not portable to all XSI-conformant systems without some translation
process.

thread
A single flow of control within a process. Each thread has its own thread ID, scheduling priority
and policy, errno value, thread-specific key/value bindings, and the required system resources to
support a flow of control. Anything whose address may be determined by a thread, including
but not limited to static variables, storage obtained via malloc (), directly addressable storage
obtained through implementation-supplied functions and automatic variables, are accessible to
all threads in the same process.

System Interface Definitions, Issue 5 33

Glossary

thread ID
Each thread in a process is uniquely identified during its lifetime by a value of type pthread_t
called a thread ID.

thread list
An ordered set of runnable processes that all have the same ordinal value for their priority.

The ordering of processes on the list is determined by a scheduling policy or policies. The set of
thread lists includes all runnable processes in the system.

thread-safe
A function that may be safely invoked concurrently by multiple threads. Examples are any
‘‘pure’’ function, a function which holds a mutex locked while it is accessing static storage, or
objects shared among threads.

thread-specific data key
A process global handle of type pthread_key_t which is used for naming thread-specific data.

Although the same key value may be used by different threads, the values bound to the key by
pthread_setspecific() and accessed by pthread_getspecific() are maintained on a per-thread basis
and persist for the life of the calling thread.

tilde
The character ∼.

timer
A mechanism that can notify a thread when the time as measured by a particular clock has
reached or passed a specified value, or when a specified amount of time has passed.

timer overrun
A condition that occurs each time a timer, for which there is already an expiration signal queued
to the process, expires.

token
A sequence of characters that the shell considers as a single unit when reading input, according
to the rules in the XCU specification, Section 2.3, Token Recognition. A token is either an
operator or a word.

upshifting
The conversion of a lower-case character to its upper-case representation.

user database
A system database of implementation-dependent format that contains at least the following
information for each user ID:

• User name

• Numerical user ID

• Initial numerical group ID

• Initial working directory

• Initial user program.

The initial numerical group ID is used by the newgrp utility. Any other circumstances under
which the initial values are operative are implementation-dependent.

If the initial user program field is null, an implementation-dependent program is used.

If the initial working directory field is null, the interpretation of that field is implementation-
dependent.

34 CAE Specification (1997)

Glossary

user ID
A non-negative integer that is used to identify a system user. When the identity of a user is

FIPS associated with a process, a user ID value is referred to as a real user ID, an effective user IDor a
saved set-user-ID.

user name
A string that is used to identify a user, as described in user database on page 34. To be portable
across XSI-conformant systems, the value must be composed of characters from the portable
filename character set. The hyphen should not be used as the first character of a portable user
name.

utility
A program that can be called by name from a shell to perform a specific task, or related set of
tasks. This program is either an executable file, such as might be produced by a compiler or
linker system from computer source code, or a file of shell source code, directly interpreted by
the shell. The program may have been produced by the user, provided by the system
implementor, or acquired from an independent distributor. The term utility does not apply to
the special built-in utilities provided as part of the XSI Shell Command Language; see the XCU
specification, Section 2.14, Special Built-in Utilities. The system may implement certain
utilities as shell functions (see the XCU specification, Section 2.9.5, Function Definition
Command) or built-in utilities, but only an application that is aware of the command search
order described in the XCU specification, Command Search and Execution in Section 2.9.1 or of
performance characteristics can discern differences between the behaviour of such a function or
built-in utility and that of a true executable file.

variable
In the shell, a named parameter. See the XCU specification, Section 2.5, Parameters and
Variables.

variable assignment
In the shell, a word consisting of the following parts:

varname=value

When used in a context where assignment is defined to occur (see the XCU specification, Section
2.9.1, Simple Commands) and at no other time, the value (representing a word or field) will be
assigned as the value of the variable denoted by varname. The varname and value parts meet the
requirements for a name and a word, respectively, except that they are delimited by the
embedded unquoted equals-sign in addition to the delimiting described in the XCU
specification, Section 2.3, Token Recognition. In all cases, the variable will be created if it did
not already exist. If value is not specified, the variable will be given a null value.

An alternative form of variable assignment:

symbol=value

(where symbol is a valid word delimited by an equals-sign, but not a valid name) produces
unspecified results. This form is used by the KornShell name[expression]=value syntax.

vertical-tab character
A character that in the output stream indicates that printing should start at the next vertical
tabulation position. The vertical-tab is the character designated by ’\v’ in the C language. If the
current position is at or past the last defined vertical tabulation position, the behaviour is
unspecified. It is unspecified whether this character is the exact sequence transmitted to an
output device by the system to accomplish the tabulation.

System Interface Definitions, Issue 5 35

Glossary

white space
A sequence of one or more characters that belong to the space character class as defined via the
LC_CTYPE category in the current locale.

In the POSIX locale, white space consists of one or more blank characters (space and tab
characters), newline characters, carriage-return characters, form-feed characters and vertical-tab
characters.

wide-character code (C language)
An integer value corresponding to a single graphic symbol or control code. See Section 4.3 on
page 45.

wide-character string
A contiguous sequence of wide-character codes terminated by and including the first null wide-
character code.

word
In the shell, a token other than an operator. In some cases a word is also a portion of a word
token: in the various forms of parameter expansion (see the XCU specification, Section 2.6.2,
Parameter Expansion), such as ${name−word}, and variable assignment, such as name=word, the
word is the portion of the token depicted by word. The concept of a word is no longer applicable
following word expansions only fields remain; see the XCU specification, Section 2.6, Word
Expansions.

working directory
(Or current working directory.) A directory, associated with a process, that is used in pathname
resolution for pathnames that do not begin with a slash.

world-wide portability interface
Functions for handling characters in a codeset-independent manner.

write
To output characters to a file, such as standard output or standard error. Unless otherwise
stated, standard output is the default output destination for all uses of the term write. See the
distinction between display and write in display on page 11.

XSI-conformant
A system which allows an application to be built using a set of services that are consistent across
all systems that conform to this specification set.

zombie process
An inactive process that will be deleted at some later time when its parent process executes
wait() or waitpid ().

[n, m] and [n, m)
Notations denoting mathematical ranges. The square brackets [and] include the limit; the
parentheses (and) exclude the limit; that is, if x is in [0, 1], it can be from 0 to 1 inclusive, but if x
is in [0, 1), it can be from 0 up to but not including 1.

±0
The algebraic sign provides additional information about any variable that has the value zero.
Although all precisions have distinct representations for +0, −0, +Inf and −Inf, the signs are
significant in some circumstances, such as division by zero, and not in others.

36 CAE Specification (1997)

Glossary

CHANGE HISTORY

Issue 4
Numerous changes and additions are made for alignment with the ISO C standard and the
ISO POSIX-1 standard.

Issue 4, Version 2
The following terms are added to support the adoption of additional traditional UNIX
interfaces: alternate signal stack , break value , data segment, driver, hard limit , host byte order,
named STREAM, network byte order, network host database , network net database , network
protocol database , network service database , pad , parent window , priority band , process virtual
time, pseudo-terminal , real time, signal stack , socket , soft limit , STREAM (second definition),
STREAM end, STREAM head , STREAMS multiplexor , symbolic link , system console and timer.

Issue 5
Numerous terms are added to support adoption of the ISO POSIX Threads Extension and
the ISO POSIX Realtime Extension.

System Interface Definitions, Issue 5 37

Glossary

38 CAE Specification (1997)

Chapter 3

File Format Notation

The STDIN, STDOUT, STDERR, INPUT FILES and OUTPUT FILES sections of the utility
descriptions use a syntax to describe the data organisation within the files, when that
organisation is not otherwise obvious. The syntax is similar to that used by the XSH
specification printf() function, as described in this chapter. When used in STDIN or INPUT
FILES sections of the utility descriptions, this syntax describes the format that could have been
used to write the text to be read, not a format that could be used by the scanf() function to read
the input file.

The description of an individual record is as follows:

"< format >", [<arg1 >, < arg2 >, . . . , < argn >]

The format is a character string that contains three types of objects defined below:

characters
Characters that are not escape sequences or conversion specifications , as described below, are
copied to the output.

escape sequences
Represent non-graphic characters.

conversion specifications
Specifies the output format of each argument. (See below.)

The following characters have the following special meaning in the format string:

" " (An empty character position.) One or more blank characters.

∆ Exactly one space character.

The notation for spaces allows some flexibility for application output. Note that an empty
character position in format represents one or more blank characters on the output (not white
space , which can include newline characters). Therefore, another utility that reads that output as
its input must be prepared to parse the data using scanf(), awk, and so forth. The ∆ character is
used when exactly one space character is output.

The following table lists escape sequences and associated actions on display devices capable of
the action.

System Interface Definitions, Issue 5 39

File Format Notation

Escape Represents
Sequence Character Terminal Action

\\ backslash None.
Attempts to alert the user through audible or visible notification.\a alert
Moves the printing position to one column before the current
position, unless the current position is the start of a line.

\b backspace

Moves the printing position to the initial printing position of the
next logical page.

\f form-feed

Moves the printing position to the start of the next line.\n newline
Moves the printing position to the start of the current line.\r carriage-return
Moves the printing position to the next tab position on the
current line. If there are no more tab positions left on the line,
the behaviour is undefined.

\t tab

Moves the printing position to the start of the next vertical tab
position. If there are no more vertical tab positions left on the
page, the behaviour is undefined.

\v vertical-tab

Table 3-1 Escape Sequences and Associated Actions

Each conversion specification is introduced by the percent-sign character (%). After the
character %, the following appear in sequence:

flags Zero or more flags, in any order, that modify the meaning of the conversion
specification.

field width An optional string of decimal digits to specify a minimum field width. For an
output field, if the converted value has fewer bytes than the field width, it is
padded on the left (or right, if the left-adjustment flag (−), described below, has
been given to the field width).

precision Gives the minimum number of digits to appear for the d, o, i, u, x or X conversions
(the field is padded with leading zeros), the number of digits to appear after the
radix character for the e and f conversions, the maximum number of significant
digits for the g conversion; or the maximum number of bytes to be written from a
string in s conversion. The precision takes the form of a period (.) followed by a
decimal digit string; a null digit string is treated as zero.

conversion characters
A conversion character (see below) that indicates the type of conversion to be
applied.

The flag characters and their meanings are:

− The result of the conversion is left-justified within the field.

+ The result of a signed conversion always begins with a sign (+ or −).

<space> If the first character of a signed conversion is not a sign, a space character is
prefixed to the result. This means that if the space character and + flags both
appear, the space character flag is ignored.

40 CAE Specification (1997)

File Format Notation

The value is to be converted to an alternative form. For c, d, i, u and s conversions,
the behaviour is undefined. For o conversion, it increases the precision to force the
first digit of the result to be a zero. For x or X conversion, a non-zero result has 0x
or 0X prefixed to it, respectively. For e, E, f, g and G conversions, the result always
contains a radix character, even if no digits follow the radix character. For g and G
conversions, trailing zeros are not removed from the result as they usually are.

0 For d, i, o, u, x, X, e, E, f, g and G conversions, leading zeros (following any
indication of sign or base) are used to pad to the field width; no space padding is
performed. If the 0 and − flags both appear, the 0 flag is ignored. For d, i, o, u, x
and X conversions, if a precision is specified, the 0 flag is ignored. For other
conversions, the behaviour is undefined.

Each conversion character results in fetching zero or more arguments. The results are undefined
if there are insufficient arguments for the format. If the format is exhausted while arguments
remain, the excess arguments are ignored.

The conversion characters and their meanings are:

d,i,o,u,x,X The integer argument is written as signed decimal (d or i), unsigned octal (o),
unsigned decimal (u), or unsigned hexadecimal notation (x and X). The d and i
specifiers convert to signed decimal in the style [−]dddd. The x conversion uses the
numbers and letters 0123456789abcdef and the X conversion uses the numbers and
letters 0123456789ABCDEF. The precision component of the argument specifies the
minimum number of digits to appear. If the value being converted can be
represented in fewer digits than the specified minimum, it is expanded with
leading zeros. The default precision is 1. The result of converting a zero value
with a precision of 0 is no characters. If both the field width and precision are
omitted, the implementation may precede, follow or precede and follow numeric
arguments of types d, i and u with blank characters; arguments of type o (octal)
may be preceded with leading zeros.

The treatment of integers and spaces is different from the printf() function in that
they can be surrounded with blank characters. This was done so that, given a
format such as:

"%d\n" , <foo >

the implementation could use a printf() call such as:

printf("%6d\n", foo);

and still conform. This notation is thus somewhat like scanf() in addition to
printf().

f The floating point number argument is written in decimal notation in the style
[−]ddd.ddd, where the number of digits after the radix character (shown here as a
decimal point) is equal to the precision specification. The LC_NUMERIC locale
category determines the radix character to use in this format. If the precision is
omitted from the argument, six digits are written after the radix character; if the
precision is explicitly 0, no radix character appears.

e,E The floating point number argument is written in the style [−]d.ddde±dd (the
symbol ± indicates either a plus or minus sign), where there is one digit before the
radix character (shown here as a decimal point) and the number of digits after it is
equal to the precision. The LC_NUMERIC locale category determines the radix
character to use in this format. When the precision is missing, six digits are written
after the radix character; if the precision is 0, no radix character appears. The E

System Interface Definitions, Issue 5 41

File Format Notation

conversion character produces a number with E instead of e introducing the
exponent. The exponent always contains at least two digits. However, if the value
to be written requires an exponent greater than two digits, additional exponent
digits are written as necessary.

g,G The floating point number argument is written in style f or e (or in style E in the
case of a G conversion character), with the precision specifying the number of
significant digits. The style used depends on the value converted: style g is used
only if the exponent resulting from the conversion is less than −4 or greater than or
equal to the precision. Trailing zeros are removed from the result. A radix
character appears only if it is followed by a digit.

c The integer argument is converted to an unsigned char and the resulting byte is
written.

s The argument is taken to be a string and bytes from the string are written until the
end of the string or the number of bytes indicated by the precision specification of
the argument is reached. If the precision is omitted from the argument, it is taken
to be infinite, so all bytes up to the end of the string are written.

% Write a % character; no argument is converted.

In no case does a non-existent or insufficient field width cause truncation of a field; if the result of
a conversion is wider than the field width, the field is simply expanded to contain the conversion
result. The term field width should not be confused with the term precision used in the
description of %s.

One difference from the C function printf() is that the l and h conversion characters are not used.
As expressed by the XCU specification, there is no differentiation between decimal values for
type int, type long or type short. The specifications %d or %i should be interpreted as an
arbitrary length sequence of digits. Also, no distinction is made between single precision and
double precision numbers (float or double in C). These are simply referred to as floating point
numbers.

Many of the output descriptions in the XCU specification use the term line , such as:

"%s" , <input line >

Since the definition of line includes the trailing newline character already, there is no need to
include a \n in the format; a double newline character would otherwise result.

Examples

To represent the output of a program that prints a date and time in the form Sunday, July 3,
10:02, where <weekday> and <month> are strings:

"%s, ∆%s∆%d,∆%d:%.2d\n" , <weekday >, <month >, <day >, <hour >, <min >

To show π written to 5 decimal places:

"pi ∆=∆%.5f\n" , <value of π>

To show an input file format consisting of five colon-separated fields:

"%s:%s:%s:%s:%s\n" , <arg1 >, <arg2 >, <arg3 >, <arg4 >, <arg5 >

42 CAE Specification (1997)

Chapter 4

Character Set

4.1 Portable Character Set
Conforming implementations support one or more coded character sets. Each supported locale
includes the portable character set specified in the following table.

Symbolic Name Glyph Symbolic Name Glyph Symbolic Name Glyph
<circumflex> ˆ

<NUL> <colon> : <circumflex-accent> ˆ
<alert> <semicolon> ; <underscore> _
<backspace> <less-than-sign> < <underline> _
<tab> <equals-sign> = <low-line> _
<newline> <greater-than-sign> > <grave-accent> ‘
<vertical-tab> <question-mark> ? <a> a
<form-feed> <commercial-at> @ b
<carriage-return> <A> A <c> c
<space> B <d> d
<exclamation-mark> ! <C> C <e> e
<quotation-mark> " <D> D <f> f
<number-sign> # <E> E <g> g
<dollar-sign> $ <F> F <h> h
<percent-sign> % <G> G <i> i
<ampersand> & <H> H <j> j
<apostrophe> ’ <I> I <k> k
<left-parenthesis> (<J> J <l> l
<right-parenthesis>) <K> K <m> m
<asterisk> * <L> L <n> n
<plus-sign> + <M> M <o> o
<comma> , <N> N <p> p
<hyphen> − <O> O <q> q
<hyphen-minus> − <P> P <r> r
<period> . <Q> Q <s> s
<full-stop> . <R> R <t> t
<slash> / <S> S <u> u
<solidus> / <T> T <v> v
<zero> 0 <U> U <w> w
<one> 1 <V> V <x> x
<two> 2 <W> W <y> y
<three> 3 <X> X <z> z
<four> 4 <Y> Y <left-brace> {
<five> 5 <Z> Z <left-curly-bracket> {
<six> 6 <left-square-bracket> [<vertical-line> |
<seven> 7 <backslash> \ <right-brace> }
<eight> 8 <reverse-solidus> \ <right-curly-bracket> }
<nine> 9 <right-square-bracket>] <tilde> ∼

Table 4-1 Portable Character Set

System Interface Definitions, Issue 5 43

Portable Character Set Character Set

Table 4-1 on page 43 defines the characters in the portable character set and the corresponding
symbolic character names used to identify each character in a character set description file. The
table contains more than one symbolic character name for characters whose traditional name
differs from the chosen name.

This specification set places only the following requirements on the encoded values of the
characters in the portable character set:

• If the encoded values associated with each member of the portable character set are not
invariant across all locales supported by the implementation, the results achieved by an
application accessing those locales are unspecified.

• The encoded values associated with the digits 0 to 9 will be such that the value of each
character after 0 will be one greater than the value of the previous character.

• A null character, NUL, which has all bits set to zero, will be in the set of characters.

• The encoded values associated with the members of the portable character set are each
represented in a single byte. Moreover, if the value is stored in an object of C-language type
char, it is guaranteed to be positive (except the NUL, which is always zero).

4.2 Character Encoding
The POSIX locale contains the characters in Table 4-1 on page 43, which have the properties
listed in Section 5.3.1 on page 52. Implementations may also add other characters. In other
locales, the presence, meaning and representation of any additional characters is locale-specific.

In locales other than the POSIX locale, a character may have a state-dependent encoding. There
are two types of these encodings:

• A single-shift encoding (where each character not in the initial shift state is preceded by a
shift code) can be defined if each shift-code and character sequence is considered a multi-byte
character. This is done using the concatenated-constant format in a character set description
file, as described in Section 4.4 on page 45. If the implementation supports a character
encoding of this type, all of the standard utilities in the XCU specification will support it.
Use of a single-shift encoding with any of the functions in the XSH specification that do not
specifically mention the effects of state-dependent encoding is implementation-dependent.

• A locking-shift encoding (where the state of the character is determined by a shift code that
may affect more than the single character following it) cannot be defined with the current
character set description file format. Use of a locking-shift encoding with any of the standard
utilities in the XCU specification or with any of the functions in the XSH specification that do
not specifically mention the effects of state-dependent encoding is implementation-
dependent.

While in the initial shift state, all characters in the portable character set retain their usual
interpretation and do not alter the shift state. The interpretation for subsequent bytes in the
sequence is a function of the current shift state. A byte with all bits zero is interpreted as the null
character independent of shift state. Thus a byte with all bits zero must never occur in the
second or subsequent bytes of a character.

The maximum allowable number of bytes in a character in the current locale is indicated by
MB_CUR_MAX, defined in the XSH specification <stdlib.h>, and by the <mb_cur_max> value
in a character set description file; see Section 4.4 on page 45. The implementation’s maximum
number of bytes in a character is defined by the C-language macro {MB_LEN_MAX}.

44 CAE Specification (1997)

Character Set C Language Wide-character Codes

4.3 C Language Wide-character Codes
In the shell, the standard utilities are written so that the encodings of characters are described by
the locale’s LC_CTYPE definition (see Section 5.3.1 on page 52) and there is no differentiation
between characters consisting of single octets (8-bit bytes), larger bytes, or multiple bytes.
However, in the C language, a differentiation is made. To ease the handling of variable length
characters, the C language has introduced the concept of wide character codes.

All wide-character codes in a given process consist of an equal number of bits. This is in contrast
to characters, which can consist of a variable number of bytes. The byte or byte sequence that
represents a character can also be represented as a wide-character code. Wide-character codes
thus provide a uniform size for manipulating text data. A wide-character code having all bits
zero is the null wide-character code (see null wide-character code on page 21), and terminates
wide-character strings (see Section 4.3). The wide-character value for each member of the
Portable Character Set will equal its value when used as the lone character in an integer
character constant. Wide-character codes for other characters are locale- and implementation-
dependent. State shift bytes do not have a wide-character code representation.

4.4 Character Set Description File
Implementations provide a character set description file for at least one coded character set
supported by the implementation. These files are referred to elsewhere in this specification set
as charmap files. It is implementation-dependent whether or not users or applications can
provide additional character set description files.

This specification set does not require that multiple character sets or codesets be supported.
Although multiple charmap files are supported, it is the responsibility of the implementation to
provide the file or files; if only one is provided, only that one will be accessible using the localedef
utility’s −f option (although in the case of just one file on the system, −f is not useful).

Each character set description file defines characteristics for the coded character set and the
encoding for the characters specified in Table 4-1 on page 43 and may define encoding for
additional characters supported by the implementation. Other information about the coded
character set may also be in the file. Coded character set character values are defined using
symbolic character names followed by character encoding values.

The character set description file provides:

• The capability to describe character set attributes (such as collation order or character
classes) independent of character set encoding, and using only the characters in the portable
character set. This makes it possible to create generic localedef source files for all codesets that
share the portable character set (such as the ISO 8859 family or IBM Extended ASCII).

• Standardised symbolic names for all characters in the portable character set, making it
possible to refer to any such character regardless of encoding.

The charmap file was introduced to resolve problems with the portability of, especially, localedef
sources. This specification set assumes that the portable character set is constant across all
locales, but does not prohibit implementations from supporting two incompatible codings, such
as both ASCII and EBCDIC. Such dual-support implementations should have all charmaps and
localedef sources encoded using one portable character set, in effect cross-compiling for the other
environment. Naturally, charmaps (and localedef sources) are only portable without
transformation between systems using the same encodings for the portable character set. They
can, however, be transformed between two sets using only a subset of the actual characters (the
portable set). However, the particular coded character set used for an application or an

System Interface Definitions, Issue 5 45

Character Set Description File Character Set

implementation does not necessarily imply different characteristics or collation; on the contrary,
these attributes should in many cases be identical, regardless of codeset. The charmap provides
the capability to define a common locale definition for multiple codesets (the same localedef
source can be used for codesets with different extended characters; the ability in the charmap to
define empty names allows for characters missing in certain codesets).

Each symbolic name specified in Table 4-1 on page 43 is included in the file and is mapped to a
unique encoding value (except for those symbolic names that are shown with identical glyphs).
If the control characters commonly associated with the symbolic names in the following table
are supported by the implementation, the symbolic names and their corresponding encoding
values are included in the file. Some of the encodings associated with the symbolic names in this
table may be the same as characters in the portable character set table.

<ACK> <DC2> <ENQ> <FS> <IS4> <SOH>
<BEL> <DC3> <EOT> <GS> <LF> <STX>
<BS> <DC4> <ESC> <HT> <NAK> <SUB>

<CAN> <ETB> <IS1> <RS> <SYN>
<CR> <DLE> <ETX> <IS2> <SI> <US>

<DC1> <FF> <IS3> <SO> <VT>

Table 4-2 Control Character Set

The following declarations can precede the character definitions. Each must consist of the
symbol shown in the following list, starting in column 1, including the surrounding brackets,
followed by one or more blank characters, followed by the value to be assigned to the symbol.

<code_set_name> The name of the coded character set for which the character set
description file is defined. The characters of the name must be taken from
the set of characters with visible glyphs defined in Table 4-1 on page 43.

<mb_cur_max> The maximum number of bytes in a multi-byte character. This defaults to
1.

<mb_cur_min> An unsigned positive integer value that defines the minimum number of
EX bytes in a character for the encoded character set. On XSI-conformant

systems, <mb_cur_min> is always 1.

<escape_char> The escape character used to indicate that the characters following will be
interpreted in a special way, as defined later in this section. This defaults
to backslash (\), which is the character glyph used in all the following
text and examples, unless otherwise noted.

<comment_char> The character that when placed in column 1 of a charmap line, is used to
indicate that the line is to be ignored. The default character is the number
sign (#).

46 CAE Specification (1997)

Character Set Character Set Description File

The character set mapping definitions will be all the lines immediately following an identifier
line containing the string CHARMAP starting in column 1, and preceding a trailer line
containing the string END CHARMAP starting in column 1. Empty lines and lines containing a
<comment_char> in the first column will be ignored. Each non-comment line of the character
set mapping definition (that is, between the CHARMAP and END CHARMAP lines of the file)
must be in either of two forms:

"%s %s %s\n" , <symbolic-name >, <encoding >, <comments >

or:

"%s. . .%s %s %s\n" , <symbolic-name >, <symbolic-name >, <encoding >,
<comments >

In the first format, the line in the character set mapping definition defines a single symbolic
name and a corresponding encoding. A symbolic name is one or more characters from the set
shown with visible glyphs in Table 4-1 on page 43, enclosed between angle brackets. A character
following an escape character is interpreted as itself; for example, the sequence <\\\>>
represents the symbolic name \> enclosed between angle brackets.

In the second format, the line in the character set mapping definition defines a range of one or
more symbolic names. In this form, the symbolic names must consist of zero or more non-
numeric characters from the set shown with visible glyphs in Table 4-1 on page 43, followed by
an integer formed by one or more decimal digits. The characters preceding the integer must be
identical in the two symbolic names, and the integer formed by the digits in the second symbolic
name must be equal to or greater than the integer formed by the digits in the first name. This is
interpreted as a series of symbolic names formed from the common part and each of the integers
between the first and the second integer, inclusive. As an example, <j0101>...<j0104> is
interpreted as the symbolic names <j0101>, <j0102>, <j0103> and <j0104>, in that order.

A character set mapping definition line must exist for all symbolic names specified in Table 4-1
on page 43, and must define the coded character value that corresponds to the character glyph
indicated in the table, or the coded character value that corresponds with the control character
symbolic name. If the control characters commonly associated with the symbolic names in Table
4-2 on page 46 are supported by the implementation, the symbolic name and the corresponding
encoding value must be included in the file. Additional unique symbolic names may be
included. A coded character value can be represented by more than one symbolic name.

The encoding part is expressed as one (for single-byte character values) or more concatenated
decimal, octal or hexadecimal constants in the following formats:

"%cd%d" , <escape_char >, <decimal byte value >

"%cx%x" , <escape_char >, <hexadecimal byte value >

"%c%o", <escape_char >, <octal byte value >

Decimal constants must be represented by two or three decimal digits, preceded by the escape
character and the lower-case letter d; for example, \d05, \d97 or \d143. Hexadecimal constants
must be represented by two hexadecimal digits, preceded by the escape character and the
lower-case letter x; for example, \x05, \x61 or \x8f. Octal constants must be represented by two
or three octal digits, preceded by the escape character; for example, \05, \141 or \217. In a
portable charmap file, each constant must represent an 8-bit byte. Implementations supporting
other byte sizes may allow constants to represent values larger than those that can be
represented in 8-bit bytes, and to allow additional digits in constants. When constants are
concatenated for multi-byte character values, they must be of the same type, and interpreted in
byte order from first to last with the least significant byte of the multi-byte character specified by
the last constant. The manner in which these constants are represented in the character stored in

System Interface Definitions, Issue 5 47

Character Set Description File Character Set

the system is implementation-dependent. (This big endian notation was chosen for reasons of
portability. There is no requirement that the internal representation in the computer memory be
in this same order.) Omitting bytes from a multi-byte character definition produces undefined
results.

In lines defining ranges of symbolic names, the encoded value is the value for the first symbolic
name in the range (the symbolic name preceding the ellipsis). Subsequent symbolic names
defined by the range will have encoding values in increasing order. For example, the line:

<j0101>...<j0104> \d129\d254

will be interpreted as:

<j0101> \d129\d254
<j0102> \d129\d255
<j0103> \d130\d0
<j0104> \d130\d1

Note that this line will be interpreted as the example even on systems with bytes larger than 8
bits.

The comment is optional.

For the interpretation of the dollar sign and the number sign, see dollar sign on page 12 and
number sign on page 21.

48 CAE Specification (1997)

Chapter 5

Locale

5.1 General
A locale is the definition of the subset of a user’s environment that depends on language and
cultural conventions. It is made up from one or more categories. Each category is identified by
its name and controls specific aspects of the behaviour of components of the system. Category
names correspond to the following environment variable names:

LC_CTYPE Character classification and case conversion.

LC_COLLATE Collation order.

LC_TIME Date and time formats.

LC_NUMERIC Numeric, non-monetary formatting.

LC_MONETARY Monetary formatting.

LC_MESSAGES Formats of informative and diagnostic messages and interactive responses.

The standard utilities in the XCU specification base their behaviour on the current locale, as
defined in the ENVIRONMENT VARIABLES section for each utility. The behaviour of some of
the C-language functions defined in the XSH specification will also be modified based on the
current locale, as defined by the last call to setlocale ().

Locales other than those supplied by the implementation can be created by the application via
EX the localedef utility, if it is provided; see the XCU specification. This capability is supported on

all X/Open systems where the {POSIX2_LOCALEDEF} or {XOPEN_XCU_VERSION} options are
supported; see the XSH specification <unistd.h>. Even if localedef is not provided, all
implementations conforming to the XSH specification provide one or more locales that behave
as described in this chapter. The input to the utility is described in Section 5.3 on page 50. The
value that is used to specify a locale when using environment variables will be the string
specified as the name operand to the localedef utility when the locale was created. The strings "C"
and "POSIX" are reserved as identifiers for the POSIX locale (see Section 5.2 on page 50). When
the value of a locale environment variable begins with a slash (/), it is interpreted as the
pathname of the locale definition; the type of file (regular, directory, and so forth) used to store
the locale definition is implementation-dependent. If the value does not begin with a slash, the
mechanism used to locate the locale is implementation-dependent.

If different character sets are used by the locale categories, the results achieved by an application
utilising these categories are undefined. Likewise, if different codesets are used for the data
being processed by interfaces whose behaviour is dependent on the current locale, or the codeset
is different from the codeset assumed when the locale was created, the result is also undefined.

Applications can select the desired locale by invoking the setlocale () function (or equivalent)
with the appropriate value. If the function is invoked with an empty string, such as:

setlocale(LC_ALL, "");

the value of the corresponding environment variable is used. If the environment variable is
unset or is set to the empty string, the implementation sets the appropriate environment as
defined in Chapter 6 on page 93.

System Interface Definitions, Issue 5 49

POSIX Locale Locale

5.2 POSIX Locale
All systems provide a POSIX locale , also known as the C locale. The behaviour of standard
utilities and functions in the POSIX locale is as if the locale was defined via the localedef utility
with input data from the POSIX locale tables in Section 5.3.

The tables in Section 5.3 describe the characteristics and behaviour of the POSIX locale for data
consisting entirely of characters from the portable character set and the control character set. For
other characters, the behaviour is unspecified. For C-language programs, the POSIX locale is the
default locale when the setlocale () function is not called.

The POSIX locale can be specified by assigning to the appropriate environment variables the
values "C" or "POSIX".

All implementations define a locale as the default locale, to be invoked when no environment
variables are set, or set to the empty string. This default locale can be the POSIX locale or any
other, implementation-dependent locale. Some implementations may provide facilities for local
installation administrators to set the default locale, customising it for each location. This
specification set does not require such a facility.

5.3 Locale Definition
Locales can be described with the file format presented in this section. The file format is that
accepted by the localedef utility. For the purposes of this section, the file is referred to as the locale
definition file , but no locales are affected by this file unless it is processed by localedef or some
similar mechanism. Any requirements in this section imposed upon the utility apply to localedef
or to any other similar utility used to install locale information using the locale definition file
format described here.

The locale definition file must contain one or more locale category source definitions, and must
not contain more than one definition for the same locale category. If the file contains source
definitions for more than one category, implementation-dependent categories, if present, must
appear after the categories defined by Section 5.1 on page 49. A category source definition must
contain either the definition of a category or a copy directive. For a description of the copy
directive, see localedef. In the event that some of the information for a locale category, as
specified in this specification, is missing from the locale source definition, the behaviour of that
category, if it is referenced, is unspecified.

A category source definition consists of a category header, a category body and a category
trailer. A category header consists of the character string naming of the category, beginning with
the characters LC_. The category trailer consists of the string END, followed by one or more
blank characters and the string used in the corresponding category header.

The category body consists of one or more lines of text. Each line contains an identifier,
optionally followed by one or more operands. Identifiers are either keywords, identifying a
particular locale element, or collating elements. In addition to the keywords defined in this
specification, the source can contain implementation-dependent keywords. Each keyword
within a locale must have a unique name (that is, two categories cannot have a commonly-
named keyword); no keyword can start with the characters LC_. Identifiers must be separated
from the operands by one or more blank characters.

50 CAE Specification (1997)

Locale Locale Definition

Operands must be characters, collating elements or strings of characters. Strings must be
enclosed in double-quotes. Literal double-quotes within strings must be preceded by the <escape
character>, described below. When a keyword is followed by more than one operand, the
operands must be separated by semicolons; blank characters are allowed both before and after a
semicolon.

The first category header in the file can be preceded by a line modifying the comment character.
It has the following format, starting in column 1:

"comment_char %c\n" , <comment character >

The comment character defaults to the number sign (#). Blank lines and lines containing the
<comment character> in the first position are ignored.

The first category header in the file can be preceded by a line modifying the escape character to
be used in the file. It has the following format, starting in column 1:

"escape_char %c\n" , <escape character >

The escape character defaults to backslash, which is the character used in all examples shown in
this specification.

A line can be continued by placing an escape character as the last character on the line; this
continuation character will be discarded from the input. Although the implementation need not
accept any one portion of a continued line with a length exceeding {LINE_MAX} bytes, it places
no limits on the accumulated length of the continued line. Comment lines cannot be continued
on a subsequent line using an escaped newline character.

Individual characters, characters in strings, and collating elements must be represented using
symbolic names, as defined below. In addition, characters can be represented using the
characters themselves or as octal, hexadecimal or decimal constants. When non-symbolic
notation is used, the resultant locale definitions will in many cases not be portable between
systems. The left angle bracket (<) is a reserved symbol, denoting the start of a symbolic name;
when used to represent itself it must be preceded by the escape character. The following rules
apply to character representation:

1. A character can be represented via a symbolic name, enclosed within angle brackets "<"
and ">". The symbolic name, including the angle brackets, must exactly match a symbolic
name defined in the charmap file specified via the localedef −f option, and will be replaced
by a character value determined from the value associated with the symbolic name in the
charmap file. The use of a symbolic name not found in the charmap file constitutes an
error, unless the category is LC_CTYPE or LC_COLLATE, in which case it constitutes a
warning condition (see localedef for a description of action resulting from errors and
warnings). The specification of a symbolic name in a collating−element or
collating−symbol section that duplicates a symbolic name in the charmap file (if present)
is an error. Use of the escape character or a right angle bracket within a symbolic name is
invalid unless the character is preceded by the escape character.

Example:

<c>;<c −cedilla> "<M><a><y>"

System Interface Definitions, Issue 5 51

Locale Definition Locale

2. A character can be represented by the character itself, in which case the value of the
character is implementation-dependent. Within a string, the double-quote character, the
escape character and the right angle bracket character must be escaped (preceded by the
escape character) to be interpreted as the character itself. Outside strings, the characters:

, ; < > escape_char

must be escaped to be interpreted as the character itself.

Example:

c β "May"

3. A character can be represented as an octal constant. An octal constant is specified as the
escape character followed by two or more octal digits. Each constant represents a byte
value. Multi-byte values can be represented by concatenated constants specified in byte
order with the last constant specifying the least significant byte of the character.

Example:

\143;\347;\143\150 "\115\141\171"

4. A character can be represented as a hexadecimal constant. A hexadecimal constant is
specified as the escape character followed by an x followed by two or more hexadecimal
digits. Each constant represents a byte value. Multi-byte values can be represented by
concatenated constants specified in byte order with the last constant specifying the least
significant byte of the character.

Example:

\x63;\xe7;\x63\x68 "\x4d\x61\x79"

5. A character can be represented as a decimal constant. A decimal constant is specified as
the escape character followed by a d followed by two or more decimal digits. Each
constant represents a byte value. Multi-byte values can be represented by concatenated
constants specified in byte order with the last constant specifying the least significant byte
of the character.

Example:

\d99;\d231;\d99\d104 "\d77\d97\d121"

Implementations may accept single-digit octal, decimal or hexadecimal constants following the
escape character. Only characters existing in the character set for which the locale definition is
created can be specified, whether using symbolic names, the characters themselves, or octal,
decimal or hexadecimal constants. If a charmap file is present, only characters defined in the
charmap can be specified using octal, decimal or hexadecimal constants. Symbolic names not
present in the charmap file can be specified and will be ignored, as specified under item 1 above.

5.3.1 LC_CTYPE

The LC_CTYPE category defines character classification, case conversion and other character
attributes. In addition, a series of characters can be represented by three adjacent periods
representing an ellipsis symbol (. . .). The ellipsis specification is interpreted as meaning that all
values between the values preceding and following it represent valid characters. The ellipsis
specification is valid only within a single encoded character set; that is, within a group of
characters of the same size. An ellipsis is interpreted as including in the list all characters with
an encoded value higher than the encoded value of the character preceding the ellipsis and
lower than the encoded value of the character following the ellipsis.

52 CAE Specification (1997)

Locale Locale Definition

Example:

\x30;. . .;\x39;

includes in the character class all characters with encoded values between the endpoints.

The following keywords are recognised. In the descriptions, the term ‘‘automatically included’’
means that it is not an error either to include or omit any of the referenced characters; the
implementation will provide them if missing (even if the entire keyword is missing) and accept
them silently if present. When the implementation automatically includes a missing character, it
will have an encoded value dependent on the charmap file in effect (see the description of the
localedef −f option); otherwise, it will have a value derived from an implementation-dependent
character mapping.

The character classes digit, xdigit, lower, upper and space have a set of automatically included
characters. These only need to be specified if the character values (that is, encoding) differ from
the implementation default values. It is not possible to define a locale without these
automatically included characters unless some implementation extension is used to prevent
their inclusion. Such a definition would not be a proper superset of the C or POSIX locale and
thus, it might not be possible for applications conforming to the XSI to work properly.

upper Define characters to be classified as upper-case letters.

In the POSIX locale, the 26 upper-case letters are included:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

In a locale definition file, no character specified for the keywords cntrl, digit,
punct or space can be specified. The upper-case letters A to Z, as defined in
Section 4.4 on page 45 (the portable character set), are automatically included
in this class.

lower Define characters to be classified as lower-case letters.

In the POSIX locale, the 26 lower-case letters are included:

a b c d e f g h i j k l m n o p q r s t u v w x y z

In a locale definition file, no character specified for the keywords cntrl, digit,
punct or space can be specified. The lower-case letters a to z of the portable
character set are automatically included in this class.

alpha Define characters to be classified as letters.

In the POSIX locale, all characters in the classes upper and lower are included.

In a locale definition file, no character specified for the keywords cntrl, digit,
punct or space can be specified. Characters classified as either upper or lower
are automatically included in this class.

digit Define the characters to be classified as numeric digits.

In the POSIX locale, only:

0 1 2 3 4 5 6 7 8 9

are included.

In a locale definition file, only the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 can be
specified, and in contiguous ascending sequence by numerical value. The
digits 0 to 9 of the portable character set are automatically included in this
class.

System Interface Definitions, Issue 5 53

Locale Definition Locale

The definition of character class digit requires that only ten characters the
ones defining digits can be specified; alternative digits (for example, Hindi or
Kanji) cannot be specified here. However, the encoding may vary if an
implementation supports more than one encoding.

space Define characters to be classified as white-space characters.

In the POSIX locale, at a minimum, the characters space, form-feed, newline,
carriage-return, tab and vertical-tab are included.

In a locale definition file, no character specified for the keywords upper,
lower, alpha, digit, graph or xdigit can be specified. The characters space,
form-feed, newline, carriage-return, tab and vertical-tab of the portable
character set, and any characters included in the class blank are automatically
included in this class.

cntrl Define characters to be classified as control characters.

In the POSIX locale, no characters in classes alpha or print are included.

In a locale definition file, no character specified for the keywords upper,
lower, alpha, digit, punct, graph, print or xdigit can be specified.

punct Define characters to be classified as punctuation characters.

In the POSIX locale, neither the space character nor any characters in classes
alpha, digit or cntrl are included.

In a locale definition file, no character specified for the keywords upper,
lower, alpha, digit, cntrl, xdigit or as the space character can be specified.

graph Define characters to be classified as printable characters, not including the
space character.

In the POSIX locale, all characters in classes alpha, digit and punct are
included; no characters in class cntrl are included.

In a locale definition file, characters specified for the keywords upper, lower,
alpha, digit, xdigit and punct are automatically included in this class. No
character specified for the keyword cntrl can be specified.

print Define characters to be classified as printable characters, including the space
character.

In the POSIX locale, all characters in class graph are included; no characters in
class cntrl are included.

In a locale definition file, characters specified for the keywords upper, lower,
alpha, digit, xdigit, punct and the space character are automatically included
in this class. No character specified for the keyword cntrl can be specified.

xdigit Define the characters to be classified as hexadecimal digits.

In the POSIX locale, only:

0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

are included.

In a locale definition file, only the characters defined for the class digit can be
specified, in contiguous ascending sequence by numerical value, followed by
one or more sets of six characters representing the hexadecimal digits 10 to 15

54 CAE Specification (1997)

Locale Locale Definition

inclusive, with each set in ascending order (for example A, B, C, D, E, F, a, b, c,
d, e, f). The digits 0 to 9, the upper-case letters A to F and the lower-case
letters a to f of the portable character set are automatically included in this
class.

The definition of character class xdigit requires that the characters included in
character class digit be included here also.

blank Define characters to be classified as blank characters.

In the POSIX locale, only the space and tab characters are included.

In a locale definition file, the characters space and tab are automatically
included in this class.

EX charclass Define one or more locale-specific character class names as strings separated
by semicolons. Each named character class can then be defined subsequently
in the LC_CTYPE definition. A character class name consists of at least one
and at most {CHARCLASS_NAME_MAX} bytes of alphanumeric characters
from the portable filename character set. The first character of a character
class name cannot be a digit. The name cannot match any of the LC_CTYPE
keywords defined in this specification.

charclass-name Define characters to be classified as belonging to the named locale-specific
character class. In the POSIX locale, the locale-specific named character
classes need not exist.

If a class name is defined by a charclass keyword, but no characters are
subsequently assigned to it, this is not an error; it represents a class without
any characters belonging to it.

The charclass-name can be used as the property argument to the wctype()
function, in regular expression and shell pattern-matching bracket
expressions, and by the tr command.

toupper Define the mapping of lower-case letters to upper-case letters.

In the POSIX locale, at a minimum, the 26 lower-case characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

are mapped to the corresponding 26 upper-case characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

In a locale definition file, the operand consists of character pairs, separated by
semicolons. The characters in each character pair are separated by a comma
and the pair enclosed by parentheses. The first character in each pair is the
lower-case letter, the second the corresponding upper-case letter. Only
characters specified for the keywords lower and upper can be specified. The
lower-case letters a to z, and their corresponding upper-case letters A to Z, of
the portable character set are automatically included in this mapping, but only
when the toupper keyword is omitted from the locale definition.

tolower Define the mapping of upper-case letters to lower-case letters.

In the POSIX locale, at a minimum, the 26 upper-case characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

System Interface Definitions, Issue 5 55

Locale Definition Locale

are mapped to the corresponding 26 lower-case characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

In a locale definition file, the operand consists of character pairs, separated by
semicolons. The characters in each character pair are separated by a comma
and the pair enclosed by parentheses. The first character in each pair is the
upper-case letter, the second the corresponding lower-case letter. Only
characters specified for the keywords lower and upper can be specified. If the
tolower keyword is omitted from the locale definition, the mapping will be
the reverse mapping of the one specified for toupper.

copy Specify the name of an existing locale to be used as the definition of this
category. If this keyword is specified, no other keyword can be specified.

The following table shows the character class combinations allowed.

In Can Also Belong To
Class upper lower alpha digit space cntrl punct graph print xdigit blank
upper - A x x x x A A - x
lower - A x x x x A A - x
alpha - - x x x x A A - x
digit x x x x x x A A A x
space x x x x - * * * x -
cntrl x x x x - x x x x -
punct x x x x - x A A x -
graph - - - - - x - A - -
print - - - - - x - - - -
xdigit - - - - x x x A A x
blank x x x x A - * * * x

Table 5-1 Valid Character Class Combinations

Notes:

1. Explanation of codes:

A Automatically included; see text.

- Permitted.

x Mutually exclusive.

* See note 2.

2. The space character, which is part of the space and blank classes, cannot belong
to punct or graph, but automatically belongs to the print class. Other space or
blank characters can be classified as any of punct, graph or print.

56 CAE Specification (1997)

Locale Locale Definition

The character classifications for the POSIX locale follow; the code listing depicting the localedef
input, the table representing the same information, sorted by character.

LC_CTYPE
The following is the POSIX locale LC_CTYPE.
"alpha" is by default "upper" and "lower"
"alnum" is by definition "alpha" and "digit"
"print" is by default "alnum", "punct" and the <space> character
"graph" is by default "alnum" and "punct"
#
upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;\

<N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>
#
lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;\

<n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>
#
digit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\

<seven>;<eight>;<nine>
#
space <tab>;<newline>;<vertical-tab>;<form-feed>;\

<carriage-return>;<space>
#
cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;\

<form-feed>;<carriage-return>;\
<NUL>;<SOH>;<STX>;<ETX>;<EOT>;<ENQ>;<ACK>;<SO>;\
<SI>;<DLE>;<DC1>;<DC2>;<DC3>;<DC4>;<NAK>;<SYN>;\
<ETB>;<CAN>;;<SUB>;<ESC>;<IS4>;<IS3>;<IS2>;\
<IS1>;

#
punct <exclamation-mark>;<quotation-mark>;<number-sign>;\

<dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>;\
<left-parenthesis>;<right-parenthesis>;<asterisk>;\
<plus-sign>;<comma>;<hyphen>;<period>;<slash>;\
<colon>;<semicolon>;<less-than-sign>;<equals-sign>;\
<greater-than-sign>;<question-mark>;<commercial-at>;\
<left-square-bracket>;<backslash>;<right-square-bracket>;\
<circumflex>;<underscore>;<grave-accent>;<left-curly-bracket>;\
<vertical-line>;<right-curly-bracket>;<tilde>

#
xdigit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;<seven>;\

<eight>;<nine>;<A>;;<C>;<D>;<E>;<F>;<a>;;<c>;<d>;<e>;<f>
#
blank <space>;<tab>
#
toupper (<a>,<A>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);\

(<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);\
(<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<o>,<O>);\
(<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);\
(<u>,<U>);(<v>,<V>);(<w>,<W>);(<x>,<X>);(<y>,<Y>);(<z>,<Z>)

#
tolower (<A>,<a>);(,);(<C>,<c>);(<D>,<d>);(<E>,<e>);\

(<F>,<f>);(<G>,<g>);(<H>,<h>);(<I>,<i>);(<J>,<j>);\
(<K>,<k>);(<L>,<l>);(<M>,<m>);(<N>,<n>);(<O>,<o>);\

System Interface Definitions, Issue 5 57

Locale Definition Locale

(<P>,<p>);(<Q>,<q>);(<R>,<r>);(<S>,<s>);(<T>,<t>);\
(<U>,<u>);(<V>,<v>);(<W>,<w>);(<X>,<x>);(<Y>,<y>);(<Z>,<z>)

END LC_CTYPE

Other
Symbolic Name Case Character Classes

<NUL> cntrl
<SOH> cntrl
<STX> cntrl
<ETX> cntrl
<EOT> cntrl
<ENQ> cntrl
<ACK> cntrl
<alert> cntrl
<backspace> cntrl
<tab> cntrl, space, blank
<newline> cntrl, space
<vertical-tab> cntrl, space
<form-feed> cntrl, space
<carriage-return> cntrl, space
<SO> cntrl
<SI> cntrl
<DLE> cntrl
<DC1> cntrl
<DC2> cntrl
<DC3> cntrl
<DC4> cntrl
<NAK> cntrl
<SYN> cntrl
<ETB> cntrl
<CAN> cntrl
 cntrl
<SUB> cntrl
<ESC> cntrl
<IS4> cntrl
<IS3> cntrl
<IS2> cntrl
<IS1> cntrl
<space> space, print, blank
<exclamation-mark> punct, print, graph
<quotation-mark> punct, print, graph
<number-sign> punct, print, graph
<dollar-sign> punct, print, graph
<percent-sign> punct, print, graph
<ampersand> punct, print, graph
<apostrophe> punct, print, graph
<left-parenthesis> punct, print, graph
<right-parenthesis> punct, print, graph

58 CAE Specification (1997)

Locale Locale Definition

Other
Symbolic Name Case Character Classes

<asterisk> punct, print, graph
<plus-sign> punct, print, graph
<comma> punct, print, graph
<hyphen> punct, print, graph
<period> punct, print, graph
<slash> punct, print, graph
<zero> digit, xdigit, print, graph
<one> digit, xdigit, print, graph
<two> digit, xdigit, print, graph
<three> digit, xdigit, print, graph
<four> digit, xdigit, print, graph
<five> digit, xdigit, print, graph
<six> digit, xdigit, print, graph
<seven> digit, xdigit, print, graph
<eight> digit, xdigit, print, graph
<nine> digit, xdigit, print, graph
<colon> punct, print, graph
<semicolon> punct, print, graph
<less-than-sign> punct, print, graph
<equals-sign> punct, print, graph
<greater-than-sign> punct, print, graph
<question-mark> punct, print, graph
<commercial-at> punct, print, graph
<A> <a> upper, xdigit, alpha, print, graph
 upper, xdigit, alpha, print, graph
<C> <c> upper, xdigit, alpha, print, graph
<D> <d> upper, xdigit, alpha, print, graph
<E> <e> upper, xdigit, alpha, print, graph
<F> <f> upper, xdigit, alpha, print, graph
<G> <g> upper, alpha, print, graph
<H> <h> upper, alpha, print, graph
<I> <i> upper, alpha, print, graph
<J> <j> upper, alpha, print, graph
<K> <k> upper, alpha, print, graph
<L> <l> upper, alpha, print, graph
<M> <m> upper, alpha, print, graph
<N> <n> upper, alpha, print, graph
<O> <o> upper, alpha, print, graph
<P> <p> upper, alpha, print, graph
<Q> <q> upper, alpha, print, graph
<R> <r> upper, alpha, print, graph
<S> <s> upper, alpha, print, graph
<T> <t> upper, alpha, print, graph
<U> <u> upper, alpha, print, graph
<V> <v> upper, alpha, print, graph
<W> <w> upper, alpha, print, graph

System Interface Definitions, Issue 5 59

Locale Definition Locale

Other
Symbolic Name Case Character Classes

<X> <x> upper, alpha, print, graph
<Y> <y> upper, alpha, print, graph
<Z> <z> upper, alpha, print, graph
<left-square-bracket> punct, print, graph
<backslash> punct, print, graph
<right-square-bracket> punct, print, graph
<circumflex> punct, print, graph
<underscore> punct, print, graph
<grave-accent> punct, print, graph
<a> <A> lower, xdigit, alpha, print, graph
 lower, xdigit, alpha, print, graph
<c> <C> lower, xdigit, alpha, print, graph
<d> <D> lower, xdigit, alpha, print, graph
<e> <E> lower, xdigit, alpha, print, graph
<f> <F> lower, xdigit, alpha, print, graph
<g> <G> lower, alpha, print, graph
<h> <H> lower, alpha, print, graph
<i> <I> lower, alpha, print, graph
<j> <J> lower, alpha, print, graph
<k> <K> lower, alpha, print, graph
<l> <L> lower, alpha, print, graph
<m> <M> lower, alpha, print, graph
<n> <N> lower, alpha, print, graph
<o> <O> lower, alpha, print, graph
<p> <P> lower, alpha, print, graph
<q> <Q> lower, alpha, print, graph
<r> <R> lower, alpha, print, graph
<s> <S> lower, alpha, print, graph
<t> <T> lower, alpha, print, graph
<u> <U> lower, alpha, print, graph
<v> <V> lower, alpha, print, graph
<w> <W> lower, alpha, print, graph
<x> <X> lower, alpha, print, graph
<y> <Y> lower, alpha, print, graph
<z> <Z> lower, alpha, print, graph
<left-curly-bracket> punct, print, graph
<vertical-line> punct, print, graph
<right-curly-bracket> punct, print, graph
<tilde> punct, print, graph
 cntrl

60 CAE Specification (1997)

Locale Locale Definition

5.3.2 LC_COLLATE

The LC_COLLATE category provides a collation sequence definition for numerous utilities in
the XCU specification (sort, uniq, and so forth), regular expression matching (see Chapter 7 on
page 101) and the strcoll(), strxfrm(), wcscoll() and wcsxfrm() functions in the XSH specification.

A collation sequence definition defines the relative order between collating elements (characters
and multi-character collating elements) in the locale. This order is expressed in terms of
collation values; that is, by assigning each element one or more collation values (also known as
collation weights). This does not imply that implementations assign such values, but that
ordering of strings using the resultant collation definition in the locale will behave as if such
assignment is done and used in the collation process. At least the following capabilities are
provided:

1. Multi-character collating elements. Specification of multi-character collating elements
(that is, sequences of two or more characters to be collated as an entity).

2. User-defined ordering of collating elements. Each collating element is assigned a
collation value defining its order in the character (or basic) collation sequence. This
ordering is used by regular expressions and pattern matching and, unless collation weights
are explicitly specified, also as the collation weight to be used in sorting.

3. Multiple weights and equivalence classes. Collating elements can be assigned one or
more (up to the limit {COLL_WEIGHTS_MAX}) collating weights for use in sorting. The
first weight is hereafter referred to as the primary weight.

4. One-to-Many mapping. A single character is mapped into a string of collating elements.

5. Equivalence class definition. Two or more collating elements have the same collation
value (primary weight).

6. Ordering by weights. When two strings are compared to determine their relative order,
the two strings are first broken up into a series of collating elements; the elements in each
successive pair of elements are then compared according to the relative primary weights
for the elements. If equal, and more than one weight has been assigned, then the pairs of
collating elements are recompared according to the relative subsequent weights, until
either a pair of collating elements compare unequal or the weights are exhausted.

The following keywords are recognised in a collation sequence definition. They are described in
detail in the following sections.

collating-element Define a collating-element symbol representing a multi-character
collating element. This keyword is optional.

collating-symbol Define a collating symbol for use in collation order statements. This
keyword is optional.

order_start Define collation rules. This statement is followed by one or more
collation order statements, assigning character collation values and
collation weights to collating elements.

order_end Specify the end of the collation-order statements.

copy Specify the name of an existing locale to be used as the definition of this
category. If this keyword is specified, no other keyword can be specified.

System Interface Definitions, Issue 5 61

Locale Definition Locale

The collating-element Keyword

In addition to the collating elements in the character set, the collating−element keyword is used
to define multi-character collating elements. The syntax is:

"collating-element %s from \"%s\"\n" , <collating-symbol >, <string >

The <collating-symbol> operand is a symbolic name, enclosed between angle brackets (< and >),
and must not duplicate any symbolic name in the current charmap file (if any), or any other
symbolic name defined in this collation definition. The string operand is a string of two or more
characters that collates as an entity. A <collating-element> defined via this keyword is only
recognised with the LC_COLLATE category.

Example:

collating-element <ch> from "<c><h>"
collating-element <e-acute> from "<acute><e>"
collating-element <ll> from "ll"

The collating-symbol Keyword

This keyword will be used to define symbols for use in collation sequence statements; that is,
between the order_start and the order_end keywords. The syntax is:

"collating-symbol %s\n" , <collating-symbol >

The <collating-symbol> is a symbolic name, enclosed between angle brackets (< and >), and must
not duplicate any symbolic name in the current charmap file (if any), or any other symbolic
name defined in this collation definition. A <collating-symbol> defined via this keyword is only
recognised with the LC_COLLATE category.

Example:

collating-symbol <UPPER_CASE>
collating-symbol <HIGH>

The collating−symbol keyword defines a symbolic name that can be associated with a relative
position in the character order sequence. While such a symbolic name does not represent any
collating element, it can be used as a weight.

The order_start Keyword

The order_start keyword must precede collation order entries and also defines the number of
weights for this collation sequence definition and other collation rules.

The syntax of the order_start keyword is:

"order_start %s;%s; . . .;%s\n" , <sort-rules >, <sort-rules >

The operands to the order_start keyword are optional. If present, the operands define rules to be
applied when strings are compared. The number of operands define how many weights each
element is assigned; if no operands are present, one forward operand is assumed. If present, the
first operand defines rules to be applied when comparing strings using the first (primary)
weight; the second when comparing strings using the second weight, and so on. Operands are
separated by semicolons (;). Each operand consists of one or more collation directives, separated
by commas (,). If the number of operands exceeds the {COLL_WEIGHTS_MAX} limit, the utility
will issue a warning message. The following directives will be supported:

forward Specifies that comparison operations for the weight level proceed from start of
string towards the end of string.

62 CAE Specification (1997)

Locale Locale Definition

backward Specifies that comparison operations for the weight level proceed from end of
string towards the beginning of string.

position Specifies that comparison operations for the weight level will consider the relative
position of elements in the strings not subject to IGNORE. The string containing
an element not subject to IGNORE after the fewest collating elements subject to
IGNORE from the start of the compare will collate first. If both strings contain a
character not subject to IGNORE in the same relative position, the collating values
assigned to the elements will determine the ordering. In case of equality,
subsequent characters not subject to IGNORE are considered in the same manner.

The directives forward and backward are mutually exclusive.

Example:

order_start forward;backward

If no operands are specified, a single forward operand is assumed.

The character (and collating element) order is defined by the order in which characters and
elements are specified between the order_start and order_end keywords. This character order is
used in range expressions in regular expressions (see Chapter 7). Weights assigned to the
characters and elements define the collation sequence; in the absence of weights, the character
order is also the collation sequence.

The position keyword provides the capability to consider, in a compare, the relative position of
characters not subject to IGNORE. As an example, consider the two strings ‘‘o-ring’’ and ‘‘or-
ing’’. Assuming the hyphen is subject to IGNORE on the first pass, the two strings will compare
equal, and the position of the hyphen is immaterial. On second pass, all characters except the
hyphen are subject to IGNORE, and in the normal case the two strings would again compare
equal. By taking position into account, the first collates before the second.

Collation Order

The order_start keyword is followed by collating identifier entries. The syntax for the collating
element entries is:

"%s %s;%s; . . .;%s\n" , <collating-identifier >, <weight >, <weight >, . . .

Each collating-identifier consists of either a character (in any of the forms defined in Section 5.3 on
page 50), a <collating-element>, a <collating-symbol>, an ellipsis or the special symbol
UNDEFINED. The order in which collating elements are specified determines the character
order sequence, such that each collating element compares less than the elements following it.
The NUL character compares lower than any other character.

A <collating-element> is used to specify multi-character collating elements, and indicates that the
character sequence specified via the <collating-element> is to be collated as a unit and in the
relative order specified by its place.

A <collating-symbol> is used to define a position in the relative order for use in weights. No
weights are specified with a <collating-symbol>.

The ellipsis symbol specifies that a sequence of characters will collate according to their encoded
character values. It is interpreted as indicating that all characters with a coded character set
value higher than the value of the character in the preceding line, and lower than the coded
character set value for the character in the following line, in the current coded character set, will
be placed in the character collation order between the previous and the following character in
ascending order according to their coded character set values. An initial ellipsis is interpreted as
if the preceding line specified the NUL character, and a trailing ellipsis as if the following line

System Interface Definitions, Issue 5 63

Locale Definition Locale

specified the highest coded character set value in the current coded character set. An ellipsis is
treated as invalid if the preceding or following lines do not specify characters in the current
coded character set. The use of the ellipsis symbol ties the definition to a specific coded
character set and may preclude the definition from being portable between implementations.

The symbol UNDEFINED is interpreted as including all coded character set values not specified
explicitly or via the ellipsis symbol. Such characters are inserted in the character collation order
at the point indicated by the symbol, and in ascending order according to their coded character
set values. If no UNDEFINED symbol is specified, and the current coded character set contains
characters not specified in this section, the utility will issue a warning message and place such
characters at the end of the character collation order.

The optional operands for each collation-element are used to define the primary, secondary, or
subsequent weights for the collating element. The first operand specifies the relative primary
weight, the second the relative secondary weight, and so on. Two or more collation-elements
can be assigned the same weight; they belong to the same equivalence class if they have the same
primary weight. Collation behaves as if, for each weight level, elements subject to IGNORE are
removed, unless the position collation directive is specified for the corresponding level with the
order_start keyword. Then each successive pair of elements is compared according to the
relative weights for the elements. If the two strings compare equal, the process is repeated for
the next weight level, up to the limit {COLL_WEIGHTS_MAX}.

Weights are expressed as characters (in any of the forms specified in Section 5.3 on page 50),
<collating-symbol>s, <collating-element>s, an ellipsis, or the special symbol IGNORE. A single
character, a <collating-symbol> or a <collating-element> represent the relative position in the
character collating sequence of the character or symbol, rather than the character or characters
themselves. Thus, rather than assigning absolute values to weights, a particular weight is
expressed using the relative order value assigned to a collating element based on its order in the
character collation sequence.

One-to-many mapping is indicated by specifying two or more concatenated characters or
symbolic names. For example, if the character <eszet> is given the string "<s><s>" as a weight,
comparisons are performed as if all occurrences of the character <eszet> are replaced by <s><s>
(assuming that <s> has the collating weight <s>). If it is necessary to define <eszet> and <s><s>
as an equivalence class, then a collating element must be defined for the string ss.

All characters specified via an ellipsis will by default be assigned unique weights, equal to the
relative order of characters. Characters specified via an explicit or implicit UNDEFINED special
symbol will by default be assigned the same primary weight (that is, belong to the same
equivalence class). An ellipsis symbol as a weight is interpreted to mean that each character in
the sequence has unique weights, equal to the relative order of their character in the character
collation sequence. The use of the ellipsis as a weight is treated as an error if the collating
element is neither an ellipsis nor the special symbol UNDEFINED.

The special keyword IGNORE as a weight indicates that when strings are compared using the
weights at the level where IGNORE is specified, the collating element is ignored; that is, as if the
string did not contain the collating element. In regular expressions and pattern matching, all
characters that are subject to IGNORE in their primary weight form an equivalence class.

An empty operand is interpreted as the collating element itself.

64 CAE Specification (1997)

Locale Locale Definition

For example, the order statement:

<a> <a>;<a>

is equal to:

<a>

An ellipsis can be used as an operand if the collating element was an ellipsis, and is interpreted
as the value of each character defined by the ellipsis.

The collation order as defined in this section defines the interpretation of bracket expressions in
regular expressions (see Section 7.3.5 on page 105).

Example:

order_start forward;backward
UNDEFINED IGNORE;IGNORE
<LOW>
<space> <LOW>;<space>
... <LOW>;...
<a> <a>;<a>
<a-acute> <a>;<a-acute>
<a-grave> <a>;<a-grave>
<A> <a>;<A>
<A-acute> <a>;<A-acute>
<A-grave> <a>;<A-grave>
<ch> <ch>;<ch>
<Ch> <ch>;<Ch>
<s> <s>;<s>
<eszet> "<s><s>";"<eszet><eszet>"
order_end

This example is interpreted as follows:

1. The UNDEFINED means that all characters not specified in this definition (explicitly or via
the ellipsis) are ignored for collation purposes; for regular expression purposes they are
ordered first.

2. All characters between <space> and <a> have the same primary equivalence class and
individual secondary weights based on their ordinal encoded values.

3. All characters based on the upper- or lower-case character a belong to the same primary
equivalence class.

4. The multi-character collating element <ch> is represented by the collating symbol <ch>
and belongs to the same primary equivalence class as the multi-character collating element
<Ch>.

The order_end Keyword

The collating order entries must be terminated with an order_end keyword.

System Interface Definitions, Issue 5 65

Locale Definition Locale

The collation sequence definition of the POSIX locale follows; the code listing depicts the
localedef input.

LC_COLLATE
This is the POSIX locale definition for the LC_COLLATE category.
The order is the same as in the ASCII codeset.
order_start forward
<NUL>
<SOH>
<STX>
<ETX>
<EOT>
<ENQ>
<ACK>
<alert>
<backspace>
<tab>
<newline>
<vertical-tab>
<form-feed>
<carriage-return>
<SO>
<SI>
<DLE>
<DC1>
<DC2>
<DC3>
<DC4>
<NAK>
<SYN>
<ETB>
<CAN>

<SUB>
<ESC>
<IS4>
<IS3>
<IS2>
<IS1>
<space>
<exclamation-mark>
<quotation-mark>
<number-sign>
<dollar-sign>
<percent-sign>
<ampersand>
<apostrophe>
<left-parenthesis>
<right-parenthesis>
<asterisk>
<plus-sign>
<comma>
<hyphen>

66 CAE Specification (1997)

Locale Locale Definition

<period>
<slash>
<zero>
<one>
<two>
<three>
<four>
<five>
<six>
<seven>
<eight>
<nine>
<colon>
<semicolon>
<less-than-sign>
<equals-sign>
<greater-than-sign>
<question-mark>
<commercial-at>
<A>

<C>
<D>
<E>
<F>
<G>
<H>
<I>
<J>
<K>
<L>
<M>
<N>
<O>
<P>
<Q>
<R>
<S>
<T>
<U>
<V>
<W>
<X>
<Y>
<Z>
<left-square-bracket>
<backslash>
<right-square-bracket>
<circumflex>
<underscore>
<grave-accent>
<a>

System Interface Definitions, Issue 5 67

Locale Definition Locale

<c>
<d>
<e>
<f>
<g>
<h>
<i>
<j>
<k>
<l>
<m>
<n>
<o>
<p>
<q>
<r>
<s>
<t>
<u>
<v>
<w>
<x>
<y>
<z>
<left-curly-bracket>
<vertical-line>
<right-curly-bracket>
<tilde>

order_end
#
END LC_COLLATE

5.3.3 LC_MONETARY

The LC_MONETARY category defines the rules and symbols that are used to format monetary
EX numeric information. This information is available through the localeconv () function and is used

by the strfmon() function.

EX Some of the information is also available in an alternative form via the nl_langinfo () function
(see CRNCYSTR in <langinfo.h>).

The following items are defined in this category of the locale. The item names are the keywords
recognised by the localedef utility when defining a locale. They are also similar to the member
names of the lconv structure defined in <locale.h>; see the XSH specification for the exact
symbols in the header. The localeconv () function returns {CHAR_MAX} for unspecified integer
items and the empty string ("") for unspecified or size zero string items.

In a locale definition file, the operands are strings, formatted as indicated by the grammar in
Section 5.4 on page 82. For some keywords, the strings can contain only integers. Keywords
that are not provided, string values set to the empty string (""), or integer keywords set to −1, are
used to indicate that the value is not available in the locale.

68 CAE Specification (1997)

Locale Locale Definition

int_curr_symbol The international currency symbol. The operand is a four-character
string, with the first three characters containing the alphabetic
international currency symbol in accordance with those specified in the
ISO 4217: 1987 standard. The fourth character is the character used to
separate the international currency symbol from the monetary quantity.

currency_symbol The string used as the local currency symbol.

mon_decimal_point The operand is a string containing the symbol that is used as the decimal
delimiter (radix character) in monetary formatted quantities. In contexts
where standards (such as the ISO C standard) limit the
mon_decimal_point to a single byte, the result of specifying a multi-byte
operand is unspecified.

mon_thousands_sep The operand is a string containing the symbol that is used as a separator
for groups of digits to the left of the decimal delimiter in formatted
monetary quantities. In contexts where standards limit the
mon_thousands_sep to a single byte, the result of specifying a multi-byte
operand is unspecified.

mon_grouping Define the size of each group of digits in formatted monetary quantities.
The operand is a sequence of integers separated by semicolons. Each
integer specifies the number of digits in each group, with the initial
integer defining the size of the group immediately preceding the decimal
delimiter, and the following integers defining the preceding groups. If
the last integer is not −1, then the size of the previous group (if any) will
be repeatedly used for the remainder of the digits. If the last integer is −1,
then no further grouping will be performed.

The following is an example of the interpretation of the mon_grouping
keyword. Assuming that the value to be formatted is 123456789 and the
mon_thousands_sep is ’, then the following table shows the result. The
third column shows the equivalent string in the ISO C standard that
would be used by the localeconv () function to accommodate this
grouping.

mon_grouping Formatted Value ISO C String
3;−1 123456’789 "\3\177"
3 123’456’789 "\3"
3;2;−1 1234’56’789 "\3\2\177"
3;2 12’34’56’789 "\3\2"
−1 123456789 "\177"

In these examples, the octal value of {CHAR_MAX} is 177.

positive_sign A string used to indicate a non-negative-valued formatted monetary
quantity.

negative_sign A string used to indicate a negative-valued formatted monetary quantity.

int_frac_digits An integer representing the number of fractional digits (those to the right
of the decimal delimiter) to be written in a formatted monetary quantity
using int_curr_symbol.

System Interface Definitions, Issue 5 69

Locale Definition Locale

frac_digits An integer representing the number of fractional digits (those to the right
of the decimal delimiter) to be written in a formatted monetary quantity
using currency_symbol.

p_cs_precedes An integer set to 1 if the currency_symbol or int_curr_symbol precedes
the value for a monetary quantity with a non-negative value, and set to 0
if the symbol succeeds the value.

p_sep_by_space An integer set to 0 if no space separates the currency_symbol or
int_curr_symbol from the value for a monetary quantity with a non-
negative value, set to 1 if a space separates the symbol from the value,
and set to 2 if a space separates the symbol and the sign string, if adjacent.

n_cs_precedes An integer set to 1 if the currency_symbol or int_curr_symbol precedes
the value for a monetary quantity with a negative value, and set to 0 if the
symbol succeeds the value.

n_sep_by_space An integer set to 0 if no space separates the currency_symbol or
int_curr_symbol from the value for a monetary quantity with a negative
value, set to 1 if a space separates the symbol from the value, and set to 2
if a space separates the symbol and the sign string, if adjacent.

p_sign_posn An integer set to a value indicating the positioning of the positive_sign
for a monetary quantity with a non-negative value. The following integer
values are recognised for both p_sign_posn and n_sign_posn:

0 Parentheses enclose the quantity and the currency_symbol or
int_curr_symbol.

1 The sign string precedes the quantity and the currency_symbol or
int_curr_symbol.

2 The sign string succeeds the quantity and the currency_symbol or
int_curr_symbol.

3 The sign string precedes the currency_symbol or int_curr_symbol.

4 The sign string succeeds the currency_symbol or int_curr_symbol.

n_sign_posn An integer set to a value indicating the positioning of the negative_sign
for a negative formatted monetary quantity.

copy Note: This is a localedef utility keyword, unavailable through
localeconv ().

Specify the name of an existing locale to be used as the definition of this
category. If this keyword is specified, no other keyword can be specified.

70 CAE Specification (1997)

Locale Locale Definition

The following table shows the result of various combinations:

p_sep_by_space
2 1 0

p_cs_precedes = 1 p_sign_posn = 0 ($1.25) ($ 1.25) ($1.25)
p_sign_posn = 1 + $1.25 +$ 1.25 +$1.25
p_sign_posn = 2 $1.25 + $ 1.25+ $1.25+
p_sign_posn = 3 + $1.25 +$ 1.25 +$1.25
p_sign_posn = 4 $ +1.25 $+ 1.25 $+1.25

p_cs_precedes = 0 p_sign_posn = 0 (1.25 $) (1.25 $) (1.25$)
p_sign_posn = 1 +1.25 $ +1.25 $ +1.25$
p_sign_posn = 2 1.25$ + 1.25 $+ 1.25$+
p_sign_posn = 3 1.25+ $ 1.25 +$ 1.25+$
p_sign_posn = 4 1.25$ + 1.25 $+ 1.25$+

The monetary formatting definitions for the POSIX locale follow; the code listing depicting the
EX localedef input, the table representing the same information with the addition of localeconv () and

nl_langinfo ()formats. All values are unspecified in the POSIX locale.

LC_MONETARY
This is the POSIX locale definition for
the LC_MONETARY category.
#
int_curr_symbol ""
currency_symbol ""
mon_decimal_point ""
mon_thousands_sep ""
mon_grouping -1
positive_sign ""
negative_sign ""
int_frac_digits -1
p_cs_precedes -1
p_sep_by_space -1
n_cs_precedes -1
n_sep_by_space -1
p_sign_posn -1
n_sign_posn -1
#
END LC_MONETARY

System Interface Definitions, Issue 5 71

Locale Definition Locale

POSIX locale langinfo localeconv () localedef
Item Value Constant Value Value

currency_symbol n/a CRNCYSTR "" ""
frac_digits n/a - CHAR_MAX −1
int_curr_symbol n/a - "" ""
int_frac_digits n/a - CHAR_MAX −1
mon_decimal_point n/a - "" ""
mon_thousands_sep n/a - "" ""
mon_grouping n/a - "" ""
positive_sign n/a - "" ""
negative_sign n/a - "" ""
p_cs_precedes n/a CRNCYSTR CHAR_MAX −1
n_cs_precedes n/a CRNCYSTR CHAR_MAX −1
p_sep_by_space n/a - CHAR_MAX −1
n_sep_by_space n/a - CHAR_MAX −1
p_sign_posn n/a - CHAR_MAX −1
n_sign_posn n/a - CHAR_MAX −1

EX In the preceding table, the langinfo Constant column represents an X/Open extension. The
entry n/a indicates that the value is not available in the POSIX locale.

5.3.4 LC_NUMERIC

The LC_NUMERIC category defines the rules and symbols that will be used to format non-
EX monetary numeric information. This information is available through the localeconv () function.

Some of the information is also available in an alternative form via the nl_langinfo () function.

The following items are defined in this category of the locale. The item names are the keywords
recognised by the localedef utility when defining a locale. They are also similar to the member
names of the lconv structure defined in <locale.h>; see the XSH specification for the exact
symbols in the header. The localeconv () function returns {CHAR_MAX} for unspecified integer
items and the empty string ("") for unspecified or size zero string items.

In a locale definition file, the operands are strings, formatted as indicated by the grammar in
Section 5.4 on page 82. For some keywords, the strings only can contain integers. Keywords
that are not provided, string values set to the empty string (""), or integer keywords set to −1,
will be used to indicate that the value is not available in the locale. The following keywords are
recognised:

decimal_point The operand is a string containing the symbol that is used as the decimal
delimiter (radix character) in numeric, non-monetary formatted quantities.
This keyword cannot be omitted and cannot be set to the empty string. In
contexts where standards limit the decimal_point to a single byte, the result
of specifying a multi-byte operand is unspecified.

thousands_sep The operand is a string containing the symbol that is used as a separator for
groups of digits to the left of the decimal delimiter in numeric, non-monetary
formatted monetary quantities. In contexts where standards limit the
thousands_sep to a single byte, the result of specifying a multi-byte operand
is unspecified.

grouping Define the size of each group of digits in formatted non-monetary quantities.
The operand is a sequence of integers separated by semicolons. Each integer
specifies the number of digits in each group, with the initial integer defining
the size of the group immediately preceding the decimal delimiter, and the

72 CAE Specification (1997)

Locale Locale Definition

following integers defining the preceding groups. If the last integer is not −1,
then the size of the previous group (if any) will be repeatedly used for the
remainder of the digits. If the last integer is −1, then no further grouping will
be performed.

copy Note: This is a localedef utility keyword, unavailable through localeconv ().

Specify the name of an existing locale to be used as the definition of this
category. If this keyword is specified, no other keyword can be specified.

The non-monetary numeric formatting definitions for the POSIX locale follow; the code listing
depicting the localedef input, the table representing the same information with the addition of

EX localeconv () valuesand nl_langinfo ()constants.

LC_NUMERIC
This is the POSIX locale definition for
the LC_NUMERIC category.
#
decimal_point "<period>"
thousands_sep ""
grouping -1
#
END LC_NUMERIC

POSIX locale langinfo localeconv () localedef
Item Value Constant Value Value

decimal_point "." RADIXCHAR "." .
thousands_sep n/a THOUSEP "" ""
grouping n/a - "" −1

EX In the preceding table, the langinfo Constant column represents an X/Open extension. The
entry n/a indicates that the value is not available in the POSIX locale.

5.3.5 LC_TIME

The LC_TIME category defines the interpretation of the field descriptors supported by the date
EX utility and affects the behaviour of the strftime(), wcsftime(), strptime() and nl_langinfo ()

functions. Because the interfaces for C-language access and locale definition differ significantly,
they are described separately.

LC_TIME Locale Definition

For locale definition, the following mandatory keywords are recognised:

abday Define the abbreviated weekday names, corresponding to the %a field
descriptor (conversion specification in the strftime(), wcsftime() and strptime()
functions). The operand consists of seven semicolon-separated strings, each
surrounded by double-quotes. The first string is the abbreviated name of the
day corresponding to Sunday, the second the abbreviated name of the day
corresponding to Monday, and so on.

System Interface Definitions, Issue 5 73

Locale Definition Locale

day Define the full weekday names, corresponding to the %A field descriptor. The
operand consists of seven semicolon-separated strings, each surrounded by
double-quotes. The first string is the full name of the day corresponding to
Sunday, the second the full name of the day corresponding to Monday, and so
on.

abmon Define the abbreviated month names, corresponding to the %b field
descriptor. The operand consists of twelve semicolon-separated strings, each
surrounded by double-quotes. The first string is the abbreviated name of the
first month of the year (January), the second the abbreviated name of the
second month, and so on.

mon Define the full month names, corresponding to the %B field descriptor. The
operand consists of twelve semicolon-separated strings, each surrounded by
double-quotes. The first string is the full name of the first month of the year
(January), the second the full name of the second month, and so on.

d_t_fmt Define the appropriate date and time representation, corresponding to the %c
field descriptor. The operand consists of a string, and can contain any
combination of characters and field descriptors. In addition, the string can
contain escape sequences defined in the table in Table 3-1 on page 40 (\\, \a,
\b, \f, \n, \r, \t, \v).

d_fmt Define the appropriate date representation, corresponding to the %x field
descriptor. The operand consists of a string, and can contain any combination
of characters and field descriptors. In addition, the string can contain escape
sequences defined in the table in Table 3-1 on page 40.

t_fmt Define the appropriate time representation, corresponding to the %X field
descriptor. The operand consists of a string, and can contain any combination
of characters and field descriptors. In addition, the string can contain escape
sequences defined in the table in Table 3-1 on page 40.

am_pm Define the appropriate representation of the ante meridiem and post meridiem
strings, corresponding to the %p field descriptor. The operand consists of two
strings, separated by a semicolon, each surrounded by double-quotes. The
first string represents the ante meridiem designation, the last string the post
meridiem designation.

t_fmt_ampm Define the appropriate time representation in the 12-hour clock format with
am_pm, corresponding to the %r field descriptor. The operand consists of a
string and can contain any combination of characters and field descriptors. If
the string is empty, the 12-hour format is not supported in the locale.

EX era Define how years are counted and displayed for each era in a locale. The
operand consists of semicolon-separated strings. Each string is an era
description segment with the format:

direction : offset : start_date : end_date : era_name : era_format

according to the definitions below. There can be as many era description
segments as are necessary to describe the different eras.

Note: The start of an era might not be the earliest point in the era it may be
the latest. For example, the Christian era BC starts on the day before
January 1, AD 1, and increases with earlier time.

74 CAE Specification (1997)

Locale Locale Definition

direction Either a + or a − character. The + character indicates that years
closer to the start_date have lower numbers than those closer to
the end_date . The − character indicates that years closer to the
start_date have higher numbers than those closer to the end_date .

offset The number of the year closest to the start_date in the era,
corresponding to the %Ey field descriptor.

start_date A date in the form yyyy/mm/dd , where yyyy , mm and dd are the
year, month and day numbers respectively of the start of the era.
Years prior to AD 1 are represented as negative numbers.

end_date The ending date of the era, in the same format as the start_date,
or one of the two special values −* or +*. The value −* indicates
that the ending date is the beginning of time. The value +*
indicates that the ending date is the end of time.

era_name A string representing the name of the era, corresponding to the
%EC field descriptor.

era_format A string for formatting the year in the era, corresponding to the
%EY field descriptor.

era_d_fmt Define the format of the date in alternative era notation, corresponding to the
%Ex field descriptor.

era_t_fmt Define the locale’s appropriate alternative time format, corresponding to the
%EX field descriptor.

era_d_t_fmt Define the locale’s appropriate alternative date and time format,
corresponding to the %Ec field descriptor.

alt_digits Define alternative symbols for digits, corresponding to the %O field descriptor
modifier. The operand consists of semicolon-separated strings, each
surrounded by double-quotes. The first string is the alternative symbol
corresponding with zero, the second string the symbol corresponding with
one, and so on. Up to 100 alternative symbol strings can be specified. The %O
modifier indicates that the string corresponding to the value specified via the
field descriptor will be used instead of the value.

copy Specify the name of an existing locale to be used as the definition of this
category. If this keyword is specified, no other keyword can be specified.

LC_TIME C-language Access

EX The following information can be accessed. These correspond to constants defined in
<langinfo.h> and used as arguments to the nl_langinfo () function.

ABDAY_x The abbreviated weekday names (for example Sun), where x is a number from
1 to 7.

DAY_x The full weekday names (for example Sunday), where x is a number from 1 to
7.

ABMON_x The abbreviated month names (for example Jan), where x is a number from 1
to 12.

MON_x The full month names (for example January), where x is a number from 1 to
12.

System Interface Definitions, Issue 5 75

Locale Definition Locale

D_T_FMT The appropriate date and time representation.

D_FMT The appropriate date representation.

T_FMT The appropriate time representation.

AM_STR The appropriate ante-meridiem affix.

PM_STR The appropriate post-meridiem affix.

T_FMT_AMPM The appropriate time representation in the 12-hour clock format with
AM_STR and PM_STR.

ERA The era description segments, which describe how years are counted and
displayed for each era in a locale. Each era description segment has the
format:

direction : offset : start_date : end_date : era_name : era_format

according to the definitions below. There will be as many era description
segments as are necessary to describe the different eras. Era description
segments are separated by semicolons.

Note: The start of an era might not be the earliest point in the era it may be
the latest. For example, the Christian era BC starts on the day before
January 1, AD 1, and increases with earlier time.

direction Either a + or a − character. The + character indicates that years
closer to the start_date have lower numbers than those closer to
the end_date . The − character indicates that years closer to the
start_date have higher numbers than those closer to the end_date .

offset The number of the year closest to the start_date in the era.

start_date A date in the form yyyy/mm/dd , where yyyy , mm and dd are the
year, month and day numbers respectively of the start of the era.
Years prior to AD 1 are represented as negative numbers.

end_date The ending date of the era, in the same format as the start_date,
or one of the two special values −* or +*. The value −* indicates
that the ending date is the beginning of time. The value +*
indicates that the ending date is the end of time.

era_name The era, corresponding to the %EC conversion specification.

era_format The format of the year in the era, corresponding to the %EY
conversion specification.

ERA_D_FMT The era date format.

EX ERA_T_FMT The locale’s appropriate alternative time format, corresponding to the %EX
field descriptor.

ERA_D_T_FMT The locale’s appropriate alternative date and time format, corresponding to
the %Ec field descriptor.

ALT_DIGITS The alternative symbols for digits, corresponding to the %O conversion
specification modifier. The value consists of semicolon-separated symbols.
The first is the alternative symbol corresponding to zero, the second is the
symbol corresponding to one, and so on. Up to 100 alternative symbols may
be specified.

76 CAE Specification (1997)

Locale Locale Definition

The following table displays the correspondence between the items described above and the
conversion specifiers used by the date utility and the strftime(), wcsftime() and strptime()
functions.

localedef Keyword langinfo Constant Conversion Specifier
abday ABDAY_x %a
day DAY_x %A
abmon ABMON_x %b
mon MON %B
d_t_fmt D_T_FMT %c
d_fmt D_FMT %x
t_fmt T_FMT %X
am_pm AM_STR %p
am_pm PM_STR %p
t_fmt_ampm T_FMT_AMPM %r

EX era ERA %EC, %Ey, %EY
EX era_d_fmt ERA_D_FMT %Ex
EX era_t_fmt ERA_T_FMT %EX
EX era_d_t_fmt ERA_D_T_FMT %Ec
EX alt_digits ALT_DIGITS %O

EX In the preceding table, the langinfo Constant column represents an X/Open extension.

LC_TIME General Information

Although certain of the field descriptors in the POSIX locale (such as the name of the month) are
shown with initial capital letters, this need not be the case in other locales. Programs using these
fields may need to adjust the capitalisation if the output is going to be used at the beginning of a
sentence.

The LC_TIME descriptions of abday, day, mon and abmon imply a Gregorian style calendar (7-
day weeks, 12-month years, leap years, and so forth). Formatting time strings for other types of
calendars is outside the scope of this specification set.

As specified under date in the Locale Definition and strftime(), in the XSH specification, the field
descriptors corresponding to the optional keywords consist of a modifier followed by a
traditional field descriptor (for instance %Ex). If the optional keywords are not supported by the
implementation or are unspecified for the current locale, these field descriptors are treated as the
traditional field descriptor. For instance, assume the following keywords:

alt_digits "0th";"1st";"2nd";"3rd";"4th";"5th";\
"6th";"7th";"8th";"9th";"10th"

d_fmt "The %Od day of %B in %Y"

On 7/4/1776, the %x field descriptor would result in ‘‘The 4th day of July in 1776’’, while
7/14/1789 would come out as ‘‘The 14 day of July in 1789’’. It can be noted that the above
example is for illustrative purposes only; the %O modifier is primarily intended to provide for
Kanji or Hindi digits in date formats.

System Interface Definitions, Issue 5 77

Locale Definition Locale

EX The following is an example for Japan that supports the current plus last three Emperors and
reverts to Western style numbering for years prior to the Meiji era. The example also allows for
the custom of using a special name for the first year of an era instead of using 1. (The examples
substitute romaji where kanji should be used.)

era_d_fmt "%EY%mgatsu%dnichi (%a)"

era "+:2:1990/01/01:+*:Heisei:%EC%Eynen";\
"+:1:1989/01/08:1989/12/31:Heisei:%ECgannen";\
"+:2:1927/01/01:1989/01/07:Shouwa:%EC%Eynen";\
"+:1:1926/12/25:1926/12/31:Shouwa:%ECgannen";\
"+:2:1913/01/01:1926/12/24:Taishou:%EC%Eynen";\
"+:1:1912/07/30:1912/12/31:Taishou:%ECgannen";\
"+:2:1869/01/01:1912/07/29:Meiji:%EC%Eynen";\
"+:1:1868/09/08:1868/12/31:Meiji:%ECgannen";\
"-:1868:1868/09/07:-*::%Ey"

Assuming that the current date is September 21, 1991, a request to date or strftime() would yield
the following results:

%Ec - Heisei3nen9gatsu21nichi (Sat) 14:39:26
%EC - Heisei
%Ex - Heisei3nen9gatsu21nichi (Sat)
%Ey - 3
%EY - Heisei3nen

Example era definitions for the Republic of China:

era "+:2:1913/01/01:+*:ChungHwaMingGuo:%EC%EyNen";\
"+:1:1912/1/1:1912/12/31:ChungHwaMingGuo:%ECYuenNen";\
"+:1:1911/12/31:-*:MingChien:%EC%EyNen"

Example definitions for the Christian Era:

era "+:0:0000/01/01:+*:AD:%EC %Ey";\
"+:1:-0001/12/31:-*:BC:%Ey %EC"

The LC_TIME category definition of the POSIX locale follows; the code listing depicts the
EX localedef input;the table depicts the langinfo items defined in this category.

LC_TIME
This is the POSIX locale definition for
the LC_TIME category.
#
Abbreviated weekday names (%a)
abday "<S><u><n>";"<M><o><n>";"<T><u><e>";"<W><e><d>";\

"<T><h><u>";"<F><r><i>";"<S><a><t>"
#
Full weekday names (%A)
day "<S><u><n><d><a><y>";"<M><o><n><d><a><y>";\

"<T><u><e><s><d><a><y>";"<W><e><d><n><e><s><d><a><y>";\
"<T><h><u><r><s><d><a><y>";"<F><r><i><d><a><y>";\
"<S><a><t><u><r><d><a><y>"

#

78 CAE Specification (1997)

Locale Locale Definition

Abbreviated month names (%b)
abmon "<J><a><n>";"<F><e>";"<M><a><r>";\

"<A><p><r>";"<M><a><y>";"<J><u><n>";\
"<J><u><l>";"<A><u><g>";"<S><e><p>";\
"<O><c><t>";"<N><o><v>";"<D><e><c>"

#
Full month names (%B)
mon "<J><a><n><u><a><r><y>";"<F><e><r><u><a><r><y>";\

"<M><a><r><c><h>";"<A><p><r><i><l>";\
"<M><a><y>";"<J><u><n><e>";\
"<J><u><l><y>";"<A><u><g><u><s><t>";\
"<S><e><p><t><e><m><e><r>";"<O><c><t><o><e><r>";\
"<N><o><v><e><m><e><r>";"<D><e><c><e><m><e><r>"

#
Equivalent of AM/PM (%p) "AM";"PM"
am_pm "<A><M>";"<P><M>"
#
Appropriate date and time representation (%c)
"%a %b %e %H:%M:%S %Y"
d_t_fmt "<percent-sign><a><space><percent-sign>\

<space><percent-sign><e><space><percent-sign><H>\
<colon><percent-sign><M><colon><percent-sign><S>\
<space><percent-sign><Y>"

#
Appropriate date representation (%x) "%m/%d/%y"
d_fmt "<percent-sign><m><slash><percent-sign><d>\

<slash><percent-sign><y>"
#
Appropriate time representation (%X) "%H:%M:%S"
t_fmt "<percent-sign><H><colon><percent-sign><M>\

<colon><percent-sign><S>"
#
Appropriate 12-hour time representation (%r) "%I:%M:%S %p"
t_fmt_ampm "<percent-sign><I><colon><percent-sign><M><colon>\

<percent-sign><S> <percent_sign><p>"
#
END LC_TIME

System Interface Definitions, Issue 5 79

Locale Definition Locale

EX Item POSIX Locale Value Item POSIX Locale Value
D_T_FMT "%a %b %e %H:%M:%S %Y" MON_3 "March"
D_FMT "%m/%d/%y" MON_4 "April"
T_FMT "%H:%M:%S" MON_5 "May"
AM_STR "AM" MON_6 "June"
PM_STR "PM" MON_7 "July"
T_FMT_AMPM "%I:%M:%S %p" MON_8 "August"
DAY_1 "Sunday" MON_9 "September"
DAY_2 "Monday" MON_10 "October"
DAY_3 "Tuesday" MON_11 "November"
DAY_4 "Wednesday" MON_12 "December"
DAY_5 "Thursday" ABMON_1 "Jan"
DAY_6 "Friday" ABMON_2 "Feb"
DAY_7 "Saturday" ABMON_3 "Mar"
ABDAY_1 "Sun" ABMON_4 "Apr"
ABDAY_2 "Mon" ABMON_5 "May"
ABDAY_3 "Tue" ABMON_6 "Jun"
ABDAY_4 "Wed" ABMON_7 "Jul"
ABDAY_5 "Thu" ABMON_8 "Aug"
ABDAY_6 "Fri" ABMON_9 "Sep"
ABDAY_7 "Sat" ABMON_10 "Oct"
MON_1 "January" ABMON_11 "Nov"
MON_2 "February" ABMON_12 "Dec"

5.3.6 LC_MESSAGES

The LC_MESSAGES category defines the format and values for affirmative and negative
responses.

EX The message catalogue used by the standard utilities and selected by the catopen() function is
determined by the setting of NLSPATH; see Chapter 6 on page 93. The LC_MESSAGES category
can be specified as part of an NLSPATH substitution field.

EX The following keywords are recognised as part of the locale definition file. The nl_langinfo ()
function accepts upper-case versions of the first four keywords.

yesexpr The operand consists of an extended regular expression (see Section 7.4 on page
109) that describes the acceptable affirmative response to a question expecting an
affirmative or negative response.

noexpr The operand consists of an extended regular expression that describes the
acceptable negative response to a question expecting an affirmative or negative
response.

EX yesstr (LEGACY)
The operand consists of a fixed string (not a regular expression) that can be used
by an application for composition of a message that lists an acceptable affirmative
response, such as in a prompt.

EX nostr (LEGACY)
The operand consists of a fixed string that can be used by an application for
composition of a message that lists an acceptable negative response.

copy Specify the name of an existing locale to be used as the definition of this category.
If this keyword is specified, no other keyword can be specified.

80 CAE Specification (1997)

Locale Locale Definition

Note that the yesstr and nostr values have different uses from those in Issue 3.

The format and values for affirmative and negative responses of the POSIX locale follow; the
code listing depicting the localedef input, the table representing the same information with the

EX addition ofnl_langinfo () constants.

LC_MESSAGES
This is the POSIX locale definition for
the LC_MESSAGES category.
#
yesexpr "<circumflex><left-square-bracket><y><Y><right-square-bracket>"
#
noexpr "<circumflex><left-square-bracket><n><N><right-square-bracket>"
#

EX yesstr "yes"
nostr "no"
END LC_MESSAGES

localedef Keyword langinfo Constant POSIX Locale Value
yesexpr YESEXPR "ˆ[yY]"
noexpr NOEXPR "ˆ[nN]"

EX yesstr YESSTR "yes" (LEGACY)
EX nostr NOSTR "no" (LEGACY)

LC_MESSAGES Application Usage

EX The yesstr and nostr locale keywords and the YESSTR and NOSTR langinfo items formerly were
used to match user affirmative and negative responses. In this issue, the yesexpr, noexpr,
YESEXPR and NOEXPR extended regular expressions have replaced them. However, they have
been retained for backward compatibility to allow an application to include a sample desired
response in a prompting message. They are marked LEGACY. Applications should use the
general locale-based messaging facilities (see the Internationalisation Guide) to issue such
prompting messages.

System Interface Definitions, Issue 5 81

Locale Definition Grammar Locale

5.4 Locale Definition Grammar
The grammar and lexical conventions in this section together describe the syntax for the locale
definition source. The general conventions for this style of grammar are described in the XCU
specification, Section 1.8, Grammar Conventions. The grammar takes precedence over the text.

5.4.1 Locale Lexical Conventions

The lexical conventions for the locale definition grammar are described in this section.

The following tokens are processed (in addition to those string constants shown in the
grammar):

LOC_NAME A string of characters representing the name of a locale.

CHAR Any single character.

NUMBER A decimal number, represented by one or more decimal digits.

COLLSYMBOL A symbolic name, enclosed between angle brackets. The string
cannot duplicate any charmap symbol defined in the current
charmap (if any), or a COLLELEMENT symbol.

COLLELEMENT A symbolic name, enclosed between angle brackets, which cannot
duplicate either any charmap symbol or a COLLSYMBOL symbol.

EX CHARCLASS A string of alphanumeric characters from the portable character set,
the first of which is not a digit, consisting of at least one and at most
{CHARCLASS_NAME_MAX} bytes, and optionally surrounded by
double-quotes.

CHARSYMBOL A symbolic name, enclosed between angle brackets, from the current
charmap (if any).

OCTAL_CHAR One or more octal representations of the encoding of each byte in a
single character. The octal representation consists of an escape
character (normally a backslash) followed by two or more octal
digits.

HEX_CHAR One or more hexadecimal representations of the encoding of each
byte in a single character. The hexadecimal representation consists
of an escape character followed by the constant x and two or more
hexadecimal digits.

DECIMAL_CHAR One or more decimal representations of the encoding of each byte in
a single character. The decimal representation consists of an escape
character followed by a character d and two or more decimal digits.

ELLIPSIS The string . . .

EXTENDED_REG_EXP An extended regular expression as defined in the grammar in Section
7.5 on page 112.

EOL The line termination character newline.

82 CAE Specification (1997)

Locale Locale Definition Grammar

5.4.2 Locale Grammar

This section presents the grammar for the locale definition.

%token LOC_NAME
%token CHAR
%token NUMBER
%token COLLSYMBOL COLLELEMENT
%token CHARSYMBOL OCTAL_CHAR HEX_CHAR DECIMAL_CHAR
%token ELLIPSIS
%token EXTENDED_REG_EXP
%token EOL

%start locale_definition

%%

locale_definition : global_statements locale_categories
| locale_categories
;

global_statements : global_statements symbol_redefine
| symbol_redefine
;

symbol_redefine : ’escape_char’ CHAR EOL
| ’comment_char’ CHAR EOL
;

locale_categories : locale_categories locale_category
| locale_category
;

locale_category : lc_ctype | lc_collate | lc_messages
| lc_monetary | lc_numeric | lc_time
;

/* The following grammar rules are common to all categories */

char_list : char_list char_symbol
| char_symbol
;

char_symbol : CHAR | CHARSYMBOL
| OCTAL_CHAR | HEX_CHAR | DECIMAL_CHAR
;

elem_list : elem_list char_symbol
| elem_list COLLSYMBOL
| elem_list COLLELEMENT
| char_symbol
| COLLSYMBOL
| COLLELEMENT
;

symb_list : symb_list COLLSYMBOL
| COLLSYMBOL
;

System Interface Definitions, Issue 5 83

Locale Definition Grammar Locale

locale_name : LOC_NAME
| ’"’ LOC_NAME ’"’
;

/* The following is the LC_CTYPE category grammar */

lc_ctype : ctype_hdr ctype_keywords ctype_tlr
| ctype_hdr ’copy’ locale_name EOL ctype_tlr
;

ctype_hdr : ’LC_CTYPE’ EOL
;

ctype_keywords : ctype_keywords ctype_keyword
| ctype_keyword
;

ctype_keyword : charclass_keyword charclass_list EOL
| charconv_keyword charconv_list EOL

EX | ’charclass’ charclass_namelist EOL
;

charclass_namelist : charclass_namelist ’ ;’ CHARCLASS
| CHARCLASS
;

charclass_keyword : ’upper’ | ’lower’ | ’alpha’ | ’digit’
| ’punct’ | ’xdigit’ | ’space’ | ’print’
| ’graph’ | ’blank’ | ’cntrl’

EX | CHARCLASS
;

charclass_list : charclass_list ’ ;’ char_symbol
| charclass_list ’ ;’ ELLIPSIS ’;’ char_symbol
| char_symbol
;

charconv_keyword : ’toupper’
| ’tolower’
;

charconv_list : charconv_list ’ ;’ charconv_entry
| charconv_entry
;

charconv_entry : ’(’ char_symbol ’,’ char_symbol ’)’
;

ctype_tlr : ’END’ ’LC_CTYPE’ EOL
;

/* The following is the LC_COLLATE category grammar */

lc_collate : collate_hdr collate_keywords collate_tlr
| collate_hdr ’copy’ locale_name EOL collate_tlr
;

collate_hdr : ’LC_COLLATE’ EOL
;

84 CAE Specification (1997)

Locale Locale Definition Grammar

collate_keywords : order_statements
| opt_statements order_statements
;

opt_statements : opt_statements collating_symbols
| opt_statements collating_elements
| collating_symbols
| collating_elements
;

collating_symbols : ’collating-symbol’ COLLSYMBOL EOL
;

collating_elements : ’collating-element’ COLLELEMENT
’from’ ’"’ elem_list ’"’ EOL
;

order_statements : order_start collation_order order_end
;

order_start : ’order_start’ EOL
| ’order_start’ order_opts EOL
;

order_opts : order_opts ’ ;’ order_opt
| order_opt
;

order_opt : order_opt ’,’ opt_word
| opt_word
;

opt_word : ’forward’ | ’backward’ | ’position’
;

collation_order : collation_order collation_entry
| collation_entry
;

collation_entry : COLLSYMBOL EOL
| collation_element weight_list EOL
| collation_element EOL
;

collation_element : char_symbol
| COLLELEMENT
| ELLIPSIS
| ’UNDEFINED’
;

weight_list : weight_list ’ ;’ weight_symbol
| weight_list ’ ;’
| weight_symbol
;

System Interface Definitions, Issue 5 85

Locale Definition Grammar Locale

weight_symbol : /* empty */
| char_symbol
| COLLSYMBOL
| ’"’ elem_list ’"’
| ’"’ symb_list ’"’
| ELLIPSIS
| ’IGNORE’
;

order_end : ’order_end’ EOL
;

collate_tlr : ’END’ ’LC_COLLATE’ EOL
;

/* The following is the LC_MESSAGES category grammar */

lc_messages : messages_hdr messages_keywords messages_tlr
| messages_hdr ’copy’ locale_name EOL messages_tlr
;

messages_hdr : ’LC_MESSAGES’ EOL
;

messages_keywords : messages_keywords messages_keyword
| messages_keyword
;

messages_keyword : ’yesexpr’ ’"’ EXTENDED_REG_EXP ’"’ EOL
| ’noexpr’ ’"’ EXTENDED_REG_EXP ’"’ EOL
| ’yesstr’ ’"’ char_list ’"’ EOL
| ’nostr’ ’"’ char_list ’"’ EOL
;

messages_tlr : ’END’ ’LC_MESSAGES’ EOL
;

/* The following is the LC_MONETARY category grammar */

lc_monetary : monetary_hdr monetary_keywords monetary_tlr
| monetary_hdr ’copy’ locale_name EOL monetary_tlr
;

monetary_hdr : ’LC_MONETARY’ EOL
;

monetary_keywords : monetary_keywords monetary_keyword
| monetary_keyword
;

monetary_keyword : mon_keyword_string mon_string EOL
| mon_keyword_char NUMBER EOL
| mon_keyword_char ’-1’ EOL
| mon_keyword_grouping mon_group_list EOL
;

86 CAE Specification (1997)

Locale Locale Definition Grammar

mon_keyword_string : ’int_curr_symbol’ | ’currency_symbol’
| ’mon_decimal_point’ | ’mon_thousands_sep’
| ’positive_sign’ | ’negative_sign’
;

mon_string : ’"’ char_list ’"’
| ’""’
;

mon_keyword_char : ’int_frac_digits’ | ’frac_digits’
| ’p_cs_precedes’ | ’p_sep_by_space’
| ’n_cs_precedes’ | ’n_sep_by_space’
| ’p_sign_posn’ | ’n_sign_posn’
;

mon_keyword_grouping : ’mon_grouping’
;

mon_group_list : NUMBER
| mon_group_list ’ ;’ NUMBER
;

monetary_tlr : ’END’ ’LC_MONETARY’ EOL
;

/* The following is the LC_NUMERIC category grammar */

lc_numeric : numeric_hdr numeric_keywords numeric_tlr
| numeric_hdr ’copy’ locale_name EOL numeric_tlr
;

numeric_hdr : ’LC_NUMERIC’ EOL
;

numeric_keywords : numeric_keywords numeric_keyword
| numeric_keyword
;

numeric_keyword : num_keyword_string num_string EOL
| num_keyword_grouping num_group_list EOL
;

num_keyword_string : ’decimal_point’
| ’thousands_sep’
;

num_string : ’"’ char_list ’"’
| ’""’
;

num_keyword_grouping: ’grouping’
;

num_group_list : NUMBER
| num_group_list ’ ;’ NUMBER
;

System Interface Definitions, Issue 5 87

Locale Definition Grammar Locale

numeric_tlr : ’END’ ’LC_NUMERIC’ EOL
;

/* The following is the LC_TIME category grammar */

lc_time : time_hdr time_keywords time_tlr
| time_hdr ’copy’ locale_name EOL time_tlr
;

time_hdr : ’LC_TIME’ EOL
;

time_keywords : time_keywords time_keyword
| time_keyword
;

time_keyword : time_keyword_name time_list EOL
| time_keyword_fmt time_string EOL
| time_keyword_opt time_list EOL
;

time_keyword_name : ’abday’ | ’day’ | ’abmon’ | ’mon’
;

time_keyword_fmt : ’d_t_fmt’ | ’d_fmt’ | ’t_fmt’
| ’am_pm’ | ’t_fmt_ampm’
;

time_keyword_opt : ’era’ | ’era_d_fmt’ | ’era_t_fmt’
| ’era_d_t_fmt’ | ’alt_digits’
;

time_list : time_list ’ ;’ time_string
| time_string
;

time_string : ’"’ char_list ’"’
;

time_tlr : ’END’ ’LC_TIME’ EOL
;

88 CAE Specification (1997)

Locale Locale Definition Example

5.5 Locale Definition Example
The following is an example of a locale definition file that could be used as input to the localedef
utility. It assumes that the utility is executed with the −f option, naming a charmap file with (at
least) the following content:

CHARMAP
<space> \x20
<dollar> \x24
<A> \101
<a> \141
<A-acute> \346
<a-acute> \365
<A-grave> \300
<a-grave> \366
 \142
<C> \103
<c> \143
<c-cedilla> \347
<d> \x64
<H> \110
<h> \150
<eszet> \xb7
<s> \x73
<z> \x7a
END CHARMAP

It should not be taken as complete or to represent any actual locale, but only to illustrate the
syntax.

A further set of examples is offered as part of the Internationalisation Guide.

#
LC_CTYPE
lower <a>;;<c>;<c-cedilla>;<d>;...;<z>
upper A;B;C;C , ;...;Z
space \x20;\x09;\x0a;\x0b;\x0c;\x0d
blank \040;\011
toupper (<a>,<A>);(b,B);(c,C);(c , ,C,);(d,D);(z,Z)
END LC_CTYPE
#
LC_COLLATE
#
The following example of collation is based on the proposed
Canadian standard Z243.4.1-1990, "Canadian Alphanumeric
Ordering Standard For Character sets of CSA Z234.4 Standard".
(Other parts of this example locale definition file do not
purport to relate to Canada, or to any other real culture.)
The proposed standard defines a 4-weight collation, such that
in the first pass, characters are compared without regard to
case or accents; in second pass, backwards compare without
regard to case; in the third pass, forward compare without
regard to diacriticals. In the 3 first passes, non-alphabetic
characters are ignored; in the fourth pass, only special
characters are considered, such that "The string that has a

System Interface Definitions, Issue 5 89

Locale Definition Example Locale

special character in the lowest position comes first. If two
strings have a special character in the same position, the
collation value of the special character determines ordering.
#
Only a subset of the character set is used here; mostly to
illustrate the set-up.
#
#
collating-symbol <LOW_VALUE>
collating-symbol <LOWER-CASE>
collating-symbol <SUBSCRIPT-LOWER>
collating-symbol <SUPERSCRIPT-LOWER>
collating-symbol <UPPER-CASE>
collating-symbol <NO-ACCENT>
collating-symbol <PECULIAR>
collating-symbol <LIGATURE>
collating-symbol <ACUTE>
collating-symbol <GRAVE>
Further collating-symbols follow.
#
Properly, the standard does not include any multi-character
collating elements; the one below is added for completeness.
#
collating_element <ch> from "<c><h>"
collating_element <CH> from "<C><H>"
collating_element <Ch> from "<C><h>"
#
order_start forward;backward;forward;forward,position
#
Collating symbols are specified first in the sequence to allocate
basic collation values to them, lower than that of any character.
<LOW_VALUE>
<LOWER-CASE>
<SUBSCRIPT-LOWER>
<SUPERSCRIPT-LOWER>
<UPPER-CASE>
<NO-ACCENT>
<PECULIAR>
<LIGATURE>
<ACUTE>
<GRAVE>
<RING-ABOVE>
<DIAERESIS>
<TILDE>
Further collating symbols are given a basic collating value here.
#
Here follow special characters.
<space> IGNORE;IGNORE;IGNORE;<space>
Other special characters follow here.
#

90 CAE Specification (1997)

Locale Locale Definition Example

Here follow the regular characters.
<a> <a>;<NO-ACCENT>;<LOWER-CASE>;IGNORE
<A> <a>;<NO-ACCENT>;<UPPER-CASE>;IGNORE
<a-acute> <a>;<ACUTE>;<LOWER-CASE>;IGNORE
<A-acute> <a>;<ACUTE>;<UPPER-CASE>;IGNORE
<a-grave> <a>;<GRAVE>;<LOWER-CASE>;IGNORE
<A-grave> <a>;<GRAVE>;<UPPER-CASE>;IGNORE
<ae> "<a><e>";"<LIGATURE><LIGATURE>";\

"<LOWER-CASE><LOWER-CASE>";IGNORE
<AE> "<a><e>";"<LIGATURE><LIGATURE>";\

"<UPPER-CASE><UPPER-CASE>";IGNORE
 ;<NO-ACCENT>;<LOWER-CASE>;IGNORE
 ;<NO-ACCENT>;<UPPER-CASE>;IGNORE
<c> <c>;<NO-ACCENT>;<LOWER-CASE>;IGNORE
<C> <c>;<NO-ACCENT>;<UPPER-CASE>;IGNORE
<ch> <ch>;<NO-ACCENT>;<LOWER-CASE>;IGNORE
<Ch> <ch>;<NO-ACCENT>;<PECULIAR>;IGNORE
<CH> <ch>;<NO-ACCENT>;<UPPER-CASE>;IGNORE
#
As an example, the strings "Bach" and "bach" could be encoded (for
compare purposes) as:
"Bach" ;<a>;<ch>;<LOW_VALUE>;<NO_ACCENT>;<NO_ACCENT>;\
<NO_ACCENT>;<LOW_VALUE>;<UPPER>;<LOWER>;<LOWER>;<NULL>
"bach" ;<a>;<ch>;<LOW_VALUE>;<NO_ACCENT>;<NO_ACCENT>;\
<NO_ACCENT>;<LOW_VALUE>;<LOWER>;<LOWER>;<LOWER>;<NULL>
#
The two strings are equal in pass 1 and 2, but differ in pass 3.
#
Further characters follow.
#
UNDEFINED IGNORE;IGNORE;IGNORE;IGNORE
#
order_end
#
END LC_COLLATE
#
LC_MONETARY
int_curr_symbol "USD "
currency_symbol "$"
mon_decimal_point "."
mon_grouping 3;0
positive_sign ""
negative_sign "-"
p_cs_precedes 1
n_sign_posn 0
END LC_MONETARY
#
LC_NUMERIC
copy "US_en.ASCII"
END LC_NUMERIC
#

System Interface Definitions, Issue 5 91

Locale Definition Example Locale

LC_TIME
abday "Sun";"Mon";"Tue";"Wed";"Thu";"Fri";"Sat"
#
day "Sunday";"Monday";"Tuesday";"Wednesday";\

"Thursday";"Friday";"Saturday"
#
abmon "Jan";"Feb";"Mar";"Apr";"May";"Jun";\

"Jul";"Aug";"Sep";"Oct";"Nov";"Dec"
#
mon "January";"February";"March";"April";\

"May";"June";"July";"August";"September";\
"October";"November";"December"

#
d_t_fmt "%a %b %d %T %Z %Y\n"
END LC_TIME
#
LC_MESSAGES
yesexpr "ˆ([yY][[:alpha:]]*)|(OK)"
#
noexpr "ˆ[nN][[:alpha:]]*"
END LC_MESSAGES

92 CAE Specification (1997)

Chapter 6

Environment Variables

6.1 Environment Variable Definition
Environment variables defined in this chapter affect the operation of multiple utilities, functions
and applications. There are other environment variables that are of interest only to specific
utilities. Environment variables that apply to a single utility only are defined as part of the
utility description. See the ENVIRONMENT VARIABLES section of the utility descriptions in
the XCU specification for information on environment variable usage.

The value of an environment variable is a string of characters. For a C-language program, an
array of strings called the environment is made available when a process begins. The array is
pointed to by the external variable environ , which is defined as:

extern char **environ;

These strings have the form name=value ; names do not contain the character =. For values to be
portable across XSI-conformant systems, the value must be composed of characters from the
portable character set (except NUL and as indicated below). There is no meaning associated
with the order of strings in the environment. If more than one string in a process’ environment
has the same name, the consequences are undefined.

Environment variable names used by the utilities in the XCU specification consist solely of
upper-case letters, digits and the "_" (underscore) from the characters defined in Table 4-1 on
page 43. Other characters may be permitted by an implementation; applications must tolerate
the presence of such names. Upper- and lower-case letters retain their unique identities and are
not folded together. The name space of environment variable names containing lower-case
letters is reserved for applications. Applications can define any environment variables with
names from this name space without modifying the behaviour of the standard utilities.

The values that the environment variables may be assigned are not restricted except that they are
considered to end with a null byte and the total space used to store the environment and the
arguments to the process is limited to {ARG_MAX} bytes.

EX Other name=value pairs may be placed in the environment by, for example, calling the putenv()
function,manipulating the environ variable, or by using envp arguments when creating a process;
see exec in the XSH specification.

It is unwise to conflict with certain variables that are frequently exported by widely used
command interpreters and applications:

System Interface Definitions, Issue 5 93

Environment Variable Definition Environment Variables

ARFLAGS IFS MAILPATH PS1
CC LANG MAILRC PS2
CDPATH LC_ALL MAKEFLAGS PS3
CFLAGS LC_COLLATE MAKESHELL PS4
CHARSET LC_CTYPE MANPATH PWD
COLUMNS LC_MESSAGES MBOX RANDOM
DATEMSK LC_MONETARY MORE SECONDS
DEAD LC_NUMERIC MSGVERB SHELL
EDITOR LC_TIME NLSPATH TERM
ENV LDFLAGS NPROC TERMCAP
EXINIT LEX OLDPWD TERMINFO
FC LFLAGS OPTARG TMPDIR
FCEDIT LINENO OPTERR TZ
FFLAGS LINES OPTIND USER
GET LISTER PAGER VISUAL
GFLAGS LOGNAME PATH YACC
HISTFILE LPDEST PPID YFLAGS
HISTORY MAIL PRINTER
HISTSIZE MAILCHECK PROCLANG
HOME MAILER PROJECTDIR

If the variables in the following two sections are present in the environment during the
execution of an application or utility, they are given the meaning described below. Some are
placed into the environment by the implementation at the time the user logs in; all can be added
or changed by the user or any ancestor of the current process. The implementation will add or
change environment variables named in this specification set only as specified in this
specification set. If they are defined in the application’s environment, the utilities in the XCU
specification and the functions in the XSH specification assume they have the specified meaning.
Conforming applications must not set these environment variables to have meanings other than
as described. See getenv() and the XCU specification, Section 2.12, Shell Execution
Environment for methods of accessing these variables.

94 CAE Specification (1997)

Environment Variables Internationalisation Variables

6.2 Internationalisation Variables
This section describes environment variables that are relevant to the operation of
internationalised interfaces described in the CAE Specification, System Interfaces and Headers,
Issue 5 and the CAE Specification, Commands and Utilities, Issue 5.

Users may use the following environment variables to announce specific localisation
requirements to applications. Applications must retrieve this information using the setlocale ()
function to initialise the correct behaviour of the internationalised interfaces. The descriptions of
the internationalisation environment variables describe the resulting behaviour only when the
application locale is initialised in this way.

LANG
This variable determines the locale category for native language, local customs and coded
character set in the absence of the LC_ALL and other LC_* (LC_COLLATE, LC_CTYPE,
LC_MESSAGES, LC_MONETARY, LC_NUMERIC, LC_TIME) environment variables. This
can be used by applications to determine the language to use for error messages and
instructions, collating sequences, date formats, and so forth.

LC_ALL
This variable determines the values for all locale categories. The value of the LC_ALL
environment variable has precedence over any of the other environment variables starting
with LC_ (LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC,
LC_TIME) and the LANG environment variable.

LC_COLLATE
This variable determines the locale category for character collation. It determines collation
information for regular expressions and sorting, including equivalence classes and multi-
character collating elements, in various utilities and the strcoll() and strxfrm() functions.
Additional semantics of this variable, if any, are implementation-dependent.

LC_CTYPE
This variable determines the locale category for character handling functions, such as
tolower(), toupper() and isalpha (). This environment variable determines the interpretation
of sequences of bytes of text data as characters (for example, single- as opposed to multi-
byte characters), the classification of characters (for example, alpha, digit, graph) and the
behaviour of character classes. Additional semantics of this variable, if any, are
implementation-dependent.

LC_MESSAGES
This variable determines the locale category for processing affirmative and negative
responses and the language and cultural conventions in which messages should be written.

EX It also affects the behaviour of the catopen() function in determining the message catalogue.
Additional semantics of this variable, if any, are implementation-dependent. The language
and cultural conventions of diagnostic and informative messages whose format is
unspecified by this specification set should be affected by the setting of LC_MESSAGES.

LC_MONETARY
This variable determines the locale category for monetary-related numeric formatting
information. Additional semantics of this variable, if any, are implementation-dependent.

LC_NUMERIC
This variable determines the locale category for numeric formatting (for example,
thousands separator and radix character) information in various utilities as well as the
formatted I/O operations in printf() and scanf() and the string conversion functions in
strtod(). Additional semantics of this variable, if any, are implementation-dependent.

System Interface Definitions, Issue 5 95

Internationalisation Variables Environment Variables

LC_TIME
This variable determines the locale category for date and time formatting information. It
affects the behaviour of the time functions in strftime(). Additional semantics of this
variable, if any, are implementation-dependent.

EX NLSPATH
This variable contains a sequence of templates that the catopen() function uses when
attempting to locate message catalogues. Each template consists of an optional prefix, one
or more substitution fields, a filename and an optional suffix.

For example:

NLSPATH="/system/nlslib/%N.cat"

defines that catopen() should look for all message catalogues in the directory /system/nlslib,
where the catalogue name should be constructed from the name parameter passed to
catopen() (%N), with the suffix .cat.

Substitution fields consist of a "%" symbol, followed by a single-letter keyword. The
following keywords are currently defined:

%N The value of the name parameter passed to catopen().

%L The value of the LC_MESSAGES category.

%l The language element from the LC_MESSAGES category.

%t The territory element from the LC_MESSAGES category.

%c The codeset element from the LC_MESSAGES category.

%% A single % character.

An empty string is substituted if the specified value is not currently defined. The separators
underscore (_) and period (.) are not included in %t and %c substitutions.

Templates defined in NLSPATH are separated by colons (:). A leading or two adjacent
colons : : is equivalent to specifying %N. For example:

NLSPATH=" : %N.cat : /nlslib/%L/%N.cat"

indicates to catopen() that it should look for the requested message catalogue in name,
name.cat and /nlslib/category/name.cat, where category is the value of the LC_MESSAGES
category of the current locale.

Users should not set the NLSPATH variable unless they have a specific reason to override
the default system path. Doing so causes undefined behaviour in the standard utilities.

The environment variables LANG, LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES,
EX LC_MONETARY, LC_NUMERIC, LC_TIME (LC_*) and NLSPATH provide for the support of

internationalised applications. The standard utilities make use of these environment variables
as described in this section and the individual ENVIRONMENT VARIABLES sections for the
utilities. If these variables specify locale categories that are not based upon the same underlying
codeset, the results are unspecified.

The values of locale categories are determined by a precedence order; the first condition met
below determines the value:

1. If the LC_ALL environment variable is defined and is not null, the value of LC_ALL is used.

2. If the LC_* environment variable (LC_COLLATE, LC_CTYPE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC, LC_TIME) is defined and is not null, the value of the

96 CAE Specification (1997)

Environment Variables Internationalisation Variables

environment variable is used to initialise the category that corresponds to the environment
variable.

3. If the LANG environment variable is defined and is not null, the value of the LANG
environment variable is used.

4. If the LANG environment variable is not set or is set to the empty string, the
implementation-dependent default locale is used.

If the locale value is "C" or "POSIX", the POSIX locale is used and the standard utilities behave in
accordance with the rules in Section 5.2 on page 50, for the associated category.

If the locale value begins with a slash, it is interpreted as the pathname of a file that was created
in the output format used by the localedef utility; see OUTPUT FILES under localedef.
Referencing such a pathname will result in that locale being used for the indicated category.

EX If the locale value has the form:

language [_territory][.codeset]

it refers to an implementation-provided locale, where settings of language, territory and codeset
are implementation-dependent.

EX LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC and LC_TIME are
defined to accept an additional field ‘‘@modifier’’, which allows the user to select a specific
instance of localisation data within a single category (for example, for selecting the dictionary as
opposed to the character ordering of data). The syntax for these environment variables is thus
defined as:

[language [_territory][.codeset][@modifier]]

For example, if a user wanted to interact with the system in French, but required to sort German
text files, LANG and LC_COLLATE could be defined as:

LANG=Fr_FR
LC_COLLATE=De_DE

This could be extended to select dictionary collation (say) by use of the @modifier field; for
example:

LC_COLLATE=De_DE@dict

An implementation may support other formats.

If the locale value is not recognised by the implementation, the behaviour is unspecified.

At run time, these values are bound to a program’s locale by calling the setlocale () function.

Additional criteria for determining a valid locale name are implementation-dependent.

System Interface Definitions, Issue 5 97

Other Environment Variables Environment Variables

6.3 Other Environment Variables
COLUMNS

A decimal integer > 0 used to indicate the user’s preferred width in column positions
for the terminal screen or window. (See column position on page 10.) If this variable is
unset or null, the implementation determines the number of columns, appropriate for
the terminal or window, in an unspecified manner. When COLUMNS is set, any
terminal-width information implied by TERM will be overridden. Users and portable
applications should not set COLUMNS unless they wish to override the system
selection and produce output unrelated to the terminal characteristics.

The default value for the number of column positions is unspecified because historical
implementations use different methods to determine values corresponding to the size
of the screen in which the utility is run. This size is typically known to the
implementation through the value of TERM, or by more elaborate methods such as
extensions to the stty utility, or knowledge of how the user is dynamically resizing
windows on a bit-mapped display terminal. Users should not need to set this variable
in the environment unless there is a specific reason to override the implementation’s
default behaviour, such as to display data in an area arbitrarily smaller than the
terminal or window.

EX DATEMSK
Indicates the pathname of the template file used by getdate().

FIPS HOME The system will initialise this variable at the time of login to bea pathname of the user’s
home directory. See <pwd.h>.

LINES A decimal integer > 0 used to indicate the user’s preferred number of lines on a page or
the vertical screen or window size in lines. A line in this case is a vertical measure large
enough to hold the tallest character in the character set being displayed. If this variable
is unset or null, the implementation determines the number of lines, appropriate for the
terminal or window (size, terminal baud rate, and so forth), in an unspecified manner.
When LINES is set, any terminal-height information implied by TERM will be
overridden. Users and portable applications should not set LINES unless they wish to
override the system selection and produce output unrelated to the terminal
characteristics.

The default value for the number of lines is unspecified because historical
implementations use different methods to determine values corresponding to the size
of the screen in which the utility is run. This size is typically known to the
implementation through the value of TERM, or by more elaborate methods such as
extensions to the stty utility, or knowledge of how the user is dynamically resizing
windows on a bit-mapped display terminal. Users should not need to set this variable
in the environment unless there is a specific reason to override the implementation’s
default behaviour, such as to display data in an area arbitrarily smaller than the
terminal or window.

LOGNAME
FIPS The system will initialise this variable at the time of login to be the user’s login name.

See <pwd.h>. For a value of LOGNAME to be portable across implementations of the
ISO POSIX-1 standard, the value should be composed of characters from the portable
filename character set.

EX MSGVERB
Describes which message components are to be used in writing messages by fmtmsg().

98 CAE Specification (1997)

Environment Variables Other Environment Variables

PATH The sequence of path prefixes that certain functions and utilities apply in searching for
an executable file known only by a filename. The prefixes are separated by a colon (:)
When a non-zero-length prefix is applied to this filename, a slash is inserted between
the prefix and the filename. A zero-length prefix is a legacy feature that indicates the
current working directory. It appears as two adjacent colons (::), as an initial colon
preceding the rest of the list, or as a trailing colon following the rest of the list. A
portable application must use an actual pathname (such as .) to represent the current
working directory in PATH. The list is searched from beginning to end, applying the
filename to each prefix, until an executable file with the specified name and appropriate
execution permissions is found. If the pathname being sought contains a slash, the
search through the path prefixes will not be performed. If the pathname begins with a
slash, the specified path is resolved (see pathname resolution on page 22). If PATH is
unset or is set to null, the path search is implementation-dependent.

SHELL A pathname of the user’s preferred command language interpreter. If this interpreter
does not conform to the XSI Shell Command Language in the XCU specification,
Chapter 2, Shell Command Language, utilities may behave differently from those
described in this specification set.

TMPDIR
A pathname of a directory made available for programs that need a place to create
temporary files.

TERM The terminal type for which output is to be prepared. This information is used by
utilities and application programs wishing to exploit special capabilities specific to a
terminal. The format and allowable values of this environment variable are
unspecified.

TZ Timezone information. The contents of the environment variable named TZ are used
by the ctime(), localtime (), strftime() and mktime() functions, and by various utilities, to
override the default timezone. The value of TZ has one of the two forms (spaces
inserted for clarity):

: characters

or:

std offset dst offset , rule

If TZ is of the first format (that is, if the first character is a colon), the characters
following the colon are handled in an implementation-dependent manner.

The expanded format (for all TZs whose value does not have a colon as the first
character) is as follows:

stdoffset [dst [offset][, start [/ time] , end [/ time]]]

Where:

std and dst
Indicates no less than three, nor more than {TZNAME_MAX}, bytes that are
the designation for the standard (std) or the alternative (dst — such as
Daylight Savings Time) timezone. Only std is required; if dst is missing, then
the alternative time does not apply in this locale. Upper- and lower-case
letters are explicitly allowed. Any graphic characters except a leading colon (:)
or digits, the comma (,), the minus (−), the plus (+), and the null character are
permitted to appear in these fields, but their meaning is unspecified.

System Interface Definitions, Issue 5 99

Other Environment Variables Environment Variables

offset Indicates the value one must add to the local time to arrive at Coordinated
Universal Time. The offset has the form:

hh[:mm[:ss]]

The minutes (mm) and seconds (ss) are optional. The hour (hh) is required and
may be a single digit. The offset following std is required. If no offset follows
dst, the alternative time is assumed to be one hour ahead of standard time.
One or more digits may be used; the value is always interpreted as a decimal
number. The hour is between zero and 24, and the minutes (and seconds) if
present between zero and 59. Use of values outside these ranges causes
undefined behaviour. If preceded by a −, the timezone is east of the Prime
Meridian; otherwise it is west (which may be indicated by an optional
preceding +).

rule Indicates when to change to and back from the alternative time. The rule has
the form:

date [/ time] , date [/ time]

where the first date describes when the change from standard to alternative
time occurs and the second date describes when the change back happens.
Each time field describes when, in current local time, the change to the other
time is made.

The format of date is one of the following:

Jn The Julian day n (1 ≤ n ≤ 365). Leap days are not counted. That is, in
all years including leap years February 28 is day 59 and March 1 is
day 60. It is impossible to refer explicitly to the occasional
February 29.

n The zero-based Julian day (0 ≤ n ≤ 365). Leap days are counted, and
it is possible to refer to February 29.

Mm.n.d
The dth day (0 ≤ d ≤ 6) of week n of month m of the year (1 ≤ n ≤ 5, 1 ≤
m ≤ 12, where week 5 means ‘‘the last d day in month m’’ which may
occur in either the fourth or the fifth week). Week 1 is the first week
in which the d’th day occurs. Day zero is Sunday.

The time has the same format as offset except that no leading sign (− or +) is
allowed. The default, if time is not given, is 02:00:00.

100 CAE Specification (1997)

Chapter 7

Regular Expressions

Note: Two versions of regular expressions are supported in this specification set:

• the historical Simple Regular Expressions, which provide backward compatibility,
but which may be withdrawn from a future issue of this specification set

• the improved internationalised version that complies with the ISO/IEC 9945-2: 1993
standard.

The first (historical) version is described as part of the regexp() function in the XSH
specification. The second (improved) version is described in this chapter.

Regular Expressions (REs) provide a mechanism to select specific strings from a set of character
strings.

Regular expressions are a context-independent syntax that can represent a wide variety of
character sets and character set orderings, where these character sets are interpreted according
to the current locale. While many regular expressions can be interpreted differently depending
on the current locale, many features, such as character class expressions, provide for contextual
invariance across locales.

The Basic Regular Expression (BRE) notation and construction rules in Section 7.3 on page 104
apply to most utilities supporting regular expressions. Some utilities, instead, support the
Extended Regular Expressions (ERE) described in Section 7.4 on page 109; any exceptions for
both cases are noted in the descriptions of the specific utilities using regular expressions. Both
BREs and EREs are supported by the Regular Expression Matching interface in the XSH
specification under regcomp(), regexec() and related functions.

7.1 Regular Expression Definitions
For the purposes of this section, the following definitions apply:

entire regular expression
The concatenated set of one or more BREs or EREs that make up the pattern specified for string
selection.

matched
A sequence of zero or more characters is said to be matched by a BRE or ERE when the
characters in the sequence correspond to a sequence of characters defined by the pattern.

Matching is based on the bit pattern used for encoding the character, not on the graphic
representation of the character. This means that if a character set contains two or more
encodings for a graphic symbol, or if the strings searched contain text encoded in more than one
codeset, no attempt is made to search for any other representation of the encoded symbol. If
that is required, the user can specify equivalence classes containing all variations of the desired
graphic symbol.

The search for a matching sequence starts at the beginning of a string and stops when the first
sequence matching the expression is found, where first is defined to mean ‘‘begins earliest in the
string’’. If the pattern permits a variable number of matching characters and thus there is more
than one such sequence starting at that point, the longest such sequence will be matched. For
example: the BRE bb* matches the second to fourth characters of abbbc, and the ERE
(wee|week)(knights|night) matches all ten characters of weeknights.

System Interface Definitions, Issue 5 101

Regular Expression Definitions Regular Expressions

Consistent with the whole match being the longest of the leftmost matches, each subpattern,
from left to right, matches the longest possible string. For this purpose, a null string is
considered to be longer than no match at all. For example, matching the BRE \(.*\).* against
abcdef, the subexpression (\1) is abcdef, and matching the BRE \(a*\)* against bc, the
subexpression (\1) is the null string.

It is possible to determine what strings correspond to subexpressions by recursively applying
the leftmost longest rule to each subexpression, but only with the proviso that the overall match
is leftmost longest. For example, matching \(ac*\)c*d[ac]*\1 against acdacaaa matches
acdacaaa (with \1=a); simply matching the longest match for \(ac*\) would yield \1=ac, but the
overall match would be smaller (acdac). Conceptually, the implementation must examine every
possible match and among those that yield the leftmost longest total matches, pick the one that
does the longest match for the leftmost subexpression and so on. Note that this means that
matching by subexpressions is context-dependent: a subexpression within a larger RE may
match a different string from the one it would match as an independent RE, and two instances of
the same subexpression within the same larger RE may match different lengths even in similar
sequences of characters. For example, in the ERE (a.*b)(a.*b), the two identical subexpressions
would match four and six characters, respectively, of accbaccccb.

When a multi-character collating element in a bracket expression (see Section 7.3.5 on page 105)
is involved, the longest sequence will be measured in characters consumed from the string to be
matched; that is, the collating element counts not as one element, but as the number of
characters it matches.

BRE (ERE) matching a single character
A BRE or ERE that matches either a single character or a single collating element.

Only a BRE or ERE of this type that includes a bracket expression (see Section 7.3.5 on page 105)
can match a collating element.

The definition of single character has been expanded to include also collating elements consisting
of two or more characters; this expansion is applicable only when a bracket expression is
included in the BRE or ERE. An example of such a collating element may be the Dutch ij, which
collates as a y. In some encodings, a ligature ‘‘i with j’’ exists as a character and would represent
a single-character collating element. In another encoding, no such ligature exists, and the two-
character sequence ij is defined as a multi-character collating element. Outside brackets, the ij is
treated as a two-character RE and matches the same characters in a string. Historically, a
bracket expression only matched a single character. If, however, the bracket expression defines,
for example, a range that includes ij, then this particular bracket expression will also match a
sequence of the two characters i and j in the string.

BRE (ERE) matching multiple characters
A BRE or ERE that matches a concatenation of single characters or collating elements.

Such a BRE or ERE is made up from a BRE (ERE) matching a single character and BRE (ERE)
special characters.

invalid
This section uses the term invalid for certain constructs or conditions. Invalid REs will cause the
utility or function using the RE to generate an error condition. When invalid is not used,
violations of the specified syntax or semantics for REs produce undefined results: this may
entail an error, enabling an extended syntax for that RE, or using the construct in error as literal
characters to be matched. For example, the BRE construct \{1,2,3\} does not comply with the
grammar. A portable application cannot rely on it producing an error nor matching the literal
characters \{1,2,3\}.

102 CAE Specification (1997)

Regular Expressions Regular Expression General Requirements

7.2 Regular Expression General Requirements
The requirements in this section apply to both basic and extended regular expressions.

The use of regular expressions is generally associated with text processing. REs (BREs and
EREs) operate on text strings; that is, zero or more characters followed by an end-of-string
delimiter (typically NUL). Some utilities employing regular expressions limit the processing to
lines; that is, zero or more characters followed by a newline character. In the regular expression
processing described in this specification, the newline character is regarded as an ordinary
character and both a period and a non-matching list can match one. The XCU specification
specifies within the individual descriptions of those standard utilities employing regular
expressions whether they permit matching of newline characters; if not stated otherwise, the use
of literal newline characters or any escape sequence equivalent produces undefined results.
Those utilities (like grep) that do not allow newline characters to match are responsible for
eliminating any newline character from strings before matching against the RE. The regcomp()
function in the XSH specification, however, can provide support for such processing without
violating the rules of this section.

The interfaces specified in this specification set do not permit the inclusion of a NUL character in
an RE or in the string to be matched. If during the operation of a standard utility a NUL is
included in the text designated to be matched, that NUL may designate the end of the text string
for the purposes of matching.

When a standard utility or function that uses regular expressions specifies that pattern matching
will be performed without regard to the case (upper- or lower-) of either data or patterns, then
when each character in the string is matched against the pattern, not only the character, but also
its case counterpart (if any), will be matched. This definition of case-insensitive processing is
intended to allow matching of multi-character collating elements as well as characters. For
instance, as each character in the string is matched using both its cases, the RE [[.Ch.]] when
matched against the string char, is in reality matched against ch, Ch, cH and CH.

The implementation will support any regular expression that does not exceed 256 bytes in
length.

System Interface Definitions, Issue 5 103

Basic Regular Expressions Regular Expressions

7.3 Basic Regular Expressions

7.3.1 BREs Matching a Single Character or Collating Element

A BRE ordinary character, a special character preceded by a backslash or a period matches a
single character. A bracket expression matches a single character or a single collating element.

7.3.2 BRE Ordinary Characters

An ordinary character is a BRE that matches itself: any character in the supported character set,
except for the BRE special characters listed in Section 7.3.3.

The interpretation of an ordinary character preceded by a backslash (\) is undefined, except for:

1. the characters), (, { and }

2. the digits 1 to 9 inclusive (see Section 7.3.6 on page 107)

3. a character inside a bracket expression.

7.3.3 BRE Special Characters

A BRE special character has special properties in certain contexts. Outside those contexts, or
when preceded by a backslash, such a character will be a BRE that matches the special character
itself. The BRE special characters and the contexts in which they have their special meaning are:

. [\ The period, left-bracket and backslash is special except when used in a bracket
expression (see Section 7.3.5 on page 105). An expression containing a [that is not
preceded by a backslash and is not part of a bracket expression produces undefined
results.

* The asterisk is special except when used:

• in a bracket expression

• as the first character of an entire BRE (after an initial ˆ, if any)

• as the first character of a subexpression (after an initial ˆ, if any); see Section 7.3.6 on
page 107.

ˆ The circumflex is special when used:

• as an anchor (see Section 7.3.8 on page 108)

• as the first character of a bracket expression (see Section 7.3.5 on page 105).

$ The dollar sign is special when used as an anchor.

7.3.4 Periods in BREs

A period (.), when used outside a bracket expression, is a BRE that matches any character in the
supported character set except NUL.

104 CAE Specification (1997)

Regular Expressions Basic Regular Expressions

7.3.5 RE Bracket Expression

A bracket expression (an expression enclosed in square brackets, []) is an RE that matches a
single collating element contained in the non-empty set of collating elements represented by the
bracket expression.

The following rules and definitions apply to bracket expressions:

1. A bracket expression is either a matching list expression or a non-matching list expression. It
consists of one or more expressions: collating elements, collating symbols, equivalence
classes, character classes or range expressions. Portable applications must not use range
expressions, even though all implementations support them. The right-bracket (]) loses its
special meaning and represents itself in a bracket expression if it occurs first in the list
(after an initial circumflex (ˆ), if any). Otherwise, it terminates the bracket expression,
unless it appears in a collating symbol (such as [.].]) or is the ending right-bracket for a
collating symbol, equivalence class or character class. The special characters:

. * [\

(period, asterisk, left-bracket and backslash, respectively) lose their special meaning within
a bracket expression.

The character sequences:

[. [= [:

(left-bracket followed by a period, equals-sign or colon) are special inside a bracket
expression and are used to delimit collating symbols, equivalence class expressions and
character class expressions. These symbols must be followed by a valid expression and the
matching terminating sequence .], =] or :], as described in the following items.

2. A matching list expression specifies a list that matches any one of the expressions
represented in the list. The first character in the list must not be the circumflex. For
example, [abc] is an RE that matches any of the characters a, b or c.

3. A non-matching list expression begins with a circumflex (ˆ), and specifies a list that matches
any character or collating element except for the expressions represented in the list after
the leading circumflex. For example, [ˆabc] is an RE that matches any character or collating
element except the characters a, b or c. The circumflex will have this special meaning only
when it occurs first in the list, immediately following the left-bracket.

4. A collating symbol is a collating element enclosed within bracket-period ([. .]) delimiters.
Collating elements are defined as described in Collation Order on page 63. Multi-
character collating elements must be represented as collating symbols when it is necessary
to distinguish them from a list of the individual characters that make up the multi-
character collating element. For example, if the string ch is a collating element in the
current collation sequence with the associated collating symbol <ch>, the expression
[[.ch.]] will be treated as an RE matching the character sequence ch, while [ch] will be
treated as an RE matching c or h. Collating symbols will be recognised only inside bracket
expressions. This implies that the RE [[.ch.]]*c matches the first to fifth character in the
string chchch. If the string is not a collating element in the current collating sequence
definition, or if the collating element has no characters associated with it (for example, see
the symbol <HIGH> in the example collation definition shown in Collation Order on page
63), the symbol will be treated as an invalid expression.

5. An equivalence class expression represents the set of collating elements belonging to an
equivalence class, as described in Collation Order. Only primary equivalence classes will
be recognised. The class is expressed by enclosing any one of the collating elements in the

System Interface Definitions, Issue 5 105

Basic Regular Expressions Regular Expressions

equivalence class within bracket-equal ([= =]) delimiters. For example, if a, à and â belong
to the same equivalence class, then [[=a=]b], [[=à=]b] and [[=â=]b] will each be equivalent
to [aàâb]. If the collating element does not belong to an equivalence class, the equivalence
class expression will be treated as a collating symbol .

6. A character class expression represents the set of characters belonging to a character class, as
defined in the LC_CTYPE category in the current locale. All character classes specified in
the current locale will be recognised. A character class expression is expressed as a
character class name enclosed within bracket-colon ([: :]) delimiters.

The following character class expressions are supported in all locales:

[:alnum:] [:cntrl:] [:lower:] [:space:]
[:alpha:] [:digit:] [:print:] [:upper:]
[:blank:] [:graph:] [:punct:] [:xdigit:]

EX In addition, character class expressions of the form:

[: name:]

are recognised in those locales where the name keyword has been given a charclass
definition in the LC_CTYPE category.

7. A range expression represents the set of collating elements that fall between two elements in
the current collation sequence, inclusively. It is expressed as the starting point and the
ending point separated by a hyphen (−).

Range expressions must not be used in portable applications because their behaviour is
dependent on the collating sequence. Ranges will be treated according to the current
collating sequence, and include such characters that fall within the range based on that
collating sequence, regardless of character values. This, however, means that the
interpretation will differ depending on collating sequence. If, for instance, one collating
sequence defines ä as a variant of a, while another defines it as a letter following z, then the
expression [ä−z] is valid in the first language and invalid in the second.

In the following, all examples assume the collation sequence specified for the POSIX locale,
unless another collation sequence is specifically defined.

The starting range point and the ending range point must be a collating element or
collating symbol. An equivalence class expression used as a starting or ending point of a
range expression produces unspecified results. An equivalence class can be used portably
within a bracket expression, but only outside the range. For example, the unspecified
expression [[=e=]−f] should be given as [[=e=]e−f]. The ending range point must collate
equal to or higher than the starting range point; otherwise, the expression will be treated as
invalid. The order used is the order in which the collating elements are specified in the
current collation definition. One-to-many mappings (see the description of LC_COLLATE
in Chapter 5 on page 49) will not be performed. For example, assuming that the character
eszet (β) is placed in the collation sequence after r and s, but before t and that it maps to the
sequence ss for collation purposes, then the expression [r−s] matches only r and s, but the
expression [s−t] matches s, β or t.

The interpretation of range expressions where the ending range point is also the starting
range point of a subsequent range expression (for instance [a−m−o]) is undefined.

The hyphen character will be treated as itself if it occurs first (after an initial ˆ, if any) or last
in the list, or as an ending range point in a range expression. As examples, the expressions
[−ac] and [ac−] are equivalent and match any of the characters a, c or −; [ˆ−ac] and [ˆac−]
are equivalent and match any characters except a, c or −; the expression [%− −] matches

106 CAE Specification (1997)

Regular Expressions Basic Regular Expressions

any of the characters between % and − inclusive; the expression [− −@] matches any of the
characters between − and @ inclusive; and the expression [a− −@] is invalid, because the
letter a follows the symbol − in the POSIX locale. To use a hyphen as the starting range
point, it must either come first in the bracket expression or be specified as a collating
symbol, for example: [][.−.]−0], which matches either a right bracket or any character or
collating element that collates between hyphen and 0, inclusive.

If a bracket expression must specify both − and], the] must be placed first (after the ˆ, if
any) and the − last within the bracket expression.

7.3.6 BREs Matching Multiple Characters

The following rules can be used to construct BREs matching multiple characters from BREs
matching a single character:

1. The concatenation of BREs matches the concatenation of the strings matched by each
component of the BRE.

2. A subexpression can be defined within a BRE by enclosing it between the character pairs \(
and \) . Such a subexpression matches whatever it would have matched without the \(
and \), except that anchoring within subexpressions is optional behaviour; see Section
7.3.8 on page 108. Subexpressions can be arbitrarily nested.

3. The back-reference expression \n matches the same (possibly empty) string of characters as
was matched by a subexpression enclosed between \(and \) preceding the \n. The
character n must be a digit from 1 to 9 inclusive, nth subexpression (the one that begins
with the nth \(and ends with the corresponding paired \)). The expression is invalid if
less than n subexpressions precede the \n. For example, the expression ˆ\(.*\)\1$ matches
a line consisting of two adjacent appearances of the same string, and the expression
\(a\)*\1 fails to match a. The limit of nine back-references to subexpressions in the RE is
based on the use of a single digit identifier. This does not imply that only nine
subexpressions are allowed in REs. The following is a valid BRE with ten subexpressions:

\(\(\(ab\)*c\)*d\)\(ef\)*\(gh\)\{2\}\(ij\)*\(kl\)*\(mn\)*\(op\)*\(qr\)*

4. When a BRE matching a single character, a subexpression or a back-reference is followed
by the special character asterisk (*), together with that asterisk it matches what zero or
more consecutive occurrences of the BRE would match. For example, [ab]* and [ab][ab]
are equivalent when matching the string ab.

5. When a BRE matching a single character, a subexpression or a back-reference is followed
by an interval expression of the format \{m\}, \{m,\} or \{m,n\}, together with that interval
expression it matches what repeated consecutive occurrences of the BRE would match.
The values of m and n will be decimal integers in the range 0 ≤ m ≤ n ≤ {RE_DUP_MAX},
where m specifies the exact or minimum number of occurrences and n specifies the
maximum number of occurrences. The expression \{m\} matches exactly m occurrences of
the preceding BRE, \{m,\} matches at least m occurrences and \{m,n\} matches any
number of occurrences between m and n, inclusive.

For example, in the string abababccccccd the BRE c\{3\} is matched by characters seven to
nine, the BRE \(ab\)\{4,\} is not matched at all and the BRE c\{1,3\}d is matched by
characters ten to thirteen.

The behaviour of multiple adjacent duplication symbols (* and intervals) produces undefined
results.

System Interface Definitions, Issue 5 107

Basic Regular Expressions Regular Expressions

7.3.7 BRE Precedence

The order of precedence is as shown in the following table:

BRE Precedence (from high to low)
collation-related bracket symbols [= =] [: :] [. .]
escaped characters \<special character>
bracket expression []
subexpressions/back-references \(\) \n
single-character-BRE duplication * \{m,n\}
concatenation
anchoring ˆ $

7.3.8 BRE Expression Anchoring

A BRE can be limited to matching strings that begin or end a line; this is called anchoring . The
circumflex and dollar sign special characters will be considered BRE anchors in the following
contexts:

1. A circumflex (ˆ) is an anchor when used as the first character of an entire BRE. The
implementation may treat circumflex as an anchor when used as the first character of a
subexpression. The circumflex will anchor the expression (or optionally subexpression) to
the beginning of a string; only sequences starting at the first character of a string will be
matched by the BRE. For example, the BRE ˆab matches ab in the string abcdef, but fails to
match in the string cdefab. The BRE \(ˆab\) may match the former string. A portable BRE
must escape a leading circumflex in a subexpression to match a literal circumflex.

2. A dollar sign ($) is an anchor when used as the last character of an entire BRE. The
implementation may treat a dollar sign as an anchor when used as the last character of a
subexpression. The dollar sign will anchor the expression (or optionally subexpression) to
the end of the string being matched; the dollar sign can be said to match the end-of-string
following the last character.

3. A BRE anchored by both "ˆ" and "$" matches only an entire string. For example, the BRE
ˆabcdef$ matches strings consisting only of abcdef.

108 CAE Specification (1997)

Regular Expressions Extended Regular Expressions

7.4 Extended Regular Expressions
The extended regular expression (ERE) notation and construction rules will apply to utilities
defined as using extended regular expressions; any exceptions to the following rules are noted in
the descriptions of the specific utilities using EREs.

7.4.1 EREs Matching a Single Character or Collating Element

An ERE ordinary character, a special character preceded by a backslash or a period matches a
single character. A bracket expression matches a single character or a single collating element.
An ERE matching a single character enclosed in parentheses matches the same as the ERE without
parentheses would have matched.

7.4.2 ERE Ordinary Characters

An ordinary character is an ERE that matches itself. An ordinary character is any character in the
supported character set, except for the ERE special characters listed in Section 7.4.3. The
interpretation of an ordinary character preceded by a backslash (\) is undefined.

7.4.3 ERE Special Characters

An ERE special character has special properties in certain contexts. Outside those contexts, or
when preceded by a backslash, such a character is an ERE that matches the special character
itself. The extended regular expression special characters and the contexts in which they have
their special meaning are:

. [\ (The period, left-bracket, backslash and left-parenthesis are special except when
used in a bracket expression (see Section 7.3.5 on page 105). Outside a bracket
expression, a left-parenthesis immediately followed by a right-parenthesis
produces undefined results.

) The right-parenthesis is special when matched with a preceding left-parenthesis,
both outside a bracket expression.

* + ? { The asterisk, plus-sign, question-mark and left-brace are special except when used
in a bracket expression (see Section 7.3.5 on page 105). Any of the following uses
produce undefined results:

• if these characters appear first in an ERE, or immediately following a vertical-
line, circumflex or left-parenthesis

• if a left-brace is not part of a valid interval expression.

| The vertical-line is special except when used in a bracket expression (see Section
7.3.5 on page 105). A vertical-line appearing first or last in an ERE, or immediately
following a vertical-line or a left-parenthesis, or immediately preceding a right-
parenthesis, produces undefined results.

ˆ The circumflex is special when used:

• as an anchor (see Section 7.4.9 on page 111)

• as the first character of a bracket expression (see Section 7.3.5 on page 105).

$ The dollar sign is special when used as an anchor.

System Interface Definitions, Issue 5 109

Extended Regular Expressions Regular Expressions

7.4.4 Periods in EREs

A period (.), when used outside a bracket expression, is an ERE that matches any character in the
supported character set except NUL.

7.4.5 ERE Bracket Expression

The rules for ERE Bracket Expressions are the same as for Basic Regular Expressions; see Section
7.3.5 on page 105.

7.4.6 EREs Matching Multiple Characters

The following rules will be used to construct EREs matching multiple characters from EREs
matching a single character:

1. A concatenation of EREs matches the concatenation of the character sequences matched by
each component of the ERE. A concatenation of EREs enclosed in parentheses matches
whatever the concatenation without the parentheses matches. For example, both the ERE
cd and the ERE (cd) are matched by the third and fourth character of the string
abcdefabcdef.

2. When an ERE matching a single character or an ERE enclosed in parentheses is followed by
the special character plus-sign (+), together with that plus-sign it matches what one or
more consecutive occurrences of the ERE would match. For example, the ERE b+(bc)
matches the fourth to seventh characters in the string acabbbcde. And, [ab]+ and [ab][ab]*
are equivalent.

3. When an ERE matching a single character or an ERE enclosed in parentheses is followed by
the special character asterisk (*), together with that asterisk it matches what zero or more
consecutive occurrences of the ERE would match. For example, the ERE b*c matches the
first character in the string cabbbcde, and the ERE b*cd matches the third to seventh
characters in the string cabbbcdebbbbbbcdbc. And, [ab]* and [ab][ab] are equivalent when
matching the string ab.

4. When an ERE matching a single character or an ERE enclosed in parentheses is followed by
the special character question-mark (?), together with that question-mark it matches what
zero or one consecutive occurrences of the ERE would match. For example, the ERE b?c
matches the second character in the string acabbbcde.

5. When an ERE matching a single character or an ERE enclosed in parentheses is followed by
an interval expression of the format {m}, {m,} or {m,n}, together with that interval expression
it matches what repeated consecutive occurrences of the ERE would match. The values of
m and n will be decimal integers in the range 0 ≤ m ≤ n ≤ {RE_DUP_MAX}, where m
specifies the exact or minimum number of occurrences and n specifies the maximum
number of occurrences. The expression {m} matches exactly m occurrences of the
preceding ERE, {m,} matches at least m occurrences and {m,n} matches any number of
occurrences between m and n, inclusive.

For example, in the string abababccccccd the ERE c{3} is matched by characters seven to
nine and the ERE (ab){2,} is matched by characters one to six.

The behaviour of multiple adjacent duplication symbols (+, *, ? and intervals) produces
undefined results.

110 CAE Specification (1997)

Regular Expressions Extended Regular Expressions

7.4.7 ERE Alternation

Two EREs separated by the special character vertical-line (|) match a string that is matched by
either. For example, the ERE a((bc)|d) matches the string abc and the string ad. Single
characters, or expressions matching single characters, separated by the vertical bar and enclosed
in parentheses, will be treated as an ERE matching a single character.

7.4.8 ERE Precedence

The order of precedence will be as shown in the following table:

ERE Precedence (from high to low)
collation-related bracket symbols [= =] [: :] [. .]
escaped characters \<special character>
bracket expression []
grouping ()
single-character-ERE duplication * + ? {m,n}
concatenation
anchoring ˆ $
alternation |

For example, the ERE abba | cde matches either the string abba or the string cde (rather than the
string abbade or abbcde, because concatenation has a higher order of precedence than
alternation).

7.4.9 ERE Expression Anchoring

An ERE can be limited to matching strings that begin or end a line; this is called anchoring . The
circumflex and dollar sign special characters are considered ERE anchors when used anywhere
outside a bracket expression. This has the following effects:

1. A circumflex (ˆ) outside a bracket expression anchors the expression or subexpression it
begins to the beginning of a string; such an expression or subexpression can match only a
sequence starting at the first character of a string. For example, the EREs ˆab and (ˆab)
match ab in the string abcdef, but fail to match in the string cdefab, and the ERE aˆb is
valid, but can never match because the a prevents the expression ˆb from matching starting
at the first character.

2. A dollar sign ($) outside a bracket expression anchors the expression or subexpression it
ends to the end of a string; such an expression or subexpression can match only a sequence
ending at the last character of a string. For example, the EREs ef$ and (ef$) match ef in the
string abcdef, but fail to match in the string cdefab, and the ERE e$f is valid, but can never
match because the f prevents the expression e$ from matching ending at the last character.

System Interface Definitions, Issue 5 111

Regular Expression Grammar Regular Expressions

7.5 Regular Expression Grammar
Grammars describing the syntax of both basic and extended regular expressions are presented in
this section. The grammar takes precedence over the text. See the XCU specification, Section
1.8, Grammar Conventions.

7.5.1 BRE/ERE Grammar Lexical Conventions

The lexical conventions for regular expressions are as described in this section.

Except as noted, the longest possible token or delimiter beginning at a given point will be
recognised.

The following tokens will be processed (in addition to those string constants shown in the
grammar):

COLL_ELEM Any single-character collating element, unless it is a META_CHAR.

BACKREF Applicable only to basic regular expressions. The character string
consisting of "\" followed by a single-digit numeral, 1 to 9.

DUP_COUNT Represents a numeric constant. It is an integer in the range 0 ≤
DUP_COUNT ≤ {RE_DUP_MAX}. This token will only be recognised
when the context of the grammar requires it. At all other times, digits not
preceded by "\" will be treated as ORD_CHAR.

META_CHAR One of the characters:

ˆ when found first in a bracket expression

− when found anywhere but first (after an initial "ˆ", if any) or last in a
bracket expression, or as the ending range point in a range
expression

] when found anywhere but first (after an initial "ˆ" if any) in a bracket
expression.

L_ANCHOR Applicable only to basic regular expressions. The character "ˆ" when it
appears as the first character of a basic regular expression and when not
QUOTED_CHAR. The "ˆ" may be recognised as an anchor elsewhere; see
Section 7.3.8 on page 108.

ORD_CHAR A character, other than one of the special characters in SPEC_CHAR.

QUOTED_CHAR In a BRE, one of the character sequences:

\ˆ \. * \[\$ \\

In an ERE, one of the character sequences:

\ˆ \. \[\$ \(\) \|
* \+ \? \{ \\

R_ANCHOR (Applicable only to basic regular expressions.) The character "$" when it
appears as the last character of a basic regular expression and when not
QUOTED_CHAR. The "$" may be recognised as an anchor elsewhere; see
Section 7.3.8 on page 108.

SPEC_CHAR For basic regular expressions, will be one of the following special
characters:

112 CAE Specification (1997)

Regular Expressions Regular Expression Grammar

. anywhere outside bracket expressions

\ anywhere outside bracket expressions

[anywhere outside bracket expressions

ˆ when used as an anchor (see Section 7.3.8 on page 108) or when first
in a bracket expression

$ when used as an anchor

* anywhere except: first in an entire RE; anywhere in a bracket
expression; directly following \(; directly following an anchoring "ˆ".

For extended regular expressions, will be one of the following special
characters found anywhere outside bracket expressions:

ˆ . [$ () | * + ? { \

(The close-parenthesis is considered special in this context only if
matched with a preceding open-parenthesis.)

7.5.2 RE and Bracket Expression Grammar

This section presents the grammar for basic regular expressions, including the bracket
expression grammar that is common to both BREs and EREs.

%token ORD_CHAR QUOTED_CHAR DUP_COUNT

%token BACKREF L_ANCHOR R_ANCHOR

%token Back_open_paren Back_close_paren
/* ’\(’ ’\)’ */

%token Back_open_brace Back_close_brace
/* ’\{’ ’\}’ */

/* The following tokens are for the Bracket Expression
grammar common to both REs and EREs. */

%token COLL_ELEM META_CHAR

%token Open_equal Equal_close Open_dot Dot_close Open_colon Colon_close
/* ’[=’ ’=]’ ’[.’ ’.]’ ’[:’ ’:]’ */

%token class_name
/* class_name is a keyword to the LC_CTYPE locale category */
/* (representing a character class) in the current locale */
/* and is only recognised between [: and :] */

%start basic_reg_exp
%%

/* --
Basic Regular Expression
--

*/
basic_reg_exp : RE_expression

| L_ANCHOR
| R_ANCHOR
| L_ANCHOR R_ANCHOR
| L_ANCHOR RE_expression

System Interface Definitions, Issue 5 113

Regular Expression Grammar Regular Expressions

| RE_expression R_ANCHOR
| L_ANCHOR RE_expression R_ANCHOR
;

RE_expression : simple_RE
| RE_expression simple_RE
;

simple_RE : nondupl_RE
| nondupl_RE RE_dupl_symbol
;

nondupl_RE : one_character_RE
| Back_open_paren RE_expression Back_close_paren
| Back_open_paren Back_close_paren
| BACKREF
;

one_character_RE : ORD_CHAR
| QUOTED_CHAR
| ’.’
| bracket_expression
;

RE_dupl_symbol : ’*’
| Back_open_brace DUP_COUNT Back_close_brace
| Back_open_brace DUP_COUNT ’,’ Back_close_brace
| Back_open_brace DUP_COUNT ’,’ DUP_COUNT Back_close_brace
;

/* --
Bracket Expression

*/
bracket_expression : ’[’ matching_list ’]’

| ’[’ nonmatching_list ’]’
;

matching_list : bracket_list
;

nonmatching_list : ’ˆ’ bracket_list
;

bracket_list : follow_list
| follow_list ’-’
;

follow_list : expression_term
| follow_list expression_term
;

expression_term : single_expression
| range_expression
;

single_expression : end_range
| character_class
| equivalence_class
;

range_expression : start_range end_range
| start_range ’-’
;

start_range : end_range ’-’

114 CAE Specification (1997)

Regular Expressions Regular Expression Grammar

;
end_range : COLL_ELEM

| collating_symbol
;

collating_symbol : Open_dot COLL_ELEM Dot_close
| Open_dot META_CHAR Dot_close
;

equivalence_class : Open_equal COLL_ELEM Equal_close
;

character_class : Open_colon class_name Colon_close
;

The BRE grammar does not permit L_ANCHOR or R_ANCHOR inside \(and \) (which implies
that ˆ and $ are ordinary characters). This reflects the semantic limits on the application, as
noted in Section 7.3.8 on page 108. Implementations are permitted to extend the language to
interpret "ˆ" and "$" as anchors in these locations, and as such, portable applications cannot use
unescaped "ˆ" and "$" in positions inside \(and \) that might be interpreted as anchors.

7.5.3 ERE Grammar

This section presents the grammar for extended regular expressions, excluding the bracket
expression grammar.

Note: The bracket expression grammar and the associated %token lines are identical between
BREs and EREs. It has been omitted from the ERE section to avoid unnecessary
editorial duplication.

%token ORD_CHAR QUOTED_CHAR DUP_COUNT
%start extended_reg_exp
%%

/* --
Extended Regular Expression
--

*/
extended_reg_exp : ERE_branch

| extended_reg_exp ’ | ’ ERE_branch
;

ERE_branch : ERE_expression
| ERE_branch ERE_expression
;

ERE_expression : one_character_ERE
| ’ˆ’
| ’$’
| ’(’ extended_reg_exp ’)’
| ERE_expression ERE_dupl_symbol
;

one_character_ERE : ORD_CHAR
| QUOTED_CHAR
| ’.’
| bracket_expression
;

ERE_dupl_symbol : ’*’
| ’+’
| ’?’

System Interface Definitions, Issue 5 115

Regular Expression Grammar Regular Expressions

| ’{’ DUP_COUNT ’}’
| ’{’ DUP_COUNT ’,’ ’}’
| ’{’ DUP_COUNT ’,’ DUP_COUNT ’}’
;

The ERE grammar does not permit several constructs that previous sections specify as having
undefined results:

• ORD_CHAR preceded by "\"

• one or more ERE_dupl_symbols appearing first in an ERE, or immediately following "|", "ˆ"
or "("

• "{" not part of a valid ERE_dupl_symbol

• "|" appearing first or last in an ERE, or immediately following "|" or "(", or immediately
preceding ")".

Implementations are permitted to extend the language to allow these. Portable applications
cannot use such constructs.

116 CAE Specification (1997)

Chapter 8

Directory Structure and Devices

8.1 Directory Structure and Files
The following directories exist on conforming systems and must be used as described. Portable
applications cannot assume the ability to create files in any of these directories.

/ The root directory.

EX /dev Contains /dev/console, /dev/null and /dev/tty, described below.

The following directory exists on conforming systems and is used as described.

/tmp A directory made available for programs that need a place to create temporary
files. Applications are allowed to create files in this directory, but cannot assume
that such files are preserved between invocations of the application.

The /tmp directory is defined to accommodate historical applications that assume
its availability. Applications are encouraged to use the contents of TMPDIR for
creating temporary files rather than the specific name /tmp. See tempnam() in the
XSH specification.

The following files exist on conforming systems and are both readable and writable.

/dev/null An infinite data source and data sink. Data written to /dev/null is discarded.
Reads from /dev/null always return end-of-file (EOF).

/dev/tty In each process, a synonym for the controlling terminal associated with the process
group of that process, if any. It is useful for programs or shell procedures that
wish to be sure of writing messages to or reading data from the terminal no matter
how output has been redirected. It can also be used for programs that demand the
name of a file for output, when typed output is desired and it is tiresome to find
out what terminal is currently in use.

EX The following file exists on conforming systems and need not be readable or writable:

/dev/console The /dev/console file is a generic name given to the system console. It is usually
linked to a particular machine-dependent special file. It provides a basic I/O
interface to the system console.

System Interface Definitions, Issue 5 117

Output Devices and Terminal Types Directory Structure and Devices

8.2 Output Devices and Terminal Types
The utilities in the XCU specification historically have been implemented on a wide range of
terminal types, but a conforming implementation need not support all features of all utilities on
every conceivable terminal. This specification set states which features are optional for certain
classes of terminals in the individual utility description sections. The implementation will
document which terminal types it supports and which of these features and utilities are not
supported by each terminal.

When a feature or utility is not supported on a specific terminal type, as allowed by this
specification set, and the implementation considers such a condition to be an error preventing
use of the feature or utility, the implementation will indicate such conditions through diagnostic
messages or exit status values or both (as appropriate to the specific utility description) that
inform the user that the terminal type lacks the appropriate capability.

This specification set uses a notational convention based on historical practice that identifies
some of the control characters defined in Section 4.1 on page 43 in a manner easily remembered
by users on many terminals. The correspondence between this ‘‘control−char ’’ notation and the
actual control characters is shown in the following table. When this specification set refers to a
character by its control− name, it is referring to the actual control character shown in the Value
column of the table, which is not necessarily the exact control key sequence on all terminals.
Some terminals have keyboards that do not allow the direct transmission of all the non-
alphanumeric characters shown. In such cases, the system documentation will describe which
data sequences transmitted by the terminal are interpreted by the system as representing the
special characters.

Name Value Name Value Name Value
control-A <SOH> control-L <FF> control-W <ETB>
control-B <STX> control-M <CR> control-X <CAN>
control-C <ETX> control-N <SO> control-Y
control-D <EOT> control-O <SI> control-Z <SUB>
control-E <ENQ> control-P <DLE> control-[<ESC>
control-F <ACK> control-Q <DC1> control-\ <FS>
control-G <BEL> control-R <DC2> control-] <GS>
control-H <BS> control-S <DC3> control-ˆ <RS>
control-I <HT> control-T <DC4> control-_ <US>
control-J <LF> control-U <NAK> control-?
control-K <VT> control-V <SYN>

Table 8-1 Control Character Names

Note: The notation uses upper-case letters for arbitrary editorial reasons. There is no
implication that the keystrokes represent control-shift-letter sequences.

118 CAE Specification (1997)

Chapter 9

General Terminal Interface

This chapter describes a general terminal interface that is provided to control asynchronous
communications ports. It is implementation-dependent whether it supports network
connections or synchronous ports or both.

9.1 Interface Characteristics

9.1.1 Opening a Terminal Device File

When a terminal device file is opened, it normally causes the thread to wait until a connection is
established. In practice, application programs seldom open these files; they are opened by
special programs and become an application’s standard input, output and error files.

As described in open(), opening a terminal device file with the O_NONBLOCK flag clear causes
the thread to block until the terminal device is ready and available. If CLOCAL mode is not set,
this means blocking until a connection is established. If CLOCAL mode is set in the terminal, or
the O_NONBLOCK flag is specified in the open(), the open() function returns a file descriptor
without waiting for a connection to be established.

9.1.2 Process Groups

A terminal may have a foreground process group associated with it. This foreground process
group plays a special role in handling signal-generating input characters, as discussed in Section
9.1.9 on page 123.

A command interpreter process supporting job control can allocate the terminal to different jobs,
or process groups, by placing related processes in a single process group and associating this
process group with the terminal. A terminal’s foreground process group may be set or
examined by a process, assuming the permission requirements are met; see tcgetpgrp() and
tcsetpgrp(). The terminal interface aids in this allocation by restricting access to the terminal by
processes that are not in the current process group; see Section 9.1.4 on page 120.

When there is no longer any process whose process ID or process group ID matches the process
group ID of the foreground process group, the terminal will have no foreground process group.
It is unspecified whether the terminal has a foreground process group when there is a process
whose process ID matches the foreground process ID, but whose process group ID does not. No
actions defined in this specification set, other than allocation of a controlling terminal or a
successful call to tcsetpgrp(), will cause a process group to become the foreground process group
of the terminal.

9.1.3 The Controlling Terminal

A terminal may belong to a process as its controlling terminal. Each process of a session that has
a controlling terminal has the same controlling terminal. A terminal may be the controlling
terminal for at most one session. The controlling terminal for a session is allocated by the
session leader in an implementation-dependent manner. If a session leader has no controlling
terminal, and opens a terminal device file that is not already associated with a session without
using the O_NOCTTY option (see open()), it is implementation-dependent whether the terminal
becomes the controlling terminal of the session leader. If a process which is not a session leader
opens a terminal file, or the O_NOCTTY option is used on open(), then that terminal does not

System Interface Definitions, Issue 5 119

Interface Characteristics General Terminal Interface

become the controlling terminal of the calling process. When a controlling terminal becomes
associated with a session, its foreground process group is set to the process group of the session
leader.

The controlling terminal is inherited by a child process during a fork () function call. A process
relinquishes its controlling terminal when it creates a new session with the setsid() function;
other processes remaining in the old session that had this terminal as their controlling terminal
continue to have it. Upon the close of the last file descriptor in the system (whether or not it is in
the current session) associated with the controlling terminal, it is unspecified whether all
processes that had that terminal as their controlling terminal cease to have any controlling
terminal. Whether and how a session leader can reacquire a controlling terminal after the
controlling terminal has been relinquished in this fashion is unspecified. A process does not
relinquish its controlling terminal simply by closing all of its file descriptors associated with the
controlling terminal if other processes continue to have it open.

When a controlling process terminates, the controlling terminal is dissociated from the current
session, allowing it to be acquired by a new session leader. Subsequent access to the terminal by
other processes in the earlier session may be denied, with attempts to access the terminal treated
as if a modem disconnect had been sensed.

9.1.4 Terminal Access Control

If a process is in the foreground process group of its controlling terminal, read operations are
allowed, as described in Section 9.1.5. Any attempts by a process in a background process group
to read from its controlling terminal cause its process group to be sent a SIGTTIN signal unless
one of the following special cases applies: if the reading process is ignoring or blocking the
SIGTTIN signal, or if the process group of the reading process is orphaned, the read() returns −1,
with errno set to [EIO] and no signal is sent. The default action of the SIGTTIN signal is to stop
the process to which it is sent. See <signal.h>.

If a process is in the foreground process group of its controlling terminal, write operations are
allowed as described in Section 9.1.8 on page 122. Attempts by a process in a background
process group to write to its controlling terminal will cause the process group to be sent a
SIGTTOU signal unless one of the following special cases applies: if TOSTOP is not set, or if
TOSTOP is set and the process is ignoring or blocking the SIGTTOU signal, the process is
allowed to write to the terminal and the SIGTTOU signal is not sent. If TOSTOP is set, and the
process group of the writing process is orphaned, and the writing process is not ignoring or
blocking the SIGTTOU signal, the write() returns −1, with errno set to [EIO] and no signal is sent.

Certain calls that set terminal parameters are treated in the same fashion as write(), except that
TOSTOP is ignored; that is, the effect is identical to that of terminal writes when TOSTOP is set
(see Section 9.2.5 on page 129, tcdrain(), tcflow(), tcflush(), tcsendbreak() and tcsetattr()).

9.1.5 Input Processing and Reading Data

A terminal device associated with a terminal device file may operate in full-duplex mode, so that
data may arrive even while output is occurring. Each terminal device file has an input queue,
associated with it, into which incoming data is stored by the system before being read by a
process. The system may impose a limit, {MAX_INPUT}, on the number of bytes that may be
stored in the input queue. The behaviour of the system when this limit is exceeded is
implementation-dependent.

Two general kinds of input processing are available, determined by whether the terminal device
file is in canonical mode or non-canonical mode. These modes are described in Section 9.1.6 on
page 121 and Section 9.1.7 on page 121. Additionally, input characters are processed according
to the c_iflag (see Section 9.2.2 on page 125) and c_lflag (see Section 9.2.5 on page 129) fields.

120 CAE Specification (1997)

General Terminal Interface Interface Characteristics

Such processing can include echoing , which in general means transmitting input characters
immediately back to the terminal when they are received from the terminal. This is useful for
terminals that can operate in full-duplex mode.

The manner in which data is provided to a process reading from a terminal device file is
dependent on whether the terminal file is in canonical or non-canonical mode, and on whether
or not the O_NONBLOCK flag is set by open() or fcntrl().

If the O_NONBLOCK flag is clear, then the read request is blocked until data is available or a
signal has been received. If the O_NONBLOCK flag is set, then the read request is completed,
without blocking, in one of three ways:

1. If there is enough data available to satisfy the entire request, the read() completes
successfully and returns the number of bytes read.

2. If there is not enough data available to satisfy the entire request, the read() completes
successfully, having read as much data as possible, and returns the number of bytes it was
able to read.

3. If there is no data available, the read() returns −1, with errno set to [EAGAIN].

When data is available depends on whether the input processing mode is canonical or non-
canonical. The following sections, Section 9.1.6 and Section 9.1.7 describe each of these input
processing modes.

9.1.6 Canonical Mode Input Processing

In canonical mode input processing, terminal input is processed in units of lines. A line is
delimited by a newline character (NL), an end-of-file character (EOF), or an end-of-line (EOL)
character. See Section 9.1.9 on page 123 for more information on EOF and EOL. This means that
a read request will not return until an entire line has been typed or a signal has been received.
Also, no matter how many bytes are requested in the read() call, at most one line will be
returned. It is not, however, necessary to read a whole line at once; any number of bytes, even
one, may be requested in a read() without losing information.

If {MAX_CANON} is defined for this terminal device, it is a limit on the number of bytes in a
line. The behaviour of the system when this limit is exceeded is implementation-dependent. If
{MAX_CANON} is not defined, there is no such limit; see pathconf ().

Erase and kill processing occur when either of two special characters, the ERASE and KILL
characters (see Section 9.1.9 on page 123), is received. This processing affects data in the input
queue that has not yet been delimited by a newline (NL), EOF or EOL character. This un-
delimited data makes up the current line. The ERASE character deletes the last character in the
current line, if there is one. The KILL character deletes all data in the current line, if there are
any. The ERASE and KILL characters have no effect if there is no data in the current line. The
ERASE and KILL characters themselves are not placed in the input queue.

9.1.7 Non-canonical Mode Input Processing

In non-canonical mode input processing, input bytes are not assembled into lines, and erase and
kill processing does not occur. The values of the MIN and TIME members of the c_cc array are
used to determine how to process the bytes received. The ISO POSIX-1 standard does not
specify whether the setting of O_NONBLOCK takes precedence over MIN or TIME settings.
Therefore, if O_NONBLOCK is set, read() may return immediately, regardless of the setting of
MIN or TIME. Also, if no data is available, read() may either return 0, or return −1 with errno set
to [EAGAIN].

System Interface Definitions, Issue 5 121

Interface Characteristics General Terminal Interface

MIN represents the minimum number of bytes that should be received when the read() function
returns successfully. TIME is a timer of 0.1 second granularity that is used to time out bursty
and short-term data transmissions. If MIN is greater than {MAX_INPUT}, the response to the
request is undefined. The four possible values for MIN and TIME and their interactions are
described below.

Case A: MIN > 0, TIME > 0

In this case TIME serves as an inter-byte timer and is activated after the first byte is received.
Since it is an inter-byte timer, it is reset after a byte is received. The interaction between MIN
and TIME is as follows. As soon as one byte is received, the inter-byte timer is started. If MIN
bytes are received before the inter-byte timer expires (remember that the timer is reset upon
receipt of each byte), the read is satisfied. If the timer expires before MIN bytes are received, the
characters received to that point are returned to the user. Note that if TIME expires at least one
byte is returned because the timer would not have been enabled unless a byte was received. In
this case (MIN > 0, TIME > 0) the read blocks until the MIN and TIME mechanisms are activated
by the receipt of the first byte, or a signal is received. If the data is in the buffer at the time of the
read(), the result will be as if the data has been received immediately after the read().

Case B: MIN > 0, TIME = 0

In this case, since the value of TIME is zero, the timer plays no role and only MIN is significant.
A pending read is not satisfied until MIN bytes are received (that is, the pending read blocks
until MIN bytes are received), or a signal is received. A program that uses this case to read
record-based terminal I/O may block indefinitely in the read operation.

Case C: MIN = 0, TIME > 0

In this case, since MIN = 0, TIME no longer represents an inter-byte timer. It now serves as a
read timer that is activated as soon as the read() function is processed. A read is satisfied as soon
as a single byte is received or the read timer expires. Note that in this case if the timer expires,
no bytes are returned. If the timer does not expire, the only way the read can be satisfied is if a
byte is received. In this case the read will not block indefinitely waiting for a byte; if no byte is
received within TIME*0.1 seconds after the read is initiated, the read() returns a value of zero,
having read no data. If the data is in the buffer at the time of the read(), the timer is started as if
the data has been received immediately after the read().

Case D: MIN = 0, TIME = 0

The minimum of either the number of bytes requested or the number of bytes currently available
is returned without waiting for more bytes to be input. If no characters are available, read()
returns a value of zero, having read no data.

9.1.8 Writing Data and Output Processing

When a process writes one or more bytes to a terminal device file, they are processed according
to the c_oflag field (see Section 9.2.3 on page 126). The implementation may provide a buffering
mechanism; as such, when a call to write() completes, all of the bytes written have been
scheduled for transmission to the device, but the transmission will not necessarily have
completed. See write() for the effects of O_NONBLOCK on write().

122 CAE Specification (1997)

General Terminal Interface Interface Characteristics

9.1.9 Special Characters

Certain characters have special functions on input or output or both. These functions are
summarised as follows:

INTR Special character on input, which is recognised if the ISIG flag is set. Generates a
SIGINT signal which is sent to all processes in the foreground process group for which
the terminal is the controlling terminal. If ISIG is set, the INTR character is discarded
when processed.

QUIT Special character on input, which is recognised if the ISIG flag is set. Generates a
SIGQUIT signal which is sent to all processes in the foreground process group for
which the terminal is the controlling terminal. If ISIG is set, the QUIT character is
discarded when processed.

ERASE Special character on input, which is recognised if the ICANON flag is set. Erases the
last character in the current line; see Section 9.1.6 on page 121. It will not erase beyond
the start of a line, as delimited by an NL, EOF or EOL character. If ICANON is set, the
ERASE character is discarded when processed.

KILL Special character on input, which is recognised if the ICANON flag is set. Deletes the
entire line, as delimited by an NL, EOF or EOL character. If ICANON is set, the KILL
character is discarded when processed.

EOF Special character on input, which is recognised if the ICANON flag is set. When
received, all the bytes waiting to be read are immediately passed to the process without
waiting for a newline, and the EOF is discarded. Thus, if there are no bytes waiting
(that is, the EOF occurred at the beginning of a line), a byte count of zero is returned
from the read(), representing an end-of-file indication. If ICANON is set, the EOF
character is discarded when processed.

NL Special character on input, which is recognised if the ICANON flag is set. It is the line
delimiter newline. It cannot be changed.

EOL Special character on input, which is recognised if the ICANON flag is set. It is an
additional line delimiter, like NL.

SUSP If the ISIG flag is set, receipt of the SUSP character causes a SIGTSTP signal to be sent to
all processes in the foreground process group for which the terminal is the controlling
terminal, and the SUSP character is discarded when processed.

STOP Special character on both input and output, which is recognised if the IXON (output
control) or IXOFF (input control) flag is set. Can be used to suspend output
temporarily. It is useful with CRT terminals to prevent output from disappearing
before it can be read. If IXON is set, the STOP character is discarded when processed.

START Special character on both input and output, which is recognised if the IXON (output
control) or IXOFF (input control) flag is set. Can be used to resume output that has
been suspended by a STOP character. If IXON is set, the START character is discarded
when processed.

CR Special character on input, which is recognised if the ICANON flag is set; it is the
carriage-return character. When ICANON and ICRNL are set and IGNCR is not set,
this character is translated into an NL, and has the same effect as an NL character.

The NL and CR characters cannot be changed. It is implementation-dependent whether the
START and STOP characters can be changed. The values for INTR, QUIT, ERASE, KILL, EOF,

FIPS EOL and SUSP are changeable to suit individual tastes. Special character functions associated
with changeable special control characters can be disabled individually.

System Interface Definitions, Issue 5 123

Interface Characteristics General Terminal Interface

If two or more special characters have the same value, the function performed when that
character is received is undefined.

A special character is recognised not only by its value, but also by its context; for example, an
implementation may support multi-byte sequences that have a meaning different from the
meaning of the bytes when considered individually. Implementations may also support
additional single-byte functions. These implementation-dependent multi-byte or single-byte
functions are recognised only if the IEXTEN flag is set; otherwise, data is received without
interpretation, except as required to recognise the special characters defined in this section.

EX If IEXTEN is set, the ERASE, KILL and EOF characters can be escaped by a preceding \
character, in which case no special function occurs.

9.1.10 Modem Disconnect

If a modem disconnect is detected by the terminal interface for a controlling terminal, and if
CLOCAL is not set in the c_cflag field for the terminal (see Section 9.2.4 on page 128), the
SIGHUP signal is sent to the controlling process for which the terminal is the controlling
terminal. Unless other arrangements have been made, this causes the controlling process to
terminate (see exit()). Any subsequent read from the terminal device returns the value of zero,
indicating end-of-file. (See read().) Thus, processes that read a terminal file and test for end-of-
file can terminate appropriately after a disconnect. If the EIO condition as specified in read()
also exists, it is unspecified whether on EOF condition or the [EIO] is returned. Any subsequent
write() to the terminal device returns −1, with errno set to [EIO], until the device is closed.

9.1.11 Closing a Terminal Device File

The last process to close a terminal device file causes any output to be sent to the device and any
input to be discarded. If HUPCL is set in the control modes and the communications port
supports a disconnect function, the terminal device will perform a disconnect.

124 CAE Specification (1997)

General Terminal Interface Parameters that Can be Set

9.2 Parameters that Can be Set

9.2.1 The termios Structure

Routines that need to control certain terminal I/O characteristics do so by using the termios
structure as defined in the header <termios.h>. The members of this structure include (but are
not limited to):

Member Array Member
Type Size Name Description

tcflag_t c_iflag Input modes.
tcflag_t c_oflag Output modes.
tcflag_t c_cflag Control modes.
tcflag_t c_lflag Local modes.
cc_t NCCS c_cc [] Control characters.

The types tcflag_t and cc_t are defined in the header <termios.h>. They are unsigned integral
types.

9.2.2 Input Modes

Values of the c_iflag field describe the basic terminal input control, and are composed of the
bitwise inclusive OR of the masks shown, which will be bitwise distinct. The mask name
symbols in this table are defined in <termios.h>:

Mask Name Description
BRKINT Signal interrupt on break.
ICRNL Map CR to NL on input.
IGNBRK Ignore break condition.
IGNCR Ignore CR.
IGNPAR Ignore characters with parity errors.
INLCR Map NL to CR on input.
INPCK Enable input parity check.
ISTRIP Strip character.

EX IUCLC Map upper case to lower case on input. (LEGACY)
EX IXANY Enable any character to restart output.

IXOFF Enable start/stop input control.
IXON Enable start/stop output control.
PARMRK Mark parity errors.

In the context of asynchronous serial data transmission, a break condition is defined as a
sequence of zero-valued bits that continues for more than the time to send one byte. The entire
sequence of zero-valued bits is interpreted as a single break condition, even if it continues for a
time equivalent to more than one byte. In contexts other than asynchronous serial data
transmission, the definition of a break condition is implementation-dependent.

If IGNBRK is set, a break condition detected on input is ignored that is, not put on the input
queue and therefore not read by any process. If IGNBRK is not set and BRKINT is set, the break
condition will flush the input and output queues, and if the terminal is the controlling terminal
of a foreground process group, the break condition will generate a single SIGINT signal to that
foreground process group. If neither IGNBRK nor BRKINT is set, a break condition is read as a
single 0x00, or if PARMRK is set, as 0xff 0x00 0x00.

System Interface Definitions, Issue 5 125

Parameters that Can be Set General Terminal Interface

If IGNPAR is set, a byte with a framing or parity error (other than break) is ignored.

If PARMRK is set, and IGNPAR is not set, a byte with a framing or parity error (other than
break) is given to the application as the three-byte sequence 0xff 0x00 X, where 0xff 0x00 is a
two-byte flag preceding each sequence and X is the data of the byte received in error. To avoid
ambiguity in this case, if ISTRIP is not set, a valid byte of 0xff is given to the application as 0xff
0xff. If neither PARMRK nor IGNPAR is set, a framing or parity error (other than break) is given
to the application as a single byte 0x00.

If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity checking is
disabled, allowing output parity generation without input parity errors. Note that whether
input parity checking is enabled or disabled is independent of whether parity detection is
enabled or disabled (see Section 9.2.4 on page 128). If parity detection is enabled but input parity
checking is disabled, the hardware to which the terminal is connected will recognise the parity
bit but the terminal special file will not check whether or not this bit is correctly set.

If ISTRIP is set, valid input bytes are first stripped to seven bits, otherwise all eight bits are
processed.

If INLCR is set, a received NL character is translated into a CR character. If IGNCR is set, a
received CR character is ignored (not read). If IGNCR is not set and ICRNL is set, a received CR
character is translated into an NL character.

EX If IUCLC is set, upper- to lower-case mappings are performed on the received character. In
locales other than the POSIX locale, the mapping is unspecified. (LEGACY)

If IXANY is set, any input character will restart output that has been suspended.

If IXON is set, start/stop output control is enabled. A received STOP character suspends output
and a received START character restarts output. When IXON is set, START and STOP characters
are not read, but merely perform flow control functions. When IXON is not set, the START and
STOP characters are read.

If IXOFF is set, start/stop input control is enabled. The system transmits STOP characters,
which are intended to cause the terminal device to stop transmitting data, as needed to prevent
the input queue from overflowing and causing undefined behaviour, and transmits START
characters, which are intended to cause the terminal device to resume transmitting data, as soon
as the device can continue transmitting data without risk of overflowing the input queue. The
precise conditions under which STOP and START characters are transmitted are
implementation-dependent.

The initial input control value after open() is implementation-dependent.

9.2.3 Output Modes

The c_oflag field specifies the terminal interface’s treatment of output, and is composed of the
bitwise inclusive OR of the masks shown, which will be bitwise distinct. The mask name
symbols in this table are defined in <termios.h>:

126 CAE Specification (1997)

General Terminal Interface Parameters that Can be Set

Mask Name Description
OPOST Perform output processing.

EX OLCUC Map lower case to upper on output. (LEGACY)
ONLCR Map NL to CR-NL on output.
OCRNL Map CR to NL on output.
ONOCR No CR output at column 0.
ONLRET NL performs CR function.
OFILL Use fill characters for delay.
OFDEL Fill is DEL, else NUL.
NLDLY Select newline delays:

NL0 Newline character type 0
NL1 Newline character type 1.

CRDLY Select carriage-return delays:
CR0 Carriage-return delay type 0
CR1 Carriage-return delay type 1
CR2 Carriage-return delay type 2
CR3 Carriage-return delay type 3.

TABDLY Select horizontal-tab delays:
TAB0 Horizontal-tab delay type 0
TAB1 Horizontal-tab delay type 1
TAB2 Horizontal-tab delay type 2.
TAB3 Expand tabs to spaces.

BSDLY Select backspace delays:
BS0 Backspace-delay type 0
BS1 Backspace-delay type 1.

VTDLY Select vertical-tab delays:
VT0 Vertical-tab delay type 0
VT1 Vertical-tab delay type 1.

FFDLY Select form-feed delays:
FF0 Form-feed delay type 0
FF1 Form-feed delay type 1.

If OPOST is set, output data is post-processed as described below, so that lines of text are
modified to appear appropriately on the terminal device; otherwise, characters are transmitted
without change.

EX If OLCUC is set, lower- to upper-case mappings are performed on the characters before they are
transmitted. In locales other than the POSIX locale, the mapping is unspecified. (LEGACY)

If ONLCR is set, the NL character is transmitted as the CR-NL character pair. If OCRNL is set,
the CR character is transmitted as the NL character. If ONOCR is set, no CR character is
transmitted when at column 0 (first position). If ONLRET is set, the NL character is assumed to
do the carriage-return function; the column pointer will be set to 0 and the delays specified for
CR will be used. Otherwise the NL character is assumed to do just the line-feed function; the
column pointer will remain unchanged. The column pointer is also set to 0 if the CR character is
actually transmitted.

The delay bits specify how long transmission stops to allow for mechanical or other movement
when certain characters are sent to the terminal. In all cases a value of 0 indicates no delay. If
OFILL is set, fill characters will be transmitted for delay instead of a timed delay. This is useful
for high baud rate terminals which need only a minimal delay. If OFDEL is set, the fill character
is DEL, otherwise NUL.

System Interface Definitions, Issue 5 127

Parameters that Can be Set General Terminal Interface

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

New-line delay lasts about 0.10 seconds. If ONLRET is set, the carriage-return delays are used
instead of the newline delays. If OFILL is set, two fill characters will be transmitted.

Carriage-return delay type 1 is dependent on the current column position, type 2 is about 0.10
seconds, and type 3 is about 0.15 seconds. If OFILL is set, delay type 1 transmits two fill
characters, and type 2, four fill characters.

Horizontal-tab delay type 1 is dependent on the current column position. Type 2 is about 0.10
seconds. Type 3 specifies that tabs are to be expanded into spaces. If OFILL is set, two fill
characters will be transmitted for any delay.

Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill character will be transmitted.

The actual delays depend on line speed and system load.

The initial output control value after open() is implementation-dependent.

9.2.4 Control Modes

The c_cflag field describes the hardware control of the terminal, and is composed of the bitwise
inclusive OR of the masks shown, which will be bitwise distinct. The mask name symbols in
this table are defined in <termios.h>; not all values specified are required to be supported by the
underlying hardware:

Mask Name Description
CLOCAL Ignore modem status lines.
CREAD Enable receiver.
CSIZE Number of bits transmitted or received per byte:

CS5 5 bits
CS6 6 bits
CS7 7 bits
CS8 8 bits.

CSTOPB Send two stop bits, else one.
HUPCL Hang up on last close.
PARENB Parity enable.
PARODD Odd parity, else even.

In addition, the input and output baud rates are stored in the termios structure. The following
values are supported:

Name Description Name Description
B0 Hang up B600 600 baud
B50 50 baud B1200 1200 baud
B75 75 baud B1800 1800 baud
B110 110 baud B2400 2400 baud
B134 134.5 baud B4800 4800 baud
B150 150 baud B9600 9600 baud
B200 200 baud B19200 19200 baud
B300 300 baud B38400 38400 baud

The following interfaces are provided for getting and setting the values of the input and output
baud rates in the termios structure: cfgetispeed(), cfgetospeed(), cfsetispeed() and cfsetospeed().
The effects on the terminal device do not become effective and not all errors are detected until
the tcsetattr() function is successfully called.

128 CAE Specification (1997)

General Terminal Interface Parameters that Can be Set

The CSIZE bits specify the number of transmitted or received bits per byte. If ISTRIP is not set,
the value of all the other bits is unspecified. If ISTRIP is set, the value of all but the 7 low-order
bits is zero, but the value of any other bits beyond CSIZE is unspecified when read. CSIZE does
not include the parity bit, if any. If CSTOPB is set, two stop bits are used, otherwise one stop bit.
For example, at 110 baud, two stop bits are normally used.

If CREAD is set, the receiver is enabled. Otherwise, no characters will be received.

If PARENB is set, parity generation and detection is enabled and a parity bit is added to each
byte. If parity is enabled, PARODD specifies odd parity if set, otherwise even parity is used.

If HUPCL is set, the modem control lines for the port are lowered when the last process with the
port open closes the port or the process terminates. The modem connection is broken.

If CLOCAL is set, a connection does not depend on the state of the modem status lines. If
CLOCAL is clear, the modem status lines are monitored.

Under normal circumstances, a call to the open() function waits for the modem connection to
complete. However, if the O_NONBLOCK flag is set (see open()) or if CLOCAL has been set, the
open() function returns immediately without waiting for the connection.

If the object for which the control modes are set is not an asynchronous serial connection, some
of the modes may be ignored; for example, if an attempt is made to set the baud rate on a
network connection to a terminal on another host, the baud rate may or may not be set on the
connection between that terminal and the machine to which it is directly connected.

The initial hardware control value after open() is implementation-dependent.

9.2.5 Local Modes

The c_lflag field of the argument structure is used to control various functions. It is composed of
the bitwise inclusive OR of the masks shown, which will be bitwise distinct. The mask name
symbols in this table are defined in <termios.h>; not all values specified are required to be
supported by the underlying hardware:

Mask Name Description
ECHO Enable echo.
ECHOE Echo ERASE as an error correcting backspace.
ECHOK Echo KILL.
ECHONL Echo <newline>.
ICANON Canonical input (erase and kill processing).
IEXTEN Enable extended (implementation-dependent) functions.
ISIG Enable signals.
NOFLSH Disable flush after interrupt, quit or suspend.
TOSTOP Send SIGTTOU for background output.

EX XCASE Canonical upper/lower presentation. (LEGACY)

If ECHO is set, input characters are echoed back to the terminal. If ECHO is clear, input
characters are not echoed.

If ECHOE and ICANON are set, the ERASE character causes the terminal to erase, if possible,
the last character in the current line from the display. If there were no character to erase, an
implementation might echo an indication that this was the case, or do nothing.

If ECHOK and ICANON are set, the KILL character causes the terminal to erase the line from
the display or echoes the newline character after the KILL character.

System Interface Definitions, Issue 5 129

Parameters that Can be Set General Terminal Interface

If ECHONL and ICANON are set, the newline character is echoed even if ECHO is not set.

If ICANON is set, canonical processing is enabled. This enables the erase and kill edit functions,
and the assembly of input characters into lines delimited by NL, EOF and EOL, as described in
Section 9.1.6 on page 121.

If ICANON is not set, read requests are satisfied directly from the input queue. A read is not
satisfied until at least MIN bytes have been received or the timeout value TIME expired between
bytes. The time value represents tenths of a second. See Section 9.1.7 on page 121 for more
details.

If IEXTEN is set, implementation-dependent functions are recognised from the input data. It is
implementation-dependent how IEXTEN being set interacts with ICANON, ISIG, IXON or
IXOFF. If IEXTEN is not set, implementation-dependent functions are not recognised and the
corresponding input characters are processed as described for ICANON, ISIG, IXON and IXOFF.

If ISIG is set, each input character is checked against the special control characters INTR, QUIT
and SUSP. If an input character matches one of these control characters, the function associated
with that character is performed. If ISIG is not set, no checking is done. Thus these special input
functions are possible only if ISIG is set.

If NOFLSH is set, the normal flush of the input and output queues associated with the INTR,
QUIT and SUSP characters is not done.

If TOSTOP is set, the signal SIGTTOU is sent to the process group of a process that tries to write
to its controlling terminal if it is not in the foreground process group for that terminal. This
signal, by default, stops the members of the process group. Otherwise, the output generated by
that process is output to the current output stream. Processes that are blocking or ignoring
SIGTTOU signals are excepted and allowed to produce output, and the SIGTTOU signal is not
sent.

EX If XCASE is set, canonical lower and canonical upper presentation are performed. In locales
other than the POSIX locale, the effect is unspecified. (LEGACY)

The initial local control value after open() is implementation-dependent.

130 CAE Specification (1997)

General Terminal Interface Parameters that Can be Set

9.2.6 Special Control Characters

The special control characters values are defined by the array c_cc. The subscript name and
description for each element in both canonical and non-canonical modes are as follows:

Subscript Usage
Canonical Non-canonical

Mode Mode Description
VEOF EOF character
VEOL EOL character
VERASE ERASE character
VINTR VINTR INTR character
VKILL KILL character
 VMIN MIN value
VQUIT VQUIT QUIT character
VSUSP VSUSP SUSP character
 VTIME TIME value
VSTART VSTART START character
VSTOP VSTOP STOP character

The subscript values are unique, except that the VMIN and VTIME subscripts may have the
same values as the VEOF and VEOL subscripts, respectively.

The number of elements in the c_cc array, NCCS, is unspecified.

Implementations that do not support changing the START and STOP characters may ignore the
character values in the c_cc array indexed by the VSTART and VSTOP subscripts when
tcsetattr() is called, but will return the value in use when tcgetattr() is called.

The initial values of all control characters are implementation-dependent.

If the value of one of the changeable special control characters (see Section 9.1.9 on page 123) is
{_POSIX_VDISABLE}, that function is disabled; that is, no input data will be recognised as the
disabled special character. If ICANON is not set, the value of {_POSIX_VDISABLE} has no
special meaning for the VMIN and VTIME entries of the c_cc array.

System Interface Definitions, Issue 5 131

General Terminal Interface

132 CAE Specification (1997)

Chapter 10

Utility Conventions

10.1 Utility Argument Syntax
This section describes the argument syntax of the standard utilities and introduces terminology
used throughout this specification set for describing the arguments processed by the utilities.

Within this specification set, a special notation is used for describing the syntax of a utility’s
arguments. Unless otherwise noted, all utility descriptions use this notation, which is illustrated
by this example (see the XCU specification, Section 2.9.1, Simple Commands):

utility_name [-a][-b][-c option_argument][-d|-e][-f option_argument][operand ...]

The notation used for the SYNOPSIS sections imposes requirements on the implementors of the
standard utilities and provides a simple reference for the application developer or system user.

1. The utility in the example is named utility_name . It is followed by options , option-arguments
and operands . The arguments that consist of hyphens and single letters or digits, such as
−a, are known as options (or, historically, flags). Certain options are followed by an option-
argument, as shown with [−c option_argument]. The arguments following the last options
and option-arguments are named operands .

2. Option-arguments are sometimes shown separated from their options by blank characters,
sometimes directly adjacent. This reflects the situation that in some cases an option-
argument is included within the same argument string as the option; in most cases it is the
next argument. The Utility Syntax Guidelines in Section 10.2 on page 136 require that the
option be a separate argument from its option-argument, but there are some exceptions in
this specification set to ensure continued operation of historical applications:

a. If the SYNOPSIS of a standard utility shows a space character between an option
and option-argument (as with [−c option_argument] in the example), a portable
application must use separate arguments for that option and its option-argument.

b. If a space character is not shown (as with [−foption_argument] in the example), a
portable application must place an option and its option-argument directly adjacent
in the same argument string, without intervening blank characters.

c. Notwithstanding the preceding requirements on portable applications, X/Open
systems permit, but do not require, an application to specify options and option-
arguments as separate arguments whether or not a space character is shown on the
synopsis line, except in those cases (marked with the EX portability warning) where
an option-argument is optional and no separation can be used.

d. A standard utility may also be implemented to operate correctly when the required
separation into multiple arguments is violated by a non-portable application.

System Interface Definitions, Issue 5 133

Utility Argument Syntax Utility Conventions

In summary, the following table shows allowable combinations:

SYNOPSIS Shows:
−a arg −barg −c [arg]

Portable application must use: −a arg −barg n/a
System will support: −a arg −barg −carg

or −c

System may support: −aarg −b arg

3. Options are usually listed in alphabetical order unless this would make the utility
description more confusing. There are no implied relationships between the options based
upon the order in which they appear, unless otherwise stated in the OPTIONS section, or
unless the exception in Section 10.2 on page 136 guideline 11 applies. If an option that
does not have option-arguments is repeated, the results are undefined, unless otherwise
stated.

4. Frequently, names of parameters that require substitution by actual values are shown with
embedded underscores. Alternatively, parameters are shown as follows:

<parameter name >

The angle brackets are used for the symbolic grouping of a phrase representing a single
parameter and must never be included in data submitted to the utility.

5. When a utility has only a few permissible options, they are sometimes shown individually,
as in the example. Utilities with many flags generally show all of the individual flags (that
do not take option-arguments) grouped, as in:

utility_name [-abcDxyz][-p arg][operand]

Utilities with very complex arguments may be shown as follows:

utility_name [options][operands]

6. Unless otherwise specified, whenever an operand or option-argument is, or contains, a
numeric value:

• The number is interpreted as a decimal integer.

• Numerals in the range 0 to 2 147 483 647 are syntactically recognised as numeric values.

• When the utility description states that it accepts negative numbers as operands or
option-arguments, numerals in the range −2 147 483 647 to 2 147 483 647 are
syntactically recognised as numeric values.

• Ranges greater than those listed here are allowed.

This does not mean that all numbers within the allowable range are necessarily
semantically correct. A standard utility that accepts an option-argument or operand that is
to be interpreted as a number, and for which a range of values smaller than that shown
above is permitted by the XCU specification, describes that smaller range along with the
description of the option-argument or operand. If an error is generated, the utility’s
diagnostic message will indicate that the value is out of the supported range, not that it is
syntactically incorrect.

For example, the specification of dd obs=3000000000 would yield undefined behaviour for
the application and could be a syntax error because the number 3 000 000 000 is outside of
the range −2 147 483 647 to +2 147 483 647. On the other hand, dd obs=2000000000 may

134 CAE Specification (1997)

Utility Conventions Utility Argument Syntax

cause some error, such as ‘‘blocksize too large’’, rather than a syntax error.

7. Arguments or option-arguments enclosed in the [and] notation are optional and can be
omitted. The [and] symbols must never be included in data submitted to the utility.

8. Arguments separated by the | vertical bar notation are mutually exclusive. The | symbols
must never be included in data submitted to the utility. Alternatively, mutually exclusive
options and operands may be listed with multiple synopsis lines. For example:

utility_name -d [-a][-c option_argument][operand . . .]

utility_name [-a][-b][operand . . .]

When multiple synopsis lines are given for a utility, it is an indication that the utility has
mutually exclusive arguments. These mutually exclusive arguments alter the functionality
of the utility so that only certain other arguments are valid in combination with one of the
mutually exclusive arguments. Only one of the mutually exclusive arguments is allowed
for invocation of the utility. Unless otherwise stated in an accompanying OPTIONS
section, the relationships between arguments depicted in the SYNOPSIS sections are
mandatory requirements placed on portable applications. The use of conflicting mutually
exclusive arguments produces undefined results, unless a utility description specifies
otherwise. When an option is shown without the [] brackets, it means that option is
required for that version of the SYNOPSIS. However, it is not required to be the first
argument, as shown in the example above, unless otherwise stated.

The use of undefined for conflicting argument usage and for repeated usage of the same
option is meant to prevent portable applications from using conflicting arguments or
repeated options, unless specifically allowed, as is the case with ls (which allows
simultaneous, repeated use of the −C, −l and −1 options). Many historical implementations
will tolerate this usage, choosing either the first or the last applicable argument, and this
tolerance may continue, but portable applications cannot rely upon it. (Other
implementations may choose to print usage messages instead.)

The use of undefined for conflicting argument usage also allows an implementation to make
reasonable extensions to utilities where the implementor considers mutually exclusive
options according to the XCU specification to have a sensible meaning and result.

9. Ellipses (. . .) are used to denote that one or more occurrences of an option or operand are
allowed. When an option or an operand followed by ellipses is enclosed in brackets, zero
or more options or operands can be specified. The forms:

utility_name -f option_argument . . . [operand . . .]

utility_name [-g option_argument] . . . [operand . . .]

indicate that multiple occurrences of the option and its option-argument preceding the
ellipses are valid, with semantics as indicated in the OPTIONS section of the utility. (See
also Guideline 11 in Section 10.2 on page 136.) In the first example, each option-argument
requires a preceding −f and at least one −f option_argument must be given.

The XCU specification does not define the result of a utility when an option-argument or
operand is not followed by ellipses and the application specifies more than one of that
option-argument or operand. This allows an implementation to define valid (although
non-standard) behaviour for the utility when more than one such option or operand are
specified.

10. When the synopsis line is too long to be printed on a single line in the XCU specification,
the indented lines following the initial line are continuation lines. An actual use of the
command would appear on a single logical line.

System Interface Definitions, Issue 5 135

Utility Argument Syntax Utility Conventions

10.2 Utility Syntax Guidelines
The following guidelines are established for the naming of utilities and for the specification of
options, option-arguments and operands. The getopt() function in the XSH specification assists
utilities in handling options and operands that conform to these guidelines.

Operands and option-arguments can contain characters not specified in the portable character
set.

The guidelines are intended to provide guidance to the authors of future utilities, such as those
written specific to a local system or that are to be components of a larger application. Some of
the standard utilities do not conform to all of these guidelines; in those cases, the OPTIONS
sections describe the deviations.

Guideline 1: Utility names should be between two and nine characters, inclusive.

Guideline 2: Utility names should include lower-case letters (the lower character
classification) and digits only from the portable character set.

Guidelines 1 and 2 are offered as guidance for locales using Latin alphabets.
No recommendations are made by this specification set concerning utility
naming in other locales.

In the XCU specification, Section 2.9.1, Simple Commands, it is further stated
that a command used in the XSI Shell Command Language cannot be named
with a trailing colon.

Guideline 3: Each option name should be a single alphanumeric character (the alnum
character classification) from the portable character set.

Multi-digit options are not allowed. Instances of historical utilities that used
them have been marked LEGACY in the XCU specification, with the numbers
being changed from option names to option-arguments.

Guideline 4: All options should be preceded by the "−" delimiter character.

Guideline 5: Options without option-arguments should be accepted when grouped behind
one "−" delimiter.

Guideline 6: Each option and option-argument should be a separate argument, except as
noted in Section 10.1 on page 133, item (2).

Guideline 7: Option-arguments should not be optional.

Guideline 8: When multiple option-arguments are specified to follow a single option, they
should be presented as a single argument, using commas within that
argument or blank characters within that argument to separate them.

It is up to the utility to parse a comma-separated list itself because getopt()
just returns a single string. This situation was retained so that certain
historical utilities would not violate the guidelines. Applications preparing
for international use should be aware of an occasional problem with comma-
separated lists: in some locales, the comma is used as the radix character.
Thus, if an application is preparing operands for a utility that expects a
comma-separated list, it should avoid generating non-integer values through
one of the means that is influenced by setting the LC_NUMERIC variable
(such as awk, bc, printf or printf()).

Guideline 9: All options should precede operands on the command line.

136 CAE Specification (1997)

Utility Conventions Utility Syntax Guidelines

Guideline 10: The argument − − should be accepted as a delimiter indicating the end of
options. Any following arguments should be treated as operands, even if they
begin with the "−" character. The − − argument should not be used as an
option or as an operand.

Applications calling any utility with a first operand starting with − should
usually specify −−, as indicated by Guideline 10, to mark the end of the
options. This is true even if the SYNOPSIS in the XCU specification does not
specify any options; implementations may provide options as extensions to
the XCU specification. The standard utilities that do not support Guideline 10
indicate that fact in the OPTIONS section of the utility description.

Guideline 11: The order of different options relative to one another should not matter, unless
the options are documented as mutually exclusive and such an option is
documented to override any incompatible options preceding it. If an option
that has option-arguments is repeated, the option and option-argument
combinations should be interpreted in the order specified on the command
line.

The order of repeated options that also have option-arguments may be
significant; therefore, such options are required to be interpreted in the order
that they are specified. The make utility is an instance of a historical utility that
uses repeated options in which the order is significant. Multiple files are
specified by giving multiple instances of the −f option, for example:

make -f common_header -f specific_rules target

Guideline 12: The order of operands may matter and position-related interpretations should
be determined on a utility-specific basis.

Guideline 13: For utilities that use operands to represent files to be opened for either reading
or writing, the "−" operand should be used only to mean standard input (or
standard output when it is clear from context that an output file is being
specified).

Guideline 13 does not imply that all of the standard utilities automatically
accept the operand "−" to mean standard input or output, nor does it specify
the actions of the utility upon encountering multiple "−" operands. It simply
says that, by default, "−" operands are not used for other purposes in the file
reading or writing (but not when using stat(), unlink(), touch, and so forth)
utilities. All information concerning actual treatment of the "−" operand is
found in the individual utility sections.

The utilities in the XCU specification that claim conformance to these guidelines were written as
if the term should imposed a specific requirement on their interface and applications and users
can rely on the behaviour stated here; the Guidelines are rules for the standard utilities that
claim conformance to them. On some systems, the utilities will accept usage in violation of
these guidelines for backward compatibility as well as accepting the required form.

It is recommended that all future utilities and applications use these guidelines to enhance user
portability. The fact that some historical utilities could not be changed (to avoid breaking
existing applications) should not deter this future goal.

System Interface Definitions, Issue 5 137

Utility Conventions

138 CAE Specification (1997)

Index

(clock) drift rate...12
(time) resolution ...27
/dev ...117
/dev/console ...117
/dev/null..117
/dev/tty ...117
/tmp ..117
/ ..117
[n, m] and [n, m) ...36
±0..36
absolute pathname ...5
access mode ...5
additional file access control mechanism..............5
address space...5
affirmative response...5
alert ..5
alert character ..5
alias name...5
alternate file access control mechanism.................5
alternate signal stack..5
angle brackets ..5
appropriate privileges ...6
argument ..6
arm (a timer) ..6
assignment ...6
asterisk ..6
async-cancel safe function ..6
async-signal safe function...6
asynchronous I/O completion6
asynchronous I/O operation....................................6
asynchronously generated signal............................6
awk..26, 30, 39, 136
background job..6
background process ...6
background process group.......................................6
backquote ...7
backslash ..7
backspace character ...7
base character ..7
basename..7
basic regular expression....................................7, 104
bc..30, 136
blank character ..7
blank line ..7
block special file..7
block-mode terminal..7

blocked process (or thread)7
braces...7
brackets ...7
BRE (ERE) matching a single character102
BRE (ERE) matching multiple characters..........102
break value...8
built-in utility...8
byte ..8
can..1
canonical mode input processing121
carriage-return character...8
character ...8
character array...8
character class..8
character encoding ...44
character set ...8
character special file...8
character string..9
charmap

description ...45
child process ..9
circumflex...9
clock...9
clock tick ...9
coded character set ...9
codeset ..9
collating element...9
collation ..9
collation sequence ..9
column position ..10
COLUMNS...98
command..10
command language interpreter10
composite graphic symbol......................................10
condition variable...10
control character ...10
control operator ..10
controlling process ...10
controlling terminal ...11, 119
conversion descriptor ..11
core file..11
current working directory11
cursor position ..11
data segment..11
date ..73, 77-78
DATEMSK..98

System Interface Definitions, Issue 5 139

Index

dd...134
device ..11

output ...118
device ID...11
direct I/O ...11
directory ...11
directory entry...11
directory stream..11
disarm (a timer)...11
display...11
dollar sign...12
dot ..12
dot-dot ..12
double-quote..12
downshifting ...12
driver...12
ed..30
effective group ID...12
effective user ID ..12
eight-bit transparency..12
empty directory...12
empty line...12
empty string...13
empty wide-character string13
encoding

character ...44
entire regular expression101
environment variables

internationalisation..95
epoch ...13
equivalence class ..13
era...13
EX...2
executable file..13
execute ..13
expand...13
extended regular expression..........................13, 109
extended security controls......................................13
extended signed integral type................................13
extended unsigned integral type...........................13
extension

EX...2
JC..3
OH ...4

feature test macro ...13
field..14
FIFO special file...14
file...14
file access permissions...14
file description...15
file descriptor...15

file group class...15
file hierarchy..15
file mode ...15
file mode bits ...15
file offset ...15
file other class ..15
file owner class ..15
file permission bits ...16
file serial number ..16
file system...16
file times update ...16
file type ...16
filename ..15
filter..16
FIPS..3
first open (of a file) ...16
foreground job...16
foreground process ..16
foreground process group16
foreground process group ID.................................16
form-feed character ..16
grammar

locale ...82
regular expression..112

graphic character ..17
grep..103
group database..17
group ID ...17
group name..17
hard limit ..17
hard link..17
HOME...98
home directory..17
implementation-dependent......................................1
incomplete line..17
Inf ...17
interactive shell ...17
internationalisation ..17
invalid ...102
invoke..17
ISO6937: 1983...18
ISO8859-1: 1987 ...18
ISO/IEC646: 1983..17
JC..3
job...18
job control...18
job control job ID ..18
LANG..95
last close (of a file) ..18
LC_ALL ..95
LC_COLLATE ...95

140 CAE Specification (1997)

Index

description ...61
LC_CTYPE ...95

description ...52
LC_MESSAGES...95

description ...80
LC_MONETARY ..95

description ...68
LC_NUMERIC ..95

description ...72
LC_TIME ..96

description ...73
legacy...1
lex...26, 30
line ...18
LINES ..98
link ...18
link count..18
local customs ...18
locale..18

grammar...82
POSIX..50

locale definition...50
localedef..30, 45-46, 49-51, 53

.................................57, 66, 68, 70-73, 78, 81, 89, 97
localisation ...18
login...19
login name..19
LOGNAME..98
ls. ..135
make..20, 30, 137
map..19
marked message ...19
matched ..101
may ..1
memory object...19
message...19
message catalogue..19
message catalogue descriptor................................19
message queue ..19
mode..19
mount point ...19
MSGVERB..98
multi-character collating element19
must ...1
mutex ..19
name..20
named STREAM ...20
NaN (not a number)...20
native language...20
negative response ...20
newgrp..17, 34

newline character..20
nice...33
NLSPATH...96
non-canonical mode input processing...............121
non-spacing characters..20
NUL...20
null byte..20
null pointer...20
null string ...20
null wide-character code...21
number sign...21
OB...3
object file...21
OF...3
offset maximum ..21
OH..4
OP...4
open file ..21
open file description...21
operand...21
operator ..21
option ..21
option-argument...21
orphaned process group ...21
output devices...118
page ...21
page size ...21
parameter ...22
parent directory ..22
parent process ...22
parent process ID..22
PATH...99
path prefix ..23
pathname..22
pathname component..22
pathname resolution..22
pattern...23
period ..23
permissions..23
persistence..23
PI ..4
pipe ..23
portable character set ..24, 43
portable filename character set..............................24
positional parameter..23
POSIX locale ..50
preallocation ..24
preempted process (or thread)24
printable character..24
printable file...24
printf..136

System Interface Definitions, Issue 5 141

Index

priority ..24
priority band..24
priority-based scheduling.......................................25
privilege..25
process ..25
process group ..25
process group ID...25
process group leader..25
process group lifetime ...25
process groups

termios ..119
process ID...25
process lifetime ...25
process list..26
process virtual time..26
program ..26
pseudo-terminal..26
radix character...26
read-only file system..26
read-write lock ..26
real group ID..26
real time ..26
real user ID...26
redirection ..26
redirection operator ...27
reentrant function...27
referenced shared memory object27
refresh ...27
region ..27
regular expression ..27

basic...104
extended...109
grammar...112

regular file ..27
relative pathname...27
renice ...33
requirements

FIPS..3
root directory...27
runnable process (or thread)27
running process (or thread)....................................27
saved resource limits ...27
saved set-group-ID...27
saved set-user-ID..27
scheduling..27
scheduling allocation domain................................28
scheduling contention scope..................................28
scheduling policy..28
screen...28
scroll ..28
seconds since the epoch ..28

sed..26, 30
semaphore..29
semaphore lock operation29
semaphore unlock operation29
session ...29
session leader...29
session lifetime..29
sh..10, 29
shared memory object ...29
shell..29
SHELL...99
shell script ..29
shell, the..29
should..1
signal ...29
signal stack...29
single-quote ...29
slash...30
socket...30
soft limit..30
sort ...61
source code ..30
space character ..30
special parameter..30
standard error..30
standard input...30
standard output ..30
standard utilities ...30
STREAM...30
stream..30
STREAM end ...31
STREAM head...31
STREAMS multiplexor ..31
string..31
stty ...98
subshell ...31
successfully transferred...31
supplementary group ID ..31
suspended job..31
symbolic link ...31
synchronised I/O completion................................31
synchronised I/O data integrity completion......31
synchronised I/O file integrity completion32
synchronised I/O operation...................................32
synchronous I/O operation....................................32
synchronously generated signal............................32
system ...32
system console ..32
system crash ..32
system documentation ..32
system process ..32

142 CAE Specification (1997)

Index

system reboot ..33
system scheduling priority.....................................32
tab character ..33
tabs...12
talk ...12
TERM ..99
terminal...33

controlling..119
terminal types..118
termios ..119

canonical mode input processing121
control modes..128
controlling terminal ...119
input modes...125
local modes..129
non-canonical mode input processing...........121
output modes ..126
process groups ..119
special control characters131

text column ..33
text file...33
thread ..33
thread ID...34
thread list..34
thread-safe..34
thread-specific data key ..34
tilde..34
timer ..34
timer overrun...34
TMPDIR..99
token..34
touch..137
tput ..12
tr. ..55
TZ...99
UN..4
undefined..2
uniq..61
unspecified...2
upshifting ...34
user database ...34
user ID...35
user name ...35
utility ...35
Utility Syntax Guidelines......................................136
variable ...35
variable assignment ...35
vertical-tab character ...35
vi ..11-12
warning

OB ..3

OF...3
OP ..4
PI ..4
UN ...4

white space ..36
wide characters ...45
wide-character code (C language)36
wide-character string...36
will ...2
word ..36
working directory...36
world-wide portability interface36
write...36
XSI-conformant ...36
yacc ..30
zombie process..36

System Interface Definitions, Issue 5 143

Index

144 CAE Specification (1997)

