
X/Open CAE Specification

Window Management (X11R5):

X Toolkit Intrinsics

X/Open Company Ltd.

 May 1995, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

Window Management (X11R5): X Toolkit Intrinsics

ISBN: ISBN 1-85912-089-X
X/Open Document Number: C509

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.org

This specification is derived from documents which are Copyright 1985, 1986, 1987, 1988,
1989, 1990, 1991 by Massachusetts Institute of Technology, Cambridge, Massachusetts, and
Digital Equipment Corporation, Maynard, Massachusetts, and Copyright 1990, 1991 by
Tektronix, Inc. Permission for X/Open to use, copy, modify and distribute this documentation
for any purpose and without fee has been granted by these copyright owners.

ii X/Open CAE Specification

Contents

Chapter 1 Overview of the X Window System ... 1
 1.1 Introduction ... 1
 1.2 X Window System Overview... 2
 1.2.1 X Platform Abstraction Layers.. 2
 1.2.2 User Interface Platform... 3
 1.2.3 A Single X Application ... 4
 1.2.4 X Application Relationships.. 5

Chapter 2 Introduction... 7
 2.1 Status ... 7
 2.2 About this Specification .. 7
 2.3 Conventions Used in this Document.. 7

Chapter 3 Intrinsics and Widgets.. 9
 3.1 Intrinsics ... 10
 3.2 Languages... 11
 3.3 Procedures and Macros ... 11
 3.4 Widgets ... 12
 3.4.1 Core Widgets .. 12
 3.4.2 Composite Widgets ... 16
 3.4.3 Constraint Widgets.. 18
 3.5 Implementation-specific Types.. 21
 3.6 Widget Classing .. 22
 3.6.1 Widget Naming Conventions ... 22
 3.6.2 Widget Subclassing in Public .h Files .. 23
 3.6.3 Widget Subclassing in Private .h Files... 24
 3.6.4 Widget Subclassing in .c Files ... 26
 3.6.5 Widget Class and Superclass Look Up ... 29
 3.6.6 Widget Subclass Verification... 29
 3.6.7 Superclass Chaining.. 30
 3.6.8 Class Initialisation: class_initialize and

 class_part_initialize Procedures ... 32
 3.6.9 Initialising a Widget Class ... 33
 3.6.10 Inheritance of Superclass Operations.. 33
 3.6.11 Invocation of Superclass Operations... 35
 3.6.12 Class Extension Records... 35

Chapter 4 Widget Instantiation .. 37
 4.1 Initialising the X Toolkit .. 38
 4.2 Establishing the Locale .. 41
 4.3 Loading the Resource Database... 43
 4.4 Parsing the Command Line .. 46

Window Management (X11R5): X Toolkit Intrinsics iii

Contents

 4.5 Creating Widgets .. 49
 4.5.1 Creating and Merging Argument Lists ... 49
 4.5.2 Creating a Widget Instance ... 52
 4.5.3 Creating an Application Shell Instance... 53
 4.5.4 Convenience Procedure to Initialise an Application........................ 55
 4.5.5 Widget Instance Initialisation: initialize Procedure 56
 4.5.6 Constraint Instance Initialisation: ConstraintClassPart

 initialize Procedure.. 58
 4.5.7 Non-widget Data Initialisation: initialize_hook Procedure............ 58
 4.6 Realising Widgets ... 59
 4.6.1 Widget Instance Window Creation: realize Procedure 60
 4.6.2 Window Creation Convenience Routine.. 61
 4.7 Obtaining Window Information from a Widget.................................. 62
 4.7.1 Unrealising Widgets.. 63
 4.8 Destroying Widgets.. 64
 4.8.1 Adding and Removing Destroy Callbacks... 65
 4.8.2 Dynamic Data Deallocation: destroy Procedure............................... 65
 4.8.3 Dynamic Constraint Data Deallocation:

 ConstraintClassPart destroy Procedure.. 66
 4.9 Exiting from an Application... 67

Chapter 5 Composite Widgets and Their Children.................................. 69
 5.1 Adding Children to a Composite Widget: insert_child Procedure.. 70
 5.2 Insertion Order of Children: insert_position Procedure..................... 71
 5.3 Deletion of Children: delete_child Procedure....................................... 72
 5.4 Adding and Removing Children from the Managed Set 73
 5.4.1 Managing Children.. 73
 5.4.2 Unmanaging Children .. 75
 5.4.3 Determining if a Widget is Managed... 75
 5.5 Controlling When Widgets Get Mapped... 76
 5.6 Constrained Composite Widgets .. 77

Chapter 6 Shell Widgets ... 79
 6.1 Shell Widget Definitions.. 80
 6.1.1 ShellClassPart Definitions.. 80
 6.1.2 ShellPart Definition ... 83
 6.1.3 Shell Resources... 86
 6.1.4 ShellPart Default Values... 87

Chapter 7 Pop-up Widgets ... 91
 7.1 Pop-up Widget Types .. 92
 7.2 Creating a Pop-up Shell... 93
 7.3 Creating Pop-up Children... 95
 7.4 Mapping a Pop-up Widget ... 96
 7.5 Unmapping a Pop-up Widget.. 99

iv X/Open CAE Specification

Contents

Chapter 8 Geometry Management.. 101
 8.1 Initiating Geometry Changes ... 102
 8.2 General Geometry Manager Requests.. 103
 8.3 Resize Requests ... 105
 8.4 Potential Geometry Changes.. 106
 8.5 Child Geometry Management: geometry_manager Procedure........ 107
 8.6 Widget Placement and Sizing .. 109
 8.7 Preferred Geometry.. 111
 8.8 Size Change Management: resize Procedure.. 113

Chapter 9 Event Management ... 115
 9.1 Adding and Deleting Additional Event Sources.................................. 116
 9.1.1 Adding and Removing Input Sources... 116
 9.1.2 Adding and Removing Timeouts ... 117
 9.2 Constraining Events to a Cascade of Widgets...................................... 118
 9.2.1 Requesting Key and Button Grabs ... 119
 9.3 Focusing Events on a Child .. 123
 9.4 Querying Event Sources .. 125
 9.5 Dispatching Events... 126
 9.6 The Application Input Loop... 128
 9.7 Setting and Checking the Sensitivity State of a Widget 129
 9.8 Adding Background Work Procedures .. 130
 9.9 X Event Filters.. 131
 9.9.1 Pointer Motion Compression .. 131
 9.9.2 Enter/Leave Compression... 131
 9.9.3 Exposure Compression... 131
 9.10 Widget Exposure and Visibility... 133
 9.10.1 Redisplay of a Widget: expose Procedure .. 133
 9.10.2 Widget Visibility .. 134
 9.11 X Event Handlers.. 135
 9.11.1 Event Handlers that Select Events ... 135
 9.11.2 Event Handlers that Do Not Select Events... 137
 9.11.3 Current Event Mask .. 139

Chapter 10 Callbacks... 141
 10.1 Using Callback Procedure and Callback List Definitions 142
 10.2 Identifying Callback Lists ... 143
 10.3 Adding Callback Procedures.. 144
 10.4 Removing Callback Procedures... 145
 10.5 Executing Callback Procedures ... 146
 10.6 Checking the Status of a Callback List ... 147

Chapter 11 Resource Management.. 149
 11.1 Resource Lists .. 150
 11.2 Byte Offset Calculations .. 155
 11.3 Superclass-to-Subclass Chaining of Resource Lists 156
 11.4 Subresources.. 157
 11.5 Obtaining Application Resources ... 159

Window Management (X11R5): X Toolkit Intrinsics v

Contents

 11.6 Resource Conversions ... 161
 11.6.1 Predefined Resource Converters .. 161
 11.6.2 New Resource Converters ... 163
 11.6.3 Issuing Conversion Warnings... 167
 11.6.4 Registering a New Resource Converter.. 167
 11.6.5 Resource Converter Invocation .. 171
 11.7 Reading and Writing Widget State ... 174
 11.7.1 Obtaining Widget State .. 174
 11.7.2 Setting Widget State .. 176

Chapter 12 Translation Management .. 183
 12.1 Action Tables ... 184
 12.1.1 Action Table Registration... 185
 12.1.2 Action Names to Procedure Translations... 185
 12.1.3 Action Hook Registration .. 186
 12.2 Translation Tables ... 188
 12.2.1 Event Sequences... 188
 12.2.2 Action Sequences ... 189
 12.2.3 Multi-click Time... 189
 12.3 Translation Table Management.. 190
 12.4 Using Accelerators.. 192
 12.5 KeyCode-to-KeySym Conversions ... 194
 12.6 Obtaining a KeySym in an Action Procedure....................................... 197
 12.7 KeySym-to-KeyCode Conversions ... 198
 12.8 Registering Button and Key Grabs For Actions 199
 12.9 Invoking Actions Directly... 200
 12.10 Obtaining a Widget Action List ... 201

Chapter 13 Utility Functions... 203
 13.1 Determining the Number of Elements in an Array............................. 203
 13.2 Translating Strings to Widget Instances .. 204
 13.3 Managing Memory Usage... 205
 13.4 Sharing Graphics Contexts ... 207
 13.5 Managing Selections .. 209
 13.5.1 Setting and Getting the Selection Timeout Value 209
 13.5.2 Using Atomic Transfers.. 209
 13.5.3 Using Incremental Transfers.. 215
 13.5.4 Retrieving the Most Recent Timestamp.. 220
 13.6 Merging Exposure Events into a Region.. 221
 13.7 Translating Widget Coordinates.. 222
 13.8 Translating a Window to a Widget ... 223
 13.9 Handling Errors... 224
 13.10 Setting WM_COLORMAP_WINDOWS.. 229
 13.11 Finding File Names .. 230

vi X/Open CAE Specification

Contents

Chapter 14 Non-widget Objects ... 233
 14.1 Data Structures.. 233
 14.2 Object Objects .. 234
 14.2.1 ObjectClassPart Structure .. 234
 14.2.2 ObjectPart Structure .. 235
 14.2.3 Object Resources .. 235
 14.2.4 ObjectPart Default Values .. 236
 14.2.5 Object Arguments To Intrinsics Routines... 236
 14.2.6 Use of Objects ... 237
 14.3 Rectangle Objects.. 238
 14.3.1 RectObjClassPart Structure ... 238
 14.3.2 RectObjPart Structure ... 239
 14.3.3 RectObj Resources ... 239
 14.3.4 RectObjPart Default Values ... 240
 14.3.5 Widget Arguments To Intrinsics Routines ... 240
 14.3.6 Use of Rectangle Objects .. 240
 14.4 Undeclared Class .. 242
 14.5 Widget Arguments to Intrinsics Routines... 243

Chapter 15 Evolution of the Intrinsics.. 245
 15.1 Determining Specification Revision Level .. 245
 15.2 Release 3 to Release 4 Compatibility .. 246
 15.2.1 Additional Arguments.. 246
 15.2.2 set_values_almost Procedures .. 246
 15.2.3 Query Geometry .. 246
 15.2.4 unrealizeCallback Callback List ... 246
 15.2.5 Subclasses of WMShell ... 247
 15.2.6 Resource Type Converters ... 247
 15.2.7 KeySym Case Conversion Procedure.. 247
 15.2.8 Non-widget Objects .. 247
 15.3 Release 4 to Release 5 Compatibility .. 248
 15.3.1 baseTranslations Resource ... 248
 15.3.2 Resource File Search Path .. 248
 15.3.3 Customisation Resource... 248
 15.3.4 Per-screen Resource Database... 249
 15.3.5 Internationalisation of Applications.. 249
 15.3.6 Permanently Allocated Strings ... 249
 15.3.7 Arguments to Existing Functions... 250

Appendix A Resource File Format.. 251

Appendix B Translation Table Syntax... 253

Appendix C Compatibility Functions.. 261

Window Management (X11R5): X Toolkit Intrinsics vii

Contents

Appendix D Intrinsics Error Messages.. 271

Appendix E Defined Strings.. 275

 Index... 281

List of Figures

1-1 X Window System Overview.. 2
1-2 X Platform Abstraction Layers.. 3
1-3 User Interface Platform... 4
1-4 A Single X Application ... 5
1-5 X Application Relationships.. 6

viii X/Open CAE Specification

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

Window Management (X11R5): X Toolkit Intrinsics ix
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

x X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:

request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.

This Document

This document is a CAE specification (see above).

This X/Open interface definition is based on information contained in the following document:

X Toolkit Intrinsics - C Language Interface
X Window System
MIT X Consortium, X Version 11, Release 5
by Joel McCormack, Paul Asente and Ralph Swick

Structure

The source document for this publication, the Xlib - C Language X Interface specification from
MIT, has undergone revision since X11R4, and this is reflected in the new or rearranged chapters
of this publication.

• Chapter 1 gives an overview of the X Window System, and is common to all 4 of the X/Open
Window Management (X11R5) specifications.

• Chapters 2 to 15 of this specification are the same as the MIT X Toolkit standard.

• Appendices A to E are the same as these appendices in the MIT X Toolkit standard.

X/Open Window Management Document Set

This specification is one of four specifications in the X/Open Window Management (X11R5)
document set. The full set comprises:

• X Window System Protocol

• Xlib - C Language Binding

• X Toolkit Intrinsics

• File Formats and Application Conventions.

These X11R5 specifications are available as a 4-volume set (Document Number T410).

Window Management (X11R5): X Toolkit Intrinsics xi
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Preface

The following table shows the structure and organisation of material in this document set in
terms of the MIT documentation of the X Window System, on which the X/Open document set
is based.

In each document, Chapter 1 is an X/Open overview of the X Window System, which is not in
the MIT documentation.

X/Open Document Subject MIT Document
Description and definition of
the X Protocol

X Window System Protocol X Window System Protocol

Xlib - C Language Binding
Chapters 2-17 and Appendices
A-D

Description of Xlib functions
and their use

Xlib - C Language X Interface

X/Open additional
requirements

Chapter 18 None

Description of X Toolkit
functions and their use

X Toolkit Intrinsics X Toolkit Intrinsics

File Formats and Application
Conventions

Various formats and
conventions for application
cooperation and
communication

Inter-Client Communication
Conventions Manual (ICCCM),
Version 1.1

X Logical Font Description
(XLFD), Version 1.4

Compound Text, Version 1.1

Bitmap Distribution Format
(BDF) 2.1

The X Window Management (X11 Release 5) System is required by the X/Open Common
Desktop Environment (XCDE), which defines a common graphical user interface environment.
The other specifications in the XCDE family are:

• X/Open Common Desktop Environment (XCDE) 2-volume set comprising:

— Definitions and Infrastructure

— Services and Applications

• Motif Toolkit API (electronic publication)

• Calendaring and Scheduling API (XCS).

xii X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Trade Marks

UNIX is a registered trade mark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Limited.

X Window SystemTM is a trade mark of the Massachusetts Institute of Technology.

Window Management (X11R5): X Toolkit Intrinsics xiii
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Acknowledgements

X/Open would like to acknowledge the use of parts of the document X Toolkit Intrinsics - C
Language Interface, MIT X Consortium X Version 11, Release 5.

xiv X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Referenced Documents

The following documents are referenced in this specification:

X11R5 X Protocol
X/Open CAE Specification, May 1995, Window Management (X11R5): X Window System
Protocol (ISBN: 1-85912-087-3, C507).

X11R5 Xlib
X/Open CAE Specification, May 1995, Window Management (X11R5): X Lib - C Language
Binding (ISBN: 1-85912-088-1, C508).

X11R5 File Formats
X/Open CAE Specification, May 1995, Window Management (X11R5): File Formats and
Applications Conventions (ISBN: 1-85912-090-3, C510).

This comprises:

— Inter-Client Communications Conventions Manual (ICCCM)

— X Logical Font Description (XLFD)

— Compound Text

— Bitmap Distribution Format (BDF).

ISO 8859-1
ISO 8859-1: 1987, Information Processing — 8-bit Single-byte Coded Graphic Character Sets
— Part 1: Latin Alphabet No. 1.

Window Management (X11R5): X Toolkit Intrinsics xv
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Referenced Documents

xvi X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Chapter 1

Overview of the X Window System

1.1 Introduction
The X Window System is a network-transparent windowing system developed under the
auspices of Project Athena at the Massachusetts Institute of Technology. The X Window System
is implemented as a client-server model.‘ The window system functionality is provided by a
display server, which is resident on a machine which has one or more monochrome or color
raster displays attached. Client applications which require window system services attach to a
server, and subsequently communicate with it, via an Inter-Process Communications
connection. This uses a standard and extensible asynchronous protocol to communicate
window system protocol requests to the server.

A client may, but not necessarily, run on the same machine as the X Server it is connected to.
Applications may reside on hosts remotely connected to the system which hosts the display
server by some kind of local or wide-area networking technology. This is dependent upon the
level of functionality provided by the particular networking environment in which particular
server and client implementations operate.

An X Window System server supports one or more physical, monochrome or color, raster
streens, which display a logical hierarchy of (possibly) overlapping rectangular areas known as
‘‘windows’’. Also associated with the server is a number of input devices. Normally these
include a keyboard and some form of pointing device, such as a mouse or digitising tablet.

At the top, or root, of the logical window hierarchy, is the ‘‘root window’’ which completely
covers the physical screen with which the hierarchy is associated. In the normal course of
operation, each ‘‘root window’’ will be partially, or completely, covered by ‘‘child windows’’
created by clients. Due to the organisation of the window hierarchy, an application program
may create a tree of arbitrary depth on each screen. The X Window System Protocol provides
applications with the functionality to create and manipulate windows and their associated
attributes. The X Window System also provides the ability to associate arbitrary data with a
window, access fonts and colors, perform general graphical output, and obtain input from the
available devices, using a canonical, programmatic interface, which embodies a high degree of
device independence.

A client that converses with the server using the X Window System protocol may operate
‘‘correctly’’ in isolation, but might not coexist properly with other clients sharing the same
server. The ICCCM specification is a set of conventions to allow clients to cooperate in the areas
of selections, cut buffers, window management, session management and resources.

Window Management (X11R5): X Toolkit Intrinsics 1
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

X Window System Overview Overview of the X Window System

1.2 X Window System Overview
The X Window System architecture is divided into two distinct parts (Figure 1-1):

display servers Provide display capabilities and keep track of user input.

clients Application programs that perform specific tasks.

This separation allows the clients and servers either to work together on the same system, or
across a network. Regardless of where the clients are running, all user input and displayed
output will occur on the workstation server. Communication is accomplished (in a network
transparent fashion) using the X Protocol.

Client A Client B

X PROTOCOL

Server

B

A

Figure 1-1 X Window System Overview

1.2.1 X Platform Abstraction Layers

The X Window System consists of several distinct parts. Figure 1-2 shows them as layers.

• The X Protocol defines the format and sequencing of byte streams and semantics (messages)
passed between X Clients and the X Server.

• Xlib specifies the function call interface to build the messages defined by the X Protocol.

• The Xt Intrinsics provide the basic constructs to support the creation and use of user interface
objects (widgets).

2 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Overview of the X Window System X Window System Overview

• The Widgets provide a set of user interface features (such as menus and pushbuttons) and
allow applications to manipulate these features using object-oriented programming
techniques.

Widgets

Xt Intrinsics

Xlib

X Protocol

Figure 1-2 X Platform Abstraction Layers

1.2.2 User Interface Platform

From the programmer’s perspective, the X Window System provides a User Interface Platform
with multiple interfaces (Figure 1-3). Applications can be developed using any or all of these
interfaces, depending on the requirements of the developer. It is important to note here that the
lowest-level interface is Xlib − the X Protocol does not provide a practical programming
interface. Therefore, all interaction with the X Protocol is handled by Xlib calls. It is not
necessary to program directly using Xlib to create an X Window System application. Therefore,
the interface boundaries should be viewed as transparent from a programmer’s perspective (the
programmer may use any or all of them to achieve the desired results in the program).

Window Management (X11R5): X Toolkit Intrinsics 3
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

X Window System Overview Overview of the X Window System

Widgets

Xt Intrinsics

Xlib

X Protocol

Layers are
Transparent

Figure 1-3 User Interface Platform

1.2.3 A Single X Application

The User Interface platform provides all the services necessary to manage the user interface
aspects of the application. Application functionality is that part of the application which is
independent of any user interface function, but it is the application that knows what it wants to
accomplish through the user interface. The translation of the application’s user interface needs
into user interface actions or displays is achieved through a form of binding.

This binding can be an integral part of the application, indistinguishable from the application
functionality, or it can be a separate module created by a development tool or language and
stored in a separate library or binary module. The separation of application functionality from
user interface functionality (in so far as it is possible) helps to provide application portability and
ease of maintenance.

4 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Overview of the X Window System X Window System Overview

Widgets

Xt Intrinsics

Xlib

X Protocol

UI Platform

UI-independent
Functionality

Figure 1-4 A Single X Application

1.2.4 X Application Relationships

The X Window System environment usually consists of several client applications , all
communicating with an X Server at the same time using the X Protocol (Figure 1-5). Some of
these clients have special roles within the environment, such as window and session managers.
In order for all of these applications to work together cooperatively , Inter-Client Communications
Conventions have been established. These ensure that client applications will cooperate in their
use of the server and can also interact directly with each other.

Window Management (X11R5): X Toolkit Intrinsics 5
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

X Window System Overview Overview of the X Window System

ICCCM-compliant Communication

X Protocol

SESSION
MANAGER

WINDOW
MANAGER

X SERVER

APPLICATION

APPLICATIONAPPLICATION

APPLICATION

Figure 1-5 X Application Relationships

6 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Chapter 2

Introduction

2.1 Status
The Xt programmatic interface defined by this specification is syntactically correct and
complete.

All the function definitions specified in this specification are mandatory.

No features specified here are optional.

Internationalisation

The X Window System is 8-bit transparent. Any 8-bit or 16-bit codeset may be used in the font
and text calls. In addition, 8-bit codesets may be used in all strings including filenames, atom
names and color names.

Error messages in an X/Open-conformant X Window System implementation will be
internationalizable in order to support localisation. For more information, see the X/Open
Internationalisation Guide.

2.2 About this Specification
Chapter 3 on page 9 to Appendix E on page 275 provide a complete description of the X Toolkit,
describing all the facilities provided.

This specification will be read both by application programmers, who will use one or more of the
many widget sets built with the Intrinsics, and by widget programmers who will use the
Intrinsics to build widgets for one of the widget sets.

As application programmers become more familiar with the concepts discussed in this
document, they will find it more convenient to implement portions of their applications as
special-purpose or custom widgets. Even so, one can use widgets without knowing how to
build them.

2.3 Conventions Used in this Document
This document uses the following conventions:

• Global symbols are printed in this font. These can be either function names, symbols defined
in include files, data types or structure names. Arguments to functions, procedures or
macros are printed in italics.

• Filenames are in this font.

• Each function is introduced by a general discussion that distinguishes it from other functions.
The function declaration itself follows, and each argument is specifically explained. General
discussion of the function, if any is required, follows the arguments.

• To eliminate any ambiguity between those arguments passed and those that a function
returns, the explanations for all arguments that are passed start with the word specifies or, in

Window Management (X11R5): X Toolkit Intrinsics 7
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Conventions Used in this Document Introduction

the case of multiple arguments, the word specify. The explanations for all arguments that are
returned start with the word returns or, in the case of multiple arguments, the word return.

8 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Chapter 3

Intrinsics and Widgets

The Intrinsics are a programming library tailored to the special requirements of user interface
construction within a network window system, specifically the X Window System. The
Intrinsics and a widget set make up the X Toolkit. The Intrinsics provide the base mechanisms
necessary to build a wide variety of widget sets and application environments. Because the
Intrinsics mask implementation details from the widget and application programmer, the
widgets and the application environments built with them are fully extensible and support
independently-developed new or extended components. By following a small set of
conventions, widget programmers can extend their widget sets in new ways and can have these
extensions function smoothly with the existing facilities.

The Intrinsics is a library package layered on top of Xlib. As such, the Intrinsics provide
mechanisms (functions and structures) for extending the basic programming abstractions
provided by the X Window System. By providing mechanisms for intercomponent and
intracomponent interactions, the Intrinsics provide the next layer of functionality from which
the widget sets are built.

The diagram below illustrates this extended three-tiered X programming environment.

Application

Widget Set

Intrinsics

Xlib

A typical X Toolkit application is most likely to be a client of a given widget set, a subset of the
Intrinsics functions, and a smaller set of Xlib functions. This is illustrated by a left-to-right
viewing of the diagram above. At the same time, a widget set is a client of both the Intrinsics
and Xlib, and the Intrinsics are a client of Xlib only. This is illustrated by a top-to-bottom
viewing of the diagram above.

For the application programmer, the X Toolkit provides:

• a consistent interface (widget set) for writing applications

• a small set of Intrinsics mechanisms that are also used in writing applications.

Window Management (X11R5): X Toolkit Intrinsics 9
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Intrinsics and Widgets

For the widget programmer, the X Toolkit provides:

• a set of Intrinsics mechanisms for building widgets

• an architectural model for constructing and composing widgets

• a consistent interface (widget set) for programming.

To the extent possible, the X Toolkit is policy free. The application environment, not the X
Toolkit, defines, implements and enforces policy, consistency and style.

Each individual widget implementation defines its own policy. The X Toolkit design allows for
the development of radically differing widget implementations.

3.1 Intrinsics
The Intrinsics provide the base mechanisms (functions and structures) that simplify the design
of application user interfaces. In addition, it assists widget and application programmers by
providing a commonly used set of underlying user interface functions to manage:

• toolkit initialisation

• widgets

• memory

• window, file and timer events

• widget geometry

• input focus

• selections

• resources and resource conversion

• translation of events

• graphics contexts

• pixmaps

• errors and warnings.

Although all Intrinsics mechanisms are primarily intended for use by widget programmers,
some are also intended for use by application programmers. The architectural model for the
Intrinsics lets the widget programmer create new widgets by using the supplied mechanisms
and/or by combining existing widgets. Therefore, application interface layers built with the
Intrinsics will provide a coordinated set of widgets and composition policies. While some of the
widgets that are built with the Intrinsics are common across a number of application domains,
others are restricted to a specific application domain.

The Intrinsics are based on an architectural model that is also flexible enough to accommodate a
variety of different application interface layers. In addition, the supplied set of Intrinsics
mechanisms are:

• functionally complete and policy free

• stylistically and functionally consistent with the X Window System primitives

• portable across languages, computer architectures and operating systems.

10 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Intrinsics and Widgets Intrinsics

Applications that use the Intrinsics mechanisms must include the header files <X11/Intrinsic.h>
and <X11/StringDefs.h>. They may also include <X11/Xatoms.h> and <X11/Shell.h>. Widget
implementations should include <X11/IntrinsicP.h> instead of <X11/Intrinsic.h>. The
applications should also include the additional headers for each widget class that they are to use
(for example, <X11/Xaw/Label.h> or <X11/Xaw/Scrollbar.h>). On a POSIX-based system, the
Intrinsics object library file is named libXt.a and is usually referenced as −lXt.

3.2 Languages
The Intrinsics are intended to be used for two programming purposes. Programmers writing
widgets will be using most of the facilities provided by the Intrinsics to construct user interface
components from the simple, such as buttons and scrollbars, to the complex, such as control
panels and property sheets. Application programmers will use a much smaller subset of the
Intrinsics procedures in combination with one or more sets of widgets to construct and present
complete user interfaces on an X display. The Intrinsics programming interfaces primarily
intended for application use are designed to be callable from most procedural programming
languages. Therefore, most arguments are passed by reference rather than by value. The
interfaces primarily intended for widget programmers are expected to be used principally from
the C language. In these cases, the usual C programming conventions apply. In this
specification, the term client refers to any module, widget or application that calls an Intrinsics
procedure.

Applications that use the Intrinsics mechanisms must include the header files <X11/Intrinsic.h>
and <X11/StringDefs.h>, or their equivalent, and they may also include <X11/Xatoms.h> and
<X11/Shell.h>. In addition, widget implementations should include <X11/IntrinsicP.h> instead
of <X11/Intrinsic.h>.

The applications must also include the additional header files for each widget class that they are
to use (for example, <X11/Xaw/Label.h> or <X11/Xaw/Scrollbar.h>). On a POSIX-based system,
the Intrinsics object library file is named libXt.a and is usually referenced as −lXt when linking
the application.

3.3 Procedures and Macros
All functions defined in this specification except those specified below may be implemented as C
macros with arguments. C applications may use ‘‘#undef’’ to remove a macro definition and
ensure that the actual function is referenced. Any such macro will expand to a single expression
which has the same precedence as a function call and that evaluates each of its arguments
exactly once, fully protected by parentheses, so that arbitrary expressions may be used as
arguments.

The following symbols are macros that do not have function equivalents and that may expand
their arguments in a manner other than that described above: XtCheckSubclass , XtNew,
XtNumber, XtOffsetOf, XtOffset and XtSetArg.

Window Management (X11R5): X Toolkit Intrinsics 11
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widgets Intrinsics and Widgets

3.4 Widgets
The fundamental abstraction and data type of the X Toolkit is the widget, which is a
combination of an X window and its associated input and display semantics and which is
dynamically allocated and contains state information. Some widgets display information (for
example, text or graphics), and others are merely containers for other widgets (for example, a
menu box). Some widgets are output-only and do not react to pointer or keyboard input, and
others change their display in response to input and can invoke functions that an application has
attached to them.

Every widget belongs to exactly one widget class, which is statically allocated and initialised and
which contains the operations allowable on widgets of that class. Logically, a widget class is the
procedures and data associated with all widgets belonging to that class. These procedures and
data can be inherited by subclasses. Physically, a widget class is a pointer to a structure. The
contents of this structure are constant for all widgets of the widget class but will vary from class
to class. (Here, ‘‘constant’’ means the class structure is initialised at compile time and never
changed, except for a one-time class initialisation and in-place compilation of resource lists,
which takes place when the first widget of the class or subclass is created.) For further
information, see Section 4.5.

The distribution of the declarations and code for a new widget class among a public .h file for
application programmer use, a private .h file for widget programmer use, and the
implementation .c file is described in Section 3.6. The predefined widget classes adhere to these
conventions.

A widget instance is composed of two parts:

• a data structure which contains instance-specific values

• a class structure which contains information that is applicable to all widgets of that class.

Much of the input/output of a widget (for example, fonts, colors, sizes, border widths, and so
on) is customizable by users.

This chapter discusses the base widget classes, Core, Composite and Constraint, and ends with a
discussion of widget classing.

3.4.1 Core Widgets

The Core widget class contains the definitions of fields common to all widgets. All widgets
classes are subclasses of the Core class, which is defined by the CoreClassPart and CorePart
structures.

CoreClassPart Structure

All widget classes contain the fields defined in the CoreClassPart structure.

12 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Intrinsics and Widgets Widgets

typedef struct {
WidgetClass superclass; See Section 3.6
String class_name; See Chapter 11
Cardinal widget_size; See Section 3.6
XtProc class_initialize; See Section 3.6
XtWidgetClassProc class_part_initialize; See Section 3.6
XtEnum class_inited; See Section 3.6
XtInitProc initialize; See Section 4.5
XtArgsProc initialize_hook; See Section 4.5
XtRealizeProc realize; See Section 4.6
XtActionList actions; See Chapter 12
Cardinal num_actions; See Chapter 12
XtResourceList resources; See Chapter 11
Cardinal num_resources; See Chapter 11
XrmClass xrm_class; Private to resource

manager
Boolean compress_motion; See Section 9.9
XtEnum compress_exposure; See Section 9.9
Boolean compress_enterleave; See Section 9.9
Boolean visible_interest; See Section 9.10
XtWidgetProc destroy; See Section 4.8
XtWidgetProc resize; See Chapter 8
XtExposeProc expose; See Section 9.10
XtSetValuesFunc set_values; See Section 11.7
XtArgsFunc set_values_hook; See Section 11.7
XtAlmostProc set_values_almost; See Section 11.7
XtArgsProc get_values_hook; See Section 11.7
XtAcceptFocusProc accept_focus; See Section 9.3
XtVersionType version; See Section 3.6
XtPointer callback_private; Private to callbacks
String tm_table; See Chapter 12
XtGeometryHandler query_geometry; See Chapter 8
XtStringProc display_accelerator; See Chapter 12
XtPointer extension; See Section 3.6

} CoreClassPart;

All widget classes have the Core class fields as their first component. The prototypical
WidgetClass and CoreWidgetClass are defined with only this set of fields.

typedef struct {
CoreClassPart core_class;

} WidgetClassRec, *WidgetClass, CoreClassRec, *CoreWidgetClass;

Various routines can cast widget class pointers, as needed, to specific widget class types.

The single occurrences of the class record and pointer for creating instances of Core are as
follows.

In IntrinsicP.h:

extern WidgetClassRec widgetClassRec;
#define coreClassRec widgetClassRec

Window Management (X11R5): X Toolkit Intrinsics 13
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widgets Intrinsics and Widgets

In Instinsic.h:

extern WidgetClass widgetClass, coreWidgetClass;

The opaque types Widget and WidgetClass and the opaque variable widgetClass are defined for
generic actions on widgets. In order to make these types opaque and ensure that the compiler
does not allow applications to access private data, the Intrinsics use incomplete structure
definitions in Instinsic.h:

typedef struct _WidgetClassRec *WidgetClass, *CoreWidgetClass;

CorePart Structure

All widget instances contain the fields defined in the CorePart structure.

typedef struct _CorePart {
Widget self; described below
WidgetClass widget_class; See Section 3.6
Widget parent; See Section 4.5
Boolean being_destroyed; See Section 4.8
XtCallbackList destroy_callbacks; See Section 4.8
XtPointer constraints; Section 5.6
Position x; See Chapter 8
Position y; See Chapter 8
Dimension width; See Chapter 8
Dimension height; See Chapter 8
Dimension border_width; See Chapter 8
Boolean managed; See Chapter 5
Boolean sensitive; See Section 9.7
Boolean ancestor_sensitive; See Section 9.7
XtTranslations accelerators; See Chapter 12
Pixel border_pixel; See Section 4.6
Pixmap border_pixmap; See Section 4.6
WidgetList popup_list; See Chapter 7
Cardinal num_popups; See Chapter 7
String name; See Chapter 11
Screen *screen; See Section 4.6
Colormap colormap; See Section 4.6
Window window; See Section 4.6
Cardinal depth; See Section 4.6
Pixel background_pixel; See Section 4.6
Pixmap background_pixmap; See Section 4.6
Boolean visible; See Section 9.10
Boolean mapped_when_managed; See Chapter 5

} CorePart;

All widget instances have the Core fields as their first component. The prototypical type Widget
is defined with only this set of fields.

typedef struct {
CorePart core;

} WidgetRec, *Widget, CoreRec, *CoreWidget;

Various routines can cast widget pointers, as needed, to specific widget types.

14 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Intrinsics and Widgets Widgets

In order to make these types opaque and ensure that the compiler does not allow applications to
access private data, the Intrinsics use incomplete structure definitions in Instinsic.h.

typedef struct _WidgetRec *Widget, *CoreWidget;

Core Resources

The resource names, classes and representation types specified in the coreClassRec resource list
are:

Name Class Representation
XtNaccelerators XtCAccelerators XtRAcceleratorTable
XtNbackground XtCBackground XtRPixel
XtNbackgroundPixmap XtCPixmap XtRPixmap
XtNborderColor XtCBorderColor XtRPixel
XtNborderPixmap XtCPixmap XtRPixmap
XtNcolormap XtCColormap XtRColormap
XtNdepth XtCDepth XtRInt
XtNmappedWhenManaged XtCMappedWhenManaged XtRBoolean
XtNscreen XtCScreen XtRScreen
XtNtranslations XtCTranslations XtRTranslationTable

Additional resources are defined for all widgets via the objectClassRec and rectObjClassRec
resource lists; see Section 14.2 and Section 14.3 for details.

CorePart Default Values

The default values for the Core fields, which are filled in from the resource lists and by the
initialize procedures, are:

Window Management (X11R5): X Toolkit Intrinsics 15
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widgets Intrinsics and Widgets

Field Default Value
self Address of the widget structure (may not be changed).

widget_class argument to XtCreateWidget (may not be
changed).

widget_class

parent parent argument to XtCreateWidget (may not be changed).
being_destroyed Parent’s being_destroyed value.
destroy_callbacks NULL
constraints NULL
x 0
y 0
width 0
height 0
border_width 1
managed False
sensitive True

logical AND of parent’s sensitive and ancestor_sensitive
values.

ancestor_sensitive

accelerators NULL
border_pixel XtDefaultForeground
border_pixmap XtUnspecifiedPixmap
popup_list NULL
num_popups 0
name name argument to XtCreateWidget (may not be changed).

Parent’s screen; top-level widget gets screen from display
specifier (may not be changed).

screen

colormap Parent’s colormap value.
window NULL
depth Parent’s depth; top-level widget gets root window depth.
background_pixel XtDefaultBackground
background_pixmap XtUnspecifiedPixmap
visible True
mapped_when_managed True

XtUnspecifiedPixmap is a symbolic constant guaranteed to be unequal to any valid Pixmap id,
None, and ParentRelative .

3.4.2 Composite Widgets

The Composite widget class is a subclass of the Core widget class (see Chapter 5). Composite
widgets are intended to be containers for other widgets. The additional data used by composite
widgets are defined by the CompositeClassPart and CompositePart structures.

CompositeClassPart Structure

In addition to the Core class fields, widgets of the Composite class have the following class
fields.

16 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Intrinsics and Widgets Widgets

typedef struct {
XtGeometryHandler geometry_manager; See Chapter 8
XtWidgetProc change_managed; See Chapter 5
XtWidgetProc insert_child; See Chapter 5
XtWidgetProc delete_child; See Chapter 5
XtPointer extension; See Section 3.6

} CompositeClassPart;

The extension record defined for CompositeClassPart with record_type equal to NULLQUARK is
CompositeClassExtensionRec .

typedef struct {
XtPointer next_extension; See Section 3.6.12
XrmQuark record_type; See Section 3.6.12
long version; See Section 3.6.12
Cardinal record_size; See Section 3.6.12
Boolean accepts_objects; See Chapter 5

} CompositeClassExtensionRec, *CompositeClassExtension;

Composite classes have the Composite class fields immediately following the Core class fields.

typedef struct {
CoreClassPart core_class;
CompositeClassPart composite_class;

} CompositeClassRec, *CompositeWidgetClass;

The single occurrences of the class record and pointer for creating instances of Composite are as
follows.

In IntrinsicP.h:

extern CompositeClassRec compositeClassRec;

In Instinsic.h:

extern WidgetClass compositeWidgetClass;

The opaque types CompositeWidget and CompositeWidgetClass and the opaque variable
compositeWidgetClass are defined for generic operations on widgets whose class is Composite or
a subclass of Composite. The symbolic constant for the CompositeClassExtension version
identifier is XtCompositeExtensionVersion (see Section 3.6.12). Instinsic.h uses an incomplete
structure definition to ensure that the compiler catches attempts to access private data.

typedef struct _CompositeClassRec *CompositeWidgetClass;

CompositePart Structure

In addition to the Core instance fields, widgets of the Composite class have the following
instance fields defined in the CompositePart structure.

typedef struct {
WidgetList children; See Chapter 5
Cardinal num_children; See Chapter 5
Cardinal num_slots; See Chapter 5
XtOrderProc insert_position; See Section 5.2

} CompositePart;

Composite widgets have the Composite instance fields immediately following the Core instance
fields.

Window Management (X11R5): X Toolkit Intrinsics 17
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widgets Intrinsics and Widgets

typedef struct {
CorePart core;
CompositePart composite;

} CompositeRec, *CompositeWidget;

Instinsic.h uses an incomplete structure definition to ensure that the compiler catches attempts
to access private data.

typedef struct _CompositeRec *CompositeWidget;

Composite Resources

The resource names, classes and representation types that are specified in the compositeClassRec
resource list are:

Name Class Representation
XtNchildren XtCReadOnly XtRWidgetList
XtNinsertPosition XtCInsertPosition XtRFunction
XtNnumChildren XtCReadOnly XtRCardinal

CompositePart Default Values

The default values for the Composite fields, which are filled in from the Composite resource list
and by the Composite initialize procedure, are:

Field Default Value
children NULL
num_children 0
num_slots 0
insert_position Internal function to insert at end

The children, num_children and insert_position fields are declared as resources; XtNinsertPosition
is a settable resource, XtNchildren and XtNnumChildren may be read by any client but should
only be modified by the composite widget class procedures.

3.4.3 Constraint Widgets

The Constraint widget class is a subclass of the Composite widget class (see Section 5.6).
Constraint widgets maintain additional state data for each child; for example, client-defined
constraints on the child’s geometry. The additional data used by constraint widgets are defined
by the ConstraintClassPart and ConstraintPart structures.

ConstraintClassPart Structure

In addition to the Core and Composite class fields, widgets of the Constraint class have the
following class fields.

18 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Intrinsics and Widgets Widgets

typedef struct {
XtResourceList resources; See Chapter 11
Cardinal num_resources; See Chapter 11
Cardinal constraint_size; See Section 5.6
XtInitProc initialize; See Section 5.6
XtWidgetProc destroy; See Section 5.6
XtSetValuesFunc set_values; See Section 11.7.2
XtPointer extension; See Section 3.6

} ConstraintClassPart;

The extension record defined for ConstraintClassPart with record_type equal to NULLQUARK is
ConstraintClassExtensionRec .

typedef struct {
XtPointer next_extension; See Section 3.6.12
XrmQuark record_type; See Section 3.6.12
long version; See Section 3.6.12
Cardinal record_size; See Section 3.6.12
XtArgsProc get_values_hook; See Section 11.7.1

} ConstraintClassExtensionRec, *ConstraintClassExtension;

Constraint classes have the Constraint class fields immediately following the Composite class
fields.

typedef struct _ConstraintClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ConstraintClassPart constraint_class;

} ConstraintClassRec, *ConstraintWidgetClass;

The single occurrences of the class record and pointer for creating instances of Constraint are as
follows.

In IntrinsicP.h:

extern ConstraintClassRec constraintClassRec;

In Instinsic.h:

extern WidgetClass constraintWidgetClass;

The opaque types ConstraintWidget and ConstraintWidgetClass and the opaque variable
constraintWidgetClass are defined for generic operations on widgets whose class is Constraint or
a subclass of Constraint. The symbolic constant for the ConstraintClassExtension version
identifier is XtConstraintExtensionVersion (see Section 3.6.12). Instinsic.h uses an incomplete
structure definition to ensure that the compiler catches attempts to access private data.

typedef struct _ConstraintClassRec *ConstraintWidgetClass;

Window Management (X11R5): X Toolkit Intrinsics 19
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widgets Intrinsics and Widgets

ConstraintPart Structure

In addition to the Core and Composite instance fields, widgets of the Constraint class have the
following unused instance fields defined in the ConstraintPart structure

typedef struct { int empty; } ConstraintPart;

Constraint widgets have the Constraint instance fields immediately following the Composite
instance fields.

typedef struct {
CorePart core;
CompositePart composite;
ConstraintPart constraint;

} ConstraintRec, *ConstraintWidget;

Instinsic.h uses an incomplete structure definition to ensure that the compiler catches attempts
to access private data.

typedef struct _ConstraintRec *ConstraintWidget;

Constraint Resources

The constraintClassRec core_class and constraint_class resources fields are NULL and the
num_resources fields are zero; no additional resources beyond those declared by the superclasses
are defined for Constraint.

20 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Intrinsics and Widgets Implementation-specific Types

3.5 Implementation-specific Types
To increase the portability of widget and application source code between different system
environments, the Intrinsics define several types whose precise representation is explicitly
dependent upon, and chosen by, each individual implementation of the Intrinsics.

These implementation-defined types are:

Boolean A datum that contains a zero or non-zero value. Unless explicitly stated,
clients should not assume that the non-zero value is equal to the symbolic
value True.

Cardinal An unsigned integer datum with a minimum range of [0..2ˆ16-1]

Dimension An unsigned integer datum with a minimum range of [0..2ˆ16-1]

Position A signed integer datum with a minimum range of [-2ˆ15..2ˆ15-1]

XtPointer A datum large enough to contain the largest of a char*, int*, function pointer,
structure pointer or long value. A pointer to any type or function, or a long
value may be converted to an XtPointer and back again and the result will
compare equal to the original value. In ANSI C environments it is expected
that XtPointer will be defined as void*.

XtArgVal A datum large enough to contain an XtPointer , Cardinal , Dimension or Position
value.

XtEnum An integer datum large enough to encode at least 128 distinct values, two of
which are the symbolic values True and False . The symbolic values TRUE and
FALSE are also defined to be equal to True and False , respectively.

In addition to these specific types, the precise order of the fields within the structure declarations
for any of the instance part records ObjectPart , RectObjPart , CorePart , CompositePart , ShellPart ,
WMShellPart , TopLevelShellPart and ApplicationShellPart is implementation-defined. These
structures may also have additional private fields internal to the implementation. The
ObjectPart , RectObjPart and CorePart structures must be defined so that any member with the
same name appears at the same offset in ObjectRec, RectObjRec and CoreRec (WidgetRec). No
other relations between the offsets of any two fields may be assumed.

Window Management (X11R5): X Toolkit Intrinsics 21
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Classing Intrinsics and Widgets

3.6 Widget Classing
The widget_class field of a widget points to its widget class structure, which contains information
that is constant across all widgets of that class. As a consequence, widgets usually do not
implement directly callable procedures; rather, they implement procedures, called methods, that
are available through their widget class structure. These methods are invoked by generic
procedures that envelop common actions around the methods implemented by the widget class.
Such procedures are applicable to all widgets of that class and also to widgets whose classes are
subclasses of that class.

All widget classes are a subclass of Core and can be subclassed further. Subclassing reduces the
amount of code and declarations necessary to make a new widget class that is similar to an
existing class. For example, you do not have to describe every resource your widget uses in an
XtResourceList. Instead, you describe only the resources your widget has that its superclass does
not. Subclasses usually inherit many of their superclasses’ procedures (for example, the expose
procedure or geometry handler).

Subclassing, however, can be taken too far. If you create a subclass that inherits none of the
procedures of its superclass, you should consider whether you have chosen the most
appropriate superclass.

To make good use of subclassing, widget declarations and naming conventions are highly
stylised. A widget consists of three files:

• a public .h file, used by client widgets or applications

• a private .h file, used by widgets whose classes are subclasses of the widget class

• a .c file, which implements the widget.

3.6.1 Widget Naming Conventions

The Intrinsics provide a vehicle by which programmers can create new widgets and organize a
collection of widgets into an application. To ensure that applications need not deal with as
many styles of capitalisation and spelling as the number of widget classes it uses, the following
guidelines should be followed when writing new widgets:

• Use the X library naming conventions that are applicable. For example, a record component
name is all lower case and uses underscores (_) for compound words (for example,
background_pixmap). Type and procedure names start with upper case and use
capitalisation for compound words (for example, ArgList or XtSetValues).

• A resource name is spelled identically to the field name except that compound names use
capitalisation rather than underscore. To let the compiler catch spelling errors, each resource
name should have a symbolic identifier prefixed with ‘‘XtN’’. For example, the
background_pixmap field has the corresponding identifier XtNbackgroundPixmap, which is
defined as the string ‘‘backgroundPixmap’’. Many predefined names are listed in
<X11/StringDefs.h>. Before you invent a new name, you should make sure there is not
already a name that you can use.

• A resource class string starts with a capital letter and uses capitalisation for compound
names (for example,‘‘BorderWidth’’). Each resource class string should have a symbolic
identifier prefixed with ‘‘XtC’’ (for example, XtCBorderWidth). Many predefined classes are
listed in <X11/StringDefs.h>.

• A resource representation string is spelled identically to the type name (for example,
‘‘TranslationTable’’). Each representation string should have a symbolic identifier prefixed
with ‘‘XtR’’ (for example, XtRTranslationTable). Many predefined representation types are

22 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Intrinsics and Widgets Widget Classing

listed in <X11/StringDefs.h>.

• New widget classes start with a capital and use upper case for compound words. Given a
new class name AbcXyz, you should derive several names:

— additional widget instance structure part name AbcXyzPart

— complete widget instance structure names AbcXyzRec and _AbcXyzRec

— widget instance structure pointer type name AbcXyzWidget

— additional class structure part name AbcXyzClassPart

— complete class structure names AbcXyzClassRec and _AbcXyzClassRec

— class structure pointer type name AbcXyzWidgetClass

— class structure variable abcXyzClassRec

— class structure pointer variable abcXyzWidgetClass.

• Action procedures available to translation specifications should follow the same naming
conventions as procedures. That is, they start with a capital letter, and compound names use
upper case (for example, ‘‘Highlight’’ and ‘‘NotifyClient’’).

The symbolic identifiers XtN..., XtC... and XtR... may be implemented as macros, as global
symbols, or as a mixture of the two. The (implicit) type of the identifier is String . The pointer
value itself is not significant; clients must not assume that inequality of two identifiers implies
inequality of the resource name, class, or representation string. Clients should also note that
although global symbols permit savings in literal storage in some environments, they also
introduce the possibility of multiple definition conflicts when applications attempt to use
independently developed widgets simultaneously.

3.6.2 Widget Subclassing in Public .h Files

The public .h file for a widget class is imported by clients and contains:

• a reference to the public h file for the superclass

• symbolic identifiers for the names and classes of the new resources that this widget adds to
its superclass — the definitions should have a single space between the definition name and
the value and no trailing space or comment in order to reduce the possibility of compiler
warnings from similar declarations in multiple classes

• type declarations for any new resource data types defined by the class

• the class record pointer variable used to create widget instances

• the C type that corresponds to widget instances of this class

• entry points for new class methods.

For example, the following is the public .h file for a possible implementation of a Label widget:

Window Management (X11R5): X Toolkit Intrinsics 23
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Classing Intrinsics and Widgets

#ifndef LABEL_H
#define LABEL_H

/* New resources */
#define XtNjustify "justify"
#define XtNforeground "foreground"
#define XtNlabel "label"
#define XtNfont "font"
#define XtNinternalWidth "internalWidth"
#define XtNinternalHeight "internalHeight"

/* Class record pointer */
extern WidgetClass labelWidgetClass;

/* C Widget type definition */
typedef struct _LabelRec *LabelWidget;

/* New class method entry points */
extern void LabelSetText();

/* Widget w */
/* String text */

extern String LabelGetText();
/* Widget w */

#endif LABEL_H

The conditional inclusion of the text allows the application to include header files for different
widgets without being concerned that they already may be included as a superclass of another
widget.

To accommodate operating systems with file name length restrictions, the name of the public .h
file is the first ten characters of the widget class. For example, the public .h file for the Constraint
widget class is Constraint.h.

3.6.3 Widget Subclassing in Private .h Files

The private .h file for a widget is imported by widget classes that are subclasses of the widget
and contains:

• a reference to the public .h file for the class

• a reference to the private .h file for the superclass

• symbolic identifiers for any new resource representation types defined by the class — the
definitions should have a single space between the definition name and the value and no
trailing space or comment

• a structure part definition for the new fields that the widget instance adds to its superclass’s
widget structure

• the complete widget instance structure definition for this widget

• a structure part definition for the new fields that this widget class adds to its superclass’s
constraint structure if the widget class is a subclass of Constraint

24 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Intrinsics and Widgets Widget Classing

• the complete constraint structure definition if the widget class is a subclass of Constraint

• type definitions for any new procedure types used by class methods declared in the widget
class part

• a structure part definition for the new fields that this widget class adds to its superclass’s
widget class structure

• the complete widget class structure definition for this widget

• the complete widget class extension structure definition for this widget, if any

• the symbolic constant identifying the class extension version, if any

• the name of the global class structure variable containing the generic class structure for this
class

• an inherit constant for each new procedure in the widget class part structure.

For example, the following is the private .h file for a possible Label widget:

#ifndef LABELP_H
#define LABELP_H

#include <X11/Label.h>

/* New representation types used by the Label widget */
#define XtRJustify "Justify"

/* New fields for the Label widget record */
typedef struct {
/* Settable resources */

Pixel foreground;
XFontStruct *font;
String label; /* text to display */
XtJustify justify;
Dimension internal_width; /* # pixels horizontal border */
Dimension internal_height; /* # pixels vertical border */

/* Data derived from resources */
GC normal_GC;
GC gray_GC;
Pixmap gray_pixmap;
Position label_x;
Position label_y;
Dimension label_width;
Dimension label_height;
Cardinal label_len;
Boolean display_sensitive;

} LabelPart;

/* Full instance record declaration */
typedef struct _LabelRec {

CorePart core;
LabelPart label;

} LabelRec;

Window Management (X11R5): X Toolkit Intrinsics 25
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Classing Intrinsics and Widgets

/* Types for Label class methods */
typedef void (*LabelSetTextProc)();

/* Widget w */
/* String text */

typedef String (*LabelGetTextProc)();
/* Widget w */

/* New fields for the Label widget class record */
typedef struct {

LabelSetTextProc set_text;
LabelGetTextProc get_text;
XtPointer extension;

} LabelClassPart;

/* Full class record declaration */
typedef struct _LabelClassRec {

CoreClassPart core_class;
LabelClassPart label_class;

} LabelClassRec;

/* Class record variable */
extern LabelClassRec labelClassRec;

#define LabelInheritSetText((LabelSetTextProc)_XtInherit)
#define LabelInheritGetText((LabelGetTextProc)_XtInherit)
#endif LABELP_H

To accommodate operating systems with file name length restrictions, the name of the private .h
file is the first nine characters of the widget class followed by a capital P. For example, the
private .h file for the Constraint widget class is ConstrainP.h.

3.6.4 Widget Subclassing in .c Files

The .c file for a widget contains the structure initializer for the class record variable, which
contains the following parts:

• class information (for example, superclass, class_name, widget_size, class_initialize and
class_inited)

• data constants (for example, resources and num_resources, actions and num_actions,
visible_interest, compress_motion, compress_exposure and version)

• widget operations (for example, initialize, realize, destroy, resize, expose, set_values, accept_focus
and any new operations specific to the widget).

The superclass field points to the superclass global class record, declared in the superclass private
.h file. For direct subclasses of the generic core widget, superclass should be initialised to the
address of the widgetClassRec structure. The superclass is used for class chaining operations and
for inheriting or enveloping a superclass’s operations (see Section 3.6.7, Section 3.6.9 and Section
3.6.10).

The class_name field contains the text name for this class, which is used by the resource manager.
For example, the Label widget has the string ‘‘Label’’. More than one widget class can share the
same text class name. This string must be permanently allocated prior to or during the
execution of the class initialisation procedure and must not be subsequently deallocated.

26 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Intrinsics and Widgets Widget Classing

The widget_size field is the size of the corresponding widget instance structure (not the size of the
class structure).

The version field indicates the toolkit implementation version number and is used for runtime
consistency checking of the X Toolkit and widgets in an application. Widget writers must set it
to the implementation-defined symbolic value XtVersion in the widget class structure
initialisation. Those widget writers who believe that their widget binaries are compatible with
other implementations of the Intrinsics can put the special value XtVersionDontCheck in the
version field to disable version checking for those widgets. If a widget needs to compile
alternative code for different revisions of the Intrinsics interface definition, it may use the symbol
XtSpecificationRelease , as described in Chapter 15. Use of XtVersion allows the Intrinsics
implementation to recognize widget binaries that were compiled with older implementations.

The extension field is for future upward compatibility. If the widget programmer adds fields to
class parts, all subclass structure layouts change, requiring complete recompilation. To allow
clients to avoid recompilation, an extension field at the end of each class part can point to a
record that contains any additional class information required.

All other fields are described in their respective sections.

The .c file also contains the declaration of the global class structure pointer variable used to
create instances of the class. The following is an abbreviated version of the .c file for a Label
widget. The resources table is described in Chapter 11.

/* Resources specific to Label */
static XtResource resources[] = {

{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),
XtOffset(LabelWidget, label.foreground), XtRString,
XtDefaultForeground},

{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),
XtOffset(LabelWidget, label.font),XtRString,
XtDefaultFont},

{XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffset(LabelWidget, label.label), XtRString, NULL},

.

.

.
}

/* Forward declarations of procedures */
static void ClassInitialize();
static void Initialize();
static void Realize();
static void SetText();
static void GetText();

.

.

.

/* Class record constant */
LabelClassRec labelClassRec = {
{
/* core_class fields */

/* superclass */ (WidgetClass)&coreClassRec,
/* class_name */ "Label",

Window Management (X11R5): X Toolkit Intrinsics 27
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Classing Intrinsics and Widgets

/* widget_size */ sizeof(LabelRec),
/* class_initialize */ ClassInitialize,
/* class_part_initialize */ NULL,
/* class_inited */ False,
/* initialize */ Initialize,
/* initialize_hook */ NULL,
/* realize */ Realize,
/* actions */ NULL,
/* num_actions */ 0,
/* resources */ resources,
/* num_resources */ XtNumber(resources),
/* xrm_class */ NULLQUARK,
/* compress_motion */ True,
/* compress_exposure */ True,
/* compress_enterleave */ True,
/* visible_interest */ False,
/* destroy */ NULL,
/* resize */ Resize,
/* expose */ Redisplay,
/* set_values */ SetValues,
/* set_values_hook */ NULL,
/* set_values_almost */ XtInheritSetValuesAlmost,
/* get_values_hook */ NULL,
/* accept_focus */ NULL,
/* version */ XtVersion,
/* callback_offsets */ NULL,
/* tm_table */ NULL,
/* query_geometry */ XtInheritQueryGeometry,
/* display_accelerator */ NULL,
/* extension */ NULL

},
{
/* Label_class fields */

/* get_text */ GetText,
/* set_text */ SetText,
/* extension */ NULL

}
};

/* Class record pointer */
WidgetClass labelWidgetClass = (WidgetClass) &labelClassRec;

/* New method access routines */
void LabelSetText(w, text)

Widget w;
String text;

{
Label WidgetClass lwc = (Label WidgetClass)XtClass(w);
XtCheckSubclass(w, labelWidgetClass, NULL);
*(lwc->label_class.set_text)(w, text)

}

28 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Intrinsics and Widgets Widget Classing

/* Private procedures */
.
.
.

3.6.5 Widget Class and Superclass Look Up

To obtain the class of a widget, use XtClass .

WidgetClass XtClass(w)
Widget w;

w Specifies the widget. Must be of a classObject or any subclass thereof.

The XtClass function returns a pointer to the widget’s class structure.

To obtain the superclass of a widget, use XtSuperclass.

WidgetClass XtSuperclass(w)
Widget w;

w Specifies the widget. Must be of a classObject or any subclass thereof.

The XtSuperclass function returns a pointer to the widget’s superclass class structure.

3.6.6 Widget Subclass Verification

To check the subclass to which a widget belongs, use XtIsSubclass.

Boolean XtIsSubclass(w, widget_class)
Widget w;
WidgetClass widget_class ;

w Specifies the widget or object instance whose class is to be checked. Must be
of a classObject or any subclass thereof.

widget_class Specifies the widget class for which to test. Must be objectClass or any subclass
thereof.

The XtIsSubclass function returns True if the class of the specified widget is equal to or is a
subclass of the specified class. The widget’s class can be any number of subclasses down the
chain and need not be an immediate subclass of the specified class. Composite widgets that
need to restrict the class of the items they contain can use XtIsSubclass to find out if a widget
belongs to the desired class of objects.

To test if a given widget belongs to a subclass of an Intrinsics-defined class, the Intrinsics define
macros or functions equivalent to XtIsSubclass for each of the built-in classes. These procedures
are XtIsObject, XtIsRectObj, XtIsWidget , XtIsComposite , XtIsConstraint , XtIsShell ,
XtIsOverrideShell, XtIsWMShell, XtIsVendorShell , XtIsTransientShell , XtIsTopLevelShell and
XtIsApplicationShell .

All these macros and functions have the same argument description.

Boolean XtIs <class> (w)
Widget w;

w Specifies the widget or object instance whose class is to be checked. Must be
of a classObject or any subclass thereof.

These procedures may be faster than calling XtIsSubclass directly for the built-in classes.

Window Management (X11R5): X Toolkit Intrinsics 29
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Classing Intrinsics and Widgets

To check a widget’s class and to generate a debugging error message, use XtCheckSubclass ,
defined in <X11/IntrinsicP.h>:

void XtCheckSubclass(w, widget_class , message)
Widget w;
WidgetClass widget_class ;
String message ;

w Specifies the widget or object whose class is to be checked. Must be of a
classObject or any subclass thereof.

widget_class Specifies the widget class for which to test. Must be objectClass or any subclass
thereof.

message Specifies the message to be used.

The XtCheckSubclass macro determines if the class of the specified widget is equal to or is a
subclass of the specified class. The widget’s class can be any number of subclasses down the
chain and need not be an immediate subclass of the specified class. If the specified widget’s
class is not a subclass, XtCheckSubclass constructs an error message from the supplied message,
the widget’s actual class, and the expected class and calls XtErrorMsg. XtCheckSubclass should
be used at the entry point of exported routines to ensure that the client has passed in a valid
widget class for the exported operation.

XtCheckSubclass is only executed when the module has been compiled with the compiler symbol
DEBUG defined; otherwise, it is defined as the empty string and generates no code.

3.6.7 Superclass Chaining

While most fields in a widget class structure are self-contained, some fields are linked to their
corresponding fields in their superclass structures. With a linked field, the Intrinsics access the
field’s value only after accessing its corresponding superclass value (called downward
superclass chaining) or before accessing its corresponding superclass value (called upward
superclass chaining). The self-contained fields are as follows.

In all widget classes:

class_name
class_initialize
widget_size
realize
visible_interest
resize
expose
accept_focus
compress_motion
compress_exposure
compress_enterleave
set_values_almost
tm_table
version

30 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Intrinsics and Widgets Widget Classing

In Composite widget classes:

geometry_manager
change_managed
insert_child
delete_child
accepts_objects

In Constraint widget classes:

constraint_size

In Shell widget classes:

root_geometry_manager

With downward superclass chaining, the invocation of an operation first accesses the field from
the Object, RectObj and Core class structures, then from the subclass structure, and so on down
the class chain to that widget’s class structure. These superclass-to-subclass fields are:

class_part_initialize
get_values_hook
initialize
initialize_hook
set_values
set_values_hook
resources

In addition, for subclasses of Constraint, the following fields of the ConstraintClassPart and
ConstraintClassExtensionRec structures are chained from the Constraint class down to the
subclass:

resources
initialize
set_values
get_values_hook

With upward superclass chaining, the invocation of an operation first accesses the field from the
widget class structure, then from the superclass structure, and so on up the class chain to the
Core, RectObj and Object class structures. The subclass-to-superclass fields are:

destroy
actions

For subclasses of Constraint, the following field of ConstraintClassPart is chained from the
subclass up to the Constraint class:

destroy

Window Management (X11R5): X Toolkit Intrinsics 31
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Classing Intrinsics and Widgets

3.6.8 Class Initialisation: class_initialize and class_part_initialize Procedures

Many class records can be initialised completely at compile or link time. In some cases,
however, a class may need to register type converters or perform other sorts of once-only run-
time initialisation.

Because the C language does not have initialisation procedures that are invoked automatically
when a program starts up, a widget class can declare a class_initialize procedure that will be
automatically called exactly once by the Intrinsics. A class initialisation procedure pointer is of
type XtProc:

typedef void (*XtProc)(void);

A widget class indicates that it has no class initialisation procedure by specifying NULL in the
class_initialize field.

In addition to the class initialisation that is done exactly once, some classes perform initialisation
for fields in their parts of the class record. These are performed not just for the particular class
but for subclasses as well, and are done in the class’s class part initialisation procedure, a pointer
to which is stored in the class_part_initialize field. The class_part_initialize procedure pointer is
of type XtWidgetClassProc .

typedef void (*XtWidgetClassProc)(WidgetClass);
WidgetClass widget_class;

widget_class Points to the class structure for the class being initialised.

During class initialisation, the class part initialisation procedures for the class and all its
superclasses are called in superclass-to-subclass order on the class record. These procedures
have the responsibility of doing any dynamic initialisations necessary to their class’s part of the
record. The most common is the resolution of any inherited methods defined in the class. For
example, if a widget class C has superclasses Core, Composite, A and B, the class record for C
first is passed to Core ’s class_part_initialize procedure. This resolves any inherited Core
methods and compiles the textual representations of the resource list and action table that are
defined in the class record. Next, Composite’s class_part_initialize procedure is called to
initialize the composite part of C’s class record. Finally, the class_part_initialize procedures for
A, B and C, in that order, are called. For further information, see Section 3.6.9. Classes that do
not define any new class fields or that need no extra processing for them can specify NULL in
the class_part_initialize field.

All widget classes, whether they have a class initialisation procedure or not, must start with their
class_inited field False .

The first time a widget of a class is created, XtCreateWidget ensures that the widget class and all
superclasses are initialised, in superclass-to-subclass order, by checking each class_inited field
and, if it is False , by calling the class_initialize and the class_part_initialize procedures for the
class and all its superclasses. The Intrinsics then set the class_inited field to a non-zero value.
After the one-time initialisation, a class structure is constant.

The following example provides the class initialisation procedure for a Label class.

static void ClassInitialize()
{

XtSetTypeConverter(XtRString, XtRJustify, CvtStringToJustify,
NULL, 0, XtCacheNone, NULL);

}

32 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Intrinsics and Widgets Widget Classing

3.6.9 Initialising a Widget Class

A class is initialised when the first widget of that class or any subclass is created. To initialize a
widget class without creating any widgets, use XtInitializeWidgetClass .

void XtInitializeWidgetClass(object_class)
WidgetClass object_class;

object_class Specifies the object class to initialize. May be objectClass or any subclass
thereof.

If the specified widget class is already initialised, XtInitializeWidgetClass returns immediately.

If the class initialisation procedure registers type converters, these type converters are not
available until the first object of the class or subclass is created or XtInitializeWidgetClass is called
(see Section 11.6).

3.6.10 Inheritance of Superclass Operations

A widget class is free to use any of its superclass’s self-contained operations rather than
implementing its own code. The most frequently inherited operations are:

• expose

• realize

• insert_child

• delete_child

• geometry_manager

• set_values_almost.

To inherit an operation xyz, specify the constant XtInherit Xyz in your class record.

Every class that declares a new procedure in its widget class part must provide for inheriting the
procedure in its class_part_initialize procedure. The chained operations declared in Core and
Constraint records are never inherited. Widget classes that do nothing beyond what their
superclass does specify NULL for chained procedures in their class records.

Inheriting works by comparing the value of the field with a known, special value and by copying
in the superclass’s value for that field if a match occurs. This special value, called the inheritance
constant, is usually the Intrinsics internal value _XtInherit cast to the appropriate type.
_XtInherit is a procedure that issues an error message if it is actually called.

For example, CompositeP.h contains these definitions:

#define XtInheritGeometryManager ((XtGeometryHandler) _XtInherit)
#define XtInheritChangeManaged ((XtWidgetProc) _XtInherit)
#define XtInheritInsertChild ((XtArgsProc) _XtInherit)
#define XtInheritDeleteChild ((XtWidgetProc) _XtInherit)

Composite’s class_part_initialize procedure begins as follows:

Window Management (X11R5): X Toolkit Intrinsics 33
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Classing Intrinsics and Widgets

static void CompositeClassPartInitialize(widgetClass)
WidgetClass widgetClass;

{
CompositeWidgetClass wc = (CompositeWidgetClass)widgetClass;
CompositeWidgetClass super = (CompositeWidgetClass)wc->

core_class.superclass;

if (wc->composite_class.geometry_manager ==
XtInheritGeometryManager) {
wc->composite_class.geometry_manager = super->
composite_class.geometry_manager;

}

if (wc->composite_class.change_managed ==
XtInheritChangeManaged) {
wc->composite_class.change_managed = super->
composite_class.change_managed;

}
.
.
.

Non-procedure fields may be inherited in the same manner as procedure fields. The class may
declare any reserved value it wishes for the inheritance constant for its new fields. The
following inheritance constants are defined as follows.

For Core:

• XtInheritRealize

• XtInheritResize

• XtInheritExpose

• XtInheritSetValuesAlmost

• XtInheritAcceptFocus

• XtInheritQueryGeometry

• XtInheritTranslations

• XtInheritDisplayAccelerator .

For Composite:

• XtInheritGeometryManager

• XtInheritChangeManaged

• XtInheritInsertChild

• XtInheritDeleteChild .

For Shell:

• XtInheritRootGeometryManager .

34 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Intrinsics and Widgets Widget Classing

3.6.11 Invocation of Superclass Operations

A widget sometimes needs to call a superclass operation that is not chained. For example, a
widget’s expose procedure might call its superclass’s expose and then perform a little more work
on its own. For example, a Composite class with predefined managed children can implement
insert_child by first calling its superclass’s insert_child and then calling XtManageChild to add the
child to the managed set.

A class method should not use XtSuperclass but should instead call the class method of its own
specific superclass directly through the superclass record. That is, it should use its own class
pointers only, not the widget’s class pointers, as the widget’s class may be a subclass of the class
whose implementation is being referenced.

This technique is referred to as enveloping the superclass’s operation.

3.6.12 Class Extension Records

It may be necessary at times to add new fields to already existing widget class structures. To
permit this to be done without requiring recompilation of all subclasses, the last field in a class
part structure should be an extension pointer. If no extension fields for a class have yet been
defined, subclasses should initialize the value of the extension pointer to NULL.

If extension fields exist, as is the case with the Composite, Constraint and Shell classes,
subclasses can provide values for these fields by setting the extension pointer for the appropriate
part in their class structure to point to a statically declared extension record containing the
additional fields. Setting the extension field is never mandatory; code that uses fields in the
extension record must always check the extension field and take some appropriate default action
if it is NULL.

In order to permit multiple subclasses and libraries to chain extension records from a single
extension field, extension records should be declared as a linked list and each extension record
definition should contain the following four fields at the beginning of the structure declaration:

struct {
XtPointer next_extension;
XrmQuark record_type;
long version;
Cardinal record_size;

};

next_extension Specifies the next record in the list, or NULL.

record_type Specifies the particular structure declaration to which each extension record
instance conforms.

version Specifies a version id symbolic constant supplied by the definer of the
structure.

record_size Specifies the total number of bytes allocated for the extension record.

The record_type field identifies the contents of the extension record and is used by the definer of
the record to locate its particular extension record in the list. The record_type field is normally
assigned the result of XrmStringToQuark for a registered string constant. The Intrinsics reserve
all record type strings beginning with the two characters ‘‘XT’’ for future standard uses. The
value NULLQUARK may also be used by the class part owner in extension records attached to
its own class part extension field to identify the extension record unique to that particular class.

The version field is an owner-defined constant that may be used to identify binary files that have
been compiled with alternate definitions of the remainder of the extension record data structure.

Window Management (X11R5): X Toolkit Intrinsics 35
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Classing Intrinsics and Widgets

The private header file for a widget class should provide a symbolic constant for subclasses to
use to initialize this field. The record_size field value includes the four common header fields and
should normally be initialised with sizeof ().

Any value stored in the class part extension fields of CompositeClassPart , ConstraintClassPart or
ShellClassPart must point to an extension record conforming to this definition.

36 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Chapter 4

Widget Instantiation

A hierarchy of widget instances constitutes a widget tree. The shell widget returned by
XtAppCreateShell is the root of the widget tree instance. The widgets with one or more children
are the intermediate nodes of that tree, and the widgets with no children of any kind are the
leaves of the widget tree. With the exception of pop-up children (see Chapter 7), this widget tree
instance defines the associated X Window tree.

Widgets can be either composite or primitive. Both kinds of widgets can contain children, but
the Intrinsics provide a set of management mechanisms for constructing and interfacing
between composite widgets, their children and other clients.

Composite widgets; that is, members of the class compositeWidgetClass , are containers for an
arbitrary but widget implementation-defined collection of children, which may be instantiated
by the composite widget itself, by other clients, or by a combination of the two. Composite
widgets also contain methods for managing the geometry (layout) of any child widget. Under
unusual circumstances, a composite widget may have zero children, but it usually has at least
one. By contrast, primitive widgets that contain children typically instantiate specific children of
known classes themselves and do not expect external clients to do so. Primitive widgets also do
not have general geometry management methods.

In addition, the Intrinsics recursively perform many operations (for example, realisation and
destruction) on composite widgets and all their children. Primitive widgets that have children
must be prepared to perform the recursive operations themselves on behalf of their children.

A widget tree is manipulated by several Intrinsics functions. For example, XtRealizeWidget
traverses the tree downward and recursively realizes all pop-up widgets and children of
composite widgets. XtDestroyWidget traverses the tree downward and destroys all pop-up
widgets and children of composite widgets. The functions that fetch and modify resources
traverse the tree upward and determine the inheritance of resources from a widget’s ancestors.
XtMakeGeometryRequest traverses the tree up one level and calls the geometry manager that is
responsible for a widget child’s geometry.

To facilitate upward traversal of the widget tree, each widget has a pointer to its parent widget.
The Shell widget that XtAppCreateShell returns has a parent pointer of NULL.

To facilitate downward traversal of the widget tree, the children field of each composite widget is
a pointer to an array of child widgets, which includes all normal children created, not just the
subset of children that are managed by the composite widget’s geometry manager. Primitive
widgets that instantiate children are entirely responsible for all operations that require
downward traversal below themselves. In addition, every widget has a pointer to an array of
pop-up children.

Window Management (X11R5): X Toolkit Intrinsics 37
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Initialising the X Toolkit Widget Instantiation

4.1 Initialising the X Toolkit
Before an application can call any Intrinsics function other than XtSetLanguageProc , it must
initialize the Intrinsics by using:

• XtToolkitInitialize , which initializes the Intrinsics internals

• XtCreateApplicationContext , which initializes the per-application state

• XtDisplayInitialize or XtOpenDisplay , which initializes the per-display state

• XtAppCreateShell , which creates the root of a widget tree.

or an application can call the convenience procedure XtAppInitialize which combines the
functions of the preceding procedures. An application wishing to use the ANSI C locale
mechanism should call XtSetLanguageProc prior to calling XtDisplayInitialize , XtOpenDisplay or
XtAppInitialize .

Multiple instances of X Toolkit applications may be implemented in a single address space. Each
instance needs to be able to read input and dispatch events independently of any other instance.
Further, an application instance may need multiple display connections to have widgets on
multiple displays. From the application’s point of view, multiple display connections usually
are treated together as a single unit for purposes of event dispatching. To accommodate both
requirements, the Intrinsics define application contexts, each of which provides the information
needed to distinguish one application instance from another. The major component of an
application context is a list of one or more X Display pointers for that application. The Intrinsics
handle all display connections within a single application context simultaneously, handling
input in a round-robin fashion. The application context type XtAppContext is opaque to clients.

To initialize the Intrinsics internals, use XtToolkitInitialize .

void XtToolkitInitialize()

The semantics of calling XtToolkitInitialize more than once are undefined.

To create an application context, use XtCreateApplicationContext .

XtAppContext XtCreateApplicationContext()

The XtCreateApplicationContext function returns an application context, which is an opaque type.
Every application must have at least one application context.

To destroy an application context and close any remaining display connections in it, use
XtDestroyApplicationContext .

void XtDestroyApplicationContext(app_context)
XtAppContext app_context ;

app_context Specifies the application context.

The XtDestroyApplicationContext function destroys the specified application context as soon as it
is safe to do so. If called from within an event dispatch (for example, in a callback procedure),
XtDestroyApplicationContext does not destroy the application context until the dispatch is
complete.

To get the application context in which a given widget was created, use
XtWidgetToApplicationContext .

XtAppContext XtWidgetToApplicationContext(w)
Widget w;

38 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Instantiation Initialising the X Toolkit

w Specifies the widget for which you want the application context. Must be of a
classObject or any subclass thereof.

The XtWidgetToApplicationContext function returns the application context for the specified
widget.

To initialize a display and add it to an application context, use XtDisplayInitialize .

void XtDisplayInitialize(app_context , display ,
application_name , application_class , \
options , num_options , argc , argv)

XtAppContext app_context ;
Display * display ;
String application_name ;
String application_class ;
XrmOptionDescRec * options ;
Cardinal num_options ;
int * argc ;
String * argv ;

app_context Specifies the application context.

display Specifies a previously opened display connection. Note that a single display
connection can be in at most one application context.

application_name Specifies the name of the application instance.

application_class Specifies the class name of this application, which is usually the generic name
for all instances of this application.

options Specifies how to parse the command line for any application-specific
resources. The options argument is passed as a parameter to
XrmParseCommand . For further information, see the Xlib — C Language
Binding specification and Section 4.4 of this specification.

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line parameters.

argv Specifies the list of command line parameters.

The XtDisplayInitialize function retrieves the language string to be used for the specified display
(see Section 13.11), calls the language procedure (if set) with that language string, builds the
resource database for the default screen, calls the Xlib XrmParseCommand function to parse the
command line, and performs other per-display initialisation. After XrmParseCommand has been
called, argc and argv contain only those parameters that were not in the standard option table or
in the table specified by the options argument. If the modified argc is not zero, most applications
simply print out the modified argv along with a message listing the allowable options. On
POSIX-based systems, the application name is usually the final component of argv[0]. If the
synchronous resource is True, XtDisplayInitialize calls the Xlib XSynchronize function to put Xlib
into synchronous mode for this display connection and any others currently open in the
application context. See Section 4.3 and Section 4.4 for details on the application_name,
application_class, options and num_options arguments.

XtDisplayInitialize calls XrmSetDatabase to associate the resource database of the default screen
with the display before returning.

To open a display, initialize it, and then add it to an application context, use XtOpenDisplay .

Window Management (X11R5): X Toolkit Intrinsics 39
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Initialising the X Toolkit Widget Instantiation

Display *XtOpenDisplay(app_context , display_string ,
application_name , application_class , \
options , num_options , argc , argv)

XtAppContext app_context ;
String display_string ;
String application_name ;
String application_class ;
XrmOptionDescRec * options ;
Cardinal num_options ;
int * argc ;
String * argv ;

app_context Specifies the application context.

display_string Specifies the display string, or NULL.

application_name Specifies the name of the application instance, or NULL.

application_class Specifies the class name of this application, which is usually the generic name
for all instances of this application.

options Specifies how to parse the command line for any application-specific
resources. The options argument is passed as a parameter to
XrmParseCommand .

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line parameters.

argv Specifies the list of command line parameters.

The XtOpenDisplay function calls XOpenDisplay with the specified display_string. If display_string
is NULL, XtOpenDisplay uses the current value of the −display option specified in argv. If no
display is specified in argv, the user’s default display is retrieved from the environment. On
POSIX-based systems, this is the value of the DISPLAY environment variable.

If this succeeds, XtOpenDisplay then calls XtDisplayInitialize and passes it the opened display and
the value of the −name option specified in argv as the application name. If no −name option is
specified and application_name is non-NULL, application_name is passed to XtDisplayInitialize . If
application_name is NULL and if the environment variable RESOURCE_NAME is set, the value of
RESOURCE_NAME is used. Otherwise, the application name is the name used to invoke the
program. On implementations that conform to ANSI C Hosted Environment support, the
application name will be argv[0] less any directory and file type components; that is, the final
component of argv[0], if specified. If argv[0] does not exist or is the empty string, the application
name is ‘‘main’’. XtOpenDisplay returns the newly opened display or NULL if it failed.

To close a display and remove it from an application context, use XtCloseDisplay .

void XtCloseDisplay(display)
Display * display ;

display Specifies the display.

The XtCloseDisplay function calls XCloseDisplay with the specified display as soon as it is safe to
do so. If called from within an event dispatch (for example, a callback procedure),
XtCloseDisplay does not close the display until the dispatch is complete. Note that applications
need only call XtCloseDisplay if they are to continue executing after closing the display;
otherwise, they should call XtDestroyApplicationContext or just exit.

40 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Instantiation Establishing the Locale

4.2 Establishing the Locale
Resource databases are specified to be created in the current process locale. During display
initialisation prior to creating the per-screen resource database, the Intrinsics will call out to a
specified application procedure to set the locale according to options found on the command
line or in the per-display resource specifications.

The callout procedure provided by the application is of type XtLanguageProc .

typedef String (*XtLanguageProc)(Display*, String, XtPointer);
Display * display ;
String language ;
XtPointer client_data ;

display Passes the display.

language Passes the initial language value obtained from the command line or server
per-display resource specifications.

client_data Passes the additional client data specified in the call to XtSetLanguageProc .

The language procedure allows an application to set the locale to the value of the language
resource determined by XtDisplayInitialize . The function returns a new language string that will
be subsequently used by XtDisplayInitialize to establish the path for loading resource files. The
returned string will be copied by the Intrinsics into new memory.

Initially, no language procedure is set by the Intrinsics. To set the language procedure for use by
XtDisplayInitialize use XtSetLanguageProc .

XtLanguageProc XtSetLanguageProc(app_context , proc , client_data)
XtAppContext app_context ;
XtLanguageProc proc ;
XtPointer client_data ;

app_context Specifies the application context in which the language procedure is to be
used, or NULL.

proc Specifies the language procedure.

client_data Specified additional client data to be passed to the language procedure when
it is called.

XtSetLanguageProc sets the language procedure that will be called from XtDisplayInitialize for all
subsequent Displays initialised in the specified application context. If app_context is NULL, the
specified language procedure is registered in all application contexts created by the calling
process, including any future application contexts that may be created. If proc is NULL a default
language procedure is registered. XtSetLanguageProc returns the previously registered language
procedure. If a language procedure has not yet been registered, the return value is unspecified
but if this return value is used in a subsequent call to XtSetLanguageProc , it will cause the default
language procedure to be registered.

The default language procedure does the following:

• Sets the locale according to the environment. On ANSI C-based systems this is done by
calling setlocale (LC_ALL, language). If an error is encountered a warning message is issued
with XtWarning .

• Calls XSupportsLocale to verify that the current locale is supported. If the locale is not
supported, a warning message is issued with XtWarning and the locale is set to ‘‘C’’.

Window Management (X11R5): X Toolkit Intrinsics 41
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Establishing the Locale Widget Instantiation

• Calls XSetLocaleModifiers specifying the empty string.

• Returns the value of the current locale. On ANSI C-based systems this is the return value
from a final call to setlocale (LC_ALL, NULL).

A client wishing to use this mechanism to establish locale can do so by calling XtSetLanguageProc
prior to XtDisplayInitialize , as in the following example:

Widget top;
XtSetLanguageProc(NULL, NULL, NULL);
top = XtAppInitialize(...);
...

42 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Instantiation Loading the Resource Database

4.3 Loading the Resource Database
The XtDisplayInitialize function first determines the language string to be used for the specified
display. It then creates a resource database for the default screen of the display by combining
the following sources in order, with the entries in the first named source having highest
precedence:

• application command line (argc, argv)

• per-host user environment resource file on the local host

• per-screen resource specifications from the server

• per-display resource specifications from the server or from the user preference file on the
local host.

• application-specific user resource file on the local host

• application-specific class resource file on the local host.

When the resource database for a particular screen on the display is needed (either internally, or
when XtScreenDatabase is called), it is created in the following manner using the sources listed
above in the same order:

• A temporary database, the ‘‘server resource database’’, is created from the string returned by
XResourceManagerString or, if XResourceManagerString returns NULL, the contents of a
resource file in the user’s home directory. On POSIX-based systems, the usual name for this
user preference resource file is $HOME/.Xdefaults.

• If a language procedure has been set, XtDisplayInitialize first searches the command line for
the option ‘‘-xnlLanguage’’, or for a -xrm option that specifies the xnlLanguage/XnlLanguage
resource, as specified by Section 4.4. If such a resource is found, the value is assumed to be
entirely in XPCS, the X Portable Character Set. If neither option is specified on the command
line, XtDisplayInitialize queries the server resource database (which is assumed to be entirely
in XPCS) for the resource name.xnlLanguage, class Class.XnlLanguage where name and Class
are the application_name and application_class specified to XtDisplayInitialize . The language
procedure is then invoked with the resource value if found, else the empty string. The string
returned from the language procedure is saved for all future references in the Intrinsics that
require the per-display language string.

• The screen resource database is initialised by parsing the command line in the manner
specified by Section 4.4.

• If a language procedure has not been set, the initial database is then queried for the resource
name.xnlLanguage, class Class.XnlLanguage as specified above. If this database query fails,
the server resource database is queried; if this query also fails, the language is determined
from the environment; on POSIX-based systems, this is done by retrieving the value of the
LANG environment variable. If no language string is found, the empty string is used. This
language string is saved for all future references in the Intrinsics that require the per-display
language string.

• After determining the language string, the user’s environment resource file is then merged
into the initial resource database if the file exists. This file is user-, host-, and process-specific
and is expected to contain user preferences that are to override those specifications in the
per-display and per-screen resources. On POSIX-based systems, the user’s environment
resource file name is specified by the value of the XENVIRONMENT environment variable.
If this environment variable does not exist, the user’s home directory is searched for a file
named .Xdefaults-host , where host is the host name of the machine on which the application is
running.

Window Management (X11R5): X Toolkit Intrinsics 43
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Loading the Resource Database Widget Instantiation

• The per-screen resource specifications are then merged into the screen resource database, if
they exist. These specifications are the string returned by XScreenResourceString for the
respective screen and are owned entirely by the user.

• Next, the server resource database created earlier is merged into the screen resource
database. The server property, and corresponding user preference file, are owned and
constructed entirely by the user.

• The application-specific user resource file from the local host is then merged into the screen
resource database. This file contains user customisations and is stored in a directory owned
by the user. Either the user or the application or both can store resource specifications in the
file. Each should be prepared to find and respect entries made by the other. The file name is
found by calling XrmSetDatabase with the current screen resource database, after preserving
the original display-associated database, then calling XtResolvePathname with the parameters
(display, NULL, NULL, NULL, path, NULL, 0, NULL) where path is defined in an operating-
system-specific way. On POSIX-based systems, path is defined to be the value of the
environment variable XUSERFILESEARCHPATH if this is defined. If
XUSERFILESEARCHPATH is not defined, an implementation-dependent default value is
used. This default value is constrained in the following manner:

— If the environment variable XAPPLRESDIR is not defined, the default
XUSERFILESEARCHPATH must contain at least six entries. These entries must contain
$HOME as the directory prefix, plus the following substitutions:

1. %C, %N, %L or %C, %N, %l, %t, %c
2. %C, %N, %l
3. %C, %N
4. %N, %L or %N, %l, %t, %c
5. %N, %l
6. %N

The order of these six entries within the path must be as given above. The order and use
of substitutions within a given entry is implementation-dependent.

— If XAPPLRESDIR is defined, the default XUSERFILESEARCHPATH must contain at least
seven entries. These entries must contain the following directory prefixes and
substitutions:

1. $XAPPLRESDIR with %C, %N, %L or %C, %N, %l, %t, %c
2. $XAPPLRESDIR with %C, %N, %l
3. $XAPPLRESDIR with %C, %N
4. $XAPPLRESDIR with %N, %L or %N, %l, %t, %c
5. $XAPPLRESDIR with %N, %l
6. $XAPPLRESDIR with %N
7. $HOME with %N

The order of these seven entries within the path must be as given above. The order and
use of substitutions within a given entry is implementation-dependent.

• Lastly, the application-specific class resource file from the local host is merged into the screen
resource database. This file is owned by the application and is usually installed in a system
directory when the application is installed. It may contain site-wide customisations specified
by the system manager. The name of the application class resource file is found by calling
XtResolvePathname with the parameters (display, ‘‘app-defaults’’, NULL, NULL, NULL,
NULL, 0, NULL). This file is expected to be provided by the developer of the application and
may be required for the application to function properly. A simple application that wants to
be assured of having a minimal set of resources in the absence of its class resource file can

44 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Instantiation Loading the Resource Database

declare fallback resource specifications with XtAppSetFallbackResources . Note that the
customisation substitution string is retrieved dynamically by XtResolvePathname so that the
resolved file name of the application class resource file can be affected by any of the earlier
sources for the screen resource database, even though the contents of the class resource file
have lowest precedence. After calling XtResolvePathname , the original display-associated
database is restored.

To obtain the resource database for a particular screen, use XtScreenDatabase.

XrmDatabase XtScreenDatabase(screen)
Screen * screen ;

screen Specifies the screen whose resource database is to be returned.

The XtScreenDatabase function returns the fully merged resource database as specified above,
associated with the specified screen. If the specified screen does not belong to a Display
initialised by XtDisplayInitialize , the results are undefined.

To obtain the default resource database associated with a particular display, use XtDatabase .

XrmDatabase XtDatabase(display)
Display * display ;

display Specifies the display.

The XtDatabase function is equivalent to XrmGetDatabase. It returns the database associated with
the specified display, or NULL if a database has not been set.

To specify a default set of resource values that will be used to initialize the resource database if
no application-specific class resource file is found (the last of the six sources listed above), use
XtAppSetFallbackResources .

void XtAppSetFallbackResources(app_context , specification_list)
XtAppContext app_context ;
String * specification_list ;

app_context Specifies the application context in which the fallback specifications will be
used.

specification_list Specifies a NULL-terminated list of resource specifications to preload the
database, or NULL.

Each entry in specification_list points to a string in the format of XrmPutLineResource. Following a
call to XtAppSetFallbackResources , when a resource database is being created for a particular
screen and the Intrinsics are not able to find or read an application-specific class resource file
according to the rules given above and if specification_list is not NULL the resource specifications
in specification_list will be merged into the screen resource database in place of the application-
specific class resource file. XtAppSetFallbackResources is not required to copy specification_list; the
caller must ensure that the contents of the list and of the strings addressed by the list remain
valid until all displays are initialised or until XtAppSetFallbackResources is called again. The
value NULL for specification_list removes any previous fallback resource specification for the
application context. The intended use for fallback resources is to provide a minimal number of
resources that will make the application usable (or at least terminate with helpful diagnostic
messages) when some problem exists in finding and loading the application defaults file.

Window Management (X11R5): X Toolkit Intrinsics 45
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Parsing the Command Line Widget Instantiation

4.4 Parsing the Command Line
The XtOpenDisplay function first parses the command line for the following options:

−display Specifies the display name for XOpenDisplay .

−name Sets the resource name prefix, which overrides the application name passed to
XtOpenDisplay .

−xnllanguage Specifies the initial language string for establishing locale and for finding
application class resource files.

XtDisplayInitialize has a table of standard command line options that are
passed to XrmParseCommand for adding resources to the resource database,
and it takes as a parameter additional application-specific resource
abbreviations. The format of this table is described in the Xlib — C Language
Binding specification.

typedef enum {
XrmoptionNoArg, /* Value is specified in

OptionDescRec.value */
XrmoptionIsArg, /* Value is the option string itself */
XrmoptionStickyArg, /* Value is characters immediately

following option */
XrmoptionSepArg, /* Value is next argument in argv */
XrmoptionResArg, /* Use the next argument as input to

XrmPutLineResource*/
XrmoptionSkipArg, /* Ignore this option and the next

argument in argv */
XrmoptionSkipNArgs, /* Ignore this option and the next */

/* OptionDescRec.value arguments in argv */
XrmoptionSkipLine /* Ignore this option and the rest of argv */

} XrmOptionKind;

typedef struct {
char *option; /* Option name in argv */
char *specifier; /* Resource name (without application name) */
XrmOptionKind argKind; /* Location of the resource value */
XPointer value; /* Value to provide if XrmoptionNoArg */

} XrmOptionDescRec, *XrmOptionDescList;

46 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Instantiation Parsing the Command Line

The standard table contains the following entries:

Option String Resource Name Argument Kind Resource Value
−background *background SepArg next argument
−bd *borderColor SepArg next argument
−bg *background SepArg next argument
−borderwidth .borderWidth SepArg next argument
−bordercolor *borderColor SepArg next argument
−bw .borderWidth SepArg next argument
−display .display SepArg next argument
−fg *foreground SepArg next argument
−fn *font SepArg next argument
−font *font SepArg next argument
−foreground *foreground SepArg next argument
−geometry .geometry SepArg next argument
−iconic .iconic NoArg ‘‘true’’
−name .name SepArg next argument
−reverse .reverseVideo NoArg ‘‘on’’
−rv .reverseVideo NoArg ‘‘on’’
+rv .reverseVideo NoArg ‘‘off’’
−selectionTimeout .selectionTimeout SepArg next argument
−synchronous .synchronous NoArg ‘‘on’’
+synchronous .synchronous NoArg ‘‘off’’
−title .title SepArg next argument
−xnllanguage .xnlLanguage SepArg next argument
−xrm next argument ResArg next argument

Note: Any unique abbreviation for an option name in the standard table or in the application
table is accepted.

If reverseVideo is True, the values of XtDefaultForeground and XtDefaultBackground are
exchanged for all screens on the Display.

The value of the synchronous resource specifies whether or not Xlib is put into synchronous
mode. If a value is found in the resource database during display initialisation,
XtDisplayInitialize makes a call to XSynchronize for all display connections currently open in the
application context. Therefore, when multiple displays are initialised in the same application
context, the most recent value specified for the synchronous resource is used for all displays in
the application context.

The value of the selectionTimeout resource applies to all displays opened in the same
application context. When multiple displays are initialised in the same application context, the
most recent value specified is used for all displays in the application context.

The −xrm option provides a method of setting any resource in an application. The next
argument should be a quoted string identical in format to a line in the user resource file. For
example, to give a red background to all command buttons in an application named xmh, you
can start it up as:

xmh −xrm ’xmh*Command.background: red’

When it parses the command line, XtDisplayInitialize merges the application option table with
the standard option table before calling the Xlib XrmParseCommand function. An entry in the
application table with the same name as an entry in the standard table overrides the standard
table entry. If an option name is a prefix of another option name, both names are kept in the
merged table.

Window Management (X11R5): X Toolkit Intrinsics 47
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Parsing the Command Line Widget Instantiation

The Intrinsics reserve all option names beginning with the characters ‘‘-xt’’ for future standard
uses.

48 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Instantiation Creating Widgets

4.5 Creating Widgets
The creation of widget instances is a three-phase process:

1. The widgets are allocated and initialised with resources and are optionally added to the
managed subset of their parent.

2. All composite widgets are notified of their managed children in a bottom-up traversal of
the widget tree.

3. The widgets create X windows, which then are mapped.

To start the first phase, the application calls XtCreateWidget for all its widgets and adds some
(usually, most or all) of its widgets to their respective parents’ managed set by calling
XtManageChild .
To avoid an O (n2) creation process where each composite widget lays itself out each time a
widget is created and managed, parent widgets are not notified of changes in their managed set
during this phase.

After all widgets have been created, the application calls XtRealizeWidget with the top-level
widget to execute the second and third phases. XtRealizeWidget first recursively traverses the
widget tree in a postorder (bottom-up) traversal and then notifies each composite widget with
one or more managed children by means of its change_managed procedure.

Notifying a parent about its managed set involves geometry layout and possibly geometry
negotiation. A parent deals with constraints on its size imposed from above (for example, when
a user specifies the application window size) and suggestions made from below (for example,
when a primitive child computes its preferred size). One difference between the two can cause
geometry changes to ripple in both directions through the widget tree. The parent may force
some of its children to change size and position and may issue geometry requests to its own
parent in order to better accommodate all its children. You cannot predict where anything will
go on the screen until this process finishes.

Consequently, in the first and second phases, no X windows are actually created, because it is
likely that they will get moved around after creation. This avoids unnecessary requests to the X
server.

Finally, XtRealizeWidget starts the third phase by making a preorder (top-down) traversal of the
widget tree, allocates an X window to each widget by means of its realize procedure, and finally
maps the widgets that are managed.

4.5.1 Creating and Merging Argument Lists

Many Intrinsics functions may be passed pairs of resource names and values. These are passed
as an arglist, a pointer to an array of Arg structures, which contains:

typedef struct {
String name;
XtArgVal value;

} Arg, *ArgList;

where XtArgVal is as defined in Section 3.5.

If the size of the resource is less than or equal to the size of an XtArgVal , the resource value is
stored directly in value; otherwise, a pointer to it is stored in value.

To set values in an ArgList, use XtSetArg.

Window Management (X11R5): X Toolkit Intrinsics 49
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Creating Widgets Widget Instantiation

void XtSetArg(arg , name, value)
Arg arg ;
String name;
XtArgVal value ;

arg Specifies the name/value pair to set.

name Specifies the name of the resource.

value Specifies the value of the resource if it will fit in an XtArgVal , else the address.

The XtSetArg function is usually used in a highly stylised manner to minimize the probability of
making a mistake; for example:

Arg args[20];
int n;

n = 0;
XtSetArg(args[n], XtNheight, 100); n++;
XtSetArg(args[n], XtNwidth, 200); n++;
XtSetValues(widget, args, n);

Alternatively, an application can statically declare the argument list and use XtNumber:

static Args args[] = {
{XtNheight, (XtArgVal) 100},
{XtNwidth, (XtArgVal) 200},

};
XtSetValues(Widget, args, XtNumber(args));

Note that you should not use expressions with side effects such as auto-increment or auto-
decrement within the first argument to XtSetArg. XtSetArg can be implemented as a macro that
evaluates the first argument twice.

To merge two arglist arrays, use XtMergeArgLists.

ArgList XtMergeArgLists(args1 , num_args1 , args6 ,
num_args2)

ArgList args1 ;
Cardinal num_args1 ;
ArgList args2 ;
Cardinal num_args2 ;

args1 Specifies the first argument list.

num_args1 Specifies the number of entries in the first argument list.

args2 Specifies the second argument list.

num_args2 Specifies the number of entries in the second argument list.

The XtMergeArgLists function allocates enough storage to hold the combined arglist arrays and
copies them into it. Note that it does not check for duplicate entries. The length of the returned
list is the sum of the lengths of the specified lists. When it is no longer needed, free the returned
storage by using XtFree.

All Intrinsics interfaces that require ArgList arguments have analogs conforming to the ANSI C
variable argument list (traditionally called ‘‘varargs’’) calling convention. The name of the
analog is formed by prefixing ‘‘Va’’ to the name of the corresponding ArgList procedure; for
example, XtVaCreateWidget . Each procedure named XtVasomething takes as its last arguments, in

50 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Instantiation Creating Widgets

place of the corresponding ArgList/ Cardinal parameters, a variable parameter list of resource
name and value pairs where each name is of type String and each value is of type XtArgVal . The
end of the list is identified by a name entry containing NULL. Developers writing in the C
language wishing to pass resource name and value pairs to any of these interfaces may use the
ArgList and varargs forms interchangeably.

Two special names are defined for use only in varargs lists: XtVaTypedArg and XtVaNestedList.

#define XtVaTypedArg "XtVaTypedArg"

If the name XtVaTypedArg is specified in place of a resource name, then the following four
arguments are interpreted as a name/type/value/size tuple where name is of type String , type is of
type String , value is of type XtArgVal , and size is of type int. When a varargs list containing
XtVaTypedArg is processed, a resource type conversion (see Section 11.6) is performed if
necessary to convert the value into the format required by the associated resource. If type is
XtRString then value contains a pointer to the string and size contains the number of bytes
allocated, including the trailing null byte. If type is not XtRString, then if size is less than or equal
to sizeof(XtArgVal), the value should be the data cast to the type XtArgVal , otherwise value is a
pointer to the data. If the type conversion fails for any reason, a warning message is issued and
the list entry is skipped.

#define XtVaNestedList "XtVaNestedList"

If the name XtVaNestedList is specified in place of a resource name, then the following argument
is interpreted as an XtVarArgsList value, which specifies another varargs list that is logically
inserted into the original list at the point of declaration. The end of the nested list is identified
with a name entry containing NULL. Varargs lists may nest to any depth.

To dynamically allocate a varargs list for use with XtVaNestedList in multiple calls, use
XtVaCreateArgsList .

typedef XtPointer XtVarArgsList;

XtVarArgsList XtVaCreateArgsList(unused , ...)
XtPointer unused ;

unused This argument is not currently used and must be specified as NULL.

... Specifies a variable parameter list of resource name and value pairs.

The XtVaCreateArgsList function allocates memory and copies its arguments into a single list
pointer, which may be used with XtVaNestedList. The end of both lists is identified by a name
entry containing NULL. Any entries of type XtVaTypedArg are copied as specified without
applying conversions. Data passed by reference (including Strings) are not copied, only the
pointers themselves; the caller must ensure that the data remain valid for the lifetime of the
created varargs list. The list should be freed using XtFree when no longer needed.

Use of resource files and the resource database is generally encouraged over lengthy arglist or
varargs lists whenever possible in order to permit modification without recompilation.

Window Management (X11R5): X Toolkit Intrinsics 51
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Creating Widgets Widget Instantiation

4.5.2 Creating a Widget Instance

To create an instance of a widget, use XtCreateWidget .

Widget XtCreateWidget(name, object_class , parent ,
args , num_args)

String name;
WidgetClass object_class ;
Widget parent ;
ArgList args ;
Cardinal num_args ;

name Specifies the resource instance name for the created widget, which is used for
retrieving resources and, for that reason, should not be the same as any other
widget that is a child of the same parent.

object_class Specifies the widget class pointer for the created object. Must be objectClass or
any subclass thereof.

parent Specifies the parent widget. Must be of a classObject or any subclass thereof.

args Specifies the argument list to override any other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtCreateWidget function performs all the boilerplate operations of widget creation, doing the
following in order:

• Checks to see if the class_initialize procedure has been called for this class and for all
superclasses and, if not, calls those necessary in a superclass-to-subclass order.

• If the specified class is not coreWidgetClass or a subclass thereof, and the parent’s class is a
subclass of compositeWidgetClass and either no extension record in the parent’s composite
class part extension field exists with the record_type NULLQUARK or the accepts_objects field
in the extension record is False , XtCreateWidget issues a fatal error; see Section 5.1 and
Chapter 14.

• Allocates memory for the widget instance.

• If the parent is a member of the class constraintWidgetClass , allocates memory for the parent’s
constraints and stores the address of this memory into the constraints field.

• Initialises the Core non-resource data fields (for example, parent and visible).

• Initialises the resource fields (for example, background_pixel) by using the CoreClassPart
resource lists specified for this class and all superclasses.

• If the parent is a member of the class constraintWidgetClass , initializes the resource fields of
the constraints record by using the ConstraintClassPart resource lists specified for the parent’s
class and all superclasses up to constraintWidgetClass .

• Calls the initialize procedures for the widget starting at the Object initialize procedure on
down to the widget’s initialize procedure.

• If the parent is a member of the class compositeWidgetClass , puts the widget into its parent’s
children list by calling its parent’s insert_child procedure. For further information, see
Section 5.1.

• If the parent is a member of the class constraintWidgetClass , calls the ConstraintClassPart
initialize procedures, starting at constraintWidgetClass on down to the parent’s
ConstraintClassPart initialize procedure.

52 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Instantiation Creating Widgets

To create an instance of a widget using varargs lists, use XtVaCreateWidget .

Widget XtVaCreateWidget(name, object_class , parent , ...)
String name;
WidgetClass object_class ;
Widget parent ;

name Specifies the resource name for the created widget.

object_class Specifies the widget class pointer for the created object. Must be objectClass or
any subclass thereof.

parent Specifies the parent widget. Must be of a classObject or any subclass thereof.

... Specifies the variable argument list to override any other resource
specifications.

The XtVaCreateWidget procedure is identical in function to XtCreateWidget with the args and
num_args parameters replaced by a varargs list, as described in Section 4.5.1.

4.5.3 Creating an Application Shell Instance

An application can have multiple top-level widgets, each of which specifies a unique widget tree
which can potentially be on different screens or displays. An application uses XtAppCreateShell
to create independent widget trees.

Widget XtAppCreateShell(name, application_class ,
widget_class , display , \
args , num_args)

String name;
String application_class ;
WidgetClass widget_class ;
Display * display ;
ArgList args ;
Cardinal num_args ;

name Specifies the instance name of the shell widget. If name is NULL, the
application name passed to XtDisplayInitialize is used.

application_class Specifies the resource class string to be used in place of the widget class_name
string when widget_class is applicationShellWidgetClass or a subclass thereof.

widget_class Specifies the widget class for the top-level widget (for example,
applicationShellWidgetClass)

display Specifies the display for the default screen and for the resource database used
to retrieve the shell widget resources.

args Specifies the argument list to override any other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtAppCreateShell function creates a new shell widget instance as the root of a widget tree.
The screen resource for this widget is determined by first scanning args for the XtNscreen
argument. If no XtNscreen argument is found, the resource database associated with the default
screen of the specified display is queried for the resource name.screen, class Class.Screen where
Class is the specified application_class if widget_class is applicationShellWidgetClass or a subclass
thereof. If widget_class is not applicationShellWidgetClass or a subclass, Class is the class_name field
from the CoreClassPart of the specified widget_class. If this query fails, the default screen of the
specified display is used. Once the screen is determined, the resource database associated with

Window Management (X11R5): X Toolkit Intrinsics 53
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Creating Widgets Widget Instantiation

that screen is used to retrieve all remaining resources for the shell widget not specified in args.
The widget name and Class as determined above are used as the leftmost (that is, root)
components in all fully qualified resource names for objects within this widget tree.

If the specified widget class is a subclass of WMShell, the name and Class as determined above
will be stored into the WM_CLASS property on the widget’s window when it becomes realised.
If the specified widget_class is applicationShellWidgetClass or a subclass thereof the
WM_COMMAND property will also be set from the values of the XtNargv and XtNargc
resources.

To create multiple top-level shells within a single (logical) application, you can use one of two
methods:

• designate one shell as the real top-level shell and create the others as pop-up children of it by
using XtCreatePopupShell

• have all shells as pop-up children of an unrealised top-level shell.

The first method, which is best used when there is a clear choice for what is the main window,
leads to resource specifications like the following:

xmail.geometry:... (the main window)
xmail.read.geometry:... (the read window)
xmail.compose.geometry:... (the compose window)

The second method, which is best if there is no main window, leads to resource specifications
like the following:

xmail.headers.geometry:... (the headers window)
xmail.read.geometry:... (the read window)
xmail.compose.geometry:... (the compose window)

To create a top-level widget that is the root of a widget tree using varargs lists, use
XtVaAppCreateShell .

Widget XtVaAppCreateShell(name, application_class ,
widget_class , display , ...)

String name;
String application_class ;
WidgetClass widget_class ;
Display * display ;

name Specifies the instance name of the shell widget. If name is NULL, the
application name passed to XtDisplayInitialize is used.

application_class Specifies the resource class string to be used in place of the widget class_name
string when widget_class is applicationShellWidgetClass or a subclass thereof.

widget_class Specifies the widget class for the top-level widget.

display Specifies the display for the default screen and for the resource database used
to retrieve the shell widget resources.

... Specifies the variable argument list to override any other resource
specifications.

The XtVaAppCreateShell procedure is identical in function to XtAppCreateShell with the args and
num_args parameters replaced by a varargs list, as described in Section 4.5.1.

54 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Instantiation Creating Widgets

4.5.4 Convenience Procedure to Initialise an Application

To initialize the Intrinsics internals, create an application context, open and initialize a display,
and create the initial application shell instance, an application may use XtAppInitialize or
XtVaAppInitialize .

Widget XtAppInitialize(app_context_return , application_class ,
options , num_options , \
argc_in_out , argv_in_out , fallback_resources ,
args , num_args)

XtAppContext * app_context_return ;
String application_class ;
XrmOptionDescList options ;
Cardinal num_options ;
int * argc_in_out ;
String * argv_in_out ;
String * fallback_resources ;
ArgList args ;
Cardinal num_args ;

app_context_returnReturns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entries in options.

argc_in_out Specifies a pointer to the number of command line arguments.

argv_in_out Specifies a pointer to the command line arguments.

fallback_resources Specifies resource values to be used if the application class resource file cannot
be opened or read, or NULL.

args Specifies the argument list to override any other resource specifications for the
created shell widget.

num_args Specifies the number of entries in the argument list.

The XtAppInitialize function calls XtToolkitInitialize followed by XtCreateApplicationContext , then
calls XtOpenDisplay with display_string NULL and application_name NULL, and finally calls
XtAppCreateShell with application_name NULL, widget_class applicationShellWidgetClass , and the
specified args and num_args and returns the created shell. The modified argc and argv returned
by XtDisplayInitialize are returned in argc_in_out and argv_in_out. If app_context_return is not
NULL, the created application context is also returned. If the display specified by the command
line cannot be opened, an error message is issued and XtAppInitialize terminates the application.
If fallback_resources is non-NULL, XtAppSetFallbackResources is called with the value prior to
calling XtOpenDisplay .

Window Management (X11R5): X Toolkit Intrinsics 55
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Creating Widgets Widget Instantiation

Widget XtVaAppInitialize(app_context_return , application_class ,
options , num_options , \
argc_in_out , argv_in_out , fallback_resources , ...)

XtAppContext * app_context_return ;
String application_class ;
XrmOptionDescList options ;
Cardinal num_options ;
int * argc_in_out ;
String * argv_in_out ;
String * fallback_resources ;

app_context_returnReturns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entries in options.

argc_in_out Specifies a pointer to the number of command line arguments.

argv_in_out Specifies the command line arguments array.

fallback_resources Specifies resource values to be used if the application class resource file cannot
be opened, or NULL.

... Specifies the variable argument list to override any other resource
specifications for the created shell.

The XtVaAppInitialize procedure is identical in function to XtAppInitialize with the args and
num_args parameters replaced by a varargs list, as described in Section 4.5.1.

4.5.5 Widget Instance Initialisation: initialize Procedure

The initialize procedure pointer in a widget class is of type XtInitProc .

typedef void (*XtInitProc)(Widget, Widget, ArgList, Cardinal*);
Widget request ;
Widget new;
ArgList args ;
Cardinal * num_args ;

request Specifies a copy of the widget with resource values as requested by the
argument list, the resource database, and the widget defaults.

new Specifies the widget with the new values, both resource and non-resource,
that are actually allowed.

args Specifies the argument list passed by the client, for computing derived
resource values. If the client created the widget using a varargs form, any
resources specified via XtVaTypedArg are converted to the widget
representation and the list is transformed into the ArgList format.

num_args Specifies the number of entries in the argument list.

An initialisation procedure performs the following:

• Allocates space for and copies any resources referenced by address that the client is allowed
to free or modify after the widget has been created. For example, if a widget has a field that
is a String , it may choose not to depend on the characters at that address remaining constant
but dynamically allocate space for the string and copy it to the new space. Widgets that do

56 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Instantiation Creating Widgets

not copy one or more resources referenced by address should clearly so state in their user
documentation.

Note: It is not necessary to allocate space for or to copy callback lists.

• Computes values for unspecified resource fields. For example, if width and height are zero,
the widget should compute an appropriate width and height based on its other resources.

Note: A widget may only directly assign its own width and height within the initialize,
initialize_hook, set_values and set_values_hook procedures; see Chapter 8.

• Computes values for uninitialised non-resource fields that are derived from resource fields.
For example, graphics contexts (GCs) that the widget uses are derived from resources like
background, foreground, and font.

An initialisation procedure also can check certain fields for internal consistency. For example, it
makes no sense to specify a colormap for a depth that does not support that colormap.

Initialisation procedures are called in superclass-to-subclass order after all fields specified in the
resource lists have been initialised. The initialize procedure does not need to examine args and
num_args if all public resources are declared in the resource list. Most of the initialisation code
for a specific widget class deals with fields defined in that class and not with fields defined in its
superclasses.

If a subclass does not need an initialisation procedure because it does not need to perform any of
the above operations, it can specify NULL for the initialize field in the class record.

Sometimes a subclass may want to overwrite values filled in by its superclass. In particular, size
calculations of a superclass are often incorrect for a subclass, and in this case, the subclass must
modify or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass display. In this case, the width
and height calculated by the superclass initialize procedure are too small and need to be
incremented by the size of the surround. The subclass needs to know if its superclass’s size was
calculated by the superclass or was specified explicitly. All widgets must place themselves into
whatever size is explicitly given, but they should compute a reasonable size if no size is
requested.

The request and new arguments provide the necessary information for a subclass to determine the
difference between an explicitly specified field and a field computed by a superclass. The request
widget is a copy of the widget as initialised by the arglist and resource database. The new
widget starts with the values in the request, but it has been updated by all superclass
initialisation procedures called so far. A subclass initialize procedure can compare these two to
resolve any potential conflicts.

In the above example, the subclass with the visual surround can see if the width and height in the
request widget are zero. If so, it adds its surround size to the width and height fields in the new
widget. If not, it must make do with the size originally specified.

The new widget will become the actual widget instance record. Therefore, the initialisation
procedure should do all its work on the new widget; the request widget should never be modified.
If the initialize procedure needs to call any routines that operate on a widget, it should specify
new as the widget instance.

Window Management (X11R5): X Toolkit Intrinsics 57
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Creating Widgets Widget Instantiation

4.5.6 Constraint Instance Initialisation: ConstraintClassPart initialize Procedure

The constraint initialisation procedure pointer, found in the ConstraintClassPart initialize field of
the widget class record, is of type XtInitProc . The values passed to the parent constraint
initialisation procedures are the same as those passed to the child’s class widget initialisation
procedures.

The constraints field of the request widget points to a copy of the constraints record as initialised
by the arglist and resource database.

The constraint initialisation procedure should compute any constraint fields derived from
constraint resources. It can make further changes to the new widget to make the widget and any
other constraint fields conform to the specified constraints, for example, changing the widget’s
size or position.

If a constraint class does not need a constraint initialisation procedure, it can specify NULL for
the initialize field of the ConstraintClassPart in the class record.

4.5.7 Non-widget Data Initialisation: initialize_hook Procedure

Note: The initialize_hook procedure is obsolete, as the same information is now available to
the initialize procedure. The procedure has been retained for those widgets that used it
in previous releases.

The initialize_hook procedure pointer is of type XtArgsProc :

typedef void (*XtArgsProc)(Widget, ArgList, Cardinal*);
Widget w;
ArgList args ;
Cardinal * num_args ;

w Specifies the widget.

args Specifies the argument list passed by the client. If the client created the
widget using a varargs form, any resources specified via XtVaTypedArg are
converted to the widget representation and the list is transformed into the
ArgList format.

num_args Specifies the number of entries in the argument list.

If this procedure is not NULL, it is called immediately after the corresponding initialize
procedure or in its place if the initialize field is NULL.

The initialize_hook procedure allows a widget instance to initialize non-resource data using
information from the specified argument list as if it were a resource.

58 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Instantiation Realising Widgets

4.6 Realising Widgets
To realize a widget instance, use XtRealizeWidget .

void XtRealizeWidget(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

If the widget is already realised, XtRealizeWidget simply returns. Otherwise it performs the
following:

• Binds all action names in the widget’s translation table to procedures (see Section 12.1.2).

• Makes a postorder traversal of the widget tree rooted at the specified widget and calls each
non-NULL change_managed procedure of all composite widgets that have one or more
managed children.

• Constructs an XSetWindowAttributes structure filled in with information derived from the
Core widget fields and calls the realize procedure for the widget, which adds any widget-
specific attributes and creates the X window.

• If the widget is not a subclass of compositeWidgetClass , XtRealizeWidget returns; otherwise it
continues and performs the following:

— Descends recursively to each of the widget’s managed children and calls the realize
procedures. Primitive widgets that instantiate children are responsible for realising those
children themselves.

— Maps all of the managed children windows that have mapped_when_managed True. If a
widget is managed but mapped_when_managed is False , the widget is allocated visual space
but is not displayed.

If the widget is a top-level shell widget (that is, it has no parent), and mapped_when_managed
is True, XtRealizeWidget maps the widget window.

XtCreateWidget , XtVaCreateWidget , XtRealizeWidget , XtManageChildren , XtUnmanageChildren ,
XtUnrealizeWidget , XtSetMappedWhenManaged and XtDestroyWidget maintain the following
invariants:

• If a composite widget is realised, then all its managed children are realised.

• If a composite widget is realised, then all its managed children that have
mapped_when_managed True are mapped.

All Intrinsics functions and all widget routines should accept either realised or unrealised
widgets. When calling the realize or change_managed procedures for children of a composite
widget, XtRealizeWidget calls the procedures in reverse order of appearance in the CompositePart
children list. By default, this ordering of the realize procedures will result in the stacking order of
any newly created subwindows being top-to-bottom in the order of appearance on the list, and
the most recently created child will be at the bottom.

To check whether or not a widget has been realised, use XtIsRealized .

Boolean XtIsRealized(w)
Widget w;

w Specifies the widget. Must be of a classObject or any subclass thereof.

The XtIsRealized function returns True if the widget has been realised; that is, if the widget has a
non-zero window ID. If the specified object is not a widget, the state of the nearest widget
ancestor is returned.

Window Management (X11R5): X Toolkit Intrinsics 59
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Realising Widgets Widget Instantiation

Some widget procedures (for example, set_values) might wish to operate differently after the
widget has been realised.

4.6.1 Widget Instance Window Creation: realize Procedure

The realize procedure pointer in a widget class is of type XtRealizeProc .

typedef void (*XtRealizeProc)(Widget, XtValueMask*,
XSetWindowAttributes*);

Widget w;
XtValueMask * value_mask ;
XSetWindowAttributes * attributes ;

w Specifies the widget.

value_mask Specifies which fields in the attributes structure are used.

attributes Specifies the window attributes to use in the XCreateWindow call.

The realize procedure must create the widget’s window.

Before calling the class realize procedure, the generic XtRealizeWidget function fills in a mask and
a corresponding XSetWindowAttributes structure. It sets the following fields in attributes and
corresponding bits in value_mask based on information in the widget core structure:

• The background_pixmap (or background_pixel if background_pixmap is XtUnspecifiedPixmap) is
filled in from the corresponding field.

• The border_pixmap (or border_pixel if border_pixmap is XtUnspecifiedPixmap) is filled in from the
corresponding field.

• The colormap is filled in from the corresponding field.

• The event_mask is filled in based on the event handlers registered, the event translations
specified, whether the expose field is non-NULL, and whether visible_interest is True.

• The bit_gravity is set to NorthWestGravity if the expose field is NULL.

These or any other fields in attributes and the corresponding bits in value_mask can be set by the
realize procedure.

Note that because realize is not a chained operation, the widget class realize procedure must
update the XSetWindowAttributes structure with all the appropriate fields from non-Core
superclasses.

A widget class can inherit its realize procedure from its superclass during class initialisation.
The realize procedure defined for coreWidgetClass calls XtCreateWindow with the passed
value_mask and attributes and with window_class and visual set to CopyFromParent. Both
compositeWidgetClass and constraintWidgetClass inherit this realize procedure, and most new
widget subclasses can do the same (see Section 3.6.10).

The most common non-inherited realize procedures set bit_gravity in the mask and attributes to
the appropriate value and then create the window. For example, depending on its justification,
Label might set bit_gravity to WestGravity , CenterGravity or EastGravity . Consequently, shrinking
it would just move the bits appropriately, and no exposure event is needed for repainting.

If a composite widget’s children should be realised in an order other than that specified (to
control the stacking order, for example), it should call XtRealizeWidget on its children itself in the
appropriate order from within its own realize procedure.

60 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Instantiation Realising Widgets

Widgets that have children and whose class is not a subclass of compositeWidgetClass are
responsible for calling XtRealizeWidget on their children, usually from within the realize
procedure.

4.6.2 Window Creation Convenience Routine

Rather than call the Xlib XCreateWindow function explicitly, a realize procedure should normally
call the Intrinsics analog XtCreateWindow , which simplifies the creation of windows for widgets.

void XtCreateWindow(w, window_class , visual ,
value_mask , attributes)

Widget w;
unsigned int window_class ;
Visual * visual ;
XtValueMask value_mask ;
XSetWindowAttributes * attributes ;

w Specifies the widget that defines the additional window attributed. Must be of
class Core or any subclass thereof.

window_class Specifies the Xlib window class (for example, InputOutput, InputOnly or
CopyFromParent).

visual Specifies the visual type (usually CopyFromParent).

value_mask Specifies which fields in the attributes structure are used.

attributes Specifies the window attributes to use in the XCreateWindow call.

The XtCreateWindow function calls the Xlib XCreateWindow function with values from the widget
structure and the passed parameters. Then, it assigns the created window to the widget’s
window field.

XtCreateWindow evaluates the following fields of the widget core structure: depth, screen, parent-
>core.window, x, y, width, height and border_width.

Window Management (X11R5): X Toolkit Intrinsics 61
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Obtaining Window Information from a Widget Widget Instantiation

4.7 Obtaining Window Information from a Widget
The Core widget class definition contains the screen and window ids. The window field may be
NULL for a while (see Section 4.5 and Section 4.6).

The display pointer, the parent widget, screen pointer, and window of a widget are available to
the widget writer by means of macros and to the application writer by means of functions.

Display *XtDisplay(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

XtDisplay returns the display pointer for the specified widget.

Widget XtParent(w)
Widget w;

w Specifies the widget. Must be of a classObject or any subclass thereof.

XtParent returns the parent object for the specified widget. he returned object will be of class
Object or a subclass.

Screen *XtScreen(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

XtScreen returns the screen pointer for the specified widget.

Window XtWindow(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

XtWindow returns the window of the specified widget.

The display pointer, screen pointer, and window of a widget or of the closest widget ancestor of
a non-widget object are available by means of XtDisplayOfObject , XtScreenOfObject and
XtWindowOfObject .

Display *XtDisplayOfObject(object)
Widget object ;

object Specifies the object. Must be of a classObject or any subclass thereof.

XtDisplayOfObject is identical in function to XtDisplay if the object is a widget; otherwise
XtDisplayOfObject returns the display pointer for the nearest ancestor of object that is of class
Widget or a subclass thereof.

Screen *XtScreenOfObject(object)
Widget object ;

object Specifies the object. Must be of a classObject or any subclass thereof.

XtScreenOfObject is identical in function to XtScreen if the object is a widget; otherwise
XtScreenOfObject returns the screen pointer for the nearest ancestor of object that is of class
Widget or a subclass thereof.

Window XtWindowOfObject(object)
Widget object ;

object Specifies the object. Must be of a classObject or any subclass thereof.

62 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Instantiation Obtaining Window Information from a Widget

XtWindowOfObject is identical in function to XtWindow if the object is a widget; otherwise
XtWindowOfObject returns the window for the nearest ancestor of object that is of class Widget or
a subclass thereof.

To retrieve the instance name of an object, use XtName.

String XtName(object)
Widget object ;

object Specifies the object whose name is desired. Must be of a classObject or any
subclass thereof.

XtName returns a pointer to the instance name of the specified object. The storage is owned by
the Intrinsics and must not be modified. The name is not qualified by the names of any of the
object’s ancestors.

Several window attributes are locally cached in the widget instance. Thus, they can be set by the
resource manager and XtSetValues as well as used by routines that derive structures from these
values (for example, depth for deriving pixmaps, background_pixel for deriving GCs, and so on) or
in the XtCreateWindow call.

The x, y, width, height and border_width window attributes are available to geometry managers.
These fields are maintained synchronously inside the Intrinsics. When an XConfigureWindow is
issued by the Intrinsics on the widget’s window (on request of its parent), these values are
updated immediately rather than some time later when the server generates a ConfigureNotify
event. (In fact, most widgets do not select SubstructureNotify events.) This ensures that all
geometry calculations are based on the internally consistent toolkit world rather than on either
an inconsistent world updated by asynchronous ConfigureNotify events or a consistent but slow
world in which geometry managers ask the server for window sizes whenever they need to lay
out their managed children (see Chapter 8).

4.7.1 Unrealising Widgets

To destroy the windows associated with a widget and its non-pop-up descendants, use
XtUnrealizeWidget .

void XtUnrealizeWidget(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

If the widget is currently unrealised, XtUnrealizeWidget simply returns. Otherwise it performs
the following:

• Unmanages the widget if the widget is managed.

• Makes a postorder (child-to-parent) traversal of the widget tree rooted at the specified
widget and, for each widget that has declared a callback list resource named
‘‘unrealizeCallback’’, executes the procedures on the XtNunrealizeCallback list.

• Destroys the widget’s window and any subwindows by calling XDestroyWindow with the
specified widget’s window field.

Any events in the queue or which arrive following a call to XtUnrealizeWidget will be dispatched
as if the window(s) of the unrealised widget(s) had never existed.

Window Management (X11R5): X Toolkit Intrinsics 63
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Destroying Widgets Widget Instantiation

4.8 Destroying Widgets
The Intrinsics provide support:

• to destroy all the pop-up children of the widget being destroyed and destroy all children of
composite widgets

• to remove (and unmap) the widget from its parent

• to call the callback procedures that have been registered to trigger when the widget is
destroyed

• to minimize the number of things a widget has to deallocate when destroyed

• to minimize the number of XDestroyWindow calls when destroying a widget tree.

To destroy a widget instance, use XtDestroyWidget.

void XtDestroyWidget(w)
Widget w;

w Specifies the widget. Must be of a classObject or any subclass thereof.

The XtDestroyWidget function provides the only method of destroying a widget, including
widgets that need to destroy themselves. It can be called at any time, including from an
application callback routine of the widget being destroyed. This requires a two-phase destroy
process in order to avoid dangling references to destroyed widgets.

In phase 1, XtDestroyWidget performs the following:

• If the being_destroyed field of the widget is True, it returns immediately.

• Recursively descends the widget tree and sets the being_destroyed field to True for the widget
and all normal and pop-up children.

• Adds the widget to a list of widgets (the destroy list) that should be destroyed when it is safe
to do so.

Entries on the destroy list satisfy the invariant that if w2 occurs after w1 on the destroy list, then
w2 is not a descendent, either normal or pop-up, of w1.

Phase 2 occurs when all procedures that should execute as a result of the current event have
been called, including all procedures registered with the event and translation managers; that is,
when the current invocation of XtDispatchEvent is about to return, or immediately if not in
XtDispatchEvent .

In phase 2, XtDestroyWidget performs the following on each entry in the destroy list in the order
specified:

• Calls the destroy callback procedures registered on the widget and all normal and pop-up
descendants in postorder (it calls child callbacks before parent callbacks).

• If the widget is not a pop-up child and the widget’s parent is a subclass of composite-
WidgetClass , and if the parent is not being destroyed, it calls XtUnmanageChild on the widget
and then calls the widget’s parent’s delete_child procedure (see Section 5.3).

• If the widget is not a pop-up child and the widget’s parent is a subclass of constraint-
WidgetClass , it calls the ConstraintClassPart destroy procedure for the parent, then for the
parent’s superclass, until finally it calls the ConstraintClassPart destroy procedure for
constraintWidgetClass .

• Calls the destroy procedures for the widget and all normal and pop-up descendants in
postorder. For each such widget, it calls the CoreClassPart destroy procedure declared in the

64 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Instantiation Destroying Widgets

widget class, then the destroy procedure declared in its superclass, until finally it calls the
destroy procedure declared in the Object class record.

• Calls XDestroyWindow if the specified widget is realised (that is, has an X window). The
server recursively destroys all normal descendant windows.

• Recursively descends the tree and destroys the windows for all realised pop-up descendants,
deallocates all pop-up descendants, constraint records, callback lists and if the widget’s class
is a subclass of compositeWidgetClass , children.

4.8.1 Adding and Removing Destroy Callbacks

When an application needs to perform additional processing during the destruction of a widget,
it should register a destroy callback procedure for the widget. The destroy callback procedures
use the mechanism described in Chapter 10. The destroy callback list is identified by the
resource name XtNdestroyCallback.

For example, the following adds an application-supplied destroy callback procedure
ClientDestroy with client data to a widget by calling XtAddCallback .

XtAddCallback(w, XtNdestroyCallback, ClientDestroy ,
client_data)

Similarly, the following removes the application-supplied destroy callback procedure
ClientDestroy by calling XtRemoveCallback .

XtRemoveCallback(w, XtNdestroyCallback, ClientDestroy ,
client_data)

The ClientDestroy argument is of type XtCallbackProc ; see Section 10.1.

4.8.2 Dynamic Data Deallocation: destroy Procedure

The destroy procedure pointers in the ObjectClassPart , RectObjClassPart and CoreClassPart
structures are of type XtWidgetProc .

typedef void (*XtWidgetProc)(Widget);
Widget w;

w Specifies the widget being destroyed.

The destroy procedures are called in subclass-to-superclass order. Therefore, a widget’s destroy
procedure only should deallocate storage that is specific to the subclass and should ignore the
storage allocated by any of its superclasses. The destroy procedure should only deallocate
resources that have been explicitly created by the subclass. Any resource that was obtained
from the resource database or passed in an argument list was not created by the widget and
therefore should not be destroyed by it. If a widget does not need to deallocate any storage, the
destroy procedure entry in its class record can be NULL.

Deallocating storage includes, but is not limited to, the following steps:

• Calling XtFree on dynamic storage allocated with XtMalloc , XtCalloc , and so on.

• Calling XFreePixmap on pixmaps created with direct X calls.

• Calling XtReleaseGC on GCs allocated with XtGetGC.

• Calling XFreeGC on GCs allocated with direct X calls.

• Calling XtRemoveEventHandler on event handlers added to other widgets.

Window Management (X11R5): X Toolkit Intrinsics 65
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Destroying Widgets Widget Instantiation

• Calling XtRemoveTimeOut on timers created with XtAppAddTimeOut.

• Calling XtDestroyWidget for each child if the widget has children and is not a subclass of
compositeWidgetClass .

During destroy phase 2 for each widget, the Intrinsics remove the widget from the modal
cascade, unregister all event handlers, remove all key, keyboard, button, and pointer grabs and
remove all callback procedures registered on the widget. Any outstanding selection transfers
will time out.

4.8.3 Dynamic Constraint Data Deallocation: ConstraintClassPart destroy Procedure

The constraint destroy procedure identified in the ConstraintClassPart structure is called for a
widget whose parent is a subclass of constraintWidgetClass . This constraint destroy procedure
pointer is of type XtWidgetProc . The constraint destroy procedures are called in subclass-to-
superclass order, starting at the class of the widget’s parent and ending at constraintWidgetClass .
Therefore, a parent’s constraint destroy procedure only should deallocate storage that is specific
to the constraint subclass and not storage allocated by any of its superclasses.

If a parent does not need to deallocate any constraint storage, the constraint destroy procedure
entry in its class record can be NULL.

66 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Instantiation Exiting from an Application

4.9 Exiting from an Application
All X Toolkit applications should terminate by calling XtDestroyApplicationContext and then
exiting using the standard method for their operating system (typically, by calling exit for
POSIX-based systems). The quickest way to make the windows disappear while exiting is to call
XtUnmapWidget on each top-level shell widget. The Intrinsics have no resources beyond those in
the program image, and the X server will free its resources when its connection to the
application is broken.

Depending upon the widget set in use, it may be necessary to explicitly destroy individual
widgets or widget trees with XtDestroyWidget before calling XtDestroyApplicationContext in order
to ensure that any required widget cleanup is properly executed. The application developer
must refer to the widget documentation to learn if a widget needs to perform additional cleanup
beyond that performed automatically by the operating system. None of the widget classes
defined by the Intrinsics require additional cleanup.

Window Management (X11R5): X Toolkit Intrinsics 67
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Instantiation

68 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Chapter 5

Composite Widgets and Their Children

Composite widgets (widgets whose class is a subclass of compositeWidgetClass) can have an
arbitrary number of children. Consequently, they are responsible for much more than primitive
widgets. Their responsibilities (either implemented directly by the widget class or indirectly by
Intrinsics functions) include:

• overall management of children from creation to destruction

• destruction of descendants when the composite widget is destroyed

• physical arrangement (geometry management) of a displayable subset of children (that is, the
managed children)

• mapping and unmapping of a subset of the managed children.

Overall management is handled by the generic procedures XtCreateWidget and XtDestroyWidget .
XtCreateWidget adds children to their parent by calling the parent’s insert_child procedure.
XtDestroyWidget removes children from their parent by calling the parent’s delete_child
procedure and ensures that all children of a destroyed composite widget also get destroyed.

Only a subset of the total number of children is actually managed by the geometry manager and
hence possibly visible. For example, a composite editor widget supporting multiple editing
buffers might allocate one child widget for each file buffer, but it might only display a small
number of the existing buffers. Widgets that are in this displayable subset are called managed
widgets and enter into geometry manager calculations. The other children are called
unmanaged widgets and, by definition, are not mapped by the Intrinsics.

Children are added to and removed from their parent’s managed set by using XtManageChild ,
XtManageChildren , XtUnmanageChild and XtUnmanageChildren , which notify the parent to
recalculate the physical layout of its children by calling the parent’s change_managed procedure.
The XtCreateManagedWidget convenience function calls XtCreateWidget and XtManageChild on
the result.

Most managed children are mapped, but some widgets can be in a state where they take up
physical space but do not show anything. Managed widgets are not mapped automatically if
their map_when_managed field is False . The default is True and is changed by using
XtSetMappedWhenManaged .

Each composite widget class declares a geometry manager, which is responsible for figuring out
where the managed children should appear within the composite widget’s window. Geometry
management techniques fall into four classes:

Fixed boxes
Fixed boxes have a fixed number of children created by the parent. All these children are
managed, and none ever makes geometry manager requests.

Homogeneous boxes
Homogeneous boxes treat all children equally and apply the same geometry constraints to
each child. Many clients insert and delete widgets freely.

Heterogeneous boxes
Heterogeneous boxes have a specific location where each child is placed. This location
usually is not specified in pixels, because the window may be resized, but is expressed
rather in terms of the relationship between a child and the parent or between the child and
other specific children. The class of heterogeneous boxes is usually a subclass of Constraint.

Window Management (X11R5): X Toolkit Intrinsics 69
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Composite Widgets and Their Children

Shell boxes
Shell boxes typically have only one child, and the child’s size is usually exactly the size of
the shell. The geometry manager must communicate with the window manager, if it exists,
and the box must also accept ConfigureNotify events when the window size is changed by
the window manager.

5.1 Adding Children to a Composite Widget: insert_child Procedure
To add a child to the parent’s list of children, the XtCreateWidget function calls the parent’s class
routine insert_child. The insert_child procedure pointer in a composite widget is of type
XtWidgetProc .

typedef void (*XtWidgetProc)(Widget);
Widget w;

w Passes the newly created child.

Most composite widgets inherit their superclass’s operation. The insert_child routine in
CompositeWidgetClass calls the insert_position procedure and inserts the child at the specified
position in the children list, expanding it if necessary.

Some composite widgets define their own insert_child routine so that they can order their
children in some convenient way, create companion controller widgets for a new widget, or limit
the number or class of their child widgets. A composite widget class that wishes to allow non-
widget children (see Chapter 14) must specify a CompositeClassExtension extension record as
described in CompositeClassPart Structure and set the accepts_objects field in this record to True.
If the CompositeClassExtension record is not specified or the accepts_objects field is False , the
composite widget can assume that all its children are of a subclass of Core without an explicit
subclass test in the insert_child procedure.

If there is not enough room to insert a new child in the children array (that is, num_children is
equal to num_slots), the insert_child procedure must first reallocate the array and update
num_slots. The insert_child procedure then places the child at the appropriate position in the
array and increments the num_children field.

70 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Composite Widgets and Their Children Insertion Order of Children: insert_position Procedure

5.2 Insertion Order of Children: insert_position Procedure
Instances of composite widgets sometimes need to specify more about the order in which their
children are kept. For example, an application may want a set of command buttons in some
logical order grouped by function, and it may want buttons that represent file names to be kept
in alphabetical order without constraining the order in which the buttons are created.

An application controls the presentation order of a set of children by supplying an
XtNinsertPosition resource. The insert_position procedure pointer in a composite widget
instance is of type XtOrderProc .

typedef Cardinal (*XtOrderProc)(Widget);
Widget w;

w Passes the newly created widget.

Composite widgets that allow clients to order their children (usually homogeneous boxes) can
call their widget instance’s insert_position procedure from the class’s insert_child procedure to
determine where a new child should go in its children array. Thus, a client using a composite
class can apply different sorting criteria to widget instances of the class, passing in a different
insert_position procedure resource when it creates each composite widget instance.

The return value of the insert_position procedure indicates how many children should go before
the widget. Returning zero indicates that the widget should go before all other children, and
returning num_children indicates that it should go after all other children. The default
insert_position function returns num_children and can be overridden by a specific composite
widget’s resource list or by the argument list provided when the composite widget is created.

Window Management (X11R5): X Toolkit Intrinsics 71
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Deletion of Children: delete_child Procedure Composite Widgets and Their Children

5.3 Deletion of Children: delete_child Procedure
To remove the child from the parent’s children list, the XtDestroyWidget function eventually
causes a call to the Composite parent’s class delete_child procedure. The delete_child procedure
pointer is of type XtWidgetProc .

typedef void (*XtWidgetProc)(Widget);
Widget w;

w Passes the child being deleted.

Most widgets inherit the delete_child procedure from their superclass. Composite widgets that
create companion widgets define their own delete_child procedure to remove these companion
widgets.

72 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Composite Widgets and Their Children Adding and Removing Children from the Managed Set

5.4 Adding and Removing Children from the Managed Set
The Intrinsics provide a set of generic routines to permit the addition of widgets to or the
removal of widgets from a composite widget’s managed set. These generic routines eventually
call the composite widget’s change_managed procedure if the procedure pointer is non-NULL.
The change_managed procedure pointer is of type XtWidgetProc . The widget argument specifies
the composite widget whose managed child set has been modified.

5.4.1 Managing Children

To add a list of widgets to the geometry-managed (and hence displayable) subset of their
Composite parent, use XtManageChildren .

typedef Widget *WidgetList;

void XtManageChildren(children , num_children)
WidgetList children ;
Cardinal num_children ;

children Specifies a list of child widgets. Each child must be of class RectObj or any
subclass thereof.

num_children Specifies the number of children in the list.

The XtManageChildren function performs the following:

• Issues an error if the children do not all have the same parent or if the parent’s class is not a
subclass of compositeWidgetClass .

• Returns immediately if the common parent is being destroyed; otherwise, for each unique
child on the list, XtManageChildren ignores the child if it already is managed or is being
destroyed, and marks it if not.

• If the parent is realised and after all children have been marked, it makes some of the newly
managed children viewable:

— Calls the change_managed routine of the widgets’ parent.

— Calls XtRealizeWidget on each previously unmanaged child that is unrealised.

— Maps each previously unmanaged child that has map_when_managed True.

Managing children is independent of the ordering of children and independent of creating and
deleting children. The layout routine of the parent should consider children whose managed field
is True and should ignore all other children. Note that some composite widgets, especially fixed
boxes, call XtManageChild from their insert_child procedure.

If the parent widget is realised, its change_managed procedure is called to notify it that its set of
managed children has changed. The parent can reposition and resize any of its children. It
moves each child as needed by calling XtMoveWidget , which first updates the x and y fields and
which then calls XMoveWindow .

If the composite widget wishes to change the size or border width of any of its children, it calls
XtResizeWidget , which first updates the width, height and border_width fields and then calls
XConfigureWindow . Simultaneous repositioning and resizing may be done with
XtConfigureWidget ; see Section 8.6.

To add a single child to its parent widget’s set of managed children, use XtManageChild .

Window Management (X11R5): X Toolkit Intrinsics 73
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Adding and Removing Children from the Managed Set Composite Widgets and Their Children

void XtManageChild(child)
Widget child ;

child Specifies the child. Each child must be of a class RectObj or any subclass
thereof.

The XtManageChild function constructs a WidgetList of length 1 and calls XtManageChildren .

To create and manage a child widget in a single procedure, use XtCreateManagedWidget or
XtVaCreateManagedWidget .

Widget XtCreateManagedWidget(name, widget_class , parent ,
args , num_args)

String name;
WidgetClass widget_class ;
Widget parent ;
ArgList args ;
Cardinal num_args ;

name Specifies the resource instance name for the created widget.

widget_class Specifies the widget class pointer for the created widget. Must be rectObjClass
or any subclass thereof.

parent Specifies the parent widget. Must be of class Composite or any subclass
thereof.

args Specifies the argument list to override any other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtCreateManagedWidget function is a convenience routine that calls XtCreateWidget and
XtManageChild .

Widget XtVaCreateManagedWidget(name, widget_class , parent , ...)
String name;
WidgetClass widget_class ;
Widget parent ;

name Specifies the resource instance name for the created widget.

widget_class Specifies the widget class pointer for the created widget. Must be rectObjClass
or any subclass thereof.

parent Specifies the parent widget. Must be of class Composite or any subclass
thereof.

... Specifies the variable argument list to override any other resource
specifications.

XtVaCreateManagedWidget is identical in function to XtCreateManagedWidget with the args and
num_args parameters replaced by a varargs list, as described in Section 4.5.1.

74 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Composite Widgets and Their Children Adding and Removing Children from the Managed Set

5.4.2 Unmanaging Children

To remove a list of children from a parent widget’s managed list, use XtUnmanageChildren .

void XtUnmanageChildren(children , num_children)
WidgetList children ;
Cardinal num_children ;

children Specifies a list of child widgets. Each child must be of class RectObj or any
subclass thereof.

num_children Specifies the number of children.

The XtUnmanageChildren function performs the following:

• Issues an error if the children do not all have the same parent or if the parent is not a subclass
of compositeWidgetClass .

• Returns immediately if the common parent is being destroyed; otherwise, for each unique
child on the list, XtUnmanageChildren performs the following:

— Ignores the child if it already is unmanaged or is being destroyed, and marks it if not.

— If the child is realised, it makes it non-visible by unmapping it.

• Calls the change_managed routine of the widgets’ parent after all children have been marked
if the parent is realised.

XtUnmanageChildren does not destroy the child widgets. Removing widgets from a parent’s
managed set is often a temporary banishment, and some time later the client may manage the
children again. To destroy widgets entirely, XtDestroyWidget should be called instead; see
Section 4.9.

To remove a single child from its parent widget’s managed set, use XtUnmanageChild .

void XtUnmanageChild(child)
Widget child ;

child Specifies the child. Each child must be of a class RectObj or any subclass
thereof.

The XtUnmanageChild function constructs a widget list of length 1 and calls
XtUnmanageChildren .

These functions are low-level routines that are used by generic composite widget building
routines. In addition, composite widgets can provide widget-specific, high-level convenience
procedures.

5.4.3 Determining if a Widget is Managed

To determine the managed state of a given child widget, use XtIsManaged .

Boolean XtIsManaged(w)
Widget w;

w Specifies the widget. Must be of a classObject or any subclass thereof.

The XtIsManaged function returns True if the specified widget is of class RectObj or any subclass
thereof and is managed, or False otherwise.

Window Management (X11R5): X Toolkit Intrinsics 75
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Controlling When Widgets Get Mapped Composite Widgets and Their Children

5.5 Controlling When Widgets Get Mapped
A widget is normally mapped if it is managed. However, this behaviour can be overridden by
setting the XtNmappedWhenManaged resource for the widget when it is created or by setting
the map_when_managed field to False .

To change the value of a given widget’s map_when_managed field, use XtSetMappedWhenManaged .

void XtSetMappedWhenManaged(w, map_when_managed)
Widget w;
Boolean map_when_managed;

w Specifies the widget. Must be of class Core or any subclass thereof.

map_when_managed
Specifies a Boolean value that indicates the new value that is stored into the
widget’s map_when_managed field.

If the widget is realised and managed and if map_when_managed is True,
XtSetMappedWhenManaged maps the window. If the widget is realised and managed and if
map_when_managed is False , it unmaps the window. XtSetMappedWhenManaged is a convenience
function that is equivalent to (but slightly faster than) calling XtSetValues and setting the new
value for the XtNmappedWhenManaged resource then mapping the widget as appropriate. As
an alternative to using XtSetMappedWhenManaged to control mapping, a client may set
mapped_when_managed to False and use XtMapWidget and XtUnmapWidget explicitly.

To map a widget explicitly, use XtMapWidget .

XtMapWidget(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

To unmap a widget explicitly, use XtUnmapWidget.

XtUnmapWidget(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

76 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Composite Widgets and Their Children Constrained Composite Widgets

5.6 Constrained Composite Widgets
The Constraint widget class is a subclass of compositeWidgetClass . The name is derived from the
fact that constraint widgets may manage the geometry of their children based on constraints
associated with each child. These constraints can be as simple as the maximum width and
height the parent will allow the child to occupy or can be as complicated as how other children
should change if this child is moved or resized. Constraint widgets let a parent define
constraints as resources that are supplied for their children. For example, if the Constraint
parent defines the maximum sizes for its children, these new size resources are retrieved for each
child as if they were resources that were defined by the child widget’s class. Accordingly,
constraint resources may be included in the argument list or resource file just like any other
resource for the child.

Constraint widgets have all the responsibilities of normal composite widgets and, in addition,
must process and act upon the constraint information associated with each of their children.

To make it easy for widgets and the Intrinsics to keep track of the constraints associated with a
child, every widget has a constraints field, which is the address of a parent-specific structure that
contains constraint information about the child. If a child’s parent does not belong to a subclass
of constraintWidgetClass , then the child’s constraints field is NULL.

Subclasses of Constraint can add constraint data to the constraint record defined by their
superclass. To allow this, widget writers should define the constraint records in their private .h
file by using the same conventions as used for widget records. For example, a widget class that
needs to maintain a maximum width and height for each child might define its constraint record
as follows:

typedef struct {
Dimension max_width, max_height;

} MaxConstraintPart;

typedef struct {
MaxConstraintPart max;

} MaxConstraintRecord, *MaxConstraint;

A subclass of this widget class that also needs to maintain a minimum size would define its
constraint record as follows:

typedef struct {
Dimension min_width, min_height;

} MinConstraintPart;

typedef struct {
MaxConstraintPart max;
MinConstraintPart min;

} MaxMinConstraintRecord, *MaxMinConstraint;

Constraints are allocated, initialised, deallocated and otherwise maintained insofar as possible
by the Intrinsics. The Constraint class record part has several entries that facilitate this. All
entries in ConstraintClassPart are fields and procedures that are defined and implemented by the
parent, but they are called whenever actions are performed on the parent’s children.

The XtCreateWidget function uses the constraint_size field in the parent’s class record to allocate a
constraint record when a child is created.

XtCreateWidget also uses the constraint resources to fill in resource fields in the constraint record
associated with a child. It then calls the constraint initialize procedure so that the parent can

Window Management (X11R5): X Toolkit Intrinsics 77
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Constrained Composite Widgets Composite Widgets and Their Children

compute constraint fields that are derived from constraint resources and can possibly move or
resize the child to conform to the given constraints.

When the XtGetValues and XtSetValues functions are executed on a child, they use the constraint
resources to get the values or set the values of constraints associated with that child. XtSetValues
then calls the constraint set_values procedures so that the parent can recompute derived
constraint fields and move or resize the child as appropriate. If a Constraint widget class or any
of its superclasses have declared a ConstraintClassExtension record in the ConstraintClassPart
extension fields with a record type of NULLQUARK and the get_values_hook field in the extension
record is non-NULL, XtGetValues calls the get_values_hook procedure(s) to allow the parent to
return derived constraint fields.

The XtDestroyWidget function calls the constraint destroy procedure to deallocate any dynamic
storage associated with a constraint record. The constraint record itself must not be deallocated
by the constraint destroy procedure; XtDestroyWidget does this automatically.

78 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Chapter 6

Shell Widgets

Shell widgets hold an application’s top-level widgets to allow them to communicate with the
window manager. Shells have been designed to be as nearly invisible as possible. Clients have
to create them, but they should never have to worry about their sizes.

If a shell widget is resized from the outside (typically by a window manager), the shell widget
also resizes its managed child widget automatically. Similarly, if the shell’s child widget needs
to change size, it can make a geometry request to the shell, and the shell negotiates the size
change with the outer environment. Clients should never attempt to change the size of their
shells directly.

The four types of public shells are:

OverrideShell Used for shell windows that completely bypass the window manager (for
example, pop-up menu shells).

TransientShell Used for shell windows that have the WM_TRANSIENT_FOR property
set. The effect of this property is dependent upon the window manager
being used.

TopLevelShell Used for normal top-level windows (for example, any additional top-
level widgets an application needs).

ApplicationShell Used for the single main top-level window that the window manager
identifies as an application instance and that interacts with the session
manager.

Window Management (X11R5): X Toolkit Intrinsics 79
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Shell Widget Definitions Shell Widgets

6.1 Shell Widget Definitions
Widgets negotiate their size and position with their parent widget, that is, the widget that
directly contains them. Widgets at the top of the hierarchy do not have parent widgets. Instead,
they must deal with the outside world. To provide for this, each top-level widget is
encapsulated in a special widget, called a shell widget.

Shell widgets, whose class is a subclass of the Composite class, encapsulate other widgets and
can allow a widget to avoid the geometry clipping imposed by the parent-child window
relationship. They also can provide a layer of communication with the window manager.

The seven different types of shells are:

Shell The base class for shell widgets; provides the fields needed for all types of
shells. Shell is a direct subclass of compositeWidgetClass .

OverrideShell A subclass of Shell; used for shell windows that completely bypass the
window manager.

WMShell A subclass of Shell; contains fields needed by the common window
manager protocol .

VendorShell A subclass of WMShell; contains fields used by vendor-specific window
managers.

TransientShell A subclass of VendorShell; used for shell windows that desire the
WM_TRANSIENT_FOR property.

TopLevelShell A subclass of VendorShell; used for normal top level windows.

ApplicationShell A subclass of TopLevelShell; used for an application’s main top-level
window.

Note that the classes Shell, WMShell and VendorShell are internal and should not be instantiated
or subclassed. Only OverrrideShell, TransientShell, TopLevelShell and ApplicationShell are
intended for public use.

6.1.1 ShellClassPart Definitions

Only the Shell class has additional class fields, which are all contained in the
ShellClassExtensionRec . None of the other Shell classes have any additional class fields:

typedef struct { XtPointer extension; } ShellClassPart,
OverrideShellClassPart, WMShellClassPart, VendorShellClassPart,
TransientShellClassPart, TopLevelShellClassPart,
ApplicationShellClassPart;

The full Shell class record definitions are:

80 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Shell Widgets Shell Widget Definitions

typedef struct _ShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;

} ShellClassRec;

typedef struct {
XtPointer next_extension; See Section 3.6.12
XrmQuark record_type; See Section 3.6.12
long version; See Section 3.6.12
Cardinal record_size; See Section 3.6.12
XtGeometryHandler root_geometry_manager; See below

} ShellClassExtensionRec, *ShellClassExtension;

typedef struct _OverrideShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
OverrideShellClassPart override_shell_class;

} OverrideShellClassRec;

typedef struct _WMShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;

} WMShellClassRec;

typedef struct _VendorShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_shell_class;

} VendorShellClassRec;

typedef struct _TransientShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_shell_class;
TransientShellClassPart transient_shell_class;

} TransientShellClassRec;

typedef struct _TopLevelShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_shell_class;
TopLevelShellClassPart top_level_shell_class;

Window Management (X11R5): X Toolkit Intrinsics 81
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Shell Widget Definitions Shell Widgets

} TopLevelShellClassRec;

typedef struct _ApplicationShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_shell_class;
TopLevelShellClassPart top_level_shell_class;
ApplicationShellClassPart application_shell_class;

} ApplicationShellClassRec;

The single occurrences of the class records and pointers for creating instances of shells are:

extern ShellClassRec shellClassRec;
extern OverrideShellClassRec overrideShellClassRec;
extern WMShellClassRec wmShellClassRec;
extern VendorShellClassRec vendorShellClassRec;
extern TransientShellClassRec transientShellClassRec;
extern TopLevelShellClassRec topLevelShellClassRec;
extern ApplicationShellClassRec applicationShellClassRec;

extern WidgetClass shellWidgetClass;
extern WidgetClass overrideShellWidgetClass;
extern WidgetClass wmShellWidgetClass;
extern WidgetClass vendorShellWidgetClass;
extern WidgetClass transientShellWidgetClass;
extern WidgetClass topLevelShellWidgetClass;
extern WidgetClass applicationShellWidgetClass;

The following opaque types and opaque variables are defined for generic operations on widgets
whose class is a subclass of Shell.

Types Variables
ShellWidget shellWidgetClass
OverrideShellWidget overrideShellWidgetClass
WMShellWidget wmShellWidgetClass
VendorShellWidget vendorShellWidgetClass
TransientShellWidget transientShellWidgetClass
TopLevelShellWidget topLevelShellWidgetClass
ApplicationShellWidget applicationShellWidgetClass
ShellWidgetClass
OverrideShellWidgetClass
WMShellWidgetClass
VendorShellWidgetClass
TransientShellWidgetClass
TopLevelShellWidgetClass
ApplicationShellWidgetClass

The declarations for all Intrinsics-defined shells except VendorShell appear in Shell.h and
ShellP.h. VendorShell has separate public and private .h files which are included by Shell.h and
ShellP.h.

Shell.h uses incomplete structure definitions to ensure that the compiler catches attempts to
access private data in any of the Shell instance or class data structures.

82 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Shell Widgets Shell Widget Definitions

The symbolic constant for the ShellClassExtension version identifier is XtShellExtensionVersion (see
Section 3.6.12).

The root_geometry_manager procedure acts as the parent geometry manager for geometry
requests made by shell widgets. When a shell widget calls either XtMakeGeometryRequest or
XtMakeResizeRequest , the root_geometry_manager procedure is invoked to negotiate the new
geometry with the window manager. If the window manager permits the new geometry, the
root_geometry_manager procedure should return XtGeometryYes; if the window manager denies
the geometry request or it does not change the window geometry within some timeout interval
(equal to wm_timeout in the case of WMShells), the root_geometry_manager procedure should
return XtGeometryNo. If the window manager makes some alternative geometry change, the
root_geometry_manager procedure may either return XtGeometryNo and handle the new
geometry as a resize, or may return XtGeometryAlmost in anticipation that the shell will accept
the compromise. If the compromise is not accepted, the new size must then be handled as a
resize. Subclasses of Shell that wish to provide their own root_geometry_manager procedures
are strongly encouraged to use enveloping to invoke their superclass’s root_geometry_manager
procedure under most situations, as the window manager interaction may be very complex.

If no ShellClassPart extension record is declared with record_type equal to NULLQUARK, then
XtInheritRootGeometryManager is assumed.

6.1.2 ShellPart Definition

The various shell widgets have the following additional instance fields defined in their widget
records:

typedef struct {
String geometry;
XtCreatePopupChildProc create_popup_child_proc;
XtGrabKind grab_kind;
Boolean spring_loaded;
Boolean popped_up;
Boolean allow_shell_resize;
Boolean client_specified;
Boolean save_under;
Boolean override_redirect;
XtCallbackList popup_callback;
XtCallbackList popdown_callback;
Visual* visual;

} ShellPart;

typedef struct { int empty; } OverrideShellPart;

typedef struct {
String title;
int wm_timeout;
Boolean wait_for_wm;
Boolean transient;
struct _OldXSizeHints {

long flags;
int x, y;
int width, height;
int min_width, min_height;
int max_width, max_height;

Window Management (X11R5): X Toolkit Intrinsics 83
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Shell Widget Definitions Shell Widgets

int width_inc, height_inc;
struct {

int x;
int y;

} min_aspect, max_aspect;
} size_hints;
XWMHints wm_hints;
int base_width, base_height, win_gravity;
Atom title_encoding;

} WMShellPart;

typedef struct {
int vendor_specific;

} VendorShellPart;

typedef struct {
Widget transient_for;

} TransientShellPart;

typedef struct {
String icon_name;
Boolean iconic;
Atom icon_name_encoding;

} TopLevelShellPart;

typedef struct {
char *class;
XrmClass xrm_class;
int argc;
char **argv;

} ApplicationShellPart;

84 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Shell Widgets Shell Widget Definitions

The full shell widget instance record definitions are:

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;

} ShellRec, *ShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
OverrideShellPart override;

} OverrideShellRec, *OverrideShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;

} WMShellRec, *WMShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;

} VendorShellRec, *VendorShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TransientShellPart transient;

} TransientShellRec, *TransientShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TopLevelShellPart topLevel;

} TopLevelShellRec, *TopLevelShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;

Window Management (X11R5): X Toolkit Intrinsics 85
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Shell Widget Definitions Shell Widgets

VendorShellPart vendor;
TopLevelShellPart topLevel;
ApplicationShellPart application;

} ApplicationShellRec, *ApplicationShellWidget;

6.1.3 Shell Resources

The resource names, classes and representation types specified in the shellClassRec resource list
are:

Name Class Representation
XtNallowShellResize XtCAllowShellResize XtRBoolean
XtNcreatePopupChildProc XtCCreatePopupChildProc XtRFunction
XtNgeometry XtCGeometry XtRString
XtNoverrideRedirect XtCOverrideRedirect XtRBoolean
XtNpopdownCallback XtCCallback XtRCallback
XtNpopupCallback XtCCallback XtRCallback
XtNsaveUnder XtCSaveUnder XtRBoolean
XtNvisual XtCVisual XtRVisual

OverrideShell declares no additional resources beyond those defined by Shell.

The resource names, classes and representation types specified in the wmShellClassRec resource
list are:

Name Class Representation
XtNbaseHeight XtCBaseHeight XtRInt
XtNbaseWidth XtCBaseWidth XtRInt
XtNheightInc XtCHeightInc XtRInt
XtNiconMask XtCIconMask XtRBitmap
XtNiconPixmap XtCIconPixmap XtRBitmap
XtNiconWindow XtCIconWindow XtRWindow
XtNiconX XtCIconX XtRInt
XtNiconY XtCIconY XtRInt
XtNinitialState XtCInitialState XtRInitialState
XtNinput XtCInput XtRBool
XtNmaxAspectX XtCMaxAspectX XtRInt
XtNmaxAspectY XtCMaxAspectY XtRInt
XtNmaxHeight XtCMaxHeight XtRInt
XtNmaxWidth XtCMaxWidth XtRInt
XtNminAspectX XtCMinAspectX XtRInt
XtNminAspectY XtCMinAspectY XtRInt
XtNminHeight XtCMinHeight XtRInt
XtNminWidth XtCMinWidth XtRInt
XtNtitle XtCTitle XtRString
XtNtitleEncoding XtCTitleEncoding XtRAtom
XtNtransient XtCTransient XtRBoolean
XtNwaitForWm XtCWaitForWm XtRBoolean
XtNwidthInc XtCWidthInc XtRInt
XtNwinGravity XtCWinGravity XtRInt
XtNwindowGroup XtCWindowGroup XtRWindow
XtNwmTimeout XtCWmTimeout XtRInt

86 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Shell Widgets Shell Widget Definitions

The class resource list for VendorShell is implementation-defined.

The resource names, classes and representation types that are specified in the transient-
ShellClassRec resource list are:

Name Class Representation
XtNtransientFor XtCTransientFor XtRWidget

The resource names, classes and representation types that are specified in the
topLevelShellClassRec resource list are:

Name Class Representation
XtNiconName XtCIconName XtRString
XtNiconNameEncoding XtCIconNameEncoding XtRAtom
XtNiconic XtCIconic XtRBoolean

The resource names, classes and representation types that are specified in the application-
ShellClassRec resource list are:

Name Class Representation
XtNargc XtCArgc XtRInt
XtNargv XtCArgv XtRStringArray

6.1.4 ShellPart Default Values

The default values for fields common to all classes of public shells (filled in by the Shell resource
lists and the Shell initialize procedures) are:

Field Default Value
geometry NULL
create_popup_child_proc NULL
grab_kind (none)
spring_loaded (none)
popped_up False
allow_shell_resize False
client_specified (internal)

True for OverrideShell and
TransientShell, False otherwise

save_under

True for OverrideShell, False
otherwise

override_redirect

popup_callback NULL
popdown_callback NULL
visual CopyFromParent

The geometry field specifies the size and position and is usually given only on a command line or
in a defaults file. If the geometry field is non-NULL when a widget of class WMShell is realised,
the geometry specification is parsed using XWMGeometry with a default geometry string
constructed from the values of x, y, width, height, width_inc and height_inc and the size and
position flags in the window manager size hints are set. If the geometry specifies an x or y
position, then USPosition is set. If the geometry specifies a width or height, then USSize is set.
Any fields in the geometry specification override the corresponding values in the Core x, y, width
and height fields. If geometry is NULL or contains only a partial specification, then the Core x, y,
width and height fields are used and PPosition and PSize are set as appropriate. The geometry
string is not copied by any of the Intrinsics Shell classes; a client specifying the string in an

Window Management (X11R5): X Toolkit Intrinsics 87
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Shell Widget Definitions Shell Widgets

arglist or varargs list must ensure that the value remains valid until the shell widget is realised.
For further information on the geometry string, see the Xlib — C Language Binding
specification.

The create_popup_child_proc procedure is called by the XtPopup procedure and may remain
NULL. The grab_kind, spring_loaded and popped_up fields maintain widget state information as
described under XtPopup , XtMenuPopup , XtPopdown and XtMenuPopdown . The allow_shell_resize
field controls whether the widget contained by the shell is allowed to try to resize itself. If
allow_shell_resize is False , any geometry requests made by the child will always return
XtGeometryNo without interacting with the window manager. Setting save_under True instructs
the server to attempt to save the contents of windows obscured by the shell when it is mapped
and to restore those contents automatically when the shell is unmapped. It is useful for pop-up
menus. Setting override_redirect True determines whether the window manager can intercede
when the shell window is mapped. The pop-up and pop-down callbacks are called during
XtPopup and XtPopdown . For further information on override_redirect, see the Xlib — C
Language Binding specification and the ICCCM specification.

The default values for Shell fields in WMShell and its subclasses are:

Field Default Value
title Icon name, if specified, otherwise the application’s name.
wm_timeout Five seconds, in units of milliseconds.
wait_for_wm True
transient True for TransientShell, False otherwise
min_width XtUnspecifiedShellInt
min_height XtUnspecifiedShellInt
max_width XtUnspecifiedShellInt
max_height XtUnspecifiedShellInt
width_inc XtUnspecifiedShellInt
height_inc XtUnspecifiedShellInt
min_aspect_x XtUnspecifiedShellInt
min_aspect_y XtUnspecifiedShellInt
max_aspect_x XtUnspecifiedShellInt
max_aspect_y XtUnspecifiedShellInt
input False
initial_state Normal
icon_pixmap None
icon_window None
icon_x XtUnspecifiedShellInt
icon_y XtUnspecifiedShellInt
icon_mask None
window_group XtUnspecifiedWindow
base_width XtUnspecifiedShellInt
base_height XtUnspecifiedShellInt
win_gravity XtUnspecifiedShellInt
title_encoding See text

The title and title_encoding fields are stored in the WM_NAME property on the shell’s window by
the WMShell realize procedure. If the title_encoding field is None, the title string is assumed to be
in the encoding of the current locale and the encoding of the WM_NAME property is set to
XStdICCTextStyle . If a language procedure has not been set the default value of title_encoding is
XA_STRING, otherwise the default value is None. The wm_timeout field specifies, in
milliseconds, the amount of time a shell is to wait for confirmation of a geometry request to the
window manager. If none comes back within that time, the shell assumes the window manager

88 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Shell Widgets Shell Widget Definitions

is not functioning properly and sets wait_for_wm to False (later events may reset this value).
When wait_for_wm is False , the shell does not wait for a response but relies on asynchronous
notification. If transient is True, the WM_TRANSIENT_FOR property will be stored on the shell
window with a value as specified below. The interpretation of this property is specific to the
window manager under which the application is run; see the ICCCM specification for more
details. All other resources specify fields in the window manager hints and the window
manager size hints. The realize and set_values procedures of WMShell set the corresponding
flag bits in the hints if any of the fields contain non-default values. In addition, if a flag bit is set
that refers to a field with the value XtUnspecifiedShellInt , the value of the field is modified as
follows:

Field Replacement
base_width, base_height 0
width_inc, height_inc 1
max_width, max_height 32767
min_width, min_height 1
min_aspect_x, min_aspect_y −1
max_aspect_x, max_aspect_y −1
icon_x, icon_y −1

Value returned by
XWMGeometry if called, else
NorthWestGravity.

win_gravity

If the shell widget has a non-NULL parent, then the realize and set_values procedures replace
the value XtUnspecifiedWindow in the window_group field with the window id of the root widget
of the widget tree if the root widget is realised. The symbolic constant
XtUnspecifiedWindowGroup may be used to indicate that the window_group hint flag bit is not to
be set. If transient is True and the shell’s class is not a subclass of TransientShell and
window_group is not XtUnspecifiedWindowGroup the WMShell realize and set_values procedures
then store the WM_TRANSIENT_FOR property with the value of window_group.

Transient shells have the following additional resource:

Field Default Value
transient_for NULL

The realize and set_values procedures of TransientShell store the WM_TRANSIENT_FOR
property on the shell window if transient is True. If transient_for is non-NULL and the widget
specified by transient_for is realised, then its window is used as the value of the
WM_TRANSIENT_FOR property; otherwise, the value of window_group is used.

TopLevel shells have the the following additional resources:

Field Default Value
icon_name Shell widget’s name
iconic False
icon_name_encoding See text

The icon_name and icon_name_encoding fields are stored in the WM_ICON_NAME property on
the shell’s window by the TopLevelShell realize procedure. If the icon_name_encoding field is
None, the icon_name string is assumed to be in the encoding of the current locale and the
encoding of the WM_ICON_NAME property is set to XStdICCTextStyle . If a language procedure
has not been set the default value of icon_name_encoding is XA_STRING, otherwise the default
value is None. The iconic field may be used by a client to request that the window manager
iconify or deiconify the shell; the TopLevelShell set_values procedure will send the appropriate

Window Management (X11R5): X Toolkit Intrinsics 89
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Shell Widget Definitions Shell Widgets

WM_CHANGE_STATE message (as specified by the ICCCM specification) if this resource is
changed from False to True, and will call XtPopup specifying grab_kind as XtGrabNone if iconic is
changed from True to False . The XtNiconic resource is also an alternative way to set the
XtNinitialState resource to indicate that a shell should be initially displayed as an icon; the
TopLevelShell initialize procedure will set initial_state to IconicState if iconic is True.

Application shells have the following additional resources:

Field Default Value
argc 0
argv NULL

The argc and argv fields are used to initialize the standard property WM_COMMAND. See the
ICCCM specification for more information.

90 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Chapter 7

Pop-up Widgets

Pop-up widgets are used to create windows outside of the window hierarchy defined by the
widget tree. Each pop-up child has a window that is a descendant of the root window, so that
the pop-up window is not clipped by the pop-up widget’s parent window. Therefore, pop-ups
are created and attached differently to their widget parent than normal widget children.

A parent of a pop-up widget does not actively manage its pop-up children; in fact, it usually
does not operate upon them in any way. The popup_list field in the CorePart structure contains
the list of its pop-up children. This pop-up list exists mainly to provide the proper place in the
widget hierarchy for the pop-up to get resources and to provide a place for XtDestroyWidget to
look for all extant children.

A composite widget can have both normal and pop-up children. A pop-up can be popped up
from almost anywhere, not just by its parent. The term child always refers to a normal,
geometry-managed widget on the composite widget’s list of children, and the term pop-up child
always refers to a widget on the pop-up list.

Window Management (X11R5): X Toolkit Intrinsics 91
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Pop-up Widget Types Pop-up Widgets

7.1 Pop-up Widget Types
There are three kinds of pop-up widgets:

• Modeless pop-ups

A modeless pop-up (for example, a dialog box that does not prevent continued interaction
with the rest of the application) can usually be manipulated by the window manager and
looks like any other application window from the user’s point of view. The application main
window itself is a special case of a modeless pop-up.

• Modal pop-ups

A modal pop-up (for example, a dialog box that requires user input to continue) can
sometimes be manipulated by the window manager, and except for events that occur in the
dialog box, it disables user-event distribution to the rest of the application.

• Spring-loaded pop-ups

A spring-loaded pop-up (for example, a menu) can seldom be manipulated by the window
manager, and except for events that occur in the pop-up or its descendants, it disables user-
event distribution to all other applications.

Modal pop-ups and spring-loaded pop-ups are very similar and should be coded as if they were
the same. In fact, the same widget (for example, a ButtonBox or Menu widget) can be used both
as a modal pop-up and as a spring-loaded pop-up within the same application. The main
difference is that spring-loaded pop-ups are brought up with the pointer and, because of the
grab that the pointer button causes, require different processing by the Intrinsics. Further, all
user input remap events occurring outside the spring-loaded pop-up (for example, in a
descendant) are also delivered to the spring-loaded pop-up after they have been dispatched to
the appropriate descendant, so that, for example, buttond-up can take down a spring-loaded
pop-up no matter where the button-up occurs.

Any kind of pop-up, in turn, can pop up other widgets. Modal and spring-loaded pop-ups can
constrain user events to the most recent such pop-up or allow user events to be dispatched to
any of the modal or spring-loaded pop-ups currently mapped.

Regardless of their type, all pop-up widget classes are responsible for communicating with the X
window manager and therefore are subclasses of one of the Shell widget classes.

92 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Pop-up Widgets Creating a Pop-up Shell

7.2 Creating a Pop-up Shell
For a widget to be popped up, it must be the child of a pop-up shell widget. None of the
Intrinsics-supplied shells will simultaneously manage more than one child. Both the shell and
child taken together are referred to as the pop-up. When you need to use a pop-up, you always
refer to the pop-up by the pop-up shell, not the child.

To create a pop-up shell, use XtCreatePopupShell .

Widget XtCreatePopupShell(name, widget_class , parent ,
args , num_args)

String name;
WidgetClass widget_class ;
Widget parent ;
ArgList args ;
Cardinal num_args ;

name Specifies the instance name for the created shell widget.

widget_class Specifies the widget class pointer for the created shell widget.

parent Specifies the parent widget. Must be of class Core or any subclass thereof.

args Specifies the argument list to override any other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtCreatePopupShell function ensures that the specified class is a subclass of Shell and, rather
than using insert_child to attach the widget to the parent’s children list, attaches the shell to the
parent’s popup_list directly.

The screen resource for this widget is determined by first scanning args for the XtNscreen
argument. If no XtNscreen argument is found, the resource database associated with the
parent’s screen is queried for the resource name.screen, class Class.Screen where Class is the
class_name field from the CoreClassPart of the specified widget_class . If this query fails, the
parent’s screen is used. Once the screen is determined, the resource database associated with
that screen is used to retrieve all remaining resources for the widget not specified in args.

A spring-loaded pop-up invoked from a translation table via XtMenuPopup must already exist at
the time that the translation is invoked, so the translation manager can find the shell by name.
Pop-ups invoked in other ways can be created when the pop-up actually is needed. This
delayed creation of the shell is particularly useful when you pop up an unspecified number of
pop-ups. You can look to see if an appropriate unused shell (that is, not currently popped up)
exists and create a new shell if needed.

To create a pop-up shell using varargs lists, use XtVaCreatePopupShell .

Widget XtVaCreatePopupShell(name, widget_class , parent , ...)
String name;
WidgetClass widget_class ;
Widget parent ;

name Specifies the instance name for the created shell widget.

widget_class Specifies the widget class pointer for the created shell widget.

parent Specifies the parent widget. Must be of class Core or any subclass thereof.

... Specifies the variable argument list to override any other resource
specifications.

Window Management (X11R5): X Toolkit Intrinsics 93
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Creating a Pop-up Shell Pop-up Widgets

XtVaCreatePopupShell is identical in function to XtCreatePopupShell with the args and num_args
parameters replaced by a varargs list as described in Section 4.5.1.

94 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Pop-up Widgets Creating Pop-up Children

7.3 Creating Pop-up Children
Once a pop-up shell is created, the single child of the pop-up shell can be created either statically
or dynamically.

At startup, an application can create the child of the pop-up shell, which is appropriate for pop-
up children composed of a fixed set of widgets. The application can change the state of the
subparts of the pop-up child as the application state changes. For example, if an application
creates a static menu, it can call XtSetSensitive (or, in general, XtSetValues) on any of the buttons
that make up the menu. Creating the pop-up child early means that pop-up time is minimised,
especially if the application calls XtRealizeWidget on the pop-up shell at startup. When the menu
is needed, all the widgets that make up the menu already exist and need only be mapped. The
menu should pop up as quickly as the X server can respond.

Alternatively, an application can postpone the creation of the child until it is needed, which
minimizes application startup time and allows the pop-up child to reconfigure itself each time it
is popped up. In this case, the pop-up child creation routine might poll the application to find
out if it should change the sensitivity of any of its subparts.

Pop-up child creation does not map the pop-up, even if you create the child and call
XtRealizeWidget on the pop-up shell.

All shells have pop-up and pop-down callbacks, which provide the opportunity either to make
last-minute changes to a pop-up child before it is popped up or to change it after it is popped
down. Note that excessive use of pop-up callbacks can make popping up occur more slowly.

Window Management (X11R5): X Toolkit Intrinsics 95
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Mapping a Pop-up Widget Pop-up Widgets

7.4 Mapping a Pop-up Widget
Pop-ups can be popped up through several mechanisms:

• a call to XtPopup or XtPopupSpringLoaded

• one of the supplied callback procedures XtCallbackNone , XtCallbackNonexclusive or
XtCallbackExclusive

• the standard translation action XtMenuPopup .

Some of these routines take an argument of type XtGrabKind , which is defined as:

typedef enum {XtGrabNone, XtGrabNonexclusive,
XtGrabExclusive} XtGrabKind;

The create_popup_child_proc procedure pointer in the shell widget instance record is of type
XtCreatePopupChildProc .

typedef void (*XtCreatePopupChildProc)(Widget);
Widget w;

w Specifies the shell widget being popped up.

To map a pop-up from within an application, use XtPopup .

void XtPopup(popup_shell , grab_kind)
Widget popup_shell ;
XtGrabKind grab_kind ;

popup_shell Specifies the shell widget.

grab_kind Specifies the way in which user events should be constrained.

The XtPopup function performs the following:

• Calls XtCheckSubclass to ensure popup_shell’s class is a subclass of shellWidgetClass .

• Raises the window and returns if the shell’s popped_up field is already True.

• Calls the callback procedures on the shell’s popup_callback list, specifying a pointer to the
value of grab_kind as the call_data argument.

• Sets the shell popped_up field to True, the shell spring_loaded field to False , and the shell
grab_kind field from grab_kind.

• If the shell’s create_popup_child_proc field is non-NULL, XtPopup calls it with popup_shell as
the parameter.

• If grab_kind is either XtGrabNonexclusive or XtGrabExclusive, it calls:

XtAddGrab(popup_shell , (grab_kind == XtGrabExclusive), False)

• Calls XtRealizeWidget with popup_shell specified.

• Calls XMapRaised with the window of popup_shell.

To map a spring-loaded pop-up from within an application, use XtPopupSpringLoaded .

void XtPopupSpringLoaded(popup_shell)
Widget popup_shell ;

popup_shell Specifies the shell widget to be popped up.

The XtPopupSpringLoaded function performs exactly as XtPopup except that it sets the shell
spring_loaded field to True and always calls XtAddGrab with exclusive True and spring-loaded True.

96 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Pop-up Widgets Mapping a Pop-up Widget

To map a pop-up from a given widget’s callback list, you also can register one of the
XtCallbackNone , XtCallbackNonexclusive or XtCallbackExclusive convenience routines as callbacks,
using the pop-up shell widget as the client data.

void XtCallbackNone(w, client_data , call_data)
Widget w;
XtPointer client_data ;
XtPointer call_data ;

w Specifies the widget.

client_data Specifies the pop-up shell.

call_data Specifies the callback data argument, which is not used by this procedure.

void XtCallbackNonexclusive(w, client_data , call_data)
Widget w;
XtPointer client_data ;
XtPointer call_data ;

w Specifies the widget.

client_data Specifies the pop-up shell.

call_data Specifies the callback data argument, which is not used by this procedure.

void XtCallbackExclusive(w, client_data , call_data)
Widget w;
XtPointer client_data ;
XtPointer call_data ;

w Specifies the widget.

client_data Specifies the pop-up shell.

call_data Specifies the callback data argument, which is not used by this procedure.

The XtCallbackNone , XtCallbackNonexclusive and XtCallbackExclusive functions call XtPopup with
the shell specified by the client_data argument and grab_kind set as the name specifies.
XtCallbackNone , XtCallbackNonexclusive and XtCallbackExclusive specify XtGrabNone,
XtGrabNonexclusive and XtGrabExclusive, respectively. Each function then sets the widget that
executed the callback list to be insensitive by calling XtSetSensitive. Using these functions in
callbacks is not required. In particular, an application must provide customised code for
callbacks that create pop-up shells dynamically or that must do more than desensitising the
button.

Within a translation table, to pop up a menu when a key or pointer button is pressed or when
the pointer is moved into a widget, use XtMenuPopup , or its synonym, MenuPopup . From a
translation writer’s point of view, the definition for this translation action is:

void XtMenuPopup(shell_name)
String shell_name ;

shell_name Specifies the name of the shell widget to pop up.

XtMenuPopup is known to the translation manager, which registers the corresponding built-in
action procedure XtMenuPopupAction using XtRegisterGrabAction specifying owner_events True,
event_mask ButtonPressMask | ButtonReleaseMask , and pointer_mode and keyboard_mode
GrabModeAsync.

Window Management (X11R5): X Toolkit Intrinsics 97
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Mapping a Pop-up Widget Pop-up Widgets

If XtMenuPopup is invoked on ButtonPress, it calls XtPopupSpringLoaded on the specified shell
widget. If XtMenuPopup is invoked on KeyPress or EnterWindow , it calls XtPopup on the specified
shell widget with grab_kind set to XtGrabNonexclusive . Otherwise, the translation manager
generates a warning message and ignores the action.

XtMenuPopup tries to find the shell by searching the widget tree starting at the widget in which it
is invoked. If it finds a shell with the specified name in the pop-up children of that widget, it
pops up the shell with the appropriate parameters. Otherwise, it moves up the parent chain to
find a pop-up child with the specified name. If XtMenuPopup gets to the application top-level
shell widget and has not found a matching shell, it generates a warning and returns
immediately.

98 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Pop-up Widgets Unmapping a Pop-up Widget

7.5 Unmapping a Pop-up Widget
Pop-ups can be popped down through several mechanisms:

• a call to XtPopdown

• the supplied callback procedure XtCallbackPopdown

• the standard translation action XtMenuPopdown .

To unmap a pop-up from within an application, use XtPopdown .

void XtPopdown(popup_shell)
Widget popup_shell ;

popup_shell Specifies the shell widget to pop down.

The XtPopdown function performs the following:

• Calls XtCheckSubclass to ensure popup_shell’s class is a subclass of shellWidgetClass .

• Checks that the popped_up field of popup_shell is True; otherwise, it returns immediately.

• Unmaps popup_shell’s window and, if override_redirect is False , sends a synthetic UnmapNotify
event as specified by the ICCCM specification.

• If popup_shell’s grab_kind is either XtGrabNonexclusive or XtGrabExclusive, it calls
XtRemoveGrab.

• Sets popup_shell’s popped_up field to False .

• Calls the callback procedures on the shell’s popdown_callback list, specifying a pointer to the
value of the shell’s grab_kind field as the call_data argument.

To pop down a pop-up from a callback list, you may use the callback XtCallbackPopdown .

void XtCallbackPopdown(w, client_data , call_data)
Widget w;
XtPointer client_data ;
XtPointer call_data ;

w Specifies the widget.

client_data Specifies a pointer to the XtPopdownID structure.

call_data Specifies the callback data argument, which is not used by this procedure.

The XtCallbackPopdown function casts the client_data parameter to a pointer of type
XtPopdownID .

typedef struct {
Widget shell_widget;
Widget enable_widget;

} XtPopdownIDRec, *XtPopdownID;

The shell_widget is the pop-up shell to pop down, and the enable_widget is usually the widget that
was used to pop it up in one of the pop-up callback convenience procedures.

XtCallbackPopdown calls XtPopdown with the specified shell_widget and then calls XtSetSensitive to
resensitize enable_widget.

Within a translation table, to pop down a spring-loaded menu when a key or pointer button is
released or when the pointer is moved into a widget, use XtMenuPopdown or its synonym,
MenuPopdown . From a translation writer’s point of view, the definition for this translation action

Window Management (X11R5): X Toolkit Intrinsics 99
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Unmapping a Pop-up Widget Pop-up Widgets

is:

void XtMenuPopdown(shell_name)
String shell_name ;

shell_name Specifies the name of the shell widget to pop down.

If a shell name is not given, XtMenuPopdown calls XtPopdown with the widget for which the
translation is specified. If shell_name is specified in the translation table, XtMenuPopdown tries to
find the shell by looking up the widget tree starting at the widget in which it is invoked. If it
finds a shell with the specified name in the pop-up children of that widget, it pops down the
shell; otherwise, it moves up the parent chain to find a pop-up child with the specified name. If
XtMenuPopdown gets to the application top-level shell widget and cannot find a matching shell,
it generates a warning and returns immediately.

100 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Chapter 8

Geometry Management

A widget does not directly control its size and location; rather, its parent is responsible for
controlling them. Although the position of children is usually left up to their parent, the widgets
themselves often have the best idea of their optimal sizes and, possibly, preferred locations.

To resolve physical layout conflicts between sibling widgets and between a widget and its
parent, the Intrinsics provide the geometry management mechanism. Almost all composite
widgets have a geometry manager specified in the geometry_manager field in the widget class
record that is responsible for the size, position, and stacking order of the widget’s children. The
only exception is fixed boxes, which create their children themselves and can ensure that their
children will never make a geometry request.

Window Management (X11R5): X Toolkit Intrinsics 101
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Initiating Geometry Changes Geometry Management

8.1 Initiating Geometry Changes
Parents, children and clients each initiate geometry changes differently. Because a parent has
absolute control of its children’s geometry, it changes the geometry directly by calling XtMove-
Widget , XtResizeWidget or XtConfigureWidget . A child must ask its parent for a geometry change
by calling XtMakeGeometryRequest or XtMakeResizeRequest . An application or other client code
initiates a geometry change by calling XtSetValues on the appropriate geometry fields, thereby
giving the widget the opportunity to modify or reject the client request before it gets propagated
to the parent and the opportunity to respond appropriately to the parent’s reply.

When a widget that needs to change its size, position, border width or stacking depth asks its
parent’s geometry manager to make the desired changes, the geometry manager can allow the
request, disallow the request, or suggest a compromise.

When the geometry manager is asked to change the geometry of a child, the geometry manager
may also rearrange and resize any or all of the other children that it controls. The geometry
manager can move children around freely using XtMoveWidget . When it resizes a child (that is,
changes the width, height or border width) other than the one making the request, it should do
so by calling XtResizeWidget . The requesting child may be given special treatment; see Section
8.5. It can simultaneously move and resize a child with a single call to XtConfigureWidget .

Often, geometry managers find that they can satisfy a request only if they can reconfigure a
widget that they are not in control of; in particular, the composite widget may want to change its
own size. In this case, the geometry manager makes a request to its parent’s geometry manager.
Geometry requests can cascade this way to arbitrary depth.

Because such cascaded arbitration of widget geometry can involve extended negotiation,
windows are not actually allocated to widgets at application startup until all widgets are
satisfied with their geometry; see Section 4.5 and Section 4.6.

Notes:

1. The Intrinsics treatment of stacking requests is deficient in several areas. Stacking
requests for unrealised widgets are granted but will have no effect. In addition,
there is no way to do an XtSetValues that will generate a stacking geometry
request.

2. After a successful geometry request (one that returned XtGeometryYes), a widget
does not know whether its resize procedure has been called. Widgets should
have resize procedures that can be called more than once without ill effects.

102 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Geometry Management General Geometry Manager Requests

8.2 General Geometry Manager Requests
When making a geometry request, the child specifies an XtWidgetGeometry structure.

typedef unsigned long XtGeometryMask;

typedef struct {
XtGeometryMask request_mode;
Position x, y;
Dimension width, height;
Dimension border_width;
Widget sibling;
int stack_mode;

} XtWidgetGeometry;

To make a general geometry manager request from a widget, use XtMakeGeometryRequest.

XtGeometryResult XtMakeGeometryRequest(w, request , reply_return)
Widget w;
XtWidgetGeometry * request ;
XtWidgetGeometry * reply_return ;

w Specifies the widget making the request. Each child must be of a class RectObj
or any subclass thereof.

request Specifies the desired widget geometry (size, position, border width and
stacking order).

reply_return Returns the allowed widget size, or may be NULL if the requesting widget is
not interested in handling XtGeometryAlmost.

Depending on the condition, XtMakeGeometryRequest performs the following:

• If the widget is unmanaged or the widget’s parent is not realised, it makes the changes and
returns XtGeometryYes.

• If the parent’s class is not a subclass of compositeWidgetClass or the parent’s geometry_manager
field is NULL, it issues an error.

• If the widget’s being_destroyed field is True, it returns XtGeometryNo.

• If the widget x, y, width, height and border_width fields are all equal to the requested values, it
returns XtGeometryYes; otherwise, it calls the parent’s geometry_manager procedure with the
given parameters.

• If the parent’s geometry manager returns XtGeometryYes and if XtCWQueryOnly is not set in
request->request_mode and if the widget is realised, XtMakeGeometryRequest calls the
XConfigureWindow Xlib function to reconfigure the widget’s window (set its size, location and
stacking order as appropriate).

• If the geometry manager returns XtGeometryDone, the change has been approved and
actually has been done. In this case, XtMakeGeometryRequest does no configuring and returns
XtGeometryYes. XtMakeGeometryRequest never returns XtGeometryDone.

• Otherwise, XtMakeGeometryRequest just returns the resulting value from the parent’s
geometry manager.

Children of primitive widgets are always unmanaged; therefore, XtMakeGeometryRequest always
returns XtGeometryYes when called by a child of a primitive widget.

Window Management (X11R5): X Toolkit Intrinsics 103
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

General Geometry Manager Requests Geometry Management

The return codes from geometry managers are:

typedef enum _XtGeometryResult {
XtGeometryYes,
XtGeometryNo,
XtGeometryAlmost,
XtGeometryDone

} XtGeometryResult;

The request_mode definitions are from <X11/X.h>.

#define CWX (1<<0)
#define CWY (1<<1)
#define CWWidth (1<<2)
#define CWHeight (1<<3)
#define CWBorderWidth (1<<4)
#define CWSibling (1<<5)
#define CWStackMode (1<<6)

The Intrinsics also support the following value.

#define XtCWQueryOnly (1<<7)

XtCWQueryOnly indicates that the corresponding geometry request is only a query as to what
would happen if this geometry request were made and that no widgets should actually be
changed.

XtMakeGeometryRequest, like the XConfigureWindow Xlib function, uses request_mode to determine
which fields in the XtWidgetGeometry structure the caller wants to specify.

The stack_mode definitions are from <X11/X.h>.

#define Above 0
#define Below 1
#define TopIf 2
#define BottomIf 3
#define Opposite 4

The Intrinsics also support the following value.

#define XtSMDontChange 5

For definition and behaviour of Above, Below , TopIf , BottomIf and Opposite , see the Xlib — C
Language Binding specification. XtSMDontChange indicates that the widget wants its current
stacking order preserved.

104 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Geometry Management Resize Requests

8.3 Resize Requests
To make a simple resize request from a widget, you can use XtMakeResizeRequest as an
alternative to XtMakeGeometryRequest.

XtGeometryResult XtMakeResizeRequest(w, width , height ,
width_return , height_return)

Widget w;
Dimension width , height ;
Dimension * width_return , * height_return ;

w Specifies the widget making the request. Each child must be of a class RectObj
or any subclass thereof.

width
height Specify the desired widget width and height.

width_return
height_return Return the allowed widget width and height.

The XtMakeResizeRequest function, a simple interface to XtMakeGeometryRequest, creates an
XtWidgetGeometry structure and specifies that width and height should change by setting
request_mode to CWWidth | CWHeight. The geometry manager is free to modify any of the other
window attributes (position or stacking order) to satisfy the resize request. If the return value is
XtGeometryAlmost, width_return and height_return contain a compromise width and height. If
these are acceptable, the widget should immediately call XtMakeResizeRequest again and request
that the compromise width and height be applied. If the widget is not interested in
XtGeometryAlmost replies, it can pass NULL for width_return and height_return.

Window Management (X11R5): X Toolkit Intrinsics 105
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Potential Geometry Changes Geometry Management

8.4 Potential Geometry Changes
Sometimes a geometry manager cannot respond to a geometry request from a child without first
making a geometry request to the widget’s own parent (the original requestor’s grandparent). If
the request to the grandparent would allow the parent to satisfy the original request, the
geometry manager can make the intermediate geometry request as if it were the originator. On
the other hand, if the geometry manager already has determined that the original request cannot
be completely satisfied (for example, if it always denies position changes), it needs to tell the
grandparent to respond to the intermediate request without actually changing the geometry
because it does not know if the child will accept the compromise. To accomplish this, the
geometry manager uses XtCWQueryOnly in the intermediate request.

When XtCWQueryOnly is used, the geometry manager needs to cache enough information to
exactly reconstruct the intermediate request. If the grandparent’s response to the intermediate
query was XtGeometryAlmost, the geometry manager needs to cache the entire reply geometry in
the event the child accepts the parent’s compromise.

If the grandparent’s response was XtGeometryAlmost, it may also be necessary to cache the entire
reply geometry from the grandparent when XtCWQueryOnly is not used. If the geometry
manager is still able to satisfy the original request, it may immediately accept the grandparent’s
compromise and then act on the child’s request. If the grandparent’s compromise geometry is
insufficient to allow the child’s request and if the geometry manager is willing to offer a different
compromise to the child, the grandparent’s compromise should not be accepted until the child
has accepted the new compromise.

Note that a compromise geometry returned with XtGeometryAlmost is guaranteed only for the
next call to the same widget; therefore, a cache of size 1 is sufficient.

106 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Geometry Management Child Geometry Management: geometry_manager Procedure

8.5 Child Geometry Management: geometry_manager Procedure
The geometry_manager procedure pointer in a composite widget class is of type
XtGeometryHandler.

typedef XtGeometryResult (*XtGeometryHandler)(Widget,
XtWidgetGeometry*, \
XtWidgetGeometry*);

Widget w;
XtWidgetGeometry * request;
XtWidgetGeometry * geometry_return;

w Passes the widget making the request.

request Passes the new geometry the child desires.

geometry_return Passes a geometry structure in which the geometry manager may store a
compromise.

A class can inherit its superclass’s geometry manager during class initialisation.

A bit set to zero in the request’s request_mode field means that the child widget does not care
about the value of the corresponding field, so the geometry manager can change this field as it
wishes. A bit set to 1 means that the child wants that geometry element changed to the value in
the corresponding field.

If the geometry manager can satisfy all changes requested and if XtCWQueryOnly is not
specified, it updates the widget’s x, y, width, height and border_width fields appropriately. Then, it
returns XtGeometryYes, and the values pointed to by the geometry_return argument are undefined.
The widget’s window is moved and resized automatically by XtMakeGeometryRequest.

Homogeneous composite widgets often find it convenient to treat the widget making the request
the same as any other widget, including reconfiguring it using XtConfigureWidget or
XtResizeWidget as part of its layout process, unless XtCWQueryOnly is specified. If it does this, it
should return XtGeometryDone to inform XtMakeGeometryRequest that it does not need to do the
configuration itself.

Note: To remain compatible with layout techniques used in older widgets (before
XtGeometryDone was added to the Intrinsics), a geometry manager should avoid using
XtResizeWidget or XtConfigureWidget on the child making the request because the layout
process of the child may be in an intermediate state in which it is not prepared to
handle a call to its resize procedure. A self-contained widget set may choose this
alternative geometry management scheme, however, provided that it clearly warns
widget developers of the compatibility consequences.

Although XtMakeGeometryRequest resizes the widget’s window (if the geometry manager returns
XtGeometryYes), it does not call the widget class’s resize procedure. The requesting widget must
perform whatever resizing calculations are needed explicitly.

If the geometry manager disallows the request, the widget cannot change its geometry. The
values pointed to by geometry_return are undefined, and the geometry manager returns
XtGeometryNo.

Sometimes the geometry manager cannot satisfy the request exactly but may be able to satisfy a
similar request. That is, it could satisfy only a subset of the requests (for example, size but not
position) or a lesser request (for example, it cannot make the child as big as the request but it can
make the child bigger than its current size). In such cases, the geometry manager fills in the
structure pointed to by geometry_return with the actual changes it is willing to make, including
an appropriate request_mode mask, and returns XtGeometryAlmost. If a bit in geometry_return-

Window Management (X11R5): X Toolkit Intrinsics 107
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Child Geometry Management: geometry_manager Procedure Geometry Management

>request_mode is zero, the geometry manager agrees not to change the corresponding value if
geometry_return is used immediately in a new request. If a bit is 1, the geometry manager does
change that element to the corresponding value in geometry_return. More bits may be set in
geometry_return->request_mode than in the original request if the geometry manager intends to
change other fields should the child accept the compromise.

When XtGeometryAlmost is returned, the widget must decide if the compromise suggested in
geometry_return is acceptable. If it is, the widget must not change its geometry directly; rather, it
must make another call to XtMakeGeometryRequest.

If the next geometry request from this child uses the geometry_return values filled in by the
geometry manager with an XtGeometryAlmost return and if there have been no intervening
geometry requests on either its parent or any of its other children, the geometry manager must
grant the request, if possible. That is, if the child asks immediately with the returned geometry,
it should get an answer of XtGeometryYes. However, dynamic behaviour in the user’s window
manager may affect the final outcome.

To return XtGeometryYes, the geometry manager frequently rearranges the position of other
managed children by calling XtMoveWidget . However, a few geometry managers may
sometimes change the size of other managed children by calling XtResizeWidget or
XtConfigureWidget . If XtCWQueryOnly is specified, the geometry manager must return data
describing how it would react to this geometry request without actually moving or resizing any
widgets.

Geometry managers must not assume that the request and geometry_return arguments point to
independent storage. The caller is permitted to use the same field for both, and the geometry
manager must allocate its own temporary storage, if necessary.

108 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Geometry Management Widget Placement and Sizing

8.6 Widget Placement and Sizing
To move a sibling widget of the child making the geometry request, the parent uses
XtMoveWidget .

void XtMoveWidget(w, x, y)
Widget w;
Position x;
Position y;

w Specifies the widget. Each child must be of a class RectObj or any subclass
thereof.

x
y Specify the new widget x and y coordinates.

The XtMoveWidget function returns immediately if the specified geometry fields are the same as
the old values. Otherwise, XtMoveWidget writes the new x and y values into the object and, if the
object is a widget and is realised, issues an Xlib XMoveWindow call on the widget’s window.

To resize a sibling widget of the child making the geometry request, the parent uses
XtResizeWidget .

void XtResizeWidget(w, width , height , border_width)
Widget w;
Dimension width ;
Dimension height ;
Dimension border_width ;

w Specifies the widget. Each child must be of a class RectObj or any subclass
thereof.

width
height
border_width Specify the new widget size.

The XtResizeWidget function returns immediately if the specified geometry fields are the same as
the old values. Otherwise, XtResizeWidget writes the new width, height and border_width values
into the object and, if the object is a widget and is realised, issues an XConfigureWindow call on
the widget’s window.

If the new width or height is different from the old values, XtResizeWidget calls the object’s resize
procedure to notify it of the size change.

To move and resize the sibling widget of the child making the geometry request, the parent uses
XtConfigureWidget.

void XtConfigureWidget(w, x, y, width , height ,
border_width)

Widget w;
Position x;
Position y;
Dimension width ;
Dimension height ;
Dimension border_width ;

w Specifies the widget. Each child must be of a class RectObj or any subclass
thereof.

Window Management (X11R5): X Toolkit Intrinsics 109
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Placement and Sizing Geometry Management

x
y Specify the new widget x and y coordinates.

width
height
border_width Specify the new widget size.

The XtConfigureWidget function returns immediately if the specified new geometry fields are all
equal to the current values. Otherwise, XtConfigureWidget writes the new x, y, width, height and
border_width values into the object and, if the object is a widget and is realised, makes an Xlib
XConfigureWindow call on the widget’s window.

If the new width or height is different from its old value, XtConfigureWidget calls the object’s
resize procedure to notify it of the size change; otherwise, it simply returns.

To resize a child widget that already has the new values of its width, height and border width,
the parent uses XtResizeWindow .

void XtResizeWindow(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

The XtResizeWindow function calls the XConfigureWindow Xlib function to make the window of
the specified widget match its width, height and border width. This request is done
unconditionally because there is no inexpensive way to tell if these values match the current
values. Note that the widget’s resize procedure is not called.

There are very few times to use XtResizeWindow ; instead, the parent should use XtResizeWidget .

110 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Geometry Management Preferred Geometry

8.7 Preferred Geometry
Some parents may be willing to adjust their layouts to accommodate the preferred geometries of
their children. They can use XtQueryGeometry to obtain the preferred geometry and, as they see
fit, can use or ignore any portion of the response.

To query a child widget’s preferred geometry, use XtQueryGeometry.

XtGeometryResult XtQueryGeometry(w, intended , preferred_return)
Widget w;
XtWidgetGeometry * intended , * preferred_return ;

w Specifies the widget. Each child must be of a class RectObj or any subclass
thereof.

intended Specifies the new geometry the parent plans to give to the child, or NULL.

preferred_return Returns the child widget’s preferred geometry.

To discover a child’s preferred geometry, the child’s parent stores the new geometry in the
corresponding fields of the intended structure, sets the corresponding bits in
intended.request_mode, and calls XtQueryGeometry. The parent should set only those fields that
are important to it so that the child can determine whether it may be able to attempt changes to
other fields.

XtQueryGeometry clears all bits in the preferred_return->request_mode field and checks the
query_geometry field of the specified widget’s class record. If query_geometry is not NULL,
XtQueryGeometry calls the query_geometry procedure and passes as arguments the specified
widget, intended, and preferred_return structures. If the intended argument is NULL,
XtQueryGeometry replaces it with a pointer to an XtWidgetGeometry structure with request_mode
equal to zero before calling the query_geometry procedure.

Note: If XtQueryGeometry is called from within a geometry_manager procedure for the widget
that issued XtMakeGeometryRequest or XtMakeResizeRequest , the results are not
guaranteed to be consistent with the requested changes. The change request passed to
the geometry manager takes precedence over the preferred geometry.

The query_geometry procedure pointer is of type XtGeometryHandler.

typedef XtGeometryResult (*XtGeometryHandler)(Widget,
XtWidgetGeometry*, \
XtWidgetGeometry*);

Widget w;
XtWidgetGeometry * request ;
XtWidgetGeometry * preferred_return ;

w Passes the child widget whose preferred geometry is required.

request Passes the geometry changes which the parent plans to make.

preferred_return Passes a structure in which the child returns its preferred geometry.

The query_geometry procedure is expected to examine the bits set in request->request_mode,
evaluate the preferred geometry of the widget, and store the result in preferred_return (setting the
bits in preferred_return->request_mode corresponding to those geometry fields that it cares about).
If the proposed geometry change is acceptable without modification, the query_geometry
procedure should return XtGeometryYes. If at least one field in preferred_return with a bit set in
preferred_return->request_mode is different from the corresponding field in request or if a bit was
set in preferred_return->request_mode that was not set in the request, the query_geometry
procedure should return XtGeometryAlmost. If the preferred geometry is identical to the current

Window Management (X11R5): X Toolkit Intrinsics 111
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Preferred Geometry Geometry Management

geometry, the query_geometry procedure should return XtGeometryNo.

Note: The query_geometry procedure may assume that no XtMakeResizeRequest or
XtMakeGeometryRequest is in progress for the specified widget; that is, it is not required
to construct a reply consistent with the requested geometry if such a request were
actually outstanding.

After calling the query_geometry procedure or if the query_geometry field is NULL,
XtQueryGeometry examines all the unset bits in preferred_return->request_mode and sets the
corresponding fields in preferred_return to the current values from the widget instance. If
CWStackMode is not set, the stack_mode field is set to XtSMDontChange . XtQueryGeometry returns
the value returned by the query_geometry procedure or XtGeometryYes if the query_geometry field
is NULL.

Therefore, the caller can interpret a return of XtGeometryYes as not needing to evaluate the
contents of the reply and, more important, not needing to modify its layout plans. A return of
XtGeometryAlmost means either that both the parent and the child expressed interest in at least
one common field and the child’s preference does not match the parent’s intentions or that the
child expressed interest in a field that the parent might need to consider. A return value of
XtGeometryNo means that both the parent and the child expressed interest in a field and that the
child suggests that the field’s current value in the widget instance is its preferred value. In
addition, whether or not the caller ignores the return value or the reply mask, it is guaranteed
that the preferred_return structure contains complete geometry information for the child.

Parents are expected to call XtQueryGeometry in their layout routine and wherever else the
information is significant after change_managed has been called. The first time it is invoked, the
changed_managed procedure may assume that the child’s current geometry is its preferred
geometry. Thus, the child is still responsible for storing values into its own geometry during its
initialize procedure.

112 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Geometry Management Size Change Management: resize Procedure

8.8 Size Change Management: resize Procedure
A child can be resized by its parent at any time. Widgets usually need to know when they have
changed size so that they can lay out their displayed data again to match the new size. When a
parent resizes a child, it calls XtResizeWidget , which updates the geometry fields in the widget,
configures the window if the widget is realised, and calls the child’s resize procedure to notify
the child. The resize procedure pointer is of type XtWidgetProc .

If a class need not recalculate anything when a widget is resized, it can specify NULL for the
resize field in its class record. This is an unusual case and should occur only for widgets with
very trivial display semantics. The resize procedure takes a widget as its only argument. The x,
y, width, height and border_width fields of the widget contain the new values. The resize
procedure should recalculate the layout of internal data as needed. (For example, a centered
Label in a window that changes size should recalculate the starting position of the text.) The
widget must obey resize as a command and must not treat it as a request. A widget must not
issue an XtMakeGeometryRequest or XtMakeResizeRequest call from its resize procedure.

Window Management (X11R5): X Toolkit Intrinsics 113
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Geometry Management

114 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Chapter 9

Event Management

While Xlib allows the reading and processing of events anywhere in an application, widgets in
the X Toolkit neither directly read events nor grab the server or pointer. Widgets register
procedures that are to be called when an event or class of events occurs in that widget.

A typical application consists of startup code followed by an event loop that reads events and
dispatches them by calling the procedures that widgets have registered. The default event loop
provided by the Intrinsics is XtAppMainLoop .

The event manager is a collection of functions to perform the following tasks:

• add or remove event sources other than X server events (in particular, timer interrupts and
file input)

• query the status of event sources

• add or remove procedures to be called when an event occurs for a particular widget

• enable and disable the dispatching of user-initiated events (keyboard and pointer events) for
a particular widget

• constrain the dispatching of events to a cascade of pop-up widgets

• register procedures to be called when specific events arrive.

Most widgets do not need to call any of the event handler functions explicitly. The normal
interface to X events is through the higher-level translation manager, which maps sequences of X
events, with modifiers, into procedure calls. Applications rarely use any of the event manager
routines besides XtAppMainLoop .

Window Management (X11R5): X Toolkit Intrinsics 115
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Adding and Deleting Additional Event Sources Event Management

9.1 Adding and Deleting Additional Event Sources
While most applications are driven only by X events, some applications need to incorporate
other sources of input into the Intrinsics event-handling mechanism. The event manager
provides routines to integrate notification of timer events and file data pending into this
mechanism.

The next section describes functions that provide input gathering from files. The application
registers the files with the Intrinsics read routine. When input is pending on one of the files, the
registered callback procedures are invoked.

9.1.1 Adding and Removing Input Sources

To register a new file as an input source for a given application context, use XtAppAddInput .

XtInputId XtAppAddInput(app_context , source , condition ,
proc , client_data)

XtAppContext app_context ;
int source ;
XtPointer condition ;
XtInputCallbackProc proc ;
XtPointer client_data ;

app_context Specifies the application context that identifies the application.

source Specifies the source file descriptor on a POSIX-based system or other
operating-system-dependent device specification.

condition Specifies the mask that indicates a read, write, or exception condition or some
other operating-system-dependent condition.

proc Specifies the procedure to be called when the condition is found.

client_data Specifies an argument passed to the specified procedure when it is called.

The XtAppAddInput function registers with the Intrinsics read routine a new source of events,
which is usually file input but can also be file output. Note that file should be loosely interpreted
to mean any sink or source of data. XtAppAddInput also specifies the conditions under which the
source can generate events. When an event is pending on this source, the callback procedure is
called.

The legal values for the condition argument are operating system-dependent. On a POSIX-based
system, source is a file number and the condition is some union of the following:

XtInputReadMask Specifies that proc is to be called when source has data to be read.

XtInputWriteMask Specifies that proc is to be called when source is ready for writing.

XtInputExceptMask Specifies that proc is to be called when source has exception data.

Callback procedure pointers used to handle file events are of type XtInputCallbackProc .

typedef void (*XtInputCallbackProc)(XtPointer, int*, XtInputId*);
XtPointer client_data ;
int * source ;
XtInputId * id ;

client_data Passes the client data argument that was registered for this procedure in
XtAppAddInput .

116 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Event Management Adding and Deleting Additional Event Sources

source Passes the source file descriptor generating the event.

id Passes the id returned from the corresponding XtAppAddInput call.

To discontinue a source of input, use XtRemoveInput .

void XtRemoveInput(id)
XtInputId id ;

id Specifies the id returned from the corresponding XtAppAddInput call.

The XtRemoveInput function causes the Intrinsics read routine to stop watching for events from
the file source specified by id.

9.1.2 Adding and Removing Timeouts

The timeout facility notifies the application or the widget through a callback procedure that a
specified time interval has elapsed. Timeout values are uniquely identified by an interval id.

To register a timeout callback, use XtAppAddTimeOut.

XtIntervalId XtAppAddTimeOut(app_context , interval , proc ,
client_data)

XtAppContext app_context ;
unsigned long interval ;
XtTimerCallbackProc proc ;
XtPointer client_data ;

app_context Specifies the application context for which the timer is to be set.

interval Specifies the time interval in milliseconds.

proc Specifies the procedure to be called when the time expires.

client_data Specifies an argument passed to the specified procedure when it is called.

The XtAppAddTimeOut function creates a timeout and returns an identifier for it. The timeout
value is set to interval. The callback procedure proc is called when XtAppNextEvent or
XtAppProcessEvent is next called after the time interval elapses, and then the timeout is removed.

Callback procedure pointers used with timeouts are of type XtTimerCallbackProc .

typedef void (*XtTimerCallbackProc)(XtPointer, XtIntervalId*);
XtPointer client_data ;
XtIntervalId * timer ;

client_data Passes the client data argument that was registered for this procedure in
XtAppAddTimeOut.

timer Passes the id returned from the corresponding XtAppAddTimeOut call.

To clear a timeout value, use XtRemoveTimeOut.

void XtRemoveTimeOut(timer)
XtIntervalId timer ;

timer Specifies the id for the timeout request to be cleared.

The XtRemoveTimeOut function removes the pending timeout. Note that timeouts are
automatically removed once they trigger.

Window Management (X11R5): X Toolkit Intrinsics 117
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Constraining Events to a Cascade of Widgets Event Management

9.2 Constraining Events to a Cascade of Widgets
Modal widgets are widgets that, except for the input directed to them, lock out user input to the
application.

When a modal menu or modal dialog box is popped up using XtPopup , user events (keyboard
and pointer events) that occur outside the modal widget should be delivered to the modal
widget or ignored. In no case will user events be delivered to a widget outside the modal
widget.

Menus can pop up submenus, and dialog boxes can pop up further dialog boxes, to create a
pop-up cascade. In this case, user events may be delivered to one of several modal widgets in
the cascade.

Display-related events should be delivered outside the modal cascade so that exposure events
and the like keep the application’s display up-to-date. Any event that occurs within the cascade
is delivered as usual. The user events delivered to the most recent spring-loaded shell in the
cascade when they occur outside the cascade are called remap events and are KeyPress,
KeyRelease , ButtonPress and ButtonRelease . The user events ignored when they occur outside the
cascade are MotionNotify and EnterNotify . All other events are delivered normally. In particular,
note that this is one way in which widgets can receive LeaveNotify events without first receiving
EnterNotify events; they should be prepared to deal with this, typically by ignoring any
unmatched LeaveNotify events.

XtPopup uses the XtAddGrab and XtRemoveGrab functions to constrain user events to a modal
cascade and subsequently to remove a grab when the modal widget is popped down.

To constrain or redirect user input to a modal widget, use XtAddGrab .

void XtAddGrab(w, exclusive , spring_loaded)
Widget w;
Boolean exclusive ;
Boolean spring_loaded ;

w Specifies the widget to add to the modal cascade. Must be of class Core or any
subclass thereof.

exclusive Specifies whether user events should be dispatched exclusively to this widget
or also to previous widgets in the cascade.

spring_loaded Specifies whether this widget was popped up because the user pressed a
pointer button.

The XtAddGrab function appends the widget to the modal cascade and checks that exclusive is
True if spring_loaded is True. If this condition is not met, XtAddGrab generates a warning
message.

The modal cascade is used by XtDispatchEvent when it tries to dispatch a user event. When at
least one modal widget is in the widget cascade, XtDispatchEvent first determines if the event
should be delivered. It starts at the most recent cascade entry and follows the cascade up to and
including the most recent cascade entry added with the exclusive parameter True.

This subset of the modal cascade along with all descendants of these widgets comprise the
active subset. User events that occur outside the widgets in this subset are ignored or remapped.
Modal menus with submenus generally add a submenu widget to the cascade with exclusive
False . Modal dialog boxes that need to restrict user input to the most deeply nested dialog box
add a subdialog widget to the cascade with exclusive True. User events that occur within the
active subset are delivered to the appropriate widget, which is usually a child or further
descendant of the modal widget.

118 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Event Management Constraining Events to a Cascade of Widgets

Regardless of where in the application they occur, remap events are always delivered to the
most recent widget in the active subset of the cascade registered with spring_loaded True, if any
such widget exists. If the event occurred in the active subset of the cascade but outside the
spring-loaded widget, it is delivered normally before being delivered also to the spring-loaded
widget. Regardless of where it is dispatched, the Intrinsics do not modify the contents of the
event.

To remove the redirection of user input to a modal widget, use XtRemoveGrab.

void XtRemoveGrab(w)
Widget w;

w Specifies the widget to remove from the modal cascade.

The XtRemoveGrab function removes widgets from the modal cascade starting at the most recent
widget up to and including the specified widget. It issues a warning if the specified widget is
not on the modal cascade.

9.2.1 Requesting Key and Button Grabs

The Intrinsics provide a set of key and button grab interfaces that are parallel to those provided
by Xlib and that allow the Intrinsics to modify event dispatching when necessary. X Toolkit
applications and widgets that need to passively grab keys or buttons or actively grab the
keyboard or pointer should use the following Intrinsics routines rather than the corresponding
Xlib routines.

To passively grab a single key of the keyboard, use XtGrabKey.

void XtGrabKey(widget , keycode , modifiers ,
owner_events , pointer_mode , keyboard_mode)

Widget widget ;
KeyCode keycode ;
Modifiers modifiers ;
Boolean owner_events ;
int pointer_mode , keyboard_mode ;

widget Specifies the widget in whose window the key is to be grabbed. Must be of
class Core or any subclass thereof.

keycode
modifiers
owner_events
pointer_mode
keyboard_mode Specify arguments to XGrabKey; see the Xlib — C Language Binding

specification.

XtGrabKey calls XGrabKey specifying the widget’s window as the grab window if the widget is
realised. The remaining arguments are exactly as for XGrabKey. If the widget is not realised, or
is later unrealised, the call to XGrabKey will be performed (again) when the widget is realised
and its window becomes mapped. In the future, if XtDispatchEvent is called with a KeyPress
event matching the specified keycode and modifiers (which may be AnyKey or AnyModifier,
respectively) for the widget’s window, the Intrinsics will call XtUngrabKeyboard with the
timestamp from the KeyPress event if either of the following conditions is true:

• There is a modal cascade and the widget is not in the active subset of the cascade and the
keyboard was not previously grabbed. or

Window Management (X11R5): X Toolkit Intrinsics 119
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Constraining Events to a Cascade of Widgets Event Management

• XFilterEvent returns True.

To cancel a passive key grab, use XtUngrabKey.

void XtUngrabKey(widget , keycode, modifiers)
Widget widget;
KeyCode keycode;
Modifiers modifiers;

widget Specifies the widget in whose window the key was grabbed.

keycode
modifiers Specify arguments to XUngrabKey; see the Xlib — C Language Binding

specification.

The XtUngrabKey procedure calls XUngrabKey specifying the widget’s window as the ungrab
window if the widget is realised. The remaining arguments are exactly as for XUngrabKey. If
the widget is not realised, XtUngrabKey removes a deferred XtGrabKey request, if any, for the
specified widget, keycode and modifiers.

To actively grab the keyboard, use XtGrabKeyboard .

int XtGrabKeyboard(widget , owner_events , pointer_mode ,
keyboard_mode , time)

Widget widget ;
Boolean owner_events ;
int pointer_mode , keyboard_mode ;
Time time ;

widget Specifies the widget for whose window the keyboard is to be grabbed. Must
be of class Core or any subclass thereof.

owner_events
pointer_mode
keyboard_mode
time Specify arguments to XGrabKeyboard ; see the Xlib — C Language Binding

specification.

If the specified widget is realised XtGrabKeyboard calls XGrabKeyboard specifying the widget’s
window as the grab window. The remaining arguments and return value are exactly as for
XGrabKeyboard . If the widget is not realised, XGrabKeyboard immediately returns
GrabNotViewable . No future automatic ungrab is implied by XtGrabKeyboard .

To cancel an active keyboard grab, use XtUngrabKeyboard .

void XtUngrabKeyboard(widget , time)
Widget widget ;
Time time ;

widget Specifies the widget that has the active keyboard grab.

time Specifies the additional argument to XUngrabKeyboard ; see the Xlib — C
Language Binding specification.

XtUngrabKeyboard calls XUngrabKeyboard with the specified time.

To passively grab a single pointer button, use XtGrabButton.

120 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Event Management Constraining Events to a Cascade of Widgets

void XtGrabButton(widget , button , modifiers ,
owner_events , event_mask , pointer_mode , \
keyboard_mode , confine_to , cursor)

Widget widget ;
int button ;
Modifiers modifiers ;
Boolean owner_events ;
unsigned int event_mask ;
int pointer_mode , keyboard_mode ;
Window confine_to ;
Cursor cursor ;

widget Specifies the widget in whose window the button is to be grabbed. Must be of
class Core or any subclass thereof.

button
modifiers
owner_events
event_mask
pointer_mode
keyboard_mode
confine_to
cursor Specify arguments to XGrabButton; see the Xlib — C Language Binding

specification.

XtGrabButton calls XGrabButton specifying the widget’s window as the grab window if the
widget is realised. The remaining arguments are exactly as for XGrabButton. If the widget is not
realised, or is later unrealised, the call to XGrabButton will be performed (again) when the widget
is realised and its window becomes mapped. In the future, if XtDispatchEvent is called with a
ButtonPress event matching the specified button and modifiers (which may be AnyButton or
AnyModifier, respectively) for the widget’s window, the Intrinsics will call XtUngrabPointer with
the timestamp from the ButtonPress event if either of the following conditions is true:

• There is a modal cascade and the widget is not in the active subset of the cascade and the
pointer was not previously grabbed.

• XFilterEvent returns True.

To cancel a passive button grab, use XtUngrabButton.

void XtUngrabButton(widget , button , modifiers)
Widget widget ;
unsigned int button ;
Modifiers modifiers ;

widget Specifies the widget in whose window the button was grabbed.

button
modifiers Specify arguments to XUngrabButton; see the Xlib — C Language Binding

specification.

The XtUngrabButton procedure calls XUngrabButton specifying the widget’s window as the
ungrab window if the widget is realised. The remaining arguments are exactly as for
XUngrabButton. If the widget is not realised, XtUngrabButton removes a deferred XtGrabButton
request, if any, for the specified widget, button and modifiers.

To actively grab the pointer, use XtGrabPointer .

Window Management (X11R5): X Toolkit Intrinsics 121
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Constraining Events to a Cascade of Widgets Event Management

int XtGrabPointer(widget , owner_events , event_mask ,
pointer_mode , keyboard_mode , \
confine_to , cursor , time)

Widget widget ;
Boolean owner_events ;
unsigned int event_mask ;
int pointer_mode , keyboard_mode ;
Window confine_to ;
Cursor cursor ;
Time time ;

widget Specifies the widget for whose window the pointer is to be grabbed. Must be
of class Core or any subclass thereof.

owner_events
event_mask
pointer_mode
keyboard_mode
confine_to
cursor
time Specify arguments to XGrabPointer ; see the Xlib — C Language Binding

specification.

If the specified widget is realised, XtGrabPointer calls XGrabPointer , specifying the widget’s
window as the grab window. The remaining arguments and return value are exactly as for
XGrabPointer . If the widget is not realised, XGrabPointer immediately returns GrabNotViewable .
No future automatic ungrab is implied by XtGrabPointer .

To cancel an active pointer grab, use XtUngrabPointer .

void XtUngrabPointer(widget , time)
Widget widget ;
Time time ;

widget Specifies the widget that has the active pointer grab.

time Specifies the time argument to XUngrabPointer ; see the Xlib — C Language
Binding specification.

XtUngrabPointer calls XUngrabPointer with the specified time.

122 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Event Management Focusing Events on a Child

9.3 Focusing Events on a Child
To redirect keyboard input to a normal descendant of a widget without calling XSetInputFocus ,
use XtSetKeyboardFocus .

void XtSetKeyboardFocus(subtree , descendant)
Widget subtree , descendant ;

subtree Specifies the subtree of the hierarchy for which the keyboard focus is to be set.
Must be of class Core or any subclass thereof.

descendant Specifies either the normal (non-pop-up) descendant of subtree to which
keyboard events are logically directed, or None. It is not an error to specify
None when no input focus was previously set. Must be of a classObject or any
subclass thereof.

XtSetKeyboardFocus causes XtDispatchEvent to remap keyboard events occurring within the
specified subtree and dispatch them to the specified descendant widget or to an ancestor. If the
descendant’s class is not a subclass of Core, the descendant is replaced by its closest windowed
ancestor.

When there is no modal cascade, keyboard events can be dispatched to a widget in one of five
ways. Assume the server delivered the event to the window for widget E (because of X input
focus, key or keyboard grabs, or pointer position).

• If neither E nor any of E’s ancestors have redirected the keyboard focus, or if the event
activated a grab for E as specified by a call to XtGrabKey with any value of owner_events, or if
the keyboard is actively grabbed by E with owner_events False via XtGrabKeyboard or
XtGrabKey on a previous key press, the event is dispatched to E.

• Beginning with the ancestor of E closest to the root that has redirected the keyboard focus or
E if no such ancestor exists, if the target of that focus redirection has in turn redirected the
keyboard focus, recursively follow this focus chain to find a widget F that has not redirected
focus.

— If E is the final focus target widget F or a descendant of F, the event is dispatched to E.

— If E is not F, an ancestor of F, or a descendant of F, and the event activated a grab for E as
specified by a call to XtGrabKey for E, XtUngrabKeyboard is called.

— If E is an ancestor of F, and the event is a key press, and either:

— E has grabbed the key with XtGrabKey and owner_events False

— E has grabbed the key with XtGrabKey and owner_events True, and the coordinates of
the event are outside the rectangle specified by E’s geometry

then the event is dispatched to E.

— Otherwise, define A as the closest common ancestor of E and F:

— if there is an active keyboard grab for any widget via either XtGrabKeyboard or
XtGrabKey on a previous key press, or if no widget between F and A (non-inclusive)
has grabbed the key and modifier combination with XtGrabKey and any value of
owner_events, the event is dispatched to F

— else, the event is dispatched to the ancestor of F closest to A that has grabbed the key
and modifier combination with XtGrabKey.

When there is a modal cascade, if the final destination widget as identified above is in the active
subset of the cascade, the event is dispatched; otherwise the event is remapped to a spring-

Window Management (X11R5): X Toolkit Intrinsics 123
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Focusing Events on a Child Event Management

loaded shell or discarded. Regardless of where it is dispatched, the Intrinsics do not modify the
contents of the event.

When subtree or one of its descendants acquires the X input focus or the pointer moves into the
subtree such that keyboard events would now be delivered to the subtree, a FocusIn event is
generated for the descendant if FocusChange events have been selected by the descendant.
Similarly, when subtree loses the X input focus or the keyboard focus for one of its ancestors, a
FocusOut event is generated for descendant if FocusChange events have been selected by the
descendant.

A widget tree may also actively manage the X server input focus. To do so, a widget class
specifies an accept_focus procedure.

The accept_focus procedure pointer is of type XtAcceptFocusProc .

typedef Boolean (*XtAcceptFocusProc)(Widget, Time*);
Widget w;
Time * time ;

w Specifies the widget.

time Specifies the X time of the event causing the accept focus.

Widgets that need the input focus can call XSetInputFocus explicitly, pursuant to the restrictions
of the ICCCM specification. To allow outside agents, such as the parent, to cause a widget to
take the input focus, every widget exports an accept_focus procedure. The widget returns a
value indicating whether it actually took the focus or not, so that the parent can give the focus to
another widget. Widgets that need to know when they lose the input focus must use the Xlib
focus notification mechanism explicitly (typically by specifying translations for FocusIn and
FocusOut events). Widgets classes that never want the input focus should set the accept_focus
field to NULL.

To call a widget’s accept_focus procedure, use XtCallAcceptFocus .

Boolean XtCallAcceptFocus(w, time)
Widget w;
Time * time ;

w Specifies the widget. Must be of class Core or any subclass thereof.

time Specifies the X time of the event that is causing the focus change.

The XtCallAcceptFocus function calls the specified widget’s accept_focus procedure, passing it
the specified widget and time, and returns what the accept_focus procedure returns. If
accept_focus is NULL, XtCallAcceptFocus returns False .

124 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Event Management Querying Event Sources

9.4 Querying Event Sources
The event manager provides several functions to examine and read events (including file and
timer events) that are in the queue. The next three functions are Intrinsics equivalents of the
XPending , XPeekEvent and XNextEvent Xlib calls.

To determine if there are any events on the input queue for a given application, use
XtAppPending.

XtInputMask XtAppPending(app_context)
XtAppContext app_context ;

app_context Specifies the application context that identifies the application to check.

The XtAppPending function returns a non-zero value if there are events pending from the X
server, timer pending, or other input sources pending. The value returned is a bit mask that is
the OR of XtIMXEvent, XtIMTimer and XtIMAlternateInput (see XtAppProcessEvent). If there are
no events pending, XtAppPending flushes the output buffers of each Display in the application
context and returns zero.

To return the event from the head of a given application’s input queue without removing input
from the queue, use XtAppPeekEvent.

Boolean XtAppPeekEvent(app_context , event_return)
XtAppContext app_context ;
XEvent * event_return ;

app_context Specifies the application context that identifies the application.

event_return Returns the event information to the specified event structure.

If there is an X event in the queue, XtAppPeekEvent copies it into event_return and returns True. If
no X input is on the queue, XtAppPeekEvent flushes the output buffers of each Display in the
application context and blocks until some input is available (possibly calling some timeout
callbacks in the interim). If the next available input is an X event, XtAppPeekEvent fills in
event_return and returns True. Otherwise, the input is for an input source registered with
XtAppAddInput , and XtAppPeekEvent returns False .

To remove and return the event from the head of a given application’s X event queue, use
XtAppNextEvent.

void XtAppNextEvent(app_context , event_return)
XtAppContext app_context ;
XEvent * event_return ;

app_context Specifies the application context that identifies the application.

event_return Returns the event information to the specified event structure.

If the X event queue is empty, XtAppNextEvent flushes the X output buffers of each Display in
the application context and waits for an X event while looking at the other input sources and
timeout values and calling any callback procedures triggered by them. This wait time can be
used for background processing; see Section 9.8.

Window Management (X11R5): X Toolkit Intrinsics 125
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Dispatching Events Event Management

9.5 Dispatching Events
The Intrinsics provide functions that dispatch events to widgets or other application code.
Every client interested in X events on a widget uses XtAddEventHandler to register which events
it is interested in and a procedure (event handler) to be called when the event happens in that
window. The translation manager automatically registers event handlers for widgets that use
translation tables; see Chapter 12.

Applications that need direct control of the processing of different types of input should use
XtAppProcessEvent.

void XtAppProcessEvent(app_context , mask)
XtAppContext app_context ;
XtInputMask mask;

app_context Specifies the application context that identifies the application for which to
process input.

mask Specifies what types of events to process. The mask is the bitwise inclusive
OR of any combination of XtIMXEvent, XtIMTimer and XtIMAlternateInput .
As a convenience, Instinsic.h defines the symbolic name XtIMAll to be the
bitwise inclusive OR of these three event types.

The XtAppProcessEvent function processes one timer, input source, or X event. If there is no
event or input of the appropriate type to process, then XtAppProcessEvent blocks until there is. If
there is more than one type of input available to process, it is undefined which will get
processed. Usually, this procedure is not called by client applications; see XtAppMainLoop .
XtAppProcessEvent processes timer events by calling any appropriate timer callbacks, input
sources by calling any appropriate input callbacks, and X events by calling XtDispatchEvent .

When an X event is received, it is passed to XtDispatchEvent , which calls the appropriate event
handlers and passes them the widget, the event, and client-specific data registered with each
procedure. If no handlers for that event are registered, the event is ignored and the dispatcher
simply returns.

To dispatch an event returned by XtAppNextEvent, retrieved directly from the Xlib queue, or
synthetically constructed, to any registered event filters or event handlers call XtDispatchEvent .

Boolean XtDispatchEvent(event)
XEvent * event ;

event Specifies a pointer to the event structure to be dispatched to the appropriate
event handlers.

The XtDispatchEvent function first calls XFilterEvent with the event and the window of the widget
to which the Intrinsics intend to dispatch the event, or the event window if the Intrinsics would
not dispatch the event to any handlers. If XFilterEvent returns True and the event activated a
server grab as identified by a previous call to XtGrabKey or XtGrabButton, XtDispatchEventcalls
XtUngrabKeyboard or XtUngrabPointer with the timestamp from the event and immediately
returns True. If XFilterEvent returns True and a grab was not activated, XtDispatchEvent just
immediately returns True. Otherwise, XtDispatchEvent sends the event to the event handler
functions that have been previously registered with the dispatch routine. XtDispatchEvent
returns True if XFilterEvent returned True, or if the event was dispatched to some handler and
False if it found no handler to which to dispatch the event. XtDispatchEvent records the last
timestamp in any event that contains a timestamp (see XtLastTimestampProcessed), regardless of
whether it was filtered or dispatched. If a modal cascade is active with spring_loaded True, and if
the event is a remap event as defined by XtAddGrab , XtDispatchEvent may dispatch the event a
second time. If it does so, XtDispatchEvent will call XFilterEvent again with the window of the

126 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Event Management Dispatching Events

spring-loaded widget prior to the second dispatch and if XFilterEvent returns True, the second
dispatch will not be performed.

Window Management (X11R5): X Toolkit Intrinsics 127
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

The Application Input Loop Event Management

9.6 The Application Input Loop
To process all input from a given application in a continuous loop, use the convenience
procedure XtAppMainLoop .

void XtAppMainLoop(app_context)
XtAppContext app_context ;

app_context Specifies the application context that identifies the application.

The XtAppMainLoop function first reads the next incoming X event by calling XtAppNextEvent
and then dispatches the event to the appropriate registered procedure by calling
XtDispatchEvent . This constitutes the main loop of X Toolkit applications, and, as such, it does
not return. Applications are expected to exit in response to some user action within a callback
procedure. There is nothing special about XtAppMainLoop ; it is simply an infinite loop that calls
XtAppNextEvent and then XtDispatchEvent .

Applications can provide their own version of this loop, which tests some global termination
flag or tests that the number of top-level widgets is larger than zero before circling back to the
call to XtAppNextEvent.

128 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Event Management Setting and Checking the Sensitivity State of a Widget

9.7 Setting and Checking the Sensitivity State of a Widget
Many widgets have a mode in which they assume a different appearance (for example, are
grayed out or stippled), do not respond to user events, and become dormant.

When dormant, a widget is considered to be insensitive. If a widget is insensitive, the event
manager does not dispatch any events to the widget with an event type of KeyPress, KeyRelease ,
ButtonPress, ButtonRelease , MotionNotify , EnterNotify , LeaveNotify , FocusIn or FocusOut.

A widget can be insensitive because its sensitive field is False or because one of its ancestors is
insensitive and thus the widget’s ancestor_sensitive field also is False . A widget can but does not
need to distinguish these two cases visually.

Note: Pop-up shells will have ancestor_sensitive False if the parent was insensitive when the
shell was created. Since XtSetSensitive on the parent will not modify the resource of the
pop-up child, clients are advised to include a resource specification of the form
‘‘*TransientShell.ancestorSensitive: True’’ in the application defaults resource file or to
otherwise ensure that the parent is sensitive when creating pop-up shells.

To set the sensitivity state of a widget, use XtSetSensitive.

void XtSetSensitive(w, sensitive)
Widget w;
Boolean sensitive ;

w Specifies the widget. Each child must be of a class RectObj or any subclass
thereof.

sensitive Specifies whether the widget should receive keyboard, pointer and focus
events.

The XtSetSensitive function first calls XtSetValues on the current widget with an argument list
specifying the XtNsensitive resource and the new value. If sensitive is False and the widget’s
class is a subclass of Composite, XtSetSensitive recursively propagates the new value down the
child tree by calling XtSetValues on each child to set ancestor_sensitive to False . If sensitive is True
and the widget’s class is a subclass of Composite and the widget’s ancestor_sensitive field is True,
XtSetSensitive sets the ancestor_sensitive of each child to True and then recursively calls
XtSetValues on each normal descendant that is now sensitive to set ancestor_sensitive to True.

XtSetSensitive calls XtSetValues to change the sensitive and ancestor_sensitive fields of each affected
widget. Therefore, when one of these changes, the widget’s set_values procedure should take
whatever display actions are needed (for example, graying out or stippling the widget).

XtSetSensitive maintains the invariant that if the parent has either sensitive or ancestor_sensitive
False , then all children have ancestor_sensitive False .

To check the current sensitivity state of a widget, use XtIsSensitive.

Boolean XtIsSensitive(w)
Widget w;

w Specifies the object. Must be of a classObject or any subclass thereof.

The XtIsSensitive function returns True or False to indicate whether user input events are being
dispatched. If object’s class is a subclass of RectObj and both sensitive and ancestor_sensitive are
True, XtIsSensitive returns True; otherwise, it returns False .

Window Management (X11R5): X Toolkit Intrinsics 129
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Adding Background Work Procedures Event Management

9.8 Adding Background Work Procedures
The Intrinsics have some limited support for background processing. Because most applications
spend most of their time waiting for input, you can register an idle-time work procedure that
will be called when the toolkit would otherwise block in XtAppNextEvent or XtAppProcessEvent.
Work procedure pointers are of type XtWorkProc .

typedef Boolean (*XtWorkProc)(XtPointer);
XtPointer client_data ;

client_data Passes the client data specified when the work procedure was registered.

This procedure should return True when it is done to indicate that it should be removed. If the
procedure returns False , it will remain registered and will be called again when the application is
next idle. Work procedures should be very judicious about how much they do. If they run for
more than a small part of a second, interactive feel is likely to suffer.

To register a work procedure for a given application, use XtAppAddWorkProc .

XtWorkProcId XtAppAddWorkProc(app_context , proc , client_data)
XtAppContext app_context ;
XtWorkProc proc ;
XtPointer client_data ;

app_context Specifies the application context that identifies the application.

proc Specifies the procedure to be called when the application is idle.

client_data Specifies the argument passed to the specified procedure when it is called.

The XtAppAddWorkProc function adds the specified work procedure for the application
identified by app_context and returns an opaque unique identifier for this work procedure.
Multiple work procedures can be registered, and the most recently added one is always the one
that is called. However, if a work procedure adds another work procedure, the newly added one
has lower priority than the current one.

To remove a work procedure, either return True from the procedure when it is called or use
XtRemoveWorkProc .

void XtRemoveWorkProc(id)
XtWorkProcId id ;

id Specifies which work procedure to remove.

The XtRemoveWorkProc function explicitly removes the specified background work procedure.

130 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Event Management X Event Filters

9.9 X Event Filters
The event manager provides filters that can be applied to specific X events. The filters, which
screen out events that are redundant or are temporarily unwanted, handle pointer motion
compression, enter/leave compression, and exposure compression.

9.9.1 Pointer Motion Compression

Widgets can have a hard time keeping up with a rapid stream of pointer motion events. Further,
they usually do not care about every motion event. To throw out redundant motion events, the
widget class field compress_motion should be True. When a request for an event would return a
motion event, the Intrinsics check if there are any other motion events for the same widget
immediately following the current one and, if so, skip all but the last of them.

9.9.2 Enter/Leave Compression

To throw out pairs of enter and leave events that have no intervening events, as can happen
when the user moves the pointer across a widget without stopping in it, the widget class field
compress_enterleave should be True. These enter and leave events are not delivered to the client if
they are found together in the input queue.

9.9.3 Exposure Compression

Many widgets prefer to process a series of exposure events as a single expose region rather than
as individual rectangles. Widgets with complex displays might use the expose region as a clip
list in a graphics context, and widgets with simple displays might ignore the region entirely and
redisplay their whole window or might get the bounding box from the region and redisplay only
that rectangle.

In either case, these widgets do not care about getting partial exposure events. The
compress_exposure field in the widget class structure specifies the type and number of exposure
events that will be dispatched to the widget’s expose procedure. This field must be initialised to
one of the following values,

#define XtExposeNoCompress ((XtEnum)False)
#define XtExposeCompressSeries ((XtEnum)True)
#define XtExposeCompressMultiple <implementation-defined>
#define XtExposeCompressMaximal <implementation-defined>

optionally ORed with any combination of the following flags (all with implementation-defined
values): XtExposeGraphicsExpose , XtExposeGraphicsExposeMerged and XtExposeNoExpose.

If the compress_exposure field in the widget class structure does not specify XtExposeNoCompress,
the event manager calls the widget’s expose procedure only once for a series of exposure events.
In this case, all Expose or GraphicsExpose events are accumulated into a region. When the final
event is received, the event manager replaces the rectangle in the event with the bounding box
for the region and calls the widget’s expose procedure, passing the modified exposure event and
the region. For more information on regions, see the Xlib — C Language Binding specification.

The values have the following interpretation:

XtExposeNoCompress
No exposure compression is performed; every selected event is individually dispatched to
the expose procedure with a region argument of NULL.

XtExposeCompressSeries
Each series of exposure events is coalesced into a single event, which is dispatched when an

Window Management (X11R5): X Toolkit Intrinsics 131
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

X Event Filters Event Management

exposure event with count equal to zero is reached.

XtExposeCompressMultiple
Consecutive series of exposure events are coalesced into a single event, which is dispatched
when an exposure event with count equal to zero is reached and either the event queue is
empty or the next event is not an exposure event for the same widget.

XtExposeCompressMaximal
All expose series currently in the queue for the widget are coalesced into a single event
without regard to intervening non-exposure events. If a partial series is in the end of the
queue, the Intrinsics will block until the end of the series is received.

The additional flags have the following meaning:

XtExposeGraphicsExpose
Specifies that GraphicsExpose events are also to be dispatched to the expose procedure.
GraphicsExpose events will be compressed, if specified, in the same manner as Expose events.

XtExposeGraphicsExposeMerged
Specifies in the case of XtExposeCompressMultiple and XtExposeCompressMaximal that series
of GraphicsExpose and Expose events are to be compressed together, with the final event type
determining the type of the event passed to the expose procedure. If this flag is not set, then
only series of the same event type as the event at the head of the queue are coalesced. This
flag also implies XtExposeGraphicsExpose .

XtExposeNoExpose
Specifies that NoExpose events are also to be dispatched to the expose procedure. NoExpose
events are never coalesced with other exposure events or with each other.

132 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Event Management Widget Exposure and Visibility

9.10 Widget Exposure and Visibility
Every primitive widget and some composite widgets display data on the screen by means of
direct Xlib calls. Widgets cannot simply write to the screen and forget what they have done.
They must keep enough state to redisplay the window or parts of it if a portion is obscured and
then reexposed.

9.10.1 Redisplay of a Widget: expose Procedure

The expose procedure pointer in a widget class is of type XtExposeProc .

typedef void (*XtExposeProc)(Widget, XEvent*, Region);
Widget w;
XEvent * event ;
Region region ;

w Specifies the widget instance requiring redisplay.

event Specifies the exposure event giving the rectangle requiring redisplay.

region Specifies the union of all rectangles in this exposure sequence.

The redisplay of a widget upon exposure is the responsibility of the expose procedure in the
widget’s class record. If a widget has no display semantics, it can specify NULL for the expose
field. Many composite widgets serve only as containers for their children and have no expose
procedure.

Note: If the expose procedure is NULL, XtRealizeWidget fills in a default bit gravity of
NorthWestGravity before it calls the widget’s realize procedure.

If the widget’s compress_exposure class field specifies XtExposeNoCompress or the event type is
NoExpose (see Section 9.9.3), region is NULL; otherwise, the event is the final event in the
compressed series but x, y, width and height contain the bounding box for region. The region is
created and destroyed by the Intrinsics, but the widget is permitted to modify the region
contents.

A small simple widget (for example, Label) can ignore the bounding box information in the
event and redisplay the entire window. A more complicated widget (for example, Text) can use
the bounding box information to minimize the amount of calculation and redisplay it does. A
very complex widget uses the region as a clip list in a GC and ignores the event information.
The expose procedure is not chained and is therefore responsible for exposure of all superclass
data as well as its own.

However, it often is possible to anticipate the display needs of several levels of subclassing. For
example, rather than implement separate display procedures for the widgets Label, Pushbutton
and Toggle, you could write a single display routine in Label that uses display state fields like:

Boolean invert;
Boolean highlight;
Dimension highlight_width;

Label would have invert and highlight always False and highlight_width zero. Pushbutton would
dynamically set highlight and highlight_width, but it would leave invert always False . Finally,
Toggle would dynamically set all three. In this case, the expose procedures for Pushbutton and
Toggle inherit their superclass’s expose procedure; see Section 3.6.10.

Window Management (X11R5): X Toolkit Intrinsics 133
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Widget Exposure and Visibility Event Management

9.10.2 Widget Visibility

Some widgets may use substantial computing resources to produce the data they will display.
However, this effort is wasted if the widget is not actually visible on the screen, that is, if the
widget is obscured by another application or is iconified.

The visible field in the core widget structure provides a hint to the widget that it need not
compute display data. This field is guaranteed to be True by the time an exposure event is
processed if any part of the widget is visible but is False if the widget is fully obscured.

Widgets can use or ignore the visible hint. If they ignore it, they should have visible_interest in
their widget class record set False . In such cases, the visible field is initialised True and never
changes. If visible_interest is True, the event manager asks for VisibilityNotify events for the
widget and sets visible to True on VisibilityUnobscured or VisibilityPartiallyObscured events and
False on VisibilityFullyObscured events.

134 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Event Management X Event Handlers

9.11 X Event Handlers
Event handlers are procedures called when specified events occur in a widget. Most widgets
need not use event handlers explicitly. Instead, they use the Intrinsics translation manager.
Event handler procedure pointers are of the type XtEventHandler.

typedef void (*XtEventHandler)(Widget, XtPointer, XEvent*, Boolean*);
Widget w;
XtPointer client_data ;
XEvent * event ;
Boolean * continue_to_dispatch ;

w Specifies the widget for which the event arrived.

client_data Specifies any client-specific information registered with the event handler.

event Specifies the triggering event.

continue_to_dispatch
Specifies whether the remaining event handlers registered for the current
event should be called.

After receiving an event and before calling any event handlers, the Boolean pointed to by
continue_to_dispatch is initialised to True. When an event handler is called, it may decide that
further processing of the event is not desirable and may store False in this Boolean, in which case
any handlers remaining to be called for the event will be ignored.

The circumstances under which the Intrinsics may add event handlers to a widget are currently
implementation-dependent. Clients must therefore be aware that storing False into the
continue_to_dispatch argument can lead to portability problems.

9.11.1 Event Handlers that Select Events

To register an event handler procedure with the dispatch mechanism, use XtAddEventHandler.

void XtAddEventHandler(w, event_mask , nonmaskable ,
proc , client_data)

Widget w;
EventMask event_mask ;
Boolean nonmaskable ;
XtEventHandler proc ;
XtPointer client_data ;

w Specifies the widget for which this event handler is being registered. Must be
of class Core or any subclass thereof.

event_mask Specifies the event mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be called on the non-maskable events
(GraphicsExpose, NoExpose, SelectionClear , SelectionRequest, SelectionNotify ,
ClientMessage and MappingNotify).

proc Specifies the procedure to be called.

client_data Specifies additional data to be passed to the event handler.

The XtAddEventHandler function registers a procedure with the dispatch mechanism that is to be
called when an event that matches the mask occurs on the specified widget. Each widget has a
single registered event handler list, which will contain any procedure--client_data pair exactly
once regardless of the manner in which it is registered. If the procedure is already registered

Window Management (X11R5): X Toolkit Intrinsics 135
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

X Event Handlers Event Management

with the same client_data value, the specified mask augments the existing mask. If the widget is
realised, XtAddEventHandler calls XSelectInput, if necessary. The order in which this procedure is
called relative to other handlers registered for the same event is not defined.

To remove a previously registered event handler, use XtRemoveEventHandler.

void XtRemoveEventHandler(w, event_mask , nonmaskable ,
proc , client_data)

Widget w;
EventMask event_mask ;
Boolean nonmaskable ;
XtEventHandler proc ;
XtPointer client_data ;

w Specifies the widget for which this procedure is registered. Must be of class
Core or any subclass thereof.

event_mask Specifies the event mask for which to unregister this procedure.

nonmaskable Specifies whether this procedure should be removed on the non-maskable
events (GraphicsExpose, NoExpose, SelectionClear , SelectionRequest,
SelectionNotify , ClientMessage and MappingNotify).

proc Specifies the procedure to be removed.

client_data Specifies the registered client data.

The XtRemoveEventHandler function unregisters an event handler registered with
XtAddEventHandler or XtInsertEventHandler for the specified events. The request is ignored if
client_data does not match the value given when the handler was registered. If the widget is
realised and no other event handler requires the event, XtRemoveEventHandler calls XSelectInput.
If the specified procedure has not been registered or if it has been registered with a different
value of client_data, XtRemoveEventHandler returns without reporting an error.

To stop a procedure registered with XtAddEventHandler or XtInsertEventHandler from receiving
all selected events, call XtRemoveEventHandler with an event_mask of XtAllEvents and nonmaskable
True. The procedure will continue to receive any events that have been specified in calls to
XtAddRawEventHandler or XtInsertRawEventHandler.

To register an event handler procedure that receives events before or after all previously
registered event handlers, use XtInsertEventHandler.

typedef enum {XtListHead, XtListTail} XtListPosition;

void XtInsertEventHandler(w, event_mask , nonmaskable ,
proc , client_data , position)

Widget w;
EventMask event_mask ;
Boolean nonmaskable ;
XtEventHandler proc ;
XtPointer client_data ;
XtListPosition position ;

w Specifies the widget for which this event handler is being registered. Must be
of class Core or any subclass thereof.

event_mask Specifies the event mask for which to call this procedure.

136 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Event Management X Event Handlers

nonmaskable Specifies whether this procedure should be called on the non-maskable events
(GraphicsExpose, NoExpose, SelectionClear , SelectionRequest, SelectionNotify ,
ClientMessage and MappingNotify).

proc Specifies the procedure to be called.

client_data Specifies additional data to be passed to the client’s event handler.

position Specifies when the event handler is to be called relative to other previously
registered handlers.

XtInsertEventHandler is identical to XtAddEventHandler with the additional position argument. If
position is XtListHead , the event handler is registered so that it will be called before any event
handlers that were previously registered for the same widget. If position is XtListTail , the event
handler is registered to be called after any previously registered event handlers. If the procedure
is already registered with the same client_data value, the specified mask augments the existing
mask and the procedure is repositioned in the list.

9.11.2 Event Handlers that Do Not Select Events

On occasion, clients need to register an event handler procedure with the dispatch mechanism
without explicitly causing the X server to select for that event. To do this, use
XtAddRawEventHandler .

void XtAddRawEventHandler(w, event_mask , nonmaskable ,
proc , client_data)

Widget w;
EventMask event_mask ;
Boolean nonmaskable ;
XtEventHandler proc ;
XtPointer client_data ;

w Specifies the widget for which this event handler is being registered. Must be
of class Core or any subclass thereof.

event_mask Specifies the event mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be called on the non-maskable events
(GraphicsExpose, NoExpose, SelectionClear , SelectionRequest, SelectionNotify ,
ClientMessage and MappingNotify).

proc Specifies the procedure to be called.

client_data Specifies additional data to be passed to the client’s event handler.

The XtAddRawEventHandler function is similar to XtAddEventHandler except that it does not
affect the widget’s event mask and never causes an XSelectInput for its events. Note that the
widget might already have those mask bits set because of other non-raw event handlers
registered on it. If the procedure is already registered with the same client_data, the specified
mask augments the existing mask. The order in which this procedure is called relative to other
handlers registered for the same event is not defined.

To remove a previously registered raw event handler, use XtRemoveRawEventHandler .

Window Management (X11R5): X Toolkit Intrinsics 137
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

X Event Handlers Event Management

void XtRemoveRawEventHandler(w, event_mask , nonmaskable ,
proc , client_data)

Widget w;
EventMask event_mask ;
Boolean nonmaskable ;
XtEventHandler proc ;
XtPointer client_data ;

w Specifies the widget for which this procedure is registered. Must be of class
Core or any subclass thereof.

event_mask Specifies the event mask for which to unregister this procedure.

nonmaskable Specifies whether this procedure should be removed on the non-maskable
events (GraphicsExpose, NoExpose, SelectionClear , SelectionRequest,
SelectionNotify , ClientMessage and MappingNotify).

proc Specifies the procedure to be registered.

client_data Specifies the registered client data.

The XtRemoveRawEventHandler function unregisters an event handler registered with
XtAddRawEventHandler or XtInsertRawEventHandler for the specified events without changing
the window event mask. The request is ignored if client_data does not match the value given
when the handler was registered. If the specified procedure has not been registered or if it has
been registered with a different value of client_data, XtRemoveRawEventHandler returns without
reporting an error.

To stop a procedure registered with XtAddRawEventHandler or XtInsertRawEventHandler from
receiving all non-selected events, call XtRemoveRawEventHandler with an event_mask of
XtAllEvents and nonmaskable True. The procedure will continue to receive any events that have
been specified in calls to XtAddEventHandler or XtInsertEventHandler.

To register an event handler procedure that receives events before or after all previously
registered event handlers without selecting for the events, use XtInsertRawEventHandler.

void XtInsertRawEventHandler(w, event_mask , nonmaskable ,
proc , client_data , position)

Widget w;
EventMask event_mask ;
Boolean nonmaskable ;
XtEventHandler proc ;
XtPointer client_data ;
XtListPosition position ;

w Specifies the widget for which this event handler is being registered. Must be
of class Core or any subclass thereof.

event_mask Specifies the event mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be called on the non-maskable events
(GraphicsExpose, NoExpose, SelectionClear , SelectionRequest, SelectionNotify ,
ClientMessage and MappingNotify).

proc Specifies the procedure to be registered.

client_data Specifies additional data to be passed to the client’s event handler.

position Specifies when the event handler is to be called relative to other previously
registered handlers.

138 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Event Management X Event Handlers

The XtInsertRawEventHandler function is similar to XtInsertEventHandler except that it does not
modify the widget’s event mask and never causes an XSelectInput for the specified events. If the
procedure is already registered with the same client_data value, the specified mask augments the
existing mask and the procedure is repositioned in the list.

9.11.3 Current Event Mask

To retrieve the event mask for a given widget, use XtBuildEventMask .

EventMask XtBuildEventMask(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

The XtBuildEventMask function returns the event mask representing the
logical OR of all event masks for event handlers registered on the widget with
XtAddEventHandler and XtInsertEventHandler and all event translations,
including accelerators, installed on the widget. This is the same event mask
stored into the XSetWindowAttributes structure by XtRealizeWidget and sent to
the server when event handlers and translations are installed or removed on
the realised widget.

Window Management (X11R5): X Toolkit Intrinsics 139
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Event Management

140 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Chapter 10

Callbacks

Applications and other widgets often need to register a procedure with a widget that gets called
under certain prespecified conditions. For example, when a widget is destroyed, every
procedure on the widget’s destroy_callbacks list is called to notify clients of the widget’s
impending doom.

Every widget has an XtNdestroyCallbacks callback list resource. Widgets can define additional
callback lists as they see fit. For example, the Pushbutton widget has a callback list to notify
clients when the button has been activated.

Except where otherwise noted, it is the intent that all Intrinsics functions may be called at any
time, including from within callback procedures, action routines, and event handlers.

Window Management (X11R5): X Toolkit Intrinsics 141
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Using Callback Procedure and Callback List Definitions Callbacks

10.1 Using Callback Procedure and Callback List Definitions
Callback procedure pointers for use in callback lists are of type XtCallbackProc .

typedef void (*XtCallbackProc)(Widget, XtPointer, XtPointer);
Widget w;
XtPointer client_data ;
XtPointer call_data ;

w Specifies the widget owning the list in which the callback is registered.

client_data Specifies additional data supplied by the client when the procedure was
registered.

call_data Specifies any callback-specific data the widget wants to pass to the client. For
example, when Scrollbar executes its XtNthumbChanged callback list, it
passes the new position of the thumb.

The client_data argument provides a way for the client registering the callback procedure also to
register client-specific data; for example, a pointer to additional information about the widget, a
reason for invoking the callback, and so on. The client_data value may be NULL if all necessary
information is in the widget. The call_data argument is a convenience to avoid having simple
cases where the client could otherwise always call XtGetValues or a widget-specific function to
retrieve data from the widget. Widgets should generally avoid putting complex state
information in call_data. The client can use the more general data retrieval methods, if necessary.

Whenever a client wants to pass a callback list as an argument in an XtCreateWidget , XtSetValues
or XtGetValues call, it should specify the address of a NULL-terminated array of type
XtCallbackList .

typedef struct {
XtCallbackProc callback;
XtPointer closure;

} XtCallbackRec, *XtCallbackList;

For example, the callback list for procedures A and B with client data clientDataA and
clientDataB, respectively, is:

static XtCallbackRec callbacks[] = {
{A, (XtPointer) clientDataA},
{B, (XtPointer) clientDataB},
{(XtCallbackProc) NULL, (XtPointer) NULL}

};

Although callback lists are passed by address in arglists and varargs lists, the Intrinsics
recognize callback lists through the widget resource list and will copy the contents when
necessary. Widget initialize and set_values procedures should not allocate memory for the
callback list contents. The Intrinsics automatically do this, potentially using a different structure
for their internal representation.

142 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Callbacks Identifying Callback Lists

10.2 Identifying Callback Lists
Whenever a widget contains a callback list for use by clients, it also exports in its public .h file
the resource name of the callback list. Applications and client widgets never access callback list
fields directly. Instead, they always identify the desired callback list by using the exported
resource name. All the callback manipulation functions described in this chapter except
XtCallCallbackList check to see that the requested callback list is indeed implemented by the
widget.

For the Intrinsics to find and correctly handle callback lists, they must be declared with a
resource type of XtRCallback . The internal representation of a callback list is implementation-
dependent; widgets may make no assumptions about the value stored in this resource if it is
non-NULL. Except to compare the value to NULL (which is equivalent to XtCallbackStatus
XtCallbackHasNone), access to callback list resources must be made through other Intrinsics
procedures.

Window Management (X11R5): X Toolkit Intrinsics 143
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Adding Callback Procedures Callbacks

10.3 Adding Callback Procedures
To add a callback procedure to a widget’s callback list, use XtAddCallback .

void XtAddCallback(w, callback_name, callback ,
client_data)

Widget w;
String callback_name ;
XtCallbackProc callback ;
XtPointer client_data ;

w Specifies the widget. Must be of a classObject or any subclass thereof.

callback_name Specifies the callback list to which the procedure is to be appended.

callback Specifies the callback procedure.

client_data Specifies additional data to be passed to the specified procedure when it is
invoked, or NULL.

A callback will be invoked as many times as it occurs in the callback list.

To add a list of callback procedures to a given widget’s callback list, use XtAddCallbacks .

void XtAddCallbacks(w, callback_name , callbacks)
Widget w;
String callback_name ;
XtCallbackList callbacks ;

w Specifies the widget. Must be of a classObject or any subclass thereof.

callback_name Specifies the callback list to which the procedures are to be appended.

callbacks Specifies the null-terminated list of callback procedures and corresponding
client data.

144 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Callbacks Removing Callback Procedures

10.4 Removing Callback Procedures
To delete a callback procedure from a widget’s callback list, use XtRemoveCallback .

void XtRemoveCallback(w, callback_name , callback ,
client_data)

Widget w;
String callback_name ;
XtCallbackProc callback ;
XtPointer client_data ;

w Specifies the widget. Must be of a classObject or any subclass thereof.

callback_name Specifies the callback list from which the procedure is to be deleted.

callback Specifies the callback procedure.

client_data Specifies the client data to match with the registered callback entry.

The XtRemoveCallback function removes a callback only if both the procedure and the client data
match.

To delete a list of callback procedures from a given widget’s callback list, use XtRemoveCallbacks .

void XtRemoveCallbacks(w, callback_name , callbacks)
Widget w;
String callback_name ;
XtCallbackList callbacks ;

w Specifies the widget. Must be of a classObject or any subclass thereof.

callback_name Specifies the callback list from which the procedures are to be deleted.

callbacks Specifies the null-terminated list of callback procedures and corresponding
client data.

To delete all callback procedures from a given widget’s callback list and free all storage
associated with the callback list, use XtRemoveAllCallbacks .

void XtRemoveAllCallbacks(w, callback_name)
Widget w;
String callback_name ;

w Specifies the widget. Must be of a classObject or any subclass thereof.

callback_name Specifies the callback list to be cleared.

Window Management (X11R5): X Toolkit Intrinsics 145
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Executing Callback Procedures Callbacks

10.5 Executing Callback Procedures
To execute the procedures in a given widget’s callback list, specifying the callback list by
resource name, use XtCallCallbacks .

void XtCallCallbacks(w, callback_name , call_data)
Widget w;
String callback_name ;
XtPointer call_data ;

w Specifies the widget. Must be of a classObject or any subclass thereof.

callback_name Specifies the callback list to be executed.

call_data Specifies a callback-list-specific data value to pass to each of the callback
procedure in the list, or NULL.

XtCallCallbacks calls each of the callback procedures in the list named by callback_name in the
specified widget, passing the client data registered with the procedure and call-data.

To execute the procedures in a callback list, specifying the callback list by address, use
XtCallCallbackList .

void XtCallCallbackList(widget , callbacks , call_data)
Widget widget ;
XtCallbackList callbacks ;
XtPointer call_data ;

widget Specifies the widget instance that contains the callback list. Must be of a
classObject or any subclass thereof.

callbacks Specifies the callback list to be executed.

call_data Specifies a callback-list-specific data value to pass to each of the callback
procedures in the list, or NULL.

The callbacks parameter must specify the contents of a widget or object resource declared with
representation type XtRCallback . If callbacks is NULL, XtCallCallbackList returns immediately;
otherwise it calls each of the callback procedures in the list, passing the client data and call_data.

146 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Callbacks Checking the Status of a Callback List

10.6 Checking the Status of a Callback List
To find out the status of a given widget’s callback list, use XtHasCallbacks .

typedef enum {XtCallbackNoList, XtCallbackHasNone, XtCallbackHasSome} \
XtCallbackStatus;

XtCallbackStatus XtHasCallbacks(w, callback_name)
Widget w;
String callback_name ;

w Specifies the widget. Must be of a classObject or any subclass thereof.

callback_name Specifies the callback list to be checked.

The XtHasCallbacks function first checks to see if the widget has a callback list identified by
callback_name. If the callback list does not exist, XtHasCallbacks returns XtCallbackNoList . If the
callback list exists but is empty, it returns XtCallbackHasNone . If the callback list exists and has
at least one callback registered, it returns XtCallbackHasSome .

Window Management (X11R5): X Toolkit Intrinsics 147
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Callbacks

148 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Chapter 11

Resource Management

A resource is a field in the widget record with a corresponding resource entry in the resources list
of the widget or any of its superclasses. This means that the field is settable by XtCreateWidget
(by naming the field in the argument list), by an entry in a resource file (by using either the name
or class), and by XtSetValues . In addition, it is readable by XtGetValues . Not all fields in a widget
record are resources. Some are for bookkeeping use by the generic routines (like managed and
being_destroyed). Others can be for local bookkeeping, and still others are derived from resources
(many graphics contexts and pixmaps).

Widgets typically need to obtain a large set of resources at widget creation time. Some of the
resources come from the argument list supplied in the call to XtCreateWidget , some from the
resource database, and some from the internal defaults specified by the widget. Resources are
obtained first from the argument list, then from the resource database for all resources not
specified in the argument list, and last, from the internal default, if needed.

Window Management (X11R5): X Toolkit Intrinsics 149
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Lists Resource Management

11.1 Resource Lists
A resource entry specifies a field in the widget, the textual name and class of the field that
argument lists and external resource files use to refer to the field, and a default value that the
field should get if no value is specified. The declaration for the XtResource structure is:

typedef struct {
String resource_name;
String resource_class;
String resource_type;
Cardinal resource_size;
Cardinal resource_offset;
String default_type;
XtPointer default_addr;

} XtResource, *XtResourceList;

When the resource list is specified as the CoreClassPart , ObjectClassPart , RectObjClassPart or
ConstraintClassPart resources field the strings pointed to by resource_name, resource_Iclass,
resource_type and default_type must be permanently allocated prior to or during the execution of
the class initialisation procedure and must not be subsequently deallocated.

The resource_name field contains the name used by clients to access the field in the widget. By
convention, it starts with a lower-case letter and is spelled exactly like the field name, except all
underscores (_) are deleted and the next letter is replaced by its upper-case counterpart. For
example, the resource name for background_pixel becomes backgroundPixel. Resource names
beginning with the two-character sequence ‘‘xt’’ and resource classes beginning with the two-
character sequence ‘‘Xt’’ are reserved to the Intrinsics for future standard and implementation-
dependent uses. Widget header files typically contain a symbolic name for each resource name.
All resource names, classes, and types used by the Intrinsics are named in <X11/StringDefs.h>.
The Intrinsics’s symbolic resource names begin with ‘‘XtN’’ and are followed by the string name
(for example, XtNbackgroundPixel for backgroundPixel).

The resource_class field contains the class string used in resource specification files to identify the
field. A resource class provides two functions:

• It isolates an application from different representations that widgets can use for a similar
resource.

• It lets you specify values for several actual resources with a single name. A resource class
should be chosen to span a group of closely related fields.

For example, a widget can have several pixel resources: background, foreground, border, block
cursor, pointer cursor, and so on. Typically, the background defaults to white and everything
else to black. The resource class for each of these resources in the resource list should be chosen
so that it takes the minimal number of entries in the resource database to make the background
offwhite and everything else darkblue.

In this case, the background pixel should have a resource class of ‘‘Background’’ and all the
other pixel entries a resource class of ‘‘Foreground’’. Then, the resource file needs only two lines
to change all pixels to offwhite or darkblue:

*Background: xoffwhite
*Foreground: darkblue

Similarly, a widget may have several font resources (such as normal and bold), but all fonts
should have the class Font. Thus, changing all fonts simply requires only a single line in the
default resource file:

150 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Management Resource Lists

*Font: 6x13

By convention, resource classes are always spelled starting with a capital letter to distinguish
them from resource names. Their symbolic names are preceded with ‘‘XtC’’ (for example,
XtCBackground).

The resource_type field gives the physical representation type of the resource and also encodes
information about the specific usage of the field. By convention, it starts with an upper-case
letter and is spelled identically to the type name of the field. The resource type is used when
resources are fetched to convert from the resource database format (usually String) or the format
of the resource default value (almost anything, but often String) to the desired physical
representation (see Section 11.6). The Intrinsics define the following resource types:

Window Management (X11R5): X Toolkit Intrinsics 151
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Lists Resource Management

Resource Type Structure or Field Type
XtRAcceleratorTable XtAccelerators
XtRAtom Atom
XtRBitmap Pixmap, depth=1
XtRBoolean Boolean
XtRBool Bool
XtRCallback XtCallbackList
XtRCardinal Cardinal
XtRColor XColor
XtRColormap Colormap
XtRCursor Cursor
XtRDimension Dimension
XtRDisplay Display*
XtREnum XtEnum
XtRFile FILE*
XtRFloat float
XtRFont Font
XtRFontSet XFontSet
XtRFontStruct XFontStruct*
XtRFunction (*)()
XtRGeometry char*, format as defined by XParseGeometry
XtRInitialState int
XtRInt int
XtRLongBoolean long
XtRObject Object
XtRPixel Pixel
XtRPixmap Pixmap
XtRPointer XtPointer
XtRPosition Position
XtRScreen Screen*
XtRShort short
XtRString String
XtRStringArray String*
XtRStringTable String*
XtRTranslationTable XtTranslations
XtRUnsignedChar unsigned char
XtRVisual Visual*
XtRWidget Widget
XtRWidgetClass WidgetClass
XtRWidgetList WidgetList
XtRWindow Window

<X11/StringDefs.h> also defines the following resource types as a convenience for widgets,
although they do not have any corresponding data type assigned: XtREditMode , XtRJustify and
XtROrientation .

The resource_size field is the size of the physical representation in bytes; you should specify it as
sizeof (type) so that the compiler fills in the value. The resource_offset field is the offset in bytes of
the field within the widget. You should use the XtOffsetOf macro to retrieve this value. The
default_type field is the representation type of the default resource value. If default_type is
different from resource_type and the default value is needed, the resource manager invokes a
conversion procedure from default_type to resource_type. Whenever possible, the default type
should be identical to the resource type in order to minimize widget creation time. However,

152 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Management Resource Lists

there are sometimes no values of the type that the program can easily specify. In this case, it
should be a value for which the converter is guaranteed to work (for example,
XtDefaultForeground for a pixel resource). The default_addr field specifies the address of the
default resource value. As a special case, if default_type is XtRString , then the value in the
default_addr field is the pointer to the string rather than a pointer to the pointer. The default is
used if a resource is not specified in the argument list or in the resource database, or if the
conversion from the representation type stored in the resource database fails, which can happen
for various reasons (for example, a misspelled entry in a resource file).

Two special representation types (XtRImmediate and XtRCallProc) are usable only as default
resource types. XtRImmediate indicates that the value in the default_addr field is the actual value
of the resource rather than the address of the value. The value must be in the correct
representation type for the resource, coerced to an XtPointer . No conversion is possible, since
there is no source representation type. XtRCallProc indicates that the value in the default_addr
field is a procedure pointer. This procedure is automatically invoked with the widget,
resource_offset, and a pointer to an XrmValue in which to store the result. XtRCallProc procedure
pointers are of type XtResourceDefaultProc .

typedef void (*XtResourceDefaultProc)(Widget, int, XrmValue*);
Widget w;
int offset ;
XrmValue * value ;

w Specifies the widget whose resource value is to be obtained.

offset Specifies the offset of the field in the widget record.

value Specifies the resource value descriptor to return.

The XtResourceDefaultProc procedure should fill in the value->addr field with a pointer to the
resource value in its correct representation type.

To get the resource list structure for a particular class, use XtGetResourceList.

void XtGetResourceList(class , resources_return , num_resources_return);
WidgetClass class ;
XtResourceList * resources_return ;
Cardinal * num_resources_return ;

class Specifies the object class to be queried. It must be objectClass or any subclass
thereof.

resources_return Returns the resource list.

num_resources_return
Returns the number of entries in the resource list.

If XtGetResourceList is called before the class is initialised, it returns the resource list as specified
in the class record. If it is called after the class has been initialised, XtGetResourceList returns a
merged resource list that includes the resources for all superclasses. The list returned by
XtGetResourceList should be freed using XtFree when it is no longer needed.

To get the constraint resource list structure for a particular widget class, use
XtGetConstraintResourceList .

Window Management (X11R5): X Toolkit Intrinsics 153
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Lists Resource Management

void XtGetConstraintResourceList(class , resources_return ,
num_resources_return)

WidgetClass class ;
XtResourceList * resources_return ;
Cardinal * num_resources_return ;

class Specifies the object class to be queried. It must be objectClass or any subclass
thereof.

resources_return Returns the constraint resource list.

num_resources_return
Returns the number of entries in the constraint resource list.

If XtGetConstraintResourceList is called before the widget class is initialised, the resource list as
specified in the widget class Constraint part is returned. If XtGetConstraintResourceList is called
after the widget class has been initialised, the merged resource list for the class and all
Constraint superclasses is returned. If the specified class is not a subclass of
constraintWidgetClass , *resources_return is set to NULL and *num_resources_return is set to zero.
The list returned by XtGetConstraintResourceList should be freed using XtFree when it is no longer
needed.

The routines XtSetValues and XtGetValues also use the resource list to set and get widget state;
see Section 11.7.1 and Section 11.7.2.

Here is an abbreviated version of a possible resource list for a Label widget:

/* Resources specific to Label */
static XtResource resources[] = {
{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),

XtOffsetOf(LabelRec, label.foreground), XtRString,
XtDefaultForeground},

{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct*),
XtOffsetOf(LabelRec, label.font), XtRString, XtDefaultFont},

{XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffsetOf(LabelRec, label.label), XtRString, NULL},
.
.
.

}

The complete resource name for a field of a widget instance is the concatenation of the
application shell name (from XtAppCreateShell), the instance names of all the widget’s parents
up to the top of the widget tree, the instance name of the widget itself, and the resource name of
the specified field of the widget. Similarly, the full resource class of a field of a widget instance is
the concatenation of the application class (from XtAppCreateShell), the widget class names of all
the widget’s parents up to the top of the widget tree, the widget class name of the widget itself,
and the resource class of the specified field of the widget.

154 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Management Byte Offset Calculations

11.2 Byte Offset Calculations
To determine the byte offset of a field within a structure type, use XtOffsetOf.

Cardinal XtOffsetOf(structure_type , field_name)
Type structure_type ;
Field field_name ;

structure_type Specifies a type that is declared as a structure.

field_name Specifies the name of a member within the structure.

The XtOffsetOf macro expands to a constant expression that gives the offset in bytes to the
specified structure member from the beginning of the structure. It is normally used to statically
initialize resource lists and is more portable than XtOffset, which serves the same function.

To determine the byte offset of a field within a structure pointer type, use XtOffset.

Cardinal XtOffset(pointer_type , field_name)
Type pointer_type ;
Field field_name ;

pointer_type Specifies a type that is declared as a pointer to a structure.

field_name Specifies the name of a member within the structure.

The XtOffset macro expands to a constant expression that gives the offset in bytes to the specified
structure member from the beginning of the structure. It may be used to statically initialize
resource lists. XtOffset is less portable than XtOffsetOf.

Window Management (X11R5): X Toolkit Intrinsics 155
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Superclass-to-Subclass Chaining of Resource Lists Resource Management

11.3 Superclass-to-Subclass Chaining of Resource Lists
The XtCreateWidget function gets resources as a superclass-to-subclass chained operation. That
is, the resources specified in the objectClass resource list are fetched, then those in rectObjClass ,
and so on down to the resources specified for this widget’s class. Within a class, resources are
fetched in the order they are declared.

In general, if a widget resource field is declared in a superclass, that field is included in the
superclass’s resource list and need not be included in the subclass’s resource list. For example,
the Core class contains a resource entry for background_pixel. Consequently, the implementation
of Label need not also have a resource entry for background_pixel. However, a subclass, by
specifying a resource entry for that field in its own resource list, can override the resource entry
for any field declared in a superclass. This is most often done to override the defaults provided
in the superclass with new ones. At class initialisation time, resource lists for that class are
scanned from the superclass down to the class to look for resources with the same offset. A
matching resource in a subclass will be reordered to override the superclass entry. If reordering
is necessary, a copy of the superclass resource list is made to avoid affecting other subclasses of
the superclass.

Also at class initialisation time, the Intrinsics produce an internal representation of the resource
list to optimize access time when creating widgets. In order to save memory, the Intrinsics may
overwrite the storage allocated for the resource list in the class record; therefore, widgets must
allocate resource lists in writable storage and must not access the list contents directly after the
class_initialize procedure has returned.

156 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Management Subresources

11.4 Subresources
A widget does not do anything to retrieve its own resources; instead, XtCreateWidget does this
automatically before calling the class initialize procedure.

Some widgets have subparts that are not widgets but for which the widget would like to fetch
resources. Such widgets call XtGetSubresources to accomplish this.

void XtGetSubresources(w, base , name, class ,
resources , num_resources , args , num_args)

Widget w;
XtPointer base ;
String name;
String class ;
XtResourceList resources ;
Cardinal num_resources ;
ArgList args ;
Cardinal num_args ;

w Specifies the object used to qualify the subpart resource name and class. Must
be of a classObject or any subclass thereof.

base Specifies the base address of the subpart data structure into which the
resources will be written.

name Specifies the name of the subpart.

class Specifies the class of the subpart.

resources Specifies the resource list for the subpart.

num_resources Specifies the number of entries in the resource list.

args Specifies the argument list to override any other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtGetSubresources function constructs a name and class list from the application name and
class, the names and classes of all the object’s ancestors, and the object itself. Then it appends to
this list the name and class pair passed in. The resources are fetched from the argument list, the
resource database, or the default values in the resource list. Then they are copied into the
subpart record. If args is NULL, num_args must be zero. However, if num_args is zero, the
argument list is not referenced.

XtGetSubresources may overwrite the specified resource list with an equivalent representation in
an internal format, which optimizes access time if the list is used repeatedly. The resource list
must be allocated in writable storage, and the caller must not modify the list contents after the
call if the same list is to be used again. Resources fetched by XtGetSubresources are reference-
counted as if they were referenced by the specified object. Subresources might therefore be freed
from the conversion cache and destroyed when the object is destroyed, but not before then.

To fetch resources for widget subparts using varargs lists, use XtVaGetSubresources.

Window Management (X11R5): X Toolkit Intrinsics 157
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Subresources Resource Management

void XtVaGetSubresources(w, base , name, class ,
resources , num_resources , ...)

Widget w;
XtPointer base ;
String name;
String class ;
XtResourceList resources ;
Cardinal num_resources ;

w Specifies the object used to qualify the subpart resource name and class. Must
be of a classObject or any subclass thereof.

base Specifies the base address of the subpart data structure into which the
resources will be written.

name Specifies the name of the subpart.

class Specifies the class of the subpart.

resources Specifies the resource list for the subpart.

num_resources Specifies the number of entries in the resource list.

... Specifies the variable argument list to override any other resource
specifications.

XtVaGetSubresources is identical in function to XtGetSubresources with the args and num_args
parameters replaced by a varargs list, as described in Section 4.5.1.

158 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Management Obtaining Application Resources

11.5 Obtaining Application Resources
To retrieve resources that are not specific to a widget but apply to the overall application, use
XtGetApplicationResources .

void XtGetApplicationResources(w, base , resources ,
num_resources , args , num_args)

Widget w;
XtPointer base ;
XtResourceList resources ;
Cardinal num_resources ;
ArgList args ;
Cardinal num_args ;

w Specifies the object that identifies the resource database to search (the
database is that associated with the display for this object). Must be of a
classObject or any subclass thereof.

base Specifies the base address into which the resource values will be written.

resources Specifies the resource list.

num_resources Specifies the number of entries in the resource list.

args Specifies the argument list to override any other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtGetApplicationResources function first uses the passed object, which is usually an
application shell widget, to construct a resource name and class list. The full name and class of
the specified object (that is, including its ancestors, if any) is logically added to the front of each
resource name and class. Then it retrieves the resources from the argument list, the resource
database, or the resource list default values. After adding base to each address,
XtGetApplicationResources copies the resources into the addresses obtained by adding base to
each offset in the resource list. If args is NULL, num_args must be zero. However, if num_args is
zero, the argument list is not referenced. The portable way to specify application resources is to
declare them as members of a structure and pass the address of the structure as the base
argument.

XtGetApplicationResources may overwrite the specified resource list with an equivalent
representation in an internal format, which optimizes access time if the list is used repeatedly.
The resource list must be allocated in writable storage, and the caller must not modify the list
contents after the call if the same list is to be used again. Any per-display resources fetched by
XtGetApplicationResources will not be freed from the resource cache until the display is closed.

To retrieve resources for the overall application using varargs lists, use
XtVaGetApplicationResources .

void XtVaGetApplicationResources(w, base , resources ,
num_resources , ...)

Widget w;
XtPointer base ;
XtResourceList resources ;
Cardinal num_resources ;

w Specifies the object that identifies the resource database to search (the
database is that associated with the display for this object). Must be of a
classObject or any subclass thereof.

Window Management (X11R5): X Toolkit Intrinsics 159
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Obtaining Application Resources Resource Management

base Specifies the base address into which the resource values will be written.

resources Specifies the resource list for the subpart.

num_resources Specifies the number of entries in the resource list.

... Specifies the variable argument list to override any other resource
specifications.

XtVaGetApplicationResources is identical in function to XtGetApplicationResources with the args
and num_args parameters replaced by a varargs list, as described in Section 4.5.1.

160 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Management Resource Conversions

11.6 Resource Conversions
The Intrinsics provide a mechanism for registering representation converters that are
automatically invoked by the resource-fetching routines. The Intrinsics additionally provide
and register several commonly used converters. This resource conversion mechanism serves
several purposes:

• It permits user and application resource files to contain textual representations of nontextual
values.

• It allows textual or other representations of default resource values that are dependent on the
display, screen, or colormap, and thus must be computed at runtime.

• It caches conversion source and result data. Conversions that require much computation or
space (for example, string-to-translation-table) or that require round-trips to the server (for
example, string-to-font or string-to-color) are performed only once.

11.6.1 Predefined Resource Converters

The Intrinsics define all the representations used in the Object, RectObj, Core, Composite,
Constraint and Shell widget classes. The Intrinsics register the following resource converters
that accept input values of representation type XtRString .

Target Representation Converter Name Additional Args
XtRAcceleratorTable XtCvtStringToAcceleratorTable
XtRAtom XtCvtStringToAtom Display*
XtRBoolean XtCvtStringToBoolean
XtRBool XtCvtStringToBool
XtRCursor XtCvtStringToCursor Display*
XtRDimension XtCvtStringToDimension
XtRDisplay XtCvtStringToDisplay
XtRFile XtCvtStringToFile
XtRFloat XtCvtStringToFloat
XtRFont XtCvtStringToFont Display*
XtRFontSet XtCvtStringToFontSet Display*, String locale
XtRFontStruct XtCvtStringToFontStruct Display*
XtRInitialState XtCvtStringToInitialState
XtRInt XtCvtStringToInt
XtRPixel XtCvtStringToPixel colorConvertArgs
XtRPosition XtCvtStringToPosition
XtRShort XtCvtStringToShort
XtRTranslationTable XtCvtStringToTranslationTable
XtRUnsignedChar XtCvtStringToUnsignedChar
XtRVisual XtCvtStringToVisual Screen*, Cardinal depth

The String-to-Pixel conversion has two predefined constants that are guaranteed to work and
contrast with each other: XtDefaultForeground and XtDefaultBackground . They evaluate to the
black and white pixel values of the widget’s screen, respectively. If the application resource
reverseVideo is True, they evaluate to the white and black pixel values of the widget’s screen,
respectively. Similarly, the String-to-Font and String-to-FontStruct converters recognize the
constant XtDefaultFont and evaluate this in the following manner:

• Query the resource database for the resource whose full name is ‘‘xtDefaultFont’’, class
‘‘XtDefaultFont’’ (that is, no widget name/class prefixes) and use a type XtRString value
returned as the font name, or a type XtRFont or XtRFontStruct value directly as the resource
value.

Window Management (X11R5): X Toolkit Intrinsics 161
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Conversions Resource Management

• If the resource database does not contain a value for xtDefaultFont, class XtDefaultFont, or if
the returned font name cannot be successfully opened, an implementation-defined font in the
ISO 8859-1 character set encoding is opened. (One possible algorithm is to perform an
XListFonts using a wildcard font name and use the first font in the list. This wildcard font
name should be as broad as possible to maximize the probability of locating a usable font; for
example, "-*-*-*-R-*-*-*-120-*-*-*-*-ISO8859-1".)

• If no suitable ISO 8859-1 font can be found, issue a warning message and return False .

The String-to-FontSet converter recognizes the constant XtDefaultFontSet and evaluate this in the
following manner:

• Query the resource database for the resource whose full name is ‘‘xtDefaultFontSet’’, class
‘‘XtDefaultFontSet’’ (that is, no widget name/class prefixes) and use a type XtRString value
returned as the base font name list, or a type XtRFontSet value directly as the resource value.

• If the resource database does not contain a value for xtDefaultFontSet, class
XtDefaultFontSet, or if a font set cannot be successfully created from this resource, an
implementation-defined font set is created. (One possible algorithm is to perform an
XCreateFontSet using a wildcard base font name. This wildcard base font name should be as
broad as possible to maximize the probability of locating a usable font; for example, "-*-*-*-
R-*-*-*-120-*-*-*-*".)

• If no suitable font set can be created, issue a warning message and return False .

If a font set is created but missing_charset_list is not empty, a warning is issued and the partial
font set is returned. The Intrinsics register the String-to-FontSet converter with a conversion
argument list that extracts the current process locale at the time the converter is invoked. This
ensures that the converter is invoked again if the same conversion is required in a different
locale.

The String-to-InitialState conversion accepts the values NormalState or IconicState as defined by
the ICCCM specification.

The String-to-Visual conversion calls XMatchVisualInfo using the screen and depth fields from the
core part and returns the first matching Visual on the list. The widget resource list must be
certain to specify any resource of type XtRVisual after the depth resource. The allowed string
values are the visual class names defined in the X Window System Protocol specification;
StaticGray , StaticColor , TrueColor , GrayScale , PseudoColor and DirectColor .

The Intrinsics register the following resource converter that accepts an input value of
representation type XtRColor .

Target Representation Converter Name Additional Args
XtRPixel XtCvtColorToPixel -

The Intrinsics register the following resource converters that accept input values of
representation type XtRInt .

162 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Management Resource Conversions

Target Representation Converter Name Additional Args
XtRBoolean XtCvtIntToBoolean
XtRBool XtCvtIntToBool
XtRColor XtCvtIntToColor colorConvertArgs
XtRDimension XtCvtIntToDimension
XtRFloat XtCvtIntToFloat
XtRFont XtCvtIntToFont
XtRPixel XtCvtIntToPixel
XtRPixmap XtCvtIntToPixmap
XtRPosition XtCvtIntToPosition
XtRShort XtCvtIntToShort
XtRUnsignedChar XtCvtIntToUnsignedChar

The Intrinsics register the following resource converter that accepts an input value of
representation type XtRPixel .

Target Representation Converter Name Additional Args
XtRColor XtCvtPixelToColor -

11.6.2 New Resource Converters

Type converters use pointers to XrmValue structures (defined in <X11/Xresource.h>; see the Xlib
— C Language Binding specification for input and output values.

typedef struct {
unsigned int size;
XPointer addr;

} XrmValue, *XrmValuePtr;

The addr field specifies the address of the data and the size field gives the total number of
significant bytes in the data. For values of type String , addr is the address of the first character
and size includes the NUL terminating byte.

A resource converter procedure pointer is of type XtTypeConverter.

typedef Boolean (*XtTypeConverter)(Display*, XrmValue*, Cardinal*,
XrmValue*, XrmValue*, XtPointer*);

Display * display ;
XrmValue * args ;
Cardinal * num_args ;
XrmValue * from ;
XrmValue * to ;
XtPointer * converter_data ;

display Specifies the display connection with which this conversion is associated.

args Specifies a list of additional XrmValue arguments to the converter if additional
context is needed to perform the conversion, or NULL. For example, the
String-to-Font converter needs the widget’s screen, and the String-to-Pixel
converter needs the widget’s screen and colormap.

num_args Specifies the number of entries in args.

from Specifies the value to convert.

to Specifies a descriptor for a location into which to store the converted value.

Window Management (X11R5): X Toolkit Intrinsics 163
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Conversions Resource Management

converter_data Specifies a location into which the converter may store converter-specific data
associated with this conversion.

The display argument is normally used only when generating error messages, to identify the
application context (with the function XtDisplayToApplicationContext).

The to argument specifies the size and location into which the converter should store the
converted value. If the addr field is NULL, the converter should allocate appropriate storage and
store the size and location into the to descriptor. If the type converter allocates the storage, it
remains under the ownership of the converter and must not be modified by the caller. The type
converter is permitted to use static storage for this purpose, and therefore the caller must
immediately copy the data upon return from the converter. If the addr field is not NULL, the
converter must check the size field to ensure that sufficient space has been allocated before
storing the converted value. If insufficient space is specified, the converter should update the
size field with the number of bytes required and return False without modifying the data at the
specified location. If sufficient space was allocated by the caller, the converter should update the
size field with the number of bytes actually occupied by the converted value. For converted
values of type XtRString , the size should include the NULL terminating byte, if any. The
converter may store any value in the location specified in converter_data; this data will be passed
to the destructor, if any, when the resource is freed by the Intrinsics.

The converter must return True if the conversion was successful and False otherwise. If the
conversion cannot be performed because of an improper source value, a warning message
should also be issued with XtAppWarningMsg .

Most type converters just take the data described by the specified from argument and return data
by writing into the location specified in the to argument. A few need other information, which is
available in args. A type converter can invoke another type converter, which allows differing
sources that may convert into a common intermediate result to make maximum use of the type
converter cache.

Note that if an address is written into to->addr, it cannot be that of a local variable of the
converter because the data will not be valid after the converter returns. Static variables may be
used, as in the following example. If the converter modifies the resource database, the changes
affect any in-progress widget creation, XtGetApplicationResources , or XtGetSubresources in an
implementation-defined manner; however, insertion of new entries or changes to existing entries
is allowed and will not directly cause an error.

The following is an example of a converter that takes a string and converts it to a Pixel . Note
that the display parameter is only used to generate error messages; the Screen conversion
argument is still required to inform the Intrinsics that the converted value is a function of the
particular display (and colormap).

164 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Management Resource Conversions

#define done(type, value) \
{ \

if (toVal->addr != NULL) { \
if (toVal->size < sizeof(type)) { \

toVal->size = sizeof(type); \
return False; \

} \
(type)(toVal->addr) = (value); \

} \
else { \

static type static_val; \
static_val = (value); \
toVal->addr = (XPointer)&static_val; \

} \
toVal->size = sizeof(type); \
return True; \

}

static Boolean CvtStringToPixel(dpy, args, num_args, fromVal, toVal,
converter_data)

Display *dpy;
XrmValue *args;
Cardinal *num_args;
XrmValue *fromVal;
XrmValue *toVal;
XtPointer *converter_data;

{
static XColor screenColor;
XColor exactColor;
Screen *screen;
Colormap colormap;
Status status;
char message[1000];

if (*num_args != 2)
XtAppErrorMsg(XtDisplayToApplicationContext(dpy),

"cvtStringToPixel", "wrongParameters", "XtToolkitError",
"String to pixel conversion needs screen and

colormap arguments",
(String *)NULL, (Cardinal *)NULL);

screen = *((Screen**) args[0].addr);
colormap = *((Colormap *) args[1].addr);

LowerCase((char *) fromVal->addr, message);

if (strcmp(message, "xtdefaultbackground") == 0)
done(&WhitePixelOfScreen(screen), Pixel);

if (strcmp(message, "xtdefaultforeground") == 0)
done(&BlackPixelOfScreen(screen), Pixel);

status = XAllocNamedColor(DisplayOfScreen(screen), colormap,

Window Management (X11R5): X Toolkit Intrinsics 165
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Conversions Resource Management

(char*)fromVal->addr,
&screenColor, &exactColor);

if (status == 0) {
String params[1];
Cardinal num_params = 1;
params[0] = (String)fromVal->addr;
XtAppWarningMsg(XtDisplayToApplicationContext(dpy),

"cvtStringToPixel", "noColormap", "XtToolkitError",
"Cannot allocate colormap entry for \"%s\"", params,

&num_params);
} else {

done(&screenColor.pixel, Pixel);
}

/* converter_data not used here */
};

All type converters should define some set of conversion values for which they are guaranteed
to succeed so these can be used in the resource defaults. This issue arises only with conversions,
such as fonts and colors, where there is no string representation that all server implementations
will necessarily recognize. For resources like these, the converter should define a symbolic
constant in the same manner as XtDefaultForeground , XtDefaultBackground and XtDefaultFont .

To allow the Intrinsics to deallocate resources produced by type converters, a resource
destructor procedure may also be provided.

A resource destructor procedure pointer is of type XtDestructor.

typedef void (*XtDestructor) (XtAppContext, XrmValue*, XtPointer,
XrmValue*, \
Cardinal*);

XtAppContext app ;
XrmValue * to ;
XtPointer converter_data ;
XrmValue * args ;
Cardinal * num_args ;

app Specifies an application context in which the resource is being freed.

to Specifies a descriptor for the resource produced by the type converter.

converter_data Specifies the converter-specific data returned by the type converter.

args Specifies the additional converter arguments as passed to the type converter
when the conversion was performed.

num_args Specifies the number of entries in args.

The destructor procedure is responsible for freeing the resource specified by the to argument,
including any auxiliary storage associated with that resource, but not the memory directly
addressed by the size and location in the to argument nor the memory specified by args.

166 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Management Resource Conversions

11.6.3 Issuing Conversion Warnings

The XtDisplayStringConversionWarning procedure is a convenience routine for resource type
converters that convert from string values.

void XtDisplayStringConversionWarning(display , from_value ,
to_type)

Display * display ;
String from_value , to_type ;

display Specifies the display connection with which the conversion is associated.

from_value Specifies the string that could not be converted.

to_type Specifies the target representation type requested.

The XtDisplayStringConversionWarning procedure issues a warning message using
XtAppWarningMsg with name ‘‘conversionError’’, type ‘‘string’’, class ‘‘XtToolkitError’’, and the
default message ‘‘Cannot convert "from_value" to type to_type’’.

To issue other types of warning or error messages, the type converter should use
XtAppWarningMsg or XtAppErrorMsg.

To retrieve the application context associated with a given display connection, use
XtDisplayToApplicationContext .

XtAppContext XtDisplayToApplicationContext(display)
Display * display ;

display Specifies an open and initialised display connection.

The XtDisplayToApplicationContext function returns the application context in which the
specified display was initialised. If the display is not known to the Intrinsics, an error message is
issued.

11.6.4 Registering a New Resource Converter

When registering a resource converter, the client must specify the manner in which the
conversion cache is to be used when there are multiple calls to the converter. Conversion cache
control is specified via an XtCacheType argument.

typedef int XtCacheType;

An XtCacheType field may contain one of the following values:

XtCacheNone
Specifies that the results of a previous conversion may not be reused to satisfy any other
resource requests; the specified converter will be called each time the converted value is
required.

XtCacheAll
Specifies that the results of a previous conversion should be reused for any resource request
that depends upon the same source value and conversion arguments.

XtCacheByDisplay
Specifies that the results of a previous conversion should be used as for XtCacheAll but the
destructor will be called, if specified, if XtCloseDisplay is called for the display connection
associated with the converted value, and the value will be removed from the conversion
cache.

Window Management (X11R5): X Toolkit Intrinsics 167
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Conversions Resource Management

The qualifier XtCacheRefCount may be ORed with any of the above values. If XtCacheRefCount is
specified, calls to XtCreateWidget , XtCreateManagedWidget , XtGetApplicationResources and
XtGetSubresources that use the converted value will be counted. When a widget using the
converted value is destroyed, the count is decremented, and if the count reaches zero, the
destructor procedure will be called and the converted value will be removed from the
conversion cache.

To register a type converter for all application contexts in a process, use XtSetTypeConverter and
to register a type converter in a single application context, use XtAppSetTypeConverter.

void XtSetTypeConverter(from_type , to_type , converter ,
convert_args , num_args , \
cache_type , destructor)

String from_type ;
String to_type ;
XtTypeConverter converter ;
XtConvertArgList convert_args ;
Cardinal num_args ;
XtCacheType cache_type ;
XtDestructor destructor ;

from_type Specifies the source type.

to_type Specifies the destination type.

converter Specifies the resource type converter procedure.

convert_args Specifies additional conversion arguments, or NULL.

num_args Specifies the number of entries in convert_args.

cache_type Specifies whether or not resources produced by this converter are sharable or
display-specific and when they should be freed.

destructor Specifies a destroy procedure for resources produced by this conversion, or
NULL if no additional action is required to deallocate resources produced by
the converter.

void XtAppSetTypeConverter(app_context , from_type , to_type ,
converter , convert_args , \
num_args , cache_type , destructor)

XtAppContext app_context ;
String from_type ;
String to_type ;
XtTypeConverter converter ;
XtConvertArgList convert_args ;
Cardinal num_args ;
XtCacheType cache_type ;
XtDestructor destructor ;

app_context Specifies the application context.

from_type Specifies the source type.

to_type Specifies the destination type.

converter Specifies the resource type converter procedure.

convert_args Specifies additional conversion arguments, or NULL.

168 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Management Resource Conversions

num_args Specifies the number of entries in convert_args.

cache_type Specifies whether or not resources produced by this converter are sharable or
display-specific and when they should be freed.

destructor Specifies a destroy procedure for resources produced by this conversion, or
NULL if no additional action is required to deallocate resources produced by
the converter.

XtSetTypeConverter registers the specified type converter and destructor in all application
contexts created by the calling process, including any future application contexts that may be
created. XtAppSetTypeConverter registers the specified type converter in the single application
context specified. If the same from_type and to_type are specified in multiple calls to either
function, the most recent overrides the previous ones.

For the few type converters that need additional arguments, the Intrinsics conversion
mechanism provides a method of specifying how these arguments should be computed. The
enumerated type XtAddressMode and the structure XtConvertArgRec specify how each argument
is derived. These are defined in <X11/Intrinsic.h>.

typedef enum {
/* address mode parameter representation */
XtAddress, /* address */
XtBaseOffset, /* offset */
XtImmediate, /* constant */
XtResourceString, /* resource name string */
XtResourceQuark, /* resource name quark */
XtWidgetBaseOffset, /* offset */
XtProcedureArg /* procedure to call */

} XtAddressMode;

typedef struct {
XtAddressMode address_mode;
XtPointer address_id;
Cardinal size;

} XtConvertArgRec, *XtConvertArgList;

The size field specifies the length of the data in bytes. The address_mode field specifies how the
address_id field should be interpreted. XtAddress causes address_id to be interpreted as the
address of the data. XtBaseOffset causes address_id to be interpreted as the offset from the widget
base. XtImmediate causes address_id to be interpreted as a constant. XtResourceString causes
address_id to be interpreted as the name of a resource that is to be converted into an offset from
the widget base. XtResourceQuark causes address_id to be interpreted as the result of an
XrmStringToQuark conversion on the name of a resource, which is to be converted into an offset
from the widget base. XtWidgetBaseOffset is similar to XtBaseOffset except that it searches for the
closest windowed ancestor if the object is not of a subclass of Core (see Chapter 14).
XtProcedureArg specifies that address_id is a pointer to a procedure to be invoked to return the
conversion argument. If XtProcedureArg is specified, address_id must contain the address of a
function of type XtConvertArgProc .

typedef void (*XtConvertArgProc)(Widget, Cardinal*, XrmValue*);
Widget object ;
Cardinal * size ;
XrmValue * value ;

Window Management (X11R5): X Toolkit Intrinsics 169
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Conversions Resource Management

object Passes the object for which the resource is being converted, or NULL if the
converter was invoked by XtCallConverter or XtDirectConvert .

size Passes a pointer to the size field from the XtConvertArgRec .

value Passes a pointer to a descriptor into which the procedure must store the
conversion argument.

When invoked, the XtConvertArgProc procedure must derive a conversion argument and store
the address and size of the argument in the location pointed to by value.

In order to permit reentrancy, the XtConvertArgProc should return the address of storage whose
lifetime is no shorter than the lifetime of object. If object is NULL, the lifetime of the conversion
argument must be no shorter than the lifetime of the resource with which the conversion
argument is associated. The Intrinsics do not guarantee to copy this storage but do guarantee
not to reference it if the resource is removed from the conversion cache.

The following example illustrates how to register the CvtStringToPixel routine given earlier:

static XtConvertArgRec colorConvertArgs[] = {
{XtWidgetBaseOffset, (XtPointer)XtOffset(Widget, core.screen),

sizeof(Screen*)},
{XtWidgetBaseOffset, (XtPointer)XtOffset(Widget, core.colormap),

sizeof(Colormap)}
};

XtSetTypeConverter(XtRString, XtRPixel, CvtStringToPixel,
colorConvertArgs, XtNumber(colorConvertArgs),
XtCacheByDisplay, NULL);

The conversion argument descriptors colorConvertArgs and screenConvertArg are predefined by
the Intrinsics. Both take the values from the closest windowed ancestor if the object is not of a
subclass of Core. The screenConvertArg descriptor puts the widget’s screen field into args[0]. The
colorConvertArgs descriptor puts the widget’s screen field into args[0], and the widget’s colormap
field into args[1].

Conversion routines should not just put a descriptor for the address of the base of the widget
into args[0] and use that in the routine. They should pass in the actual values on which the
conversion depends on. By keeping the dependencies of the conversion procedure specific, it is
more likely that subsequent conversions will find what they need in the conversion cache. This
way the cache is smaller and has fewer and more widely applicable entries.

If any conversion arguments of type XtBaseOffset, XtResourceString, XtResourceQuark and
XtWidgetBaseOffset are specified for conversions performed by XtGetApplicationResources ,
XtGetSubresources, XtVaGetApplicationResources or XtVaGetSubresources, the arguments are
computed with respect to the specified widget, not the base address or resource list specified in
the call.

If the XtConvertArgProc modifies the resource database, the changes affect any in-progress
widget creation, XtGetApplicationResources , or XtGetSubresources in an implementation-defined
manner; however, insertion of new entries or changes to existing entries is allowed and will not
directly cause an error.

170 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Management Resource Conversions

11.6.5 Resource Converter Invocation

All resource-fetching routines (for example, XtGetSubresources, XtGetApplicationResources , and so
on) call resource converters if the resource database or varargs list specifies a value that has a
different representation from the desired representation or if the widget’s default resource value
representation is different from the desired representation.

To invoke explicit resource conversions, use XtConvertAndStore or XtCallConverter .

typedef XtPointer XtCacheRef;

Boolean XtCallConverter(display , converter , conversion_args , \
num_args , from , to_in_out , cache_ref_return)

Display* display ;
XtTypeConverter converter ;
XrmValuePtr conversion_args ;
Cardinal num_args ;
XrmValuePtr from ;
XrmValuePtr to_in_out ;
XtCacheRef * cache_ref_return ;

display Specifies the display with which the conversion is to be associated.

converter Specifies the conversion procedure to be called.

conversion_args Specifies the additional conversion arguments needed to perform the
conversion, or NULL.

num_args Specifies the number of entries in conversion_args.

from Specifies a descriptor for the source value.

to_in_out Returns the converted value.

cache_ref_return Returns a conversion cache id.

The XtCallConverter function looks up the specified type converter in the application context
associated with the display and, if the converter was not registered or was registered with cache
type XtCacheAll or XtCacheByDisplay looks in the conversion cache to see if this conversion
procedure has been called with the specified conversion arguments. If so, it checks the success
status of the prior call, and if the conversion failed, XtCallConverter returns False immediately;
otherwise it checks the size specified in the to argument and, if it is greater than or equal to the
size stored in the cache, copies the information stored in the cache into the location specified by
to->addr, stores the cache size into to->size, and returns True. If the size specified in the to
argument is smaller than the size stored in the cache, XtCallConverter copies the cache size into
to->size and returns False . If the converter was registered with cache type XtCacheNone or no
value was found in the conversion cache, XtCallConverter calls the converter and, if it was not
registered with cache type XtCacheNone , enters the result in the cache. XtCallConverter then
returns what the converter returned.

The cache_ref_return field specifies storage allocated by the caller in which an opaque value will
be stored. If the type converter has been registered with the XtCacheRefCount modifier and if the
value returned in cache_ref_return is non-NULL, then the caller should store the cache_ref_return
value in order to decrement the reference count when the converted value is no longer required.
The cache_ref_return argument should be NULL if the caller is unwilling or unable to store the
value.

To explicitly decrement the reference counts for resources obtained from XtCallConverter , use
XtAppReleaseCacheRefs .

Window Management (X11R5): X Toolkit Intrinsics 171
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Conversions Resource Management

void XtAppReleaseCacheRefs(app_context , refs)
XtAppContext app_context ;
XtCacheRef * refs ;

app_context Specifies the application context.

refs Specifies the list of cache references to be released.

XtAppReleaseCacheRefs decrements the reference count for the conversion entries identified by
the refs argument. This argument is a pointer to a NULL-terminated list of XtCacheRef values. If
any reference count reaches zero, the destructor, if any, will be called and the resource removed
from the conversion cache.

As a convenience to clients needing to explicitly decrement reference counts via a callback
function, the Intrinsics define two callback procedures, XtCallbackReleaseCacheRef and
XtCallbackReleaseCacheRefList .

void XtCallbackReleaseCacheRef(object , client_data , call_data)
Widget object ;
XtPointer client_data ;
XtPointer call_data ;

object Specifies the object with which the resource is associated.

client_data Specifies the conversion cache entry to be released.

call_data Is ignored.

This callback procedure may be added to a callback list to release a previously returned
XtCacheRef value. When adding the callback, the callback client_data argument must be specified
as the value of the XtCacheRef data cast to type XtPointer .

void XtCallbackReleaseCacheRefList(object , client_data , call_data)
Widget object ;
XtPointer client_data ;
XtPointer call_data ;

object Specifies the object with which the resources are associated.

client_data Specifies the conversion cache entries to be released.

call_data Is ignored.

This callback procedure may be added to a callback list to release a list of previously returned
XtCacheRef values. When adding the callback, the callback client_data argument must be
specified as a pointer to a NULL-terminated list of XtCacheRef values.

To lookup and call a resource converter, copy the resulting value, and free a cached resource
when a widget is destroyed, use XtConvertAndStore .

Boolean XtConvertAndStore(object , from_type , from ,
to_type , to_in_out)

Widget object ;
String from_type ;
XrmValuePtr from ;
String to_type ;
XrmValuePtr to_in_out ;

object Specifies the object to use for additional arguments, if any are needed, and the
destroy callback list. Must be of a classObject or any subclass thereof.

172 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Management Resource Conversions

from_type Specifies the source type.

from Specifies the value to be converted.

to_type Specifies the destination type.

to_in_out Specifies a descriptor for storage into which the converted value will be
returned.

The XtConvertAndStore function looks up the type converter registered to convert from_type to
to_type, computes any additional arguments needed, and then calls XtCallConverter (or
XtDirectConvert if an old-style converter was registered with XtAddConverter or
XtAppAddConverter ; see Appendix C) with the from and to_in_out arguments. The to_in_out
argument specifies the size and location into which the converted value will be stored and is
passed directly to the converter. If the location is specified as NULL, it will be replaced with a
pointer to private storage and the size will be returned in the descriptor. The caller is expected
to copy this private storage immediately and must not modify it in any way. If a non-NULL
location is specified, the caller must allocate sufficient storage to hold the converted value and
must also specify the size of that storage in the descriptor. The size field will be modified on
return to indicate the actual size of the converted data. If the conversion succeeds,
XtConvertAndStore returns True; otherwise, it returns False .

XtConvertAndStore adds XtCallbackReleaseCacheRef to the destroyCallback list of the specified
object if the conversion returns an XtCacheRef value. The resulting resource should not be
referenced after the object has been destroyed.

XtCreateWidget performs processing equivalent to XtConvertAndStore when initialising the object
instance. Because there is extra memory overhead required to implement reference counting,
clients may distinguish those objects that are never destroyed before the application exits from
those that may be destroyed and whose resources should be deallocated.

To specify whether reference counting is to be enabled for the resources of a particular object
when the object is created, the client can specify a value for the Boolean resource
XtNinitialResourcesPersistent, class XtCInitialResourcesPersistent.

When XtCreateWidget is called, if this resource is not specified as False in either the arglist or the
resource database, then the resources referenced by this object are not reference-counted,
regardless of how the type converter may have been registered. The effective default value is
True; thus clients that expect to destroy one or more objects and want resources deallocated
must explicitly specify False for XtNinitialResourcesPersistent.

The resources are still freed and destructors called when XtCloseDisplay is called if the
conversion was registered as XtCacheByDisplay .

Window Management (X11R5): X Toolkit Intrinsics 173
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Reading and Writing Widget State Resource Management

11.7 Reading and Writing Widget State
Any resource field in a widget can be read or written by a client. On a write operation, the
widget decides what changes it will actually allow and updates all derived fields appropriately.

11.7.1 Obtaining Widget State

To retrieve the current values of resources associated with a widget instance, use XtGetValues .

void XtGetValues(object , args , num_args)
Widget object ;
ArgList args ;
Cardinal num_args ;

object Specifies the object whose resource values are to be returned. Must be of a
classObject or any subclass thereof.

args Specifies the argument list of name/address pairs that contain the resource
names and the addresses into which the resource values are to be stored. The
resource names are widget-dependent.

num_args Specifies the number of entries in the argument list.

The XtGetValues function starts with the resources specified for the Object class and proceeds
down the subclass chain to the class of the object. The value field of a passed argument list must
contain the address into which to copy the contents of the corresponding object instance field. If
the field is a pointer type, the lifetime of the pointed-to data is defined by the object class. For
the Intrinsics-defined resources, the following lifetimes apply:

• Not valid following any operation that modifies the resource:

— XtNchildren resource of composite widgets

— all resources of representation type XtRCallback.

• Remain valid at least until the widget is destroyed:

— XtNaccelerators, XtNtranslations.

• Remain valid until the Display is closed:

— XtNscreen.

It is the caller’s responsibility to allocate and deallocate storage for the copied data according to
the size of the resource representation type used within the object.

If the class of the object’s parent is a subclass of constraintWidgetClass , XtGetValues then fetches
the values for any constraint resources requested. It starts with the constraint resources
specified for constraintWidgetClass and proceeds down the subclass chain to the parent’s
constraint resources. If the argument list contains a resource name that is not found in any of the
resource lists searched, the value at the corresponding address is not modified. If any
get_values_hook procedures in the object’s class or superclass records are non-NULL, they are
called in superclass-to-subclass order after all the resource values have been fetched by
XtGetValues . Finally, if the object’s parent is a subclass of constraintWidgetClass , and if any of the
parent’s class or superclass records have declared ConstraintClassExtension records in the
Constraint class part extension field with a record type of NULLQUARK and if the get_values_hook
field in the extension record is non-NULL, XtGetValues calls the get_values_hook procedures in
superclass-to-subclass order. This permits a Constraint parent to provide nonresource data via
XtGetValues .

174 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Management Reading and Writing Widget State

Get_values_hook procedures may modify the data stored at the location addressed by the value
field, including (but not limited to) making a copy of data whose resource representation is a
pointer. None of the Intrinsics-defined object classes copy data in this manner. Any operation
that modifies the queried object resource may invalidate the pointed-to data.

To retrieve the current values of resources associated with a widget instance using varargs lists,
use XtVaGetValues .

void XtVaGetValues(object , ...)
Widget object ;

object Specifies the object whose resource values are to be returned. Must be of a
classObject or any subclass thereof.

... Specifies the variable argument list for the resources to be returned.

XtVaGetValues is identical in function to XtGetValues with the args and num_args parameters
replaced by a varargs list, as described in Section 4.5.1. All value entries in the list must specify
pointers to storage allocated by the caller to which the resource value will be copied. It is the
caller’s responsibility to ensure that sufficient storage is allocated. If XtVaTypedArg is specified,
the type argument specifies the representation desired by the caller and the size argument
specifies the number of bytes allocated to store the result of the conversion. If the size is
insufficient, a warning message is issued and the list entry is skipped.

Widget Subpart Resource Data: get_values_hook Procedure

Widgets that have subparts can return resource values from them through XtGetValues by
supplying a get_values_hook procedure. The get_values_hook procedure pointer is of type
XtArgsProc .

typedef void (*XtArgsProc)(Widget, ArgList, Cardinal*);
Widget w;
ArgList args ;
Cardinal * num_args ;

w Specifies the widget whose subpart resource values are to be retrieved.

args Specifies the argument list that was passed to XtGetValues or the transformed
varargs list passed to XtVaGetValues .

num_args Specifies the number of entries in the argument list.

The widget with subpart resources should call XtGetSubvalues in the get_values_hook procedure
and pass in its subresource list and the args and num_args parameters.

Widget Subpart State

To retrieve the current values of subpart resource data associated with a widget instance, use
XtGetSubvalues. For a discussion of subpart resources, see Section 11.4.

void XtGetSubvalues(base , resources , num_resources ,
args , num_args)

XtPointer base ;
XtResourceList resources ;
Cardinal num_resources ;
ArgList args ;
Cardinal num_args ;

Window Management (X11R5): X Toolkit Intrinsics 175
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Reading and Writing Widget State Resource Management

base Specifies the base address of the subpart data structure for which the
resources should be retrieved.

resources Specifies the subpart resource list.

num_resources Specifies the number of entries in the resource list.

args Specifies the argument list of name/address pairs that contain the resource
names and the addresses into which the resource values are to be stored.

num_args Specifies the number of entries in the argument list.

The XtGetSubvalues function obtains resource values from the structure identified by base. The
value field in each argument entry must contain the address into which to store the
corresponding resource value. It is the caller’s responsibility to allocate and deallocate this
storage according to the size of the resource representation type used within the subpart. If the
argument list contains a resource name that is not found in the resource list, the value at the
corresponding address is not modified.

To retrieve the current values of subpart resources associated with a widget instance using
varargs lists, use XtVaGetSubvalues .

void XtVaGetSubvalues(base , resources , num_resources , ...)
XtPointer base ;
XtResourceList resources ;
Cardinal num_resources ;

base Specifies the base address of the subpart data structure for which the
resources should be retrieved.

resources Specifies the subpart resource list.

num_resources Specifies the number of entries in the resource list.

... Specifies a variable argument list of name/address pairs that contain the
resource names and the addresses into which the resource values are to be
stored.

XtVaGetSubvalues is identical in function to XtGetSubvalues with the args and num_args
parameters replaced by a varargs list, as described in Section 4.5.1. XtVaTypedArg is not
supported for XtVaGetSubvalues . If XtVaTypedArg is specified in the list, a warning message is
issued and the entry is then ignored.

11.7.2 Setting Widget State

To modify the current values of resources associated with a widget instance, use XtSetValues .

void XtSetValues(object , args , num_args)
Widget object ;
ArgList args ;
Cardinal num_args ;

object Specifies the object whose resources are to be modified. Must be of a
classObject or any subclass thereof.

args Specifies the argument list of name/value pairs that contain the resources to
be modified and their new values.

num_args Specifies the number of entries in the argument list.

176 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Management Reading and Writing Widget State

The XtSetValues function starts with the resources specified for the Object class fields and
proceeds down the subclass chain to the object. At each stage, it replaces the object resource
fields with any values specified in the argument list. XtSetValues then calls the set_values
procedures for the object in superclass-to-subclass order. If the object has any non-NULL
set_values_hook fields, these are called immediately after the corresponding set_values procedure.
This procedure permits subclasses to set subpart data via XtSetValues .

If the class of the object’s parent is a subclass of constraintWidgetClass , XtSetValues also updates
the object’s constraints. It starts with the constraint resources specified for constraintWidgetClass
and proceeds down the subclass chain to the parent’s class. At each stage, it replaces the
constraint resource fields with any values specified in the argument list. It then calls the
constraint set_values procedures from constraintWidgetClass down to the parent’s class. The
constraint set_values procedures are called with widget arguments, as for all set_values
procedures, not just the constraint records, so that they can make adjustments to the desired
values based on full information about the widget. Any arguments specified that do not match a
resource list entry are silently ignored.

If the object is of a subclass of RectObj, XtSetValues determines if a geometry request is needed
by comparing the old object to the new object. If any geometry changes are required, XtSetValues
restores the original geometry and makes the request on behalf of the widget. If the geometry
manager returns XtGeometryYes, XtSetValues calls the object’s resize procedure. If the geometry
manager returns XtGeometryDone, XtSetValues continues, as the object’s resize procedure should
have been called by the geometry manager. If the geometry manager returns XtGeometryNo,
XtSetValues ignores the geometry request and continues. If the geometry manager returns
XtGeometryAlmost, XtSetValues calls the set_values_almost procedure, which determines what
should be done. XtSetValues then repeats this process, deciding once more whether the
geometry manager should be called.

Finally, if any of the set_values procedures returned True, and the widget is realised, XtSetValues
causes the widget’s expose procedure to be invoked by calling XClearArea on the widget’s
window.

To modify the current values of resources associated with a widget instance using varargs lists,
use XtVaSetValues .

void XtVaSetValues(object , ...)
Widget object ;

object Specifies the object whose resources are to be modified. Must be of a
classObject or any subclass thereof.

... Specifies the variable argument list of name/value pairs that contain the
resources to be modified and their new values.

XtVaSetValues is identical in function to XtSetValues with the args and num_args parameters
replaced by a varargs list, as described in Section 4.5.1.

Widget State: set_values Procedure

The set_values procedure pointer in a widget class is of type XtSetValuesFunc.

Window Management (X11R5): X Toolkit Intrinsics 177
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Reading and Writing Widget State Resource Management

typedef Boolean (*XtSetValuesFunc)(Widget, Widget, Widget,
ArgList, Cardinal*);

Widget current ;
Widget request ;
Widget new;
ArgList args ;
Cardinal * num_args ;

current Specifies a copy of the widget as it was before the XtSetValues call.

request Specifies a copy of the widget with all values changed as asked for by the
XtSetValues call before any class set_values procedures have been called.

new Specifies the widget with the new values that are actually allowed.

args Specifies the argument list passed to XtSetValues or the transformed argument
list passed to XtVaSetValues .

num_args Specifies the number of entries in the argument list.

The set_values procedure should recompute any field derived from resources that are changed
(for example, many GCs depend on foreground and background pixels). If no recomputation is
necessary and if none of the resources specific to a subclass require the window to be
redisplayed when their values are changed, you can specify NULL for the set_values field in the
class record.

Like the initialize procedure, set_values mostly deals only with the fields defined in the subclass,
but it has to resolve conflicts with its superclass, especially conflicts over width and height.

Sometimes a subclass may want to overwrite values filled in by its superclass. In particular, size
calculations of a superclass are often incorrect for a subclass and, in this case, the subclass must
modify or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass display. In this case, the width
and height calculated by the superclass set_values procedure are too small and need to be
incremented by the size of the surround. The subclass needs to know if its superclass’s size was
calculated by the superclass or was specified explicitly. All widgets must place themselves into
whatever size is explicitly given, but they should compute a reasonable size if no size is
requested. How does a subclass know the difference between a specified size and a size
computed by a superclass?

The request and new parameters provide the necessary information. The request widget is a copy
of the widget, updated as originally requested. The new widget starts with the values in the
request, but it has additionally been updated by all superclass set_values procedures called so
far. A subclass set_values procedure can compare these two to resolve any potential conflicts.
The set_values procedure need not refer to the request widget unless it must resolve conflicts
between the current and new widgets. Any changes the widget needs to make, including
geometry changes, should be made in the new widget.

In the above example, the subclass with the visual surround can see if the width and height in the
request widget are zero. If so, it adds its surround size to the width and height fields in the new
widget. If not, it must make do with the size originally specified. In this case, zero is a special
value defined by the class to permit the application to invoke this behaviour.

The new widget is the actual widget instance record. Therefore, the set_values procedure should
do all its work on the new widget; the request widget should never be modified. If the set_values
procedure needs to call any routines that operate on a widget, it should specify new as the
widget instance.

178 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Management Reading and Writing Widget State

Before calling the set_values procedures, the Intrinsics modify the resources of the request widget
according to the contents of the arglist; if the widget names all its resources in the class resource
list, it is never necessary to examine the contents of args.

Finally, the set_values procedure must return a Boolean that indicates whether the widget needs
to be redisplayed. Note that a change in the geometry fields alone does not require the
set_values procedure to return True; the X server will eventually generate an Expose event, if
necessary. After calling all the set_values procedures, XtSetValues forces a redisplay by calling
XClearArea if any of the set_values procedures returned True. Therefore, a set_values procedure
should not try to do its own redisplaying.

Set_values procedures should not do any work in response to changes in geometry because
XtSetValues eventually will perform a geometry request, and that request might be denied. If the
widget actually changes size in response to a call to XtSetValues , its resize procedure is called.
Widgets should do any geometry-related work in their resize procedure.

Note that it is permissible to call XtSetValues before a widget is realised. Therefore, the
set_values procedure must not assume that the widget is realised.

Widget State: set_values_almost Procedure

The set_values_almost procedure pointer in the widget class record is of type XtAlmostProc .

typedef void (*XtAlmostProc)(Widget, Widget, XtWidgetGeometry*, \
XtWidgetGeometry*);

Widget old ;
Widget new;
XtWidgetGeometry * request ;
XtWidgetGeometry * reply ;

old Specifies a copy of the object as it was before the XtSetValues call.

new Specifies the object instance record.

request Specifies the original geometry request that was sent to the geometry manager
that caused XtGeometryAlmost to be returned.

reply Specifies the compromise geometry that was returned by the geometry
manager with XtGeometryAlmost.

Most classes inherit the set_values_almost procedure from their superclass by specifying
XtInheritSetValuesAlmost in the class initialisation. The set_values_almost procedure in
rectObjClass accepts the compromise suggested.

The set_values_almost procedure is called when a client tries to set a widget’s geometry by
means of a call to XtSetValues , and the geometry manager cannot satisfy the request but instead
returns XtGeometryNo or XtGeometryAlmost and a compromise geometry. The new object is the
actual instance record. The x, y, width, height and border_width fields contain the original values
as they were before the XtSetValues call and all other fields contain the new values. The request
parameter contains the new geometry request that was made to the parent. The reply parameter
contains reply->request_mode equal to zero if the parent returned XtGeometryNo and contains the
parent’s compromise geometry otherwise. The set_values_almost procedure takes the original
geometry and the compromise geometry and determines if the compromise is acceptable or
whether to try a different compromise. It returns its results in the request parameter, which is
then sent back to the geometry manager for another try. To accept the compromise, the
procedure must copy the contents of the reply geometry into the request geometry; to attempt an
alternative geometry, the procedure may modify any part of the request argument; to terminate
the geometry negotiation and retain the original geometry, the procedure must set request-

Window Management (X11R5): X Toolkit Intrinsics 179
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Reading and Writing Widget State Resource Management

>request_mode to zero. The geometry fields of the old and new instances must not be modified
directly.

Widget State: ConstraintClassPart set_values Procedure

The constraint set_values procedure pointer is of type XtSetValuesFunc. The values passed to the
parent’s constraint set_values procedure are the same as those passed to the child’s class
set_values procedure. A class can specify NULL for the set_values field of the ConstraintPart if it
need not compute anything.

The constraint set_values procedure should recompute any constraint fields derived from
constraint resources that are changed. Further, it may modify other widget fields as appropriate.
For example, if a constraint for the maximum height of a widget is changed to a value smaller
than the widget’s current height, the constraint set_values procedure may reset the height field in
the widget.

Widget Subpart State

To set the current values of subpart resources associated with a widget instance, use
XtSetSubvalues. For a discussion of subpart resources, see Section 11.4.

void XtSetSubvalues(base , resources , num_resources ,
args , num_args)

XtPointer base ;
XtResourceList resources ;
Cardinal num_resources ;
ArgList args ;
Cardinal num_args ;

base Specifies the base address of the subpart data structure into which the
resources should be written.

resources Specifies the subpart resource list.

num_resources Specifies the number of entries in the resource list.

args Specifies the argument list of name/value pairs that contain the resources to
be modified and their new values.

num_args Specifies the number of entries in the argument list.

The XtSetSubvalues function updates the resource fields of the structure identified by base. Any
specified arguments that do not match an entry in the resource list are silently ignored.

To set the current values of subpart resources associated with a widget instance using varargs
lists, use XtVaSetSubvalues.

void XtVaSetSubvalues(base , resources , num_resources , ...)
XtPointer base ;
XtResourceList resources ;
Cardinal num_resources ;

base Specifies the base address of the subpart data structure into which the
resources should be written.

resources Specifies the subpart resource list.

num_resources Specifies the number of entries in the resource list.

180 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Management Reading and Writing Widget State

... Specifies the variable argument list of name/value pairs that contain the
resources to be modified and their new values.

XtVaSetSubvalues is identical in function to XtSetSubvalues with the args and num_args
parameters replaced by a varargs list, as described in Section 4.5.1. XtVaTypedArg is not
supported for XtVaSetSubvalues. If an entry containing XtVaTypedArg is specified in the list, a
warning message is issued and the entry is ignored.

Widget Subpart Resource Data: set_values_hook Procedure

Note: The set_values_hook procedure is obsolete, as the same information is now available to
the set_values procedure. The procedure has been retained for those widgets that used
it in versions prior to Release 4.

Widgets that have a subpart can set the subpart resource values through XtSetValues by
supplying a set_values_hook procedure. The set_values_hook procedure pointer in a widget
class is of type XtArgsFunc.

typedef Boolean (*XtArgsFunc)(Widget, Arglist, Cardinal*);
Widget w;
Arglist args ;
Cardinal * num_args ;

w Specifies the widget whose subpart resource values are to be changed.

args Specifies the argument list that was passed to XtSetValues or the transformed
varargs list passed to XtVaSetValues .

num_args Specifies the number of entries in the argument list.

The widget with subpart resources may call XtSetValues from the set_values_hook procedure
and pass in its subresource list and the args and num_args parameters.

Window Management (X11R5): X Toolkit Intrinsics 181
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource Management

182 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Chapter 12

Translation Management

Except under unusual circumstances, widgets do not hardwire the mapping of user events into
widget behaviour by using the event manager. Instead, they provide a default mapping of
events into behaviour that you can override.

The translation manager provides an interface to specify and manage the mapping of X event
sequences into widget-supplied functionality; for example, calling procedure Abc when the y key
is pressed.

The translation manager uses two kinds of tables to perform translations:

• The action tables, which are in the widget class structure, specify the mapping of externally
available procedure name strings to the corresponding procedure implemented by the
widget class.

• A translation table, which is in the widget class structure, specifies the mapping of event
sequences to procedure name strings.

You can override the translation table in the class structure for a specific widget instance by
supplying a different translation table for the widget instance. The resources XtNtranslations
and XtNbaseTranslations are used to modify the class default translation table; see Section 12.3.

Window Management (X11R5): X Toolkit Intrinsics 183
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Action Tables Translation Management

12.1 Action Tables
All widget class records contain an action table, an array of XtActionsRec entries. In addition, an
application can register its own action tables with the translation manager so that the translation
tables it provides to widget instances can access application functionality directly. The
translation action procedure pointer is of type XtActionProc .

typedef void (*XtActionProc)(Widget, XEvent*, String*, Cardinal*);
Widget w;
XEvent * event ;
String * params ;
Cardinal * num_params ;

w Specifies the widget that caused the action to be called.

event Specifies the event that caused the action to be called. If the action is called
after a sequence of events, then the last event in the sequence is used.

params Specifies a pointer to the list of strings that were specified in the translation
table as arguments to the action, or NULL.

num_params Specifies the number of entries in params.

typedef struct _XtActionsRec {
String string;
XtActionProc proc;

} XtActionsRec, *XtActionList;

The string field is the name used in translation tables to access the procedure. The proc field is a
pointer to a procedure that implements the functionality.

When the action list is specified as the CoreClassPart actions field the string pointed to by string
must be permanently allocated prior to or during the execution of the class initialisation
procedure and must not be subsequently deallocated.

Action procedures should not assume that the widget in which they are invoked is realised; an
accelerator specification can cause an action procedure to be called for a widget that does not yet
have a window. Widget writers should also note which of a widget’s callback lists are invoked
from action procedures and warn clients not to assume the widget is realised in those callbacks.

For example, a Pushbutton widget has procedures to take the following actions:

• Set the button to indicate it is activated.

• Unset the button back to its normal mode.

• Highlight the button borders.

• Unhighlight the button borders.

• Notify any callbacks that the button has been activated.

The action table for the Pushbutton widget class makes these functions available to translation
tables written for Pushbutton or any subclass. The string entry is the name used in translation
tables. The procedure entry (usually spelled identically to the string) is the name of the C
procedure that implements that function:

184 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Translation Management Action Tables

XtActionsRec actionTable[] = {
{"Set", Set},
{"Unset", Unset},
{"Highlight", Highlight},
{"Unhighlight", Unhighlight}
{"Notify", Notify},

};

The Intrinsics reserve all action names and parameters starting with the characters ‘‘Xt’’ for
future standard enhancements. Users, applications and widgets should not declare action
names or pass parameters starting with these characters except to invoke specified built-in
Intrinsics functions.

12.1.1 Action Table Registration

The actions and num_actions fields of CoreClassPart specify the actions implemented by a widget
class. These are automatically registered with the Intrinsics when the class is initialised and
must be allocated in writable storage prior to Core class_part initialisation, and never
deallocated. To save memory and optimize access, the Intrinsics may overwrite the storage in
order to compile the list into an internal representation.

To declare an action table within an application and register it with the translation manager, use
XtAppAddActions .

void XtAppAddActions(app_context , actions , num_actions)
XtAppContext app_context ;
XtActionList actions ;
Cardinal num_actions ;

app_context Specifies the application context.

actions Specifies the action table to register.

num_actions Specifies the number of entries in this action table.

If more than one action is registered with the same name, the most recently registered action is
used. If duplicate actions exist in an action table, the first is used. The Intrinsics register an
action table containing XtMenuPopup and XtMenuPopdown as part of XtCreateApplicationContext .

12.1.2 Action Names to Procedure Translations

The translation manager uses a simple algorithm to resolve the name of a procedure specified in
a translation table into the actual procedure specified in an action table. When the widget is
realised, the translation manager performs a search for the name in the following tables, in order:

• The widget’s class and all superclass action tables, in subclass-to-superclass order.

• The parent’s class and all superclass action tables, in subclass-to-superclass order, then on up
the ancestor tree.

• The action tables registered with XtAppAddActions and XtAddActions from the most recently
added table to the oldest table.

As soon as it finds a name, the translation manager stops the search. If it cannot find a name, the
translation manager generates a warning message.

Window Management (X11R5): X Toolkit Intrinsics 185
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Action Tables Translation Management

12.1.3 Action Hook Registration

An application can specify a procedure that will be called just before every action routine is
dispatched by the translation manager. To do so, the application supplies a procedure pointer of
type XtActionHookProc .

typedef void (*XtActionHookProc)(Widget, XtPointer, String,
XEvent*, \
String*, Cardinal*);

Widget w;
XtPointer client_data ;
String action_name ;
XEvent* event ;
String* params ;
Cardinal* num_params ;

w Specifies the widget whose action is about to be dispatched.

client_data Specifies the application-specific closure that was passed to
XtAppAddActionHook.

action_name Specifies the name of the action to be dispatched.

event Specifies the event argument that will be passed to the action routine.

params Specifies the action parameters that will be passed to the action routine.

num_params Specifies the number of entries in params.

Action hooks should not modify any of the data pointed to by the arguments other than the
client_data argument.

To add an action hook, use XtAppAddActionHook .

XtActionHookId XtAppAddActionHook(app , proc , client_data)
XtAppContext app ;
XtActionHookProc proc ;
XtPointer client_data ;

app Specifies the application context.

proc Specifies the action hook procedure.

client_data Specifies application-specific data to be passed to the action hook.

XtAppAddActionHook adds the specified procedure to the front of a list maintained in the
application context. In the future, when an action routine is about to be invoked for any widget
in this application context, either through the translation manager or via XtCallActionProc , the
action hook procedures will be called in reverse order of registration just prior to invoking the
action routine.

Action hook procedures are removed automatically and the XtActionHookId s destroyed when
the application context in which they were added is destroyed.

To remove an action hook procedure without destroying the application context, use
XtRemoveActionHook .

void XtRemoveActionHook(id)
XtActionHookId id ;

id Specifies the action hook id returned by XtAppAddActionHook .

186 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Translation Management Action Tables

XtRemoveActionHook removes the specified action hook procedure from the list in which it was
registered.

Window Management (X11R5): X Toolkit Intrinsics 187
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Translation Tables Translation Management

12.2 Translation Tables
All widget instance records contain a translation table, which is a resource with a default value
specified elsewhere in the class record. A translation table specifies what action procedures are
invoked for an event or a sequence of events. A translation table is a string containing a list of
translations from an event sequence into one or more action procedure calls. The translations
are separated from one another by newline characters (ASCII LF). The complete syntax of
translation tables is specified in Appendix B.

As an example, the default behaviour of Pushbutton is:

• Highlight on enter window.

• Unhighlight on exit window.

• Invert on left button down.

• Call callbacks and reinvert on left button up.

The following illustrates Pushbutton’s default translation table:

static String defaultTranslations =
"<EnterWindow>: Highlight()\n\
<LeaveWindow>: Unhighlight()\n\
<Btn1Down>: Set()\n\
<Btn1Up>: Notify() Unset()";

The tm_table field of the CoreClassPart should be filled in at class initialisation time with the
string containing the class’s default translations. If a class wants to inherit its superclass’s
translations, it can store the special value XtInheritTranslations into tm_table. In Core’s class part
initialisation procedure, the Intrinsics compile this translation table into an efficient internal
form. Then, at widget creation time, this default translation table is combined with the
XtNtranslations and XtNbaseTranslations resources; see Section 12.3.

The resource conversion mechanism automatically compiles string translation tables that are
specified in the resource database. If a client uses translation tables that are not retrieved via a
resource conversion, it must compile them itself using XtParseTranslationTable .

The Intrinsics use the compiled form of the translation table to register the necessary events with
the event manager. Widgets need do nothing other than specify the action and translation tables
for events to be processed by the translation manager.

12.2.1 Event Sequences

An event sequence is a comma-separated list of X event descriptions that describes a specific
sequence of X events to map to a set of program actions. Each X event description consists of
three parts: the X event type, a prefix consisting of the X modifier bits, and an event-specific
suffix.

Various abbreviations are supported to make translation tables easier to read. The events must
match incoming events in left-to-right order to trigger the action sequence.

188 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Translation Management Translation Tables

12.2.2 Action Sequences

Action sequences specify what program or widget actions to take in response to incoming X
events. An action sequence consists of space-separated action procedure call specifications.
Each action procedure call consists of the name of an action procedure and a parenthesised list
of zero or more comma-separated string parameters to pass to that procedure. The actions are
invoked in left-to-right order as specified in the action sequence.

12.2.3 Multi-click Time

Translation table entries may specify actions that are taken when two or more identical events
occur consecutively within a short time interval, called the multi-click time. The multi-click time
value may be specified as an application resource with name ‘‘multiClickTime’’ and class
‘‘MultiClickTime’’ and may also be modified dynamically by the application. The multi-click
time is unique for each Display value and is retrieved from the resource database by
XtDisplayInitialize . If no value is specified, the initial value is 200 milliseconds.

To set the multi-click time dynamically, use XtSetMultiClickTime.

void XtSetMultiClickTime(display , time)
Display * display ;
int time ;

display Specifies the display connection.

time Specifies the multi-click time in milliseconds.

XtSetMultiClickTime sets the time interval used by the translation manager to determine when
multiple events are interpreted as a repeated event. When a repeat count is specified in a
translation entry, the interval between the timestamps in each pair of repeated events (for
example, between two ButtonPress events) must be less than the multi-click time in order for the
translation actions to be taken.

To read the multi-click time, use XtGetMultiClickTime.

int XtGetMultiClickTime(display)
Display * display ;

display Specifies the display connection.

XtGetMultiClickTime returns the time in milliseconds that the translation manager uses to
determine if multiple events are to be interpreted as a repeated event for purposes of matching a
translation entry containing a repeat count.

Window Management (X11R5): X Toolkit Intrinsics 189
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Translation Table Management Translation Management

12.3 Translation Table Management
Sometimes an application needs to merge its own translations with a widget’s translations. For
example, a window manager provides functions to move a window. The window manager
wishes to bind this operation to a specific pointer button in the title bar without the possibility of
user override and bind it to other buttons that may be overridden by the user.

To accomplish this, the window manager should first create the title bar and then should merge
the two translation tables into the title bar’s translations. One translation table contains the
translations that the window manager wants only if the user has not specified a translation for a
particular event or event sequence (that is, those that may be overridden). The other translation
table contains the translations that the window manager wants regardless of what the user has
specified.

Three Intrinsics functions support this merging:

XtParseTranslationTable
Compiles a translation table.

XtAugmentTranslations
Merges a compiled translation table into a widget’s compiled translation table, ignoring any
new translations that conflict with existing translations.

XtOverrideTranslations
Merges a compiled translation table into a widget’s compiled translation table, replacing
any existing translations that conflict with new translations.

To compile a translation table, use XtParseTranslationTable .

XtTranslations XtParseTranslationTable(table)
String table ;

table Specifies the translation table to compile.

The XtParseTranslationTable function compiles the translation table, provided in the format given
in Appendix B, Appendix B, into an opaque internal representation of type XtTranslations . Note
that if an empty translation table is required for any purpose, one can be obtained by calling
XtParseTranslationTable and passing an empty string.

To merge additional translations into an existing translation table, use XtAugmentTranslations .

void XtAugmentTranslations(w, translations)
Widget w;
XtTranslations translations ;

w Specifies the widget into which the new translations are to be merged. Must
be of class Core or any subclass thereof.

translations Specifies the compiled translation table to merge in.

The XtAugmentTranslations function merges the new translations into the existing widget
translations, ignoring any #replace , #augment or #override directive that may have been specified
in the translation string. The translation table specified by translations is not altered by this
process. XtAugmentTranslations logically appends the string representation of the new
translations to the string representation of the widget’s current translations and reparses the
result with no warning messages about duplicate left-hand sides, then stores the result back into
the widget instance; that is, if the new translations contain an event or event sequence that
already exists in the widget’s translations, the new translation is ignored.

190 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Translation Management Translation Table Management

To overwrite existing translations with new translations, use XtOverrideTranslations .

void XtOverrideTranslations(w, translations)
Widget w;
XtTranslations translations ;

w Specifies the widget into which the new translations are to be merged. Must
be of class Core or any subclass thereof.

translations Specifies the compiled translation table to merge in.

The XtOverrideTranslations function merges the new translations into the existing widget
translations, ignoring any #replace , #augment or #override directive that may have been specified
in the translation string. The translation table specified by translations is not altered by this
process. XtOverrideTranslations logically appends the string representation of the widget’s
current translations to the string representation of the new translations and reparses the result
with no warning messages about duplicate left-hand sides, then stores the result back into the
widget instance; that is, if the new translations contain an event or event sequence that already
exists in the widget’s translations, the new translation overrides the widget’s translation.

To replace a widget’s translations completely, use XtSetValues on the XtNtranslations resource
and specify a compiled translation table as the value.

To make it possible for users to easily modify translation tables in their resource files, the string-
to-translation-table resource type converter allows the string to specify whether the table should
replace, augment, or override any existing translation table in the widget. To specify this, a
sharp sign (#) is given as the first character of the table followed by one of the keywords
‘‘replace’’, ‘‘augment’’ or ‘‘override’’ to indicate whether to replace, augment, or override the
existing table. The replace or merge operation is performed during the Core instance
initialisation and during the Core set_values invocation. Each merge operation produces a new
translation resource value; if the original tables were shared by other widgets, they are
unaffected. If no directive is specified, ‘‘#replace’’ is assumed.

At instance initialisation the XtNtranslations resource is first fetched. Then, if it was not
specified or did not contain ‘‘#replace’’, the resource database is searched for the resource
XtNbaseTranslations. If XtNbaseTranslations is found it is merged into the widget class
translation table. Then the widget translations field is merged into the result, or into the class
translation table if XtNbaseTranslations was not found. This final table is then stored into the
widget translations field. If the XtNtranslations resource specified ‘‘#replace’’ no merge is done.
If neither XtNbaseTranslations or XtNtranslations are specified, the class translation table is
copied into the widget instance.

To completely remove existing translations, use XtUninstallTranslations .

void XtUninstallTranslations(w)
Widget w;

w Specifies the widget from which the translations are to be removed. Must be
of class Core or any subclass thereof.

The XtUninstallTranslations function causes the entire translation table for the widget to be
removed.

Window Management (X11R5): X Toolkit Intrinsics 191
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Using Accelerators Translation Management

12.4 Using Accelerators
It is often desirable to be able to bind events in one widget to actions in another. In particular, it
is often useful to be able to invoke menu actions from the keyboard. The Intrinsics provide a
facility, called accelerators, that lets you accomplish this. An accelerator table is a translation
table that is bound with its actions in the context of a particular widget, the source widget. The
accelerator table can then be installed on one or more destination widgets. When an event
sequence in the destination widget would cause an accelerator action to be taken, and if the
source widget is sensitive, the actions are executed as though triggered by the same event
sequence in the accelerator source widget. The event is passed to the action procedure without
modification. The action procedures used within accelerators must not assume that the source
widget is realised nor that any fields of the event are in reference to the source widget’s window
if the widget is realised.

Each widget instance contains that widget’s exported accelerator table as a resource. Each class
of widget exports a method that takes a displayable string representation of the accelerators so
that widgets can display their current accelerators. The representation is the accelerator table in
canonical translation table form (see Appendix B). The display_accelerator procedure pointer is
of type XtStringProc .

typedef void (*XtStringProc)(Widget, String);
Widget w;
String string ;

w Specifies the source widget that supplied the accelerators.

string Specifies the string representation of the accelerators for this widget.

Accelerators can be specified in resource files, and the string representation is the same as for a
translation table. However, the interpretation of the #augment and #override directives applies to
what will happen when the accelerator is installed; that is, whether or not the accelerator
translations will override the translations in the destination widget. The default is #augment,
which means that the accelerator translations have lower priority than the destination
translations. The #replace directive is ignored for accelerator tables.

To parse an accelerator table, use XtParseAcceleratorTable .

XtAccelerators XtParseAcceleratorTable(source)
String source ;

source Specifies the accelerator table to compile.

The XtParseAcceleratorTable function compiles the accelerator table into an opaque internal
representation. The client should set the XtNaccelerators resource of each widget that is to be
activated by these translations to the returned value.

To install accelerators from a widget on another widget, use XtInstallAccelerators .

void XtInstallAccelerators(destination , source)
Widget destination ;
Widget source ;

destination Specifies the widget on which the accelerators are to be installed. Must be of
class Core or any subclass thereof.

source Specifies the widget from which the accelerators are to come. Must be of class
Core or any subclass thereof.

The XtInstallAccelerators function installs the accelerators resource value from source onto
destination by merging the source accelerators into the destination translations. If the source

192 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Translation Management Using Accelerators

display_accelerator field is non-NULL, XtInstallAccelerators calls it with the source widget and a
string representation of the accelerator table, which indicates that its accelerators have been
installed and that it should display them appropriately. The string representation of the
accelerator table is its canonical translation table representation.

As a convenience for installing all accelerators from a widget and all its descendants onto one
destination, use XtInstallAllAccelerators .

void XtInstallAllAccelerators(destination , source)
Widget destination ;
Widget source ;

destination Specifies the widget on which the accelerators are to be installed. Must be of
class Core or any subclass thereof.

source Specifies the root widget of the widget tree from which the accelerators are to
come. Must be of class Core or any subclass thereof.

The XtInstallAllAccelerators function recursively descends the widget tree rooted at source and
installs the accelerators resource value of each widget encountered onto destination. A common
use is to call XtInstallAllAccelerators and pass the application main window as the source.

Window Management (X11R5): X Toolkit Intrinsics 193
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

KeyCode-to-KeySym Conversions Translation Management

12.5 KeyCode-to-KeySym Conversions
The translation manager provides support for automatically translating KeyCodes in incoming
key events into KeySyms. KeyCode-to-KeySym translator procedure pointers are of type
XtKeyProc.

typedef void (*XtKeyProc)(Display*, KeyCode, Modifiers, Modifiers*,
KeySym*);

Display * display ;
KeyCode keycode ;
Modifiers modifiers ;
Modifiers * modifiers_return ;
KeySym *keysym_return ;

display Specifies the display that the KeyCode is from.

keycode Specifies the KeyCode to translate.

modifiers Specifies the modifiers to the KeyCode.

modifiers_return Specifies a location in which to store a mask that indicates the subset of all
modifiers that are examined by the key translator.

keysym_return Specifies a location in which to store the resulting KeySym.

This procedure takes a KeyCode and modifiers and produces a KeySym. For any given key
translator function, modifiers_return will be a constant that indicates the subset of all modifiers
that are examined by the key translator.

The KeyCode-to-KeySym translator procedure must be implemented such that multiple calls
with the same display, keycode and modifiers return the same result until either a new case
converter (XtCaseProc) is installed or a MappingNotify event is received.

The Intrinsics maintain tables internally to map KeyCodes to KeySyms for each open display.
Translator procedures and other clients may share a single copy of this table to perform the same
mapping.

To return a pointer to the KeySym-to-KeyCode mapping table for a particular display, use
XtGetKeysymTable.

KeySym *XtGetKeysymTable(display , min_keycode_return ,
keysyms_per_keycode_return)

Display * display ;
KeyCode * min_keycode_return ;
int * keysyms_per_keycode_return ;

display Specifies the display whose table is required.

min_keycode_return Returns the minimum KeyCode valid for the display.

keysyms_per_keycode_return Returns the number of KeySyms stored for each KeyCode.

XtGetKeysymTable returns a pointer to the Intrinsics’ copy of the server’s KeyCode-to-KeySym
table. This table must not be modified. There are keysyms_per_keycode_return KeySyms
associated with each KeyCode, located in the table with indices starting at index:

(test_keycode - min_keycode_return) * keysyms_per_keycode_return

for KeyCode test_keycode. Any entries that have no KeySyms associated with them contain the
value NoSymbol . Clients should not cache the KeySym table but should call XtGetKeysymTable
each time the value is needed, as the table may change prior to dispatching each event.

194 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Translation Management KeyCode-to-KeySym Conversions

For more information on this table, see the Xlib — C Language Binding specification.

To register a key translator, use XtSetKeyTranslator .

void XtSetKeyTranslator(display , proc)
Display * display ;
XtKeyProc proc ;

display Specifies the display from which to translate the events.

proc Specifies the procedure to perform key translations.

The XtSetKeyTranslator function sets the specified procedure as the current key translator. The
default translator is XtTranslateKey , an XtKeyProc that uses the Shift, Lock, and group modifiers
with the interpretations defined in the X Window System Protocol specification. It is provided
so that new translators can call it to get default KeyCode-to-KeySym translations and so that the
default translator can be reinstalled.

To invoke the currently registered KeyCode-to-KeySym translator, use XtTranslateKeycode .

void XtTranslateKeycode(display , keycode , modifiers ,
modifiers_return , keysym_return)

Display * display ;
KeyCode keycode ;
Modifiers modifiers ;
Modifiers * modifiers_return ;
KeySym *keysym_return ;

display Specifies the display that the KeyCode is from.

keycode Specifies the KeyCode to translate.

modifiers Specifies the modifiers to the KeyCode.

modifiers_return Returns a mask that indicates the modifiers actually used to generate the
KeySym.

keysym_return Returns the resulting KeySym.

The XtTranslateKeycode function passes the specified arguments directly to the currently
registered KeyCode-to-KeySym translator.

To handle capitalisation of non-standard KeySyms, the Intrinsics allow clients to register case
conversion routines. Case converter procedure pointers are of type XtCaseProc .

typedef void (*XtCaseProc)(Display*, KeySym, KeySym*, KeySym*);
Display * display ;
KeySym keysym ;
KeySym *lower_return ;
KeySym *upper_return ;

display Specifies the display connection for which the conversion is required.

keysym Specifies the KeySym to convert.

lower_return Specifies a location into which to store the lower-case equivalent for the
KeySym.

upper_return Specifies a location into which to store the upper-case equivalent for the
KeySym.

Window Management (X11R5): X Toolkit Intrinsics 195
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

KeyCode-to-KeySym Conversions Translation Management

If there is no case distinction, this procedure should store the KeySym into both return values.

To register a case converter, use XtRegisterCaseConverter .

void XtRegisterCaseConverter(display , proc , start , stop)
Display * display ;
XtCaseProc proc ;
KeySym start ;
KeySym stop ;

display Specifies the display from which the key events are to come.

proc Specifies the XtCaseProc to do the conversions.

start Specifies the first KeySym for which this converter is valid.

stop Specifies the last KeySym for which this converter is valid.

The XtRegisterCaseConverter registers the specified case converter. The start and stop arguments
provide the inclusive range of KeySyms for which this converter is to be called. The new
converter overrides any previous converters for KeySyms in that range. No interface exists to
remove converters; you need to register an identity converter. When a new converter is
registered, the Intrinsics refresh the keyboard state if necessary. The default converter
understands case conversion for all Latin KeySyms defined in the X Window System Protocol
specification.

To determine upper- and lower-case equivalents for a KeySym, use XtConvertCase .

void XtConvertCase(display , keysym , lower_return ,
upper_return)

Display * display ;
KeySym keysym ;
KeySym *lower_return ;
KeySym *upper_return ;

display Specifies the display that the KeySym came from.

keysym Specifies the KeySym to convert.

lower_return Returns the lower-case equivalent of the KeySym.

upper_return Returns the upper-case equivalent of the KeySym.

The XtConvertCase function calls the appropriate converter and returns the results. A user-
supplied XtKeyProc may need to use this function.

196 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Translation Management Obtaining a KeySym in an Action Procedure

12.6 Obtaining a KeySym in an Action Procedure
When an action procedure is invoked on a KeyPress or KeyRelease event, it often has a need to
retrieve the KeySym and modifiers corresponding to the event that caused it to be invoked. In
order to avoid repeating the processing that was just performed by the Intrinsics to match the
translation entry, the KeySym and modifiers are stored for the duration of the action procedure
and are made available to the client.

To retrieve the KeySym and modifiers that matched the final event specification in the
translation table entry, use XtGetActionKeysym .

KeySym XtGetActionKeysym(event , modifiers_return)
XEvent * event ;
Modifiers * modifiers_return ;

event Specifies the event pointer passed to the action procedure by the Intrinsics.

modifiers_return Returns the modifiers that caused the match, if non-NULL.

If XtGetActionKeysym is called after an action procedure has been invoked by the Intrinsics and
before that action procedure returns, and if the event pointer has the same value as the event
pointer passed to that action routine, and if the event is a KeyPress or KeyRelease event, then
XtGetActionKeysym returns the KeySym that matched the final event specification in the
translation table and, if modifiers_return is non-NULL, the modifier state actually used to
generate this KeySym; otherwise, if the event is a KeyPress or KeyRelease event, then
XtGetActionKeysym calls XtTranslateKeycode and returns the results; else it returns NoSymbol and
does not examine modifiers_return.

Note that if an action procedure invoked by the Intrinsics invokes a subsequent action procedure
(and so on) via XtCallActionProc , the nested action procedure may also call XtGetActionKeysym
to retrieve the Intrinsics’ KeySym and modifiers.

Window Management (X11R5): X Toolkit Intrinsics 197
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

KeySym-to-KeyCode Conversions Translation Management

12.7 KeySym-to-KeyCode Conversions
To return the list of KeyCodes that map to a particular KeySym in the keyboard mapping table
maintained by the Intrinsics, use XtKeysymToKeycodeList .

void XtKeysymToKeycodeList(display , keysym , keycodes_return ,
keycount_return)

Display * display ;
KeySym keysym ;
KeyCode ** keycodes_return ;
Cardinal * keycount_return ;

display Specifies the display whose table is required.

keysym Specifies the KeySym for which to search.

keycodes_return Returns a list of KeyCodes that have keysym associated with them, or NULL if
keycount_return is 0.

keycount_return Returns the number of KeyCodes in the keycode list.

The XtKeysymToKeycodeList procedure returns all the KeyCodes that have keysym in their entry
for the keyboard mapping table associated with display. For each entry in the table, the first four
KeySyms (groups 1 and 2) are interpreted as specified by the X Window System Protocol
specification. If no KeyCodes map to the specified KeySym, keycount_return is zero and
*keycodes_return is NULL.

The caller should free the storage pointed to by keycodes_return using XtFree when it is no longer
useful. If the caller needs to examine the KeyCode-to-KeySym table for a particular KeyCode, it
should call XtGetKeysymTable .

198 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Translation Management Registering Button and Key Grabs For Actions

12.8 Registering Button and Key Grabs For Actions
To register button and key grabs for a widget’s window according to the event bindings in the
widget’s translation table, use XtRegisterGrabAction .

void XtRegisterGrabAction(action_proc , owner_events , \
event_mask , pointer_mode , keyboard_mode)

XtActionProc action_proc ;
Boolean owner_events ;
unsigned int event_mask ;
int pointer_mode , keyboard_mode ;

action_proc Specifies the action procedure to search for in translation tables.

owner_events
event_mask
pointer_mode
keyboard_mode Specify arguments to XtGrabButton or XtGrabKey.

XtRegisterGrabAction adds the specified action_proc to a list known to the translation manager.
When a widget is realised, or when the translations of a realised widget or the accelerators
installed on a realised widget are modified, its translation table and any installed accelerators are
scanned for action procedures on this list. If any are invoked on ButtonPress or KeyPress events
as the only or final event in a sequence, the Intrinsics will call XtGrabButton or XtGrabKey for the
widget with every button or KeyCode which maps to the event detail field, passing the specified
owner_events, event_mask, pointer_mode and keyboard_mode. For ButtonPress events, the modifiers
specified in the grab are determined directly from the translation specification and confine_to and
cursor are specified as None. For KeyPress events, if the translation table entry specifies colon (:)
in the modifier list, the modifiers are determined by calling the key translator procedure
registered for the display and calling XtGrabKey for every combination of standard modifiers
which map the KeyCode to the specified event detail KeySym, and ORing any modifiers
specified in the translation table entry, and event_mask is ignored. If the translation table entry
does not specify colon in the modifier list, the modifiers specified in the grab are those specified
in the translation table entry only. For both ButtonPress and KeyPress events, don’t-care modifiers
are ignored unless the translation entry explicitly specifies ‘‘Any’’ in the modifiers field.

If the specified action_proc is already registered for the calling process, the new values will
replace the previously specified values for any widgets that become realised following the call,
but existing grabs are not altered on currently-realised widgets.

When translations or installed accelerators are modified for a realised widget, any previous key
or button grabs registered as a result of the old bindings are released if they do not appear in the
new bindings and are not explicitly grabbed by the client with XtGrabKey or XtGrabButton.

Window Management (X11R5): X Toolkit Intrinsics 199
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Invoking Actions Directly Translation Management

12.9 Invoking Actions Directly
Normally action procedures are invoked by the Intrinsics when an event or event sequence
arrives for a widget. To invoke an action procedure directly, without generating (or
synthesising) events, use XtCallActionProc .

void XtCallActionProc(widget , action , event , params ,
num_params)

Widget widget ;
String action ;
XEvent * event ;
String * params ;
Cardinal num_params ;

widget Specifies the widget in which the action is to be invoked. Must be of class
Core or any subclass thereof.

action Specifies the name of the action routine.

event Specifies the contents of the event passed to the action routine.

params Specifies the contents of the params passed to the action routine.

num_params Specifies the number of entries in params.

XtCallActionProc searches for the named action routine in the same manner and order as
translation tables are bound, as described in Section 12.1.2, except that application action tables
are searched, if necessary, as of the time of the call to XtCallActionProc . If found, the action
routine is invoked with the specified widget, event pointer, and parameters. It is the
responsibility of the caller to ensure that the contents of the event, params and num_params
arguments are appropriate for the specified action routine and, if necessary, that the specified
widget is realised or sensitive. If the named action routine cannot be found, XtCallActionProc
generates a warning message and returns.

200 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Translation Management Obtaining a Widget Action List

12.10 Obtaining a Widget Action List
Occasionally a subclass will require the pointers to one or more of its superclass’s action
procedures. This would be needed, for example, in order to envelope the superclass’s action. To
retrieve the list of action procedures registered in the superclass’s actions field, use
XtGetActionList .

void XtGetActionList(widget_class , actions_return ,
num_actions_return)

WidgetClass widget_class ;
XtActionList * actions_return ;
Cardinal * num_actions_return ;

widget_class Specifies the widget class whose actions are to be returned.

actions_return Returns the action list.

num_actions_return
Returns the number of action procedures declared by the class.

XtGetActionList returns the action table defined by the specified widget class. This table does not
include actions defined by the superclasses. If widget_class is not initialised, or is not
coreWidgetClass or a subclass thereof, or if the class does not define any actions, *actions_return
will be NULL and *num_actions_return will be zero. If *actions_return is non-NULL the client is
responsible for freeing the table using XtFree when it is no longer needed.

Window Management (X11R5): X Toolkit Intrinsics 201
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Translation Management

202 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Chapter 13

Utility Functions

The Intrinsics provide a number of utility functions that you can use to:

• determine the number of elements in an array

• translate strings to widget instances

• manage memory usage

• share graphics contexts

• manipulate selections

• merge exposure events into a region

• translate widget coordinates

• locate a widget given a window id

• handle errors

• set the WM_COLORMAP_WINDOWS property

• locate files by name with string substitutions.

13.1 Determining the Number of Elements in an Array
To determine the number of elements in a fixed-size array, use XtNumber.

Cardinal XtNumber(array)
ArrayType array ;

array Specifies a fixed-size array of arbitrary type.

The XtNumber macro returns the number of elements allocated to the array.

Window Management (X11R5): X Toolkit Intrinsics 203
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Translating Strings to Widget Instances Utility Functions

13.2 Translating Strings to Widget Instances
To translate a widget name to a widget instance, use XtNameToWidget .

Widget XtNameToWidget(reference , names)
Widget reference ;
String names;

reference Specifies the widget from which the search is to start. Must be of class Core or
any subclass thereof.

names Specifies the partially qualified name of the desired widget.

The XtNameToWidget function searches for a descendant of the reference widget whose name
matches the specified names. The names parameter specifies a simple object name or a series of
simple object name components separated by periods or asterisks. XtNameToWidget returns the
descendant with the shortest name matching the specification according to the following rules,
where child is either a pop-up child or a normal child if the widget’s class is a subclass of
Composite:

• Enumerate the object subtree rooted at the reference widget in breadth-first order, qualifying
the name of each object with the names of all its ancestors up to but not including the
reference widget. The ordering between children of a common parent is not defined.

• Return the first object in the enumeration that matches the specified name, where each
component of names matches exactly the corresponding component of the qualified object
name, and asterisk matches any series of components, including none.

• If no match is found, return NULL.

Since breadth-first traversal is specified, the descendant with the shortest matching name (that
is, the fewest number of components), if any, will always be returned. However, since the order
of enumeration of children is undefined and since the Intrinsics do not require that all children of
a widget have unique names, XtNameToWidget may return any child that matches if there are
multiple objects in the subtree with the same name. Consecutive separators (periods or
asterisks) including at least one asterisk are treated as a single asterisk. Consecutive periods are
treated as a single period.

204 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Utility Functions Managing Memory Usage

13.3 Managing Memory Usage
The Intrinsics’ memory management functions provide uniform checking for null pointers and
error reporting on memory allocation errors. These functions are completely compatible with
their standard C language runtime counterparts malloc , calloc , realloc and free with the following
added functionality:

• XtMalloc , XtCalloc and XtRealloc give an error if there is not enough memory.

• XtFree simply returns if passed a NULL pointer.

• XtRealloc simply allocates new storage if passed a NULL pointer.

See the standard C library documentation on malloc , calloc , realloc and free for more information.

To allocate storage, use XtMalloc .

char *XtMalloc(size)
Cardinal size ;

size Specifies the number of bytes desired.

The XtMalloc function returns a pointer to a block of storage of at least the specified size bytes. If
there is insufficient memory to allocate the new block, XtMalloc calls XtErrorMsg.

To allocate and initialize an array, use XtCalloc .

char *XtCalloc(num, size)
Cardinal num;
Cardinal size ;

num Specifies the number of array elements to allocate.

size Specifies the size of each array element in bytes.

The XtCalloc function allocates space for the specified number of array elements of the specified
size and initializes the space to zero. If there is insufficient memory to allocate the new block,
XtCalloc calls XtErrorMsg. XtCalloc returns the address of the allocated storage.

To change the size of an allocated block of storage, use XtRealloc .

char *XtRealloc(ptr , num)
char * ptr ;
Cardinal num;

ptr Specifies a pointer to the old storage allocated with XtMalloc , XtCalloc or
XtRealloc , or NULL.

num Specifies number of bytes desired in new storage.

The XtRealloc function changes the size of a block of storage, possibly moving it. Then it copies
the old contents (or as much as will fit) into the new block and frees the old block. If there is
insufficient memory to allocate the new block, XtRealloc calls XtErrorMsg. If ptr is NULL,
XtRealloc simply calls XtMalloc . XtRealloc then returns the address of the new block.

To free an allocated block of storage, use XtFree.

void XtFree(ptr)
char * ptr ;

ptr Specifies a pointer to a block of storage allocated with XtMalloc , XtCalloc or
XtRealloc , or NULL.

Window Management (X11R5): X Toolkit Intrinsics 205
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Managing Memory Usage Utility Functions

The XtFree function returns storage, allowing it to be reused. If ptr is NULL, XtFree returns
immediately.

To allocate storage for a new instance of a type, use XtNew.

type *XtNew(type)
type t ;

type Specifies a previously declared type.

XtNew returns a pointer to the allocated storage. If there is insufficient
memory to allocate the new block, XtNew calls XtErrorMsg. XtNew is a
convenience macro that calls XtMalloc with the following arguments specified:

((type *) XtMalloc((unsigned) sizeof(type)))

The storage allocated by XtNew should be freed using XtFree.

To copy an instance of a string, use XtNewString.

String XtNewString(string)
String string ;

string Specifies a previously declared string.

XtNewString returns a pointer to the allocated storage. If there is insufficient memory to allocate
the new block, XtNewString calls XtErrorMsg. XtNewString is a convenience macro that calls
XtMalloc with the following arguments specified:

(strcpy(XtMalloc((unsigned)strlen(str) + 1), str))

The storage allocated by XtNewString should be freed using XtFree.

206 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Utility Functions Sharing Graphics Contexts

13.4 Sharing Graphics Contexts
The Intrinsics provide a mechanism whereby cooperating objects can share a graphics context
(GC), thereby reducing both the number of GCs created and the total number of server calls in
any given application. The mechanism is a simple caching scheme and allows for clients to
declare both modifiable and non-modifiable fields of the shared GCs.

To obtain a shareable GC with modifiable fields, use XtAllocateGC .

GC XtAllocateGC(widget , depth , value_mask , values ,
dynamic_mask , unused_mask)

Widget object ;
Cardinal depth ;
XtGCMask value_mask ;
XGCValues * values ;
XtGCMask dynamic_mask ;
XtGCMask unused_mask ;

object Specifies an object, giving the screen for which the returned GC is valid. Must
be of a classObject or any subclass thereof.

depth Specifies the depth for which the returned GC is valid, or 0.

value_mask Specifies fields of the GC that are initialised from values.

values Specifies the values for the initialised fields.

dynamic_mask Specifies fields of the GC that may be modified by the caller.

unused_mask Specifies fields of the GC that will not be used by the caller.

The XtAllocateGC function returns a shareable GC that may be modified by the client. The screen
field of the specified widget or of the nearest widget ancestor of the specified object and the
specified depth argument supply the root and drawable depths for which the GC is to be valid. If
depth is zero the depth is taken from the depth field of the specified widget or of the nearest
widget ancestor of the specified object.

The value_mask argument specifies fields of the GC that will be initialised with the respective
member of the values structure. The dynamic_mask argument specifies fields that the caller
intends to modify during program execution. The caller must insure that the corresponding GC
field is set prior to each use of the GC. The unused_mask argument specifies fields of the GC that
are of no interest to the caller. The caller may make no assumptions about the contents of any
fields specified in unused_mask. The caller may assume that at all times all fields not specified in
either dynamic_mask or unused_mask have their default value if not specified in value_mask or the
value specified by values. If a field is specified in both value_mask and dynamic_mask, the effect is
as if it were specified only in dynamic_mask and then immediately set to the value in values. If a
field is set in unused_mask and also in either value_mask or dynamic_mask, the specification in
unused_mask is ignored.

XtAllocateGC tries to minimize the number of unique GCs created by comparing the arguments
with those of previous calls and returning an existing GC when there are no conflicts.
XtAllocateGC may modify and return an existing GC if it was allocated with a non-zero
unused_mask.

To obtain a shareable GC with no modifiable fields, use XtGetGC.

Window Management (X11R5): X Toolkit Intrinsics 207
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Sharing Graphics Contexts Utility Functions

GC XtGetGC(object , value_mask , values)
Widget object ;
XtGCMask value_mask ;
XGCValues * values ;

object Specifies an object, giving the screen and depth for which the returned GC is
valid. Must be of a classObject or any subclass thereof.

value_mask Specifies which fields of the values structure are specified.

values Specifies the actual values for this GC.

The XtGetGC function returns a shareable, read-only GC. The parameters to this function are the
same as those for XCreateGC except that an Object is passed instead of a Display. XtGetGC is
equivalent to XtAllocateGC with depth, dynamic_mask and unused_mask all zero.

XtGetGC shares only GCs in which all values in the GC returned by XCreateGC are the same. In
particular, it does not use the value_mask provided to determine which fields of the GC a widget
considers relevant. The value_mask is used only to tell the server which fields should be filled in
from values and which it should fill in with default values.

To deallocate a shared GC when it is no longer needed, use XtReleaseGC .

void XtReleaseGC(object , gc)
Widget object ;
GC gc ;

object Specifies any object on the Display for which the GC was created. Must be of
a classObject or any subclass thereof.

gc Specifies the shared GC obtained with either XtAllocateGC or XtGetGC.

References to shareable GCs are counted and a free request is generated to the server when the
last user of a given GC releases it.

208 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Utility Functions Managing Selections

13.5 Managing Selections
Arbitrary widgets in multiple applications can communicate with each other by means of the
Intrinsics global selection mechanism, which conforms to the ICCCM specification. The
Intrinsics supply functions for providing and receiving selection data in one logical piece
(atomic transfers) or in smaller logical segments (incremental transfers).

The incremental interface is provided for a selection owner or selection requestor that cannot or
prefers not to pass the selection value to and from the Intrinsics in a single call. For instance,
either an application that is running on a machine with limited memory may not be able to store
the entire selection value in memory, or a selection owner may already have the selection value
available in discrete chunks, and it would be more efficient not to have to allocate additional
storage to copy the pieces contiguously. Any owner or requestor that prefers to deal with the
selection value in segments can use the incremental interfaces to do so. The transfer between the
selection owner or requestor and the Intrinsics is not required to match the underlying transport
protocol between the application and the X server; the Intrinsics will break a too large selection
into smaller pieces for transport if necessary and will coalesce a selection transmitted
incrementally if the value was requested atomically.

13.5.1 Setting and Getting the Selection Timeout Value

To set the Intrinsics selection timeout, use XtAppSetSelectionTimeout.

void XtAppSetSelectionTimeout(app_context , timeout)
XtAppContext app_context ;
unsigned long timeout ;

app_context Specifies the application context.

timeout Specifies the selection timeout in milliseconds.

To get the current selection timeout value, use XtAppGetSelectionTimeout.

unsigned long XtAppGetSelectionTimeout(app_context)
XtAppContext app_context ;

app_context Specifies the application context.

The XtAppGetSelectionTimeout function returns the current selection timeout value, in
milliseconds. The selection timeout is the time within which the two communicating
applications must respond to one another. The initial timeout value is set by the
selectionTimeout application resource as retrieved by XtDisplayInitialize . If selectionTimeout is
not specified, the default is five seconds.

13.5.2 Using Atomic Transfers

When using atomic transfers, the owner will completely process one selection request at a time.
The owner may consider each request individually, since there is no possibility for overlap
between evaluation of two requests.

Window Management (X11R5): X Toolkit Intrinsics 209
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Managing Selections Utility Functions

Atomic Transfer Procedures

The following procedures are used by the selection owner when providing selection data in a
single unit.

The procedure pointer specified by the owner to supply the selection data to the Intrinsics is of
type XtConvertSelectionProc .

typedef Boolean (*XtConvertSelectionProc)(Widget, Atom*, Atom*, Atom*,
XtPointer*, unsigned long*, int*);

Widget w;
Atom * selection ;
Atom * target ;
Atom * type_return ;
XtPointer * value_return ;
unsigned long * length_return ;
int * format_return ;

w Specifies the widget that currently owns this selection.

selection Specifies the atom naming the selection requested (for example,
XA_PRIMARY or XA_SECONDARY).

target Specifies the target type of the selection that has been requested, which
indicates the desired information about the selection (for example, File Name,
Text, Window).

type_return Specifies a pointer to an atom into which the property type of the converted
value of the selection is to be stored. For instance, either File Name or Text
might have property type XA_STRING.

value_return Specifies a pointer into which a pointer to the converted value of the selection
is to be stored. The selection owner is responsible for allocating this storage.
If the selection owner has provided an XtSelectionDoneProc for the selection,
this storage is owned by the selection owner; otherwise, it is owned by the
Intrinsics selection mechanism, which frees it by calling XtFree when it is done
with it.

length_return Specifies a pointer into which the number of elements in value_return, each of
size indicated by format_return, is to be stored.

format_return Specifies a pointer into which the size in bits of the data elements of the
selection value is to be stored.

This procedure is called by the Intrinsics selection mechanism to get the value of a selection as a
given type from the current selection owner. It returns True if the owner successfully converted
the selection to the target type or False otherwise. If the procedure returns False , the values of the
return arguments are undefined. Each XtConvertSelectionProc should respond to target value
TARGETS by returning a value containing the list of the targets into which it is prepared to
convert the selection. The value returned in format_return must be one of 8, 16 or 32 to allow the
server to byte-swap the data if necessary.

This procedure does not need to worry about responding to the MULTIPLE or the TIMESTAMP
target values (see the ICCCM specification). A selection request with the MULTIPLE target type
will be transparently transformed into a series of calls to this procedure, one for each target type,
and a selection request with the TIMESTAMP target value will be answered automatically by the
Intrinsics using the time specified in the call to XtOwnSelection or XtOwnSelectionIncremental.

210 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Utility Functions Managing Selections

To retrieve the SelectionRequest event that triggered the XtConvertSelectionProc procedure, use
XtGetSelectionRequest.

XSelectionRequestEvent *XtGetSelectionRequest(w, selection ,
request_id)

Widget w;
Atom selection ;
XtRequestId request_id ;

w Specifies the widget that currently owns this selection. Must be of class Core
or any subclass thereof.

selection Specifies the selection being processed.

request_id Specifies the requestor id in the case of incremental selections, or NULL in the
case of atomic transfers.

XtGetSelectionRequest may only be called from within an XtConvertSelectionProc procedure and
returns a pointer to the SelectionRequest event that caused the conversion procedure to be
invoked. Request_id specifies a unique id for the individual request in the case that multiple
incremental transfers are outstanding. For atomic transfers, request_id must be specified as
NULL. If no SelectionRequest event is being processed for the specified widget, selection and
request_id, XtGetSelectionRequest returns NULL.

The procedure pointer specified by the owner when it desires notification upon losing
ownership is of type XtLoseSelectionProc .

typedef void (*XtLoseSelectionProc)(Widget, Atom*);
Widget w;
Atom * selection ;

w Specifies the widget that has lost selection ownership.

selection Specifies the atom naming the selection.

This procedure is called by the Intrinsics selection mechanism to inform the specified widget
that it has lost the given selection. Note that this procedure does not ask the widget to
relinquish the selection ownership; it is merely informative.

The procedure pointer specified by the owner when it desires notification of receipt of the data
or when it manages the storage containing the data is of type XtSelectionDoneProc .

typedef void (*XtSelectionDoneProc)(Widget, Atom*, Atom*);
Widget w;
Atom * selection ;
Atom * target ;

w Specifies the widget that owns the converted selection.

selection Specifies the atom naming the selection that was converted.

target Specifies the target type to which the conversion was done.

This procedure is called by the Intrinsics selection mechanism to inform the selection owner that
a selection requestor has successfully retrieved a selection value. If the selection owner has
registered an XtSelectionDoneProc , it should expect it to be called once for each conversion that it
performs, after the converted value has been successfully transferred to the requestor. If the
selection owner has registered an XtSelectionDoneProc , it also owns the storage containing the
converted selection value.

Window Management (X11R5): X Toolkit Intrinsics 211
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Managing Selections Utility Functions

Getting the Selection Value

The procedure pointer specified by the requestor to receive the selection data from the Intrinsics
is of type XtSelectionCallbackProc .

typedef void (*XtSelectionCallbackProc)(Widget, XtPointer, Atom*,
Atom*, \
XtPointer, unsigned long*, int*);

Widget w;
XtPointer client_data ;
Atom * selection ;
Atom * type ;
XtPointer value ;
unsigned long * length ;
int * format ;

w Specifies the widget that requested the selection value.

client_data Specifies a value passed in by the widget when it requested the selection.

selection Specifies the name of the selection that was requested.

type Specifies the representation type of the selection value (for example,
XA_STRING). Note that it is not the target that was requested (which the
client must remember for itself) but the type that is used to represent the
target. The special symbolic constant XT_CONVERT_FAIL is used to indicate
that the selection conversion failed because the selection owner did not
respond within the Intrinsics selection timeout interval.

value Specifies a pointer to the selection value. The requesting client owns this
storage and is responsible for freeing it by calling XtFree when it is done with
it.

length Specifies the number of elements in value.

format Specifies the size in bits of the data elements of value.

This procedure is called by the Intrinsics selection mechanism to deliver the requested selection
to the requestor.

If the SelectionNotify event returns a property of None, meaning the conversion has been refused
because there is no owner for the specified selection or the owner cannot convert the selection to
the requested target for any reason, the procedure is called with a value of NULL and a length of
zero.

To obtain the selection value in a single logical unit, use XtGetSelectionValue or
XtGetSelectionValues .

void XtGetSelectionValue(w, selection , target ,
callback , client_data , time)

Widget w;
Atom selection ;
Atom target ;
XtSelectionCallbackProc callback ;
XtPointer client_data ;
Time time ;

w Specifies the widget making the request. Must be of class Core or any
subclass thereof.

212 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Utility Functions Managing Selections

selection Specifies the particular selection desired; for example, XA_PRIMARY.

target Specifies the type of information needed about the selection.

callback Specifies the procedure to be called when the selection value has been
obtained. Note that this is how the selection value is communicated back to
the client.

client_data Specifies additional data to be passed to the specified procedure when it is
called.

time Specifies the timestamp that indicates when the selection request was
initiated. This should be the timestamp of the event that triggered this
request; the value CurrentTime is not acceptable.

The XtGetSelectionValue function requests the value of the selection converted to the target type.
The specified callback will be called at some time after XtGetSelectionValue is called, when the
selection data is received from the X server. It may be called before or after XtGetSelectionValue
returns. For more information about selection, target and time, see the ICCCM specification.

void XtGetSelectionValues(w, selection , targets ,
count , callback , client_data , time)

Widget w;
Atom selection ;
Atom * targets ;
int count ;
XtSelectionCallbackProc callback ;
XtPointer * client_data ;
Time time ;

w Specifies the widget making the request. Must be of class Core or any
subclass thereof.

selection Specifies the particular selection desired (that is, primary or secondary).

targets Specifies the types of information needed about the selection.

count Specifies the length of the targets and client_data lists.

callback Specifies the callback procedure to be called with each selection value
obtained. Note that this is how the selection values are communicated back to
the client.

client_data Specifies a list of additional data values, one for each target type, that are
passed to the callback procedure when it is called for that target.

time Specifies the timestamp that indicates when the selection request was
initiated. This should be the timestamp of the event that triggered this
request; the value CurrentTime is not acceptable.

The XtGetSelectionValues function is similar to multiple calls to XtGetSelectionValue except that it
guarantees that no other client can assert ownership between requests and therefore that all the
conversions will refer to the same selection value. The callback is invoked once for each target
value with the corresponding client data. For more information about selection, target and time
see the ICCCM specification.

Window Management (X11R5): X Toolkit Intrinsics 213
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Managing Selections Utility Functions

Setting the Selection Owner

To set the selection owner and indicate that the selection value will be provided in one piece, use
XtOwnSelection.

Boolean XtOwnSelection(w, selection , time ,
convert_proc , lose_selection , done_proc)

Widget w;
Atom selection ;
Time time ;
XtConvertSelectionProc convert_proc ;
XtLoseSelectionProc lose_selection ;
XtSelectionDoneProc done_proc ;

w Specifies the widget that wishes to become the owner. Must be of class Core
or any subclass thereof.

selection Specifies the name of the selection (for example, XA_PRIMARY).

time Specifies the timestamp that indicates when the ownership request was
initiated. This should be the timestamp of the event that triggered ownership;
the value CurrentTime is not acceptable.

convert_proc Specifies the procedure to be called whenever a client requests the current
value of the selection.

lose_selection Specifies the procedure to be called whenever the widget has lost selection
ownership, or NULL if the owner is not interested in being called back.

done_proc Specifies the procedure called after the requestor has received the selection
value, or NULL if the owner is not interested in being called back.

The XtOwnSelection function informs the Intrinsics selection mechanism that a widget wishes to
own a selection. It returns True if the widget successfully becomes the owner and False
otherwise. The widget may fail to become the owner if some other widget has asserted
ownership at a time later than this widget. The widget can lose selection ownership either
because some other client asserted later ownership of the selection or because the widget
voluntarily gave up ownership of the selection. The lose_selection procedure is not called if the
widget fails to obtain selection ownership in the first place.

If a done_proc is specified, the client owns the storage allocated for passing the value to the
Intrinsics. If done_proc is NULL, the convert_proc must allocate storage using XtMalloc ,
XtRealloc or XtCalloc , and the value specified will be freed by the Intrinsics when the transfer is
complete.

Usually, a selection owner maintains ownership indefinitely until some other client requests
ownership, at which time the Intrinsics selection mechanism informs the previous owner that it
has lost ownership of the selection. However, in response to some user actions (for example,
when a user deletes the information selected), the application may with to explicitly inform the
Intrinsics that it no longer is to be the selection owner by using XtDisownSelection .

void XtDisownSelection(w, selection , time)
Widget w;
Atom selection ;
Time time ;

w Specifies the widget that wishes to relinquish ownership.

214 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Utility Functions Managing Selections

selection Specifies the atom naming the selection being given up.

time Specifies the timestamp that indicates when the request to relinquish selection
ownership was initiated.

The XtDisownSelection function informs the Intrinsics selection mechanism that the specified
widget is to lose ownership of the selection. If the widget does not currently own the selection,
either because it lost the selection or because it never had the selection to begin with,
XtDisownSelection does nothing.

After a widget has called XtDisownSelection , its convert procedure is not called even if a request
arrives later with a timestamp during the period that this widget owned the selection. However,
its done procedure will be called if a conversion that started before the call to XtDisownSelection
finishes after the call to XtDisownSelection .

13.5.3 Using Incremental Transfers

When using the incremental interface, an owner may have to process more than one selection
request for the same selection, converted to the same target, at the same time. The incremental
functions take a request_id argument, which is an identifier that is guaranteed to be unique
among all incremental requests that are active concurrently.

For example, consider the following:

• Upon receiving a request for the selection value, the owner sends the first segment.

• While waiting to be called to provide the next segment value but before sending it, the owner
receives another request from a different requestor for the same selection value.

• To distinguish between the requests, the owner uses the request_id value. This allows the
owner to distinguish between the first requestor, which is asking for the second segment, and
the second requestor, which is asking for the first segment.

Incremental Transfer Procedures

The following procedures are used by selection owners who wish to provide the selection data
in multiple segments.

The procedure pointer specified by the incremental owner to supply the selection data to the
Intrinsics is of type XtConvertSelectionIncrProc .

typedef XtPointer XtRequestId;

typedef Boolean (*XtConvertSelectionIncrProc)(Widget, Atom*, Atom*,
Atom*, XtPointer*, \
unsigned long*, int*, unsigned long*, XtPointer, XtRequestId*);

Widget w;
Atom * selection ;
Atom * target ;
Atom * type_return ;
XtPointer * value_return ;
unsigned long * length_return ;
int * format_return ;
unsigned long * max_length ;
XtPointer client_data ;
XtRequestId * request_id ;

Window Management (X11R5): X Toolkit Intrinsics 215
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Managing Selections Utility Functions

w Specifies the widget that currently owns this selection.

selection Specifies the atom that names the selection requested.

target Specifies the type of information required about the selection.

type_return Specifies a pointer to an atom into which the property type of the converted
value of the selection is to be stored.

value_return Specifies a pointer into which a pointer to the converted value of the selection
is to be stored. The selection owner is responsible for allocating this storage.

length_return Specifies a pointer into which the number of elements in value_return, each of
size indicated by format_return, is to be stored.

format_return Specifies a pointer into which the size in bits of the data elements of the
selection value is to be stored so that the server may byte-swap the data if
necessary.

max_length Specifies the maximum number of bytes which may be transferred at any one
time.

client_data Specifies the value passed in by the widget when it took ownership of the
selection.

request_id Specifies an opaque identification for a specific request.

This procedure is called repeatedly by the Intrinsics selection mechanism to get the next
incremental chunk of data from a selection owner who has called XtOwnSelectionIncremental. It
must return True if the procedure has succeeded in converting the selection data or False
otherwise. On the first call with a particular request id, the owner must begin a new incremental
transfer for the requested selection and target. On subsequent calls with the same request id, the
owner may assume that the previously supplied value is no longer needed by the Intrinsics; that
is, a fixed transfer area may be allocated and returned in value_return for each segment to be
transferred. This procedure should store a non-NULL value in value_return and zero in
length_return to indicate that the entire selection has been delivered. After returning this final
segment, the request id may be reused by the Intrinsics to begin a new transfer.

To retrieve the SelectionRequest event that triggered the selection conversion procedure, use
XtGetSelectionRequest, described in Atomic Transfer Procedures.

The procedure pointer specified by the incremental selection owner when it desires notification
upon no longer having ownership is of type XtLoseSelectionIncrProc .

typedef void (*XtLoseSelectionIncrProc)(Widget, Atom*, XtPointer);
Widget w;
Atom * selection ;
XtPointer client_data ;

w Specifies the widget that has lost the selection ownership.

selection Specifies the atom that names the selection.

client_data Specifies the value passed in by the widget when it took ownership of the
selection.

This procedure, which is optional, is called by the Intrinsics to inform the selection owner that it
no longer owns the selection.

The procedure pointer specified by the incremental selection owner when it desires notification
of receipt of the data or when it manages the storage containing the data is of type

216 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Utility Functions Managing Selections

XtSelectionDoneIncrProc .

typedef void (*XtSelectionDoneIncrProc)(Widget, Atom*, Atom*,
XtRequestId*, XtPointer);

Widget w;
Atom * selection ;
Atom * target ;
XtRequestId * request_id ;
XtPointer client_data ;

w Specifies the widget that owns the selection.

selection Specifies the atom that names the selection being transferred.

target Specifies the target type to which the conversion was done.

request_id Specifies an opaque identification for a specific request.

client_data Specified the value passed in by the widget when it took ownership of the
selection.

This procedure, which is optional, is called by the Intrinsics after the requestor has retrieved the
final (zero-length) segment of the incremental transfer to indicate that the entire transfer is
complete. If this procedure is not specified, the Intrinsics will free only the final value returned
by the selection owner using XtFree.

The procedure pointer specified by the incremental selection owner to notify it if a transfer
should be terminated prematurely is of type XtCancelConvertSelectionProc .

typedef void (*XtCancelConvertSelectionProc)(Widget, Atom*, Atom*, \
XtRequestId*, XtPointer);

Widget w;
Atom * selection ;
Atom * target ;
XtRequestId * request_id ;
XtPointer client_data ;

w Specifies the widget that owns the selection.

selection Specifies the atom that names the selection being transferred.

target Specifies the target type to which the conversion was done.

request_id Specifies an opaque identification for a specific request.

client_data Specifies the value passed in by the widget when it took ownership of the
selection.

This procedure is called by the Intrinsics when it has been determined by means of a timeout or
other mechanism that any remaining segments of the selection no longer need to be transferred.
Upon receiving this callback, the selection request is considered complete and the owner can free
the memory and any other resources that have been allocated for the transfer.

Window Management (X11R5): X Toolkit Intrinsics 217
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Managing Selections Utility Functions

Getting the Selection Value Incrementally

To obtain the value of the selection using incremental transfers, use
XtGetSelectionValueIncremental or XtGetSelectionValuesIncremental .

void XtGetSelectionValueIncremental(w, selection , target , \
selection_callback , client_data , time)

Widget w;
Atom selection ;
Atom target ;
XtSelectionCallbackProc selection_callback ;
XtPointer client_data ;
Time time ;

w Specifies the widget making the request. Must be of class Core or any
subclass thereof.

selection Specifies the particular selection desired.

target Specifies the type of information needed about the selection.

selection_callback Specifies the callback procedure to be called to receive each data segment.

client_data Specifies client-specific data to be passed to the specified callback procedure
when it is invoked.

time Specifies the timestamp that indicates when the selection request was
initiated. This should be the timestamp of the event that triggered this
request; the value CurrentTime is not acceptable.

The XtGetSelectionValueIncremental function is similar to XtGetSelectionValue except that the
selection_callback procedure will be called repeatedly upon delivery of multiple segments of the
selection value. The end of the selection value is indicated when selection_callback is called with
a non-NULL value of length zero, which must still be freed by the client. If the transfer of the
selection is aborted in the middle of a transfer (for example, because to timeout), the
selection_callback procedure is called with a type value equal to the symbolic constant
XT_CONVERT_FAIL so that the requestor can dispose of the partial selection value it has
collected up until that point. Upon receiving XT_CONVERT_FAIL, the requesting client must
determine for itself whether or not a partially completed data transfer is meaningful. For more
information about selection, target and time, see the ICCCM specification.

void XtGetSelectionValuesIncremental(w, selection , targets , \
count , selection_callback , client_data , time)

Widget w;
Atom selection ;
Atom * targets ;
int count ;
XtSelectionCallbackProc selection_callback ;
XtPointer * client_data ;
Time time ;

w Specifies the widget making the request. Must be of class Core or any
subclass thereof.

selection Specifies the particular selection desired.

targets Specifies the types of information needed about the selection.

218 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Utility Functions Managing Selections

count Specifies the length of the targets and client_data lists.

selection_callback Specifies the callback procedure to be called to receive each selection value.

client_data Specifies a list of client data (one for each target type) values that are passed to
the callback procedure when it is invoked for the corresponding target.

time Specifies the timestamp that indicates when the selection request was
initiated. This should be the timestamp of the event that triggered this
request; the value CurrentTime is not acceptable.

The XtGetSelectionValuesIncremental function is similar to XtGetSelectionValueIncremental except
that it takes a list of targets and client data. XtGetSelectionValuesIncremental is equivalent to
calling XtGetSelectionValueIncremental successively for each target/client_data pair except that
XtGetSelectionValuesIncremental does guarantee that all the conversions will use the same
selection value because the ownership of the selection cannot change in the middle of the list, as
would be possible when calling XtGetSelectionValueIncremental repeatedly. For more information
about selection, target and time, see the ICCCM specification.

Setting the Selection Owner for Incremental Transfers

To set the selection owner when using incremental transfers, use XtOwnSelectionIncremental.

Boolean XtOwnSelectionIncremental(w, selection , time ,
convert_callback , lose_callback , \
done_callback , cancel_callback , client_data)

Widget w;
Atom selection ;
Time time ;
XtConvertSelectionIncrProc convert_callback ;
XtLoseSelectionIncrProc lose_callback ;
XtSelectionDoneIncrProc done_callback ;
XtCancelConvertSelectionProc cancel_callback ;
XtPointer client_data ;

w Specifies the widget that wishes to become the owner. Must be of class Core
or any subclass thereof.

selection Specifies the atom that names the selection.

time Specifies the timestamp that indicates when the selection ownership request
was initiated. This should be the timestamp of the event that triggered
ownership; the value CurrentTime is not acceptable.

convert_callback Specifies the procedure to be called whenever the current value of the
selection is requested.

lose_callback Specifies the procedure to be called whenever the widget has lost selection
ownership, or NULL if the owner is not interested in being notified.

done_callback Specifies the procedure called after the requestor has received the entire
selection, or NULL if the owner is not interested in being notified.

cancel_callback Specifies the callback procedure to be called when a selection request aborts
because a timeout expires, or NULL if the owner is not interested in being
notified.

client_data Specifies the argument to be passed to each of the callback procedures when
they are called.

Window Management (X11R5): X Toolkit Intrinsics 219
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Managing Selections Utility Functions

The XtOwnSelectionIncremental procedure informs the Intrinsics incremental selection
mechanism that the specified widget wishes to own the selection. It returns True if the specified
widget successfully becomes the selection owner or False otherwise. For more information about
selection, target and time, see the ICCCM specification.

If a done_callback procedure is specified, the client owns the storage allocated for passing the
value to the Intrinsics. If done_callback is NULL, the convert_callback procedure must allocate
storage using XtMalloc , XtRealloc or XtCalloc , and the final value specified will be freed by the
Intrinsics when the transfer is complete. After a selection transfer has started, only one of the
done_callback or cancel_callback procedures will be invoked to indicate completion of the
transfer.

The lose_callback procedure does not indicate completion of any in-progress transfers; it will be
invoked at the time a SelectionClear event is dispatched regardless of any active transfers, which
are still expected to continue.

A widget that becomes the selection owner using XtOwnSelectionIncremental may use
XtDisownSelection to relinquish selection ownership.

13.5.4 Retrieving the Most Recent Timestamp

To retrieve the timestamp from the most recent call to XtDispatchEvent that contained a
timestamp, use XtLastTimestampProcessed.

Time XtLastTimestampProcessed(display)
Display * display ;

display Specifies an open display connection.

If no KeyPress, KeyRelease , ButtonPress, ButtonRelease , MotionNotify ,
EnterNotify , LeaveNotify , PropertyNotify or SelectionClear event has yet been
passed to XtDispatchEvent for the specified display, XtLastTimestampProcessed
returns zero.

220 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Utility Functions Merging Exposure Events into a Region

13.6 Merging Exposure Events into a Region
The Intrinsics provide an XtAddExposureToRegion utility function that merges Expose and
GraphicsExpose events into a region for clients to process at once rather than processing
individual rectangles. For further information about regions, the Xlib — C Language Binding
specification.

To merge Expose and GraphicsExpose events into a region, use XtAddExposureToRegion .

void XtAddExposureToRegion(event , region)
XEvent * event ;
Region region ;

event Specifies a pointer to the Expose or GraphicsExpose event.

region Specifies the region object (as defined in <X11/Xutil.h>).

The XtAddExposureToRegion function computes the union of the rectangle defined by the
exposure event and the specified region. Then it stores the results back in region. If the event
argument is not an Expose or GraphicsExpose event, XtAddExposureToRegion returns without an
error and without modifying region.

This function is used by the exposure compression mechanism; see Section 9.9.3.

Window Management (X11R5): X Toolkit Intrinsics 221
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Translating Widget Coordinates Utility Functions

13.7 Translating Widget Coordinates
To translate an x-y coordinate pair from widget coordinates to root window absolute
coordinates, use XtTranslateCoords .

void XtTranslateCoords(w, x, y, rootx_return ,
rooty_return)

Widget w;
Position x, y;
Position * rootx_return , * rooty_return ;

w Specifies the widget. Each child must be of a class RectObj or any subclass
thereof.

x
y Specify the widget-relative x and y coordinates.

rootx_return
rooty_return Return the root-relative x and y coordinates.

While XtTranslateCoords is similar to the Xlib XTranslateCoordinates function, it does not generate
a server request because all the required information already is in the widget’s data structures.

222 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Utility Functions Translating a Window to a Widget

13.8 Translating a Window to a Widget
To translate a given window and display pointer into a widget instance, use XtWindowToWidget .

Widget XtWindowToWidget(display , window)
Display * display ;
Window window ;

display Specifies the display on which the window is defined.

window Specifies the window for which you want the widget.

If there is a realised widget whose window is the specified window on the specified display,
XtWindowToWidget returns that widget; otherwise, it returns NULL.

Window Management (X11R5): X Toolkit Intrinsics 223
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Handling Errors Utility Functions

13.9 Handling Errors
The Intrinsics allow a client to register procedures that will be called whenever a fatal or non-
fatal error occurs. These facilities are intended for both error reporting and logging and for error
correction or recovery.

Two levels of interface are provided:

• a high-level interface that takes an error name and class and retrieves the error message text
from an error resource database

• a low-level interface that takes a simple string to display.

The high-level functions construct a string to pass to the lower-level interface. The strings may
be specified in application code and will be overridden by the contents of an external system-
wide file, the ‘‘error database file’’. The location and name of this file is implementation-
dependent.

Note: The application-context-specific error handling is not implemented on many systems,
although the interfaces are always present. Most implementations will have just one
set of error handlers for all application contexts within a process. If they are set for
different application contexts, the ones registered last will prevail.

To obtain the error database (for example, to merge with an application- or widget-specific
database), use XtAppGetErrorDatabase.

XrmDatabase *XtAppGetErrorDatabase(app_context)
XtAppContext app_context ;

app_context Specifies the application context.

The XtAppGetErrorDatabase function returns the address of the error database. The Intrinsics do
a lazy binding of the error database and do not merge in the database file until the first call to
XtAppGetErrorDatabaseText.

For a complete listing of all errors and warnings that can be generated by the Intrinsics, see
Appendix D.

The high-level error and warning handler procedure pointers are of type XtErrorMsgHandler.

typedef void (*XtErrorMsgHandler)(String, String, String, String, \
String*, Cardinal*);

String name;
String type ;
String class ;
String defaultp ;
String * params ;
Cardinal * num_params ;

name Specifies the name to be concatenated with the specified type to form the
resource name of the error message.

type Specifies the type to be concatenated with the name to form the resource name
of the error message.

class Specifies the resource class of the error message.

defaultp Specifies the default message to use if no error database entry is found.

params Specifies a pointer to a list of parameters to be substituted in the message.

224 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Utility Functions Handling Errors

num_params Specifies the number of entries in params.

The specified name can be a general kind of error, like ‘‘invalidParameters’’ or
‘‘invalidWindow’’, and the specified type gives extra information such as the name of the routine
in which the error was detected. Standard printf notation is used to substitute the parameters
into the message.

An error message handler can obtain the error database text for an error or a warning by calling
XtAppGetErrorDatabaseText.

void XtAppGetErrorDatabaseText(app_context , name, type ,
class , default , buffer_return , nbytes ,
database)

XtAppContext app_context ;
String name, type , class ;
String default ;
String buffer_return ;
int nbytes ;
XrmDatabase database ;

app_context Specifies the application context.

name
type Specify the name and type concatenated to form the resource name of the

error message.

class Specifies the resource class of the error message.

default Specifies the default message to use if an error database entry is not found.

buffer_return Specifies the buffer into which the error message is to be returned.

nbytes Specifies the size of the buffer in bytes.

database Specifies the name of the alternative database to be used, or NULL if the
application context’s error database is to be used.

The XtAppGetErrorDatabaseText returns the appropriate message from the error database or
returns the specified default message if one is not found in the error database. To form the full
resource name and class when querying the database, the name and type are concatenated with a
single ‘‘.’’ between them and the class is concatenated with itself with a single ‘‘.’’ if it does not
already contain a ‘‘.’’.

To return the application name and class as passed to XtDisplayInitialize for a particular Display,
use XtGetApplicationNameAndClass .

void XtGetApplicationNameAndClass(display , name_return ,
class_return)

Display* display ;
String* name_return ;
String* class_return ;

display Specifies an open display connection that has been initialised with
XtDisplayInitialize .

name_return Returns the application name.

class_return Returns the application class.

XtGetApplicationNameAndClass returns the application name and class passed to
XtDisplayInitialize for the specified display. If the display was never initialised or has been

Window Management (X11R5): X Toolkit Intrinsics 225
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Handling Errors Utility Functions

closed, the result is undefined. The returned strings are owned by the Intrinsics and must not be
modified or freed by the caller.

To register a procedure to be called on fatal error conditions, use XtAppSetErrorMsgHandler.

XtErrorMsgHandler XtAppSetErrorMsgHandler(app_context , msg_handler)
XtAppContext app_context ;
XtErrorMsgHandler msg_handler ;

app_context Specifies the application context.

msg_handler Specifies the new fatal error procedure, which should not return.

XtAppSetErrorMsgHandler returns a pointer to the previously installed high-level fatal error
handler. The default high-level fatal error handler provided by the Intrinsics is named
_XtDefaultErrorMsg and constructs a string from the error resource database and calls XtError.
Fatal error message handlers should not return. If one does, subsequent Intrinsics behaviour is
undefined.

To call the high-level error handler, use XtAppErrorMsg.

void XtAppErrorMsg(app_context , name, type , class ,
default , params , num_params)

XtAppContext app_context ;
String name;
String type ;
String class ;
String default ;
String * params ;
Cardinal * num_params ;

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.

params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of entries in params.

The Intrinsics internal errors all have class ‘‘XtToolkitError’’.

To register a procedure to be called on non-fatal error conditions, use
XtAppSetWarningMsgHandler.

XtErrorMsgHandler XtAppSetWarningMsgHandler(app_context , msg_handler)
XtAppContext app_context ;
XtErrorMsgHandler msg_handler ;

app_context Specifies the application context.

msg_handler Specifies the new non-fatal error procedure, which usually returns.

XtAppSetWarningMsgHandler returns a pointer to the previously installed high-level warning
handler. The default high-level warning handler provided by the Intrinsics is named
_XtDefaultWarningMsg and constructs a string from the error resource database and calls
XtWarning .

226 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Utility Functions Handling Errors

To call the installed high-level warning handler, use XtAppWarningMsg .

void XtAppWarningMsg(app_context , name, type , class ,
default , params , num_params)

XtAppContext app_context ;
String name;
String type ;
String class ;
String default ;
String * params ;
Cardinal * num_params ;

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.

params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of entries in params.

The Intrinsics internal warnings all have class ‘‘XtToolkitError’’.

The low-level error and warning handler procedure pointers are of type XtErrorHandler.

typedef void (*XtErrorHandler)(String);
String message ;

message Specifies the error message.

The error handler should display the message string in some appropriate
fashion.

To register a procedure to be called on fatal error conditions, use XtAppSetErrorHandler.

XtErrorHandler XtAppSetErrorHandler(app_context , handler)
XtAppContext app_context ;
XtErrorHandler handler ;

app_context Specifies the application context.

handler Specifies the new fatal error procedure, which should not return.

XtAppSetErrorHandler returns a pointer to the previously installed low-level fatal error handler.
The default low-level error handler provided by the Intrinsics is _XtDefaultError . On POSIX-
based systems, it prints the message to standard error and terminates the application. Fatal error
message handlers should not return. If one does, subsequent Intrinsics behaviour is undefined.

To call the installed fatal error procedure, use XtAppError.

void XtAppError(app_context , message)
XtAppContext app_context ;
String message ;

app_context Specifies the application context.

message Specifies the message to be reported.

Window Management (X11R5): X Toolkit Intrinsics 227
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Handling Errors Utility Functions

Most programs should use XtAppErrorMsg, not XtAppError, to provide for customisation and
internationalisation of error messages.

To register a procedure to be called on non-fatal error conditions, use XtAppSetWarningHandler .

XtErrorHandler XtAppSetWarningHandler(app_context , handler)
XtAppContext app_context ;
XtErrorHandler handler ;

app_context Specifies the application context.

handler Specifies the new non-fatal error procedure, which usually returns.

XtAppSetWarningHandler returns a pointer to the previously installed low-level warning handler.
The default low-level warning handler provided by the Intrinsics is _XtDefaultWarning . On
POSIX-based systems, it prints the message to standard error and returns to the caller.

To call the installed non-fatal error procedure, use XtAppWarning .

void XtAppWarning(app_context , message)
XtAppContext app_context ;
String message ;

app_context Specifies the application context.

message Specifies the non-fatal error message to be reported.

Most programs should use XtAppWarningMsg , not XtAppWarning , to provide for customisation
and internationalisation of warning messages.

228 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Utility Functions Setting WM_COLORMAP_WINDOWS

13.10 Setting WM_COLORMAP_WINDOWS
A client may set the value of the WM_COLORMAP_WINDOWS property on a widget’s window
by calling XtSetWMColormapWindows.

void XtSetWMColormapWindows(widget , list , count)
Widget widget ;
Widget* list ;
Cardinal count ;

widget Specifies the widget on whose window the WM_COLORMAP_WINDOWS
property will be stored. Must be of class Core or any subclass thereof.

list Specifies a list of widgets whose windows are potentially to be listed in the
WM_COLORMAP_WINDOWS property.

count Specifies the number of widgets in list.

XtSetWMColormapWindows returns immediately if widget is not realised or if count is 0.
Otherwise, XtSetWMColormapWindows constructs an ordered list of windows by examining each
widget in list in turn and ignoring the widget if it is not realised, or adding the widget’s window
to the window list if the widget is realised and if its colormap resource is different from the
colormap resources of all widgets whose windows are already on the window list.

Finally, XtSetWMColormapWindows stores the resulting window list in the
WM_COLORMAP_WINDOWS property on the specified widget’s window. Refer to the
ICCCM specification for details of the semantics of the WM_COLORMAP_WINDOWS
property.

Window Management (X11R5): X Toolkit Intrinsics 229
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Finding File Names Utility Functions

13.11 Finding File Names
The Intrinsics provide procedures to look for a file by name, allowing string substitutions in a
list of file specifications. Two routines are provided for this: XtFindFile and XtResolvePathname .
XtFindFile uses an arbitrary set of client-specified substitutions, and XtResolvePathname uses a set
of standard substitutions corresponding to the X/Open language localisation conventions. Most
applications should use XtResolvePathname .

A string substitution is defined by a list of Substitution entries.

typedef struct {
char match;
String substitution;

} SubstitutionRec, *Substitution;

File name evaluation is handled in an operating-system-dependent fashion by an XtFilePredicate
procedure.

typedef Boolean (*XtFilePredicate)(String);
String filename ;

filename Specifies a potential filename.

A file predicate procedure will be called with a string that is potentially a file name. It should
return True if this string specifies a file that is appropriate for the intended use and False
otherwise.

To search for a file using substitutions in a path list, use XtFindFile .

String XtFindFile(path , substitutions , num_substitutions ,
predicate)

String path ;
Substitution substitutions ;
Cardinal num_substitutions ;
XtFilePredicate predicate ;

path Specifies a path of file names, including substitution characters.

substitutions Specifies a list of substitutions to make into the path.

num_substitutions Specifies the number of substitutions passed in.

predicate Specifies a procedure called to judge each potential file name, or NULL.

The path parameter specifies a string that consists of a series of potential file names delimited by
colons. Within each name, the percent character specifies a string substitution selected by the
following character. The character sequence ‘‘%:’’ specifies an embedded colon that is not a
delimiter; the sequence is replaced by a single colon. The character sequence ‘‘%%’’ specifies a
percent character that does not introduce a substitution; the sequence is replaced by a single
percent character. If a percent character is followed by any other character, XtFindFile looks
through the specified substitutions for that character in the match field and if found replaces the
percent and match characters with the string in the corresponding substitution field. A
substitution field entry of NULL is equivalent to a pointer to an empty string. If the operating
system does not interpret multiple embedded name separators in the path (that is, ‘‘/’’ in
POSIX) the same way as a single separator, XtFindFile will collapse multiple separators into a
single one after performing all string substitutions. Except for collapsing embedded separators,
the contents of the string substitutions are not interpreted by XtFindFile and may therefore
contain any operating-system-dependent characters, including additional name separators.
Each resulting string is passed to the predicate procedure until a string is found for which the

230 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Utility Functions Finding File Names

procedure returns True; this string is the return value for XtFindFile . If no string yields a True
return from the predicate, XtFindFile returns NULL.

If the predicate parameter is NULL, an internal procedure that checks if the file exists, is readable,
and is not a directory will be used.

It is the responsibility of the caller to free the returned string using XtFree when it is no longer
needed.

To search for a file using standard substitutions in a path list, use XtResolvePathname .

String XtResolvePathname(display , type , filename ,
suffix , \
path , substitutions , num_substitutions ,
predicate)

Display * display ;
String type , filename , suffix , path ;
Substitution substitutions ;
Cardinal num_substitutions ;
XtFilePredicate predicate ;

display Specifies the display to use to find the language for language substitutions.

type
filename
suffix Specify values to substitute into the path.

path Specifies the list of file specifications, or NULL.

substitutions Specifies a list of additional substitutions to make into the path, or NULL.

num_substitutions Specifies the number of entries in substitutions.

predicate Specifies a procedure called to judge each potential file name, or NULL.

The substitutions specified by XtResolvePathname are determined from the value of the language
string retrieved by XtDisplayInitialize for the specified display. To set the language for all
applications specify ‘‘*xnlLanguage: lang’’ in the resource database. The format and content of
the language string are implementation-defined. One suggested syntax is to compose the
language string of three parts; a ‘‘language part’’, a ‘‘territory part’’ and a ‘‘codeset part’’. The
manner in which this composition is accomplished is implementation-defined and the Intrinsics
make no interpretation of the parts other than to use them in substitutions as described below.

XtResolvePathname calls XtFindFile with the following substitutions in addition to any passed by
the caller and returns the value returned by XtFindFile :

%N The value of the filename parameter, or the application’s class name if filename is NULL.

%T The value of the type parameter.

%S The value of the suffix parameter.

%L The language string associated with the specified display.

%l The language part of the display’s language string.

%t The territory part of the display’s language string.

%c The codeset part of the display’s language string.

%C The customisation string retrieved from the resource database associated with dispay.

Window Management (X11R5): X Toolkit Intrinsics 231
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Finding File Names Utility Functions

If a path is passed to XtResolvePathname , it will be passed along to XtFindFile . If the path
argument is NULL, the value of the XFILESEARCHPATH environment variable will be passed to
XtFindFile . If XFILESEARCHPATH is not defined, an implementation-specific default path will
be used which contains at least 6 entries. These entries must contain the following substitutions:

1. %C, %N, %S, %T, %L or %C, %N, %S, %T, %l, %t, %c
2. %C, %N, %S, %T, %l
3. %C, %N, %S, %T
4. %N, %S, %T, %L or %N, %S, %T, %l, %t, %c
5. %N, %S, %T, %l
6. %N, %S, %T

The order of these six entries within the path must be as given above. The order and use of
substitutions within a given entry is implementation-dependent. If the path begins with a colon,
it will be preceded by %N%S. If the path includes two adjacent colons, %N%S will be inserted
between them.

The type parameter is intended to be a category of files, usually being translated into a directory
in the pathname. Possible values might include ‘‘app-defaults’’, ‘‘help’’ and ‘‘bitmap’’.

The suffix parameter is intended to be appended to the file name. Possible values might include
‘‘.txt’’, ‘‘.dat’’ and ‘‘.bm’’.

A suggested value for the default path on POSIX-based systems is:

/usr/lib/X11/%L/%T/%N%C%S:/usr/lib/X11/%l/%T/%N%C%S:\
/usr/lib/X11/%T/%N%C%S:/usr/lib/X11/%L/%T/%N%S:\
/usr/lib/X11/%l/%T/%N%S:/usr/lib/X11/%T/%N%S

Using this example, if the user has specified a language, it will be used as a subdirectory of
/usr/lib/X11 that will be searched for other files. If the desired file is not found there, the
lookup will be tried again using just the language part of the specification. If the file is not there,
it will be looked for in /usr/lib/X11. The type parameter is used as a subdirectory of the
language directory or of /usr/lib/X11, and suffix is appended to the file name.

The customisation string is obtained by querying the resource database currently associated
with the display (the database returned by XrmGetDatabase) for the resource
application_name.customization, class application_class.Customization where application_name and
application_class are the values returned by XtGetApplicationNameAndClass . If no value is
specified in the database, the empty string is used.

It is the responsibility of the caller to free the returned string using XtFree when it is no longer
needed.

232 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Chapter 14

Non-widget Objects

Although widget writers are free to treat Core as the base class of the widget hierarchy, there are
actually three classes above it. These classes are Object, RectObj, (Rectangle Object) and
(unnamed) and members of these classes are referred to generically as objects. By convention, the
term widget refers only to objects that are a subclass of Core, and the term non-widget refers to
objects that are not a subclass of Core. In the preceding portion of this specification, the interface
descriptions indicate explicitly whether the generic widget argument is restricted to particular
subclasses of Object. The permissible classes of the arguments to, and return values from, each
of the Intrinsics routines are summarised in Section 14.2.5, Section 14.3.4, and Section 14.5.

14.1 Data Structures
In order not to conflict with previous widget code, the data structures used by non-widget
objects do not follow all the same conventions as those for widgets. In particular, the class
records are not composed of parts but instead are complete data structures with filler for the
widget fields they do not use. This allows the static class initializers for existing widgets to
remain unchanged.

Window Management (X11R5): X Toolkit Intrinsics 233
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Object Objects Non-widget Objects

14.2 Object Objects
The Object object contains the definitions of fields common to all objects. It encapsulates the
mechanisms for resource management. All objects and widgets are members of subclasses of
Object, which is defined by the ObjectClassPart and ObjectPart structures.

14.2.1 ObjectClassPart Structure

The common fields for all object classes are defined in the ObjectClassPart structure. All fields
have the same purpose, function, and restrictions as the corresponding fields in CoreClassPart ;
fields whose names are objn for some integer n are not used for Object, but exist to pad the data
structure so that it matches Core’s class record. The class record initialisation must fill all objn
fields with NULL or zero as appropriate to the type.

typedef struct _ObjectClassPart {
WidgetClass superclass;
String class_name;
Cardinal widget_size;
XtProc class_initialize;
XtWidgetClassProc class_part_initialize;
XtEnum class_inited;
XtInitProc initialize;
XtArgsProc initialize_hook;
XtProc obj1;
XtPointer obj2;
Cardinal obj3;
XtResourceList resources;
Cardinal num_resources;
XrmClass xrm_class;
Boolean obj4;
XtEnum obj5;
Boolean obj6;
Boolean obj7;
XtWidgetProc destroy;
XtProc obj8;
XtProc obj9;
XtSetValuesFunc set_values;
XtArgsFunc set_values_hook;
XtProc obj10;
XtArgsProc get_values_hook;
XtProc obj11;
XtVersionType version;
XtPointer callback_private;
String obj12;
XtProc obj13;
XtProc obj14;
XtPointer extension;

} ObjectClassPart;

The prototypical ObjectClass consists of just the ObjectClassPart .

typedef struct _ObjectClassRec {
ObjectClassPart object_class;

} ObjectClassRec, *ObjectClass;

234 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Non-widget Objects Object Objects

The predefined class record and pointer for ObjectClassRec are as follows.

In IntrinsicP.h:

extern ObjectClassRec objectClassRec;

In Instinsic.h:

extern WidgetClass objectClass;

The opaque types Object and ObjectClass and the opaque variable objectClass are defined for
generic actions on objects. Instinsic.h uses an incomplete structure definition to ensure that the
compiler catches attempts to access private data:

typedef struct _ObjectClassRec* ObjectClass;

14.2.2 ObjectPart Structure

The common fields for all object instances are defined in the ObjectPart structure. All fields have
the same meaning as the corresponding fields in CorePart .

typedef struct _ObjectPart {
Widget self;
WidgetClass widget_class;
Widget parent;
Boolean being_destroyed;
XtCallbackList destroy_callbacks;
XtPointer constraints;

} ObjectPart;

All object instances have the Object fields as their first component. The prototypical type Object
is defined with only this set of fields. Various routines can cast object pointers, as needed, to
specific object types.

In IntrinsicP.h:

typedef struct _ObjectRec {
ObjectPart object;

} ObjectRec, *Object;

In Instinsic.h:

typedef struct _ObjectRec *Object;

14.2.3 Object Resources

The resource names, classes and representation types specified in the objectClassRec resource list
are:

Name Class Representation
XtNdestroyCallback XtCCallback XtRCallback

Window Management (X11R5): X Toolkit Intrinsics 235
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Object Objects Non-widget Objects

14.2.4 ObjectPart Default Values

All fields in ObjectPart have the same default values as the corresponding fields in CorePart .

14.2.5 Object Arguments To Intrinsics Routines

The WidgetClass arguments to the following procedures may be objectClass or any subclass:

• XtInitializeWidgetClass , XtCreateWidget , XtVaCreateWidget

• XtIsSubclass, XtCheckSubclass

• XtGetResourceList, XtGetConstraintResourceList .

The Widget arguments to the following procedures may be of class Object or any subclass:

• XtCreateWidget , XtVaCreateWidget

• XtAddCallback , XtAddCallbacks , XtRemoveCallback , XtRemoveCallbacks , XtRemoveAllCallbacks ,
XtCallCallbacks , XtHasCallbacks , XtCallCallbackList

• XtClass , XtSuperclass, XtIsSubclass, XtCheckSubclass , XtIsObject, XtIsRectObj, XtIsWidget ,
XtIsComposite , XtIsConstraint , XtIsShell , XtIsOverrideShell, XtIsWMShell, XtIsVendorShell ,
XtIsTransientShell , XtIsToplevelShell , XtIsApplicationShell

• XtIsManaged , XtIsSensitive
(both will return False if argument is not a subclass of RectObj)

• XtIsRealized
(returns the state of the nearest windowed ancestor if class of argument is not a subclass of
Core)

• XtWidgetToApplicationContext

• XtDestroyWidget

• XtParent, XtDisplayOfObject , XtScreenOfObject, XtWindowOfObject

• XtSetKeyboardFocus (descendant)

• XtGetGC, XtReleaseGC

• XtName

• XtSetValues , XtGetValues , XtVaSetValues , XtVaGetValues

• XtGetSubresources, XtGetApplicationResources , XtVaGetSubresources,
XtVaGetApplicationResources

• XtConvert , XtConvertAndStore .

The return value of the following procedures will be of class Object or a subclass:

• XtCreateWidget , XtVaCreateWidget

• XtParent

• XtNameToWidget .

The return value of the following procedures will be objectClass or a subclass:

• XtClass , XtSuperclass.

236 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Non-widget Objects Object Objects

14.2.6 Use of Objects

The Object class exists to enable programmers to use the Intrinsics’ classing and resource-
handling mechanisms for things smaller and simpler than widgets. Objects make obsolete many
common uses of subresources as described in Section 11.4, Widget Subpart State, and Widget
Subpart Resource Data: set_values_hook Procedure.

Composite widget classes that wish to accept non-widget children must set the accepts_objects
field in the CompositeClassExtension structure to True. XtCreateWidget will otherwise generate an
error message on an attempt to create a non-widget child.

Of the classes defined by the Intrinsics, only ApplicationShell accepts non-widget children, and
the class of any non-widget child must not be rectObjClass or any subclass. The intent of
allowing Object children of ApplicationShell is to provide clients a simple mechanism for
establishing the resource-naming root of an object hierarchy.

Window Management (X11R5): X Toolkit Intrinsics 237
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Rectangle Objects Non-widget Objects

14.3 Rectangle Objects
The class of rectangle objects is a subclass of Object that represents rectangular areas. It
encapsulates the mechanisms for geometry management, and is called RectObj to avoid conflict
with the Xlib Rectangle data type.

14.3.1 RectObjClassPart Structure

As with the ObjectClassPart structure, all fields in the RectObjClassPart structure have the same
purpose and function as the corresponding fields in CoreClassPart ; fields whose names are rectn
for some integer n are not used for RectObj but exist to pad the data structure so that it matches
Core’s class record. The class record initialisation must fill all rectn fields with NULL or zero as
appropriate to the type.

typedef struct _RectObjClassPart {
WidgetClass superclass;
String class_name;
Cardinal widget_size;
XtProc class_initialize;
XtWidgetClassProc class_part_initialize;
XtEnum class_inited;
XtInitProc initialize;
XtArgsProc initialize_hook;
XtProc rect1;
XtPointer rect2;
Cardinal rect3;
XtResourceList resources;
Cardinal num_resources;
XrmClass xrm_class;
Boolean rect4;
XtEnum rect5;
Boolean rect6;
Boolean rect7;
XtWidgetProc destroy;
XtWidgetProc resize;
XtExposeProc expose;
XtSetValuesFunc set_values;
XtArgsFunc set_values_hook;
XtAlmostProc set_values_almost;
XtArgsProc get_values_hook;
XtProc rect9;
XtVersionType version;
XtPointer callback_private;
String rect10;
XtGeometryHandler query_geometry;
XtProc rect11;
XtPointer extension ;

} RectObjClassPart;

The RectObj class record consists of just the RectObjClassPart .

typedef struct _RectObjClassRec {
RectObjClassPart rect_class;

} RectObjClassRec, *RectObjClass;

238 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Non-widget Objects Rectangle Objects

The predefined class record and pointer for RectObjClassRec are as follows.

In Instinsic.h:

extern RectObjClassRec rectObjClassRec;

In Intrinsic.h:

extern WidgetClass rectObjClass;

The opaque types RectObj and RectObjClass and the opaque variable rectObjClass are defined for
generic actions on objects whose class is RectObj or a subclass of RectObj. Instinsic.h uses an
incomplete structure definition to ensure that the compiler catches attempts to access private
data:

typedef struct _RectObjClassRec* RectObjClass;

14.3.2 RectObjPart Structure

In addition to the ObjectPart fields, RectObj objects have the following fields defined in the
RectObjPart structure. All fields have the same meaning as the corresponding field in CorePart .

typedef struct _RectObjPart {
Position x, y;
Dimension width, height;
Dimension border_width;
Boolean managed;
Boolean sensitive;
Boolean ancestor_sensitive;

} RectObjPart;

RectObj objects have the RectObj fields immediately following the Object fields.

typedef struct _RectObjRec {
ObjectPart object;
RectObjPart rectangle;

} RectObjRec, *RectObj;

In Intrinsic.h:

typedef struct _RectObjRec* RectObj;

14.3.3 RectObj Resources

The resource names, classes and representation types that are specified in the rectObjClassRec
resource list are:

Name Class Representation
XtNancestorSensitive XtCSensitive XtRBoolean
XtNborderWidth XtCBorderWidth XtRDimension
XtNheight XtCHeight XtRDimension
XtNsensitive XtCSensitive XtRBoolean
XtNwidth XtCWidth XtRDimension
XtNx XtCPosition XtRPosition
XtNy XtCPosition XtRPosition

Window Management (X11R5): X Toolkit Intrinsics 239
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Rectangle Objects Non-widget Objects

14.3.4 RectObjPart Default Values

All fields in RectObjPart have the same default values as the corresponding fields in CorePart .

14.3.5 Widget Arguments To Intrinsics Routines

The WidgetClass arguments to the following procedures may be rectObjClass or any subclass:

• XtCreateManagedWidget , XtVaCreateManagedWidget

The Widget arguments to the following procedures may be of class RectObj or any subclass:

• XtConfigureWidget , XtMoveWidget , XtResizeWidget

• XtMakeGeometryRequest, XtMakeResizeRequest

• XtManageChildren , XtManageChild , XtUnmanageChildren , XtUnmanageChild

• XtQueryGeometry

• XtSetSensitive

• XtTranslateCoords .

The return value of the following procedures will be of class RectObj or a subclass:

• XtCreateManagedWidget , XtVaCreateManagedWidget .

14.3.6 Use of Rectangle Objects

RectObj can be subclassed to provide widgetlike objects (sometimes called gadgets) that do not
use windows and do not have features often unused in simple widgets. This can save memory
resources both in the server and in applications but requires additional support code in the
parent. In the following discussion, rectobj refers only to objects whose class is RectObj or a
subclass of RectObj but not Core or a subclass of Core.

Composite widget classes that wish to accept rectobj children must set the accepts_objects field in
the CompositeClassExtension extension structure to True. XtCreateWidget or
XtCreateManagedWidget will otherwise generate an error if called to create a non-widget child. If
the composite widget supports only children of class RectObj or a subclass (that is, not of the
general Object class), it must declare an insert_child procedure and check the subclass of each
new child in that procedure. None of the classes defined by the Intrinsics accept rectobj children.

If gadgets are defined in an object set, the parent is responsible for much more than the parent of
a widget. The parent must request and handle input events that occur for the gadget and is
responsible for making sure that when it receives an exposure event the gadget children get
drawn correctly. Rectobj children may have expose procedures specified in their class records,
but the parent is free to ignore them, instead drawing the contents of the child itself. This can
potentially save graphics context switching. The precise contents of the exposure event and
region arguments to the RectObj expose procedure are not specified by the Intrinsics; a
particular rectangle object is free to define the coordinate system origin (self-relative or parent-
relative) and whether or not the rectangle or region is assumed to have been intersected with the
visible region of the object.

In general, it is expected that a composite widget that accepts non-widget children will
document those children it is able to handle, since a gadget cannot be viewed as a completely
self-contained entity, as can a widget. Since a particular composite widget class is usually
designed to handle non-widget children of only a limited set of classes, it should check the
classes of newly added children in its insert_child procedure to make sure that it can deal with
them.

240 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Non-widget Objects Rectangle Objects

The Intrinsics will clear areas of a parent window obscured by rectobj children, causing exposure
events, under the following circumstances:

• A rectobj child is managed or unmanaged.

• In a call to XtSetValues on a rectobj child, one or more of the set_values procedures returns
True.

• In a call to XtConfigureWidget on a rectobj child, areas will be cleared corresponding to both
the old and the new child geometries, including the border, if the geometry changes.

• In a call to XtMoveWidget on a rectobj child, areas will be cleared corresponding to both the
old and the new child geometries, including the border, if the geometry changes.

• In a call to XtResizeWidget on a rectobj child, an single rectangle will be cleared corresponding
to the larger of the old and the new child geometries if they are different.

• In a call to XtMakeGeometryRequest (or XtMakeResizeRequest) on a rectobj child with
XtQueryOnly not set, if the manager returns XtGeometryYes, two rectangles will be cleared
corresponding to both the old and the new child geometries.

Stacking order is not supported for rectobj children. Composite widgets with rectobj children
are free to define any semantics desired if the child geometries overlap, including making this an
error.

When a rectobj is playing the role of a widget, developers must be reminded to avoid making
assumptions about the object passed in the Widget argument to a callback procedure.

Window Management (X11R5): X Toolkit Intrinsics 241
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Undeclared Class Non-widget Objects

14.4 Undeclared Class
The Intrinsics define an unnamed class between RectObj and Core for possible future use. he
only assumptions that may be made about the unnamed class are:

• The core_class.superclass field of coreWidgetClassRec contains a pointer to the unnamed class
record.

• A pointer to the unnamed class record when dereferenced as an ObjectClass will contain a
pointer to rectObjClassRec in its object_class.superclass field.

Except for the above, the contents of the class record for this class and the result of an attempt to
subclass or to create a widget of this unnamed class are undefined.

242 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Non-widget Objects Widget Arguments to Intrinsics Routines

14.5 Widget Arguments to Intrinsics Routines
The WidgetClass arguments to the following procedures must be of class Shell or a subclass:

• XtCreatePopupShell , XtVaCreatePopupShell , XtAppCreateShell , XtVaAppCreateShell .

The Widget arguments to the following procedures must be of class Core or any subclass:

• XtCreatePopupShell , XtVaCreatePopupShell

• XtAddEventHandler, XtAddRawEventHandler , XtRemoveEventHandler,
XtRemoveRawEventHandler , XtInsertEventHandler, XtInsertRawEventHandler

• XtAddGrab , XtRemoveGrab, XtGrabKey, XtGrabKeyboard , XtUngrabKey, XtUngrabKeyboard ,
XtGrabButton, XtGrabPointer , XtUngrabButton, XtUngrabPointer

• XtBuildEventMask

• XtCreateWindow , XtDisplay , XtScreen, XtWindow

• XtNameToWidget

• XtGetSelectionValue , XtGetSelectionValues , XtOwnSelection, XtDisownSelection ,
XtOwnSelectionIncremental, XtGetSelectionValueIncremental , XtGetSelectionValuesIncremental ,
XtGetSelectionRequest

• XtInstallAccelerators , XtInstallAllAccelerators (both destination and source)

• XtAugmentTranslations , XtOverrideTranslations , XtUninstallTranslations , XtCallActionProc

• XtMapWidget , XtUnmapWidget

• XtRealizeWidget , XtUnrealizeWidget

• XtSetMappedWhenManaged

• XtCallAcceptFocus , XtSetKeyboardFocus (subtree)

• XtResizeWindow

• XtSetWMColormapWindows.

The Widget arguments to the following procedures must be of class Composite or any subclass:

• XtCreateManagedWidget , XtVaCreateManagedWidget .

The Widget arguments to the following procedures must be of a subclass of Shell:

• XtPopdown , XtCallbackPopdown , XtPopup , XtCallbackNone , XtCallbackNonexclusive ,
XtCallbackExclusive , XtPopupSpringLoaded .

The return value of the following procedure will be of class Core or a subclass:

• XtWindowToWidget .

The return value of the following procedures will be of a subclass of Shell :

• XtAppCreateShell , XtVaAppCreateShell , XtAppInitialize , XtVaAppInitialize , XtCreatePopupShell ,
XtVaCreatePopupShell .

Window Management (X11R5): X Toolkit Intrinsics 243
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Non-widget Objects

244 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Chapter 15

Evolution of the Intrinsics

The interfaces described by this specification have undergone several sets of revisions in the
course of adoption as an X Consortium standard specification. Having now been adopted by the
Consortium as a standard part of the X Window System, it is expected that this and future
revisions will retain backward compatibility in the sense that fully conforming implementations
of these specifications may be produced that provide source compatibility with widgets and
applications written to previous Consortium standard revisions.

The Intrinsics do not place any special requirement on widget programmers to retain source or
binary compatibility for their widgets as they evolve, but several conventions have been
established to assist those developers who want to provide such compatibility.

In particular, widget programmers may wish to conform to the convention described in Section
3.6.12 when defining class extension records.

15.1 Determining Specification Revision Level
Widget and application developers who wish to maintain a common source pool that will build
properly with implementations of the Intrinsics at different revision levels of these specifications
but that take advantage of newer features added in later revisions may use the symbolic macro
XtSpecificationRelease .

#define XtSpecificationRelease 5

As the symbol XtSpecificationRelease was new to Release 4, widgets and applications desiring to
build against earlier implementations should test for the presence of this symbol and assume
only Release 3 interfaces if the definition is not present.

Window Management (X11R5): X Toolkit Intrinsics 245
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Release 3 to Release 4 Compatibility Evolution of the Intrinsics

15.2 Release 3 to Release 4 Compatibility
At the data structure level, Release 4 retains binary compatibility with Release 3 (the first X
Consortium standard release) for all data structures except WMShellPart, TopLevelShellPart and
TransientShellPart . Release 4 changed the argument type to most procedures that now take
arguments of type XtPointer and structure members that are now of type XtPointer in order to
avoid potential ANSI C conformance problems. It is expected that most implementations will
be binary compatible with the previous definition.

Two fields in CoreClassPart were changed from Boolean to XtEnum to allow implementations
additional freedom in specifying the representations of each. This change should require no
source modification.

15.2.1 Additional Arguments

Arguments were added to the procedure definitions for XtInitProc , XtSetValuesFunc and
XtEventHandler to provide more information and to allow event handlers to abort further
dispatching of the current event (caution is advised!). The added arguments to XtInitProc and
XtSetValuesFunc make the initialize_hook and set_values_hook methods obsolete, but the hooks
have been retained for those widgets that used them in Release 3.

15.2.2 set_values_almost Procedures

The use of the arguments by a set_values_almost procedure was poorly described in Release 3
and was inconsistent with other conventions.

The current specification for the manner in which a set_values_almost procedure returns
information to the Intrinsics is not compatible with the Release 3 specification, and all widget
implementations should verify that any set_values_almost procedures conform to the current
interface.

No known implementation of the Intrinsics correctly implemented the Release 3 interface, so it is
expected that the impact of this specification change is small.

15.2.3 Query Geometry

A composite widget layout routine that calls XtQueryGeometry is now expected to store the
complete new geometry in the intended structure; previously the specification said ‘‘store the
changes it intends to make’’. Only by storing the complete geometry does the child have any
way to know what other parts of the geometry may still be flexible. Existing widgets should not
be affected by this, except to take advantage of the new information.

15.2.4 unrealizeCallback Callback List

In order to provide a mechanism for widgets to be notified when they become unrealised
through a call to XtUnrealizeWidget , the callback list name ‘‘unrealizeCallback’’ has been defined
by the Intrinsics. A widget class that requires notification on unrealize may declare a callback
list resource by this name. No class is required to declare this resource, but any class that did so
in a prior revision may find it necessary to modify the resource name if it does not wish to use
the new semantics.

246 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Evolution of the Intrinsics Release 3 to Release 4 Compatibility

15.2.5 Subclasses of WMShell

The formal adoption of the ICCCM specification as an X Consortium standard has meant the
addition of four fields to WMShellPart and one field to TopLevelShellPart . In deference to some
widget libraries that had developed their own additional conventions to provide binary
compatibility, these five new fields were added at the end of the respective data structures.

To provide more convenience for TransientShells, a field was added to the previously empty
TransientShellPart . On some architectures the size of the part structure will not have changed as
a result of this.

Any widget implementation whose class is a subclass of TopLevelShell or TransientShell must at
minimum be recompiled with the new data structure declarations. Because WMShellPart no
longer contains a contiguous XSizeHints data structure, a subclass that expected to do a single
structure assignment of an XSizeHints structure to the size_hints field of WMShellPart must be
revised, though the old fields remain at the same positions within WMShellPart .

15.2.6 Resource Type Converters

A new interface declaration for resource type converters was defined to provide more
information to converters, to support conversion cache cleanup with resource reference
counting, and to allow additional procedures to be declared to free resources. The old interfaces
remain (in the compatibility section) and a new set of procedures was defined that work only
with the new type converter interface.

In the now obsolete old type converter interface, converters are reminded that they must return
the size of the converted value as well as its address. The example indicated this, but the
description of XtConverter was incomplete.

15.2.7 KeySym Case Conversion Procedure

The specification for the XtCaseProc function type has been changed to match the Release 3
implementation, which included necessary additional information required by the function (a
pointer to the display connection), and corrects the argument type of the source KeySym
parameter. No known implementation of the Intrinsics implemented the previously
documented interface.

15.2.8 Non-widget Objects

Formal support for non-widget objects is new to Release 4. A prototype implementation was
latent in at least one Release 3 implementation of the Intrinsics, but the specification has changed
somewhat. The most significant change is the requirement for a composite widget to declare the
CompositeClassExtension record with the accepts_objects field set to True in order to permit a client
to create a non-widget child.

The addition of this extension field ensures that composite widgets written under Release 3 will
not encounter unexpected errors if an application attempts to create a non-widget child. In
Release 4 there is no requirement that all composite widgets implement the extra functionality
required to manage windowless children, so the accept_objects field allows a composite widget to
declare that it is not prepared to do so.

Window Management (X11R5): X Toolkit Intrinsics 247
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Release 4 to Release 5 Compatibility Evolution of the Intrinsics

15.3 Release 4 to Release 5 Compatibility
At the data structure level, Release 5 retains complete binary compatibility with Release 4. The
specification of the ObjectPart , RectObjPart , CorePart , CompositePart , ShellPart , WMShellPart ,
TopLevelShellPart and ApplicationShellPart instance records was made less strict to permit
implementations to add internal fields to these structures. Any implementation that chooses to
do so would, of course, force a recompilation. The Xlib specification for XrmValue and
XrmOptionDescRec was updated to use a new type, XPointer , for the addr and value fields
respectively, to avoid ANSI C conformance problems. The definition of XPointer is binary
compatible with the previous implementation.

15.3.1 baseTranslations Resource

A new pseudo-resource, XtNbaseTranslations, was defined to permit application developers to
specify translation tables in application defaults files while still giving end users the ability to
augment or override individual event sequences. This change will affect only those applications
that wish to take advantage of the new functionality, or those widgets that may have previously
defined a resource named ‘‘baseTranslations’’.

Applications wishing to take advantage of the new functionality would change their application
defaults file; for example, from:

app.widget.translations: value

to:

app.widget.baseTranslations: value

If it is important to the application to preserve complete compatibility of the defaults file
between different versions of the application running under Release 4 and Release 5, the full
translations can be replicated in both the ‘‘translations’’ and the ‘‘baseTranslations’’ resource.

15.3.2 Resource File Search Path

The current specification allows implementations greater flexibility in defining the directory
structure used to hold the application class and per-user application defaults files. Previous
specifications required the substitution strings to appear in the default path in a certain order,
preventing sites from collecting all the files for a specific application together in one directory.
The Release 5 specification allows the default path to specify the substitution strings in any
order within a single path entry. Users will need to pay close attention to the documentation for
the specific implementation to know where to find these files and how to specify their own
XFILESEARCHPATH and XUSERFILESEARCHPATH values when overriding the system
defaults.

15.3.3 Customisation Resource

XtResolvePathname supports a new substitution string, %C, for specifying separate application
class resource files according to arbitrary user-specified categories. The primary motivation for
this addition was separate monochrome and colour application class defaults files. The
substitution value is obtained by querying the current resource database for the application
resource name ‘‘customisation’’, class ‘‘Customisation’’. Any application that previously used
this resource name and class will need to be aware of the possibly conflicting semantics.

248 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Evolution of the Intrinsics Release 4 to Release 5 Compatibility

15.3.4 Per-screen Resource Database

To allow a user to specify separate preferences for each screen of a display, a per-screen resource
specification string has been added and multiple resource databases are created; one for each
screen. This will affect any application that modified the (formerly unique) resource database
associated with the display subsequent to the Intrinsics database initialisation. Such
applications will need to be aware of the particular screen on which each shell widget is to be
created.

Although the wording of the specification changed substantially in the description of the process
by which the resource database(s) is initialised, the net effect is the same as in prior releases with
the exception of the added per-screen resource specification and the new customisation
substitution string in XtResolvePathname .

15.3.5 Internationalisation of Applications

Internationalisation as defined by ANSI is a technology that allows support of an application in
a single locale. In adding support for internationalisation to the Intrinsics the restrictions of this
model have been followed. In particular, the new Intrinsics interfaces are designed to not
preclude an application from using other alternatives. For this reason, no Intrinsics routine
makes a call to establish the locale. However, a convenience routine to establish the locale at
initialize time has been provided, in the form of a default procedure that must be explicitly
installed if the application desires ANSI C locale behaviour.

As many objects in X, particularly resource databases, now inherit the global locale when they
are created, applications wishing to use the ANSI C locale model should use the new function
XtSetLanguageProc to do so.

The internationalisation additions also define event filters as a part of the Xlib Input Method
specifications. The Intrinsics enable the use of event filters through additions to
XtDispatchEvent . Applications that may not be dispatching all events through XtDispatchEvent
should be reviewed in the context of this new input method mechanism.

In order to permit internationalisation of error messages the name and path of the error database
file is now allowed to be implementation-dependent. No adequate standard mechanism has yet
been suggested to allow the Intrinsics to locate the database from localisation information
supplied by the client.

The previous specification for the syntax of the language string specified by xnlLanguage has
been dropped to avoid potential conflicts with other standards. The language string syntax is
now implementation-defined. The example syntax cited is consistent with the previous
specification.

15.3.6 Permanently Allocated Strings

In order to permit additional memory savings, an Xlib interface was added to allow the resource
manager to avoid copying certain string constants. The Intrinsics specification was updated to
explicitly require the Object class_name, resource_name, resource_class, resource_type, default_type in
resource tables, Core actions string field, and Constraint resource_name, resource_class,
resource_type, and default_type resource fields to be permanently allocated. This explicit
requirement is expected to affect only applications that may create and destroy classes on the fly.

Window Management (X11R5): X Toolkit Intrinsics 249
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Release 4 to Release 5 Compatibility Evolution of the Intrinsics

15.3.7 Arguments to Existing Functions

The args argument to XtAppInitialize , XtVaAppInitialize , XtOpenDisplay , XtDisplayInitialize and
XtInitialize were changed from Cardinal* to int* to conform to pre-existing convention and avoid
otherwise annoying typecasting in ANSI C environments.

250 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Appendix A

Resource File Format

A resource file contains text representing the default resource values for an application or set of
applications.

The format of resource files is defined in the Xlib — C Language Binding specification and is
reproduced here for convenience only.

The format of a resource specification is:

ResourceLine = Comment | IncludeFile | ResourceSpec | <empty line>

Comment = ‘‘!’’ {<any character except null or newline>}

IncludeFile = ‘‘#’’ WhiteSpace ‘‘include’’ WhiteSpace FileName WhiteSpace

FileName = <valid filename for operating system>

ResourceSpec = WhiteSpace ResourceName WhiteSpace ‘‘:’’ WhiteSpace Value

ResourceName = [Binding] {Component Binding} ComponentName

Binding = ‘‘.’’ | ‘‘*’’

WhiteSpace = {<space> | <horizontal tab>}

Component = ‘‘?’’ | ComponentName

ComponentName = NameChar {NameChar}

NameChar = ‘‘a’’-‘‘z’’ | ‘‘A’’-‘‘Z’’ | ‘‘0’’-‘‘9’’ | ‘‘_’’ | ‘‘-’’

Value = {<any character except null or unescaped newline>}

Elements separated by vertical bar (|) are alternatives. Curly braces ({...}) indicate zero or more
repetitions of the enclosed elements. Square brackets ([...]) indicate that the enclosed element is
optional. Quotes (‘‘...’’) are used around literal characters.

If the last character on a line is a backslash (\), that line is assumed to continue on the next line.

To allow a Value to begin with whitespace, the two-character sequence ‘‘\space’’ (backslash
followed by space) is recognised and replaced by a space character, and the two-character
sequence ‘‘\tab’’ (backslash followed by horizontal tab) is recognised and replaced by a
horizontal tab character.

To allow a Value to contain embedded newline characters, the two-character sequence ‘‘\n’’ is
recognised and replaced by a newline character. To allow a Value to be broken across multiple
lines in a text file, the two-character sequence ‘‘\newline’’ (backslash followed by newline) is
recognised and removed from the value.

To allow a Value to contain arbitrary character codes, the four-character sequence ‘‘\nnn’’, where
each n is a digit character in the range of ‘‘0’’-‘‘7’’, is recognised and replaced with a single byte
that contains the octal value specified by the sequence. Finally, the two-character sequence
‘‘\\’’ is recognised and replaced with a single backslash.

Window Management (X11R5): X Toolkit Intrinsics 251
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Resource File Format

252 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Appendix B

Translation Table Syntax

Notation

Syntax is specified in EBNF notation with the following conventions:

[a] Means either nothing or ‘‘a’’

{ a } Means zero or more occurrences of ‘‘a’’

(a | b) Means either ‘‘a’’ or ‘‘b’’

\n Is the newline character

All terminals are enclosed in double quotation marks (‘‘ ’’). Informal descriptions are enclosed
in angle brackets (< >).

Syntax

The syntax of a translation table is:

translationTable = [directive] { production }

directive = (‘‘#replace’’ | ‘‘#override’’ | ‘‘#augment’’) ‘‘\\n’’

production = lhs ‘‘:’’ rhs ‘‘\\n’’

lhs = (event | keyseq) { ‘‘,’’ (event | keyseq) }

keyseq = ‘‘"’’ keychar {keychar} ‘‘"’’

keychar = [‘‘ˆ’’ | ‘‘$’’ | ‘‘\\’’] <ISO Latin 1 character>

event = [modifier_list] ‘‘<’’event_type‘‘>’’ [‘‘(’’ count[‘‘+’’] ‘‘)’’] {detail}

modifier_list = ([‘‘!’’] [‘‘:’’] {modifier}) | ‘‘None’’

modifier = [‘‘˜’’] modifier_name

count = (‘‘1’’ | ‘‘2’’ | ‘‘3’’ | ‘‘4’’ | ...)

modifier_name = ‘‘@’’ <keysym> | <see ModifierNames table below>

event_type = <see Event Types table below>

detail = <event specific details>

rhs = { name ‘‘(’’ [params] ‘‘)’’ }

name = namechar { namechar }

namechar = { ‘‘a’’-‘‘z’’ | ‘‘A’’-‘‘Z’’ | ‘‘0’’-‘‘9’’ | ‘‘_’’ | ‘‘-’’ }

params = string {‘‘,’’ string}

string = quoted_string | unquoted_string

quoted_string = ‘‘"’’ {<Latin 1 character> | escape_char} [‘‘\\\\’’] ‘‘"’’

escape_char = ‘‘\\"’’

unquoted_string = {<Latin 1 character except space, tab, ‘‘,’’, ‘‘\\n’’, ‘‘)’’>}

Window Management (X11R5): X Toolkit Intrinsics 253
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Translation Table Syntax

The params field is parsed into a list of String values that will be passed to the named action
procedure. A quoted string may contain an embedded quotation mark if the quotation mark is
preceded by a single backslash (\). The three-character sequence ‘‘\\"’’ is interpreted as ‘‘single
backslash followed by end-of-string’’.

Modifier Names

The modifier field is used to specify standard X keyboard and button modifier mask bits.
Modifiers are legal on event types KeyPress, KeyRelease , ButtonPress, ButtonRelease , MotionNotify ,
EnterNotify , LeaveNotify , and their abbreviations. An error is generated when a translation table
that contains modifiers for any other events is parsed.

• If the modifier list has no entries and is not ‘‘None’’, it means ‘‘don’t care’’ on all modifiers.

• If an exclamation point (!) is specified at the beginning of the modifier list, it means that the
listed modifiers must be in the correct state and no other modifiers can be asserted.

• If any modifiers are specified and an exclamation point (!) is not specified, it means that the
listed modifiers must be in the correct state and ‘‘don’t care’’ about any other modifiers.

• If a modifier is preceded by a tilde (˜), it means that that modifier must not be asserted.

• If ‘‘None’’ is specified, it means no modifiers can be asserted.

• If a colon (:) is specified at the beginning of the modifier list, it directs the Intrinsics to apply
any standard modifiers in the event to map the event keycode into a KeySym. The default
standard modifiers are Shift and Lock, with the interpretation as defined in the X Window
System Protocol specification. The resulting KeySym must exactly match the specified
KeySym, and the non-standard modifiers in the event must match the modifier list. For
example, ‘‘:<Key>a’’ is distinct from ‘‘:<Key>A’’, and ‘‘:Shift<Key>A’’ is distinct from
‘‘:<Key>A’’.

• If both an exclamation point (!) and a colon (:) are specified at the beginning of the modifier
list, it means that the listed modifiers must be in the correct state and that no other modifiers
except the standard modifiers can be asserted. Any standard modifiers in the event are
applied as for colon (:) above.

• If a colon (:) is not specified, no standard modifiers are applied. Then, for example,
‘‘<Key>A’’ and ‘‘<Key>a’’ are equivalent.

In key sequences, a circumflex (ˆ) is an abbreviation for the Control modifier, a dollar sign ($) is
an abbreviation for Meta, and a backslash (\) can be used to quote any character, in particular a
double quote ("), a circumflex (ˆ), a dollar sign ($), and another backslash (\). Briefly:

No Modifiers: None <event> detail

Any Modifiers: <event> detail

Only these Modifiers: ! mod1 mod2 <event> detail

These modifiers and any others: mod1 mod2 <event> detail

The use of ‘‘None’’ for a modifier list is identical to the use of an exclamation point with no
modifiers.

254 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Translation Table Syntax

Modifier Abbreviation Meaning
Ctrl c Control modifier bit
Shift s Shift modifier bit
Lock l Lock modifier bit
Meta m Meta key modifier
Hyper h Hyper key modifier
Super su Super key modifier
Alt a Alt key modifier
Mod1 Mod1 modifier bit
Mod2 Mod2 modifier bit
Mod3 Mod3 modifier bit
Mod4 Mod4 modifier bit
Mod5 Mod5 modifier bit
Button1 Button1 modifier bit
Button2 Button2 modifier bit
Button3 Button3 modifier bit
Button4 Button4 modifier bit
Button5 Button5 modifier bit
None No modifiers
Any Any modifier combination

A key modifier is any modifier bit one of whose corresponding KeyCodes contains the
corresponding left or right KeySym. For example, ‘‘m’’ or ‘‘Meta’’ means any modifier bit
mapping to a KeyCode whose KeySym list contains XK_Meta_L or XK_Meta_R. Note that this
interpretation is for each display, not global or even for each application context. The Control,
Shift, and Lock modifier names refer explicitly to the corresponding modifier bits; there is no
additional interpretation of KeySyms for these modifiers.

Because it is possible to associate arbitrary KeySyms with modifiers, the set of key modifiers is
extensible. The ‘‘@’’ <keysym> syntax means any modifier bit whose corresponding KeyCode
contains the specified KeySym name.

A modifier_list/KeySym combination in a translation matches a modifiers/KeyCode
combination in an event in the following ways:

1. If a colon (:) is used, the Intrinsics call the display’s XtKeyProc with the KeyCode and
modifiers. To match, (modifiers & ˜modifiers_return) must equal modifier_list, and
keysym_return must equal the given KeySym.

2. If (:) is not used, the Intrinsics mask off all don’t-care bits from the modifiers. This value
must be equal to modifier_list. Then, for each possible combination of don’t-care modifiers
in the modifier list, the Intrinsics call the display’s XtKeyProc with the KeyCode and that
combination ORed with the cared-about modifier bits from the event. Keysym_return must
match the KeySym in the translation.

Window Management (X11R5): X Toolkit Intrinsics 255
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Translation Table Syntax

Event Types

The event-type field describes XEvent types. In addition to the standard Xlib symbolic event
type names, the following event type synonyms are defined:

Type Meaning
Key KeyPress
KeyDown KeyPress
KeyUp KeyRelease
BtnDown ButtonPress
BtnUp ButtonRelease
Motion MotionNotify
PtrMoved MotionNotify
MouseMoved MotionNotify
Enter EnterNotify
EnterWindow EnterNotify
Leave LeaveNotify
LeaveWindow LeaveNotify
FocusIn FocusIn
FocusOut FocusOut
Keymap KeymapNotify
Expose Expose
GrExp GraphicsExpose
NoExp NoExpose
Visible VisibilityNotify
Create CreateNotify
Destroy DestroyNotify
Unmap UnmapNotify
Map MapNotify
MapReq MapRequest
Reparent ReparentNotify
Configure ConfigureNotify
ConfigureReq ConfigureRequest
Grav GravityNotify
ResReq ResizeRequest
Circ CirculateNotify
CircReq CirculateRequest
Prop PropertyNotify
SelClr SelectionClear
SelReq SelectionRequest
Select SelectionNotify
Clrmap ColormapNotify
Message ClientMessage
Mapping MappingNotify

256 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Translation Table Syntax

The supported abbreviations are:

Abbreviation Event Type Including
Ctrl KeyPress with Control modifier
Meta KeyPress with Meta modifier
Shift KeyPress with Shift modifier
Btn1Down ButtonPress with Button1 detail
Btn1Up ButtonRelease with Button1 detail
Btn2Down ButtonPress with Button2 detail
Btn2Up ButtonRelease with Button2 detail
Btn3Down ButtonPress with Button3 detail
Btn3Up ButtonRelease with Button3 detail
Btn4Down ButtonPress with Button4 detail
Btn4Up ButtonRelease with Button4 detail
Btn5Down ButtonPress with Button5 detail
Btn5Up ButtonRelease with Button5 detail
BtnMotion MotionNotify with any button modifier
Btn1Motion MotionNotify with Button1 modifier
Btn2Motion MotionNotify with Button2 modifier
Btn3Motion MotionNotify with Button3 modifier
Btn4Motion MotionNotify with Button4 modifier
Btn5Motion MotionNotify with Button5 modifier

The detail field is event-specific and normally corresponds to the detail field of the
corresponding event as described by the X Window System Protocol specification. The detail
field is supported for the following event types:

Event Event Field
KeyPress KeySym from event detail (keycode)
KeyRelease KeySym from event detail (keycode)
ButtonPress button from event detail
ButtonRelease button from event detail
MotionNotify event detail
EnterNotify event mode
LeaveNotify event mode
FocusIn event mode
FocusOut event mode
PropertyNotify atom
SelectionClear selection
SelectionRequest selection
SelectionNotify selection
ClientMessage type
MappingNotify request

If the event type is KeyPress or KeyRelease , the detail field specifies a KeySym name in standard
format which is matched against the event as described above; for example, <Key>A.

For the PropertyNotify , SelectionClear , SelectionRequest, SelectionNotify and ClientMessage events
the detail field is specified as an atom name; for example, <Message>WM_PROTOCOLS. For
the MotionNotify , EnterNotify , LeaveNotify , FocusIn, FocusOut and MappingNotify events, either
the symbolic constants as defined by the X Window System Protocol specification, or the
numeric values may be specified.

Window Management (X11R5): X Toolkit Intrinsics 257
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Translation Table Syntax

If no detail field is specified, then any value in the event detail is accepted as a match.

A KeySym can be specified as any of the standard KeySym names, a hexadecimal number
prefixed with ‘‘0x’’ or ‘‘0X’’, an octal number prefixed with ‘‘0’’ or a decimal number. A KeySym
expressed as a single digit is interpreted as the corresponding Latin 1 KeySym; for example, ‘‘0’’
is the KeySym XK_0. Other single character KeySyms are treated as literal constants from Latin
1; for example, ‘‘!’’ is treated as 0x21. Standard KeySym names are as defined in
<X11/keysymdef.h> with the ‘‘XK_’’ prefix removed.

Canonical Representation

Every translation table has a unique, canonical text representation. This representation is passed
to a widget’s display_accelerator procedure to describe the accelerators installed on that widget.
The canonical representation of a translation table is (see also ‘‘Syntax’’).

translationTable = { production }

production = lhs ‘‘:’’ rhs ‘‘\\n’’

lhs = event { ‘‘,’’ event }

event = [modifier_list] ‘‘<’’event_type‘‘>’’ [‘‘(’’ count[‘‘+’’] ‘‘)’’] {detail}

modifier_list = [‘‘!’’] [‘‘:’’] {modifier}

modifier = [‘‘˜’’] modifier_name

count = (‘‘1’’ | ‘‘2’’ | ‘‘3’’ | ‘‘4’’ | ...)

modifier_name = ‘‘@’’ <keysym> | <see canonical modifier names below>

event_type = <see canonical event types below>

detail = <event specific details>

rhs = { name ‘‘(’’ [params] ‘‘)’’ }

name = namechar { namechar }

namechar = { ‘‘a’’-‘‘z’’ | ‘‘A’’-‘‘Z’’ | ‘‘0’’-‘‘9’’ | ‘‘_’’ | ‘‘-’’ }

params = string {‘‘,’’ string}

string = quoted_string

quoted_string = ‘‘"’’ {<Latin 1 character> | escape_char} [‘‘\\\\’’] ‘‘"’’

escape_char = ‘‘\\"’’

The canonical modifier names are:

Ctrl Mod1 Button1
Shift Mod2 Button2
Lock Mod3 Button3

Mod4 Button4
Mod5 Button5

258 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Translation Table Syntax

The canonical event types are:

KeyPress KeyRelease
ButtonPress ButtonRelease
MotionNotify EnterNotify
LeaveNotify FocusIn
FocusOut KeymapNotify
Expose GraphicsExpose,
NoExpose VisibilityNotify
CreateNotify DestroyNotify
UnmapNotify MapNotify
MapRequest ReparentNotify
ConfigureNotify ConfigureRequest
GravityNotify ResizeRequest
CirculateNotify CirculateRequest
PropertyNotify SelectionClear
SelectionRequest SelectionNotify
ColormapNotify ClientMessage

Examples

• Always put more specific events in the table before more general ones:

Shift <Btn1Down> : twas()\n\
<Btn1Down> : brillig()

• For double-click on Button1 Up with Shift, use this specification:

Shift<Btn1Up>(2) : and()

This is equivalent to the following line with appropriate timers set between events:

Shift<Btn1Down>,Shift<Btn1Up>,Shift<Btn1Down>,Shift<Btn1Up> : and()

• For double-click on Button1 Down with Shift, use this specification:

Shift<Btn1Down>(2) : the()

This is equivalent to the following line with appropriate timers set between events:

Shift<Btn1Down>,Shift<Btn1Up>,Shift<Btn1Down> : the()

• Mouse motion is always discarded when it occurs between events in a table where no motion
event is specified:

<Btn1Down>,<Btn1Up> : slithy()

This is taken, even if the pointer moves a bit between the down and up events. Similarly, any
motion event specified in a translation matches any number of motion events. If the motion
event causes an action procedure to be invoked, the procedure is invoked after each motion
event.

• If an event sequence consists of a sequence of events that is also a non-initial subsequence of
another translation, it is not taken if it occurs in the context of the longer sequence. This
occurs mostly in sequences like the following:

<Btn1Down>,<Btn1Up> : toves()\n\
<Btn1Up> : did()

Window Management (X11R5): X Toolkit Intrinsics 259
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Translation Table Syntax

The second translation is taken only if the button release is not preceded by a button press or
if there are intervening events between the press and the release. Be particularly aware of
this when using the repeat notation, above, with buttons and keys, because their expansion
includes additional events; and when specifying motion events, because they are implicitly
included between any two other events. In particular, pointer motion and double-click
translations cannot coexist in the same translation table.

• For single click on Button1 Up with Shift and Meta, use this specification:

Shift Meta <Btn1Down>, Shift Meta<Btn1Up>: gyre()

• For multiple clicks greater or equal to a minimum number, a plus sign (+) may be appended
to the final (rightmost) count in an event sequence. The actions will be invoked on the count-
th click and each subsequent one arriving within the multi-click time interval. For example:

Shift <Btn1Up>(2+) : and()

• To indicate EnterNotify with any modifiers, use this specification:

<Enter> : gimble()

• To indicate EnterNotify with no modifiers, use this specification:

None <Enter> : in()

• To indicate EnterNotify with Button1 Down and Button2 Up and ‘‘don’t care’’ about the other
modifiers, use this specification:

Button1 ˜Button2 <Enter> : the()

• To indicate EnterNotify with Button1 down and Button2 down exclusively, use this
specification:

! Button1 Button2 <Enter> : wabe()

You do not need to use a tilde (˜) with an exclamation point (!).

260 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Appendix C

Compatibility Functions

In prototype versions of the X Toolkit each widget class implemented an Xt<Widget>Create (for
example, XtLabelCreate) function, in which most of the code was identical from widget to
widget. In the Intrinsics, a single generic XtCreateWidget performs most of the common work
and then calls the initialize procedure implemented for the particular widget class.

Each Composite class also implemented the procedures Xt<Widget>Add and an
Xt<Widget>Delete (for example, XtButtonBoxAddButton and XtButtonBoxDeleteButton). In the
Intrinsics, the Composite generic procedures XtManageChildren and XtUnmanageChildren
perform error checking and screening out of certain children. Then they call the
change_managed procedure implemented for the widget’s Composite class. If the widget’s
parent has not yet been realized, the call to the change_managed procedure is delayed until
realisation time.

Old style calls can be implemented in the X Toolkit by defining one-line procedures or macros
that invoke a generic routine. For example, you could define the macro XtLabelCreate as:

#define XtLabelCreate(name, parent , args , num_args) \
((LabelWidget) XtCreateWidget(name, labelWidgetClass ,
parent , args , num_args))

Pop-up shells in some of the prototypes automatically performed an XtManageChild on their
child within their insert_child procedure. Creators of pop-up children need to call
XtManageChild themselves.

As a convenience to people converting from earlier versions of the toolkit without application
contexts, the following routines exist: XtInitialize , XtMainLoop , XtNextEvent, XtProcessEvent,
XtPeekEvent, XtPending , XtAddInput , XtAddTimeOut, XtAddWorkProc , XtCreateApplicationShell ,
XtAddActions , XtSetSelectionTimeout and XtGetSelectionTimeout.

Widget XtInitialize(shell_name , application_class , options ,
num_options , argc , argv)

String shell_name ;
String application_class ;
XrmOptionDescRec options [];
Cardinal num_options ;
int * argc ;
String argv [];

shell_name This parameter is ignored; therefore, you can specify NULL.

application_class Specifies the class name of this application.

options Specifies how to parse the command line for any application-specific
resources. The options argument is passed as a parameter to
XrmParseCommand .

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line parameters.

argv Specifies the command line parameters.

XtInitialize calls XtToolkitInitialize to initialize the toolkit internals, creates a default application
context for use by the other convenience routines, calls XtOpenDisplay with display_string NULL

Window Management (X11R5): X Toolkit Intrinsics 261
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Compatibility Functions

and application_name NULL, and finally calls XtAppCreateShell with application_name NULL and
returns the created shell. The semantics of calling XtInitialize more than once are undefined.
This routine has been replaced by XtAppInitialize .

void XtMainLoop(void)

XtMainLoop first reads the next alternate input, timer or X event by calling XtNextEvent. Then it
dispatches this to the appropriate registered procedure by calling XtDispatchEvent . This routine
has been replaced by XtAppMainLoop .

void XtNextEvent(event_return)
XEvent * event_return ;

event_return Returns the event information to the specified event structure.

If no input is on the X input queue for the default application context, XtNextEvent flushes the X
output buffer and waits for an event while looking at the alternate input sources and timeout
values and calling any callback procedures triggered by them. This routine has been replaced by
XtAppNextEvent. XtInitialize must be called before using this routine.

void XtProcessEvent(mask)
XtInputMask mask;

mask Specifies the type of input to process.

XtProcessEvent processes one X event, timeout or alternate input source (depending on the value
of mask), blocking if necessary. It has been replaced by XtAppProcessEvent. XtInitialize must be
called before using this function.

Boolean XtPeekEvent(event_return)
XEvent * event_return ;

event_return Returns the event information to the specified event structure.

If there is an event in the queue for the default application context, XtPeekEvent fills in the event
and returns a non-zero value. If no X input is on the queue, XtPeekEvent flushes the output
buffer and blocks until input is available, possibly calling some timeout callbacks in the process.
If the input is an event, XtPeekEvent fills in the event and returns a non-zero value. Otherwise,
the input is for an alternate input source, and XtPeekEvent returns zero. This routine has been
replaced by XtAppPeekEvent. XtInitialize must be called before using this routine.

Boolean XtPending()

XtPending returns a non-zero value if there are events pending from the X server or alternate
input sources in the default application context. If there are no events pending, it flushes the
output buffer and returns a zero value. It has been replaced by XtAppPending . XtInitialize must
be called before using this routine.

XtInputId XtAddInput(source , condition , proc ,
client_data)

int source ;
XtPointer condition ;
XtInputCallbackProc proc ;
XtPointer client_data ;

source Specifies the source file descriptor on a POSIX-based system or other
operating-system-dependent device specification.

condition Specifies the mask that indicates either a read, write or exception condition or
some operating-system-dependent condition.

262 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Compatibility Functions

proc Specifies the procedure called when input is available.

client_data Specifies the parameter to be passed to proc when input is available.

The XtAddInput function registers in the default application context a new source of events,
which is usually file input but can also be file output. (The word file should be loosely
interpreted to mean any sink or source of data.) XtAddInput also specifies the conditions under
which the source can generate events. When input is pending on this source in the default
application context, the callback procedure is called. This routine has been replaced by
XtAppAddInput . XtInitialize must be called before using this routine.

XtIntervalId XtAddTimeOut(interval , proc , client_data)
unsigned long interval ;
XtTimerCallbackProc proc ;
XtPointer client_data ;

interval Specifies the time interval in milliseconds.

proc Specifies the procedure to be called when time expires.

client_data Specifies the parameter to be passed to proc when it is called.

The XtAddTimeOut function creates a timeout in the default application context and returns an
identifier for it. The timeout value is set to interval. The callback procedure will be called after
the time interval elapses, after which the timeout is removed. This routine has been replaced by
XtAppAddTimeOut. XtInitialize must be called before using this routine.

XtWorkProcId XtAddWorkProc(proc , client_data)
XtWorkProc proc ;
XtPointer client_data ;

proc Procedure to call to do the work.

client_data Client data to pass to proc when it is called.

This routine registers a work procedure in the default application context. It has been replaced
by XtAppAddWorkProc . XtInitialize must be called before using this routine.

Widget XtCreateApplicationShell(name, widget_class , args ,
num_args)

String name;
WidgetClass widget_class ;
ArgList args ;
Cardinal num_args ;

name This parameter is ignored; therefore, you can specify NULL.

widget_class Specifies the widget class pointer for the created application shell widget.
This will usually be topLevelShellWidgetClass or a subclass thereof.

args Specifies the argument list to override any other resource specifications.

num_args Specifies the number of entries in args.

The procedure XtCreateApplicationShell calls XtAppCreateShell with application_name NULL, the
application class passed to XtInitialize , and the default application context created by
XtInitialize . This routine has been replaced by XtAppCreateShell .

An old-format resource type converter procedure pointer is of type XtConverter.

Window Management (X11R5): X Toolkit Intrinsics 263
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Compatibility Functions

typedef void (*XtConverter)(XrmValue*, Cardinal*, XrmValue*, XrmValue*);
XrmValue * args ;
Cardinal * num_args ;
XrmValue * from ;
XrmValue * to ;

args Specifies a list of additional XrmValue arguments to the converter if additional
context is needed to perform the conversion, or NULL.

num_args Specifies the number of entries in args.

from Specifies the value to convert.

to Specifies the descriptor to use to return the converted value.

Type converters should perform the following actions:

• Check to see that the number of arguments passed is correct.

• Attempt the type conversion.

• If successful, return the size and pointer to the data in the to argument; otherwise, call
XtWarningMsg and return without modifying the to argument.

Most type converters just take the data described by the specified from argument and return data
by writing into the specified to argument. A few need other information, which is available in
the specified argument list. A type converter can invoke another type converter, which allows
differing sources that may convert into a common intermediate result to make maximum use of
the type converter cache.

Note that the address returned in to->addr cannot be that of a local variable of the converter
because this is not valid after the converter returns. It should be a pointer to a static variable.

The procedure type XtConverter has been replaced by XtTypeConverter.

The XtStringConversionWarning function is a convenience routine for old-format resource
converters that convert from strings.

void XtStringConversionWarning(src , dst_type)
String src , dst_type ;

src Specifies the string that could not be converted.

dst_type Specifies the name of the type to which the string could not be converted.

The XtStringConversionWarning function issues a warning message with name
‘‘conversionError’’, type ‘‘string’’, class ‘‘XtToolkitError, and the default message string ‘‘Cannot
convert "src" to type dst_type’’. This routine has been superseded by
XtDisplayStringConversionWarning .

To register an old-format converter, use XtAddConverter or XtAppAddConverter .

void XtAddConverter(from_type , to_type , converter ,
convert_args , num_args)

String from_type ;
String to_type ;
XtConverter converter ;
XtConvertArgList convert_args ;
Cardinal num_args ;

from_type Specifies the source type.

264 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Compatibility Functions

to_type Specifies the destination type.

converter Specifies the type converter procedure.

convert_args Specifies how to compute the additional arguments to the converter, or NULL.

num_args Specifies the number of entries in convert_args.

XtAddConverter is equivalent in function to XtSetTypeConverter with cache_type equal to
XtCacheAll for old-format type converters. It has been superseded by XtSetTypeConverter.

void XtAppAddConverter(app_context , from_type , to_type , \
converter , convert_args , num_args)

XtAppContext app_context ;
String from_type ;
String to_type ;
XtConverter converter ;
XtConvertArgList convert_args ;
Cardinal num_args ;

app_context Specifies the application context.

from_type Specifies the source type.

to_type Specifies the destination type.

converter Specifies the type converter procedure.

convert_args Specifies how to compute the additional arguments to the converter, or NULL.

num_args Specifies the number of entries in convert_args.

XtAppAddConverter is equivalent in function to XtAppSetTypeConverter with cache_type equal to
XtCacheAll for old-format type converters. It has been superseded by XtAppSetTypeConverter.

To invoke resource conversions, a client may use XtConvert or, for old-format converters only,
XtDirectConvert .

void XtConvert(w, from_type , from , to_type ,
to_return)

Widget w;
String from_type ;
XrmValuePtr from ;
String to_type ;
XrmValuePtr to_return ;

w Specifies the widget to use for additional arguments, if any are needed.

from_type Specifies the source type.

from Specifies the value to be converted.

to_type Specifies the destination type.

to_return Returns the converted value.

Window Management (X11R5): X Toolkit Intrinsics 265
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Compatibility Functions

void XtDirectConvert(converter , args , num_args , from ,
to_return)

XtConverter converter ;
XrmValuePtr args ;
Cardinal num_args ;
XrmValuePtr from ;
XrmValuePtr to_return ;

converter Specifies the conversion procedure to be called.

args Specifies the argument list that contains the additional arguments needed to
perform the conversion (often NULL).

num_args Specifies the number of entries in args.

from Specifies the value to be converted.

to_return Returns the converted value.

The XtConvert function looks up the type converter registered to convert from_type to to_type,
computes any additional arguments needed, and then calls XtDirectConvertor XtCallConverter .
The XtDirectConvert function looks in the converter cache to see if this conversion procedure has
been called with the specified arguments. If so, it returns a descriptor for information stored in
the cache; otherwise, it calls the converter and enters the result in the cache.

Before calling the specified converter, XtDirectConvert sets the return value size to zero and the
return value address to NULL. To determine if the conversion was successful, the client should
check to_return.addr for non-NULL. The data returned by XtConvert must be copied immediately
by the caller, as it may point to static data in the type converter.

XtConvert has been replaced by XtConvertAndStore , and XtDirectConvert has been superseded by
XtCallConverter .

To deallocate a shared GC when it is no longer needed, use XtDestroyGC.

void XtDestroyGC(w, gc)
Widget w;
GC gc ;

w Specifies any object on the display for which the shared GC was created. Must
be of a classObject or any subclass thereof.

gc Specifies the shared GC to be deallocated.

References to sharable GCs are counted and a free request is generated to the server when the
last user of a given GC destroys it. Note that some earlier versions of XtDestroyGC had only a gc
argument. Therefore, this function is not very portable, and you are encouraged to use
XtReleaseGC instead.

To declare an action table in the default application context and register it with the translation
manager, use XtAddActions .

void XtAddActions(actions , num_actions)
XtActionList actions ;
Cardinal num_actions ;

actions Specifies the action table to register.

num_actions Specifies the number of entries in actions.

266 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Compatibility Functions

If more than one action is registered with the same name, the most recently registered action is
used. If duplicate actions exist in an action table, the first is used. The Intrinsics register an
action table for XtMenuPopup and XtMenuPopdown as part of X Toolkit initialisation. This
routine has been replaced by XtAppAddActions . XtInitialize must be called before using this
routine.

To set the Intrinsics selection timeout in the default application context, use
XtSetSelectionTimeout .

void XtSetSelectionTimeout(timeout)
unsigned long timeout ;

timeout Specifies the selection timeout in milliseconds. This routine has been replaced
by XtAppSetSelectionTimeout. XtInitialize must be called before using this
routine.

To get the current selection timeout value in the default application context, use
XtGetSelectionTimeout .

unsigned long XtGetSelectionTimeout()

The selection timeout is the time within which the two communicating applications must
respond to one another. If one of them does not respond within this interval, the Intrinsics abort
the selection request.

This routine has been replaced by XtAppGetSelectionTimeout. XtInitialize must be called before
using this routine.

To obtain the global error database (for example, to merge with an application- or widget-
specific database), use XtGetErrorDatabase.

XrmDatabase *XtGetErrorDatabase()

The XtGetErrorDatabase function returns the address of the error database. The Intrinsics do a
lazy binding of the error database and do not merge in the database file until the first call to
XtGetErrorDatbaseText. This routine has been replaced by XtAppGetErrorDatabase.

An error message handler can obtain the error database text for an error or a warning by calling
XtGetErrorDatabaseText.

void XtGetErrorDatabaseText(name, type , class ,
default , buffer_return , nbytes)

String name, type , class ;
String default ;
String buffer_return ;
int nbytes ;

name
type Specify the name and type that are concatenated to form the resource name of

the error message.

class Specifies the resource class of the error message.

default Specifies the default message to use if an error database entry is not found.

buffer_return Specifies the buffer into which the error message is to be returned.

nbytes Specifies the size of the buffer in bytes.

The XtGetErrorDatabaseText returns the appropriate message from the error database associated
with the default application context or returns the specified default message if one is not found

Window Management (X11R5): X Toolkit Intrinsics 267
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Compatibility Functions

in the error database. To form the full resource name and class when querying the database, the
name and type are concatenated with a single ‘‘.’’ between them and the class is concatenated
with itself with a single ‘‘.’’ if it does not already contain a ‘‘.’’. This routine has been superseded
by XtAppGetErrorDatabaseText.

To register a procedure to be called on fatal error conditions, use XtSetErrorMsgHandler.

void XtSetErrorMsgHandler(msg_handler)
XtErrorMsgHandler msg_handler ;

msg_handler Specifies the new fatal error procedure, which should not return.

The default error handler provided by the Intrinsics constructs a string from the error resource
database and calls XtError. Fatal error message handlers should not return. If one does,
subsequent Intrinsics behaviour is undefined. This routine has been superseded by
XtAppSetErrorMsgHandler.

To call the high-level error handler, use XtErrorMsg.

void XtErrorMsg(name, type , class , default ,
params , num_params)

String name;
String type ;
String class ;
String default ;
String * params ;
Cardinal * num_params ;

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.

params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of entries in params.

This routine has been superseded by XtAppErrorMsg.

To register a procedure to be called on non-fatal error conditions, use XtSetWarningMsgHandler .

void XtSetWarningMsgHandler(msg_handler)
XtErrorMsgHandler msg_handler ;

msg_handler Specifies the new non-fatal error procedure, which usually returns.

The default warning handler provided by the Intrinsics constructs a string from the error
resource database and calls XtWarning . This routine has been superseded by
XtAppSetWarningMsgHandler .

To call the installed high-level warning handler, use XtWarningMsg .

268 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Compatibility Functions

void XtWarningMsg(name, type , class , default ,
params , num_params)

String name;
String type ;
String class ;
String default ;
String * params ;
Cardinal * num_params ;

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.

params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of entries in params.

This routine has been superseded by XtAppWarningMsg .

To register a procedure to be called on fatal error conditions, use XtSetErrorHandler.

void XtSetErrorHandler(handler)
XtErrorHandler handler ;

handler Specifies the new fatal error procedure, which should not return.

The default error handler provided by the Intrinsics is _XtError. On POSIX-based systems, it
prints the message to standard error and terminates the application. Fatal error message
handlers should not return. If one does, subsequent X Toolkit behaviour is undefined. This
routine has been superseded by XtAppSetErrorHandler.

To call the installed fatal error procedure, use XtError.

void XtError(message)
String message ;

message Specifies the message to be reported.

Most programs should use XtAppErrorMsg, not XtError, to provide for customisation and
internationalisation of error messages. This routine has been superseded by XtAppError.

To register a procedure to be called on non-fatal error conditions, use XtSetWarningHandler .

void XtSetWarningHandler(handler)
XtErrorHandler handler ;

handler Specifies the new non-fatal error procedure, which usually returns.

The default warning handler provided by the Intrinsics is _XtWarning . On POSIX-based
systems, it prints the message to standard error and returns to the caller. This routine has been
superseded by XtAppSetWarningHandler .

To call the installed non-fatal error procedure, use XtWarning .

void XtWarning(message)
String message ;

message Specifies the non-fatal error message to be reported.

Window Management (X11R5): X Toolkit Intrinsics 269
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Compatibility Functions

Most programs should use XtAppWarningMsg , not XtWarning , to provide for customisation and
internationalisation of warning messages. This routine has been superseded by XtAppWarning .

270 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Appendix D

Intrinsics Error Messages

All Intrinsics errors and warnings have class ‘‘XtToolkitError’’. The following two tables
summarize the common errors and warnings that can be generated by the Intrinsics. Additional
implementation-dependent messages are permitted.

Error Messages

Name Type Default Message
allocError calloc Cannot perform calloc
allocError malloc Cannot perform malloc
allocError realloc Cannot perform realloc
communicationError select Select failed
internalError shell Shell’s window manager interaction is broken

Argument count > 0 on NULL argument list in
XtGetValues

invalidArgCount xtGetValues

Argument count > 0 on NULL argument list in
XtSetValues

invalidArgCount xtSetValues

Subclass of Constraint required in
CallConstraintSetValues

invalidClass constraintSetValue

XtAppCreateShell requires non-NULL widget
class

invalidClass xtAppCreateShell

XtCreatePopupShell requires non-NULL
widget class

invalidClass xtCreatePopupShell

XtCreateWidget requires non-NULL widget
class

invalidClass xtCreateWidget

XtPopdown requires a subclass of
shellWidgetClass

invalidClass xtPopdown

XtPopup requires a subclass of
shellWidgetClass

invalidClass xtPopup

invalidDimension xtCreateWindow Widget %s has zero width and/or height
Shell widget %s has zero width and/or heightinvalidDimension shellRealize

invalidDisplay xtInitialize Can’t Open display
XtMakeGeometryRequest - parent has no
geometry manger

invalidGeometryManager xtMakeGeometryRequest

RemovePopupFromParent requires non-
NULL popuplist

invalidParameter removePopupFromParent

invalidParameter xtAddInput invalid condition passed to XtAddInput
invalidParameters xtMenuPopupAction MenuPopup wants exactly one argument
invalidParent realize Application shell is not a windowed widget?

XtCreatePopupShell requires non-NULL
parent

invalidParent xtCreatePopupShell

invalidParent xtCreateWidget XtCreateWidget requires non-NULL parent
XtMakeGeometryRequest - NULL parent. Use
SetValues instead

invalidParent xtMakeGeometryRequest

XtMakeGeometryRequest - parent not
composite

invalidParent xtMakeGeometryRequest

Window Management (X11R5): X Toolkit Intrinsics 271
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Intrinsics Error Messages

Name Type Default Message
Attempt to manage a child when parent is not
Composite

invalidParent xtManageChildren

Attempt to unmanage a child when parent is
not Composite

invalidParent xtUnmanageChildren

invalidProcedure inheritanceProc Unresolved inheritance operation
invalidProcedure realizeProc No realize class procedure defined
invalidWindow eventHandler Event with wrong window
missingEvent shell Events are disappearing from under Shell

Couldn’t find ancestor with display
information

noAppContext widgetToApplicationContext

noPerDisplay closeDisplay Couldn’t find per display information
noPerDisplay getPerDisplay Couldn’t find per display information

internal error: no selection property context
for display

noSelectionProperties freeSelectionProperty

nullProc insertChild NULL insert_child procedure
Widget class %s found when subclass of %s
expected: %s

subclassMismatch xtCheckSubclass

Trying to merge translation tables with cycles,
and can’t resolve this cycle.

translationError mergingTablesWithCycles

Warning Messages

Name Type Default Message
Not all children have same parent in
XtManageChildren

ambiguousParent xtManageChildren

Not all children have same parent in
XtUnmanageChildren

ambiguousParent xtUnmanageChildren

communicationError windowManager Window Manager is confused
conversionError string Cannot convert string "%s" to type %s
displayError invalidDisplay Can’t find display structure

XtAddGrab requires exclusive grab if
spring_loaded is TRUE

grabError xtAddGrab

XtAddGrab requires exclusive grab if
spring_loaded is TRUE

grabError grabDestroyCallback

XtRemoveGrab asked to remove a widget not
on the grab list

grabError xtRemoveGrab

initializationError xtInitialize Initizlising Resource Lists twice
invalidArgCount getResources Argument count > 0 on NULL argument list

Cannot find callback list in XtAddCallbacksInvalidCallbackList xtAddCallbacks
Cannot find callback list in XtCallCallbacksinvalidCallbackList xtCallCallback
Cannot find callback list in
XtOverrideCallbacks

invalidCallbackList xtOverrideCallback

Cannot find callback list in
XtRemoveAllCallbacks

invalidCallbackList xtRemoveAllCallback

Cannot find callback list in
XtRemoveCallbacks

invalidCallbackList xtRemoveCallbacks

invalidChild xtManageChildren null child passed to XtManageChildren
T}
invalidChild xtUnmanageChildren Null child passed to XtUnmanageChildren

272 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Intrinsics Error Messages

Name Type Default Message
invalidDepth setValues Can’t change widget depth

Shell subclass did not take care of geometry in
XtSetValues

invalidGeometry xtMakeGeometryRequest

String to AcceleratorTable needs no extra
arguments

invalidParameters compileAccelerators

String to TranslationTable needs no extra
arguments

invalidParameters compileTranslations

MergeTM to TranslationTable needs no extra
arguments

invalidParameters mergeTranslations

XtMenuPopdown called with num_params !=
0 or 1

invalidParameters xtMenuPopdown

invalidParent xtCopyFromParent CopyFromParent must have non-NULL parent
invalidPopup xtMenuPopup Can’t find popup in _XtMenuPopup
invalidPopup xtMenuPopdown Can’t find popup in _XtMenuPopdown

Pop-up menu creation is only supported on
ButtonPress or EnterNotify events.

invalidPopup unsupportedOperation

Pop-up menu creation is only supported on
ButtonPress or EnterNotify events.

invalidPopup unsupportedOperation

invalidProcedure deleteChild null delete_child procedure in XtDestroy
invalidProcedure inputHandler XtRemoveInput: Input handler not found

set_values_almost procedure shouldn’t be
NULL

invalidProcedure set_values_almost

resource count > 0 on NULL resource listinvalidResourceCount getResources
Cannot find resource name %s as argument to
conversion

invalidResourceName computeArgs

invalidShell xtTranslateCoords Widget has no shell ancestor
Representation size %d must match
superclass’s to override %s

invalidSizeOverride xtDependencies

Representation type %s must match
superclass’s to override %s

invalidTypeOverride xtDependencies

RemovePopupFromParent,widget not on
parent list

invalidWidget removePopupFromParent

Missing charsets in String to FontSet
conversion

missingCharsetList cvtStringToFontSet

noColormap cvtStringToPixel Cannot allocate colormap entry for "%s"
Attempt to change already registered window.registerWindowError xtRegisterWindow

registerWindowError xtUnregisterWindow Attempt to unregister invalid window.
translation error nullTable Can’t remove accelerators from NULL table
translation error nullTable Tried to remove non-existent accelerators

Overriding earlier translation manager actions.translationError ambiguousActions
Old translation table was null, cannot modify.translationError mergingNullTable

translationError nullTable Can’t translate event through NULL table
translationError unboundActions Actions not found: %s

Initializing Translation manager twice.translationError xtTranslateInitialize
translationParseError showLine ... found while parsing ’%s’
translationParseError parseError translation table syntax error: %s
translationParseError parseString Missing ’\’.

No type converter registered for ’%s’ to ’%s’
conversion.

typeConversionError noConverter

Widget class %s version mismatch:0idget %d
vs. intrinsics %d.

versionMismatch widget

Window Management (X11R5): X Toolkit Intrinsics 273
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Intrinsics Error Messages

Name Type Default Message
Pixel to color conversion needs screen and
colormap arguments

wrongParameters cvtIntOrPixelToXColor

Integer to Bool conversion needs no extra
arguments

wrongParameters cvtIntToBool

Integer to Boolean conversion needs no extra
arguments

wrongParameters cvtIntToBoolean

Integer to Font conversion needs no extra
arguments

wrongParameters cvtIntToFont

Integer to Pixel conversion needs no extra
arguments

wrongParameters cvtIntToPixel

Integer to Pixmap conversion needs no extra
arguments

wrongParameters cvtIntToPixmap

Integer to Short conversion needs no extra
arguments

wrongParameters cvtIntToShort

String to Bool conversion needs no extra
arguments

wrongParameters cvtStringToBool

String to Boolean conversion needs no extra
arguments

wrongParameters cvtStringToBoolean

String to cursor conversion needs screen
argument

wrongParameters cvtStringToCursor

String to Display conversion needs no extra
arguments

wrongParameters cvtStringToDisplay

String to File conversion needs no extra
arguments

wrongParameters cvtStringToFile

String to font conversion needs screen
argument

wrongParameters cvtStringToFont

String to FontSet conversion needs display
and locale arguments

wrongParameters cvtStringToFontSet

String to cursor conversion needs screen
argument

wrongParameters cvtStringToFontStruct

String to Integer conversion needs no extra
arguments

wrongParameters cvtStringToInt

String to pixel conversion needs screen and
colormap arguments

wrongParameters cvtStringToPixel

String to Integer conversion needs no extra
arguments

wrongParameters cvtStringToShort

String to Integer conversion needs no extra
arguments

wrongParameters cvtStringToUnsignedChar

Color to Pixel conversion needs no extra
arguments

wrongParameters cvtXColorToPixel

274 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Appendix E

Defined Strings

The StringDefs.h header file contains definitions for the following resource name, class and
representation type symbolic constants.

Resource Names

Symbol Definition
XtNaccelerators "accelerators"
XtNallowHoriz "allowHoriz"
XtNallowVert "allowVert"
XtNancestorSensitive "ancestorSensitive"
XtNbackground "background"
XtNbackgroundPixmap "backgroundPixmap"
XtNbitmap "bitmap"
XtNborderColor "borderColor"
XtNborder "borderColor"
XtNborderPixmap "borderPixmap"
XtNborderWidth "borderWidth"
XtNcallback "callback"
XtNchildren "children"
XtNcolormap "colormap"
XtNdepth "depth"
XtNdestroyCallback "destroyCallback"
XtNeditType "editType"
XtNfile "file"
XtNfont "font"
XtNfontSet "fontSet"
XtNforceBars "forceBars"
XtNforeground "foreground"
XtNfunction "function"
XtNheight "height"
XtNhighlight "highlight"
XtNhSpace "hSpace"
XtNindex "index"
XtNinitialResourcesPersistent "initialResourcesPersistent"
XtNinnerHeight "innerHeight"
XtNinnerWidth "innerWidth"
XtNinnerWindow "innerWindow"
XtNinsertPosition "insertPosition"
XtNinternalHeight "internalHeight"
XtNinternalWidth "internalWidth"
XtNjumpProc "jumpProc"
XtNjustify "justify"
XtNknobHeight "knobHeight"

Window Management (X11R5): X Toolkit Intrinsics 275
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Defined Strings

Symbol Definition
XtNknobIndent "knobIndent"
XtNknobPixel "knobPixel"
XtNknobWidth "knobWidth"
XtNlabel "label"
XtNlength "length"
XtNlowerRight "lowerRight"
XtNmappedWhenManaged "mappedWhenManaged"
XtNmenuEntry "menuEntry"
XtNname "name"
XtNnotify "notify"
XtNnumChildren "numChildren"
XtNorientation "orientation"
XtNparameter "parameter"
XtNpixmap "pixmap"
XtNpopupCallback "popupCallback"
XtNpopdownCallback "popdownCallback"
XtNresize "resize"
XtNreverseVideo "reverseVideo"
XtNscreen "screen"
XtNscrollProc "scrollProc"
XtNscrollDCursor "scrollDCursor"
XtNscrollHCursor "scrollHCursor"
XtNscrollLCursor "scrollLCursor"
XtNscrollRCursor "scrollRCursor"
XtNscrollUCursor "scrollUCursor"
XtNscrollVCursor "scrollVCursor"
XtNselection "selection"
XtNselectionArray "selectionArray"
XtNsensitive "sensitive"
XtNshown "shown"
XtNspace "space"
XtNstring "string"
XtNtextOptions "textOptions"
XtNtextSink "textSink"
XtNtextSource "textSource"
XtNthickness "thickness"
XtNthumb "thumb"
XtNthumbProc "thumbProc"
XtNtop "top"
XtNtranslations "translations"
XtNunrealizeCallback "unrealizeCallback"
XtNupdate "update"
XtNuseBottom "useBottom"
XtNuseRight "useRight"
XtNvalue "value"
XtNvSpace "vSpace"
XtNwidth "width"

276 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Defined Strings

Symbol Definition
XtNwindow "window"
XtNx "x"
XtNy "y"

Resource Classes

Symbol Definition
XtCAccelerators "Accelerators"
XtCBackground "Background"
XtCBitmap "Bitmap"
XtCBoolean "Boolean"
XtCBorderColor "BorderColor"
XtCBorderWidth "BorderWidth"
XtCCallback "Callback"
XtCColormap "Colormap"
XtCColor "Color"
XtCCursor "Cursor"
XtCDepth "Depth"
XtCEditType "EditType"
XtCEventBindings "EventBindings"
XtCFile "File"
XtCFont "Font"
XtCFontSet "FontSet"
XtCForeground "Foreground"
XtCFraction "Fraction"
XtCFunction "Function"
XtCHeight "Height"
XtCHSpace "HSpace"
XtCIndex "Index"
XtCInitialResourcesPersistent "InitialResourcesPersistent"
XtCInsertPosition "InsertPosition"
XtCInterval "Interval"
XtCJustify "Justify"
XtCKnobIndent "KnobIndent"
XtCKnobPixel "KnobPixel"
XtCLabel "Label"
XtCLength "Length"
XtCMappedWhenManaged "MappedWhenManaged"
XtCMargin "Margin"
XtCMenuEntry "MenuEntry"
XtCNotify "Notify"
XtCOrientation "Orientation"
XtCParameter "Parameter"
XtCPixmap "Pixmap"
XtCPosition "Position"
XtCReadOnly "ReadOnly"

Window Management (X11R5): X Toolkit Intrinsics 277
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Defined Strings

Symbol Definition
XtCResize "Resize"
XtCReverseVideo "ReverseVideo"
XtCScreen "Screen"
XtCScrollProc "ScrollProc"
XtCScrollDCursor "ScrollDCursor"
XtCScrollHCursor "ScrollHCursor"
XtCScrollLCursor "ScrollLCursor"
XtCScrollRCursor "ScrollRCursor"
XtCScrollUCursor "ScrollUCursor"
XtCScrollVCursor "ScrollVCursor"
XtCSelection "Selection"
XtCSensitive "Sensitive"
XtCSelectionArray "SelectionArray"
XtCSpace "Space"
XtCString "String"
XtCTextOptions "TextOptions"
XtCTextPosition "TextPosition"
XtCTextSink "TextSink"
XtCTextSource "TextSource"
XtCThickness "Thickness"
XtCThumb "Thumb"
XtCTranslations "Translations"
XtCValue "Value"
XtCVSpace "VSpace"
XtCWidth "Width"
XtCWindow "Window"
XtCX "X"
XtCY "Y"

Resource Representation Types

Symbol Definition
XtRAcceleratorTable "AcceleratorTable"
XtRAtom "Atom"
XtRBitmap "Bitmap"
XtRBool "Bool"
XtRBoolean "Boolean"
XtRCallback "Callback"
XtRCallProc "CallProc"
XtRCardinal "Cardinal"
XtRColor "Color"
XtRColormap "Colormap"
XtRCursor "Cursor"
XtRDimension "Dimension"
XtRDisplay "Display"
XtREditMode "EditMode"

278 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Defined Strings

Symbol Definition
XtREnum "Enum"
XtRFile "File"
XtRFloat "Float"
XtRFont "Font"
XtRFontSet "FontSet"
XtRFontStruct "FontStruct"
XtRFunction "Function"
XtRGeometry "Geometry"
XtRImmediate "Immediate"
XtRInitialState "InitialState"
XtRInt "Int"
XtRJustify "Justify"
XtRLongBoolean XtRBool
XtRObject "Object"
XtROrientation "Orientation"
XtRPixel "Pixel"
XtRPixmap "Pixmap"
XtRPointer "Pointer"
XtRPosition "Position"
XtRScreen "Screen"
XtRShort "Short"
XtRString "String"
XtRStringArray "StringArray"
XtRStringTable "StringTable"
XtRUnsignedChar "UnsignedChar"
XtRTranslationTable "TranslationTable"
XtRVisual "Visual"
XtRWidget "Widget"
XtRWidgetClass "WidgetClass"
XtRWidgetList "WidgetList"
XtRWindow "Window"

Boolean Enumeration Constants

Symbol Definition
XtEoff "off"
XtEfalse "false"
XtEno "no"
XtEon "on"
XtEtrue "true"
XtEyes "yes"

Window Management (X11R5): X Toolkit Intrinsics 279
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Defined Strings

Orientation Enumeration Constants

Symbol Definition
XtEvertical "vertical"
XtEhorizontal "horizontal"

Text Edit Enumeration Constants

Symbol Definition
XtEtextRead "read"
XtEtextAppend "append"
XtEtextEdit "edit"

Color Enumeration Constants

Symbol Definition
XtExtdefaultbackground "xtdefaultbackground"
XtExtdefaultforeground "xtdefaultforeground"

Font Constant

Symbol Definition
XtExtdefaultfont "xtdefaultfont"

280 X/Open CAE Specification
 1995, X/Open Company Limited. Stamp:XXXXXXXXXXXXXXXXXXXXXXXX

Index

$HOME...44
_XtDefaultError ..227
_XtDefaultErrorMsg ..226
_XtDefaultWarning..228
_XtDefaultWarningMsg..226
Accelerator ...192
accept_focus procedure ..124
Action Table...184
actions ...185
action_proc procedure...184
application context ...38
ApplicationShell ...79
ApplicationShellWidget..85
Arg...49
ArgList ..49
Boolean ...21
Cardinal ..21
Chaining...56, 58, 156

Subclass ..30
superclass...30

change_managed procedure..................................73
Class Initialisation ..32
class_initialize procedure32, 156
class_name ...26
Composite ..16
Composite widgets ..69
CompositeClassExtension17
CompositeClassExtensionRec17
CompositeClassPart...16
CompositePart...17
CompositeWidget...17

Resources ...18
CompositeWidgetClass...17
compress_enterleave field131
compress_expose field ..131
compress_motion field..131
Configure Window ..101
Constraint...18

get_values_hook...78
ConstraintClassExtension.......................................19
ConstraintClassExtensionRec19
ConstraintClassPart ...18
ConstraintPart ...20
ConstraintWidget ...20
ConstraintWidgetClass ...19
Core..12-13

CoreClassPart ..12
CorePart..14
CoreWidget..14

Resources ...15
CoreWidgetClass ..13
create_popup_child_proc96
delete_child procedure..72
Destroy Callbacks ..65, 141
destroy procedure ..65
destroyCallback ..173
Dimension..21
display_accelerator procedure192
Events..125
expose procedure ...133
Geometry Management ..101
geometry_manager procedure101
get_values_hook procedure78, 174-175
Grabbing Input..118
Inheritance.......................................30, 56, 58, 60, 156
Initialisation...32, 56, 58
initialize procedure ..56, 58
initialize_hook procedure.......................................58
Input Grabbing..118
insert_child procedure........................35, 70, 93, 261
key modifier...255
language procedure ...41
MenuPopdown ...100
MenuPopup ...97
multiClickTime ...189
Object ..234
ObjectClass ..234
objectClass ...234
ObjectClassPart...234
ObjectClassRec..234
ObjectPart...235
ObjectRec..235
pop-up...91

child...91, 93
list ..91
shell ...93

Position ...21
query_geometry procedure..................................111
realize procedure ..61
RectObj ...238
RectObjClass..238
RectObjClassPart ..238

Window Management (X11R5): X Toolkit Intrinsics 281

Index

RectObjClassRec ...238
RectObjPart ..239
RectObjRec...239
resize procedure..113
Resource Management..150
Resources

multiClickTime ...189
reverseVideo..161
selectionTimeout ..47
synchronous ..47
xnlLanguage..43
xtDefaultFont ..161
xtDefaultFontSet...162

root_geometry_manager procedure.....................83
Selections

atomic ...210
incremental ..215
MULTIPLE ...210
TIMESTAMP ...210

selectionTimeout ..47, 209
set_values procedure.....................................177, 180
set_values_almost procedure179
set_values_hook procedure177, 181
Shell ...79

create_popup_child_proc96
root_geometry_manager83
wm_timeout ..83

ShellClassExtension ...80
ShellClassExtensionRec ..80
ShellPart..83
ShellWidget..85

Resources ...86
String Constants

miscellaneous..280
representation types ..278
resource classes...277
resource names ...275

Subclass Chaining ..30
Substitution..230
superclass ...26
Superclass Chaining............................30, 56, 58, 156
synchronous...47
TopLevelShell

resources...87
TransientShell

resources...87
Translation tables ...188, 253
unrealizeCallback ...63
varargs ..50
version...27
Visibility ...134

VisibilityNotify ...134
Widget...14

class extension records..35
class initialisation...33, 156

WidgetClass...13
widget_class ..22
widget_size ..27
WMShell

resources...86
WM_COLORMAP_WINDOWS229
wm_timeout ..83
XAPPLRESDIR..44
XFILESEARCHPATH ..232
xnlLanguage..43, 231
XrmOptionDescRec ...46
XtAcceptFocusProc ..124
XtActionHookProc...186
XtActionList...184
XtActionProc ...184
XtActionsRec ...184
XtAddActions..266
XtAddCallback ...65, 144
XtAddCallbacks..144
XtAddConverter ...264
XtAddEventHandler..135
XtAddExposureToRegion.....................................221
XtAddGrab...118
XtAddInput..262
XtAddRawEventHandler137
XtAddress...169
XtAddTimeOut ...263
XtAddWorkProc ...263
XtAllocateGC ..207
XtAlmostProc ..179
XtAppAddActionHook...186
XtAppAddActions ...185
XtAppAddConverter...264
XtAppAddInput ...116
XtAppAddTimeOut...117
XtAppAddWorkProc ...130
XtAppContext ...38
XtAppCreateShell...53
XtAppError ..227
XtAppErrorMsg..226
XtAppGetErrorDatabase.......................................224
XtAppGetErrorDatabaseText...............................225
XtAppGetSelectionTimeout209
XtAppMainLoop...128
XtAppNextEvent ..125
XtAppPeekEvent ..125
XtAppPending...125

282 X/Open CAE Specification

Index

XtAppProcessEvent ...126
XtAppReleaseCacheRefs171
XtAppSetErrorHandler ...227
XtAppSetErrorMsgHandler226
XtAppSetFallbackResources45
XtAppSetSelectionTimeout209
XtAppSetTypeConverter168
XtAppSetWarningHandler...................................228
XtAppSetWarningMsgHandler...........................226
XtAppWarning..228
XtAppWarningMsg..227
XtArgsFunc ..181
XtArgsProc...58
XtArgVal ...21
XtAugmentTranslations..190
XtBaseOffset ..169
XtBuildEventMask ...139
XtCacheAll ...167
XtCacheByDisplay ...167
XtCacheNone ..167
XtCacheRefCount ...168
XtCacheType..167
XtCallAcceptFocus...124
XtCallActionProc..200
XtCallbackExclusive ..97
XtCallbackList ...142
XtCallbackNonexclusive...97
XtCallbackPopdown..99
XtCallbackProc..142
XtCallbackRec ...142
XtCallbackReleaseCacheRef172
XtCallbackReleaseCacheRefList172
XtCallCallbackList ...146
XtCallCallbacks...146
XtCallConverter..171
XtCalloc ..205
XtCancelConvertSelectionProc217
XtCaseProc...195
XtCheckSubclass...30
XtClass ..29
XtCloseDisplay ...40
XtConfigureWidget..109
XtConvert ...265
XtConvertAndStore ...172
XtConvertArgProc..169
XtConvertCase ..196
XtConverter ...263
XtConvertSelectionIncrProc.................................215
XtConvertSelectionProc ..210
XtCreateApplicationContext38
XtCreateApplicationShell263

XtCreateManagedWidget74
XtCreatePopupChildProc96
XtCreatePopupShell...93
XtCreateWidget ..52
XtCreateWindow..61
XtDatabase ...45
XtDefaultBackground..161
XtDefaultFont..161
XtDefaultFontSet ..162
XtDefaultForeground ..161
XtDestroyApplicationContext38
XtDestroyGC ...266
XtDestroyWidget..64
XtDestructor ..166
XtDirectConvert..265
XtDisownSelection ...214
XtDispatchEvent...126
XtDisplay..62
XtDisplayInitialize..39
XtDisplayOfObject ...62
XtDisplayStringConversionWarning167
XtDisplayToApplicationContext.........................167
XtEnum...21
XtError ..269
XtErrorHandler...227
XtErrorMsg ..268
XtErrorMsgHandler...224
XtEventHandler..135
XtExposeCompressMaximal................................132
XtExposeCompressMultiple132
XtExposeCompressSeries131
XtExposeGraphicsExpose.....................................132
XtExposeGraphicsExposeMerged132
XtExposeNoCompress ..131
XtExposeNoExpose..132
XtExposeProc ..133
XtFilePredicate ..230
XtFindFile...230
XtFree ..205
XtGeometryHandler ..107
XtGeometryMask ...103
XtGeometryResult..104
XtGetActionKeysym..197
XtGetActionList ..201
XtGetApplicationNameAndClass225
XtGetApplicationResources159
XtGetConstraintResourceList153
XtGetErrorDatabase...267
XtGetErrorDatabaseText267
XtGetGC ...207
XtGetKeysymTable...194

Window Management (X11R5): X Toolkit Intrinsics 283

Index

XtGetMultiClickTime ..189
XtGetResourceList..153
XtGetSelectionRequest ..211
XtGetSelectionTimeout ...267
XtGetSelectionValue...212
XtGetSelectionValueIncremental218
XtGetSelectionValues...213
XtGetSelectionValuesIncremental.......................218
XtGetSubresources ...157
XtGetSubvalues ..175
XtGetValues ...174
XtGrabButton ..120
XtGrabKey ...119
XtGrabKeyboard...120
XtGrabPointer ...121
XtHasCallbacks...147
XtImmediate ..169
XtInitialize..261
XtInitializeWidgetClass ..33
XtInitProc ...56, 58
XtInputCallbackProc ...116
XtInputExceptMask ...116
XtInputReadMask ..116
XtInputWriteMask ...116
XtInsertEventHandler ...136
XtInsertRawEventHandler138
XtInstallAccelerators ...192
XtInstallAllAccelerators..193
XtIsApplicationShell ..29
XtIsComposite...29
XtIsConstraint ...29
XtIsManaged..75
XtIsObject ...29
XtIsOverrideShell ...29
XtIsRealized...59
XtIsRectObj ..29
XtIsSensitive ..129
XtIsShell..29
XtIsSubclass ...29
XtIsTopLevelShell...29
XtIsTransientShell...29
XtIsVendorShell...29
XtIsWidget ...29
XtIsWMShell..29
XtKeyProc ..194
XtKeysymToKeycodeList......................................198
XtLanguageProc..41
XtLastTimestampProcessed.................................220
XtListPosition ..136
XtLoseSelectionIncrProc216
XtLoseSelectionProc...211

XtMainLoop...262
XtMakeGeometryRequest103
XtMakeResizeRequest ...105
XtMalloc ...205
XtManageChild...73
XtManageChildren...73
XtMapWidget ..76
XtMenuPopdown ...100
XtMenuPopup...97
XtMergeArgLists ..50
XtMoveWidget..109
XtName...63
XtNameToWidget...204
XtNchildren ...18
XtNew ...206
XtNewString..206
XtNextEvent ..262
XtNinitialResourcesPersistent173
XtNinsertPosition ...18, 71
XtNnumChildren..18
XtNumber ..203
XtNunrealizeCallback ...63
XtOffset...155
XtOffsetOf ..155
XtOpenDisplay..39
XtOrderProc...71
XtOverrideTranslations...191
XtOwnSelection ..214
XtOwnSelectionIncremental219
XtParent ..62
XtParseAcceleratorTable192
XtParseTranslationTable..190
XtPeekEvent...262
XtPending...262
XtPointer...21
XtPopdown ..99
XtPopup..96
XtPopupSpringLoaded..96
XtProc..32
XtProcedureArg..169
XtProcessEvent ...262
XtQueryGeometry..111
XtRealizeProc ..60
XtRealizeWidget ...59
XtRealloc ..205
XtRegisterCaseConverter196
XtRegisterGrabAction ...199
XtReleaseGC..208
XtRemoveActionHook ..186
XtRemoveAllCallbacks ...145
XtRemoveCallback ..65, 145

284 X/Open CAE Specification

Index

XtRemoveCallbacks ...145
XtRemoveEventHandler.......................................136
XtRemoveGrab..119
XtRemoveInput...117
XtRemoveRawEventHandler137
XtRemoveTimeOut ..117
XtRemoveWorkProc ..130
XtRequestId ...215
XtResizeWidget...109
XtResizeWindow..110
XtResolvePathname...231
XtResourceList ..150
XtResourceQuark ...169
XtResourceString ..169
XtScreen..62
XtScreenDatabase ...45
XtScreenOfObject ...62
XtSelectionCallbackProc212
XtSelectionDoneIncrProc......................................217
XtSelectionDoneProc ...211
XtSetArg ...49
XtSetErrorHandler ...269
XtSetErrorMsgHandler ...268
XtSetKeyboardFocus..123
XtSetKeyTranslator ..195
XtSetLanguageProc ..41
XtSetMappedWhenManaged.................................76
XtSetMultiClickTime ...189
XtSetSelectionTimeout ..267
XtSetSensitive..129
XtSetSubvalues ...180
XtSetTypeConverter...168
XtSetValues ..176
XtSetValuesFunc ...177
XtSetWarningHandler...269
XtSetWarningMsgHandler...................................268
XtSetWMColormapWindows..............................229
XtShellExtensionVersion ...83
XtSpecificationRelease ..245
XtStringConversionWarning................................264
XtStringProc...192
XtSuperclass ..29
XtTimerCallbackProc...117
XtToolkitInitialize...38
XtTranslateCoords..222
XtTranslateKeycode ...195
XtTypeConverter ..163
XtUngrabButton..121
XtUngrabKey...120
XtUngrabKeyboard..120
XtUngrabPointer...122

XtUninstallTranslations ..191
XtUnmanageChild..75
XtUnmanageChildren..75
XtUnmapWidget...76
XtUnrealizeWidget...63
XtUnspecifiedPixmap..16
XtUnspecifiedShellInt..88
XtUnspecifiedWindow88-89
XtUnspecifiedWindowGroup................................89
XtVaAppCreateShell ..54
XtVaAppInitialize...55
XtVaCreateArgsList ...51
XtVaCreateManagedWidget74
XtVaCreatePopupShell..93
XtVaCreateWidget..53
XtVaGetApplicationResources159
XtVaGetSubresources ..157
XtVaGetSubvalues..176
XtVaGetValues ..175
XtVaNestedList ...51
XtVaSetSubvalues...180
XtVaSetValues ...177
XtVaTypedArg...51
XtWarning..269
XtWarningMsg..268
XtWidgetBaseOffset...169
XtWidgetClassProc ..32
XtWidgetProc ..65
XtWidgetToApplicationContext38
XtWindow..62
XtWindowOfObject ...62
XtWindowToWidget ..223
XtWorkProc..130
XUSERFILESEARCHPATH....................................44
XWMGeometry...89

Window Management (X11R5): X Toolkit Intrinsics 285

Index

286 X/Open CAE Specification

