
X/Open CAE Specification

Distributed Transaction Processing:

The XATMI Specification

X/Open Company Ltd.

 November 1995, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

Distributed Transaction Processing: The XATMI Specification

ISBN: 1-85912-130-6
X/Open Document Number: C506

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.org

ii X/Open CAE Specification

Contents

Part 1 XATMI Communication Application
Programming Interface (API).. 1

Chapter 1 Introduction... 3
 1.1 X/Open DTP Model... 3
 1.2 X/Open Communication Resource Manager Interfaces.................... 4

Chapter 2 Model and Definitions.. 5
 2.1 X/Open DTP Model... 5
 2.1.1 Functional Components ... 6
 2.1.2 Interfaces between Functional Components...................................... 7
 2.2 Definitions .. 9
 2.2.1 Transaction .. 9
 2.2.2 Transaction Properties .. 9
 2.2.3 Distributed Transaction Processing ... 9
 2.2.4 Global Transactions ... 10
 2.2.5 Transaction Branches .. 10
 2.2.6 Clients, Servers and Services... 10
 2.2.7 Application-level Chaining ... 11
 2.2.8 Local Configuration... 11
 2.3 Design Principles .. 12
 2.3.1 General Principles.. 12
 2.3.2 Relationship to OSI TP.. 12

Chapter 3 C-language Interface Overview .. 13
 3.1 Index to Functions in the XATMI Interface ... 14
 3.2 Typed Buffers... 15
 3.3 Service Paradigm .. 15
 3.4 Service Names and Dynamic Advertising .. 16
 3.5 Request/Response Service Paradigm .. 17
 3.5.1 Synchronous Request/Response.. 17
 3.5.2 Asynchronous Request/Response... 17
 3.5.3 Programming Example... 17
 3.6 Conversational Service Paradigm ... 18
 3.6.1 Programming Example... 18
 3.7 Transaction Implications ... 19
 3.7.1 Transaction Functions Affecting the XATMI Interface 19
 3.7.2 Effect on Service Calls... 20
 3.8 Naming Rules .. 21

Distributed Transaction Processing: The XATMI Specification iii

Contents

Chapter 4 The <xatmi.h> Header... 23
 4.1 Flag Bits... 23
 4.2 Service Return Value .. 23
 4.3 Service Information Structure.. 23
 4.4 Global Variables .. 24
 4.5 Error Values.. 24
 4.6 XATMI Events.. 24
 4.7 Typed Buffer Constants ... 24

Chapter 5 C Reference Manual Pages... 25
 tpacall () .. 26
 tpadvertise() ... 28
 tpalloc () .. 29
 tpcall () .. 30
 tpcancel().. 33
 tpconnect() ... 34
 tpdiscon() ... 36
 tpfree() .. 37
 tpgetrply() .. 38
 tprealloc () ... 41
 tprecv() ... 42
 tpreturn() ... 45
 tpsend()... 48
 tpservice()... 50
 tptypes() ... 52
 tpunadvertise()... 53

Chapter 6 COBOL Language Interface Overview..................................... 55
 6.1 Index to Functions in the XATMI Interface ... 56
 6.2 COBOL API Style.. 56
 6.3 Typed Records ... 57
 6.4 Service Paradigm .. 57
 6.5 Service Names and Dynamic Advertising .. 58
 6.6 Request/Response Service Paradigm .. 59
 6.6.1 Synchronous Request/Response.. 59
 6.6.2 Asynchronous Request/Response... 59
 6.6.3 Programming Example... 59
 6.7 Conversational Service Paradigm ... 60
 6.7.1 Programming Example... 60
 6.8 Transaction Implications ... 61
 6.8.1 Transaction Functions Affecting the XATMI Interface 61
 6.8.2 Effect on Service Calls... 62
 6.9 Naming Rules .. 63

Chapter 7 COBOL Language Reference Manual Pages......................... 65
 TPINTRO... 66
 TPACALL.. 68
 TPADVERTISE... 71

iv X/Open CAE Specification

Contents

 TPCALL ... 73
 TPCANCEL... 77
 TPCONNECT ... 78
 TPDISCON.. 81
 TPGETRPLY.. 82
 TPRECV ... 85
 TPRETURN ... 89
 TPSEND... 92
 TPSVCSTART ... 95
 TPUNADVERTISE .. 98

Chapter 8 State Tables.. 99
 8.1 Interface Functions Allowed .. 99
 8.2 Typed Buffer Functions.. 100
 8.3 Service Routine Functions... 100
 8.4 Advertising Functions ... 100
 8.5 Request/Response Service Functions .. 101
 8.6 Conversational Service Functions ... 101

Chapter 9 X/Open Specified Buffer and Record Types 103
 9.1 C-language Buffer Types ... 104
 9.1.1 X_OCTET... 104
 9.1.2 X_COMMON.. 104
 9.1.3 X_C_TYPE... 105
 9.2 COBOL Language Buffer Types... 107
 9.2.1 X_OCTET... 107
 9.2.2 X_COMMON.. 107

Part 2 XATMI Application Service Element (ASE) 109

Chapter 10 XATMI Communication Model .. 111
 10.1 XATMI-ASE Communication Model.. 111
 10.2 OSI TP Profiles... 112
 10.3 Structure of the XATMI-ASE .. 113
 10.4 OSI TP Naming Model .. 115
 10.5 XATMI-PM and the X/Open DTP Model.. 116

Chapter 11 XATMI Application Context Definition 117
 11.1 Application Context Identifier... 117
 11.2 Component ASEs.. 118
 11.3 SACF Rules... 119
 11.3.1 Sequencing Rules ... 119
 11.3.2 Concatenation Rules ... 119
 11.3.3 Mapping Rules ... 119
 11.3.4 Transaction States .. 119
 11.4 MACF Rules... 120
 11.4.1 Sequencing Rules ... 120
 11.4.2 Concatenation Rules ... 120

Distributed Transaction Processing: The XATMI Specification v

Contents

 11.4.3 Mapping Rules ... 120

Chapter 12 XATMI-ASE Service Definition .. 121
 12.1 Nomenclature.. 121
 12.2 Summary of Service Primitives.. 121
 12.3 Mapping from the XATMI Interface ... 123
 12.4 XATMI-ASE Services.. 124
 12.4.1 XATMI-CALL request and indication ... 124
 12.4.2 XATMI-REPLY request and indication.. 126
 12.4.3 XATMI-FAILURE request and indication... 127
 12.4.4 XATMI-CANCEL request and indication... 129
 12.4.5 XATMI-CONNECT request and indication 130
 12.4.6 XATMI-DISCON request and indication.. 132
 12.4.7 XATMI-DATA request and indication... 133
 12.4.8 XATMI-PREPARE request and indication.. 135
 12.4.9 XATMI-READY indication... 136
 12.4.10 XATMI-COMMIT request and indication .. 137
 12.4.11 XATMI-DONE request.. 138
 12.4.12 XATMI-COMPLETE indication .. 139
 12.4.13 XATMI-ROLLBACK request and indication...................................... 140
 12.4.14 XATMI-HEURISTIC indication .. 141
 12.5 Sequencing Rules and State Table ... 142
 12.5.1 State Table Conventions ... 142
 12.5.2 States... 142
 12.5.3 Variables... 142
 12.5.4 Actions ... 143
 12.5.5 State Table.. 143

Chapter 13 XATMI-ASE Protocol Specification .. 145
 13.1 Relationship with Other ASEs ... 145
 13.2 Client Role Mappings .. 146
 13.3 Server Role Mappings.. 148
 13.4 OSI TP Services Used by the XATMI-ASE... 150
 13.5 Summary of Mappings between OSI TP and XATMI-ASE................ 151
 13.6 XATMI-CALL request.. 153
 13.6.1 Mapping from tpacall()/tpcall() ... 153
 13.6.2 Mapping to OSI TP.. 155
 13.7 XATMI-CONNECT request.. 157
 13.7.1 Mapping from tpconnect() .. 157
 13.7.2 Mapping to OSI TP.. 158
 13.8 XATMI-REPLY request .. 159
 13.8.1 Mapping from tpreturn()... 159
 13.8.2 Mapping to OSI TP.. 159
 13.9 XATMI-FAILURE request ... 160
 13.9.1 Mapping from tpreturn()... 160
 13.9.2 Mapping to OSI TP.. 160
 13.10 XATMI-CANCEL request ... 161
 13.10.1 Mapping from tpcancel()... 161

vi X/Open CAE Specification

Contents

 13.10.2 Mapping to OSI TP.. 161
 13.11 XATMI-DATA request.. 162
 13.11.1 Mapping from tpsend().. 162
 13.11.2 Mapping to OSI TP.. 162
 13.12 XATMI-DISCON request .. 163
 13.12.1 Mapping from tpdiscon() .. 163
 13.12.2 Mapping to OSI TP.. 163
 13.13 XATMI-CALL indication... 164
 13.13.1 Mapping to tpservice()... 164
 13.13.2 Mapping from OSI TP... 164
 13.14 XATMI-CONNECT indication... 167
 13.14.1 Mapping to tpservice()... 167
 13.14.2 Mapping from OSI TP... 167
 13.15 XATMI-REPLY indication ... 169
 13.15.1 Mapping to tpcall(), tpgetrply(), and tprecv() 169
 13.15.2 Mapping from OSI TP... 169
 13.16 XATMI-FAILURE indication .. 170
 13.16.1 Mapping to tpcall(), tpgetrply(), tpsend(), and tprecv() 170
 13.16.2 Mapping from OSI TP... 171
 13.17 XATMI-CANCEL indication .. 175
 13.17.1 Mapping to the XATMI Interface ... 175
 13.17.2 Mapping from OSI TP... 175
 13.18 XATMI-DISCON indication ... 176
 13.18.1 Mapping to tpsend() and tprecv()... 176
 13.18.2 Mapping from OSI TP... 176
 13.19 XATMI-DATA indication... 177
 13.19.1 Mapping to tprecv().. 177
 13.19.2 Mapping from OSI TP... 177
 13.20 Mapping Transaction Services ... 178
 13.20.1 XATMI-PREPARE request ... 178
 13.20.2 XATMI-COMMIT request.. 178
 13.20.3 XATMI-DONE request.. 179
 13.20.4 XATMI-ROLLBACK request ... 180
 13.20.5 XATMI-PREPARE indication .. 180
 13.20.6 XATMI-READY indication... 180
 13.20.7 XATMI-COMMIT indication... 181
 13.20.8 XATMI-ROLLBACK indication .. 181
 13.20.9 XATMI-COMPLETE indication .. 182
 13.20.10 XATMI-HEURISTIC indication .. 182
 13.21 Mapping to the XATMI Interface Return Codes 183

Chapter 14 Structure and Encoding of XATMI-ASE APDUs................ 185
 14.1 Abstract Syntax ... 185
 14.2 Mapping X/Open XATMI Buffer Types... 188

Distributed Transaction Processing: The XATMI Specification vii

Contents

Part 3 XATMI Communication API Appendices...................... 191

Appendix A C Programming Examples... 193
 A.1 Example 1 ... 193
 A.2 Example 2 ... 195

Appendix B COBOL Programming Examples.. 197
 B.1 Example 1 ... 197
 B.2 Example 2 ... 200

Appendix C TX Extensions for the XATMI Interface................................... 203

Part 4 XATMI Application Service Element Appendix 205

Appendix D Scenarios.. 207
 D.1 Synchronous Service Request within a Global Transaction 207
 D.2 Asynchronous Service Request within a Global Transaction............ 208
 D.3 Synchronous Service Request outside any Global Transaction 209
 D.4 Asynchronous Service Request with No Reply 210
 D.5 Service Return Failure within a Global Transaction............................ 211
 D.6 Transaction Rollback.. 212
 D.7 Network Failure within a Transaction ... 213
 D.8 Dialogue Setup Failure .. 214
 D.9 Service Request Cancel.. 215
 D.10 Transaction Commit... 216
 D.11 Conversational Service Request (Service Gets Control)..................... 217
 D.12 Conversational Service Request (Requester Keeps Control)............. 218
 D.13 Conversational Send and Receive with Grant Control....................... 219
 D.14 Disconnection of Conversational Service .. 220

 Index... 221

List of Figures

2-1 Functional Components and Interfaces .. 5
3-1 The XATMI Interface... 13
10-1 OSI View of XATMI-ASE Functional Architecture................................. 113
10-2 Relationship Between XATMI-PM and DTP Model............................... 116

List of Tables

3-1 C-Language XATMI Functions ... 14
6-1 COBOL Language XATMI Functions .. 56
8-1 Interface Functions Allowed by Type of Entity....................................... 99
8-2 State Table for Typed Buffer Functions ... 100
8-3 State Table for Service Routine Functions .. 100
8-4 State Table for Advertising Functions ... 100
8-5 State Table for Request/Response Service Functions 101

viii X/Open CAE Specification

Contents

8-6 State Table for Conversational Service Functions................................... 101
10-1 Required OSI TP Functional Units ... 112
12-1 XATMI-ASE Service Primitives... 122
12-2 XATMI-ASE Services Used by XATMI Interface Primitives 123
12-3 XATMI-ASE Services Used by TX Interface Primitives 123
12-4 XATMI-ASE Service State Table ... 144
13-1 Client Role Mappings ... 146
13-2 Server Role Mappings... 148
13-3 OSI TP Services Used by the XATMI-ASE.. 150
13-4 Mappings Between OSI TP and XATMI-ASE .. 151
13-5 XATMI-ASE Return Code Mappings... 183
14-1 Mapping of XATMI Buffer Types to ASN.1.. 188
14-2 Mapping of XATMI Buffer Type Elements to ASN.1 188

Distributed Transaction Processing: The XATMI Specification ix

Contents

x X/Open CAE Specification

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

Distributed Transaction Processing: The XATMI Specification xi

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

xii X/Open CAE Specification

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:

request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.

This Document

This document is a CAE specification (see above). It defines the XATMI interface, which is an
application program interface to a Communication Resource Manager (CRM). The XATMI
interface allows an application program to communicate with other application programs using
a client-server paradigm and optionally to include those other application programs in a global
transaction. It also defines the Application Service Element (ASE) for XATMI.

The structure of this specification is as follows:

• Part 1: XATMI Communication Application Programming Interface (API)

— Chapter 1 is an introduction to the XATMI API.

— Chapter 2 provides an introduction to the X/Open DTP model and fundamental
definitions for the API.

— Chapter 3 is an overview of the C-language bindings for the XATMI API.

— Chapter 4 contains C-language header file information for the XATMI API.

— Chapter 5 contains C reference manual pages for each routine in the XATMI API.

— Chapter 6 is an overview of the COBOL language bindings for the XATMI API.

— Chapter 7 contains COBOL reference manual pages for each routine in the XATMI API.

— Chapter 8 contains state tables describing the legal sequences in which calls to the XATMI
API can be made.

— Chapter 9 describes the C typed buffers and COBOL typed records that must be
supported by an XATMI implementation.

• Part 2: XATMI Application Service Element (ASE)

— Chapter 10 describes the mapping of the communication model used by XATMI to the
OSI TP Communication Model.

— Chapter 11 contains the definition of the XATMI Application Context.

— Chapter 12 contains the definition of the XATMI-ASE service primitives.

Distributed Transaction Processing: The XATMI Specification xiii

Preface

— Chapter 13 describes the protocol procedures for the XATMI-ASE.

— Chapter 14 defines the structure and encoding of the XATMI-ASE Application Protocol
Data Units (APDUs).

• Part 3: API Appendices

— Appendix A contains examples written in C.

— Appendix B contains examples written in COBOL.

— Appendix C describes the necessary extensions to the TX interface.

• Part 4: ASE Appendix

— Appendix D contains several examples of the usage of the XATMI-ASE.

There is an index at the end.

Intended Audience

Parts 1 and 3 of this document are intended for application programmers who wish to write
portable programs that use global transactions. The whole document is of interest to
implementors of the XATMI application programming interface.

All readers are expected to be familiar with the X/Open documents Distributed Transaction
Processing Reference Model and Distributed Transaction Processing: The TX (Transaction
Demarcation) Specification. Implementors are also expected to be familiar with the X/Open
document Distributed Transaction Processing: The XA Specification and the ISO Open
Systems Interconnection (OSI) standards listed in Referenced Documents on page xvii.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for filenames, keywords, type names, data structures and their
members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— variable names, for example, substitutable argument prototypes and environment
variables

— C-language functions; these are shown as follows: name()

• Normal font is used for the names of constants and literals. COBOL function names are also
shown in normal font.

• The notation <file.h> indicates a C-language header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values, which may be declared in appropriate C-language header files by
means of the C #define construct.

• The notation [ABCD] is used to identify a coded return value in C, or the value set in
COBOL.

• Syntax and code examples are shown in fixed width font.

• Variables within syntax statements are shown in italic fixed width font.

xiv X/Open CAE Specification

Preface

Note: Syntax statements use the same typographical conventions for C and COBOL.
Therefore COBOL syntax statements deviate from the referenced COBOL standard in
the following ways:

• No underlining is used with mandatory elements.

• No options are shown; for other valid formats see the X/Open COBOL Language
specification.

• Substitutable names are shown in italics.

Distributed Transaction Processing: The XATMI Specification xv

Trade Marks

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Limited.

xvi X/Open CAE Specification

Referenced Documents

The following standards are referenced in this specification:

ASN.1
ISO 8824: 1990 Information Technology — Open Systems Interconnection — Specification of
Abstract Syntax Notation One (ASN.1).

BER
ISO/IEC 8825: 1990 (ITU-T Recommendation X.209 (1988)), Information Technology —
Open Systems Interconnection — Specification of Basic Encoding Rules for Abstract Syntax
Notation One (ASN.1).

ISO C
ISO/IEC 9899: 1990, Programming Languages — C (technically identical to ANSI standard
X3.159-1989).

ISO 8649
ISO 8649: 1988, Information Processing Systems — Open Systems Interconnection — Service
Definition for the Association Control Service Element.

ISO 8650
ISO 8650: 1988, Information Processing Systems — Open Systems Interconnection —
Protocol specification for the Association Control Service Element.

ISO/IEC 9545
ISO/IEC 9545: 1989, Information Technology — Open Systems Interconnection —
Application Layer Structure.

ISO/IEC 9804
ISO/IEC 9804: 1994, Information Technology — Open Systems Interconnection — Service
Definition for the Commitment, Concurrency, and Recovery Service Element.

ISO/IEC 9805
ISO/IEC 9805: 1994, Information Technology — Open Systems Interconnection — Protocol
Specification for the Commitment, Concurrency, and Recovery Service Element.

OSI TP
ISO/IEC 10026, Information Technology — Open Systems Interconnection — Distributed
Transaction Processing, Parts 1 to 5:

Part 1: 1992, OSI TP Model
Part 2: 1992, OSI TP Service
Part 3: 1992, Protocol Specification
Part 4: 1995, Protocol Implementation Conformance Statement (PICS) proforma
Part 5: DIS 1993, Application context proforma and guidelines when using OSI TP.

OSI TP Profiles
ISO/IEC ISP 12061: 1995, Information Technology — Open Systems Interconnection —
International Standardized Profiles: OSI Distributed Transaction Processing, Parts 5, 7 and
9:

Part 5: Application supported transactions — Polarized control (ATP11)
Part 7: Provider supported unchained transactions — Polarized control (ATP21)
Part 9: Provider supported chained transactions — Polarized control (ATP31).

Distributed Transaction Processing: The XATMI Specification xvii

Referenced Documents

The following X/Open documents are referenced in this specification:

COBOL
X/Open CAE Specification, December 1991, COBOL Language (ISBN: 1-872630-09-X, C192
or XO/CAE/91/200).

CPI-C, Version 2
X/Open CAE Specification, November 1995, Distributed Transaction Processing: The CPI-C
Specification, Version 2 (ISBN: 1-85912-135-7, C419).

DTP
X/Open Guide, November 1993, Distributed Transaction Processing: Reference Model,
Version 2 (ISBN: 1-85912-019-9, G307).

TX
X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX
(Transaction Demarcation) Specification (ISBN: 1-85912-094-6, C504).

TxRPC
X/Open CAE Specification, October 1995, Distributed Transaction Processing: The TxRPC
Specification (ISBN: 1-85912-115-2, C505).

XA
X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN: 1-872630-24-3, C193 or XO/CAE/91/300).

XA+
X/Open Snapshot, July 1994, Distributed Transaction Processing: The XA+ Specification,
Version 2 (ISBN: 1-85912-046-6, S423).

XAP-TP
X/Open CAE Specification, April 1995, ACSE/Presentation: Transaction Processing API
(XAP-TP) (ISBN: 1-85912-091-1, C409).

xviii X/Open CAE Specification

X/Open CAE Specification

Part 1:

XATMI Communication Application Programming Interface (API)

X/Open Company Ltd.

Part 1: XATMI Communication Application P rogramming Interface (API) 1

2 X/Open CAE Specification

Chapter 1

Introduction

This chapter provides an outline of the X/Open Distributed Transaction Processing (DTP) model
and explains the position of this specification as one of the Communication Resource Manager
(CRM) interfaces.

1.1 X/Open DTP Model
The X/Open Distributed Transaction Processing (DTP) model is a software architecture that
allows multiple application programs to share resources provided by multiple resource
managers, and allows their work to be coordinated into global transactions.

The X/Open DTP model comprises five basic functional components:

• an Application Program (AP), which defines transaction boundaries and specifies actions
that constitute a transaction

• Resource Managers (RMs) such as databases or file access systems, which provide access to
resources

• a Transaction Manager (TM), which assigns identifiers to transactions, monitors their
progress, and takes responsibility for transaction completion and for coordinating failure
recovery

• Communication Resource Managers (CRMs), which control communication between
distributed applications within or across TM domains

• a communication protocol, which provides the underlying communication services used by
distributed applications and supported by CRMs.

X/Open DTP publications based on this model specify portable Application Programming
Interfaces (APIs) and system-level interfaces that facilitate:

• portability of application program source code to any X/Open environment that offers those
APIs

• interchangeability of TMs, RMs and CRMs from various sources

• interoperability of diverse TMs, RMs and CRMs in the same global transaction.

Chapter 2 defines each component in more detail and illustrates the flow of control.

Part 1: XATMI Communication Application P rogramming Interface (API) 3

X/Open Communication Resource Manager Interfaces Introduction

1.2 X/Open Communication Resource Manager Interfaces
An important aspect of distributed transaction processing applications is communication.
Within the product domain for DTP tools, there are several popular communication paradigms
in common use today or expected to be in common use in the future. The communication
paradigm chosen can significantly influence the architecture of the application. The unique
strengths of each paradigm make it attractive for specific applications.

The referenced DTP guide defines a functional component known as a Communication
Resource Manager (CRM), which provides access to a communication medium between
applications.

Because it is not possible to choose a single communication paradigm applicable to the entire
broad range of DTP applications, X/Open provides application programming interfaces (APIs)
for the most popular paradigms in order to bring the benefits of open systems to the widest
possible range of transaction processing applications. These are the request/response paradigm
and the conversational paradigm.

Many applications already running on open systems use the request/response paradigm.
X/Open specifications for this paradigm are the library-based XATMI CRM interface (see this
document) and the IDL-based TxRPC CRM interface (see the referenced TxRPC specification).
TxRPC fits within the context of the X/Open Distributed Computing Services Framework
(XDCS) and allows application writers to invoke remote procedure calls (RPCs) in the same
form as local procedures, but with transaction semantics.

For applications choosing to use the conversational paradigm, where communication takes place
through an application-defined exchange of messages, X/Open offers the library-based
interfaces XATMI (see this document) and CPI-C (see the referenced CPI-C specification).

4 X/Open CAE Specification

Chapter 2

Model and Definitions

This chapter discusses the XATMI interface in general terms and provides necessary background
material for the rest of the specification. The chapter shows the relationship of the interface to
the X/Open DTP model. The chapter also states the design assumptions that the interface uses
and shows how the interface addresses common DTP concepts.

2.1 X/Open DTP Model
The boxes in the figure below are the functional components and the connecting lines are the
interfaces between them. The arrows indicate the directions in which control may flow.

Application Program (AP)

(RMs) (TM)

Resource
Managers

Transaction
Manager

(5)(1)

(3)

(2)

SUPERIOR NODE

OSI TP

SUBORDINATE NODE

(CRMs)

Communication

Managers
Resource

(4)

AP

RMs TM

OSI TP

CRMs

(6)

Figure 2-1 Functional Components and Interfaces

Descriptions of the functional components shown can be found in Section 2.1.1 on page 6. The
numbers in brackets in the above figure represent the different X/Open interfaces that are used
in the model. They are described in Section 2.1.2 on page 7.

For more details of this model and diagram, including detailed definitions of each component,
see the referenced DTP guide.

Part 1: XATMI Communication Application P rogramming Interface (API) 5

X/Open DTP Model Model and Definitions

2.1.1 Functional Components

Application Program (AP)

The application program (AP) implements the desired function of the end-user enterprise. Each
AP specifies a sequence of operations that involves resources such as databases. An AP defines
the start and end of global transactions, accesses resources within transaction boundaries, and
normally makes the decision whether to commit or roll back each transaction.

Where two or more APs cooperate within a global transaction, the X/Open DTP model supports
three paradigms for AP to AP communication. These are the TxRPC, XATMI and CPI-C
interfaces.

Transaction Manager (TM)

The transaction manager (TM) manages global transactions and coordinates the decision to start
them, and commit them or roll them back. This ensures atomic transaction completion. The TM
also coordinates recovery activities of the resource managers when necessary, such as after a
component fails.

Resource Manager (RM)

The resource manager (RM) manages a defined part of the computer’s shared resources. These
may be accessed using services that the RM provides. Examples for RMs are database
management systems (DBMSs), a file access method such as X/Open ISAM, and a print server.

In the X/Open DTP model, RMs structure all changes to the resources they manage as
recoverable and atomic transactions. They let the TM coordinate completion of these
transactions atomically with work done by other RMs.

Communication Resource Manager (CRM)

A CRM allows an instance of the model to access another instance either inside or outside the
current TM Domain. Within the X/Open DTP model, CRMs use OSI TP services to provide a
communication layer across TM Domains. CRMs aid global transactions by supporting the
following interfaces:

• the communication paradigm (TxRPC, XATMI or CPI-C) used between an AP and CRM

• XA+ communication between a TM and CRM

• XAP-TP communication between a CRM and OSI TP.

A CRM may support more than one type of communication paradigm, or a TM Domain may use
different CRMs to support different paradigms. The XA+ interface provides global transaction
information across different instances and TM Domains. The CRM allows a global transaction to
extend to another TM Domain, and allows TMs to coordinate global transaction commit and
abort requests from (usually) the superior AP. Using the above interfaces, information flows
from superior to subordinate and vice versa.

6 X/Open CAE Specification

Model and Definitions X/Open DTP Model

2.1.2 Interfaces between Functional Components

There are six interfaces between software components in the X/Open DTP model. The numbers
correspond to the numbers in Figure 2-1 on page 5.

(1) AP-RM. The AP-RM interfaces give the AP access to resources. X/Open interfaces, such as
SQL and ISAM, provide AP portability. The X/Open DTP model imposes few constraints
on native RM APIs. The constraints involve only those native RM interfaces that define
transactions. (See the referenced XA specification.)

(2) AP-TM. The AP-TM interface (the TX interface) provides the AP with an Application
Programming Interface (API) by which the AP coordinates global transaction management
with the TM. For example, when the AP calls tx_begin() the TM informs the participating
RMs of the start of a global transaction. After each request is completed, the TM provides a
return value to the AP reporting back the success or otherwise of the TX call.

For details of the AP-TM interface, see the referenced TX (Transaction Demarcation)
specification.

(3) TM-RM. The TM-RM interface (the XA interface) lets the TM structure the work of RMs
into global transactions and coordinate completion or recovery. The XA interface is the
bidirectional interface between the TM and RM.

The functions that each RM provides for the TM are called the xa_*() functions. For
example the TM calls xa_start () in each participating RM to start an RM-internal transaction
as part of a new global transaction. Later, the TM may call in sequence xa_end()
xa_prepare() and xa_commit() to coordinate a (successful in this case) two-phase commit
protocol. The functions that the TM provides for each RM are called the ax_*() functions.
For example an RM calls ax_reg() to register dynamically with the TM.

For details of the TM-RM interface, see the referenced XA specification.

(4) TM-CRM. The TM-CRM interface (the XA+ interface) supports global transaction
information flow across TM Domains. In particular TMs can instruct CRMs by use of xa_*()
function calls to suspend or complete transaction branches, and to propagate global
transaction commitment protocols to other transaction branches. CRMs pass information to
TMs in subordinate branches by use of ax_*() function calls. CRMs also use ax_*() function
calls to request the TM to create subordinate transaction branches, to save and retrieve
recovery information, and to inform the TM of the start and end of blocking conditions.

For details of the TM-CRM interface, see the referenced XA+ specification.

The XA+ interface is a superset of the XA interface and supersedes its purpose. Since the
XA+ interface is invisible to the AP, the TM and CRM may use other methods to
interconnect without affecting application portability.

(5) AP-CRM. X/Open provides portable APIs for DTP communication between APs within a
global transaction. The API chosen can significantly influence (and may indeed be
fundamental to) the whole architecture of the application. For this reason, these APIs are
frequently referred to in this specification and elsewhere as communication paradigms . In
practice, each paradigm has unique strengths, so X/Open offers the following popular
paradigms:

• the TxRPC interface (see the referenced TxRPC specification)

• the XATMI interface (see this document)

• the CPI-C interface (see the referenced CPI-C specification).

Part 1: XATMI Communication Application P rogramming Interface (API) 7

X/Open DTP Model Model and Definitions

X/Open interfaces, such as the three CRM APIs listed above, provide application portability
across products offering the same CRM API. The X/Open DTP model imposes few
constraints on native CRM APIs.

(6) CRM-OSI TP. This interface (the XAP-TP interface) provides a programming interface
between a CRM and Open Systems Interconnection Distributed Transaction Processing (OSI
TP) services. XAP-TP interfaces with the OSI TP Service and the Presentation Layer of the
seven-layer OSI model. X/Open has defined this interface to support portable
implementations of application-specific OSI services. The use of OSI TP is mandatory for
communication between heterogeneous TM domains. For details of this interface, see the
referenced XAP-TP specification and OSI TP standards.

8 X/Open CAE Specification

Model and Definitions Definitions

2.2 Definitions
For additional definitions see the referenced DTP guide.

2.2.1 Transaction

A transaction is a complete unit of work. It may comprise many computational tasks, which
may include user interface, data retrieval, and communication. A typical transaction modifies
shared resources. (The OSI TP standards (model) defines transactions more precisely.)

Transactions must be able to be rolled back . A human user may roll back the transaction in
response to a real-world event, such as a customer decision. A program can elect to roll back a
transaction. For example, account number verification may fail or the account may fail a test of
its balance. Transactions also roll back if a component of the system fails, keeping it from
retrieving, communicating, or storing data. Every DTP software component subject to
transaction control must be able to undo its work in a transaction at any time that it is rolled
back.

When the system determines that a transaction can complete without failure of any kind, it
commits the transaction. This means that changes to shared resources take permanent effect.
Either commitment or rollback results in a consistent state. Completion means either
commitment or rollback.

2.2.2 Transaction Properties

Transactions typically exhibit the following properties:

Atomicity The results of the transaction’s execution are either all committed or all rolled
back.

Consistency A completed transaction transforms a shared resource from one valid state to
another valid state.

Isolation Changes to shared resources that a transaction effects do not become visible
outside the transaction until the transaction commits.

Durability The changes that result from transaction commitment survive subsequent
system or media failures.

These properties are known by their initials as the ACID properties. In the X/Open DTP model,
the TM coordinates Atomicity at global level whilst each RM is responsible for the Atomicity,
Consistency, Isolation and Durability of its resources.

2.2.3 Distributed Transaction Processing

Within the scope of this document, DTP systems are those where work in support of a single
transaction may occur across RMs. This has several implications:

• The system must have a way to refer to a transaction that encompasses all work done
anywhere in the system.

• The decision to commit or roll back a transaction must consider the status of work done
anywhere on behalf of the transaction. The decision must have uniform effect throughout
the DTP system.

Even though an RM may have an X/Open-compliant interface such as Structured Query
Language (SQL), it must also address these two items to be useful in the DTP environment.

Part 1: XATMI Communication Application P rogramming Interface (API) 9

Definitions Model and Definitions

2.2.4 Global Transactions

Every RM in the DTP environment must support transactions as described in Section 2.2.1 on
page 9. Many RMs already structure their work into recoverable units.

In the DTP environment, many RMs may operate in support of the same unit of work. This unit
of work is a global transaction . For example, an AP might request updates to several different
databases. Work occurring anywhere in the system must be committed atomically. Each RM
must let the TM coordinate the RM’s recoverable units of work that are part of a global
transaction.

Commitment of an RM’s internal work depends not only on whether its own operations can
succeed, but also on operations occurring at other RMs, perhaps remotely. If any operation fails
anywhere, every participating RM must roll back all operations it did on behalf of the global
transaction. A given RM is typically unaware of the work that other RMs are doing. A TM
informs each RM of the existence, and directs the completion, of global transactions. An RM is
responsible for mapping its recoverable units of work to the global transaction.

2.2.5 Transaction Branches

A global transaction has one or more transaction branches (or branches). A branch is a part of the
work in support of a global transaction for which the TM and the RM engage in a separate but
coordinated transaction commitment protocol. Each of the RM’s internal units of work in
support of a global transaction is part of exactly one branch.

A global transaction might have more than one branch when, for example, the AP uses a CRM to
communicate with remote applications. The CRM asks the TM to create a new transaction
branch prior to accessing a remote AP for the first time. Subsequent accesses to the same remote
AP are typically done within the same transaction branch. Accesses to different remote APs are
typically done in separate transaction branches.

After the TM begins the transaction commitment protocol, the RM receives no additional work
to do on that transaction branch. The RM may receive additional work on behalf of the same
transaction, from different branches. The different branches are related in that they must be
completed atomically. However, the TM directs the commitment protocol for each branch
separately. That is, an RM receives a separate commitment request for each branch.

2.2.6 Clients, Servers and Services

The XATMI interface embodies a programming model whereby application programs are
structured either as clients or as servers. A client is an AP that requests services to be performed.
The structure of a client AP is defined entirely by the application writer.

A service is an AP that performs a specific application function on behalf of clients. The structure
of a service routine, that is the mechanism by which a service is invoked and terminated, is
defined by the XATMI interface.

10 X/Open CAE Specification

Model and Definitions Definitions

There are two types of service:

• Request/response services receive a single request and produce at most a single response to the
request. The request is the application data sent from the client to the service. The service
processes the request and returns application data to the client by means of at most one
response.

• Conversational services are invoked by means of a connection request from the client. Once the
connection is established and the service invoked, the client and the service can exchange
data in an application-specific manner until the service returns, whereupon the connection is
logically terminated.

A service may itself invoke another service. In this case the first service acts like a client. The
term requester is used to refer to any AP that invokes a service, whether that AP is itself a service
or a client.

A server is an entity that dispatches a service to satisfy a client’s request. A server may offer one
or more distinct services while a particular service may be offered by one or more servers. The
mechanism for incorporating services into servers is defined by the CRM software implementing
the XATMI interface.

2.2.7 Application-level Chaining

The TX (Transaction Demarcation) specification allows applications to specify the use of chained
transactions. With chained transactions, an application explicitly indicates the start of the first
transaction. Thereafter, completion of one transaction automatically starts another one.

When using unchained transactions, an application must explicitly start each transaction. A
new transaction does not implicitly start when the application completes a previous transaction.
Unchained transactions allow an application to perform operations outside global transactions.

Service routines are either invoked in a global transaction or outside a global transaction. If as
part of its transaction a requester invokes a service routine, the service can participate in only
that transaction and the service does not call any transaction demarcation functions. If the
requester invokes a service routine outside any transaction, the service routine can originate and
complete any number of transactions using the TX (Transaction Demarcation) interface.

2.2.8 Local Configuration

The administrator specifies the location of (the means of gaining access to) all APs that can be
named as services. This document uses the term local configuration to refer to the complete set of
information on such APs. An AP requesting communication identifies the desired service by a
symbolic name. This symbolic name is mapped (in an implementation-specific way) to a
particular service routine based on local configuration information, run-time tables based on that
information or both.

Part 1: XATMI Communication Application P rogramming Interface (API) 11

Design Principles Model and Definitions

2.3 Design Principles

2.3.1 General Principles

The Client-Server CRM interface adheres to these general principles:

• The interface isolates application programming from its environment. For example, the
XATMI interface insulates application programmers from lower-level communication and
networking protocols. The programmer deals with a small number of well-defined
communication methods that naturally support transaction-based communication.
Instantiation, structure, and management of the associated resources are implementation-
defined and outside the scope of the XATMI interface.

• The interface includes functionality that can be mapped to and from the OSI TP protocol.

• The interface allows APs to use location-transparent naming rather than physical locations.
For example, requesters can ask for the DEBIT service without having to worry about how
many such services are available or where they are located.

• The interface allows APs to pass application data without regard for machine boundaries or
processor architectures. That is, the XATMI interface includes mechanisms for transparently
encoding and decoding application data across heterogeneous processor types.

2.3.2 Relationship to OSI TP

X/Open assumes that communication between heterogeneous TM domains uses CRMs that
follow the transaction management protocol specified in the OSI TP standards. Either
proprietary protocols or OSI TP could be used between homogeneous TM domains.

The XATMI interface is designed to be mappable to and from the OSI TP protocol. It is a goal
that there should be a way, using OSI TP, to convey the result of any permitted use of the
XATMI interface.

12 X/Open CAE Specification

Chapter 3

C-language Interface Overview

This chapter gives an overview of the XATMI interface and describes its relationship to the TX
interface. In an X/Open DTP system, XATMI is the interface between an AP and a CRM, and TX
is the interface between an AP and a TM.

AP

RM TM CRM

OSI TP

XATMI

Figure 3-1 The XATMI Interface

The XATMI interface is the API to a CRM that supports a client-server paradigm in an X/Open
DTP system. This interface offers the following programming models (see also the definitions in
Chapter 2):

• The request/response service paradigm allows the writing of a structured service AP routine
that receives a single request and may produce a single reply. The CRM automatically
initialises the communication path to the server and automatically invokes the AP service
routine.

• The conversational service paradigm provides for the same automatic setup as for the
request/response service paradigm, but lets the AP service routine exchange data with the
requester multiple times and in an application-defined sequence.

The CRM must know (typically from the local configuration) which paradigm is followed by the
AP routine addressed by any given request for communication, because it must enforce a
different state table in each case.

This chapter gives an overview of the C-language interface; it describes each paradigm: its
attributes, the XATMI functions available in each paradigm and their usage, and programming
examples. This chapter also explains the concept of typed buffers. Chapter 5 contains reference
manual pages for each routine in alphabetical order.

Part 1: XATMI Communication Application P rogramming Interface (API) 13

Index to Functions in the XATMI Interface C-language Interface Overview

3.1 Index to Functions in the XATMI Interface

Name Description See
Typed Buffer Functions

Section 3.2 on page 15.tpalloc Allocate a typed buffer.
Section 3.2 on page 15.tpfree Free a typed buffer.
Section 3.2 on page 15.tprealloc Change the size of a typed buffer.
Section 3.2 on page 15.tptypes Determine information about a typed buffer.

Functions for Writing Service Routines
Section 3.3 on page 15.tpservice Template for service routines.
Section 3.3 on page 15.tpreturn Return from a service routine.

Functions For Dynamically Advertising
Service Names

Section 3.4 on page 16.tpadvertise Advertise a service name.
Section 3.4 on page 16.tpunadvertise Unadvertise a service name.

Functions for request/response Services
Section 3.5 on page 17.tpacall Send a service request.

Send a service request and synchronously await its reply. Section 3.5 on page 17.tpcall
Section 3.5 on page 17.tpcancel Cancel a call descriptor for an outstanding reply.
Section 3.5 on page 17.tpgetrply Get a reply from a previous service request.

Functions for Conversational Services
Section 3.6 on page 18.tpconnect Establish a conversational service connection.

Terminate a conversational service connection abortively. Section 3.6 on page 18.tpdiscon
Section 3.6 on page 18.tprecv Receive a message in a conversational connection.
Section 3.6 on page 18.tpsend Send a message in a conversational connection.

Table 3-1 C-Language XATMI Functions

The tp*() routines are the application interface provided by X/Open-compliant CRMs
implementing the XATMI interface. An AP may call these routines.

An AP must call the tp*() routines in accordance with the state tables in Chapter 8. However, if
an AP calls more than one CRM, or has more than one outstanding request or conversational
connection using an XATMI CRM, its calls to each do not depend on the state of its dealings with
any other RM, specific request or connection.

14 X/Open CAE Specification

C-language Interface Overview Typed Buffers

3.2 Typed Buffers
In order to send data to another AP, the sending AP first places the data in a buffer. The XATMI
interface supports typed buffers. A typed buffer contains data and has associated with it a type
and possibly a subtype, that indicate the meaning or interpretation of the data. A combination
of type and subtype corresponds to a host-language structure definition. Typed buffers are
specified via character strings, but actual types and subtypes are defined in an implementation-
specific manner.

Typed buffers are dynamically allocated. In addition, their size, type and subtype are allowed to
change on receipt of a buffer that is either larger or of a different type and subtype from the
original buffer. An AP calls tpalloc () to allocate a typed buffer of a specified type and subtype,
can call tprealloc () to increase its size, and must eventually call tpfree() to dispose of it. A
receiver of a typed buffer can call tptypes() to determine the type and subtype of a buffer as well
as its size.

X/Open predefines three buffer types for the C XATMI interface that all implementations
support (see Chapter 9). An AP can specify by the type and subtype that a buffer’s structure is
interpreted by the AP.

3.3 Service Paradigm
The service paradigm refers to the common aspect of automatic setup and invocation in both the
request/response and conversational service paradigms.

Service routines are coded as C-language functions. A service routine is invoked from
implementation-specific dispatching code contained within a server. Handling of the
communication path is independent of the service and is the responsibility of the CRM. From an
application writer’s viewpoint, communication between a requester and a service routine is
utilised only for the duration of the function invocation.

The tpservice() reference manual page presents a standard form for coding a service. The
arguments to the function are set by the dispatching code at the server location based on the
service request received from the requester.

tpservice() is the template for writing service routines. This template is used both for services
that receive requests via tpcall () or tpacall () routines, and services that communicate via
tpconnect(), tpsend() and tprecv() routines.

tpreturn() is used to send a service’s reply message. If an AP receiving the reply is waiting in
either tpcall (), tpgetrply() or tprecv(), then after a successful call to tpreturn(), the reply is
available in the receiving AP’s buffer.

Services can accept more than one kind of typed buffer. In fact, services can accept one buffer
type on input and send a different buffer type in the response. The buffer types that a service
accepts can be specified in the local configuration.

Part 1: XATMI Communication Application P rogramming Interface (API) 15

Service Names and Dynamic Advertising C-language Interface Overview

3.4 Service Names and Dynamic Advertising
The requester identifies a service with which it wishes to communicate in the service name
parameter to tpacall (), tpcall () or tpconnect(). This parameter is a character string (for example,
"DEBIT" or "CREDIT") and is completely defined by the application.

When servers are started, they advertise the set of services that they offer (in an implementation-
specific manner). At run time, service routines themselves can alter a server’s set of service
advertisements. AP service routines may choose to do this, for example, based upon time of day
or information received as part of a service request.

tpadvertise() allows a server to advertise a new service that it offers. The function takes two
parameters: the service name and the actual C language routine that should be invoked when a
request for the service name is received by the server. Since the service name may differ from
the routine name, different service names can be mapped to the same function.

tpunadvertise() allows a server to unadvertise a service that it offers. Even though a particular
service may be unadvertised by one server, it may still be offered by others.

Information about service names may be kept in the local configuration. Because each service
supports either the request/response or the conversational service paradigm, the local
configuration may contain information labeling each service name appropriately.

16 X/Open CAE Specification

C-language Interface Overview Request/Response Service Paradigm

3.5 Request/Response Service Paradigm
Requests can be issued to services in two ways: synchronously or asynchronously. In both
methods, the requester can state whether the request should be sent as part of the caller’s current
transaction.

3.5.1 Synchronous Request/Response

The tpcall () function sends a request to the specified service, and returns any response in an
application-defined typed buffer. The call to tpcall () returns after any expected response arrives.

3.5.2 Asynchronous Request/Response

The tpacall () function also sends a request to the specified service, but it returns without waiting
for the service’s response, letting the requester do additional work while the service routine
processes its request. Using the tpacall () function allows a requester to exploit parallelism
within an application since multiple requests can be simultaneously processed. The tpacall ()
function returns to its caller a call descriptor that is used by the requester to eventually get its
reply. If the requester does not require any reply, the requester must indicate that a reply is not
expected. However, in this particular case, the request must not be issued in transaction mode.

The tpgetrply() function waits to receive a service reply corresponding to a specified request.
The function returns the response in an application-defined typed buffer.

A requester not wanting to receive a reply from a previously sent request can call the tpcancel()
function. This function informs the CRM that any response should be silently discarded. The
tpcancel() function does not prevent the service from completing; rather, it relieves the requester
from having to receive an unwanted response. It is an error to attempt to cancel a call descriptor
associated with a global transaction.

3.5.3 Programming Example

See Appendix A for an example of request/response programming in the C programming
language.

Part 1: XATMI Communication Application P rogramming Interface (API) 17

Conversational Service Paradigm C-language Interface Overview

3.6 Conversational Service Paradigm
In this paradigm, a requester invokes a service routine and converses with it in an application-
defined manner. Thus, several messages can be exchanged before the service routine returns
ending the conversation. The conversation takes place in a half-duplex manner. That is, only one
program can send data at a time. Also, the receiver cannot send data until the sender yields its
control of the conversation.

The requester initiates conversational communication with a service by calling the tpconnect()
function. This function optionally passes application data to the service and specifies which
program initially has control of the connection. The requester is returned a descriptor that it
uses to refer to the newly established connection during subsequent communication. The
functions tpsend() and tprecv() allow APs to exchange data over an open connection.

On the server side of the connection, the CRM listens for and accepts the incoming connection
request. The service routine matching the requester’s named service is dispatched along with a
descriptor that refers to the connection as well as any application data sent as part of the
requester’s call to tpconnect().

A conversational service’s communication path with its requester is terminated by the CRM in
an orderly manner after the service returns by calling tpreturn(). If the requester wishes to
terminate the conversation abortively, rather than orderly, it can call tpdiscon(). This function
terminates a connection in a manner that data in transit may be lost and any active transaction
associated with that connection is rolled back.

Because communication in the conversational service paradigm is ‘‘longer lived’’ than that of
the request/response paradigm, communication events that occur during the course of a
conversation are reported to either the requester, the service, or both as appropriate. For
example, the AP that controls the connection yields control to the receiver by sending it an
event. Other events include orderly as well as abortive connection termination.

3.6.1 Programming Example

See Appendix A for an example of conversational programming in the C programming
language.

18 X/Open CAE Specification

C-language Interface Overview Transaction Implications

3.7 Transaction Implications
The XATMI interface relies on the TX (Transaction Demarcation) interface, published separately,
for global transaction demarcation and management. In addition, certain functions in the
XATMI interface directly affect the progress of a global transaction.

3.7.1 Transaction Functions Affecting the XATMI Interface

Demarcation

The XATMI interface relies on the following functions of the Transaction Demarcation (TX)
interface:

tx_begin() A demarcation function that indicates that subsequent work performed by the
calling AP is in support of a global transaction.

tx_commit() A demarcation function that commits all work done on behalf of the current global
transaction.

tx_rollback() A demarcation function that rolls back all work done on behalf of the current
global transaction.

The effect of the TX functions on this specification is that an AP detects that the partner’s TM has
requested completion of the transaction by means of return codes, communication events or
errors. The AP may use this information to instruct its TM and its subordinates on how to
complete the transaction.

As described in Section 2.2.6 on page 10, APs may generate both request/response and
conversational requests. XATMI, by default, includes such requests within the global transaction
if one is active at the time the requests are initiated. XATMI allows an AP to establish
communication requests outside the boundaries of the global transaction through flags available
on the API. Additionally, communication requests established before the global transaction is
begun are also not included in the global transaction. The state and validity of these non-
transactional requests are not affected by the transaction demarcation (TX) functions. Non-
transactional descriptors may be affected with respect to timeout as described below; however,
they are not invalidated by any transaction-related timeouts.

As described above, both request/response and conversational requests generated by the AP are,
by default, included in a global transaction if one is active. The descriptors relating to these
communications should be closed, that is terminated normally as described in the reference
manual pages, prior to invocation of tx_commit() or tx_rollback (). If such descriptors are active,
that is not closed, at the time tx_commit() or tx_rollback () is invoked, then the descriptors are
invalidated by the TM and the transaction is rolled back. Note that transaction chaining as
defined by the transaction demarcation (TX) functions is allowed even though transaction-
related XATMI communication descriptors do not survive transaction boundaries.

Service routines as defined in XATMI may be invoked in transaction mode. In that case, they are
subject to the following characteristics with respect to transaction demarcation: tx_begin() fails
with a protocol error because the service routine is already in a transaction; tx_commit() and
tx_rollback () fail with a protocol error because they are not the originators of the transaction.

Part 1: XATMI Communication Application P rogramming Interface (API) 19

Transaction Implications C-language Interface Overview

Timeouts

The timeout function of TX also affects the XATMI interface:

tx_set_transaction_timeout()
A function that specifies the time interval in which the transaction must complete.

There are two types of timeout when using XATMI and TX: one is associated with the duration
of a transaction from start to finish; the other is associated with the maximum length of time a
blocking call remains blocked before the caller regains control. The first kind of timeout is
specified when a transaction is started with the TX API’s tx_begin() (see the TX (Transaction
Demarcation) specification for details). The second kind of timeout can occur when using an
XATMI communication routine (for example tpcall (), tpconnect() or tprecv()). Callers of these
routines typically block when awaiting data that has yet to arrive, although they can also block
trying to send data (for example, if transmission buffers are full). When the caller is not part of
any global (TX) transaction, the maximum amount of time a caller remains blocked is
determined in an XATMI provider-specific manner. Routines that return control after either type
of timeout has occurred return a particular error code that signifies a timeout event.

Of the two timeout mechanisms, blocking timeouts are performed by default when the caller is
not in transaction mode. When a client or server is in transaction mode, it is subject to the
timeout value with which the transaction was started and is not subject to any blocking timeout
value specified by the XATMI provider.

When a timeout occurs, replies to asynchronous requests may be dropped. That is, if a process
is waiting for a particular asynchronous reply and a transaction timeout occurs, the descriptor
for that reply becomes invalid and that reply is silently discarded. Similarly, if a transaction
timeout occurs during a conversation with a service, an event is generated on the associated
connection descriptor, that descriptor becomes invalid, and data may be lost. On the other hand,
if a blocking timeout occurs, both types of descriptor remain valid and the waiting process can
re-issue the call to await the reply.

3.7.2 Effect on Service Calls

Services are either invoked in a global transaction or outside a global transaction. If a requester
invokes a service as part of its transaction, the service can participate in only that transaction
and the service does not call any transaction demarcation functions. If the requester invokes a
service outside a transaction, the service routine can originate and complete any number of
transactions using the TX (Transaction Demarcation) interface.

In order for a transaction propagated to a service routine to successfully commit, the service
routine must first receive all outstanding replies for requests that it generated as well as close
any outgoing connections to conversational services that it opened.

20 X/Open CAE Specification

C-language Interface Overview Transaction Implications

3.8 Naming Rules
The XATMI interface uses three kinds of names: service names, buffer type names, and buffer sub-
type names. Names are passed in the interface as null-terminated character strings. Three buffer
type names are defined in this specification; other names are application-defined.

Names that meet the following rules are guaranteed to be portable and interoperable across
implementations that conform to the XATMI interface.

• A name is composed of one or more characters from the set of letters (A-Z, a-z), digits (0-9),
and underscore (_).

• A name must begin with a letter or underscore.

• The case of letters in a name is significant.

• The first 15 characters determine the service name.

• A buffer type name can contain up to 8 characters.

• A buffer sub-type name can contain up to 16 characters.

• A name is terminated by a null (0x00) character or by the first space encountered, or by
reaching the length limit for the kind of name.

Part 1: XATMI Communication Application P rogramming Interface (API) 21

C-language Interface Overview

22 X/Open CAE Specification

Chapter 4

The <xatmi.h> Header

This chapter specifies C-language structure element definitions, argument values, and return
codes to which conforming products must adhere. These, plus the function prototypes for the
interface routines defined in the next chapter, are the minimum required contents of the C-
language header file <xatmi.h>.

4.1 Flag Bits
The following constants are the flag bits defined for the C-language XATMI routines:

#define TPNOBLOCK 0x00000001
#define TPSIGRSTRT 0x00000002
#define TPNOREPLY 0x00000004
#define TPNOTRAN 0x00000008
#define TPTRAN 0x00000010
#define TPNOTIME 0x00000020
#define TPGETANY 0x00000080
#define TPNOCHANGE 0x00000100
#define TPCONV 0x00000400
#define TPSENDONLY 0x00000800
#define TPRECVONLY 0x00001000

4.2 Service Return Value
The following constants are the names defined for the rval parameter to tpreturn():

#define TPFAIL 0x0001
#define TPSUCCESS 0x0002

4.3 Service Information Structure
The following elements are members of the TPSVCINFO structure passed into a service routine
when it is dispatched:

#define XATMI_SERVICE_NAME_LENGTH x /* where x must be >= 15 */
char name[XATMI_SERVICE_NAME_LENGTH];
char *data;
long len;
long flags;
int cd;

Part 1: XATMI Communication Application P rogramming Interface (API) 23

Global Variables The <xatmi.h> Header

4.4 Global Variables
The following definitions are the global variables used by the C language XATMI routines:

extern int tperrno;
extern long tpurcode;

4.5 Error Values
The following constants are the names defined for the tperrno global variable:

#define TPEBADDESC 2
#define TPEBLOCK 3
#define TPEINVAL 4
#define TPELIMIT 5
#define TPENOENT 6
#define TPEOS 7
#define TPEPROTO 9
#define TPESVCERR 10
#define TPESVCFAIL 11
#define TPESYSTEM 12
#define TPETIME 13
#define TPETRAN 14
#define TPGOTSIG 15
#define TPEITYPE 17
#define TPEOTYPE 18
#define TPEEVENT 22
#define TPEMATCH 23

4.6 XATMI Events
The following constants are the names defined for events returned during conversational
communication:

#define TPEV_DISCONIMM 0x0001
#define TPEV_SVCERR 0x0002
#define TPEV_SVCFAIL 0x0004
#define TPEV_SVCSUCC 0x0008
#define TPEV_SENDONLY 0x0020

4.7 Typed Buffer Constants
The following constants are the names of the X/Open defined typed buffers:

#define X_OCTET "X_OCTET"
#define X_C_TYPE "X_C_TYPE"
#define X_COMMON "X_COMMON"

24 X/Open CAE Specification

Chapter 5

C Reference Manual Pages

This chapter contains the C-language reference manual pages for the XATMI communication
API for transaction processing. The reference manual pages appear, in alphabetical order, for
each C-language function in the XATMI interface.

The symbolic constants and error names are described in the <xatmi.h> header (see Chapter 4).

Part 1: XATMI Communication Application P rogramming Interface (API) 25

tpacall() C Reference Manual Pages

NAME
tpacall — send a service request

SYNOPSIS
#include <xatmi.h>

int tpacall(char * svc , char * data , long len , long flags)

DESCRIPTION
The function tpacall () sends a request message to the service named by svc. If data is non-NULL,
it must point to a buffer previously allocated by tpalloc () and len should specify the amount of
data in the buffer that should be sent. Note that if data points to a buffer of a type that does not
require a length to be specified, len is ignored (and may be 0). If data points to a buffer that does
require a length, len must not be zero. If data is NULL, len is ignored and a request is sent with
no data portion. The type and sub-type of data must match one of the types and sub-types
recognised by svc. Note that for each request sent while in transaction mode, a corresponding
reply must ultimately be received.

The valid flags are as follows:

TPNOTRAN
If the caller is in transaction mode and this flag is set, when svc is invoked, it is not
performed on behalf of the caller’s transaction. If svc does not support transactions, this flag
must be set when the caller is in transaction mode. A caller in transaction mode that sets
this flag is still subject to the transaction timeout (and no other). If a service fails that was
invoked with this flag, the caller’s transaction is not affected.

TPNOREPLY
This setting informs tpacall () that a reply is not expected. When TPNOREPLY is set, the
function returns 0 on success, where 0 is an invalid descriptor. When the caller is in
transaction mode, this setting cannot be used unless TPNOTRAN is also set.

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the internal buffers into
which the message is transferred are full). When TPNOBLOCK is not specified and a
blocking condition exists, the caller blocks until the condition subsides or a timeout occurs
(either transaction or blocking timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to be immune to
blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is reissued.

RETURN VALUE
Upon successful completion, tpacall () returns a descriptor that can be used to receive the reply
of the request sent. Otherwise it returns −1 and sets tperrno to indicate the error condition.

ERRORS
Under the following conditions, tpacall () fails and sets tperrno to one of the values below. Unless
otherwise noted, failure does not affect the caller’s transaction, if one exists.

[TPEINVAL]
Invalid arguments were given (for example, svc is NULL, data does not point to space
allocated with tpalloc () or flags are invalid).

26 X/Open CAE Specification

C Reference Manual Pages tpacall()

[TPENOENT]
Cannot send to svc because it does not exist.

[TPEITYPE]
The type and sub-type of data are not of the allowed types and sub-types that svc accepts.

[TPELIMIT]
The caller’s request was not sent because the maximum number of outstanding
asynchronous requests has been reached.

[TPETRAN]
svc does not support transactions and TPNOTRAN was not set.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, a transaction timeout occurred and
the transaction is marked rollback-only; otherwise, a blocking timeout occurred and neither
TPNOBLOCK nor TPNOTIME were specified. If a transaction timeout occurred, any
attempts to send new requests or receive outstanding replies fail with [TPETIME] until the
transaction has been rolled back.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpacall () was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

SEE ALSO
tpalloc (), tpcall (), tpcancel(), tpgetrply().

Part 1: XATMI Communication Application P rogramming Interface (API) 27

tpadvertise() C Reference Manual Pages

NAME
tpadvertise — advertise a service name

SYNOPSIS
#include <xatmi.h>

int tpadvertise(char * svcname , void (* func)(TPSVCINFO *))

DESCRIPTION
The function tpadvertise() allows a server to advertise the services that it offers. By default, a
server’s services are advertised when it is booted and unadvertised when it is shut down.

The function tpadvertise() advertises svcname for the server. The argument svcname should be 15
characters or fewer, but cannot be NULL or the NULL string (""). Longer names are accepted
and truncated to 15 characters. Users should make sure that truncated names do not match
other service names. The argument func is the address of a service function. This function is
invoked whenever a request for svcname is received by the server. The argument func cannot be
NULL.

If svcname is already advertised for the server and func matches its current function, tpadvertise()
returns success (this includes truncated names that match already advertised names). However,
if svcname is already advertised for the server but func does not match its current function, an
error is returned (this can happen if truncated names match already advertised names).

RETURN VALUE
The function tpadvertise() returns −1 on error and sets tperrno to indicate the error condition.

ERRORS
Under the following conditions, tpadvertise() fails and sets tperrno to one of the following values:

[TPEINVAL]
The argument svcname is NULL or the NULL string (""), or func is NULL.

[TPELIMIT]
The argument svcname cannot be advertised because of space limitations.

[TPEMATCH]
The argument svcname is already advertised for the server but with a function other than
func. Although the function fails, svcname remains advertised with its current function (that
is, func does not replace the current function).

[TPEPROTO]
The function tpadvertise() was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

SEE ALSO
tpservice(), tpunadvertise().

28 X/Open CAE Specification

C Reference Manual Pages tpalloc()

NAME
tpalloc — allocate a typed buffer

SYNOPSIS
#include <xatmi.h>

char * tpalloc(char * type , char * subtype , long size)

DESCRIPTION
The function tpalloc () returns a pointer to a buffer of type type. Depending on the type of buffer,
both subtype and size are optional.

If multiple subtypes are available for a particular buffer type, subtype must be specified when
tpalloc () is called. If the type specified does not have a subtype, *subtype is ignored (and may be
null). The allocated buffer is at least as large as size.

Note that only the first eight bytes of type and the first 16 bytes of subtype are significant.

Because some buffer types require initialisation before they can be used, tpalloc () initialises a
buffer (in a communication-resource-manager-specific manner) after it is allocated and before it
is returned. Thus, the buffer returned to the caller is ready for use. Note that unless the
initialisation processing cleared the buffer, the buffer is not initialised to zeros by tpalloc ().

RETURN VALUE
Upon successful completion, tpalloc () returns a pointer to a buffer of the appropriate type
aligned on a long word. Otherwise it returns NULL and sets tperrno to indicate the error
condition.

ERRORS
Under the following conditions, tpalloc () fails and sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were given (for example, type is NULL).

[TPENOENT]
Unknown type and/or subtype.

[TPEPROTO]
tpalloc () was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

APPLICATION USAGE

If buffer initialisation processing fails, the allocated buffer is freed and tpalloc () fails returning
NULL.

This function should not be used in concert with malloc (), realloc () or free() in the C library (for
example, a buffer allocated with tpalloc () should not be freed with free()).

SEE ALSO
tpfree(), tprealloc (), tptypes().

Part 1: XATMI Communication Application P rogramming Interface (API) 29

tpcall() C Reference Manual Pages

NAME
tpcall — send a service request and synchronously await its reply

SYNOPSIS
#include <xatmi.h>

int tpcall(char * svc , char * idata , long ilen ,
char ** odata , long * olen , long flags)

DESCRIPTION
The function tpcall () sends a request and synchronously awaits its reply. A call to this function
is the same as calling tpacall () immediately followed by tpgetrply(). The function tpcall () sends a
request to the service named by svc. The data portion of a request is pointed to by idata, a buffer
previously allocated by tpalloc (). The argument ilen specifies how much of idata to send. Note
that if idata points to a buffer of a type that does not require a length to be specified, ilen is
ignored (and may be 0). If data points to a buffer that does require a length, len must not be zero.
Also, idata may be NULL in which case ilen is ignored. The type and sub-type of idata must
match one of the types and sub-types recognised by svc.

odata is the address of a pointer to the buffer where a reply is read into, and the length of that
reply is returned in *olen. *odata must point to a buffer originally allocated by tpalloc (). If the
same buffer is to be used for both sending and receiving, odata should be set to the address of
idata. To determine whether a reply buffer changed in size, compare its (total) size before tpcall ()
was issued with *olen. If *olen is larger, the buffer has grown; otherwise, the buffer has not
changed size. Also, if idata and *odata were equal when tpcall () was invoked, and *odata is
changed, idata no longer points to a valid address. Note that *odata may change for reasons
other than the buffer’s size increased. If *olen is 0 upon return, the reply has no data portion and
neither *odata nor the buffer it points to were modified. It is an error for *odata or olen to be
NULL.

The valid flags are as follows:

TPNOTRAN
If the caller is in transaction mode and this flag is set, when svc is invoked, it is not
performed on behalf of the caller’s transaction. If svc does not support transactions, this flag
must be set when the caller is in transaction mode. A caller in transaction mode that sets
this flag is still subject to the transaction timeout (and no other). If a service fails that was
invoked with this flag, the caller’s transaction is not affected.

TPNOCHANGE
By default, if a buffer is received that differs in type from the buffer pointed to by *odata,
*odata’s buffer type changes to the received buffer’s type so long as the receiver recognises
the incoming buffer type. When this flag is set, the type of the buffer pointed to by *odata is
not allowed to change. That is, the type and sub-type of the received buffer must match the
type and sub-type of the buffer pointed to by *odata.

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the internal buffers into
which the message is transferred are full). Note that this flag applies only to the send
portion of tpcall (); the function may block waiting for the reply. When TPNOBLOCK is not
specified and a blocking condition exists, the caller blocks until the condition subsides or a
timeout occurs (either transaction or blocking timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to be immune to
blocking timeouts. Transaction timeouts may still occur.

30 X/Open CAE Specification

C Reference Manual Pages tpcall()

TPSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is reissued.

RETURN VALUE
Upon successful return from tpcall () or upon return where tperrno is set to [TPESVCFAIL], the
tpurcode global contains an application-defined value that was sent as part of tpreturn().
Otherwise, it returns −1 and sets tperrno to indicate the error condition.

ERRORS
Under the following conditions, tpcall () fails and sets tperrno to one of the values below. Unless
otherwise noted, failure does not affect the caller’s transaction, if one exists.

[TPEINVAL]
Invalid arguments were given (for example, svc is NULL or flags are invalid).

[TPENOENT]
Cannot send to svc because it does not exist.

[TPEITYPE]
The type and sub-type of idata are not of the allowed types and sub-types that svc accepts.

[TPEOTYPE]
Either the type and sub-type of the reply are not known to the caller; or, TPNOCHANGE
was set in flags and the type and sub-type of *odata do not match the type and sub-type of
the reply sent by the service. Neither *odata, its contents nor *olen are changed. If the
service request was made on behalf of the caller’s current transaction, the transaction is
marked rollback-only since the reply is discarded.

[TPETRAN]
The argument svc does not support transactions and TPNOTRAN was not set.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, a transaction timeout occurred and
the transaction is marked rollback-only; otherwise, a blocking timeout occurred and neither
TPNOBLOCK nor TPNOTIME were specified. In either case, neither *odata, its contents nor
*olen are changed. If a transaction timeout occurred, any attempts to send new requests or
receive outstanding replies fail with [TPETIME] until the transaction has been rolled back.

[TPESVCFAIL]
The service routine sending the caller’s reply called tpreturn() with TPFAIL. This is an
application-level failure. The contents of the service’s reply, if one was sent, are available in
the buffer pointed to by *odata. If the service request was made on behalf of the caller’s
current transaction, the transaction is marked rollback-only. Note that so long as the
transaction has not timed out, further communication may be attempted before rolling back
the transaction. Such attempts may be processed normally or may fail (producing an error
return or event). Such attempts should be made with TPNOTRAN set if they are to have
any lasting effect. Any work performed on behalf of the caller’s transaction is rolled back
upon transaction completion.

[TPESVCERR]
An error was encountered either in invoking a service routine or during its completion in
tpreturn() (for example, bad arguments were passed). No reply data is returned when this
error occurs (that is, neither *odata, its contents nor *olen are changed). If the service request
was made on behalf of the caller’s transaction, the transaction is marked rollback-only.
Note that so long as the transaction has not timed out, further communication may be
attempted before rolling back the transaction. Such attempts may be processed normally or
may fail (producing an error return or event). Such attempts should be made with

Part 1: XATMI Communication Application P rogramming Interface (API) 31

tpcall() C Reference Manual Pages

TPNOTRAN set if they are to have any lasting effect. Any work performed on behalf of the
caller’s transaction is rolled back upon transaction completion.

[TPEBLOCK]
A blocking condition was found on the send portion of tpcall () and TPNOBLOCK was
specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpcall () was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

SEE ALSO
tpalloc (), tpacall (), tpgetrply(), tpreturn().

32 X/Open CAE Specification

C Reference Manual Pages tpcancel()

NAME
tpcancel — cancel a call descriptor for an outstanding reply

SYNOPSIS
#include <xatmi.h>

int tpcancel(int cd)

DESCRIPTION
The function tpcancel() cancels a call descriptor, cd, returned by tpacall (). It is an error to attempt
to cancel a call descriptor associated with a global transaction.

Upon successful return, cd is no longer valid and any reply received (by the communication
resource manager) on behalf of cd is silently discarded.

RETURN VALUE
tpcancel() returns −1 on error and sets tperrno to indicate the error condition.

ERRORS
Under the following conditions, tpcancel() fails and sets tperrno to one of the following values:

[TPEBADDESC]
The argument cd is an invalid descriptor.

[TPETRAN]
The argument cd is associated with the caller’s global transaction. cd remains valid and the
caller’s current transaction is not affected.

[TPEPROTO]
The function tpcancel() was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

SEE ALSO
tpacall ().

Part 1: XATMI Communication Application P rogramming Interface (API) 33

tpconnect() C Reference Manual Pages

NAME
tpconnect — establish a conversational service connection

SYNOPSIS
#include <xatmi.h>

int tpconnect(char * svc , char * data , long len , long flags)

DESCRIPTION
The function tpconnect() allows a program to set up a half-duplex connection to a conversational
service, svc.

As part of setting up a connection, the caller can pass application-defined data to the receiving
service routine. If the caller chooses to pass data, data must point to a buffer previously
allocated by tpalloc (). len specifies how much of the buffer to send. Note that if data points to a
buffer of a type that does not require a length to be specified, len is ignored (and may be 0). If
data points to a buffer that does require a length, len must not be zero. Also, data can be NULL in
which case len is ignored (no application data is passed to the conversational service). The type
and sub-type of data must match one of the types and sub-types recognised by svc. Because the
conversational service receives data and len via the TPSVCINFO structure upon invocation, the
service does not call tprecv() to get the data sent by tpconnect().

The valid flags are as follows:

TPNOTRAN
If the caller is in transaction mode and this flag is set, when svc is invoked, it is not
performed on behalf of the caller’s transaction. If svc does not support transactions, this flag
must be set when the caller is in transaction mode. A caller in transaction mode that sets
this flag is still subject to the transaction timeout (and no other). If a service fails that was
invoked with this flag, the caller’s transaction is not affected.

TPSENDONLY
The caller wants the connection to be set up initially such that it can send data and the
called service can only receive data (that is, the caller initially has control of the connection).
Either TPSENDONLY or TPRECVONLY must be specified.

TPRECVONLY
The caller wants the connection to be set up initially such that it can only receive data and
the called service can send data (that is, the service being called initially has control of the
connection). Either TPSENDONLY or TPRECVONLY must be specified.

TPNOBLOCK
The connection is not established and the data is not sent if a blocking condition exists (for
example, the internal buffers into which the message is transferred are full). When
TPNOBLOCK is not specified and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to be immune to
blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is reissued.

34 X/Open CAE Specification

C Reference Manual Pages tpconnect()

RETURN VALUE
Upon successful completion, tpconnect() returns a descriptor that is used to refer to the
connection in subsequent calls. Otherwise it returns −1 and sets tperrno to indicate the error
condition.

ERRORS
Under the following conditions, tpconnect() fails and sets tperrno to one of the values below.
Unless otherwise noted, failure does not affect the caller’s transaction, if one exists.

[TPEINVAL]
Invalid arguments were given (for example, svc is NULL, data is non-NULL and does not
point to a buffer allocated by tpalloc (), TPSENDONLY or TPRECVONLY was not specified
in flags, or flags are otherwise invalid).

[TPENOENT]
Cannot initiate a connection to svc because it does not exist.

[TPEITYPE]
The type and subtype of data are not of the allowed types and subtypes that svc accepts.

[TPELIMIT]
The caller’s request was not sent because the maximum number of outstanding connections
has been reached.

[TPETRAN]
The argument svc does not support transactions and TPNOTRAN was not set.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, a transaction timeout occurred and
the transaction is marked rollback-only; otherwise, a blocking timeout occurred and neither
TPNOBLOCK nor TPNOTIME were specified. If a transaction timeout occurred, any
attempts to send or receive messages on any connections or to start a new connection fail
with [TPETIME] until the transaction has been rolled back.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpconnect() was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

SEE ALSO
tpalloc (), tpdiscon(), tprecv(), tpsend(), tpservice().

Part 1: XATMI Communication Application P rogramming Interface (API) 35

tpdiscon() C Reference Manual Pages

NAME
tpdiscon — terminate a conversational service connection abortively

SYNOPSIS
#include <xatmi.h>

int tpdiscon(int cd)

DESCRIPTION
The function tpdiscon() immediately terminates the connection specified by cd and generates a
TPEV_DISCONIMM event on the other end of the connection.

The function tpdiscon() can be called only by the initiator of the conversation. tpdiscon() cannot
be called within a conversational service on the descriptor with which it was invoked. Rather, a
conversational service must use tpreturn() to signify that it has completed its part of the
conversation. Similarly, even though a program communicating with a conversational service
can issue tpdiscon(), the preferred way is to let the service terminate the connection in tpreturn();
doing so ensures correct results.

The function tpdiscon() causes the connection to be terminated immediately (that is, abortively
rather than orderly). Any data that has not yet reached its destination may be lost. tpdiscon()
can be issued even when the program on the other end of the connection is participating in the
caller’s transaction. In this case, the transaction must be rolled back. Also, the caller does not
need to have control of the connection when tpdiscon() is called.

RETURN VALUE
The function tpdiscon() returns −1 on error and sets tperrno to indicate the error condition.

ERRORS
Under the following conditions, tpdiscon() fails and sets tperrno to one of the following values:

[TPEBADDESC]
The argument cd is invalid or is the descriptor with which a conversational service was
invoked.

[TPETIME]
A timeout occurred. The descriptor is no longer valid.

[TPEPROTO]
The function tpdiscon() was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

SEE ALSO
tpconnect(), tprecv(), tpreturn(), tpsend().

36 X/Open CAE Specification

C Reference Manual Pages tpfree()

NAME
tpfree — free a typed buffer

SYNOPSIS
#include <xatmi.h>

void tpfree(char * ptr)

DESCRIPTION
The argument to tpfree() is a pointer to a buffer previously obtained by either tpalloc () or
tprealloc (). If ptr is NULL, no action occurs. Undefined results occur if ptr does not point to a
typed buffer (or if it points to space previously freed with tpfree()). Inside service routines,
tpfree() returns and does not free the buffer if ptr points to the buffer passed into a service
routine.

Some buffer types require state information or associated data to be removed as part of freeing a
buffer. tpfree() removes any of these associations (in a communication-resource-manager-
specific manner) before a buffer is freed.

Once tpfree() returns, ptr should not be passed as an argument to any XATMI routine or used in
any other manner.

RETURN VALUE
The function tpfree() does not return any value to its caller. Therefore, it is declared as a void.

APPLICATION USAGE
This function should not be used in concert with malloc (), realloc () or free() in the C library (for
example, a buffer allocated with tpalloc () should not be freed with free()).

SEE ALSO
tpalloc (), tprealloc ().

Part 1: XATMI Communication Application P rogramming Interface (API) 37

tpgetrply() C Reference Manual Pages

NAME
tpgetrply — get a reply from a previous service request

SYNOPSIS
#include <xatmi.h>

int tpgetrply(int * cd , char ** data , long * len , long flags)

DESCRIPTION
The function tpgetrply() returns a reply from a previously-sent service request. This function’s
first argument, cd, points to a call descriptor returned by tpacall (). By default, the function waits
until the reply matching *cd arrives or a timeout occurs.

data must be the address of a pointer to a buffer previously allocated by tpalloc () and len should
point to a long that tpgetrply() sets to the amount of data successfully received. tpgetrply()
ensures that the request fits into the specified buffer by growing the buffer if necessary. Upon
successful return, *data points to a buffer containing the reply and *len contains the size of the
data. Note that *data may have changed upon return for reasons other than an increase in the
size of the buffer. If *len is greater than the total size of the buffer before the call, the buffer’s new
size is *len. If *len is 0, then the reply dequeued has no data portion and neither *data nor the
buffer it points to were modified. It is an error for *data or len to be NULL.

The valid flags are as follows:

TPGETANY
This flag signifies that tpgetrply() should ignore the descriptor pointed to by cd, return any
reply available and set cd to point to the call descriptor for the reply returned. If no replies
exist, by default tpgetrply() waits for one to arrive.

TPNOCHANGE
By default, if a buffer is received that differs in type from the buffer pointed to by *data, then
*data’s buffer type changes to the received buffer’s type so long as the receiver recognises the
incoming buffer type. When this flag is set, the type of the buffer pointed to by *data is not
allowed to change. That is, the type and sub-type of the received buffer must match the
type and sub-type of the buffer pointed to by *data.

TPNOBLOCK
tpgetrply() does not wait for the reply to arrive. If the reply is available, tpgetrply() gets the
reply and returns. When this flag is not specified and a reply is not available, the caller
blocks until the reply arrives or a timeout occurs (either transaction or blocking timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely for its reply and wants to be
immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is reissued.

Except as noted below, *cd is no longer valid after its reply is received.

RETURN VALUE
Upon successful return from tpgetrply() or upon return where tperrno is set to [TPESVCFAIL],
the tpurcode global contains an application-defined value that was sent as part of tpreturn().
Otherwise, it returns −1 and sets tperrno to indicate the error condition.

38 X/Open CAE Specification

C Reference Manual Pages tpgetrply()

ERRORS
Under the following conditions, tpgetrply() fails and sets tperrno as indicated below. Note that if
TPGETANY is not set, *cd is invalidated unless otherwise stated. If TPGETANY is set, cd points
to the descriptor for the reply on which the failure occurred; if an error occurred before a reply
could be retrieved, cd points to 0, unless otherwise stated. Also, the failure does not affect the
caller’s transaction, if one exists, unless otherwise stated.

[TPEINVAL]
Invalid arguments were given (for example, cd, data, *data or len is NULL or flags are
invalid). If cd is non-NULL, it is still valid after this error and the reply remains
outstanding.

[TPEBADDESC]
The argument cd points to an invalid descriptor.

[TPEOTYPE]
Either the type and sub-type of the reply are not known to the caller, or TPNOCHANGE
was set in flags and the type and sub-type of *data do not match the type and sub-type of the
reply sent by the service. In either case, neither *data, its contents nor *len are changed. If
the reply was to be received on behalf of the caller’s current transaction, the transaction is
marked rollback-only since the reply is discarded.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, a transaction timeout occurred and
the transaction is marked rollback-only; otherwise, a blocking timeout occurred and neither
TPNOBLOCK nor TPNOTIME were specified. In either case, neither *data, its contents nor
*len are changed. The argument *cd remains valid unless the caller is in transaction mode
(and TPGETANY was not set). If a transaction timeout occurred, any attempts to send new
requests or receive outstanding replies fail with [TPETIME] until the transaction has been
rolled back.

[TPESVCFAIL]
The service routine sending the caller’s reply called tpreturn() with TPFAIL. This is an
application-level failure. The contents of the service’s reply, if one was sent, are available in
the buffer pointed to by *data. If the reply was received on behalf of the caller’s transaction,
the transaction is marked rollback-only. Note that so long as the transaction has not timed
out, further communication may be attempted before rolling back the transaction. Such
attempts may be processed normally or may fail (producing an error return or event). Such
attempts should be made with TPNOTRAN set if they are to have any lasting effect. Any
work performed on behalf of the caller’s transaction is rolled back upon transaction
completion.

[TPESVCERR]
An error was encountered either in invoking a service routine or during its completion in
tpreturn() (for example, bad arguments were passed). No reply data is returned when this
error occurs (that is, neither *data, its contents nor *len are changed). If the reply was
received on behalf of the caller’s transaction, the transaction is marked rollback-only. Note
that so long as the transaction has not timed out, further communication may be attempted
before rolling back the transaction. Such attempts may be processed normally or may fail
(producing an error return or event). Such attempts should be made with TPNOTRAN set
if they are to have any lasting effect. Any work performed on behalf of the caller’s
transaction is rolled back upon transaction completion.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified. The argument *cd remains
valid.

Part 1: XATMI Communication Application P rogramming Interface (API) 39

tpgetrply() C Reference Manual Pages

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpgetrply() was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

SEE ALSO
tpacall (), tpalloc (), tpreturn().

40 X/Open CAE Specification

C Reference Manual Pages tprealloc()

NAME
tprealloc — change the size of a typed buffer

SYNOPSIS
#include <xatmi.h>

char * tprealloc(char * ptr , long size)

DESCRIPTION
The function tprealloc () changes the size of the buffer pointed to by ptr to size bytes and returns a
pointer to the new (possibly moved) buffer. As with tpalloc (), the size of the buffer is at least as
large as size. A buffer’s type remains the same after it is reallocated. After this function returns
successfully, the returned pointer should be used to reference the buffer; ptr should no longer be
used. The buffer’s contents do not change up to the lesser of the new and old sizes.

Some buffer types require initialisation before they can be used. tprealloc () reinitialises a buffer
(in a communication-resource-manager-specific manner) after it is reallocated and before it is
returned. Thus, the buffer returned to the caller is ready for use.

RETURN VALUE
Upon successful completion, tprealloc () returns a pointer to a buffer of the appropriate type
aligned on a long word. Otherwise it returns NULL and sets tperrno to indicate the error
condition.

ERRORS
Under the following conditions, tprealloc () fails and sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were given (for example, ptr does not point to a buffer originally
allocated by tpalloc ()).

[TPEPROTO]
tprealloc () was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

APPLICATION USAGE
If buffer reinitialisation fails, tprealloc () fails returning NULL and the contents of the buffer
pointed to by ptr may not be valid.

This function should not be used in concert with malloc (), realloc () or free() in the C library (for
example, a buffer allocated with tprealloc () should not be freed with free()).

SEE ALSO
tpalloc (), tpfree(), tptypes().

Part 1: XATMI Communication Application P rogramming Interface (API) 41

tprecv() C Reference Manual Pages

NAME
tprecv — receive a message in a conversational connection

SYNOPSIS
#include <xatmi.h>

int tprecv(int cd , char ** data , long * len , long flags , long * revent)

DESCRIPTION
The function tprecv() is used to receive data sent across an open connection from another
program. This function’s first argument, cd, specifies on which open connection to receive data.
cd is a descriptor returned from either tpconnect() or the TPSVCINFO parameter to the service.
The second argument, data, is the address of a pointer to a buffer previously allocated by
tpalloc ().

Upon successful return, and for several event types, *data points to the data received and *len
contains the size of the buffer. Note that if *len is greater than the total size of the buffer before
the call, the buffer’s new size is *len. If *len is 0, no data was received and neither *data nor the
buffer it points to were modified. It is an error for data, *data or len to be NULL.

tprecv() can be issued only by the program that does not have control of the connection.

The valid flags are as follows:

TPNOCHANGE
By default, if a buffer is received that differs in type from the buffer pointed to by *data, then
*data’s buffer type changes to the received buffer’s type so long as the receiver recognises the
incoming buffer type. When this flag is set, the type of the buffer pointed to by *data is not
allowed to change. That is, the type and sub-type of the received buffer must match the
type and sub-type of the buffer pointed to by *data.

TPNOBLOCK
The function tprecv() does not wait for data to arrive. If data is already available to receive,
tprecv() gets the data and returns. When this flag is not specified and data is not available
to receive, the caller blocks until data arrives.

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to be immune to
blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is reissued.

If an event exists for the descriptor, cd, and tprecv() encounters no errors, the event type is
returned in revent. Data can be received along with the TPEV_SVCSUCC, TPEV_SVCFAIL, and
TPEV_SENDONLY events. Valid events for tprecv() are as follows:

TPEV_DISCONIMM
Received by the subordinate of a conversation, this event indicates that the originator of the
conversation has either issued an immediate disconnect on the connection by means of
tpdiscon(), or it issued tpreturn(), tx_commit() or tx_rollback () with the connection still open.
This event is also returned to the originator or subordinate when a connection is broken due
to a communication error (for example, a server, machine, or network failure). Because this
is an immediate disconnection notification (that is, abortive rather than orderly), data in
transit may be lost. If the two programs were participating in the same transaction, the
transaction is marked rollback-only. The descriptor used for the connection is no longer
valid.

42 X/Open CAE Specification

C Reference Manual Pages tprecv()

TPEV_SENDONLY
The program at the other end of the connection has relinquished control of the connection.
The recipient of this event is allowed to send data but cannot receive any data until it
relinquishes control.

TPEV_SVCERR
Received by the originator of a conversation, this event indicates that the subordinate of the
conversation has issued tpreturn(). tpreturn() encountered an error that precluded the
service from returning successfully. For example, bad arguments may have been passed to
tpreturn() or it may have been called while the service had open connections to other
subordinates. Due to the nature of this event, any application-defined data or return code
are not available. The connection has been terminated and cd is no longer a valid descriptor.
If this event occurred as part of the recipient’s transaction, the transaction is marked
rollback-only.

TPEV_SVCFAIL
Received by the originator of a conversation, this event indicates that the subordinate
service on the other end of the conversation has finished unsuccessfully as defined by the
application (that is, it called tpreturn() with TPFAIL). If the subordinate service was in
control of this connection when tpreturn() was called, it can pass a typed buffer back to the
originator of the connection. As part of ending the service routine, the server has
terminated the connection. Thus, cd is no longer a valid descriptor. If this event occurred as
part of the recipient’s transaction, the transaction is marked rollback-only.

TPEV_SVCSUCC
Received by the originator of a conversation, this event indicates that the subordinate
service on the other end of the conversation has finished successfully as defined by the
application (that is, it called tpreturn() with TPSUCCESS). As part of ending the service
routine, the server has terminated the connection. Thus, cd is no longer a valid descriptor.
If the recipient is in transaction mode, it can either commit (if it is also the initiator) or roll
back the transaction causing the work done by the server (if also in transaction mode) to
either commit or roll back.

RETURN VALUE
Upon return from tprecv() where revent is set to either TPEV_SVCSUCC or TPEV_SVCFAIL, the
tpurcode global contains an application-defined value that was sent as part of tpreturn(). The
function tprecv() returns −1 on error and sets tperrno to indicate the error condition. Also, if an
event exists and no errors were encountered, tprecv() returns −1 and tperrno is set to
[TPEEVENT].

ERRORS
Under the following conditions, tprecv() fails and sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were given (for example, data is not the address of a pointer to a buffer
allocated by tpalloc () or flags are invalid).

[TPEBADDESC]
The argument cd is invalid.

[TPEOTYPE]
Either the type and sub-type of the incoming buffer are not known to the caller, or
TPNOCHANGE was set in flags and the type and sub-type of *data do not match the type
and sub-type of the incoming buffer. In either case, neither *data, its contents nor *len are
changed. If the conversation is part of the caller’s current transaction, the transaction is
marked rollback-only since the incoming buffer is discarded. When this error occurs, any

Part 1: XATMI Communication Application P rogramming Interface (API) 43

tprecv() C Reference Manual Pages

event for cd is dropped and the conversation may now be in an indeterminate state. The
caller should terminate the conversation.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, a transaction timeout occurred and
the transaction is marked rollback-only; otherwise, a blocking timeout occurred and neither
TPNOBLOCK nor TPNOTIME were specified. In either case, neither *data nor its contents
are changed. If a transaction timeout occurred, any attempts to send or receive messages on
any connections or to start a new connection fail with [TPETIME] until the transaction has
been rolled back.

[TPEEVENT]
An event occurred and its type is available in revent.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tprecv() was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

SEE ALSO
tpalloc (), tpconnect(), tpdiscon(), tpsend().

44 X/Open CAE Specification

C Reference Manual Pages tpreturn()

NAME
tpreturn — return from a service routine

SYNOPSIS
#include <xatmi.h>

void tpreturn(int rval , long rcode , char * data , long len , long flags)

DESCRIPTION
The function tpreturn() indicates that a service routine has completed. tpreturn() acts like a
return statement in the C-language (that is, when tpreturn() is called, the service routine returns
to the communication resource manager). It is recommended that tpreturn() be called from
within the service routine dispatched by the communication resource manager to ensure correct
return of control to the communication resource manager.

The function tpreturn() is used to send a service’s reply message. If the program receiving the
reply is waiting in either tpcall (), tpgetrply(), or tprecv(), then after a successful call to tpreturn(),
the reply is available in the receiver’s buffer.

For conversational services, tpreturn() also terminates the connection. That is, the service
routine cannot call tpdiscon() directly. To ensure correct results, the program that connected to
the conversational service should not call tpdiscon(); rather, it should wait for notification that
the conversational service has completed (that is, it should wait for one of the events, like
TPEV_SVCSUCC or TPEV_SVCFAIL, sent by tpreturn()).

If the service routine was in transaction mode, tpreturn() places the service’s portion of the
transaction in a state where it may be either committed or rolled back when the transaction is
completed. A service may be invoked multiple times as part of the same transaction so it is not
necessarily fully committed nor rolled back until either tx_commit() or tx_rollback () is called by
the originator of the transaction.

The function tpreturn() should be called after receiving all replies expected from service requests
initiated by the service routine. Otherwise, depending on the nature of the service, either a
[TPESVCERR] error or a TPEV_SVCERR event is returned to the program that initiated
communication with the service routine. Any outstanding replies that are not received are
automatically dropped by the communication resource manager. In addition, the descriptors for
those replies become invalid.

The function tpreturn() should be called after closing all connections initiated by the service.
Otherwise, depending on the nature of the service, either a [TPESVCERR] or a TPEV_SVCERR
event is returned to the program that initiated communication with the service routine. Also, an
immediate disconnect event (that is, TPEV_DISCONIMM) is sent over all open connections to
subordinates.

Concerning control of the connection, if the service routine does not have control over the
connection with which it was invoked when it issues tpreturn(), two outcomes are possible.
Firstly, if the service routine calls tpreturn() with rval set to TPFAIL and data is NULL, then a
TPEV_SVCFAIL event is sent to the originator of this conversation. Secondly, if any other
invocation of tpreturn() is used, a TPEV_SVCERR event is sent to the originator.

Since a conversational service has only one open connection that it did not initiate, the
communication resource manager knows over which descriptor data (and any event) should be
sent. For this reason, a descriptor is not passed to tpreturn().

Part 1: XATMI Communication Application P rogramming Interface (API) 45

tpreturn() C Reference Manual Pages

The argument rval can be set to one of the following:

TPSUCCESS
The service has terminated successfully. If data is present, it is sent (barring any failures
processing the return). If the caller is in transaction mode, tpreturn() places the caller’s
portion of the transaction in a state such that it can be committed when the transaction
ultimately commits. Note that a call to tpreturn() does not necessarily finalise an entire
transaction. Also, even though the caller indicates success, if there are any outstanding
replies or open connections, or if any work done within the service caused its transaction to
be marked rollback-only, then a failed message is sent (that is, the recipient of the reply
receives a [TPESVCERR] indication or a TPEV_SVCERR event). Note that if a transaction
becomes rollback-only while in the service routine for any reason, rval should be set to
TPFAIL. If TPSUCCESS is specified for a conversational service, a TPEV_SVCSUCC event
is generated.

TPFAIL
The service has terminated unsuccessfully from an application standpoint. An error is
reported to the program receiving the reply. That is, the call to get the reply fails and the
recipient receives a [TPSVCFAIL] indication or a TPEV_SVCFAIL event. If the caller is in
transaction mode, tpreturn() marks the transaction as rollback-only (note that the
transaction may already be marked rollback-only). Barring any failures in processing the
return, the caller’s data is sent, if present. One reason for not sending the caller’s data is
when a transaction timeout has occurred. In this case, the program waiting for the reply
receives an error of [TPETIME].

If rval does not contain one of these two values, TPFAIL is assumed.

An application-defined return code, rcode, may be sent to the program receiving the service
reply. This code is sent regardless of the setting of rval as long as a reply can be successfully sent
(that is, as long as the receiving call returns success or [TPESVCFAIL], or receives one of the
events TPEV_SVCSUCC or TPEV_SVCFAIL). The value of rcode is available to the receiver in
the variable tpurcode .

data points to the data portion of a reply to be sent. If data is non-NULL, it must point to a buffer
previously obtained by a call to tpalloc (). If this is the same buffer passed to the service routine
upon its invocation, its disposition is up to the communication resource manager; the service
routine writer does not have to worry about whether it is freed or not. In fact, any attempt by
the user to free this buffer fails. However, if the buffer passed to tpreturn() is not the same one
with which the service is invoked, tpreturn() frees that buffer. len specifies the amount of the
data buffer to be sent. If data points to a buffer that does not require a length to be specified, len
is ignored (and may be 0). If data points to a buffer that does require a length, len must not be
zero.

If data is NULL, len is ignored. In this case, if a reply is expected by the program that invoked
the service, a reply is sent with no data portion. If no reply is expected, tpreturn() frees data as
necessary and returns sending no reply.

Currently, flags are reserved for future use and must be set to 0.

If the service is conversational, there are two cases where the data portion is not transmitted:

• If the connection has already been terminated when the call is made (that is, the caller has
received TPEV_DISCONIMM on the connection), this call simply ends the service routine
and rolls back the current transaction, if one exists. In this case, the caller’s data cannot be
transmitted.

46 X/Open CAE Specification

C Reference Manual Pages tpreturn()

• If the caller does not have control of the connection, either TPEV_SVCFAIL or
TPEV_SVCERR is sent to the originator of the connection as described above. Regardless of
which event the originator receives, no data is transmitted; however, if the originator
receives the TPEV_SVCFAIL event, the return code is available in the originator’s tpurcode
variable.

RETURN VALUE
A service routine does not return any value to its caller, the communication resource manager
dispatcher; thus, it is declared as a void. Service routines, however, are expected to terminate
using tpreturn(). If a service routine returns without using tpreturn() (that is, it uses the C-
language return statement or ‘‘falls out of the function’’), the server returns a service error to the
service requester. In addition, all open connections to subordinates are disconnected
immediately, and any outstanding asynchronous replies are dropped. If the server was in
transaction mode at the time of failure, the transaction is marked rollback-only. Note also that if
tpreturn() is used outside a service routine (for example, by routines that are not services), it
returns having no effect.

ERRORS
Since tpreturn() ends the service routine, any errors encountered either in handling arguments or
in processing cannot be indicated to the function’s caller. Such errors cause tperrno to be set to
[TPESVCERR] for a program receiving the service’s outcome via either tpcall () or tpgetrply(),
and cause the event, TPEV_SVCERR, to be sent over the conversation to a program using
tpsend() or tprecv().

SEE ALSO
tpalloc (), tpcall (), tpconnect(), tpdiscon(), tpgetrply(), tprecv(), tpsend(), tpservice().

Part 1: XATMI Communication Application P rogramming Interface (API) 47

tpsend() C Reference Manual Pages

NAME
tpsend — send a message in a conversational connection

SYNOPSIS
#include <xatmi.h>

int tpsend(int cd , char * data , long len , long flags , long * revent)

DESCRIPTION
The function tpsend() is used to send data across an open connection to another program. The
caller must have control of the connection. This function’s first argument, cd, specifies the open
connection over which data is sent. cd is a descriptor returned from either tpconnect() or the
TPSVCINFO parameter passed to a conversational service.

The second argument, data, must point to a buffer previously allocated by tpalloc (). len specifies
how much of the buffer to send. Note that if data points to a buffer of a type that does not
require a length to be specified, len is ignored (and may be 0). If data points to a buffer that does
require a length, len must not be zero. Also, data can be NULL in which case len is ignored (no
application data is sent — this might be done, for instance, to grant control of the connection
without transmitting any data). The type and sub-type of data must match one of the types and
sub-types recognised by the other end of the connection.

The valid flags are as follows:

TPRECVONLY
This flag signifies that, after the caller’s data is sent, the caller gives up control of the
connection (that is, the caller cannot issue any more tpsend() calls). When the receiver at the
other end of the connection receives the data sent by tpsend(), it also receives an event
(TPEV_SENDONLY) indicating that it has control of the connection (and cannot issue more
any tprecv() calls).

TPNOBLOCK
The data and any events are not sent if a blocking condition exists (for example, the internal
buffers into which the message is transferred are full). When TPNOBLOCK is not specified
and a blocking condition exists, the caller blocks until the condition subsides or a timeout
occurs (either transaction or blocking timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to be immune to
blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is reissued.

If an event exists for the descriptor, cd, tpsend() fails without sending the caller’s data. The event
type is returned in revent. Valid events for tpsend() are as follows:

TPEV_DISCONIMM
Received by the subordinate of a conversation, this event indicates that the originator of the
conversation has either issued an immediate disconnect on the connection via tpdiscon(), or
it issued tpreturn(), tx_commit() or tx_rollback () with the connection still open. This event is
also returned to the originator or subordinate when a connection is broken due to a
communication error (for example, a server, machine, or network failure).

TPEV_SVCERR
Received by the originator of a conversation, this event indicates that the subordinate of the
conversation has issued tpreturn() without having control of the conversation. In addition,
tpreturn() was issued in a manner different from that described for TPEV_SVCFAIL below.

48 X/Open CAE Specification

C Reference Manual Pages tpsend()

TPEV_SVCFAIL
Received by the originator of a conversation, this event indicates that the subordinate of the
conversation has issued tpreturn() without having control of the conversation. In addition,
tpreturn() was issued with the TPFAIL and no data (that is, rval was set to TPFAIL and data
was NULL).

Because each of these events indicates an immediate disconnection notification (that is, abortive
rather than orderly), data in transit may be lost. The descriptor used for the connection is no
longer valid. If the two programs were participating in the same transaction, the transaction has
been marked rollback-only.

RETURN VALUE
The function tpsend() returns −1 on error and sets tperrno to indicate the error condition. Upon
return from tpsend() where revent is set to TPEV_SVCFAIL, the tpurcode global contains an
application-defined value that was set as part of tpreturn().

ERRORS
Under the following conditions, tpsend() fails and sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were given (for example, data does not point to a buffer allocated by
tpalloc () or flags are invalid).

[TPEBADDESC]
The argument cd is invalid.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, a transaction timeout occurred and
the transaction is marked rollback-only; otherwise, a blocking timeout occurred and neither
TPNOBLOCK nor TPNOTIME were specified. In either case, neither *data, its contents nor
*len are changed. If a transaction timeout occurred, any attempts to send or receive
messages on any connections or to start a new connection fail with [TPETIME] until the
transaction has been rolled back.

[TPEEVENT]
An event occurred. data is not sent when this error occurs. The event type is returned in
revent.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpsend() was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

SEE ALSO
tpalloc (), tpconnect(), tpdiscon(), tprecv(), tpreturn().

Part 1: XATMI Communication Application P rogramming Interface (API) 49

tpservice() C Reference Manual Pages

NAME
tpservice — template for service routines

SYNOPSIS
#include <xatmi.h>

void tpservice(TPSVCINFO * svcinfo)

DESCRIPTION
The function tpservice() is the template for writing service routines. This template is used for
services that receive requests via tpcall () or tpacall () routines as well as by services that
communicate via tpconnect(), tpsend() and tprecv() routines.

Service routines processing requests made via either tpcall () or tpacall () receive, at most, one
incoming message (in the data element of svcinfo) and send, at most, one reply (upon exiting the
service routine with tpreturn()).

Conversational services, on the other hand, are invoked by connection requests with, at most,
one incoming message along with a means of referring to the open connection. When a
conversational service routine is invoked, either the connecting program or the conversational
service may send and receive data as defined by the application. The connection is half-duplex
in nature meaning that one side controls the conversation (that is, it sends data) until it explicitly
gives up control to the other side of the connection.

Concerning transactions, service routines can participate in, at most, one transaction if invoked
in transaction mode. As far as the service routine writer is concerned, the transaction ends upon
returning from the service routine. If the service routine is not invoked in transaction mode, the
service routine may originate as many transactions as it wants using tx_begin(), tx_commit() and
tx_rollback (). Note that tpreturn() is not used to complete a transaction. Thus, it is an error to
call tpreturn() with an outstanding transaction that originated within the service routine.

Service routines are invoked with one argument: svcinfo, a pointer to a service information
structure. This structure includes the following members:

char name [XATMI_SERVICE_NAME_LENGTH];
char *data;
long len;
long flags;
int cd;

The element name is populated with the service name that the requester used to invoke the
service.

The setting of flags upon entry to a service routine indicates attributes that the service routine
may want to note. The possible values for flags are as follows:

TPCONV
A connection request for a conversation has been accepted and the descriptor for the
conversation is available in cd. If not set, this is a request/response service and cd is not
valid.

TPTRAN
The service routine is in transaction mode.

TPNOREPLY
The caller is not expecting a reply. This option is not set if TPCONV is set.

50 X/Open CAE Specification

C Reference Manual Pages tpservice()

TPSENDONLY
The service is invoked such that it can send data across the connection and the program on
the other end of the connection can only receive data. This flag is mutually exclusive with
TPRECVONLY and may be set only when TPCONV is also set.

TPRECVONLY
The service is invoked such that it can only receive data from the connection and the
program on the other end of the connection can send data. This flag is mutually exclusive
with TPSENDONLY and may be set only when TPCONV is also set.

The element data points to the data portion of a request message and len is the length of the
data. The buffer pointed to by data was allocated by tpalloc () in the communication resource
manager. This buffer may be grown by the user with tprealloc (); however, it cannot be freed by
the user. It is recommended that this buffer be the one passed to tpreturn() when the service
ends. If a different buffer is passed to those routines, that buffer is freed by them. Note that the
buffer pointed to by data is overwritten by the next service request even if this buffer is not
passed to tpreturn(). The element data may be NULL if no data accompanied the request. In
this case, len is 0.

When TPCONV is set in flags, cd is the connection descriptor that can be used with tpsend() and
tprecv() to communicate with the program that initiated the conversation.

RETURN VALUE
A service routine does not return any value to its caller, the communication resource manager
dispatcher; thus, it is declared as a void. Service routines, however, are expected to terminate
using tpreturn(). If a service routine returns without using tpreturn() (that is, it uses the C-
language return statement or ‘‘falls out of the function’’), the server returns a service error to the
service requester. In addition, all open connections to subordinates are disconnected
immediately, and any outstanding asynchronous replies are dropped. If the server was in
transaction mode at the time of failure, the transaction is marked rollback-only. Note also that if
tpreturn() is used outside a service routine (for example, by routines that are not services), it
returns having no effect.

ERRORS
Since tpreturn() ends the service routine, any errors encountered either in handling arguments or
in processing cannot be indicated to the function’s caller. Such errors cause tperrno to be set to
[TPESVCERR] for a program receiving the service’s outcome via either tpcall () or tpgetrply(),
and cause the event, TPEV_SVCERR, to be sent over the conversation to a program using
tpsend() or tprecv().

SEE ALSO
tpalloc (), tpcall (), tpconnect(), tpgetrply(), tprecv(), tpreturn(), tpsend().

Part 1: XATMI Communication Application P rogramming Interface (API) 51

tptypes() C Reference Manual Pages

NAME
tptypes — determine information about a typed buffer

SYNOPSIS
#include <xatmi.h>

long tptypes(char * ptr , char * type , char * subtype)

DESCRIPTION
The function tptypes() takes as its first argument a pointer to a data buffer and returns the type
and subtype of that buffer in its second and third arguments, respectively. ptr must point to a
buffer obtained from tpalloc (). If type and subtype are non-NULL, the function populates the
character arrays to which they point with the names of the buffer’s type and subtype,
respectively. If the names are of their maximum length (8 for type, 16 for subtype), the character
array is not null-terminated. If no subtype exists, the array pointed to by subtype contains a
NULL string ("").

Note that only the first eight bytes of type and the first 16 bytes of subtype are populated.

RETURN VALUE
Upon success, tptypes() returns the size of the buffer. Otherwise, it returns −1 upon failure and
sets tperrno to indicate the error condition.

ERRORS
Under the following conditions, tptypes() fails and sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were given (for example, ptr does not point to a typed buffer).

[TPEPROTO]
tptypes() was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

SEE ALSO
tpalloc (), tpfree(), tprealloc ().

52 X/Open CAE Specification

C Reference Manual Pages tpunadvertise()

NAME
tpunadvertise — unadvertise a service name

SYNOPSIS
#include <xatmi.h>

int tpunadvertise(char * svcname)

DESCRIPTION
The function tpunadvertise() allows a server to unadvertise a service that it offers. By default, a
server’s services are advertised when it is booted and they are unadvertised when it is
shutdown.

The function tpunadvertise() removes svcname as an advertised service for the server. The
argument svcname cannot be NULL or the NULL string (""). Also, svcname should be 15
characters or fewer. Longer names are accepted and truncated to 15 characters. Care should be
taken that truncated names do not match other service names.

RETURN VALUE
tpunadvertise() returns −1 on error and sets tperrno to indicate the error condition.

ERRORS
Under the following conditions, tpunadvertise() fails and sets tperrno to one of the following
values:

[TPEINVAL]
svcname is NULL or the NULL string ("").

[TPENOENT]
svcname is not currently advertised by the server.

[TPEPROTO]
tpunadvertise() was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

SEE ALSO
tpadvertise().

Part 1: XATMI Communication Application P rogramming Interface (API) 53

C Reference Manual Pages

54 X/Open CAE Specification

Chapter 6

COBOL Language Interface Overview

The XATMI interface is the API to a CRM that supports a client-server paradigm in an X/Open
DTP system. This interface offers the following programming models (see also the definitions in
Chapter 2):

• The request/response service paradigm allows the writing of a structured service AP routine
that receives a single request and may produce a single reply. The CRM automatically
initialises the communication path to the server and automatically invokes the AP service
routine. This paradigm simplifies the writing of the AP.

• The conversational service paradigm provides for the same automatic setup as for the
request/response service paradigm, but lets the AP service routine exchange data with the
requester multiple times and in an application-defined sequence. This is also a high-level
paradigm; it simplifies the writing of the AP service routine but gives it more flexibility than
a request/response service.

The CRM must know (typically from the local configuration) which paradigm is followed by the
AP routine addressed by any given request for communication, because the RM must enforce a
different state table in each case.

This chapter gives an overview of the COBOL interface; it describes each paradigm: its
attributes, the XATMI routines available in each paradigm and their usage, and programming
examples. This chapter also explains the COBOL API style and describes the concept of typed
records. Chapter 7 contains reference manual pages for each routine in alphabetical order.

Part 1: XATMI Communication Application P rogramming Interface (API) 55

Index to Functions in the XATMI Interface COBOL Language Interface Overview

6.1 Index to Functions in the XATMI Interface

Name Description See
Routines for Writing Service Routines

Section 6.4 on page 57.TPSVCSTART Start a service routine.
Section 6.4 on page 57.TPRETURN Return from a service routine.

Routines For Dynamically Advertising
Service Names

Section 6.5 on page 58.TPADVERTISE Advertise a service name.
Section 6.5 on page 58.TPUNADVERTISE Unadvertise a service name.

Routines for request/response Services
Section 6.6 on page 59.TPACALL Send a service request.

Send a service request and synchronously await
its reply.

Section 6.6 on page 59.TPCALL

Cancel a communication handle for an
outstanding reply.

Section 6.6 on page 59.TPCANCEL

Section 6.6 on page 59.TPGETRPLY Get a reply from a previous service request.

Routines for Conversational Services
Section 6.7 on page 60.TPCONNECT Establish a conversational service connection.

Terminate a conversational service connection
abortively.

Section 6.7 on page 60.TPDISCON

Section 6.7 on page 60.TPRECV Receive a message in a conversational connection.
Section 6.7 on page 60.TPSEND Send a message in a conversational connection.

Table 6-1 COBOL Language XATMI Functions

The TP* routines are the application interface provided by X/Open-compliant CRMs
implementing the XATMI interface. An AP can call these routines.

An AP must call the TP* routines in accordance with Chapter 8. However, if an AP calls more
than one CRM, or has more than one outstanding request or conversational connection using an
XATMI CRM, its calls to each do not depend on the state of its dealings with any other RM,
specific request, or connection.

6.2 COBOL API Style
Because COBOL has no type checking, the COBOL API for XATMI adopts a style that differs
from the C API. It combines several individual parameters in a few records. By using the COPY
statement to copy the description of those records in the program body, the risk of type
mismatches is avoided (the COBOL compiler would not detect such mismatches). This is a
generally accepted good practice in COBOL programming that is used to avoid problems
resulting from type mismatches.

56 X/Open CAE Specification

COBOL Language Interface Overview Typed Records

6.3 Typed Records
Before presenting an overview of the XATMI routines, the concept of typed records is first
described. In order to send data to another AP, the sending AP first places the data in a record.
The XATMI interface supports the notion of a typed record. A typed record is really a pair of
COBOL records. The data record is defined in static storage and contains application data to be
passed to another AP. An auxiliary type record accompanies the data record and it identifies to
the CRM the interpretation and translation rules of the data record as it passes across
heterogeneous machine boundaries. The auxiliary type record contains the data record’s type,
its optional subtype, and its optional length. Some record types require further specification via
a subtype (for example, a particular record layout) and those of variable length require a length
to be specified.

X/Open predefines two typed records for the COBOL XATMI interface that all implementations
support (see Chapter 9). An AP can specify by the type and subtype that a record’s structure is
interpreted by the AP.

6.4 Service Paradigm
The service paradigm refers to the common aspect of automatic setup and invocation in both the
request/response and conversational service paradigms.

Service routines are coded as COBOL language sub-programs. A service routine is invoked
from implementation-specific dispatching code contained within a server. Handling of the
communication path is independent of the service and is the responsibility of the CRM. From an
application writer’s viewpoint, communication between a requester and a service routine is
utilised only for the duration of the routine invocation.

The TPSVCSTART routine is the first routine that a service should call upon invocation in order
to retrieve information about the service request to be performed as well as any data sent by the
requester. TPSVCSTART is used both for services that receive requests via TPCALL or
TPACALL routines, and services that communicate via TPCONNECT, TPSEND and TPRECV
routines.

TPRETURN is used to send a service’s reply message. If an AP receiving the reply is waiting in
either TPCALL, TPGETRPLY or TPRECV, then after a successful call to TPRETURN, the reply is
available in the receiving AP’s record.

Services can accept more than one kind of typed record. In fact, services can accept one record
type on input and send a different record type in the response. The record types that a service
accepts can be specified in the local configuration.

Part 1: XATMI Communication Application P rogramming Interface (API) 57

Service Names and Dynamic Advertising COBOL Language Interface Overview

6.5 Service Names and Dynamic Advertising
The requester identifies a service with which it wishes to communicate in the service name
parameter to TPACALL, TPCALL or TPCONNECT. This parameter is a character string (for
example, "DEBIT" or "CREDIT") and is completely defined by the application.

When servers are started, they advertise the set of services that they offer (in an implementation-
specific manner). At run time, service routines themselves can alter a server’s set of service
advertisements. AP service routines may choose to do this, for example, based upon time of day
or information received as part of a service request.

TPADVERTISE allows a server to advertise a new service that it offers. The routine takes two
parameters: the service name and the COBOL routine name that should be invoked when a
request for the service name is received by the server. Since the service name may differ from
the routine name, different service names can be mapped to the same routine.

TPUNADVERTISE allows a server to unadvertise a service that it offers. Even though a
particular service may be unadvertised by one server, it may still be offered by others.

Information about service names may be kept in the local configuration. Because each service
supports either the request/response or the conversational service paradigm, the local
configuration may contain information labeling each service name appropriately.

58 X/Open CAE Specification

COBOL Language Interface Overview Request/Response Service Paradigm

6.6 Request/Response Service Paradigm
Requests can be issued to services in two ways: synchronously or asynchronously. In both
methods, the requester can state whether the request should be sent as part of the caller’s current
transaction.

6.6.1 Synchronous Request/Response

The TPCALL routine sends a request to the specified service, and returns any response in an
application-defined typed record. The call to TPCALL returns after any expected response
arrives.

6.6.2 Asynchronous Request/Response

The TPACALL routine also sends a request to the specified service, but it returns without
waiting for the service’s response, letting the requester do additional work while the service
routine processes its request. Using the TPACALL routine allows a requester to exploit
parallelism within an application since multiple requests can be simultaneously processed. The
TPACALL routine returns to its caller a communication handle that is used by the requester to
eventually get its reply. If the requester does not require any reply, the requester must indicate
that a reply is not expected. However, in this particular case, the request must not be issued in
transaction mode.

The TPGETRPLY routine waits to receive a service reply corresponding to a specified request.
The routine returns the response in an application-defined typed record.

A requester not wanting to receive a reply from a previously-sent request can call the
TPCANCEL routine. This function informs the CRM that any response should be silently
discarded. It is worth noting that the TPCANCEL routine does not prevent the service from
completing; rather, it relieves the requester from having to receive an unwanted response. It is
an error to attempt to cancel a communication handle associated with a global transaction.

6.6.3 Programming Example

See Appendix B for an example of request/response programming in the COBOL programming
language.

Part 1: XATMI Communication Application P rogramming Interface (API) 59

Conversational Service Paradigm COBOL Language Interface Overview

6.7 Conversational Service Paradigm
In this paradigm, a requester invokes a service routine and converses with it in an application-
defined manner. Thus, several messages can be exchanged before the service routine returns
ending the conversation. The conversation takes place in a half-duplex manner. That is, only one
program can send data at a time. Also, the receiver cannot send data until the sender yields it
control of the conversation.

The requester initiates conversational communication with a service by calling the
TPCONNECT routine. This routine optionally passes application data to the service and
specifies which program initially has control of the connection. The requester is returned a
communication handle that it uses to refer to the newly established connection during
subsequent communication. The routines TPSEND and TPRECV allow APs to exchange data
over an open connection.

On the server side of the connection, the CRM listens for and accepts the incoming connection
request. The service routine matching the requester’s named service is dispatched along with a
communication handle that refers to the connection as well as any application data sent as part
of the requester’s call to TPCONNECT.

A conversational service’s communication path with its requester is terminated by the CRM in
an orderly manner after the service returns by calling TPRETURN. If the requester wishes to
terminate the conversation abortively, rather than orderly, it can call TPDISCON. This routine
terminates a connection in a manner that data in transit may be lost and any active transaction
associated with that connection is rolled back.

Because communication in the conversational service paradigm is ‘‘longer lived’’ than that of
the request/response paradigm, communication events that occur during the course of a
conversation are reported to either the requester, the service, or both as appropriate. For
example, the AP that controls the connection yields control to the receiver by sending it an
event. Other events include orderly as well as abortive connection termination.

6.7.1 Programming Example

See Appendix B for an example of conversational programming in the COBOL programming
language.

60 X/Open CAE Specification

COBOL Language Interface Overview Transaction Implications

6.8 Transaction Implications
The XATMI interface relies on the TX (Transaction Demarcation) interface, published separately,
for global transaction demarcation and management. In addition, certain functions in the
XATMI interface directly affect the progress of a global transaction.

6.8.1 Transaction Functions Affecting the XATMI Interface

Demarcation

The XATMI interface relies on the following functions of the Transaction Demarcation (TX)
interface:

TXBEGIN A demarcation function that indicates that subsequent work performed by the
calling AP is in support of a global transaction.

TXCOMMIT A demarcation function that commits all work done on behalf of the current
global transaction.

TXROLLBACK A demarcation function that rolls back all work done on behalf of the current
global transaction.

The effect of the TX functions on this specification is that an AP detects that the partner’s TM has
requested completion of the transaction by means of return codes, communication events or
errors. The AP may use this information to instruct its TM and its subordinates on how to
complete the transaction.

As described in Section 2.2.6 on page 10, APs may generate both request/response and
conversational requests. XATMI allows an AP to establish communication requests either inside
or outside the boundaries of the global transaction through flags available on the API.
Additionally, communication requests established before the global transaction is begun are also
not included in the global transaction. The state and validity of these non-transactional requests
are not affected by the transaction demarcation (TX) functions. Non-transactional handles may
be affected with respect to timeout as described below; however, they are not invalidated by any
transaction-related timeouts.

As described above, both request/response and conversational requests generated by the AP
may be included in a global transaction if one is active. The handles relating to these
communications should be closed, that is terminated normally as described in the reference
manual pages, prior to invocation of TXCOMMIT or TXROLLBACK. If such handles are active,
that is not closed, at the time TXCOMMIT or TXROLLBACK is invoked, then the handles are
invalidated by the TM and the transaction is rolled back. Note that transaction chaining as
defined by the transaction demarcation (TX) functions is allowed even though transaction-
related XATMI communication handles do not survive transaction boundaries.

Service routines as defined in XATMI may be invoked in transaction mode. In that case, they are
subject to the following characteristics with respect to transaction demarcation: TXBEGIN fails
with a protocol error since the service routine is already in a transaction; TXCOMMIT and
TXROLLBACK fail with a protocol error because they are not the originator of the transaction.

Part 1: XATMI Communication Application P rogramming Interface (API) 61

Transaction Implications COBOL Language Interface Overview

Timeouts

The timeout function of TX also affects the XATMI interface:

TXSETTIMEOUT
A function that specifies the time interval in which the transaction must
complete.

There are two types of timeouts when using XATMI and TX: one is associated with the duration
of a transaction from start to finish; the other is associated with the maximum length of time a
blocking call remains blocked before the caller regains control. The first kind of timeout is
specified when a transaction is started with the TX API’s TXBEGIN (see the TX (Transaction
Demarcation) specification for details). The second kind of timeout can occur when using an
XATMI communication routine (for example TPCALL, TPCONNECT or TPRECV). Callers of
these routines typically block when awaiting data that has yet to arrive, although they can also
block trying to send data (for example, if transmission buffers are full). When the caller is not
part of any global (TX) transaction, the maximum amount of time a caller remains blocked is
determined in an XATMI provider-specific manner. Routines that return control after either type
of timeout has occurred return a particular error code that signifies a timeout event.

Of the two timeout mechanisms, blocking timeouts are performed by default when the caller is
not in transaction mode. When a client or server is in transaction mode, it is subject to the
timeout value with which the transaction was started and is not subject to any blocking timeout
value specified by the XATMI provider.

When a timeout occurs, replies to asynchronous requests may be dropped. That is, if a process
is waiting for a particular asynchronous reply and a transaction timeout occurs, the descriptor
for that reply becomes invalid and that reply is silently discarded. Similarly, if a transaction
timeout occurs during a conversation with a service an event is generated on the associated
connection descriptor, that descriptor becomes invalid, and data may be lost. On the other hand,
if a blocking timeout occurs, both types of descriptor remain valid and the waiting process can
re-issue the call to await the reply.

6.8.2 Effect on Service Calls

Services are either invoked in a global transaction or outside a global transaction. If a requester
invokes a service as part of its transaction, the service can participate in only that transaction
and the service does not call any transaction demarcation functions. If the client invokes a
service outside a transaction, the service routine can originate and complete any number of
transactions using the TX (Transaction Demarcation) interface.

In order for a transaction propagated to a service routine to successfully commit, the service
routine must first receive all outstanding replies for requests that it generated as well as close
any outgoing connections to conversational services that it opened.

62 X/Open CAE Specification

COBOL Language Interface Overview Transaction Implications

6.9 Naming Rules
The XATMI interface uses three kinds of names: service names, buffer type names, and buffer sub-
type names. Names are passed in the interface as space-filled PIC X fields. Three buffer type
names are defined in this specification; other names are application-defined.

Names that meet the following rules are guaranteed to be portable and interoperable across
implementations that conform to the XATMI interface.

• A name is composed of one or more characters from the set of letters (A-Z, a-z), digits (0-9),
and underscore (_).

• A name must begin with a letter or underscore.

• The case of letters in a name is significant.

• The first 15 characters determine the service name.

• A buffer type name can contain up to 8 characters.

• A buffer sub-type name can contain up to 16 characters.

• A name is terminated by a null (0x00) character or by the first space encountered, or by
reaching the length limit for the kind of name.

Part 1: XATMI Communication Application P rogramming Interface (API) 63

COBOL Language Interface Overview

64 X/Open CAE Specification

Chapter 7

COBOL Language Reference Manual Pages

This chapter contains the COBOL language reference manual pages for the XATMI
communication API for transaction processing. Following TPINTRO, which describes the COPY
files for the XATMI interface, the reference manual pages appear, in alphabetical order, for each
COBOL function in the XATMI interface.

Part 1: XATMI Communication Application P rogramming Interface (API) 65

TPINTRO COBOL Language Reference Manual Pages

NAME
TPINTRO — COPY files for the XATMI interface

DESCRIPTION
The following return codes and setting definitions are used by the COBOL XATMI routines.
XATMI interface providers supply these definitions in the four COPY files listed below. Shown
for each are the minimum set of record definitions and settings that must be defined in each
COPY file.

*
* TPSTATUS.cbl
*

05 TP-STATUS PIC S9(9) COMP-5.
88 TPOK VALUE 0.
88 TPEBADDESC VALUE 2.
88 TPEBLOCK VALUE 3.
88 TPEINVAL VALUE 4.
88 TPELIMIT VALUE 5.
88 TPENOENT VALUE 6.
88 TPEOS VALUE 7.
88 TPEPROTO VALUE 9.
88 TPESVCERR VALUE 10.
88 TPESVCFAIL VALUE 11.
88 TPESYSTEM VALUE 12.
88 TPETIME VALUE 13.
88 TPETRAN VALUE 14.
88 TPEGOTSIG VALUE 15.
88 TPEITYPE VALUE 17.
88 TPEOTYPE VALUE 18.
88 TPEEVENT VALUE 22.
88 TPEMATCH VALUE 23.

05 TPEVENT PIC S9(9) COMP-5.
88 TPEV-NOEVENT VALUE 0.
88 TPEV-DISCONIMM VALUE 1.
88 TPEV-SENDONLY VALUE 2.
88 TPEV-SVCERR VALUE 3.
88 TPEV-SVCFAIL VALUE 4.
88 TPEV-SVCSUCC VALUE 5.

05 APPL-RETURN-CODE PIC S9(9) COMP-5.

The following COBOL record is used whenever sending or receiving application data. REC-
TYPE indicates the type of data record that is to be sent. SUB-TYPE indicates the name of the
sub-type for a particular type. LEN contains the amount of data to send and the amount
received.

*
* TPTYPE.cbl
*

05 REC-TYPE PIC X(8).
88 X-OCTET VALUE "X_OCTET".
88 X-COMMON VALUE "X_COMMON".

05 SUB-TYPE PIC X(16).

66 X/Open CAE Specification

COBOL Language Reference Manual Pages TPINTRO

05 LEN PIC S9(9) COMP-5.
88 NO-LENGTH VALUE 0.

05 TPTYPE-STATUS PIC S9(9) COMP-5.
88 TPTYPEOK VALUE 0.
88 TPTRUNCATE VALUE 1.

The following COBOL record is used by functions to pass settings to and from the
communication resource manager.

*
* TPSVCDEF.cbl
*

05 COMM-HANDLE PIC S9(9) COMP-5.
05 TPBLOCK-FLAG PIC S9(9) COMP-5.

88 TPBLOCK VALUE 0.
88 TPNOBLOCK VALUE 1.

05 TPTRAN-FLAG PIC S9(9) COMP-5.
88 TPTRAN VALUE 0.
88 TPNOTRAN VALUE 1.

05 TPREPLY-FLAG PIC S9(9) COMP-5.
88 TPREPLY VALUE 0.
88 TPNOREPLY VALUE 1.

05 TPTIME-FLAG PIC S9(9) COMP-5.
88 TPTIME VALUE 0.
88 TPNOTIME VALUE 1.

05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.
88 TPNOSIGRSTRT VALUE 0.
88 TPSIGRSTRT VALUE 1.

05 TPGETANY-FLAG PIC S9(9) COMP-5.
88 TPGETHANDLE VALUE 0.
88 TPGETANY VALUE 1.

05 TPSENDRECV-FLAG PIC S9(9) COMP-5.
88 TPSENDONLY VALUE 0.
88 TPRECVONLY VALUE 1.

05 TPNOCHANGE-FLAG PIC S9(9) COMP-5.
88 TPCHANGE VALUE 0.
88 TPNOCHANGE VALUE 1.

05 TPSERVICETYPE-FLAG PIC S9(9) COMP-5.
88 TPREQRSP VALUE IS 0.
88 TPCONV VALUE IS 1.

05 SERVICE-NAME PIC X(15).

The following COBOL record is used by TPRETURN to indicate the status of the transaction.

*
* TPSVCRET.cbl
*

05 TP-RETURN-VAL PIC S9(9) COMP-5.
88 TPSUCCESS VALUE 0.
88 TPFAIL VALUE 1.

05 APPL-CODE PIC S9(9) COMP-5.

Part 1: XATMI Communication Application P rogramming Interface (API) 67

TPACALL COBOL Language Reference Manual Pages

NAME
TPACALL — send a service request

SYNOPSIS
01 TPSVCDEF-REC.

COPY TPSVCDEF.

01 TPTYPE-REC.
COPY TPTYPE.

01 DATA-REC.
COPY Data record definition.

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL "TPACALL" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

DESCRIPTION
TPACALL sends a request message to the service named by SERVICE-NAME. DATA-REC is
the record to be sent and LEN specifies the amount of data in DATA-REC that should be sent.
Note that if DATA-REC is a record of a type that does not require a length to be specified, LEN is
ignored (and may be 0). If DATA-REC is a record of a type that does require a length, LEN must
not be zero. If REC-TYPE does not have a subtype, SUB-TYPE is ignored (and may be SPACES).
If REC-TYPE is SPACES, DATA-REC and LEN are ignored and a request is sent with no data
portion. REC-TYPE and SUB-TYPE must match one of the types and sub-types recognised by
SERVICE-NAME. Note that for each request sent while in transaction mode, a corresponding
reply must ultimately be received.

The valid settings of TPSVCDEF-REC are as follows:

TPNOTRAN
If the caller is in transaction mode and this setting is used, when SERVICE-NAME is
invoked, it is not performed on behalf of the caller’s transaction. If SERVICE-NAME does
not support transactions, this setting must be used when the caller is in transaction mode.
A caller in transaction mode that uses this setting is still subject to the transaction timeout
(and no other). If a service fails that was invoked with this setting, the caller’s transaction is
not affected. Either TPNOTRAN or TPTRAN must be set.

TPTRAN
If the caller is in transaction mode and this setting is used, when SERVICE-NAME is
invoked, it is performed on behalf of the caller’s transaction. This setting is ignored if the
caller is not in transaction mode. Either TPNOTRAN or TPTRAN must be set.

TPNOREPLY
This setting informs TPACALL that a reply is not expected. When TPNOREPLY is set, the
routine returns [TPOK] on success and sets COMM-HANDLE to 0, an invalid
communication handle. When the caller is in transaction mode, this setting cannot be used
when TPTRAN is also set. Either TPNOREPLY or TPREPLY must be set.

TPREPLY
This setting informs TPACALL that a reply is expected. When TPREPLY is set, the routine
returns [TPOK] on success and sets COMM-HANDLE to a valid communication handle.
When the caller is in transaction mode, this setting must be used when TPTRAN is also set.
Either TPNOREPLY or TPREPLY must be set.

68 X/Open CAE Specification

COBOL Language Reference Manual Pages TPACALL

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the internal buffers into
which the message is transferred are full). Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is specified and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking timeout). Either
TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur. Either TPNOTIME or TPTIME
must be set.

TPTIME
This setting signifies that the caller receives blocking timeouts if a blocking condition exists
and the blocking time is reached. Either TPNOTIME or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is re-issued.
Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is not restarted
and the routine fails. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

RETURN VALUE
Upon successful completion, TPACALL sets TP-STATUS to [TPOK]. In addition, if TPREPLY
was set in TPSVCDEF-REC, TPACALL returns a valid communication handle in COMM-
HANDLE that can be used to receive the reply of the request sent.

ERRORS
Under the following conditions, TPACALL fails and sets TP-STATUS to one of the values below.
Unless otherwise noted, failure does not affect the caller’s transaction, if one exists.

[TPEINVAL]
Invalid arguments were given (for example, settings in TPSVCDEF-REC are invalid).

[TPENOENT]
Cannot send to SERVICE-NAME because it does not exist.

[TPEITYPE]
The pair REC-TYPE and SUB-TYPE is not one of the allowed types and sub-types that
SERVICE-NAME accepts.

[TPELIMIT]
The caller’s request was not sent because the maximum number of outstanding
asynchronous requests has been reached.

[TPETRAN]
SERVICE-NAME does not support transactions and TPTRAN was set.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, a transaction timeout occurred and
the transaction is marked rollback-only; otherwise, a blocking timeout occurred and both
TPBLOCK and TPTIME were specified. If a transaction timeout occurred, any attempts to
send new requests or receive outstanding replies fail with [TPETIME] until the transaction
has been rolled back.

Part 1: XATMI Communication Application P rogramming Interface (API) 69

TPACALL COBOL Language Reference Manual Pages

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPNOSIGRSTRT was specified.

[TPEPROTO]
TPACALL was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

SEE ALSO
TPCALL, TPCANCEL, TPGETRPLY.

70 X/Open CAE Specification

COBOL Language Reference Manual Pages TPADVERTISE

NAME
TPADVERTISE — advertise a service name

SYNOPSIS
01 SERVICE-NAME PIC X(15).

01 PROGRAM-NAME PIC X(32).

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL "TPADVERTISE" USING SERVICE-NAME PROGRAM-NAME TPSTATUS-REC.

DESCRIPTION
TPADVERTISE allows a server to advertise the services that it offers. By default, a server’s
services are advertised when it is booted and unadvertised when it is shutdown.

TPADVERTISE advertises SERVICE-NAME for the server. SERVICE-NAME should be 15
characters or fewer, but cannot be SPACES. Longer names are accepted and truncated to 15
characters. Users should make sure that truncated names do not match other service names.
PROGRAM-NAME is the name of a service program. This program is invoked whenever a
request for SERVICE-NAME is received by the server. PROGRAM-NAME cannot be SPACES.

If SERVICE-NAME is already advertised for the server and PROGRAM-NAME matches its
current program, TPADVERTISE returns success (this includes truncated names that match
already advertised names). However, if SERVICE-NAME is already advertised for the server but
PROGRAM-NAME does not match its current program, an error is returned (this can happen if
truncated names match already advertised names).

RETURN VALUE
Upon successful completion, TPADVERTISE sets TP-STATUS to [TPOK].

ERRORS
Under the following conditions, TPADVERTISE fails and sets TP-STATUS to one of the
following values:

[TPEINVAL]
Either SERVICE-NAME or PROGRAM-NAME is SPACES, or PROGRAM-NAME is not the
name of a valid program.

[TPELIMIT]
SERVICE-NAME cannot be advertised because of space limitations.

[TPEMATCH]
SERVICE-NAME is already advertised for the server but with a program other than
PROGRAM-NAME. Although TPADVERTISE fails, SERVICE-NAME remains advertised
with its current program (that is, PROGRAM-NAME does not replace the current program).

[TPEPROTO]
TPADVERTISE was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

Part 1: XATMI Communication Application P rogramming Interface (API) 71

TPADVERTISE COBOL Language Reference Manual Pages

SEE ALSO
TPSVCSTART, TPUNADVERTISE.

72 X/Open CAE Specification

COBOL Language Reference Manual Pages TPCALL

NAME
TPCALL — send a service request and synchronously await its reply

SYNOPSIS
01 TPSVCDEF-REC.

COPY TPSVCDEF.

01 ITPTYPE-REC.
COPY TPTYPE.

01 IDATA-REC.
COPY Data record definition.

01 OTPTYPE-REC.
COPY TPTYPE.

01 ODATA-REC.
COPY Data record definition.

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL "TPCALL" USING TPSVCDEF-REC ITPTYPE-REC IDATA-REC
OTPTYPE-REC ODATA-REC TPSTATUS-REC.

DESCRIPTION
TPCALL sends a request and synchronously awaits its reply. A call to this routine is the same as
calling TPACALL immediately followed by TPGETRPLY. TPCALL sends a request to the
service named by SERVICE-NAME. The data portion of a request is specified by IDATA-REC
and LEN in ITPTYPE-REC specifies how much of IDATA-REC to send. Note that if IDATA-REC
is a record of a type that does not require a length to be specified, LEN in ITPTYPE-REC is
ignored (and may be 0). If IDATA-REC is a record of a type that does require a length, LEN in
ITPTYPE-REC must not be zero. If REC-TYPE in ITPTYPE-REC does not have a subtype, SUB-
TYPE in ITPTYPE-REC is ignored (and may be SPACES). If REC-TYPE in ITPTYPE-REC is
SPACES, IDATA-REC and LEN in ITPTYPE-REC are ignored and a request is sent with no data
portion. REC-TYPE in ITPTYPE-REC and SUB-TYPE in ITPTYPE-REC must match one of the
types and sub-types recognised by SERVICE-NAME.

ODATA-REC specifies where the reply is read into, and, on input, LEN in OTPTYPE-REC
indicates the maximum number of bytes that should be moved into ODATA-REC. If the same
record is to be used for both sending and receiving, ODATA-REC should be REDEFINED to
IDATA-REC. Upon successful return from TPCALL, LEN in OTPTYPE-REC contains the actual
number of bytes moved into ODATA-REC. REC-TYPE in OTPTYPE-REC and SUB-TYPE in
OTPTYPE-REC contain the reply’s type and sub-type, respectively. If the reply is larger than
ODATA-REC, ODATA-REC contains only as many bytes as fit in the record. The remainder of
the reply is discarded and TPCALL sets TPTRUNCATE.

If LEN in OTPTYPE-REC is 0 upon successful return, the reply has no data portion and ODATA-
REC was not modified. It is an error for LEN in OTPTYPE-REC to be 0 on input.

The valid settings of TPSVCDEF-REC are as follows:

TPNOTRAN
If the caller is in transaction mode and this setting is used, when SERVICE-NAME is
invoked, it is not performed on behalf of the caller’s transaction. If SERVICE-NAME does

Part 1: XATMI Communication Application P rogramming Interface (API) 73

TPCALL COBOL Language Reference Manual Pages

not support transactions, this setting must be used when the caller is in transaction mode.
A caller in transaction mode that uses this setting is still subject to the transaction timeout
(and no other). If a service fails that was invoked with this setting, the caller’s transaction is
not affected. Either TPNOTRAN or TPTRAN must be set.

TPTRAN
If the caller is in transaction mode and this setting is used, when SERVICE-NAME is
invoked, it is performed on behalf of the caller’s transaction. This setting is ignored if the
caller is not in transaction mode. Either TPNOTRAN or TPTRAN must be set.

TPNOCHANGE
When this setting is used, the type of ODATA-REC is not allowed to change. That is, the
type and sub-type of the reply record must match REC-TYPE in OTPTYPE-REC and SUB-
TYPE in OTPTYPE-REC, respectively. Either TPNOCHANGE or TPCHANGE must be set.

TPCHANGE
The type and/or subtype of the reply record are allowed to differ from those specified in
REC-TYPE in OTPTYPE-REC and SUB-TYPE in OTPTYPE-REC, respectively, so long as the
receiver recognises the incoming record type. Either TPNOCHANGE or TPCHANGE must
be set.

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the internal buffers into
which the message is transferred are full). Note that this setting applies only to the send
portion of TPCALL: the routine may block waiting for the reply. Either TPNOBLOCK or
TPBLOCK must be set.

TPBLOCK
When TPBLOCK is specified and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking timeout). Either
TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur. Either TPNOTIME or TPTIME
must be set.

TPTIME
This setting signifies that the caller receives blocking timeouts if a blocking condition exists
and the blocking time is reached. Either TPNOTIME or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is re-issued.
Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is not restarted
and the routine fails. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

RETURN VALUE
Upon successful completion, TPCALL sets TP-STATUS to [TPOK]. When TP-STATUS is set to
either [TPOK] or [TPESVCFAIL], APPL-RETURN-CODE contains an application-defined value
that was sent as part of TPRETURN. If the size of the incoming message is larger than the size
specified in LEN in OTPTYPE-REC on input, then TPTRUNCATE is set in OTPTYPE-REC and
only LEN in OTPTYPE-REC bytes are moved into ODATA-REC. The remaining bytes are
discarded.

74 X/Open CAE Specification

COBOL Language Reference Manual Pages TPCALL

ERRORS
Under the following conditions, TPCALL fails and sets TP-STATUS to one of the values below.
Unless unless otherwise noted, failure does not affect the caller’s transaction, if one exists.

[TPEINVAL]
Invalid arguments were given (for example, settings in TPSVCDEF-REC are invalid).

[TPENOENT]
Cannot send to SERVICE-NAME because it does not exist.

[TPEITYPE]
The pair REC-TYPE in ITPTYPE-REC and SUB-TYPE in ITPTYPE-REC is not one of the
allowed types and sub-types that SERVICE-NAME accepts.

[TPEOTYPE]
Either the type and sub-type of the reply are not known to the caller, or TPNOCHANGE
was set and REC-TYPE in OTPTYPE-REC and SUB-TYPE in OTPTYPE-REC do not match
the type and sub-type of the reply sent by the service. Neither ODATA-REC nor OTPTYPE-
REC are changed. If the service request was made on behalf of the caller’s current
transaction, the transaction is marked rollback-only since the reply is discarded.

[TPETRAN]
SERVICE-NAME does not support transactions and TPTRAN was set.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, a transaction timeout occurred and
the transaction is marked rollback-only; otherwise, a blocking timeout occurred and both
TPBLOCK and TPTIME were specified. In either case, neither ODATA-REC nor OTPTYPE-
REC are changed. If a transaction timeout occurred, any attempts to send new requests or
receive outstanding replies fail with [TPETIME] until the transaction has been rolled back.

[TPESVCFAIL]
The service routine sending the caller’s reply called TPRETURN with TPFAIL. This is an
application-level failure. The contents of the service’s reply, if one was sent, are available in
ODATA-REC. If the service request was made on behalf of the caller’s current transaction,
the transaction is marked rollback-only. Note that so long as the transaction has not timed
out, further communication may be attempted before rolling back the transaction. Such
attempts may be processed normally or may fail (producing an error return or event). Such
attempts should be made with TPNOTRAN set if they are to have any lasting effect. Any
work performed on behalf of the caller’s transaction is rolled back upon transaction
completion.

[TPESVCERR]
An error was encountered either in invoking a service routine or during its completion in
TPRETURN (for example, bad arguments were passed). No reply data is returned when
this error occurs (that is, neither ODATA-REC nor OTPTYPE-REC are changed). If the
service request was made on behalf of the caller’s transaction, the transaction is marked
rollback-only. Note that so long as the transaction has not timed out, further
communication may be attempted before rolling back the transaction. Such attempts may
be processed normally or may fail (producing an error return or event). Such attempts
should be made with TPNOTRAN set if they are to have any lasting effect. Any work
performed on behalf of the caller’s transaction is rolled back upon transaction completion.

[TPEBLOCK]
A blocking condition was found on the send portion of TPCALL and TPNOBLOCK was
specified.

Part 1: XATMI Communication Application P rogramming Interface (API) 75

TPCALL COBOL Language Reference Manual Pages

[TPGOTSIG]
A signal was received and TPNOSIGRSTRT was specified.

[TPEPROTO]
TPCALL was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

SEE ALSO
TPACALL, TPGETRPLY, TPRETURN.

76 X/Open CAE Specification

COBOL Language Reference Manual Pages TPCANCEL

NAME
TPCANCEL — cancel a communication handle for an outstanding reply

SYNOPSIS
01 TPSVCDEF-REC.

COPY TPSVCDEF.

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL "TPCANCEL" USING TPSVCDEF-REC TPSTATUS-REC.

DESCRIPTION
TPCANCEL cancels a communication handle, COMM-HANDLE, returned by TPACALL. It is
an error to attempt to cancel a communication handle associated with a global transaction.

Upon success, COMM-HANDLE is no longer valid and any reply received (by the
communication resource manager) on behalf of COMM-HANDLE is silently discarded.

RETURN VALUE
Upon successful completion, TPCANCEL sets TP-STATUS to [TPOK].

ERRORS
Under the following conditions, TPCANCEL fails and sets TP-STATUS to one of the following
values:

[TPEBADDESC]
COMM-HANDLE contains an invalid communication handle.

[TPETRAN]
COMM-HANDLE is associated with the caller’s global transaction. COMM-HANDLE
remains valid and the caller’s current transaction is not affected.

[TPEPROTO]
TPCANCEL was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

SEE ALSO
TPACALL.

Part 1: XATMI Communication Application P rogramming Interface (API) 77

TPCONNECT COBOL Language Reference Manual Pages

NAME
TPCONNECT — establish a conversational service connection

SYNOPSIS
01 TPSVCDEF-REC.

COPY TPSVCDEF.

01 TPTYPE-REC.
COPY TPTYPE.

01 DATA-REC.
COPY Data record definition.

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL "TPCONNECT" USINGTPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

DESCRIPTION
TPCONNECT allows a program to set up a half-duplex connection to a conversational service,
SERVICE-NAME.

As part of setting up a connection, the caller can pass application-defined data to the receiving
service routine. If the caller chooses to pass data, DATA-REC contains the data and LEN
specifies how much of the record to send. Note that if DATA-REC is a record of a type that does
not require a length to be specified, LEN is ignored (and may be 0). If DATA-REC is a record of a
type that does require a length, LEN must not be zero. If REC-TYPE does not have a subtype,
SUB-TYPE is ignored (and may be SPACES). If REC-TYPE is SPACES, DATA-REC and LEN are
ignored (no application data is passed to the conversational service). REC-TYPE and SUB-TYPE
must match one of the types and sub-types recognised by SERVICE-NAME.

Because the conversational service receives DATA-REC and LEN upon successful return from
TPSVCSTART, the service does not call TPRECV to get the data sent by TPCONNECT.

The valid settings of TPSVCDEF-REC are as follows:

TPNOTRAN
If the caller is in transaction mode and this setting is used, when SERVICE-NAME is
invoked, it is not performed on behalf of the caller’s transaction. If SERVICE-NAME does
not support transactions, this setting must be used when the caller is in transaction mode.
A caller in transaction mode that uses this setting is still subject to the transaction timeout
(and no other). If a service fails that was invoked with this setting, the caller’s transaction is
not affected. Either TPNOTRAN or TPTRAN must be set.

TPTRAN
If the caller is in transaction mode and this setting is used, when SERVICE-NAME is
invoked, it is performed on behalf of the caller’s transaction. This setting is ignored if the
caller is not in transaction mode. Either TPNOTRAN or TPTRAN must be set.

TPSENDONLY
The caller wants the connection to be set up initially such that it can send data and the
called service can only receive data (that is, the caller initially has control of the connection).
Either TPSENDONLY or TPRECVONLY must be specified.

78 X/Open CAE Specification

COBOL Language Reference Manual Pages TPCONNECT

TPRECVONLY
The caller wants the connection to be set up initially such that it can only receive data and
the called service can send data (that is, the service being called initially has control of the
connection). Either TPSENDONLY or TPRECVONLY must be specified.

TPNOBLOCK
The connection is not established and the data is not sent if a blocking condition exists (for
example, the internal buffers into which the message is transferred are full). Either
TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is specified and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking timeout). Either
TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur. Either TPNOTIME or TPTIME
must be set.

TPTIME
This setting signifies that the caller receives blocking timeouts if a blocking condition exists
and the blocking time is reached. Either TPNOTIME or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is re-issued.
Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is not restarted
and the routine fails. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

RETURN VALUE
Upon successful completion, TPCONNECT sets TP-STATUS to [TPOK] and returns a valid
communication handle in COMM-HANDLE that is used to refer to the connection in
subsequent calls.

ERRORS
Under the following conditions, TPCONNECT fails and sets TP-STATUS to one of the values
below. Unless otherwise noted, failure does not affect the caller’s transaction, if one exists.

[TPEINVAL]
Invalid arguments were given (for example, settings in TPSVCDEF-REC are invalid).

[TPENOENT]
Cannot initiate a connection to SERVICE-NAME because it does not exist.

[TPEITYPE]
The pair REC-TYPE and SUB-TYPE is not one of the allowed types and sub-types that
SERVICE-NAME accepts.

[TPELIMIT]
The connection was not established because the maximum number of outstanding
connections has been reached.

[TPETRAN]
SERVICE-NAME does not support transactions and TPTRAN was set.

Part 1: XATMI Communication Application P rogramming Interface (API) 79

TPCONNECT COBOL Language Reference Manual Pages

[TPETIME]
A timeout occurred. If the caller is in transaction mode, a transaction timeout occurred and
the transaction is marked rollback-only; otherwise, a blocking timeout occurred and both
TPBLOCK and TPTIME were specified. If a transaction timeout occurred, any attempts to
send or receive messages on any connections or to start a new connection fail with
[TPETIME] until the transaction has been rolled back.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPNOSIGRSTRT was specified.

[TPEPROTO]
TPCONNECT was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

SEE ALSO
TPDISCON, TPRECV, TPSEND, TPSVCSTART.

80 X/Open CAE Specification

COBOL Language Reference Manual Pages TPDISCON

NAME
TPDISCON — terminate a conversational service connection abortively

SYNOPSIS
01 TPSVCDEF-REC.

COPY TPSVCDEF.

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL "TPDISCON" USING TPSVCDEF-REC TPSTATUS-REC.

DESCRIPTION
TPDISCON immediately terminates the connection specified by COMM-HANDLE and
generates a TPEV-DISCONIMM event on the other end of the connection.

TPDISCON can be called only by the initiator of the conversation. TPDISCON cannot be called
within a conversational service on the communication handle with which it was invoked.
Rather, a conversational service must use TPRETURN to signify that it has completed its part of
the conversation. Similarly, even though a program communicating with a conversational
service can issue TPDISCON, the preferred way is to let the service terminate the connection in
TPRETURN; doing so ensures correct results.

TPDISCON causes the connection to be terminated immediately (that is, abortively rather than
orderly). Any data that has not yet reached its destination may be lost. TPDISCON can be
issued even when the program on the other end of the connection is participating in the caller’s
transaction. In this case, the transaction must be rolled back. Also, the caller does not need to
have control of the connection when TPDISCON is called.

RETURN VALUE
Upon successful completion, TPDISCON sets TP-STATUS to [TPOK].

ERRORS
Under the following conditions, TPDISCON fails and sets TP-STATUS to one of the following
values:

[TPEBADDESC]
Either COMM-HANDLE is invalid or it is the communication handle with which a
conversational service was invoked.

[TPETIME]
A timeout occurred. The communication handle is no longer valid.

[TPEPROTO]
TPDISCON was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

SEE ALSO
TPCONNECT, TPRECV, TPRETURN, TPSEND.

Part 1: XATMI Communication Application P rogramming Interface (API) 81

TPGETRPLY COBOL Language Reference Manual Pages

NAME
TPGETRPLY — get a reply from a previous service request

SYNOPSIS
01 TPSVCDEF-REC.

COPY TPSVCDEF.

01 TPTYPE-REC.
COPY TPTYPE.

01 DATA-REC.
COPY Data record definition.

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL "TPGETRPLY" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

DESCRIPTION
TPGETRPLY returns a reply from a previously sent request. TPGETRPLY either returns a reply
for a particular request, or it returns any reply that is available. Both options are described
below.

DATA-REC specifies where the reply is read into, and, on input, LEN indicates the maximum
number of bytes that should be moved into DATA-REC. Upon successful return from
TPGETRPLY, LEN contains the actual number of bytes moved into DATA-REC. REC-TYPE and
SUB-TYPE contain the data’s type and sub-type, respectively. If the reply is larger than DATA-
REC, DATA-REC contain only as many bytes as fit in the record. The remainder of the reply is
discarded and TPGETRPLY sets TPTRUNCATE.

If LEN is 0 upon successful return, the reply has no data portion and DATA-REC was not
modified. It is an error for LEN to be 0 on input.

The valid settings of TPSVCDEF-REC are as follows:

TPGETANY
This setting signifies that TPGETRPLY should ignore the communication handle indicated
by COMM-HANDLE on input, return any reply available, and set COMM-HANDLE on
output to the communication handle for the reply returned. If no replies exist, TPGETRPLY
can optionally wait for one to arrive. Either TPGETANY or TPGETHANDLE must be set.

TPGETHANDLE
This setting signifies that TPGETRPLY should use the communication handle identified by
COMM-HANDLE on input and return a reply available for that handle only. If no replies
exist, TPGETRPLY can optionally wait for one to arrive. Either TPGETANY or
TPGETHANDLE must be set.

TPNOCHANGE
When this setting is used, the type of DATA-REC is not allowed to change. That is, the type
and sub-type of the reply record must match REC-TYPE and SUB-TYPE, respectively.
Either TPNOCHANGE or TPCHANGE must be set.

TPCHANGE
The type and/or subtype of the reply record are allowed to differ from those specified in
REC-TYPE and SUB-TYPE, respectively, so long as the receiver recognises the incoming
record type. Either TPNOCHANGE or TPCHANGE must be set.

82 X/Open CAE Specification

COBOL Language Reference Manual Pages TPGETRPLY

TPNOBLOCK
TPGETRPLY does not wait for the reply to arrive. If a reply is available, TPGETRPLY gets
the reply and returns. Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is specified and no reply is available, the caller blocks until the reply
arrives or a timeout occurs (either transaction or blocking timeout). Either TPNOBLOCK or
TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely for its reply and wants to
be immune to blocking timeouts. Transaction timeouts may still occur. Either TPNOTIME
or TPTIME must be set.

TPTIME
This setting signifies that the caller receives blocking timeouts if a blocking condition exists
and the blocking time is reached. Either TPNOTIME or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is re-issued.
Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is not restarted
and the routine fails. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

Except as noted below, COMM-HANDLE is no longer valid after its reply is received.

RETURN VALUE
Upon successful completion, TPGETRPLY sets TP-STATUS to [TPOK]. When TP-STATUS is set
to either [TPOK] or [TPESVCFAIL], APPL-RETURN-CODE contains an application-defined
value that was sent as part of TPRETURN. If the size of the incoming message is larger than the
size specified in LEN on input, TPTRUNCATE is set and only LEN bytes are moved into DATA-
REC. The remaining bytes are discarded.

ERRORS
Under the following conditions, TPGETRPLY fails and sets TP-STATUS as indicated below.
Note that if TPGETHANDLE is set, COMM-HANDLE is invalidated unless otherwise stated. If
TPGETANY is set, COMM-HANDLE identifies the descriptor for the reply on which the failure
occurred; if an error occurred before a reply could be retrieved, COMM-HANDLE is set to 0,
unless otherwise stated. Also, the failure does not affect the caller’s transaction, if one exists,
unless otherwise stated.

[TPEINVAL]
Invalid arguments were given (for example, settings in TPSVCDEF-REC are invalid).

[TPEBADDESC]
COMM-HANDLE contains an invalid communication handle.

[TPEOTYPE]
Either the type and sub-type of the reply are not known to the caller, or TPNOCHANGE
was set and REC-TYPE and SUB-TYPE do not match the type and sub-type of the reply
sent by the service. Neither DATA-REC nor TPTYPE-REC are changed. If the reply was to
be received on behalf of the caller’s current transaction, the transaction is marked rollback-
only since the reply is discarded.

Part 1: XATMI Communication Application P rogramming Interface (API) 83

TPGETRPLY COBOL Language Reference Manual Pages

[TPETIME]
A timeout occurred. If the caller is in transaction mode, a transaction timeout occurred and
the transaction is marked rollback-only; otherwise, a blocking timeout occurred and both
TPBLOCK and TPTIME were specified. In either case, neither DATA-REC nor TPTYPE-REC
are changed. If TPGETHANDLE was set, COMM-HANDLE remains valid unless the caller
is in transaction mode. If a transaction timeout occurred, any attempts to send new
requests or receive outstanding replies fail with [TPETIME] until the transaction has been
rolled back.

[TPESVCFAIL]
The service routine sending the caller’s reply called TPRETURN with TPFAIL. This is an
application-level failure. The contents of the service’s reply, if one was sent, are available in
DATA-REC. If the reply was received on behalf of the caller’s transaction, the transaction is
marked rollback-only. Note that so long as the transaction has not timed out, further
communication may be attempted before rolling back the transaction. Such attempts may
be processed normally or may fail (producing an error return or event). Such attempts
should be made with TPNOTRAN set if they are to have any lasting effect. Any work
performed on behalf of the caller’s transaction is rolled back upon transaction completion.

[TPESVCERR]
An error was encountered either in invoking a service routine or during its completion in
TPRETURN (for example, bad arguments were passed). No reply data is returned when
this error occurs (that is, neither DATA-REC nor TPTYPE-REC are changed). If the reply was
received on behalf of the caller’s transaction, the transaction is marked rollback-only. Note
that so long as the transaction has not timed out, further communication may be attempted
before rolling back the transaction. Such attempts may be processed normally or may fail
(producing an error return or event). Such attempts should be made with TPNOTRAN set
if they are to have any lasting effect. Any work performed on behalf of the caller’s
transaction is rolled back upon transaction completion.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified. COMM-HANDLE remains
valid.

[TPGOTSIG]
A signal was received and TPNOSIGRSTRT was specified.

[TPEPROTO]
TPGETRPLY was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

SEE ALSO
TPACALL, TPCANCEL, TPRETURN.

84 X/Open CAE Specification

COBOL Language Reference Manual Pages TPRECV

NAME
TPRECV — receive a message in a conversational connection

SYNOPSIS
01 TPSVCDEF-REC.

COPY TPSVCDEF.

01 TPTYPE-REC.
COPY TPTYPE.

01 DATA-REC.
COPY Data record definition.

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL "TPRECV" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

DESCRIPTION
TPRECV is used to receive data sent across an open connection from another program.
COMM-HANDLE specifies on which open connection to receive data. COMM-HANDLE is a
communication handle returned from either TPCONNECT or TPSVCSTART. DATA-REC
specifies where the message is read into, and, on input, LEN indicates the maximum number of
bytes that should be moved into DATA-REC.

Upon successful return, and for several event types, LEN contains the actual number of bytes
moved into DATA-REC. REC-TYPE and SUB-TYPE contain the data’s type and sub-type,
respectively. If the message is larger than DATA-REC, DATA-REC contains only as many bytes
as fit in the record. The remainder of the message is discarded and TPRECV sets TPTRUNCATE.

If LEN is 0 upon successful return, the message has no data portion and DATA-REC was not
modified. It is an error for LEN to be 0 on input.

TPRECV can be issued only by the program that does not have control of the connection.

The valid settings of TPSVCDEF-REC are as follows:

TPNOCHANGE
When this setting is used, the type of DATA-REC is not allowed to change. That is, the type
and sub-type of the message received must match REC-TYPE and SUB-TYPE, respectively.
Either TPNOCHANGE or TPCHANGE must be set.

TPCHANGE
The type or subtype of the message received is allowed to differ from those specified in
REC-TYPE and SUB-TYPE, respectively, so long as the receiver recognises the incoming
record type. Either TPNOCHANGE or TPCHANGE must be set.

TPNOBLOCK
TPRECV does not wait for data to arrive. If data is already available to receive, TPRECV
gets the data and returns. Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is specified and no data is available to receive, the caller blocks until data
arrives. Either TPNOBLOCK or TPBLOCK must be set.

Part 1: XATMI Communication Application P rogramming Interface (API) 85

TPRECV COBOL Language Reference Manual Pages

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur. Either TPNOTIME or TPTIME
must be set.

TPTIME
This setting signifies that the caller receives blocking timeouts if a blocking condition exists
and the blocking time is reached. Either TPNOTIME or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is re-issued.
Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is not restarted
and the routine fails. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

If an event exists for COMM-HANDLE, and TPRECV encounters no errors, TPRECV returns
setting TP-STATUS to [TPEEVENT]. The event type is returned in TP-EVENT. Data can be
received along with the TPEV-SVCSUCC, TPEV-SVCFAIL, and TPEV-SENDONLY events.
Valid events for TPRECV are as follows:

TPEV-DISCONIMM
Received by the subordinate of a conversation, this event indicates that the originator of the
conversation has either issued an immediate disconnect on the connection via TPDISCON,
or it issued TPRETURN, TXCOMMIT or TXROLLBACK with the connection still open. This
event is also returned to the originator or subordinate when a connection is broken due to a
communication error (for example, a server, machine, or network failure). Because this is an
immediate disconnection notification (that is, abortive rather than orderly), data in transit
may be lost. If the two programs were participating in the same transaction, the transaction
is marked rollback-only. COMM-HANDLE is no longer valid.

TPEV-SENDONLY
The program on the other end of the connection has relinquished control of the connection.
The recipient of this event is allowed to send data but cannot receive any data until it
relinquishes control.

TPEV-SVCERR
Received by the originator of a conversation, this event indicates that the subordinate of the
conversation has issued TPRETURN. TPRETURN encountered an error that precluded the
service from returning successfully. For example, bad arguments may have been passed to
TPRETURN or it may have been called while the service had open connections to other
subordinates. Due to the nature of this event, any application-defined data or return code is
not available. The connection has been terminated and COMM-HANDLE is no longer
valid. If this event occurred as part of the recipient’s transaction, the transaction is marked
rollback-only.

TPEV-SVCFAIL
Received by the originator of a conversation, this event indicates that the subordinate
service on the other end of the conversation has finished unsuccessfully as defined by the
application (that is, it called TPRETURN with TPFAIL). If the subordinate service was in
control of this connection when TPRETURN was called, it can pass a record back to the
originator of the connection. As part of ending the service routine, the server has
terminated the connection. Thus, COMM-HANDLE is no longer valid. If this event
occurred as part of the recipient’s transaction, the transaction is marked rollback-only.

86 X/Open CAE Specification

COBOL Language Reference Manual Pages TPRECV

TPEV-SVCSUCC
Received by the originator of a conversation, this event indicates that the subordinate
service on the other end of the conversation has finished successfully as defined by the
application (that is, it called TPRETURN with TPSUCCESS). As part of ending the service
routine, the server has terminated the connection. Thus, COMM-HANDLE is no longer
valid. If the recipient is in transaction mode, it can either commit (if it is also the initiator) or
roll back the transaction causing the work done by the server (if also in transaction mode) to
either commit or roll back.

RETURN VALUE
Upon successful completion, TPRECV sets TP-STATUS to [TPOK]. If an event exists and no
errors were encountered, TPRECV sets TP-STATUS to [TPEEVENT]. When TP-STATUS is set
to [TPEEVENT] and TP-EVENT is either TPEV-SVCSUCC or TPEV-SVCFAIL, APPL-RETURN-
CODE contains an application-defined value that was sent as part of TPRETURN. If the size of
the incoming message is larger than the size specified in LEN on input, TPTRUNCATE is set and
only LEN bytes are moved into DATA-REC. The remaining bytes are discarded.

ERRORS
Under the following conditions, TPRECV fails and sets TP-STATUS to one of the values below.
Unless otherwise noted, failure does not affect the caller’s transaction, if one exists.

[TPEINVAL]
Invalid arguments were given (for example, settings in TPSVCDEF-REC are invalid).

[TPEBADDESC]
COMM-HANDLE contains an invalid communication handle.

[TPEOTYPE]
Either the type and sub-type of the incoming message are not known to the caller, or
TPNOCHANGE was set and REC-TYPE and SUB-TYPE do not match the type and sub-
type of the incoming message. If the conversation is part of the caller’s current transaction,
the transaction is marked rollback-only since the incoming message is discarded. When this
error occurs, any event for COMM-HANDLE is dropped and the conversation may now be
in an indeterminate state. The caller should terminate the conversation.

[TPETIME]
A timeout occurred. If the caller is in transaction mode, a transaction timeout occurred and
the transaction is marked rollback-only; otherwise, a blocking timeout occurred and both
TPBLOCK and TPTIME were specified. In either case, neither DATA-REC nor TPTYPE-REC
are changed. If a transaction timeout occurred, any attempts to send or receive messages on
any connections or to start a new connection fail with [TPETIME] until the transaction has
been rolled back.

[TPEEVENT]
An event occurred and its type is available in TP-EVENT.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPNOSIGRSTRT was specified.

[TPEPROTO]
TPRECV was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

Part 1: XATMI Communication Application P rogramming Interface (API) 87

TPRECV COBOL Language Reference Manual Pages

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

SEE ALSO
TPCONNECT, TPDISCON, TPSEND.

88 X/Open CAE Specification

COBOL Language Reference Manual Pages TPRETURN

NAME
TPRETURN — return from a service routine

SYNOPSIS
01 TPSVCRET-REC.

COPY TPSVCRET.

01 TPTYPE-REC.
COPY TPTYPE.

01 DATA-REC.
COPY Data record definition.

COPY TPRETURN [REPLACING TPSVCRET-REC BYTPSVCRET-REC]
[REPLACING TPTYPE-REC BYTPTYPE-REC]
[REPLACING DATA-REC BYDATA-REC].

DESCRIPTION
TPRETURN indicates that a service routine has completed. TPRETURN is a file containing the
last sequence of COBOL code to be executed in the service. It contains references to three data
record names: TPSVCRET-REC, TPTYPE-REC and DATA-REC that may be substituted by the
record names effectively used in the service routine. Since TPRETURN contains an EXIT
PROGRAM statement, it should be issued in the same routine that was invoked by the
communication resource manager so that control can be returned to the communication
resource manager (that is, TPRETURN should not be invoked in a sub-program of the service
routine since control would not return to the communication resource manager).

TPRETURN is used to send a service’s reply message. If the program receiving the reply is
waiting in TPCALL, TPGETRPLY or TPRECV, after a successful call to TPRETURN, the reply is
available in the receiver’s record.

For conversational services, TPRETURN also terminates the connection. That is, the service
routine cannot call TPDISCON directly. To ensure correct results, the program that connected to
the conversational service should not call TPDISCON; rather, it should wait for notification that
the conversational service has completed (that is, it should wait for one of the events, like
TPEV-SVCSUCC or TPEV-SVCFAIL, sent by TPRETURN).

If the service routine was in transaction mode, TPRETURN places the service’s portion of the
transaction in a state where it may be either committed or rolled back when the transaction is
completed. A service may be invoked multiple times as part of the same transaction so it is not
necessarily fully committed nor rolled back until either TXCOMMIT or TXROLLBACK is called
by the originator of the transaction.

TPRETURN should be called after receiving all replies expected from service requests initiated
by the service routine. Otherwise, depending on the nature of the service, either a [TPESVCERR]
error or a TPEV-SVCERR event are returned to the program that initiated communication with
the service routine. Any outstanding replies that are not received are automatically dropped by
the communication resource manager. In addition, the communication handles for those replies
become invalid.

TPRETURN should be called after closing all connections initiated by the service. Otherwise,
depending on the nature of the service, either a [TPESVCERR] or a TPEV-SVCERR event is
returned to the program that initiated communication with the service routine. Also, an
immediate disconnect event (that is, TPEV-DISCONIMM) is sent over all open connections to
subordinates.

Part 1: XATMI Communication Application P rogramming Interface (API) 89

TPRETURN COBOL Language Reference Manual Pages

Concerning control of the connection, if the service routine does not have control over the
connection with which it was invoked when it issues TPRETURN, two outcomes are possible.
Firstly, if the service routine calls TPRETURN with TP-RETURN-VAL (in TPSVCRET-REC) set
to TPFAIL and REC-TYPE (in TPTYPE-REC) set to SPACES (that is, no data is sent), a TPEV-
SVCFAIL event is sent to the originator of this conversation. Secondly, if any other invocation of
TPRETURN is used, a TPEV-SVCERR event is sent to the originator.

Since a conversational service has only one open connection that it did not initiate, the
communication resource manager knows over which communication handle data (and any
event) should be sent. For this reason, a communication handle is not passed to TPRETURN.

The following is a description of TPRETURN’s arguments. TP-RETURN-VAL can be set to one
of the following.

TPSUCCESS
The service has terminated successfully. If data is present, it is sent (barring any failures
processing the return). If the caller is in transaction mode, TPRETURN places the caller’s
portion of the transaction in a state such that it can be committed when the transaction
ultimately commits. Note that a call to TPRETURN does not necessarily finalise an entire
transaction. Also, even though the caller indicates success, if there are any outstanding
replies or open connections to subordinates, or if any work done within the service caused
its transaction to be marked rollback-only, a failed message is sent (that is, the recipient of
the reply receives a [TPESVCERR] indication or a TPEV-SVCERR event). Note that if a
transaction becomes rollback-only while in the service routine for any reason, TP-
RETURN-VAL should be set to TPFAIL. If TPSUCCESS is specified for a conversational
service, a TPEV-SVCSUCC event is generated.

TPFAIL
The service has terminated unsuccessfully from an application standpoint. An error is
reported to the program receiving the reply. That is, the call to get the reply has failed and
the recipient receives a [TPSVCFAIL] indication or a TPEV-SVCFAIL event. If the caller is
in transaction mode, TPRETURN marks the transaction as rollback-only (note that the
transaction may already be marked rollback-only). Barring any failures in processing the
return, the caller’s data is sent, if present. One reason for not sending the caller’s data is
when a transaction timeout has occurred. In this case, the program waiting for the reply
receives an error of [TPETIME].

If TP-RETURN-VAL does not contain one of these two values, TPFAIL is assumed.

An application-defined return code, APPL-CODE (in TPSVCRET-REC), may be sent to the
program receiving the service reply. This code is sent regardless of the setting of TP-RETURN-
VAL as long as a reply can be successfully sent (that is, as long as the receiving call returns
success or [TPESVCFAIL], or receives one of the events TPEV-SVCSUCC or TPEV-SVCFAIL).
The value of APPL-CODE is available to the receiver in APPL-RETURN-CODE in TPSTATUS-
REC.

DATA-REC is the record to be sent and LEN (in TPTYPE-REC) specifies the amount of data in
DATA-REC that should be sent. Note that if DATA-REC is a record of a type that does not
require a length to be specified, LEN is ignored (and may be 0). If DATA-REC is a record of a
type that does require a length, LEN must not be zero. If REC-TYPE does not have a subtype,
SUB-TYPE is ignored (and may be SPACES). If REC-TYPE is SPACES, DATA-REC and LEN are
ignored. In this case, if a reply is expected by the program that invoked the service, a reply is
sent with no data portion. If no reply is expected, TPRETURN ignores any data passed to it and
returns sending no reply.

90 X/Open CAE Specification

COBOL Language Reference Manual Pages TPRETURN

If the service is conversational, there are two cases where the data record is not transmitted:

• If the connection has already been terminated when the call is made (that is, the caller has
received TPEV-DISCONIMM on the connection), this call simply ends the service routine
and rolls back the current transaction, if one exists. In this case, the caller’s data record
cannot be transmitted.

• If the caller does not have control of the connection, either TPEV-SVCFAIL or TPEV-SVCERR
is sent to the originator of the connection as described above. Regardless of which event the
originator receives, no data record is transmitted; however, if the originator receives the
TPEV-SVCFAIL event, the return code is available in the originator’s APPL-RETURN-CODE
in TPSTATUS-REC.

RETURN VALUE
Since TPRETURN contains an EXIT PROGRAM statement, no value is returned to the caller,
nor does control return to the service routine. If a service routine returns without using
TPRETURN (that is, it uses an EXIT PROGRAM statement directly or ‘‘falls out of the service
routine’’), the server returns a service error to the service requester. In addition, all open
connections to subordinates are disconnected immediately, and any outstanding asynchronous
replies are dropped. If the server was in transaction mode at the time of failure, the transaction
is marked rollback-only. Note also that if TPRETURN is used outside a service routine (that is,
by routines that are not services), it returns having no effect.

ERRORS
Since TPRETURN ends the service routine, any errors encountered either in handling arguments
or in processing cannot be indicated to the routine’s caller. Such errors cause TP-STATUS to be
set to [TPESVCERR] for a program receiving the service’s outcome via either TPCALL or
TPGETRPLY, and cause the event, TPEV-SVCERR, to be sent over the conversation to a program
using TPSEND or TPRECV.

SEE ALSO
TPCALL, TPCONNECT, TPDISCON, TPSEND, TPSVCSTART.

Part 1: XATMI Communication Application P rogramming Interface (API) 91

TPSEND COBOL Language Reference Manual Pages

NAME
TPSEND — send a message in a conversational connection

SYNOPSIS
01 TPSVCDEF-REC.

COPY TPSVCDEF.

01 TPTYPE-REC.
COPY TPTYPE.

01 DATA-REC.
COPY Data record definition.

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL "TPSEND" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

DESCRIPTION
TPSEND is used to send data across an open connection to another program. The caller must
have control of the connection. COMM-HANDLE specifies the open connection over which
data is sent. COMM-HANDLE is a communication handle returned from either TPCONNECT
or TPSVCSTART.

DATA-REC contains the data to be sent and LEN specifies how much of the data to send. Note
that if DATA-REC is a record of a type that does not require a length to be specified, LEN is
ignored (and may be 0). If DATA-REC is a record of a type that does require a length, LEN must
not be zero. If REC-TYPE does not have a subtype, SUB-TYPE is ignored (and may be SPACES).
If REC-TYPE is SPACES, DATA-REC and LEN are ignored and a message is sent with no data
(this might be done, for instance, to grant control of the connection without transmitting any
data).

The valid settings of TPSVCDEF-REC are as follows:

TPRECVONLY
This setting signifies that, after the caller’s data is sent, the caller gives up control of the
connection (that is, the caller cannot issue any more TPSEND calls). When the receiver on
the other end of the connection receives the data sent by TPSEND, it also receives an event
(TPEV-SENDONLY) indicating that it has control of the connection (and cannot issue any
more TPRECV calls). Either TPRECVONLY or TPSENDONLY must be set.

TPSENDONLY
This setting signifies that the caller wants to remain in control of the connection. Either
TPRECVONLY or TPSENDONLY must be set.

TPNOBLOCK
The data and any events are not sent if a blocking condition exists (for example, the internal
buffers into which the message is transferred are full). Either TPNOBLOCK or TPBLOCK
must be set.

TPBLOCK
When TPBLOCK is specified and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking timeout). Either
TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants to be immune

92 X/Open CAE Specification

COBOL Language Reference Manual Pages TPSEND

to blocking timeouts. Transaction timeouts may still occur. Either TPNOTIME or TPTIME
must be set.

TPTIME
This setting signifies that the caller receives blocking timeouts if a blocking condition exists
and the blocking time is reached. Either TPNOTIME or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is re-issued.
Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is not restarted
and the routine fails. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

If an event exists for COMM-HANDLE, TPSEND returns without sending the caller’s data. The
event type is returned in TP-EVENT. Valid events for TPSEND are as follows:

TPEV-DISCONIMM
Received by the subordinate of a conversation, this event indicates that the originator of the
conversation has either issued an immediate disconnect on the connection via TPDISCON,
or it issued TPRETURN, TXCOMMIT or TXROLLBACK with the connection still open. This
event is also returned to the originator or subordinate when a connection is broken due to a
communication error (for example, a server, machine, or network failure).

TPEV-SVCERR
Received by the originator of a conversation, this event indicates that the subordinate of the
conversation has issued TPRETURN without having control of the conversation. In
addition, TPRETURN was issued in a manner different from that described for TPEV-
SVCFAIL below.

TPEV-SVCFAIL
Received by the originator of a conversation, this event indicates that the subordinate of the
conversation has issued TPRETURN without having control of the conversation. In
addition, TPRETURN was issued with the command TPFAIL and no data record (that is,
the REC-TYPE passed to TPRETURN was set to SPACES).

Because each of these events indicates an immediate disconnection notification (that is, abortive
rather than orderly), data in transit may be lost. The communication handle used for the
connection is no longer valid. If the two programs were participating in the same transaction,
the transaction has been marked rollback-only.

RETURN VALUE
Upon successful completion, TPSEND sets TP-STATUS to [TPOK]. When TP-STATUS is set to
[TPEEVENT] and TP-EVENT is TPEV-SVCFAIL, APPL-RETURN-CODE contains an
application-defined value that was sent as part of TPRETURN.

ERRORS
Under the following conditions, TPSEND fails and sets TP-STATUS to one of the values below.
Unless otherwise noted, failure does not affect the caller’s transaction, if one exists.

[TPEINVAL]
Invalid arguments were given (for example, settings in TPSVCDEF-REC are invalid).

[TPEBADDESC]
COMM-HANDLE contains an invalid communication handle.

Part 1: XATMI Communication Application P rogramming Interface (API) 93

TPSEND COBOL Language Reference Manual Pages

[TPETIME]
A timeout occurred. If the caller is in transaction mode, a transaction timeout occurred and
the transaction is marked rollback-only; otherwise, a blocking timeout occurred and both
TPBLOCK and TPTIME were specified. In either case, neither DATA-REC nor TPTYPE-REC
are changed. If a transaction timeout occurred, any attempts to send or receive messages on
any connections or to start a new connection fail with [TPETIME] until the transaction has
been rolled back.

[TPEEVENT]
An event occurred and its type is available in TP-EVENT. DATA-REC is not sent when this
error occurs.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPNOSIGRSTRT was specified.

[TPEPROTO]
TPSEND was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

SEE ALSO
TPCONNECT, TPDISCON, TPRECV, TPRETURN.

94 X/Open CAE Specification

COBOL Language Reference Manual Pages TPSVCSTART

NAME
TPSVCSTART — start a service routine

SYNOPSIS
01 TPSVCDEF-REC.

COPY TPSVCDEF.

01 TPTYPE-REC.
COPY TPTYPE.

01 DATA-REC.
COPY Data record definition.

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL "TPSVCSTART" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

DESCRIPTION
TPSVCSTART is the first routine called when writing a service routine. In fact, it is an error to
issue any other XATMI call within a service routine before calling TPSVCSTART. TPSVCSTART
is used to retrieve the service’s parameters and data. This routine is used for services that
receive requests via TPCALL or TPACALL routines as well as by services that communicate via
TPCONNECT, TPSEND and TPRECV routines.

Service routines processing requests made via either TPCALL or TPACALL receive, at most, one
incoming message (upon successfully returning from TPSVCSTART) and send, at most, one
reply (upon exiting the service routine with TPRETURN).

Conversational services, on the other hand, are invoked by connection requests with, at most,
one incoming message along with a means of referring to the open connection. Upon
successfully returning from TPSVCSTART, either the connecting program or the conversational
service may send and receive data as defined by the application. The connection is half-duplex
in nature meaning that one side controls the conversation (that is, it sends data) until it explicitly
gives up control to the other side of the connection.

Concerning transactions, service routines can participate in, at most, one transaction if invoked
in transaction mode. As far as the service routine writer is concerned, the transaction ends upon
returning from the service routine. If the service routine is not invoked in transaction mode, the
service routine may originate as many transactions as it wants using TXBEGIN, TXCOMMIT
and TXROLLBACK. Note that TPRETURN is not used to complete a transaction. Thus, it is an
error to call TPRETURN with an outstanding transaction that originated within the service
routine.

DATA-REC specifies where the service’s data is read into, and, on input, LEN indicates the
maximum number of bytes that should be moved into DATA-REC. Upon successful return from
TPSVCSTART, LEN contains the actual number of bytes moved into DATA-REC. REC-TYPE and
SUB-TYPE contain the data’s type and sub-type, respectively. If the message is larger than
DATA-REC, DATA-REC contains only as many bytes as will fit in the record. The remainder of
the message is discarded and TPSVCSTART sets TPTRUNCATE.

If LEN is 0 upon successful return, the service has no incoming data and DATA-REC was not
modified. It is an error for LEN to be 0 on input.

Upon successful return, SERVICE-NAME is populated with the service name that the
requesting program used to invoke the service.

Part 1: XATMI Communication Application P rogramming Interface (API) 95

TPSVCSTART COBOL Language Reference Manual Pages

The possible settings of TPSVCDEF-REC upon the return of TPSVCSTART are as follows:

TPREQRSP
The service was invoked with either TPCALL or TPACALL. This setting is mutually
exclusive with TPCONV.

TPCONV
The service was invoked with TPCONNECT. The communication handle for the
conversation is available in COMM-HANDLE. This setting is mutually exclusive with
TPREQRSP.

TPNOTRAN
The service routine is not in transaction mode. This setting is mutually exclusive with
TPTRAN.

TPTRAN
The service routine is in transaction mode. This setting is mutually exclusive with
TPNOTRAN.

TPNOREPLY
The program invoking the service routine is not expecting a reply. This setting is
meaningful only when TPREQRSP is set. This setting is mutually exclusive with TPREPLY.

TPREPLY
The program invoking the service routine is expecting a reply. This setting is meaningful
only when TPREQRSP is set. This setting is mutually exclusive with TPNOREPLY.

TPSENDONLY
The service is invoked such that it can send data across the connection and the program on
the other end of the connection can only receive data. This setting is meaningful only when
TPCONV is set. This setting is mutually exclusive with TPRECVONLY.

TPRECVONLY
The service is invoked such that it can only receive data from the connection and the
program on the other end of the connection can send data. This setting is meaningful only
when TPCONV is set. This setting is mutually exclusive with TPSENDONLY.

RETURN VALUE
Upon successful completion, TPSVCSTART sets TP-STATUS to [TPOK]. If the size of the
incoming message is larger than the size specified in LEN on input, TPTRUNCATE is set and
only LEN bytes are moved into DATA-REC. The remaining bytes are discarded.

ERRORS
Under the following conditions, TPSVCSTART fails and sets TP-STATUS to one of the following
values:

[TPEINVAL]
Invalid arguments were given (for example, LEN is 0).

[TPEPROTO]
TPSVCSTART was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

96 X/Open CAE Specification

COBOL Language Reference Manual Pages TPSVCSTART

SEE ALSO
TPACALL, TPCALL, TPCONNECT, TPRETURN.

Part 1: XATMI Communication Application P rogramming Interface (API) 97

TPUNADVERTISE COBOL Language Reference Manual Pages

NAME
TPUNADVERTISE — unadvertise a service name

SYNOPSIS
01 SERVICE-NAME PIC X(15).

01 TPSTATUS-REC.
COPY TPSTATUS.

CALL "TPUNADVERTISE" USING SERVICE-NAME TPSTATUS-REC.

DESCRIPTION
TPUNADVERTISE allows a server to unadvertise a service that it offers. By default, a server’s
services are advertised when it is booted and they are unadvertised when it is shutdown.

TPUNADVERTISE removes SERVICE-NAME as an advertised service for the server. SERVICE-
NAME cannot be SPACES. Also, SERVICE-NAME should be 15 characters or fewer. Longer
names are accepted and truncated to 15 characters. Care should be taken such that truncated
names do not match other service names.

RETURN VALUE
Upon successful completion, TPUNADVERTISE sets TP-STATUS to [TPOK].

ERRORS
Under the following conditions, TPUNADVERTISE fails and sets TP-STATUS to one of the
following values:

[TPEINVAL]
SERVICE-NAME is SPACES.

[TPENOENT]
SERVICE-NAME is not currently advertised by the server.

[TPEPROTO]
TPUNADVERTISE was called in an improper context.

[TPESYSTEM]
A communication resource manager system error has occurred. The exact nature of the
error is determined in a product-specific manner.

[TPEOS]
An operating system error has occurred. The exact nature of the error is determined in a
product-specific manner.

SEE ALSO
TPADVERTISE.

98 X/Open CAE Specification

Chapter 8

State Tables

This chapter contains state tables that show legal calling sequences for the XATMI routines.

Note: Lower-case function names represent both the C and COBOL versions of the function
except where noted.

8.1 Interface Functions Allowed
Table 8-1 summarises the interface functions that may be invoked from the three types of XATMI
AP entities: clients, request/response services and conversational services.

Name Client Request/Response Service Conversational Service
tpalloc(C) • • •
tpfree(C) • • •
tprealloc(C) • • •
tptypes(C) • • •
tpservice(C) • •
TPSVCSTART(COBOL) • •
tpreturn • •
tpadvertise • •
tpunadvertise • •
tpacall • • •
tpcall • • •
tpcancel • • •
tpgetrply • • •
tpconnect • • •
tpdiscon • • •
tprecv • • •
tpsend • • •

• Function is allowed.

Table 8-1 Interface Functions Allowed by Type of Entity.

The following state tables represent calling sequences for valid uses of XATMI functions within
each of the sets of functions in Table 3-1 on page 14 and Table 6-1 on page 56. Unless noted
otherwise, incorrect use of any function does not affect the state of the caller. Additionally, the
use of any function from one set does not affect the state of another set.

Part 1: XATMI Communication Application P rogramming Interface (API) 99

Typed Buffer Functions State Tables

8.2 Typed Buffer Functions
Table 8-2 represents the state of the AP with respect to typed buffer functions. The states, that
relate to a particular typed buffer, are as follows:

S0 buffer not allocated
S1 buffer allocated.

Name S0 S1

tpalloc S1
tpfree S0
tprealloc S1
tptypes S1

Table 8-2 State Table for Typed Buffer Functions

Note: Service routines may be invoked with a buffer already in state S1.

8.3 Service Routine Functions
Table 8-3 represents the state of the AP with respect to functions for writing service routines.
The states in this table are:

S0 not in a service routine
S1 in a service routine.

Name S0 S1

tpservice(C) S1
TPSVCSTART(COBOL) S1
tpreturn S0

Table 8-3 State Table for Service Routine Functions

8.4 Advertising Functions
Table 8-4 represents the state of the AP with respect to functions for dynamically advertising
service names. This table relates to the state of an individual service name; services may be
advertised at server initialisation in an implementation-specific manner. The states in this table
are:

S0 service not advertised
S1 service advertised.

Name S0 S1

tpadvertise S1
tpunadvertise S0

Table 8-4 State Table for Advertising Functions

100 X/Open CAE Specification

State Tables Request/Response Service Functions

8.5 Request/Response Service Functions
Table 8-5 represents the state of the AP with respect to functions for request/response services.
This table relates to the state of an individual descriptor/handle. The states in this table are:

S0 descriptor/handle is invalid
S1 descriptor/handle is valid.

Service routines begin with one descriptor in state S1.

Name S0 S1

tpacall S1
tpcancel S0
tpgetrply S0

Table 8-5 State Table for Request/Response Service Functions

8.6 Conversational Service Functions
Table 8-6 represents the state of the AP with respect to functions for conversational services.
This table relates to the state of an individual descriptor/handle. The states in this table are:

S0 no descriptor/handle
S1 descriptor/handle in send only mode
S2 descriptor/handle in receive only mode.

Service routines begin with one descriptor in state S1 or state S2.

In addition, the following notation is used:

S* SENDONLY flag used
S** RECVONLY flag not set
S+ TPEV-SENDONLY event received
R* RECVONLY flag set
R+ TPEV-SENDONLY event not received
A originator of conversation
B subordinate of conversation.

Name S0 S1 S2

tpconnect/S* S1
tpconnect/R* S2
tprecv/S+ S1
tprecv/R+ S2
tpsend/S** S1
tpsend/R* S2
tpdiscon/A S0 S0
tpreturn/B S0 S0

Table 8-6 State Table for Conversational Service Functions

Part 1: XATMI Communication Application P rogramming Interface (API) 101

Conversational Service Functions State Tables

Additionally, certain XATMI functions can affect the state of the caller’s transaction, if any.
Specifically, the following calls and conditions cause the CRM to mark the transaction rollback-
only:

• tpacall (), tpcall (), tpconnect(), tpgetrply(), tprecv() or tpsend() returning [TPETIME]

• tpcall () or tpgetrply() returning [TPEOTYPE], [TPESVCERR] or [TPESVCFAIL] if these calls
were issued on behalf of a global transaction

• tprecv() returning [TPEOTYPE] or [TPEEVENT] with one of TPEV_DISCONIMM,
TPEV_SVCERR or TPEV_SVCFAIL if this call was issued on behalf of a global transaction.

• tpsend() returning [TPEEVENT] with one of TPEV_DISCONIMM, TPEV_SVCERR or
TPEV_SVCFAIL if this call was issued on behalf of a global transaction.

• tpdiscon() issued on behalf of a global transaction.

• tpreturn() with TPFAIL set if the service was part of a global transaction.

102 X/Open CAE Specification

Chapter 9

X/Open Specified Buffer and Record Types

This chapter contains detailed information on the C-language typed buffers and the COBOL
typed records that all implementations of the XATMI interface must support.

Part 1: XATMI Communication Application P rogramming Interface (API) 103

C-language Buffer Types X/Open Specified Buffer and Record Types

9.1 C-language Buffer Types
X/Open specifies three buffer types for the C-language bindings of XATMI: X_OCTET,
X_COMMON, and X_C_TYPE.

9.1.1 X_OCTET

The X_OCTET typed buffer is an array of bytes (characters) whose contents and handling are
completely defined by the AP. This buffer type is also referred to as an octet array. As such, a
length parameter always accompanies an X_OCTET typed buffer so that the CRM knows how
many bytes in the character array to send. This length is provided as the input len parameter of a
request and is retrieved in the output len parameter. Because data is transferred ‘‘as is’’ across
heterogeneous machine boundaries, APs must agree on the interpretation of the buffer’s
contents. Any character in the array can be NULL. The X_OCTET typed buffer has no subtype.

The following illustrates how an AP could use this buffer type:

char *octet_ptr;
char *ptr1, *ptr2;

/* allocate space for 25 bytes */
octet_ptr = tpalloc("X_OCTET", NULL, 25);

ptr1 = octet_ptr; /* point to start of typed buffer */
ptr2 = octet_ptr + 10; /* point to eleventh byte in typed buffer */

strcpy(ptr1, "hello"); /* add first string to typed buffer */
strcpy(ptr2, "goodbye"); /* add second string to typed buffer */

/* send one character array containing two NULL-terminated strings */
tpacall("GREETSVC", octet_ptr, 25, TPNOREPLY);

9.1.2 X_COMMON

The X_COMMON typed buffer is a non-nested C structure whose elements can be any of the
following three C data types: short, long or char. Bounded arrays of these elements are also
allowed within an X_COMMON structure definition. The X_COMMON typed buffer can
contain octet arrays whose contents and handling are completely defined by the AP; the XATMI
CRM does no processing on them. Specific structure definitions for this buffer type must be
qualified by an application-defined subtype. The manner in which X_COMMON subtypes are
defined is implementation-specific. Once defined to an XATMI CRM, these subtypes (except for
octet arrays) are transparently encoded and decoded on behalf of APs when they cross
heterogeneous machine boundaries.

These data types have a mapping between their respective COBOL data types (PIC S9(4)
COMP-5, PIC S9(9) COMP-5 and PIC X(1)). A C-language AP using X_COMMON typed
buffers can communicate with a COBOL AP using X_COMMON typed records so long as both
APs recognise the same subtypes.

With respect to processing strings, because COBOL programs do not use a NULL character to
terminate character strings, the most portable way for a program to communicate strings is via
an accompanying length element that both the C and COBOL programs use to determine the
number of significant bytes in a character array. This length can be implicitly known by both
partners, or can be defined by mutual understanding as another field of the same buffer.

104 X/Open CAE Specification

X/Open Specified Buffer and Record Types C-language Buffer Types

The following illustrates how an AP could use this buffer type. This example shows a C-
language client calling DEPOSITSVC. In Section 9.2.2 on page 107, an example is given showing
a COBOL language service routine using the same X_COMMON subtype.

Firstly, the AP defines an X_COMMON subtype. In this example, a subtype called deposit is
used.

struct deposit {
long acct_no;
short amount;
short balance;
char status[128];
short status_len;

};

Next, this structure is processed by the CRM (in an implementation-specific manner) so that it
can allocate memory for this subtype and process it appropriately at run time.

Finally, an AP could be written to use this subtype as follows:

struct deposit *dptr;
long len;

/* allocate space for a deposit structure */
dptr = tpalloc("X_COMMON", "deposit", 0);

/* populate buffer with data */
dptr->acct_no = 12345678;
dptr->amount = 50;

/* call DEPOSITSVC, place reply in same buffer */
tpcall("DEPOSITSVC", (char *) dptr, 0, (char **) &dptr, &len,

TPNOCHANGE);

/* call AP function to print balance and any status message returned */
bal_print(dptr->balance, dptr->status, dptr->status_len);

9.1.3 X_C_TYPE

The X_C_TYPE typed buffer is a non-nested C structure whose elements can be any of the
following data types: int, short, long, char, float, double, character string and octet array. The
first six types are basic C data types while the last two are both bounded arrays of characters.
Strings are given credence because of the prevalence of NULL-terminated character arrays in C
programs and libraries. This data type instructs the XATMI CRM to process a string element
only up until a NULL character is reached. Octet arrays are also arrays of characters, any of
which may be NULL. Like the X_OCTET buffer type, the contents and handling of octet arrays
are completely defined by the AP; the XATMI CRM does no processing on them. All the other
elements of an X_C_TYPE buffer type, as for the X_COMMON buffer type, are transparently
encoded and decoded by the XATMI CRM, provided they are defined to it. Note that the
X_COMMON typed buffer is a strict subset of X_C_TYPE, that adds only ints, floats, doubles,
character strings and octet arrays.

Part 1: XATMI Communication Application P rogramming Interface (API) 105

C-language Buffer Types X/Open Specified Buffer and Record Types

Bounded arrays of these eight data types are allowed within an X_C_TYPE structure definition.
For strings and octet arrays, this implies that a structure could contain arrays of strings and
arrays of octet arrays. Specific structure definitions for this buffer type must be qualified by an
application-defined subtype. The manner in which X_C_TYPE subtypes are defined is
implementation-specific. Once defined to an XATMI CRM, these subtypes (except for octet
arrays) are transparently encoded and decoded on behalf of APs when they cross heterogeneous
machine boundaries.

The following illustrates how an AP could use this buffer type.

First, the AP defines an X_C_TYPE subtype. In this example, a subtype called "acct_info" is used.

struct acct_info {
long acct_no;
char name[50]; /* NULL terminated string */
char address[100]; /* NULL terminated string */
float balances[2]; /* both checking and savings balances */

};

Next, this structure is processed by the CRM (in an implementation-specific manner) so that it
can allocate memory for this subtype and process it appropriately at run time.

Finally, an AP could be written to use this subtype as follows:

struct acct_info *aptr;
long len;

/* allocate space for a deposit structure */
aptr = tpalloc("X_C_TYPE", "acct_info", 0);

/* populate buffer with data */
aptr->acct_no = 12345678;

/* call INQUIRY, place reply in same buffer */
tpcall("INQUIRY", (char *) aptr, 0, (char **) &aptr, &len, TPNOCHANGE);

/* call AP function to print account information returned */
acct_print(aptr->acct_no, aptr->name, aptr->address,

aptr->balance[0], aptr->balance[1]);

106 X/Open CAE Specification

X/Open Specified Buffer and Record Types COBOL Language Buffer Types

9.2 COBOL Language Buffer Types
X/Open specifies two buffer types for the COBOL language bindings of XATMI: X_OCTET and
X_COMMON.

9.2.1 X_OCTET

The X_OCTET record type is a set of contiguous bytes (characters) whose contents and handling
are completely defined by the AP. This record type is also referred to as an octet array. As such,
a length parameter always accompanies an X_OCTET record type so that the CRM knows how
many bytes to send. This length is to be provided in the LEN field of the input TPTYPE-REC
record of a request, and is retrieved in the LEN field of the output TPTYPE-REC record. Because
data is transferred ‘‘as is’’ across heterogeneous machine boundaries, APs must agree on the
interpretation of the record’s contents. Any character in the record can be a LOW-VALUE. The
X_OCTET record type has no subtype.

The following illustrates how an AP could use this buffer type.

01 OCTET-REC.
05 HELLO-FIELD PIC X(5) VALUE IS "Hello".
05 FILLER PIC X(1) VALUE IS LOW-VALUE.
05 GOODBYE-FIELD PIC X(7) VALUE IS "Goodbye".
05 FILLER PIC X(1) VALUE IS LOW-VALUE.

*
* Set up TPTYPE-REC
*

MOVE "X_OCTET" TO REC-TYPE.
MOVE SPACES TO SUB-TYPE.
MOVE LENGTH OF OCTET-REC TO LEN.

*
* Set up TPSVCDEF-REC
*

MOVE "GREETSVC" TO SERVICE-NAME.
*
* Send octet record to GREETSVC.
*

CALL "TPACALL" USING
TPSVCDEF-REC TPTYPE-REC OCTET-REC TPSTATUS-REC.

9.2.2 X_COMMON

The X_COMMON record type is a non-nested COBOL record whose elements can be any of the
following three COBOL data types: PIC S9(4) COMP-5, PIC S9(9) COMP-5 and PIC X(1).
Multiple occurrences of these elements are also allowed within an X_COMMON record
definition (via the use of an OCCURS clause, or a PIC X(n) definition for multiple PIC X(1)). The
X_COMMON record type can contain octet arrays whose contents and handling are completely
defined by the AP; the XATMI CRM does no processing on them. Specific record definitions for
this record type must be qualified by an application-defined subtype. The manner in which
X_COMMON subtypes are defined is implementation-specific. Once defined to an XATMI
CRM, these subtypes (except for octet arrays) are transparently encoded and decoded on behalf
of APs when they cross heterogeneous machine boundaries.

Part 1: XATMI Communication Application P rogramming Interface (API) 107

COBOL Language Buffer Types X/Open Specified Buffer and Record Types

These data types have a one-to-one mapping between their respective C data types (short, long
and char). A COBOL-language AP using X_COMMON record types can communicate with a
C-language AP using X_COMMON typed buffers so long as both APs recognise the same
subtypes.

With respect to processing strings, because COBOL programs do not use a NULL character to
terminate character strings (as do C programs), the most portable way for a program to
communicate strings is via an accompanying length element that both the C and COBOL
programs use to determine the number of significant bytes in a character array.

The following illustrates how an AP could use this record type. This example is a continuation
of that shown in Section 9.1.2 on page 104 where a C-language client calls DEPOSITSVC. Shown
below is the COBOL version of DEPOSITSVC using the same X_COMMON subtype.

First, the AP defines an X_COMMON subtype. In this example, the subtype is the COBOL
equivalent to that shown section 8.1.2 and it is located in a COPY file called DEPOSIT.

05 ACCT-NO PIC S9(9) COMP-5.
05 AMOUNT PIC S9(4) COMP-5.
05 BALANCE PIC S9(4) COMP-5.
05 STATUS PIC X(128).
05 STATUS-LEN PIC S9(4) COMP-5.

Next, this record is processed by the CRM (in an implementation-specific manner) so that it can
process it appropriately at run time.

Finally, an AP could be written to use this subtype as follows:

01 DEPOSIT-REC.
COPY DEPOSIT.

*
MOVE LENGTH OF DEPOSIT-REC TO LEN.

*
CALL "TPSVCSTART" USING

TPSVCDEF-REC TPTYPE-REC DEPOSIT-REC TPSTATUS-REC.
*
* PROCESS-DEPOSIT accesses DBMS and returns BALANCE and STATUS.
*

CALL "PROCESS-DEPOSIT" USING DEPOSIT-REC.

IF NO ERRORS
SET TPSUCCESS TO TRUE

ELSE
SET TPFAIL TO TRUE

*
COPY TPRETURN REPLACING DATA-REC BY DEPOSIT-REC.

108 X/Open CAE Specification

X/Open CAE Specification

Part 2:

XATMI Application Service Element (ASE)

X/Open Company Ltd.

Part 2: XATMI Application Service Element (ASE) 109

110 X/Open CAE Specification

Chapter 10

XATMI Communication Model

This chapter describes the mapping of the communication model used by the X/Open XATMI
Interface to the OSI TP Communication Model. This mapping is abstracted through the
definition of the XATMI Application Service Element (XATMI-ASE) which follows the OSI ASE
definition nomenclature.

10.1 XATMI-ASE Communication Model
The XATMI-ASE defines how the primitives in the XATMI Interface are mapped to the OSI TP
protocol. This protocol is connection-oriented and assumes that the cooperating applications
communicate via dialogues.

An OSI TP dialogue is established in the XATMI-ASE Model when a client requests either a
request/response or a conversational service. This dialogue may be established within or
outside the current global transaction. A dialogue is accepted or rejected by the remote server
(or application) and a service is invoked as the result of the incoming dialogue request within or
outside the global transaction (as requested by the client).

A new dialogue is allocated with each service request and the lifetime of the dialogue is subject
to the duration of the transaction (if the dialogue is within a transaction) or to the duration of the
service (if the dialogue is not within a transaction).

The communication model used by Conversational Services maps to polarised dialogues, that is,
only one side (the client or the service) may send data at a time.

For simplicity, the definitions of the XATMI-ASE mappings do not show a service acting as a
client. The mappings for that case, however, can be easily inferred from the defined client
mappings.

Part 2: XATMI Application Service Element (ASE) 111

OSI TP Profiles XATMI Communication Model

10.2 OSI TP Profiles
The XATMI-ASE maps to OSI TP profiles ATP11, ATP21, and ATP31 (see ISO/IEC ISP 12061).
The following table summarises the OSI TP functional units required by each one of these
profiles (a • symbol indicates that the specified functional unit is required for that profile):

Functional Units ATP11 ATP21 ATP31
Dialogue • • •
Polarized Control • • •
Shared Control
Commit • •
Unchained transactions •
Chained transactions •
Handshake • • •
Recovery • •

Table 10-1 Required OSI TP Functional Units

The choice between these profiles is automatically supported by the XATMI-ASE. The ATP11
profile is used when a service request is issued outside a global transaction. The ATP21 or the
ATP31 profile is selected when the XATMI-ASE is used within a global transaction (that is, the
selection is provider-dependent but profile ATP21 is the default).

112 X/Open CAE Specification

XATMI Communication Model Structure of the XATMI-ASE

10.3 Structure of the XATMI-ASE
The basic structure of the XATMI-ASE is derived from the OSI Application Layer Structure,
described in ISO/IEC 9545, and ISO/IEC Distributed Transaction Processing, described in the
referenced OSI TP standards.

The following figure illustrates the functional architecture of the XATMI-ASE from the OSI point
of view and is not meant to imply any particular software architecture.

XATMI Application
Entity Invocation

XATMI-MACF

SAO

TP-MACF

S
A
C
F

ACSE

TP-ASE

CCR-ASE

XATMI-ASE

Transport

Session

Presentation

XATMI Service User Invocation

XATMI Protocol
Machine

XATMI Application Process Invocation

Figure 10-1 OSI View of XATMI-ASE Functional Architecture

Part 2: XATMI Application Service Element (ASE) 113

Structure of the XATMI-ASE XATMI Communication Model

The main elements of this architecture are as follows:

XATMI Application Process Invocation (XATMI-API)
An Application Process is the OSI abstraction of an application (including all its
communication functions). An Application Process Invocation represents a particular
instantiation of an application which includes all of the elements illustrated in the figure
above. Therefore, an XATMI-API represents a particular instantiation of an application
using the XATMI Interface.

XATMI Service User Invocation (XATMI-SUI)
An XATMI-SUI represents the actual user of the services provided by the XATMI Protocol
Machine (XATMI-PM). Hence, an XATMI-SUI represents a particular instantiation of the
implementation of the XATMI Interface (that is, the XATMI Provider).

XATMI Application Entity Invocation (XATMI-AEI)
An XATMI Application Entity (XATMI-AE) represents the component of an XATMI-AP that
provides the communication services necessary for interworking in the XATMI OSI
environment. An XATMI-AEI refers to the specific use of the services of the XATMI-AE by a
particular XATMI-API.

XATMI Protocol Machine (XATMI-PM)
An XATMI-PM represents the component of an XATMI-AEI that coordinates the sequencing
and the mapping of the XATMI communication services to the OSI TP protocol (see Chapter
13). The XATMI-PM contains a complete OSI TP Protocol Machine (TPPM). The two
primary components of the XATMI-PM are the XATMI Multiple Association Control
Function (XATMI-MACF) and the Single Association Object (SAO). An XATMI-PM can
have multiple SAOs that are coordinated by the XATMI-MACF.

XATMI Multiple Association Control Function (XATMI-MACF)
The XATMI-MACF ensures the proper sequencing of the TP protocol and the XATMI
Application Protocol Data Units (APDUs) flowing across TP dialogues (that is, a dialogue
maps to an association). The XATMI-MACF is a supplement to the TP-MACF.

Single Association Object (SAO)
An SAO represents the context used within a particular association. Each SAO contains a
Single Association Control Function (SACF) and a set of Application Service Elements
(ASEs) that supports the specific communication required by an XATMI-SUI.

Single Association Control Function (SACF)
The SACF abstracts the control required for coordinating the use of a single association by
multiple ASEs and their use of the Presentation Service. In the XATMI OSI Communication
Model, the SACF coordinates the following ASEs:

• the OSI Association Control Service Element (ACSE)

• the OSI TP Application Service Element (TP-ASE)

• the OSI Commitment, Concurrency, and Recovery Application Service Element (CCR-
ASE)

• the XATMI Application Service Element (XATMI-ASE).

XATMI Application Service Element (XATMI-ASE)
The XATMI-ASE provides the service primitives that handle the data transfer for the
request/response and Conversational Service requests (see Chapter 12). Also, the XATMI-
ASE provides the necessary protocol encoding and decoding services for the XATMI-PM
(see Chapter 12 and Chapter 14).

114 X/Open CAE Specification

XATMI Communication Model OSI TP Naming Model

10.4 OSI TP Naming Model
OSI TP communication requires the following naming structure:

Application Process Title (APT)
An APT identifies a particular application in the OSI network. An APT must be registered
with a registration authority.

Application Entity Qualifier (AEQ)
An AEQ identifies the particular communication functions that are used with an
association.

Application Entity Title (AET)
An AET identifies an XATMI-AEI within the OSI environment. An AET is always formed
by the combination of the APT and the AEQ.

Application Context Name (ACN)
An ACN identifies rules for the communication between two XATMI-AEIs. An ACN is an
Object Identifier that must be registered with a registration authority. In particular,
X/Open must register an ACN to identify the XATMI OSI context (see Chapter 11).

Transaction Processing Service User Title (TPSUT)
A TPSUT identifies a remote program (or TP Service User — TPSU) within a particular
XATMI-API.

Abstract Syntax Name (ASN)
An ASN defines the structure used for the exchange of information between peer ASEs. An
ASN is an Object Identifier that must be registered with a registration authority. In
particular, X/Open must register an ASN to identify the APDUs used by the XATMI-ASE
(see Chapter 14).

The mapping of these names from the XATMI Interface and the XATMI OSI Communication
Model to the OSI TP Model is defined in Chapter 13.

Part 2: XATMI Application Service Element (ASE) 115

XATMI-PM and the X/Open DTP Model XATMI Communication Model

10.5 XATMI-PM and the X/Open DTP Model
The following figure shows the relationship between the XATMI-PM and the X/Open
Distributed Transaction Processing (DTP) Model. In particular, the figure shows where the
different X/Open transaction interfaces relate to an implementation of the XATMI-PM.

TX
........... .

Presentation

ACSE

OSI TP

CCR

XATMI-PM

. .

. .

AP TM

XA+

XAP-TP

XAP

XATMI

Figure 10-2 Relationship Between XATMI-PM and DTP Model

116 X/Open CAE Specification

Chapter 11

XATMI Application Context Definition

This chapter contains the full application context for use with the XATMI-ASE. Its purpose is to
provide an application context that supports TP applications using the XATMI Interface.
Bilateral agreements are required between the XATMI-SUIs (or TPSUIs) with respect to the
structure of the typed buffers supported by the cooperating applications.

This chapter covers the application context identifier, the component ASEs, SACF rules and
MACF rules. There are no other functions and no persistent application context rules.

11.1 Application Context Identifier
X/Open must register an Object Identifier that identifies this application context, for example:

{iso(1) national-member-body(2) bsi(826) disc(0) xopen(1050)
xatmi(4) application-context(2) atp11-21-31(1)}

Part 2: XATMI Application Service Element (ASE) 117

Component ASEs XATMI Application Context Definition

11.2 Component ASEs
The following ASEs are contained in this application context:

• ACSE

• CCR (optional, included only if the TP commit functional unit is required)

• TP-ASE

• XATMI-ASE.

ACSE

References ISO/IEC 8649 and 8650

Version Version 1

Description ACSE is used to establish and terminate associations. The ACSE functions are
not exercised directly by the XATMI-PM but are exercised by association
management facilities within the TP service provider.

CCR

References ISO/IEC 9804 and 9805

Version Version 2

Description CCR is used in support of the commitment, rollback, and recovery functions.
TP makes use of the CCR ASE services. The XATMI-PM does not make a
direct use of CCR functions.

TP-ASE

References The OSI TP standards

Version Version 1

Description TP-ASE is used to provide functions that are specific to TP. The XATMI-PM
uses the TP services.

XATMI-ASE

References This document

Version Version 1

Description The XATMI-ASE defines the characteristics of the transfer of structured data
between cooperating TPSUIs that use the X/Open XATMI Interface
specification. The Abstract Syntax of the XATMI-ASE APDUs is defined in
Chapter 14. The Transfer Syntax is defined by the Basic Encoding Rules for
ASN.1 (see the referenced BER standard).

118 X/Open CAE Specification

XATMI Application Context Definition SACF Rules

11.3 SACF Rules
The SACF rules defined for the XATMI-ASE are in addition to the rules defined for the TP-ASE.
Chapter 13 defines these rules.

11.3.1 Sequencing Rules

Chapter 13 defines the correct ordering for the mapping of the XATMI-ASE services to the
services provided by the TP-ASE.

11.3.2 Concatenation Rules

There are no concatenation rules beyond those specified in the base standard (the OSI TP
Protocol standard).

11.3.3 Mapping Rules

The following XATMI-ASE APDUs are mapped according to the concatenation rules specified in
the OSI TP Protocol standard for the abstract service TP-DATA:

• XATMI-CALL-RI

• XATMI-REPLY-RI

• XATMI-CONNECT-RI

• XATMI-DATA-RI.

The XATMI-FAILURE-RI APDU is mapped to the User-Data parameter of the TP-U-ABORT
service.

11.3.4 Transaction States

There are no additional transaction state transitions beyond those specified in the base standard
(the OSI TP Protocol standard) for the TP-DATA generic service.

Part 2: XATMI Application Service Element (ASE) 119

MACF Rules XATMI Application Context Definition

11.4 MACF Rules
The MACF rules defined for the XATMI-ASE are in addition to the rules defined by the TP-ASE.
The XATMI-ASE allows:

• multiple asynchronous service requests, each optionally issued as part of a transaction.

• multiple conversational service requests, each optionally issued as part of a transaction

• two-phase commitment integrated with the X/Open Distributed Transaction Processing
Model.

11.4.1 Sequencing Rules

The sequencing rules are defined in Chapter 13. These rules define how the XATMI-ASE services
and APDUs are mapped to the TP-ASE. In particular, Section 13.20.1 on page 178 defines how
the XATMI-PREPARE request service is mapped to all TP dialogues associated with the
transaction.

11.4.2 Concatenation Rules

There are no MACF concatenation rules beyond those specified in the base standard (the OSI TP
Protocol standard).

11.4.3 Mapping Rules

XATMI-MACF services are mapped one to one to XATMI-ASE services, except for the
transaction services that are mapped directly to the corresponding TP services (see Chapter 12
and Chapter 13). From these transaction services, XATMI-PREPARE request and XATMI-
READY indication require special handling by the XATMI-MACF as described in sections
Section 13.20.1 on page 178 and Section 13.20.5 on page 180.

XATMI-ASE services are mapped directly to TP-ASE services as specified in Chapter 13.

120 X/Open CAE Specification

Chapter 12

XATMI-ASE Service Definition

This chapter presents the XATMI-ASE services, mapping from the XATMI interface, sequencing
rules and state table.

12.1 Nomenclature
The definitions of the XATMI-ASE service parameters use the following convention to describe
the presence of each parameter:

blank: not applicable
M: presence is mandatory
U: presence is a user option
O: presence is a provider option
C: presence is conditional.

In addition, the notation (=) indicates that a parameter value is semantically equivalent to the
parameter in the service primitive to its immediate left in the table.

Finally, this document uses the XATMI C language bindings to present the different mappings
between the XATMI Interface and the XATMI-ASE definition. It is assumed that the XATMI
COBOL language mappings are built upon the XATMI C-language mappings.

12.2 Summary of Service Primitives
The following table presents a summary of the XATMI-ASE service primitives used by an
XATMI-SUI in the request/response and conversational communication models. Note that an
XATMI-SUI takes the client role when it describes the behaviour of both a client application and a
server application (that is, an application service) acting as a client of another server. An
XATMI-SUI takes the server role when it describes the behaviour of a server application.

Key:

R/R request/response

Con conversational

• indicates the use of this XATMI-ASE service from that particular XATMI
communication model.

Part 2: XATMI Application Service Element (ASE) 121

Summary of Service Primitives XATMI-ASE Service Definition

Service Name Client Server Service Protocol
Role Role R/R Con Description Description

Section 12.4.1 on
page 124.

Section 13.6 on page
153 and Section 13.13
on page 164.

XATMI-CALL req ind •

Section 12.4.2 on
page 126

Section 13.8 on page
159 and Section 13.15
on page 169.

XATMI-REPLY ind req • •

Section 12.4.3 on
page 127

Section 13.9 on page
160 and Section 13.16
on page 170.

XATMI-FAILURE ind req • •

Section 12.4.4 on
page 129.

Section 13.10 on page
161 and Section 13.17
on page 175.

XATMI-CANCEL req ind •

Section 12.4.5 on
page 130

Section 13.7 on page
157 and Section 13.14
on page 167.

XATMI-CONNECT req ind •

Section 12.4.6 on
page 132.

Section 13.12 on page
163 and Section 13.18
on page 176.

XATMI-DISCON req ind •

Section 12.4.7 on
page 133.

Section 13.11 on page
162 and Section 13.19
on page 177.

XATMI-DATA req/ind req/ind •

Section 12.4.8 on
page 135.

Section 13.20.1 on
page 178 and Section
13.20.5 on page 180.

XATMI-PREPARE req ind • •

Section 12.4.9 on
page 136.

Section 13.20.6 on
page 180.

XATMI-READY ind • •

Section 12.4.10 on
page 137.

Section 13.20.2 on
page 178 and Section
13.20.7 on page 181.

XATMI-COMMIT req/ind req/ind • •

Section 12.4.11 on
page 138.

Section 13.20.3 on
page 179.

XATMI-DONE req req • •

Section 12.4.12 on
page 139.

Section 13.20.9 on
page 182.

XATMI-COMPLETE ind ind • •

Section 12.4.13 on
page 140.

Section 13.20.4 on
page 180. and
Section 13.20.8 on
page 181.

XATMI-ROLLBACK req/ind ind • •

Section 12.4.14 on
page 141.

Section 13.20.10 on
page 182.

XATMI-HEURISTIC ind • •

Table 12-1 XATMI-ASE Service Primitives

The XATMI-ASE transaction service primitives enable an XATMI-SUI to commit or participate in
the commitment of a transaction, to roll back a transaction and to receive the result of the
completion of the commitment or rollback of a transaction. These services are global services,
that is they affect all of the OSI TP dialogues controlled by the XATMI-PM on behalf of a
transaction.

122 X/Open CAE Specification

XATMI-ASE Service Definition Mapping from the XATMI Interface

12.3 Mapping from the XATMI Interface
The following table summarises the complete set of XATMI-ASE services used by the relevant
XATMI interface primitives.

XATMI Interface Client Server XATMI-ASE
Primitive Role Role Services

tpcall () • XATMI-CALL req
(XATMI-REPLY ind or XATMI-FAILURE ind)

tpacall () • XATMI-CALL req
tpgetrply() • XATMI-REPLY ind or XATMI-FAILURE ind
tpcancel() • XATMI-CANCEL req
tpservice() • XATMI-CALL ind or XATMI-CONNECT ind
tpreturn() • XATMI-REPLY req or XATMI-FAILURE req
tpconnect() • XATMI-CONNECT req
tpdiscon() • XATMI-DISCON req
tpsend() • • XATMI-DATA req

(XATMI-REPLY ind or XATMI-DISCON ind
or XATMI-FAILURE ind)

tprecv() • • XATMI-DATA ind and
(XATMI-REPLY ind or XATMI-DISCON ind
or XATMI-FAILURE ind)

Table 12-2 XATMI-ASE Services Used by XATMI Interface Primitives

The following table summarises the complete set of XATMI-ASE transaction services used by the
relevant X/Open TX interface primitives. These primitives are assumed to be used by an
XATMI-SUI taking the client role .

TX Interface XATMI-ASE
Primitive Services

tx_commit() XATMI-PREPARE req
XATMI-READY ind
XATMI-COMMIT req
XATMI-COMMIT ind
XATMI-DONE req
XATMI-COMPLETE ind

tx_rollback () XATMI-ROLLBACK req
XATMI-DONE req
XATMI-COMPLETE ind

Table 12-3 XATMI-ASE Services Used by TX Interface Primitives

Part 2: XATMI Application Service Element (ASE) 123

XATMI-ASE Services XATMI-ASE Service Definition

12.4 XATMI-ASE Services
For each XATMI-ASE service, the request and indication are defined under the headings
Parameters and Usage.

12.4.1 XATMI-CALL request and indication

Parameters

Parameter Name req ind
Service-Name M M
User-Data U U(=)
Begin-Transaction M M(=)
No-Reply-Option M M(=)

Service-Name
This parameter specifies a symbolic name pointing to local configuration information that is
used by the XATMI-PM to extract the parameters necessary to establish an OSI TP dialogue
with the remote server. The server XATMI-PM retrieves this name from the XATMI-CALL-
RI APDU (see Chapter 13 and Chapter 14).

User-Data
This parameter specifies a typed buffer. The XATMI-PM uses the buffer’s type to encode or
decode the user data according to the rules specified in Chapter 14.

Begin-Transaction
This parameter specifies whether the XATMI-PM should issue the service request as part of
the caller’s global transaction, if any exists. It must take one of the following values: True,
when the application service request should be part of the caller’s transaction; False, when
the application service request should not be part of the caller’s transaction.

No-Reply-Option
This parameter is used to indicate to the XATMI-ASE whether a reply should be issued in
response to the service request. It must take one of the following values: True, when a reply
should not be issued; False, when a reply should be issued.

Usage

An XATMI-CALL request is mapped from tpcall () or tpacall () and is issued by a client to an
XATMI-PM to request a remote service.

An XATMI-CALL indication is mapped to the tpservice() abstraction and is issued by the
XATMI-PM to the server to invoke a request/response service.

Once an XATMI-CALL request has been issued by the client XATMI-SUI, one of the following
events can occur:

• issue an XATMI-CANCEL request

• issue an XATMI-ROLLBACK request

• receive an XATMI-REPLY indication

• receive an XATMI-FAILURE indication.

124 X/Open CAE Specification

XATMI-ASE Service Definition XATMI-ASE Services

Once an XATMI-CALL indication has been received by the server XATMI-SUI, one of the
following events can occur:

• issue an XATMI-REPLY request

• issue an XATMI-FAILURE request

• receive an XATMI-CANCEL indication

• receive an XATMI-ROLLBACK indication.

Part 2: XATMI Application Service Element (ASE) 125

XATMI-ASE Services XATMI-ASE Service Definition

12.4.2 XATMI-REPLY request and indication

Parameters

Parameter Name req ind
User-Code M M(=)
User-Data U U(=)

User-Code
This parameter specifies the return code defined by the application using the XATMI
interface. This parameter is encoded by the XATMI-PM according to the rules specified in
Chapter 14.

User-Data
This parameter specifies a typed buffer. The XATMI-PM uses the buffer’s type to encode or
decode the user data according to the rules specified in Chapter 14.

Usage

An XATMI-REPLY request is issued by a server to the XATMI-PM to return the reply from the
service. It is mapped from tpreturn() with rval set to TPSUCCESS.

An XATMI-REPLY indication is issued by the XATMI-PM to the client to return the reply from
the remote service. It is mapped to tpcall (), to tpgetrply() or to tprecv().

Once an XATMI-REPLY request has been issued by a server XATMI-SUI, one of the following
events can occur:

• receive an XATMI-ROLLBACK indication

• receive an XATMI-PREPARE indication.

Once an XATMI-REPLY indication has been received by a client XATMI-SUI, one of the
following events can occur:

• issue an XATMI-PREPARE request

• issue an XATMI-ROLLBACK request

• receive an XATMI-ROLLBACK indication.

126 X/Open CAE Specification

XATMI-ASE Service Definition XATMI-ASE Services

12.4.3 XATMI-FAILURE request and indication

Parameters

Parameter Name req ind
Diagnostic M M
User-Code C C(=)
User-Data C C(=)

Diagnostic
This parameter specifies the failure type. It may be set by the server, the server XATMI-PM,
or the client XATMI-PM. The diagnostic is always reported on the indication. The
following table summarises the Diagnostic valid values (see Section 13.9 on page 160 and
Section 13.16 on page 170 for the corresponding mapping to the XATMI Interface):

Diagnostic Value req ind
Application-Service-Failure • •
Recipient-XATMI-SU-Failure • •
Rejected-XATMI-Provider •
Permanent-Failure •
Transient-Failure •
Protocol-Error •
Recipient-Unknown •
Recipient-TPSU-title-unknown •
Recipient-TPSU-title-required •
TPSU-not-available(permanent) •
TPSU-not-available(transient) •
Functional-Unit-combination-not-supported •
Reason-not-specified •

User-Code
This parameter specifies the return code defined by the application using the XATMI
interface and is present only if the Diagnostic parameter is set to Application-Service-
Failure. This parameter is encoded by the XATMI-PM according to the rules specified in
Chapter 14.

User-Data
This parameter specifies a typed buffer and may be present only if the Diagnostic parameter
is set to Application-Service-Failure. The XATMI-PM uses the buffer’s type to encode or
decode the user data according to the rules specified in Chapter 14.

Usage

An XATMI-FAILURE request is issued by a server to the XATMI-PM to return a failure from the
service. Normally, an XATMI-FAILURE is mapped from a tpreturn() with rval set to TPFAIL.
The XATMI Provider, however, may also issue an XATMI-FAILURE if an error condition is
found after the application service returns (see XATMI Interface for details).

An XATMI-FAILURE indication is issued by the XATMI-PM to the client to return the failure
from the remote service. It is mapped to tpcall (), tpgetrply(), tpsend() or tprecv().

Part 2: XATMI Application Service Element (ASE) 127

XATMI-ASE Services XATMI-ASE Service Definition

Once an XATMI-FAILURE request has been issued by a server XATMI-SUI, only the following
event can occur:

• issue an XATMI-DONE request.

Once an XATMI-FAILURE indication has been received by a client XATMI-SUI, only the
following event can occur:

• issue an XATMI-DONE request.

128 X/Open CAE Specification

XATMI-ASE Service Definition XATMI-ASE Services

12.4.4 XATMI-CANCEL request and indication

Parameters

None.

Usage

An XATMI-CANCEL request is issued by a client to the XATMI-PM to cancel a pending service
reply. It applies only to request/response application services. It is mapped from tpcancel()
(note that this function cannot be called when the client is within a transaction, see the manual
page for tpcancel() on page 33).

An XATMI-CANCEL indication is issued by the XATMI-PM to the server to indicate the cancel
from the client. This service is not mapped to the XATMI server interface.

Once an XATMI-CANCEL indication has been issued by a client XATMI-SUI or received by a
server XATMI-SUI, no more events relating to the corresponding application service request can
occur.

Part 2: XATMI Application Service Element (ASE) 129

XATMI-ASE Services XATMI-ASE Service Definition

12.4.5 XATMI-CONNECT request and indication

Parameters

Parameter Name req ind
Service-Name M M
User-Data U U
Begin-Transaction M M(=)
Grant-Control M M(=)

Service-Name
This parameter specifies a symbolic name pointing to local configuration information that is
used by the XATMI-PM to extract the parameters necessary to establish an OSI TP dialogue
with the remote server. The server XATMI-PM retrieves this name from the XATMI-
CONNECT-RI APDU (see Chapter 13 and Chapter 14).

User-Data
This parameter specifies a typed buffer. The XATMI-PM uses the buffer’s type to encode or
decode the user data according to the rules specified in Chapter 14.

Begin-Transaction
This parameter specifies whether the XATMI-PM should issue the service request as part of
the caller’s global transaction, if any exists. It must take one of the following values: True,
when the application service request should be part of the caller’s transaction; False, when
the application service request should not be part of the caller’s transaction.

Grant-Control
This parameter is used to indicate whether the client wishes to retain the control of the
connection. It must take one of the following values: False, when the client retains the
control of the connection; True, when the client grants control of the connection to the
service.

Usage

An XATMI-CONNECT request is mapped from tpconnect() and is issued by a client to an
XATMI-PM to request a connection with a remote conversational service.

An XATMI-CONNECT indication is mapped to the tpservice() abstraction and is issued by the
XATMI-PM to the server to invoke a conversational service.

Connections with a conversational service are established in a such a way that only one side
may send data at a time.

If the client retains control of the connection, one of the following events may occur:

• At the client side:

— issue an XATMI-DATA request

— issue an XATMI-DISCON request

— issue an XATMI-ROLLBACK request

— receive an XATMI-FAILURE indication

— receive an XATMI-REPLY indication.

130 X/Open CAE Specification

XATMI-ASE Service Definition XATMI-ASE Services

• At the server side:

— receive an XATMI-DATA indication

— receive an XATMI-DISCON indication

— receive an XATMI-ROLLBACK indication

— issue an XATMI-REPLY request

— issue an XATMI-FAILURE request.

If the client does not retain control of the connection, one of the following events can occur:

• At the client side:

— issue an XATMI-DISCON request

— issue an XATMI-ROLLBACK request

— receive an XATMI-REPLY indication

— receive an XATMI-FAILURE indication

— receive an XATMI-DATA indication.

• At the server side

— issue an XATMI-REPLY request

— issue an XATMI-FAILURE request

— issue an XATMI-DATA request

— receive an XATMI-ROLLBACK indication

— receive an XATMI-DISCON indication.

Part 2: XATMI Application Service Element (ASE) 131

XATMI-ASE Services XATMI-ASE Service Definition

12.4.6 XATMI-DISCON request and indication

Parameters

None.

Usage

An XATMI-DISCON request is issued by the client to the XATMI-PM to end a conversation with
a conversational service. It is mapped from tpdiscon().

An XATMI-DISCON indication is received by the server from the XATMI-PM. It may be
generated because of a communication failure or because the client issued tpdiscon(), and it
indicates the end of the conversation with the client. If the conversation was established within
a transaction, an XATMI-DISCON indication also implies that the transaction is rolling back.

An XATMI-DISCON indication is mapped to the TPEV_DISCONIMM event returned in the
revent variable of tpsend() or tprecv().

Once an XATMI-DISCON request has been issued by the client, only the following event can
occur for that transaction:

• issue an XATMI-ROLLBACK request.

Once an XATMI-DISCON request has been received by the server, only the following event can
occur for that transaction:

• issue an XATMI-DONE request.

132 X/Open CAE Specification

XATMI-ASE Service Definition XATMI-ASE Services

12.4.7 XATMI-DATA request and indication

Parameters

Parameter Name req ind
User-Data U U(=)
Grant-Control M M(=)

User-Data
This parameter specifies a typed buffer. The XATMI-PM uses the buffer’s type to encode or
decode the user data according to the rules specified in Chapter 14.

Grant-Control
This parameter is used to indicate whether the client (or the service) relinquishes the control
of the connection. It must take one of the following values: False, when the XATMI-SUI
retains or does not obtain control of the connection; True, when the XATMI-SUI grants or
obtains control of the connection.

Usage

An XATMI-DATA request is mapped from tpsend() and is issued by a client or a server to send a
typed buffer over a conversational connection. The issuer must have control of the connection.

An XATMI-DATA indication is mapped to tprecv() and is issued by the XATMI-PM to indicate
that data has been received and is now available.

If the client retains control of the connection, one of the following events may occur:

• At the client side:

— issue an XATMI-DATA request

— issue an XATMI-DISCON request

— issue an XATMI-ROLLBACK request

— receive an XATMI-FAILURE indication

— receive an XATMI-REPLY indication.

• At the server side:

— receive an XATMI-DATA indication

— receive an XATMI-DISCON indication

— receive an XATMI-ROLLBACK indication

— issue an XATMI-REPLY request

— issue an XATMI-FAILURE request.

Part 2: XATMI Application Service Element (ASE) 133

XATMI-ASE Services XATMI-ASE Service Definition

If the server receives control of the connection, one of the following events can occur:

• At the client side:

— issue an XATMI-DISCON request

— issue an XATMI-ROLLBACK request

— receive an XATMI-REPLY indication

— receive an XATMI-FAILURE indication

— receive an XATMI-DATA indication.

• At the server side:

— issue an XATMI-REPLY request

— issue an XATMI-FAILURE request

— issue an XATMI-DATA request

— receive an XATMI-ROLLBACK indication

— receive an XATMI-DISCON indication.

134 X/Open CAE Specification

XATMI-ASE Service Definition XATMI-ASE Services

12.4.8 XATMI-PREPARE request and indication

Parameters

None.

Usage

An XATMI-PREPARE request is issued by the client to the XATMI-PM to start the first phase of
commitment of the current transaction. It is mapped from tx_commit(). An XATMI-PREPARE
request is a global service and it applies to all instances of the XATMI-PM participating in that
transaction.

An XATMI-PREPARE indication is received by the server from the XATMI-PM to indicate that
all local recoverable resources must be placed into the Ready state. An XATMI-PREPARE
indication applies to a particular instance of the server’s XATMI-PM. There is no mapping of
this indication to the XATMI interface.

Once an XATMI-PREPARE indication has been received by the server, one of the following
events can occur for that transaction:

• issue an XATMI-COMMIT request to indicate that all local resources are ready

• issue an XATMI-ROLLBACK request if local resources cannot be placed into the Ready state

• receive an XATMI-ROLLBACK indication.

Once an XATMI-PREPARE request has been issued by the client, one of the following events can
occur for that transaction:

• receive an XATMI-READY indication when all subordinate transaction branches are known
to be in the READY state

• receive an XATMI-ROLLBACK indication.

Part 2: XATMI Application Service Element (ASE) 135

XATMI-ASE Services XATMI-ASE Service Definition

12.4.9 XATMI-READY indication

Parameters

None.

Usage

An XATMI-READY indication is a global transaction service that is received by the client from
the the XATMI-PM to indicate that all participants in the transaction are in the Ready state.

There is no mapping of this indication to the XATMI interface.

Once an XATMI-READY indication has been received by the client, one of the following events
can occur for that transaction:

• issue an XATMI-COMMIT request to start the second phase of the commitment

• issue an XATMI-ROLLBACK request if local resources cannot be placed into the Ready state

• receive an XATMI-ROLLBACK indication.

136 X/Open CAE Specification

XATMI-ASE Service Definition XATMI-ASE Services

12.4.10 XATMI-COMMIT request and indication

Parameters

None.

Usage

An XATMI-COMMIT request is a global transaction service that is issued by a client to the
XATMI-PM when all local resources are in the Ready state and the second phase of commitment
is to be started.

An XATMI-COMMIT request is issued by a server to the XATMI-PM when all local resources
(and all subordinate XATMI-PMs) are in the Ready state and the server is available to start the
second phase of commitment.

An XATMI-COMMIT indication received by the client or the server from the XATMI-PM
indicates that the second phase of commitment has been started and that the client (or the
server) must commit any local resources.

After receiving this event, the client or the server does not receive a XATMI-ROLLBACK
indication. The client or the server are required to issue an XATMI-DONE request to confirm
that all local resources have been placed into the final (Committed) state.

There is no mapping of the XATMI-COMMIT service to the XATMI interface.

Part 2: XATMI Application Service Element (ASE) 137

XATMI-ASE Services XATMI-ASE Service Definition

12.4.11 XATMI-DONE request

Parameters

Parameter Name req
Heuristic-Report U

Heuristic-Report
This parameter is supplied by the server to indicate that a heuristic decision has been made
and is to be reported to the client. This parameter can have one of the following values:

• HEURISTIC-MIX: the data handled by the server are in a state that is inconsistent with
the outcome of the transaction.

• HEURISTIC-HAZARD: a communication failure has occurred that may prevent the
reporting of data inconsistency.

Usage

The XATMI-DONE request is a global transaction service that is issued by a client or a server to
indicate that all local resources associated with the transaction have been placed in either their
initial or final state (rolled-back or committed respectively).

This request may be issued in:

• response to an XATMI-COMMIT indication to indicate the end of the local commitment
procedure

• response to an XATMI-ROLLBACK indication to indicate the end of the local rollback
procedure

• response to an XATMI-CANCEL indication.

There is no mapping of the XATMI-COMMIT service to the XATMI interface.

138 X/Open CAE Specification

XATMI-ASE Service Definition XATMI-ASE Services

12.4.12 XATMI-COMPLETE indication

Parameters

None.

Usage

An XATMI-COMPLETE indication is a global transaction service that is received by a client or a
server from their XATMI-PM to indicate the completion of the transaction commitment or
rollback process and therefore it signals the end of the transaction.

Part 2: XATMI Application Service Element (ASE) 139

XATMI-ASE Services XATMI-ASE Service Definition

12.4.13 XATMI-ROLLBACK request and indication

Parameters

None.

Usage

An XATMI-ROLLBACK request is a global transaction service that is issued by the client to the
XATMI-PM to start the rollback of the transaction. This request is mapped from tx_rollback ()
(see Section 3.7.1 on page 19 and the TX (Transaction Demarcation) specification for the rules
governing the use of this function).

An XATMI-ROLLBACK indication is received from the XATMI-PM to indicate that a transaction
is to be rolled back.

The client or the server is required to issue an XATMI-DONE request to confirm that all local
resources have been placed into the final (Rolled-back) state.

140 X/Open CAE Specification

XATMI-ASE Service Definition XATMI-ASE Services

12.4.14 XATMI-HEURISTIC indication

Parameters

Parameter Name ind
Diagnostic M

Diagnostic
This parameter is supplied by the XATMI-PM to indicate that a heuristic decision has been
made. This parameter can have one one of the following values:

• HEURISTIC-MIX: the data handled by the XATMI-AE user is in a state that is
inconsistent with the outcome of the transaction.

• HEURISTIC-HAZARD: a communication failure has occurred that may prevent the
reporting of data inconsistency.

Usage

An XATMI-HEURISTIC indication is issued by the XATMI-PM to the client to indicate that a
heuristic decision has been made on the transaction.

The client may map this indication to a return code in tx_commit() or tx_rollback ().

An XATMI-HEURISTIC indication relates to a particular branch on the transaction tree and,
usually, the XATMI-PM or the XATMI provider should record this information.

Part 2: XATMI Application Service Element (ASE) 141

Sequencing Rules and State Table XATMI-ASE Service Definition

12.5 Sequencing Rules and State Table
The XATMI-ASE Service State Table is shown in Section 12.5.5 on page 143. It applies to all
XATMI-SUIs.

12.5.1 State Table Conventions

The XATMI-ASE Service State Table describes the allowed sequence of service events between
an XATMI-SUI and an XATMI-PM.

In the state table, each column (except Service and Preconditions) represents a state; each row
represents an XATMI-ASE service primitive; and each cell represents a state transition.

The state table specifies predicates or preconditions that must be satisfied in order for individual
XATMI-ASE service primitives to be valid in a given state. These predicates are based on the
values of variables (see Section 12.5.3). If a variable is listed in the state table prefixed by ¬
(logical NOT), then the value of that variable must be False for the predicated transition to occur.

The state table also specifies actions to be performed. These actions involve setting variables to
the specified value (see Section 12.5.4 on page 143).

12.5.2 States

The valid states are as follows:

S
0

Idle (IDLE): No pending events. If the the XATMI-SUI is within a transaction, then
transaction completion events may be pending.

S
1

Reply expected (RPLY): A reply is expected from the application service.

S
2

Has Control (CTRL): The XATMI-SUI has control of the conversation with a
conversational service.

S
3

Has No Control (¬CTRL): The XATMI-SUI does not have control of the conversation
with a conversational service.

S
4

Start Commit Phase 1 (SPC): The Precommit phase has been started.

S
5

End Commit Phase 1 (EPC): The Precommit phase has ended.

S
6

Start Commit Phase 2 (SC): The Commit phase has been started.

S
7

End Commit Phase 2 (EC): Commitment has successfully completed.

S
8

Rollback in Progress (RBP): The transaction is being rolled back.

S
9

Rollback Completed (ERB): The transaction has been successfully rolled back.

12.5.3 Variables

The following variables are used for preconditions and state transitions:

Clnt: When this variable is True, the XATMI-SUI is a client or a superior node in the
transaction tree (or both).

Svr: When this variable is True, the XATMI-SUI is a server or a subordinate node in the
transaction tree (or both).

Reply: When this variable is True, the XATMI-SUI should expect a reply from the application
service.

142 X/Open CAE Specification

XATMI-ASE Service Definition Sequencing Rules and State Table

Conv: When this variable is True, the XATMI-SUI has a connection with a conversational
service.

Ctrl: When this variable is True, the XATMI-SUI has control of the conversation with a
conversational service.

Tran: When this variable is True, the XATMI-SUI should be participating in a global
transaction.

12.5.4 Actions

[A1] Set Conv to True.

[A2] If Grant-Control is True, set Ctrl to False.

[A3] If Grant-Control is True, set Ctrl to True.

12.5.5 State Table

The XATMI-ASE Service State Table is as follows:

Service Preconditions IDLE RPLY CTRL ¬CTRL SPC EPC SC EC RBP ERB
S

0
S

1
S

2
S

3
S

4
S

5
S

6
S

7
S

8
S

9
XATMI-CALL req Clnt, Reply, ¬Tran S

1
Clnt, Reply, Tran S

1
Clnt, ¬Reply, ¬Tran S

0
XATMI-CALL ind Svr, Reply S

1
Svr, ¬Reply, ¬Tran S

0
XATMI-REPLY req Svr, Reply S

0
Svr, Conv S

0
S

0
XATMI-REPLY ind Clnt, Reply S

0
Clnt, Conv S

0
S

0
XATMI-FAILURE req Svr, Reply, ¬Tran S

0
Svr, Conv, ¬Tran S

0
S

0
Svr, Reply, Tran S

8
Svr, Conv, Tran S

8
S

8
XATMI-FAILURE ind Clnt, Reply, ¬Tran S

0
Clnt, Conv, ¬Tran S

0
S

0
Clnt, Reply, Tran S

8
Clnt, Conv, Tran S

8
S

8
XATMI-CANCEL req Clnt, Reply, ¬Tran S

0
XATMI-CANCEL ind Svr, Reply, ¬Tran S

0
XATMI-CONNECT req Clnt, Ctrl [A1]

S
2

Clnt, ¬Ctrl [A1]
S

3

Part 2: XATMI Application Service Element (ASE) 143

Sequencing Rules and State Table XATMI-ASE Service Definition

Service Preconditions IDLE RPLY CTRL ¬CTRL SPC EPC SC EC RBP ERB
S

0
S

1
S

2
S

3
S

4
S

5
S

6
S

7
S

8
S

9
XATMI-CONNECT ind Svr, Ctrl [A1]

S
2

Svr, ¬Ctrl [A1]
S

3
XATMI-DISCON req Clnt, Conv, ¬Tran S

0
S

0
Clnt, Conv, Tran S

8
S

8
XATMI-DISCON ind Svr, Conv, ¬Tran S

0
S

0
Svr, Conv, Tran S

8
S

8
XATMI-DATA req Conv, Ctrl [A2]

S
3

Conv, Ctrl S
2

XATMI-DATA ind Conv, ¬Ctrl [A3]
S

2
Conv, ¬Ctrl S

3
XATMI-PREPARE req Clnt, Tran S

4
XATMI-PREPARE ind Svr, Tran S

4
XATMI-READY ind Clnt, Tran S

5
XATMI-COMMIT req Svr, Tran S

5
Clnt, Tran S

5
XATMI-COMMIT ind Tran S

6
XATMI-DONE req Tran S

7
S

9
XATMI-COMPLETE ind Tran S

0
S

0
XATMI-ROLLBACK req Clnt, Tran S

8
S

8
S

8
S

8
S

8
S

8
Svr, Tran S

8
XATMI-ROLLBACK ind Clnt, Tran S

8
S

8
S

8
Svr, Tran S

8
S

8
S

8
S

8
S

8
S

8
XATMI-HEURISTIC ind Clnt, Tran S

6
S

7
S

8

Table 12-4 XATMI-ASE Service State Table

Note: Transaction services apply to all XATMI-SUIs within a transaction. Also, notice that the
root of the transaction tree (from the OSI TP point of view) is an XATMI-SUI that
behaves as a client.

144 X/Open CAE Specification

Chapter 13

XATMI-ASE Protocol Specification

This chapter outlines the relationship between XATMI services and other ASEs, and summarises
the relevant mappings. It also provides mapping details for each XATMI-ASE, from the XATMI
interface and to the OSI TP services.

13.1 Relationship with Other ASEs
The XATMI services provided by the XATMI Protocol Machine (XATMI-PM) are mapped onto
services provided by the OSI TPPM (see the OSI TP Protocol standard). OSI TP concatenation
rules apply and are assumed to be enforced by the TPPM.

The following conventions are used to describe the corresponding service mappings:

• An XATMI-PM may take a client role or a server role . The XATMI-PM role corresponds to the
XATMI-SUIs described in Chapter 12.

• The abstract service TP-DATA is used to represent the mapping of XATMI APDUs to OSI TP
according to OSI TP concatenation rules.

• The abstract service TP-PREPARE-ALL request is used as defined in the XAP-TP
specification. The TP-PREPARE-ALL request service performs the first phase of commitment
for a transaction (that is, this service represents the combination of the TP-PREPARE requests
issued on every dialogue associated with the transaction).

• The abstract service TP-READY-ALL indication is used as defined in the XAP-TP
specification. The TP-READY-ALL indication informs the completion of the first phase of
commitment (that is, this service represents the combination of all TP-READY indications
received from the subordinate dialogues and the TPPM changing the transaction state to
Ready).

• The abstract service TP-COMMIT-ALL request is not the service TP-COMMIT request
defined in the OSI TP Protocol standard, but it is an instruction to the OSI TP MACF to start
the second phase of commitment. The combination of the TP-PREPARE-ALL request and
TP-COMMIT-ALL request used throughout this document, is the equivalent of the OSI TP
abstract service TP-COMMIT as defined in the OSI TP Service standard. The abstract service
TP-COMMIT-ALL request is used as defined by the TP-COMMIT request in the referenced
XAP-TP specification. The term TP-COMMIT-ALL is used in place of the term TP-COMMIT
to avoid confusion for readers familiar with the OSI TP standards.

• The service TP-DEFERRED-END-DIALOGUE request is used when a dialogue has been
started within a transaction to limit the lifetime of the dialogue to the duration of the
transaction. For clarity, the mapping to this service is shown after a TP-BEGIN-DIALOGUE
request but this service could also be issued from other mappings, for example from an
XATMI-PREPARE request. The main requirement for an XATMI-PM taking a server role is
that a TP-DEFERRED-END-DIALOGUE indication must have been received before a TP-
PREPARE indication.

• Some of the mappings (for example MAP 10) assume that the TPPM provider offers a service
to end a concatenation and to force the delivery of the corresponding APDUs to the remote
TPSUI.

Part 2: XATMI Application Service Element (ASE) 145

Client Role Mappings XATMI-ASE Protocol Specification

13.2 Client Role Mappings
The following table summarises the client role mappings.

Each mapping is identified with a number provided in the Map No. column. These numbers are
used in later sections that describe these mappings in more detail.

Mappings enclosed in brackets ([]) are conditional, that is they are generated dependent on the
variables used with the corresponding XATMI-ASE service.

Table 13-1 Client Role Mappings

XATMI Services (Client) Map No. See: TP/Presentation Services
Section 13.6.2 on
page 155.

XATMI-CALL req 1 TP-BEGIN-DIALOGUE req

[TP-DEFER-END-DIALOGUE req]
TP-DATA req
TP-GRANT-CONTROL req

Section 13.6.2 on
page 155.

2 TP-BEGIN-DIALOGUE req

TP-DATA req
TP-END-DIALOGUE req

Section 13.15.2 on
page 169.

XATMI-REPLY ind 3 TP-DATA ind

TP-GRANT-CONTROL ind
Section 13.15.2 on
page 169.

4 TP-DATA ind

TP-END-DIALOGUE ind
Section 13.16.2 on
page 171.

XATMI-FAILURE ind 5 TP-U-ABORT ind

Section 13.16.2 on
page 171.

6 TP-P-ABORT ind

Section 13.16.2 on
page 171.

7 TP-BEGIN-DIALOGUE(Reject) cnf

Section 13.10.2 on
page 161.

XATMI-CANCEL req 8 TP-U-ABORT req

Section 13.7.2 on
page 158.

XATMI-CONNECT req 9 TP-BEGIN-DIALOGUE req

[TP-DEFER-END-DIALOGUE req]
TP-DATA req
TP-GRANT-CONTROL req

Section 13.7.2 on
page 158.

10 TP-BEGIN-DIALOGUE req

[TP-DEFER-END-DIALOGUE req]
TP-DATA req
TP-BEGIN-DIALOGUE cnf

Section 13.12.2 on
page 163.

XATMI-DISCON req 11 TP-U-ABORT req

146 X/Open CAE Specification

XATMI-ASE Protocol Specification Client Role Mappings

XATMI Services (Client) Map No. See: TP/Presentation Services
Section 13.11.2 on
page 162.

XATMI-DATA req 12 TP-DATA req

[TP-GRANT-CONTROL req]
Section 13.19.2 on
page 177.

XATMI-DATA ind 13 TP-DATA ind

[TP-GRANT-CONTROL ind]
Mapping to OSI TP
on page 178.

XATMI-PREPARE req 14 TP-PREPARE-ALL req

Mapping from OSI
TP on page 181.

XATMI-READY ind 15 TP-READY-ALL ind

Mapping to OSI TP
on page 178.

XATMI-COMMIT req 16 TP-COMMIT-ALL req

Mapping from OSI
TP on page 181.

XATMI-COMMIT ind 17 TP-COMMIT ind

Section 13.20.3 on
page 179.

XATMI-DONE req 18 TP-DONE req

Section 13.20.3 on
page 179.

19 TP-U-ABORT req

TP-DONE req
Mapping to OSI TP
on page 180.

XATMI-ROLLBACK req 20 TP-ROLLBACK req

Mapping from OSI
TP on page 181.

XATMI-ROLLBACK ind 21 TP-P-ABORT ind

Mapping from OSI
TP on page 181.

22 TP-U-ABORT ind

Mapping from OSI
TP on page 182.

XATMI-COMPLETE ind 23 TP-COMMIT-COMPLETE ind

Mapping from OSI
TP on page 182.

24 TP-ROLLBACK-COMPLETE ind

Mapping from OSI
TP on page 182.

XATMI-HEURISTIC ind 25 TP-HEURISTIC-REPORT ind

Part 2: XATMI Application Service Element (ASE) 147

Server Role Mappings XATMI-ASE Protocol Specification

13.3 Server Role Mappings
The following table summarises the server role mappings.

The client and server mappings are numbered consecutively to allow unique references
throughout the document.

Table 13-2 Server Role Mappings

XATMI Services (Server) Map No. See: TP/Presentation Services
Section 13.13.2 on
page 164.

XATMI-CALL ind 26 TP-BEGIN-DIALOGUE ind

[TP-DEFER-END-DIALOGUE ind]
TP-DATA ind
TP-GRANT-CONTROL ind

Section 13.13.2 on
page 164.

27 TP-BEGIN-DIALOGUE ind

TP-DATA ind
TP-END-DIALOGUE ind

Section 13.13.2 on
page 164.

28 TP-BEGIN-DIALOGUE ind

TP-BEGIN-DIALOGUE rsp
Section 13.14.2 on
page 167.

XATMI-CONNECT ind 29 TP-BEGIN-DIALOGUE ind

[TP-DEFER-END-DIALOGUE ind]
TP-DATA ind
TP-GRANT-CONTROL ind

Section 13.14.2 on
page 167.

30 TP-BEGIN-DIALOGUE ind

[TP-DEFER-END-DIALOGUE ind]
TP-DATA ind
TP-BEGIN-DIALOGUE rsp

Section 13.14.2 on
page 167.

31 TP-BEGIN-DIALOGUE ind

TP-BEGIN-DIALOGUE rsp
Section 13.8.2 on
page 159.

XATMI-REPLY req 32 TP-DATA req

TP-GRANT-CONTROL req
Section 13.8.2 on
page 159.

33 TP-DATA req

TP-END-DIALOGUE req
Section 13.9.2 on
page 160.

XATMI-FAILURE req 34 TP-U-ABORT req

Section 13.17.2 on
page 175.

XATMI-CANCEL ind 35 TP-U-ABORT ind

Section 13.17.2 on
page 175.

36 TP-P-ABORT ind

148 X/Open CAE Specification

XATMI-ASE Protocol Specification Server Role Mappings

XATMI Services (Server) Map No. See: TP/Presentation Services
Section 13.18.2 on
page 176.

XATMI-DISCON ind 37 TP-U-ABORT ind

Section 13.18.2 on
page 176.

38 TP-P-ABORT ind

Section 13.19.2 on
page 177.

XATMI-DATA ind 39 TP-DATA ind

[TP-GRANT-CONTROL ind]
Section 13.11.2 on
page 162.

XATMI-DATA req 40 TP-DATA req

[TP-GRANT-CONTROL req]
Mapping from OSI
TP on page 180.

XATMI-PREPARE ind 41 TP-PREPARE-ALL ind

Mapping to OSI TP
on page 178.

XATMI-COMMIT req 42 TP-COMMIT-ALL req

Mapping from OSI
TP on page 181.

XATMI-COMMIT ind 43 TP-COMMIT ind

Section 13.20.3 on
page 179.

XATMI-DONE req 44 TP-DONE req

Section 13.20.3 on
page 179.

45 [TP-U-ABORT req]

TP-DONE req
Mapping to OSI TP
on page 180.

XATMI-ROLLBACK req 46 TP-U-ABORT req

Mapping from OSI
TP on page 181.

XATMI-ROLLBACK ind 47 TP-ROLLBACK ind

Mapping from OSI
TP on page 181.

48 TP-P-ABORT ind

Mapping from OSI
TP on page 182.

XATMI-COMPLETE ind 49 TP-COMMIT-COMPLETE ind

Mapping from OSI
TP on page 182.

50 TP-ROLLBACK-COMPLETE ind

Part 2: XATMI Application Service Element (ASE) 149

OSI TP Services Used by the XATMI-ASE XATMI-ASE Protocol Specification

13.4 OSI TP Services Used by the XATMI-ASE
The following table presents the OSI TP services used by the XATMI-ASE:

Services req ind rsp cnf
TP-BEGIN-DIALOGUE • • • •
TP-END-DIALOGUE • • × ×
TP-U-ABORT • •
TP-P-ABORT •
TP-U-ERROR × ×
TP-GRANT-CONTROL • •
TP-REQUEST-CONTROL × ×
TP-HANDSHAKE × × × ×
TP-HANDSHAKE-AND-GRANT-CONTROL × × × ×
TP-BEGIN-TRANSACTION × ×
TP-DEFERRED-END-DIALOGUE • •
TP-DEFERRED-GRANT-CONTROL × ×
TP-PREPARE _• •
TP-READY _•
TP-COMMIT _• •
TP-DONE •
TP-COMMIT-COMPLETE •
TP-ROLLBACK • •
TP-ROLLBACK-COMPLETE •
TP-HEURISTIC-REPORT •

Table 13-3 OSI TP Services Used by the XATMI-ASE

Key:

• Used directly by the XATMI-ASE.

_• Used indirectly by the XATMI-ASE. These services are generated by the
implementation of the abstract service TP-PREPARE-ALL request, TP-READY-ALL
indication, and TP-COMMIT-ALL request.

× Not used by the XATMI-ASE.

150 X/Open CAE Specification

XATMI-ASE Protocol Specification Summary of Mappings between OSI TP and XATMI-ASE

13.5 Summary of Mappings between OSI TP and XATMI-ASE

OSI TP Service/Service Abstraction req ind
TP-BEGIN-DIALOGUE XATMI-CALL req XATMI-CALL ind

XATMI-CONNECT req XATMI-CONNECT ind
TP-END-DIALOGUE XATMI-CALL req XATMI-CALL ind

XATMI-REPLY req XATMI-REPLY ind
TP-U-ABORT XATMI-FAILURE req XATMI-FAILURE ind

XATMI-CANCEL req XATMI-CANCEL ind
XATMI-DISCON req XATMI-DISCON ind
XATMI-ROLLBACK req XATMI-ROLLBACK ind
XATMI-DONE req

TP-P-ABORT XATMI-FAILURE ind
XATMI-DISCON ind
XATMI-CANCEL ind
XATMI-ROLLBACK ind

TP-GRANT-CONTROL XATMI-CALL req XATMI-CALL ind
XATMI-CONNECT req XATMI-CONNECT ind
XATMI-DATA req XATMI-DATA ind

TP-DEFERRED-END-DIALOGUE XATMI-CALL req XATMI-CALL ind
XATMI-CONNECT req XATMI-CONNECT ind

TP-PREPARE-ALL XATMI-PREPARE req
TP-PREPARE XATMI-PREPARE ind
TP-READY-ALL XATMI-READY ind
TP-COMMIT-ALL XATMI-COMMIT req
TP-COMMIT XATMI-COMMIT ind
TP-DONE XATMI-DONE req
TP-COMMIT-COMPLETE XATMI-COMPLETE ind
TP-ROLLBACK XATMI-ROLLBACK req XATMI-ROLLBACK ind
TP-ROLLBACK-COMPLETE XATMI-COMPLETE ind
TP-HEURISTIC-REPORT XATMI-HEURISTIC ind
TP-DATA XATMI-CALL req XATMI-CALL ind

XATMI-REPLY req XATMI-REPLY ind
XATMI-DATA req XATMI-DATA ind
XATMI-CONNECT req XATMI-CONNECT ind

OSI TP Service/Service abstraction rsp cnf
TP-BEGIN-DIALOGUE XATMI-CALL ind* XATMI-FAILURE ind

XATMI-CONNECT ind* XATMI-CONNECT req*
TP-END-DIALOGUE Not used Not used

Table 13-4 Mappings Between OSI TP and XATMI-ASE

* the implementation of the XATMI-CALL and XATMI-CONNECT indications may reject a
service request with a TP-BEGIN-DIALOGUE response (see Section 13.13.2 on page 164). In
this case the corresponding indication is not issued to the server. An XATMI-CONNECT
request may fail if a TP-BEGIN-DIALOGUE(Reject) confirmation is received (see Section
13.7.2 on page 158).

Part 2: XATMI Application Service Element (ASE) 151

Summary of Mappings between OSI TP and XATMI-ASE XATMI-ASE Protocol Specification

The following sections define the mapping of the XATMI-ASE:

• from the XATMI interface

• to the OSI TP services.

152 X/Open CAE Specification

XATMI-ASE Protocol Specification XATMI-CALL request

13.6 XATMI-CALL request

13.6.1 Mapping from tpacall()/tpcall()

An XATMI-CALL request is mapped from tpacall () or tpcall (). The following tables summarise
the corresponding parameter mappings:

tpacall () XATMI-CALL req Notes
The XATMI-PM uses this
name to retrieve the
parameters for TP-BEGIN-
DIALOGUE req from the
local configuration
information, and to set the
value of the service field of
the XATMI-CALL-RI APDU
(see Chapter 14).

svc Service-Name

The XATMI-PM uses the
abstract syntax defined in
Chapter 14 to encode the
typed buffer and to set the
value of the data field of the
XATMI-CALL-RI APDU.

data, len User-Data

The XATMI-PM uses this
value to determine the
sequencing of the TP services
generated by this service, and
to select the ATP-11 profile.

TPNOREPLY No-Reply-Option = True

flags
The XATMI-PM uses this
value to determine if the TP
dialogue must be included
within the current global
transaction.

TPNOTRAN Begin-Transaction = False

TPNOBLOCK No direct mapping Local to each implementation.
TPNOTIME No direct mapping Local to each implementation.
TPSIGRSTRT No direct mapping Local to each implementation.

Part 2: XATMI Application Service Element (ASE) 153

XATMI-CALL request XATMI-ASE Protocol Specification

tpcall () XATMI-CALL req Notes
The XATMI-PM uses this
name to retrieve the
parameters for TP-BEGIN-
DIALOGUE from the local
configuration information,
and to set the value of the
service field of the XATMI-
CALL-RI APDU.

svc Service-Name

The XATMI-PM uses the
abstract syntax defined in
Chapter 14 to encode the
typed buffer and to set the
value of the data field of the
XATMI-CALL-RI APDU.

idata, ilen User-Data

Mapped from XATMI-REPLY
indication (Section 13.15 on
page 169). or XATMI-
FAILURE indication (Section
13.16 on page 170).

odata, olen

tpcall () always expects a
reply. This reply comes with
an XATMI-REPLY indication
or an XATMI-FAILURE
indication.

No-Reply-Option = False

The XATMI-PM uses this
value to determine if the TP
dialogue must be included
within the current global
transaction, and to select the
TP functional units.

TPNOTRAN Begin-Transaction = False

flags
TPNOCHANGE No direct mapping Local to each implementation.
TPNOBLOCK No direct mapping Local to each implementation.
TPNOTIME No direct mapping Local to each implementation.
TPSIGRSTRT No direct mapping Local to each implementation.

154 X/Open CAE Specification

XATMI-ASE Protocol Specification XATMI-CALL request

13.6.2 Mapping to OSI TP

The XATMI-CALL request parameters are used by the XATMI-PM to extract the necessary
information from the local configuration information for mapping to the TP-BEGIN-DIALOGUE
request, and to construct an XATMI-CALL-RI APDU.

The following table summarises this mapping:

TP-BEGIN-DIALOGUE req XATMI-CALL req
Initiating-AP-Title M From local configuration information
Initiating-API Identifier O From local configuration information
Initiating-AE-Qualifier M From local configuration information
Initiating-AEI-Identifier O From local configuration information
Initiating-TPSU-title U From local configuration information
Recipient-AP-Title M From local configuration information

From local configuration information and is
mandatory in a provider-supported
transaction

Recipient-AE-Qualifier C

Recipient-API-Identifier U From local configuration information
Recipient-AEI-Identifier U From local configuration information

From local configuration information (or
value of Service-Name)

Recipient-TPSU-Title U

Quality-of-Service U From local configuration information
Set to XATMI Application Context identifier
(see Chapter 11)

Application-Context-Name M

From Begin-Transaction if ATP21; otherwise,
not present

Begin-Transaction ={ C

True True
False} False}

Confirmation = { M Always set to Negative
Always
Negative}

From Begin-Transaction and the local
configuration information

Functional Units = { M

Dialogue Always used (ATP11, ATP21, ATP31)
Polarized Control Always used (ATP11, ATP21, ATP31)
Shared Control Not used
Commit Used if Begin-Transaction = True

(ATP21 or ATP31)
Unchained Transactions Used if Begin-Transaction = True and ATP21
Chained Transactions Used if Begin-Transaction = True and ATP31
Handshake} Not Used

User-Data U Not used

Part 2: XATMI Application Service Element (ASE) 155

XATMI-CALL request XATMI-ASE Protocol Specification

There are two basic mappings of the XATMI-CALL request onto OSI TP services:

MAP 1: This mapping is generated when the No-Reply-Option parameter is set to False:

1. A TP-BEGIN-DIALOGUE request is issued as specified above, followed by a TP-
DEFERRED-END-DIALOGUE request if the Begin-Transaction parameter is set to
True. Note that an implementation may delay sending the TP-DEFERRED-END-
DIALOGUE request until just before an XATMI-PREPARE request is issued.

2. The Service-Name parameter is encoded into the service field of the XATMI-
CALL-RI APDU as specified in Chapter 14. If the User-Data parameter is
specified, the corresponding typed buffer is encoded into the data field of the
same APDU. The APDU is mapped to the abstract service TP-DATA request.

3. A TP-GRANT-CONTROL request is then issued.

MAP 2: This mapping is generated when the No-Reply-Option parameter is set to True. In this
case the Begin-Transaction parameter must be set to False:

1. A TP-BEGIN-DIALOGUE request is issued as specified above.

2. The Service-Name parameter is encoded into the service field of the XATMI-
CALL-RI APDU as specified in Chapter 14. If the User-Data parameter is
specified, the corresponding typed buffer is encoded into the data field of the
same APDU. The APDU is mapped to the abstract service TP-DATA request.

3. A TP-END-DIALOGUE request is then issued.

156 X/Open CAE Specification

XATMI-ASE Protocol Specification XATMI-CONNECT request

13.7 XATMI-CONNECT request

13.7.1 Mapping from tpconnect()

An XATMI-CONNECT request is mapped from tpconnect(). The following table summarises the
corresponding parameter mapping:

tpconnect() XATMI-CONNECT req Notes
The XATMI-PM uses this
name to retrieve the
parameters for TP-BEGIN-
DIALOGUE from the local
configuration information
and to set the value of the
service field of the XATMI-
CONNECT-RI APDU.

svc Service-Name

The XATMI-PM uses the
abstract syntax defined in
Chapter 14 to encode the
typed buffer and to set the
value of the data field of the
XATMI-CONNECT-RI
APDU.

data, len User-Data

The XATMI-PM uses this
value to determine if the TP
dialogue must be included
within the current global
transaction, and to select the
TP functional units.

TPNOTRAN Begin-Transaction = False

The XATMI-PM uses this
value to generate the TP
protocol necessary for the
confirmation of the dialogue

flags TPSENDONLY Grant-Control = False

The XATMI-PM uses this
value to grant control of the
dialogue to remote service.

TPRECVONLY Grant-Control = True

TPNOBLOCK No direct mapping Local to each implementation.
TPNOTIME No direct mapping Local to each implementation.
TPSIGRSTRT No direct mapping Local to each implementation.

Part 2: XATMI Application Service Element (ASE) 157

XATMI-CONNECT request XATMI-ASE Protocol Specification

13.7.2 Mapping to OSI TP

The XATMI-CONNECT request parameters are used by the XATMI-PM to extract the necessary
information from the local configuration information for the mapping to the TP-BEGIN-
DIALOGUE request, and to construct an XATMI-CONNECT-RI APDU.

The table defined in Section 13.6.2 on page 155 for the mapping of an XATMI-CALL request to a
TP-BEGIN-DIALOGUE request also applies to the XATMI-CONNECT request mapping. The
only difference is that the Confirmation parameter of the TP-BEGIN-DIALOGUE request may in
some cases be set to Always.

The following mappings to OSI TP are defined:

MAP 9: This mapping is used when the Grant-Control parameter is set to True.

1. A TP-BEGIN-DIALOGUE request is issued as specified above (see MAP 1:1,
Section 13.6.2 on page 155), followed by a TP-DEFERRED-END-DIALOGUE
request if the Begin-Transaction parameter is set to True. Note that an
implementation may delay sending the TP-DEFERRED-END-DIALOGUE request
until just before an XATMI-PREPARE request is issued.

2. The Service-Name parameter is encoded into the service field of the XATMI-
CONNECT-RI APDU as specified in Chapter 14. If the User-Data parameter has
been specified, then the corresponding typed buffer is encoded into the data field
of the same APDU. Then the APDU is mapped to a TP-DATA request.

3. A TP-GRANT-CONTROL request is then issued.

MAP 10: This mapping is used when the Grant-Control parameter is set to False.

1. A TP-BEGIN-DIALOGUE request is issued as specified above (see MAP 1:1
Section 13.6.2 on page 155), but with the Confirmation parameter set to Always,
followed by a TP-DEFERRED-END-DIALOGUE request if the Begin-Transaction
parameter is set to True. Note that an implementation may delay sending the TP-
DEFERRED-END-DIALOGUE request until just before an XATMI-PREPARE
request is issued.

2. The Service-Name parameter is encoded into the service field of the XATMI-
CONNECT-RI APDU as specified in Chapter 14. If the User-Data parameter has
been specified, the corresponding typed buffer is encoded into the data field of
the same APDU. Then the APDU is mapped to a TP-DATA request and the
XATMI-PM issues the TPPM flush instruction to ensure that the buffered APDUs
are sent to their remote destinations.

3. The XATMI-CONNECT request implementation should wait for a TP-BEGIN-
DIALOGUE confirm indicating the success of the conversation establishment
with the application service. If a TP-BEGIN-DIALOGUE confirmation with Result
set to Rejected is received, the XATMI-CONNECT request fails. It also fails if a
TP-P-ABORT indication is received.

158 X/Open CAE Specification

XATMI-ASE Protocol Specification XATMI-REPLY request

13.8 XATMI-REPLY request

13.8.1 Mapping from tpreturn()

An XATMI-REPLY request is mapped from tpreturn() with the rval parameter set to
TPSUCCESS. The following table defines the parameter mapping:

tpreturn() XATMI-REPLY req Notes
The XATMI-PM uses this
value to map the application
service reply to this service.

rval = TPSUCCESS

The XATMI-PM includes this
value in the XATMI-REPLY-RI
APDU that is generated
according to the rules defined
in Chapter 14.

rcode User-Code

The XATMI-PM uses the
abstract syntax defined in
Chapter 14 to encode the
typed buffer and to set the
value of the data field of the
XATMI-REPLY-RI APDU.

data, len User-Data

flags tpreturn() has no flags defined.

13.8.2 Mapping to OSI TP

An XATMI-REPLY request is mapped as follows:

MAP 32: This mapping is used when a service request is invoked within a global transaction.

1. An XATMI-REPLY-RI APDU as defined in Chapter 14, is generated by the
XATMI-PM. This APDU, which contains the User-Code and the User-Data
parameters, is mapped to a TP-DATA request.

2. A TP-GRANT-CONTROL request is then issued.

MAP 33: This mapping is used when a service request is not invoked within a global transaction.

1. An XATMI-REPLY-RI APDU (as defined in Chapter 14) is generated by the
XATMI-PM. This APDU, which contains the User-Code and the User-Data
parameters, is mapped to a TP-DATA request.

2. A TP-END-DIALOGUE request is then issued.

Part 2: XATMI Application Service Element (ASE) 159

XATMI-FAILURE request XATMI-ASE Protocol Specification

13.9 XATMI-FAILURE request

13.9.1 Mapping from tpreturn()

An XATMI-FAILURE request is mapped from tpreturn() with the rval parameter set to TPFAIL.
The following table defines the parameter mapping:

tpreturn() XATMI-FAILURE req Notes
The XATMI Provider uses this
rval value to map the service
reply to this XATMI-ASE
service. The XATMI-PM uses
the Diagnostic value to set the
value of the diagnostic field of
the XATMI-FAILURE-RI
APDU according to the rules
defined in Chapter 14. Note
that Diagnostic may be
changed to Recipient-
XATMI-SU-Failure if the
XATMI Provider finds an error
during the processing of
tpreturn().

rval = TPFAIL Diagnostic = Application-Service-Failure

The XATMI-PM uses this
value to set the user-code field
of the XATMI-FAILURE-RI
APDU according to the rules
defined in Chapter 14.

rcode User-Code

The XATMI-PM uses the
abstract syntax defined in
Chapter 14 to encode the
typed buffer and to set the
value of the data field of the
XATMI-FAILURE-RI APDU.
This APDU is sent with a TP-
U-ABORT request as defined
below.

data, len User-Data

flags tpreturn() has no flags defined.

13.9.2 Mapping to OSI TP

An XATMI-FAILURE request is mapped as follows:

MAP 34: This mapping is generated from tpreturn(). The XATMI-PM generates an XATMI-
FAILURE-RI APDU and maps it to the User-Data parameter of the TP-U-ABORT
request. The XATMI-PM sets the diagnostic, user-code and data fields of the XATMI-
FAILURE-RI APDU as defined in Section 13.9.1.

Note: If the XATMI-FAILURE request initiates rollback of the current transaction, any TP-P-
ABORT indication or TP-U-ABORT indication primitives received by the XATMI-PM
between the XATMI-FAILURE request and the subsequent XATMI-DONE request are
silently discarded by the XATMI-PM. TP-U-ABORT requests for any remaining
dialogues take place when the XATMI-DONE request is issued.

160 X/Open CAE Specification

XATMI-ASE Protocol Specification XATMI-FAILURE request

13.10 XATMI-CANCEL request

13.10.1 Mapping from tpcancel()

An XATMI-CANCEL request is mapped from tpcancel(). There are no parameters to be mapped.

13.10.2 Mapping to OSI TP

An XATMI-CANCEL request is mapped as follows:

MAP 8: The client XATMI-PM maps the XATMI-CANCEL request to a TP-U-ABORT request.
The User-Data parameter of the TP-U-ABORT service is not used.

Part 2: XATMI Application Service Element (ASE) 161

XATMI-DATA request XATMI-ASE Protocol Specification

13.11 XATMI-DATA request

13.11.1 Mapping from tpsend()

An XATMI-DATA request is mapped from tpsend(). The following table summarises the
corresponding parameter mapping:

tpsend() XATMI-DATA req Notes
cd Local processing.

The XATMI-PM uses the
abstract syntax defined in
Chapter 14 to encode the
typed buffer and to set the
value of the data field of
either an XATMI-DATA-RI or
XATMI-DATA-GRANT-
CONTROL-RI APDU.
XATMI-DATA-GRANT-
CONTROL-RI is used if the
TPRECVONLY flag is set, and
XATMI-DATA-RI otherwise.

data, len User-Data

The XATMI-PM uses this
value to grant control of the
dialogue to the remote
service.

flags TPRECVONLY Grant-Control = True

TPNOBLOCK No direct mapping Local to each implementation.
TPNOTIME No direct mapping Local to each implementation.
TPSIGRSTRT No direct mapping Local to each implementation.

Mapped from an XATMI-
DISCON indication or an
XATMI-FAILURE indication.

rvent TPEV_DISCONIMM

Mapped from an XATMI-
FAILURE indication.

TPEV_SVCFAIL

Mapped from an XATMI-
FAILURE indication.

TPEV_SCVERR

13.11.2 Mapping to OSI TP

An XATMI-DATA request is mapped as follows:

MAP 12: The client XATMI-PM maps an XATMI-DATA request as follows:

1. If the User-Data parameter contains a typed buffer, it is encoded as described in
Chapter 14 and mapped to the data field of an XATMI-DATA-GRANT-
CONTROL-RI APDU if the TPRECVONLY flag is set, and to XATMI-DATA-RI
APDU otherwise. The APDU is then mapped to a TP-DATA request.

2. A TP-GRANT-CONTROL request is issued if the Grant-Control parameter is set
to True.

MAP 40: This mapping is the same as Map 12. However, it is generated from the server
XATMI-PM.

162 X/Open CAE Specification

XATMI-ASE Protocol Specification XATMI-DISCON request

13.12 XATMI-DISCON request

13.12.1 Mapping from tpdiscon()

An XATMI-DISCON request is mapped from tpdiscon(). There are no parameters to be mapped.

13.12.2 Mapping to OSI TP

An XATMI-DISCON request is mapped as follows:

MAP 11: The XATMI-PM maps the XATMI-DISCON request to a TP-U-ABORT request. The
User-Data parameter of the TP-U-ABORT service is not used.

Note: If the XATMI-DISCON request initiates rollback of the current transaction, any TP-P-
ABORT indication or TP-U-ABORT indication primitives received by the XATMI-PM
between the XATMI-DISCON request and the subsequent XATMI-DONE request are
silently discarded by the XATMI-PM. TP-U-ABORT requests for any remaining
dialogues take place when the XATMI-DONE request is issued.

Part 2: XATMI Application Service Element (ASE) 163

XATMI-CALL indication XATMI-ASE Protocol Specification

13.13 XATMI-CALL indication

13.13.1 Mapping to tpservice()

An XATMI-CALL indication is issued to the server by the XATMI-PM on receipt of a request to a
request/response service. The server uses the tpservice() template to map the parameters and
then dispatches the corresponding application routine.

The tpservice() template is mapped from the XATMI-CALL parameters as follows:

tpservice() XATMI-CALL ind Notes
Local processing — not used in
request/response services.

cd

The Service-Name is mapped from the
service field of the XATMI-CALL-RI APDU.

name Service-Name

The XATMI-PM uses the abstract syntax
defined in Chapter 14 to decode the typed
buffer from the data field of the XATMI-
CALL-RI APDU.

data, len User-Data

The service must be invoked as part of the
client’s transaction.

TPTRAN Begin-Transaction = True

The caller is not expecting a reply from the
application service.

flags TPNOREPLY No-Reply-Option = True

TPCONV Not permitted for request/response services.
TPSENDONLY Not permitted for request/response services.
TPRECVONLY Not permitted for request/response services.

13.13.2 Mapping from OSI TP

The XATMI-CALL indication parameters are generated according to the particular TP-ASE
mapping used by the client XATMI-PM.

The XATMI-CALL indication parameters are generated as follows:

• The Service-Name parameter is mapped from the service field of the XATMI-CALL-RI
APDU received with the TP-DATA indication (see below).

• The No-Reply-Option parameter is set to True if MAP 2 is used by the client XATMI-PM (that
is, a TP-END-DIALOGUE indication is received).

• The Begin-Transaction parameter is set to True if the Chained Transaction functional unit is
selected or if the Unchained Transaction functional unit is selected and the Begin-Transaction
parameter in the TP-BEGIN-DIALOGUE indication is set to True.

• The User-Data parameter is set if the data field of the XATMI-CALL-RI APDU is present.
This field is decoded into a local typed buffer structure following the rules described in
Chapter 14.

164 X/Open CAE Specification

XATMI-ASE Protocol Specification XATMI-CALL indication

The following is a description of the different mappings:

MAP 26: This mapping is normally used when a client XATMI-PM requires a reply from the
application service.

1. When a TP-BEGIN-DIALOGUE indication is received by the server XATMI-PM,
an XATMI-CALL-invocation procedure is started. This procedure performs
validations against the local configuration information, and if any validation fails
MAP 28 is then performed. The parameters of the TP-BEGIN-DIALOGUE
indication are mapped as described above. If the Begin-Transaction parameter in
the XATMI-CALL indication is set to True, the XATMI-PM includes this request
within the context of the client’s global transaction. The parameters from the TP-
BEGIN-DIALOGUE indication are mapped as follows:

TP-BEGIN-DIALOGUE ind XATMI-CALL ind
Initiating-AP-Title O May be used for validation purposes.
Initiating-API-Identifier O Not used.
Initiating-AE-Qualifier O May be used for validation purposes.
Initiating-AEI-Identifier O Not Used.
Initiating-TPSU-Title O May be used for validation purposes.

Contains settings from the requester.
Begin-Transaction is set to True if the
Chained Transaction functional unit
is selected.

Functional Units M

Begin-Transaction is set to this value
if the Unchained Transaction
functional unit is selected.

Begin-Transaction C

Confirmation M Always set to Negative.
User-Data U Not used.

2. A TP-DEFERRED-END-DIALOGUE indication is received only when the
dialogue is within the context of a global transaction. No action is taken by the
server XATMI-PM. Note that this indication may be received at any time until an
XATMI-PREPARE-RI APDU is received.

3. An XATMI-CALL-RI APDU is then received. This APDU is decoded following
the rules specified in Chapter 14. The Service-Name and User-Data parameters of
the XATMI-CALL indication are set from the values of the service and data fields
of the XATMI-CALL-RI APDU.

4. A TP-GRANT-CONTROL indication marks the completion of the XATMI-CALL
invocation procedure. The XATMI-PM issues an XATMI-CALL indication to the
server. The server translates this indication into an invocation to the
corresponding application service.

Part 2: XATMI Application Service Element (ASE) 165

XATMI-CALL indication XATMI-ASE Protocol Specification

MAP 27: This mapping is used when the client issues a service request that requires no reply.

1. Upon receiving the TP-BEGIN-DIALOGUE indication, the XATMI-PM starts an
XATMI-CALL indication procedure. This procedure maps the TP-BEGIN-
DIALOGUE indication parameters as specified above.

2. An XATMI-CALL-RI APDU is then received. This APDU is decoded following
the rules specified in Chapter 14. The Service-Name and User-Data parameters of
the XATMI-CALL indication are set from the values of the service and data fields
of the XATMI-CALL-RI APDU.

3. When a TP-END-DIALOGUE indication is received, the XATMI-PM sets the No-
Reply-Option to True, and completes the XATMI-CALL-invocation procedure.
The XATMI-PM issues an XATMI-CALL indication to the server, and the server
invokes the identified application routine.

MAP 28: This mapping is used to reject a service request.

1. When a TP-BEGIN-DIALOGUE indication is received, the XATMI-PM starts the
XATMI-CALL invocation procedure that validates the corresponding parameters.
If any validation fails, the procedure rejects the dialogue with a TP-BEGIN-
DIALOGUE response.

2. A TP-BEGIN-DIALOGUE response is issued with the parameter mapping
specified in the table below. The XATMI-CALL invocation procedure ends at this
point. Notice that a TP-BEGIN-DIALOGUE may also be rejected by the TP-ASE
provider (see MAP 7, Section 13.16.2 on page 171).

The mapping of the TP-BEGIN-DIALOGUE response parameters is as follows:

TP-BEGIN-DIALOGUE rsp XATMI-CALL ind Procedure
Result = { M

Not used — Dialogues are
not confirmed.

Accepted

Maps 28, 31 — Service
request rejected.

Rejected(user)}

User Data U Not used.

166 X/Open CAE Specification

XATMI-ASE Protocol Specification XATMI-CONNECT indication

13.14 XATMI-CONNECT indication

13.14.1 Mapping to tpservice()

An XATMI-CONNECT indication is issued to the server by the XATMI-PM on receipt of a
request for a conversational service. The server uses the tpservice() template to map the
parameters and then dispatches the corresponding application routine.

The tpservice() template is mapped from the XATMI-CONNECT parameters as follows:

tpservice() XATMI-CONNECT ind Notes
cd Local processing.

The Service-Name parameter is mapped
from the service field of the XATMI-
CONNECT-RI APDU received with the
TP-DATA indication (see below).

name Service-Name

The XATMI-PM uses the abstract syntax
defined in Chapter 14, to decode the
typed buffer from the the data field of the
XATMI-CONNECT-RI APDU.

data, len User-Data

This flag is set when this indication type is
received by the server.

TPCONV

The service is invoked as part of the
client’s transaction.

TPTRAN Begin-Transaction = True

flags
The Client retains control of the dialogue.TPRECVONLY Grant-Control = False

The Service has been granted control of
the dialogue.

TPSENDONLY Grant-Control = True

TPNOREPLY Not permitted for conversational Services.

13.14.2 Mapping from OSI TP

The XATMI-CONNECT indication parameters are generated as follows:

• The Service-Name parameter is mapped from the service field of the XATMI-CONNECT-RI
APDU (see Chapter 14).

• The Begin-Transaction parameter is set to True if the Chained Transaction functional unit is
selected or if the Unchained Transaction functional unit is selected and the Begin-Transaction
parameter in the TP-BEGIN-DIALOGUE indication is set to True.

• The Grant-Control parameter value is set to True if MAP 29 is detected by the XATMI-PM;
otherwise the value is set to False (MAP 30).

• The User-Data parameter is set if the data field of the XATMI-CONNECT-RI APDU is
present. This field is decoded into a local typed buffer structure following the rules described
in Chapter 14.

Part 2: XATMI Application Service Element (ASE) 167

XATMI-CONNECT indication XATMI-ASE Protocol Specification

The different mappings are as follows:

MAP 29: This mapping is generated when the client requests a connection with a conversational
service in receive mode (TPRECVONLY, see Section 13.7.1 on page 157)

1. Upon receiving a TP-BEGIN-DIALOGUE indication, the XATMI-PM starts an
XATMI-CONNECT invocation procedure. This procedure performs validations
against the local configuration information, and if any validation fails MAP 31 is
then performed.

2. A TP-DEFERRED-END-DIALOGUE indication is expected by the procedure if the
Begin-Transaction parameter of the TP-BEGIN-DIALOGUE indication is set to
True. No action is taken by the XATMI-PM upon receiving this indication. Note
that this indication may be received at any time until an XATMI-PREPARE-RI
APDU is received.

3. An XATMI-CONNECT-RI APDU is then received. This APDU is decoded
following the rules specified in Chapter 14. The Service-Name and User-Data
parameters of the XATMI-CONNECT indication are set from the values of the
service and data fields of the XATMI-CALL-RI APDU.

4. A TP-GRANT-CONTROL indication is then received. The XATMI-PM sets to
True the Grant-Control parameter of the XATMI-CONNECT indication,
terminates the XATMI-CONNECT invocation procedure, and issues this
indication to the server. Upon receiving the XATMI-CONNECT indication, the
server invokes the corresponding application routine, mapping the parameters as
specified in Section 13.14.1 on page 167.

MAP 30: This mapping is generated when the client requests a connection to a conversational
service in send mode (TPSENDONLY, see Section 13.7.1 on page 157)

1. Upon receiving a TP-BEGIN-DIALOGUE indication, the XATMI-PM starts an
XATMI-CONNECT invocation procedure. This procedure performs validations
against the local configuration information, and if any validation fails MAP 31 is
then performed. If the Confirmation parameter of the TP-BEGIN-DIALOGUE
indication is to Always, this mapping is applied; otherwise MAP 29 is applied.

2. A TP-DEFERRED-END-DIALOGUE indication is expected by the procedure if the
Begin-Transaction parameter of the TP-BEGIN-DIALOGUE indication is set to
True. No action is taken by the XATMI-PM upon receiving this indication. Note
that this indication may be received at any time up until an XATMI-PREPARE-RI
APDU is received.

3. An XATMI-CONNECT-RI APDU is then received. This APDU is decoded
following the rules specified in Chapter 14. The Service-Name and User-Data
parameters of the XATMI-CONNECT indication are set from the values of the
service and data fields of the XATMI-CALL-RI APDU.

4. After receiving the XATMI-CONNECT-RI APDU, the XATMI-PM issues a TP-
BEGIN-DIALOGUE response accepting the dialogue.

5. The XATMI-PM then sets the Grant-Control parameter of the XATMI-CONNECT
indication to False, and issues an XATMI-CONNECT indication to the server.
The server then invokes the corresponding application routine.

MAP 31: This mapping is generated when the XATMI-CONNECT-invocation procedure fails a
validation. The dialogue is rejected with a TP-BEGIN-DIALOGUE response (see
Section 13.13.2 on page 164, MAP 28).

168 X/Open CAE Specification

XATMI-ASE Protocol Specification XATMI-CONNECT indication

13.15 XATMI-REPLY indication

13.15.1 Mapping to tpcall(), tpgetrply(), and tprecv()

An XATMI-REPLY indication is mapped to tpcall (), tpgetrply(), or tprecv().

The XATMI-REPLY indication parameters are mapped as follows:

XATMI-REPLY ind Mapping
This value contains the return code (rcode) generated by the
application with the call to tpreturn(). This value is mapped to the
tpurcode global variable.

User-Code

The XATMI-PM sets this parameter from the value of the data field of
the XATMI-REPLY-RI APDU. This parameter is mapped as follows:
tpcall (): to odata and olen,
tpgetrply(): to data and len,
tprecv(): to data and len.
Also, the rvent variable is set to TPEV_SVCSUCC.

User-Data

13.15.2 Mapping from OSI TP

The XATMI-REPLY indication parameters are mapped from an XATMI-REPLY-RI APDU. The
User-Data parameter is mapped from the data field of the XATMI-REPLY-RI APDU.

The following is a description of the different mappings:

MAP 3: This mapping is generated when the service request is invoked within a global
transaction.

1. Upon receiving an XATMI-REPLY-RI APDU, the XATMI-PM starts an XATMI-
REPLY-invocation procedure to decode the APDU according to the rules
described in Chapter 14. The value of the User-Code parameter is set to the value
of the user-code field of this APDU. The value of the User-Data parameter
contains a typed buffer built from the data field of this APDU (if it exists),
otherwise it is set to null.

2. A TP-GRANT-CONTROL indication is then received. When this indication is
received, the XATMI-REPLY invocation procedure completes and the XATMI-PM
issues an XATMI-REPLY indication to the client.

MAP 4: This mapping is generated when the application expects a reply to a service request
issued outside any global transaction.

1. Upon receiving an XATMI-REPLY-RI APDU, the XATMI-PM starts an XATMI-
REPLY invocation procedure to decode the APDU according to the rules
described in Chapter 14. The value of the User-Code parameter is set to the value
of the user-code field of this APDU. The value of the User-Data parameter
contains a typed buffer built from the data field of this APDU (if it exists),
otherwise it is set to null.

2. When the TP-END-DIALOGUE indication is received, the XATMI-REPLY-
indication procedure completes and the XATMI-PM issues an XATMI-REPLY
indication to the client.

Part 2: XATMI Application Service Element (ASE) 169

XATMI-FAILURE indication XATMI-ASE Protocol Specification

13.16 XATMI-FAILURE indication

13.16.1 Mapping to tpcall(), tpgetrply(), tpsend(), and tprecv()

An XATMI-FAILURE indication is mapped to tpcall (), tpgetrply(), tpsend() or tprecv().

The XATMI-FAILURE failure parameters are mapped as follows:

XATMI-FAILURE ind Mapping
This parameter is mapped to a return code
from tpcall () and tpgetrply(), or to the revent
parameter of tpsend() and tprecv().

Diagnostic ={

Application-Service-Failure Mapped to TPESVCFAIL or TPEV_SVCFAIL.
Recipient-XATMI-SU-Failure
Rejected-XATMI-Provider
Permanent-Failure
Transient-Failure
Protocol-Error
Recipient-TPSU-title-unknown
Recipient-TPSU-title-required
TPSU-not-available(permanent)
TPSU-not-available(transient)
Functional-Unit-combination-not-supported
Reason-not-specified

}

All other Diagnostic values are mapped to
TPESVCERR or to TPEV_SVCERR.

This value contains the return code (rcode)
generated by the application with the call
with tpreturn(). This value is mapped to the
tpurcode global variable.

User-Code

This parameter contains a typed buffer that
is constructed from the value of the data
field of the XATMI-FAILURE-RI APDU. This
parameter is mapped as follows:
tpcall (): to odata and olen,
tpgetrply(): to data and len,
tprecv(): to data and len.

User-Data

Note that when the Diagnostic parameter is set to a value other than Application-Service-
Failure, the User-Code and User-Data parameters are set to null.

170 X/Open CAE Specification

XATMI-ASE Protocol Specification XATMI-FAILURE indication

13.16.2 Mapping from OSI TP

An XATMI-FAILURE indication is mapped from OSI TP as follows:

MAP 5: This mapping is generated when the remote application service ended with a call to
tpreturn() with the rcode value set to TPFAIL or when a Transaction Processing Service
User failure occurs.

When the XATMI-PM receives a TP-U-ABORT indication, it starts an XATMI-FAILURE
indication procedure that maps the TP-U-ABORT parameters as follows:

TP-U-ABORT ind XATMI-FAILURE ind Procedure
If the transaction associated with
the OSI TP dialogue is being
rolled back, this parameter is set
to True. The XATMI-PM marks
the global transaction as
ROLLBACK-IN-PROGRESS.
This is so that the XATMI-PM
does not generate improper
protocol when the application
eventually issues tx_rollback (). If
the parameter is set to False, no
action is taken by the XATMI-
PM.

Rollback M

If User-Data is not present, the
indication is treated as a
Recipient-XATMI-SU-Failure.

If User-Data is present, this
parameter contains an XATMI-
FAILURE-RI APDU according to
the rules specified in Chapter 14.
This APDU contains a
diagnostic field and an optional
reply field. If the diagnostic
field is set to Application-
Service-Failure, then the reply
field must be present and the
diagnostic, user-code, and data
fields of the APDU are mapped
to the corresponding fields of the
XATMI-FAILURE indication. If
the diagnostic field is set to any
other value, the reply field will
not be present.

User-Data U

MAP 6: This mapping is generated when there is a network or a TP provider failure. The
XATMI-PM uses this mapping when a TP-P-ABORT indication is received, and there is
a pending reply from the remote application service.

Part 2: XATMI Application Service Element (ASE) 171

XATMI-FAILURE indication XATMI-ASE Protocol Specification

The parameters of the TP-P-ABORT indication are mapped as follows:

TP-P-ABORT ind XATMI-FAILURE ind Procedure
If the transaction associated with
the OSI TP dialogue is being
rolled back, this parameter is set
to True. The XATMI-PM marks
the global transaction as
ROLLBACK-IN-PROGRESS.
This is so that the XATMI-PM
does not generate improper
protocol when the application
eventually issues tx_rollback (). If
the parameter is set to False, no
action is taken by the XATMI-
PM.

Rollback M

This parameter is mapped to the
Diagnostic parameter of the
XATMI-FAILURE indication as
follows:

Diagnostic = { M

Permanent-failure Same value
Transient-failure Same value
Protocol-error Same value
Begin-transaction-reject Cannot happen (see note below)
End-dialogue-collision Cannot happen (see note below)
Begin-transaction-
end-dialogue-collision Cannot happen (see note below).

}

Note: Several Diagnostic
values cannot occur
because of the OSI TP
mapping defined by the
XATMI-ASE and the
use of OSI TP profiles
ATP21 and ATP31.

172 X/Open CAE Specification

XATMI-ASE Protocol Specification XATMI-FAILURE indication

MAP 7: This mapping is generated when the remote XATMI-PM or the remote TP-PM rejects a
dialogue establishment. The XATMI-PM uses this mapping when a TP-BEGIN-
DIALOGUE confirm is received, and there is a pending reply from the remote
application service (that is, the XATMI-PM is not within an XATMI-CONNECT request
procedure).

TP-BEGIN-DIALOGUE cnf XATMI-FAILURE ind Procedure
If the transaction associated with
the OSI TP dialogue is being
rolled back, this parameter is set
to True. The XATMI-PM marks
the global transaction as
ROLLBACK-IN-PROGRESS. If
the parameter is set to False, no
action is taken by the XATMI-
PM.

Rollback M

Result = { M
Cannot happen — XATMI-ASE
uses unconfirmed dialogues.

Accepted

Dialogue rejected by the remote
XATMI-ASE.

Rejected(user)

Dialogue rejected by the remote
TP-PM.

Rejected(Provider)

Note: A rejected(user) value
is mapped to value
Rejected-XATMI-
Provider on the
Diagnostic parameter
of the XATMI-FAILURE
indication. A
rejected(provider) is
mapped as indicated
below.

}

An XATMI-PM provider may
record this value somewhere.

Functional Units C

Mapped to Diagnostic on the
XATMI-FAILURE indication
with the same value.

Diagnostic = { C

Recipient-unknown (=)
Recipient-TPSU-title-unknown (=)
Recipient-TPSU-title-required (=)
TPSU-not-available (permanent) (=)
TPSU-not-available (transient) (=)
FU-combination-not-supported (=)
Reason-not-specified (=)

}
User-Data U Not used.

Part 2: XATMI Application Service Element (ASE) 173

XATMI-FAILURE indication XATMI-ASE Protocol Specification

Notes:

1. The Diagnostic parameter of an XATMI-FAILURE indication may be set from the
Diagnostic parameter of a TP-P-ABORT indication, from the Diagnostic
parameter of a TP-BEGIN-DIALOGUE confirm, or from the diagnostic field value
of an XATMI-FAILURE-RI APDU.

2. If an XATMI-FAILURE indication is received by an XATMI-SUI that is within a
global transaction, its transaction is being rolled back by the XATMI-PM. The
XATMI-SUI must eventually roll back its local data, usually triggered by
tx_rollback (), and then issue an XATMI-DONE request (see Section 13.20.3 on
page 179) to allow the XATMI-PM to complete the rollback.

3. If the XATMI-FAILURE indication initiates rollback of the current transaction, any
TP-P-ABORT indication or TP-U-ABORT indication primitives received by the
XATMI-PM between the XATMI-FAILURE indication and the subsequent
XATMI-DONE request are silently discarded by the XATMI-PM. TP-U-ABORT
requests for any remaining dialogues take place when the XATMI-DONE request
is issued.

174 X/Open CAE Specification

XATMI-ASE Protocol Specification XATMI-CANCEL indication

13.17 XATMI-CANCEL indication

13.17.1 Mapping to the XATMI Interface

An XATMI_CANCEL indication is not mapped to the XATMI Interface. When a server receives
this indication, it should not issue an XATMI-REPLY request.

An XATMI-CANCEL indication applies only to request/response services invoked outside the
client’s global transaction.

13.17.2 Mapping from OSI TP

An XATMI-CANCEL indication is issued by the server XATMI-PM according to the following
mappings:

MAP 35: This mapping is only generated when the client issues tpcancel(). The XATMI-PM
maps a TP-U-ABORT indication to an XATMI-CANCEL. The User-Data and the
Rollback parameters of the TP-U-ABORT indication are ignored.

MAP 36: This mapping is generated when there is a network or a TPPM failure. The XATMI-PM
maps the TP-P-ABORT indication to an XATMI-CANCEL. The Diagnostic and
Rollback parameters are ignored.

Part 2: XATMI Application Service Element (ASE) 175

XATMI-DISCON indication XATMI-ASE Protocol Specification

13.18 XATMI-DISCON indication

13.18.1 Mapping to tpsend() and tprecv()

An XATMI-DISCON indication can only be produced at the server XATMI-PM when the client
issues tpdiscon() or when a communication failure occurs in a connection with a conversational
service.

An XATMI-DISCON indication is translated to the event TPEV_DISCONIMM that is returned
on the revent variable of tpsend() or tprecv().

13.18.2 Mapping from OSI TP

An XATMI-DISCON indication is issued by a server XATMI-PM according to the following
mappings:

MAP 37: The XATMI-PM issues an XATMI-DISCON indication when a TP-U-ABORT indication
is received in a dialogue associated with an active conversational service. If the
Rollback parameter is set to True, the transaction is marked as ROLLBACK-IN-
PROGRESS. In this case, the User-Data parameter of the TP-U-ABORT indication is not
mapped.

MAP 38: The XATMI-PM issues an XATMI-DISCON indication when a TP-P-ABORT indication
is received in a dialogue associated with an active conversational service. If the
Rollback parameter is set to True, the transaction branch is marked as ROLLBACK-IN-
PROGRESS. The Diagnostic parameter of the TP-P-ABORT indication is not mapped.

Notes:

1. If an XATMI-DISCON indication is received by an XATMI-SUI that is within a
global transaction, its transaction is being rolled back by the XATMI-PM. The
XATMI-SUI must eventually roll back its local data, usually triggered by
tx_rollback (), and then issue an XATMI-DONE request (see Section 13.20.3 on
page 179) to allow the XATMI-PM to complete the rollback.

2. If the XATMI-DISCON indication initiates rollback of the current transaction, any
TP-P-ABORT indication or TP-U-ABORT indication primitives received by the
XATMI-PM between the XATMI-DISCON indication and the subsequent
XATMI-DONE request are silently discarded by the XATMI-PM. TP-U-ABORT
requests for any remaining dialogues take place when the XATMI-DONE request
is issued.

176 X/Open CAE Specification

XATMI-ASE Protocol Specification XATMI-DATA indication

13.19 XATMI-DATA indication

13.19.1 Mapping to tprecv()

An XATMI-DATA indication is mapped to tprecv().

The XATMI-DATA indication parameters are mapped as follows:

XATMI-DATA ind Mapping
This parameter is set to True when the sender grants control of the
conversation. Otherwise, this parameter is set to False.

Grant-Control

The XATMI-PM decodes the data field of the XATMI-DATA-RI or
XATMI-DATA-GRANT-CONTROL-RI APDU, and converts it into a
local typed buffer. This parameter is then mapped to the data and len
parameters of the tprecv() primitive.

User-Data

13.19.2 Mapping from OSI TP

An XATMI-DATA indication is generated by the XATMI-PM according to the following
mappings:

MAP 13: This mapping is generated when the XATMI-PM instance for a particular conversation
is in Receive mode and the following indications are received:

1. Upon receiving an XATMI-DATA-RI or XATMI-DATA-GRANT-CONTROL-RI
APDU, the XATMI-PM decodes the APDU according to the rules described in
Chapter 14. If the data field is present, the XATMI-PM constructs a typed buffer
and returns it in the User-Data parameter of the XATMI-DATA indication.

2. If an XATMI-DATA-RI APDU was received, the XATMI-PM sets the Grant-
Control parameter to False and issues an XATMI-DATA indication to the receiver
(the client or server). Alternatively if an XATMI-DATA-GRANT-CONTROL-RI
APDU was received the XATMI-PM waits for the TP-GRANT-CONTROL
indication, sets the Grant-Control parameter to True and issues the XATMI-DATA
indication.

MAP 39: This mapping is the same as MAP 13 but on the server XATMI-PM.

Part 2: XATMI Application Service Element (ASE) 177

Mapping Transaction Services XATMI-ASE Protocol Specification

13.20 Mapping Transaction Services
The mappings for the XATMI-ASE transaction services are generated when the application
issues a tx_commit() or a tx_rollback () primitive (see Section 12.3 on page 123).

The behaviour of the XATMI-ASE transaction services is directly inferred from the
corresponding mapped OSI TP services (see below).

13.20.1 XATMI-PREPARE request

Mapping from the TX Interface

The XATMI-SUI maps a tx_commit() to an XATMI-PREPARE request. There are no parameters
to be mapped.

A server XATMI-SUI may also issue an XATMI-PREPARE request when it behaves as a client
(that is, the application issued service requests or established conversations with other services).
This request can only be issued when the server receives an XATMI-PREPARE indication from
its superior.

Mapping to OSI TP

The mapping to OSI TP is as follows:

MAP 14: When an XATMI-PREPARE request is issued, the XATMI-MACF generates a TP-
PREPARE-ALL request (see Section 13.1 on page 145). This service request is global in
that it affects all subordinate transaction branches, and allows a true separation of the
two phases of the commitment of a global transaction. The TP-PREPARE-ALL request
works as described in the referenced XAP-TP specification (see Section 13.1 on page
145).

13.20.2 XATMI-COMMIT request

Mapping from the TX Interface

An XATMI-COMMIT request is not mapped directly from the XATMI interface or the TX
interface.

Mapping to OSI TP

An XATMI-COMMIT request is issued by the XATMI-SUI when local data is in the Ready state,
and one of the following conditions is met:

• The XATMI-PM has issued an XATMI-READY indication.

• The XATMI-PM has issued an XATMI-PREPARE indication, and there are no subordinate
dialogues.

The mapping to OSI TP is as follows:

MAP 16: An XATMI-COMMIT request is translated into the abstract service TP-COMMIT-ALL
request (see Section 13.1 on page 145). This service starts the second phase of
commitment. The combination of a TP-PREPARE-ALL request and a TP-COMMIT-
ALL request as specified in Section 13.1 on page 145 is the equivalent of the OSI TP
abstract service TP-COMMIT as defined in the OSI TP Service standard. Upon
receiving a TP-COMMIT-ALL request, the OSI TPPM considers the transaction
committed.

178 X/Open CAE Specification

XATMI-ASE Protocol Specification Mapping Transaction Services

MAP 41: This mapping is the same as MAP 16 but it is generated by the server XATMI-PM.

13.20.3 XATMI-DONE request

Mapping from the TX Interface

An XATMI-DONE request is not mapped directly from the TX interface.

Mapping to OSI TP

An XATMI-DONE request is issued when the client (or the server) has released its data into the
final state.

An XATMI-DONE maps to OSI TP as follows:

MAP 18: This mapping is generated when a client has committed its local data (that is, the
XATMI-DONE request has been issued after an XATMI-COMMIT indication). The
XATMI-PM maps the XATMI-DONE request to a TP-DONE request — no parameters
are mapped in this case.

Note: Any TP-P-ABORT indication primitives received by the XATMI-PM between
the XATMI-DONE request and the subsequent TP-COMMIT-COMPLETE
indication are processed by the XATMI-PM which issues a TP-DONE request
(with no parameters) to acknowledge each. (All the dialogues for the
transaction node will, in any case, cease to exist upon commit completion.)

MAP 19: This mapping is generated after a client has rolled back its local data (that is, the
XATMI-DONE request is issued after a rollback initiating primitive has been issued).
The XATMI-PM maps the XATMI-DONE request to OSI TP as follows:

1. A TP-U-ABORT request is issued for each dialogue that has not yet been aborted.
The User-Data parameter is not mapped.

2. A TP-DONE request is issued with no parameters.

MAP 44: This mapping is generated when a server has committed its local data (that is, the
XATMI-DONE request has been issued after an XATMI-COMMIT indication). The
XATMI-PM maps the XATMI-DONE request to a TP-DONE request; if the Heuristic-
Report parameter is present on the XATMI-DONE request, this is mapped to the
Heuristic-Report parameter of the TP-DONE request. The possible values of the
XATMI-DONE request Heuristic-Report parameter are specified in Section 12.4.11 on
page 138.

Note: Any TP-P-ABORT indication primitives received by the XATMI-PM between
the XATMI-DONE request and the subsequent TP-COMMIT-COMPLETE
indication are processed by the XATMI-PM which issues a TP-DONE request
(with no parameters) to acknowledge each. (All the dialogues for the
transaction node will, in any case, cease to exist upon commit completion.)

MAP 45: This mapping is generated after a server has rolled back its local data (that is, the
XATMI-DONE request is issued after a rollback initiating primitive has been issued).
The XATMI-PM maps the XATMI-DONE request to OSI TP as follows:

1. A TP-U-ABORT request is issued for each dialogue that has not yet been aborted.
The User-Data parameter is not mapped.

Part 2: XATMI Application Service Element (ASE) 179

Mapping Transaction Services XATMI-ASE Protocol Specification

2. A TP-DONE request is issued; if the Heuristic-Report parameter is present on the
XATMI-DONE request, this is mapped to the Heuristic-Report parameter of the
TP-DONE request. The possible values of the XATMI-DONE request Heuristic-
Report parameter are specified in Section 12.4.11 on page 138.

13.20.4 XATMI-ROLLBACK request

Mapping from the TX Interface

An XATMI-ROLLBACK request is mapped from tx_rollback (). There are no parameters to be
mapped.

Mapping to OSI TP

An XATMI-ROLLBACK request is mapped to OSI TP as follows:

MAP 20: An XATMI-ROLLBACK request is mapped by the client XATMI-PM to a TP-
ROLLBACK request. This mapping is generated when the client application issued
tx_rollback ().

MAP 46: An XATMI-ROLLBACK request is mapped by the server XATMI-PM to a TP-U-ABORT
request. The User-Data parameter of the TP-U-ABORT service is not used. This
mapping is generally used when the server XATMI-SUI fails to bring its local data to
the Ready state.

Note: Any TP-P-ABORT indication or TP-U-ABORT indication primitives received by the
XATMI-PM between the XATMI-ROLLBACK request and the subsequent XATMI-
DONE request are silently discarded by the XATMI-PM. TP-U-ABORT requests for any
remaining dialogues take place when the XATMI-DONE request is issued.

13.20.5 XATMI-PREPARE indication

Mapping to the TX Interface

An XATMI-PREPARE is not mapped directly to the TX interface.

Mapping from OSI TP

An XATMI-PREPARE indication is issued by the XATMI-PM as follows:

MAP 41: The XATMI issues an XATMI-PREPARE indication after receiving a TP-PREPARE
indication. The Data-Permitted parameter is not mapped.

13.20.6 XATMI-READY indication

Mapping to the TX Interface

An XATMI-READY indication is not mapped directly to the TX interface.

180 X/Open CAE Specification

XATMI-ASE Protocol Specification Mapping Transaction Services

Mapping from OSI TP

An XATMI-READY indication is issued by the XATMI-MACF when all subordinate dialogues
are in the Ready state.

The mapping from OSI TP is the following:

MAP 15: The XATMI-PM (MACF) issues an XATMI-READY indication when it has received a
TP-READY-ALL indication (see Section 13.1 on page 145). A TP-READY-ALL
indication works as specified in the XAP-TP specification, and it is issued by the OSI
TPPM to indicate that the transaction has been brought to a Ready state (this node and
all its subordinate branches are Ready).

13.20.7 XATMI-COMMIT indication

Mapping to the TX Interface

An XATMI-COMMIT is not mapped directly to the TX interface.

Mapping from OSI TP

An XATMI-COMMIT indication is mapped from OSI-TP as follows:

MAP 17: An XATMI-COMMIT indication is issued when the client XATMI-PM receives a TP-
COMMIT indication. This indication is issued to allow the XATMI-SUI release its
bound data in the final state.

MAP 43: This mapping is the same as MAP 17 but it is generated at the server XATMI-PM.

Note: Any TP-P-ABORT indication primitives received by the XATMI-PM between the
XATMI-COMMIT indication and the subsequent XATMI-DONE request are silently
discarded by the XATMI-PM. TP-U-ABORT requests for any will in any case cease to
exist at the completion of commitment as a result of the outstanding TP-DEFERRED-
END-DIALOGUE requests. (Under these circumstances it is not possible to receive a
TP-U-ABORT indication.)

13.20.8 XATMI-ROLLBACK indication

Mapping to the TX Interface

An XATMI-ROLLBACK indication maps to a tx_commit() return code. It also maps to the
TPEV_DISCONIMM event in tprecv() or tpsend().

Mapping from OSI TP

An XATMI-ROLLBACK indication is mapped from OSI TP as follows:

MAP 21: An XATMI-ROLLBACK indication is issued when a TP-P-ABORT indication is
received, the Rollback parameter of this indication is set to True, and the transaction is
in the Prepare phase (Prepared-issued or Ready state). This mapping is generated
when there is a communication failure or a TPPM failure during the Prepare phase of
the transaction.

Part 2: XATMI Application Service Element (ASE) 181

Mapping Transaction Services XATMI-ASE Protocol Specification

MAP 22: An XATMI-ROLLBACK indication is issued when a TP-U-ABORT indication is
received, the Rollback parameter of this indication is set to True, and the transaction is
in the Prepare phase (Prepared-issued or Ready state). This mapping is usually
produced when the server XATMI-PM did not receive a TP-DEFERRED-END-
DIALOGUE indication before a TP-PREPARE indication or when the server XATMI-
SUI fails to bring its local data to the Ready state (see MAP 46).

MAP 47: An XATMI-ROLLBACK indication is issued when a TP-ROLLBACK indication is
received by the server XATMI-PM. This indication is the result of tx-rollback () issued
by the client application.

MAP 48: This is the same as MAP 21 but it is generated by the server XATMI-PM.

Note: Any TP-P-ABORT indication or TP-U-ABORT indication primitives received by the
XATMI-PM between the XATMI-ROLLBACK indication and the subsequent XATMI-
DONE request are silently discarded by the XATMI-PM. TP-U-ABORT requests for any
remaining dialogues take place when the XATMI-DONE request is issued.

13.20.9 XATMI-COMPLETE indication

Mapping to the TX Interface

tx_commit() or tx_rollback () formally completes when an XATMI-COMPLETE indication is
received.

Mapping from OSI TP

An XATMI-COMPLETE indication is mapped from OSI-TP as follows:

MAP 23: An XATMI-COMPLETE indication is issued when the client XATMI-PM receives a TP-
COMMIT-COMPLETE indication. The transaction commitment has been completed by
the XATMI-PM.

MAP 24: An XATMI-COMPLETE indication is issued when the client XATMI-PM receives a TP-
ROLLBACK-COMPLETE indication. The transaction rollback has been completed by
the XATMI-PM.

MAP 49: This mapping is the same as MAP 23 but it is generated by the server XATMI-PM.

MAP 50: This mapping is the same as MAP 24 but it is generated by the server XATMI-PM.

13.20.10 XATMI-HEURISTIC indication

Mapping to the TX Interface

An XATMI-HEURISTIC indication maps to a return code on tx_commit() or tx_rollback ().

Mapping from OSI TP

An XATMI-HEURISTIC indication is mapped as follows:

MAP 25: An XATMI-HEURISTIC indication is issued when the client XATMI-PM receives a TP-
HEURISTIC-REPORT indication on any dialogue associated with the global
transaction. The value of the Heuristic-Report parameter is mapped to the value of the
Diagnostic parameter of the XATMI-HEURISTIC indication (that is, the same value is
used).

182 X/Open CAE Specification

XATMI-ASE Protocol Specification Mapping to the XATMI Interface Return Codes

13.21 Mapping to the XATMI Interface Return Codes
The mapping of return codes from the XATMI-ASE service indications is as follows:

Table 13-5 XATMI-ASE Return Code Mappings

Return Code Mapping from XATMI-ASE
Returned by tpacall (), tpcall (), tpgetrply(), tpconnect(), tpsend() and tprecv();
results from local processing by the XATMI Provider.

TPEINVAL

Returned by tpcall (), tpacall () and tpconnect(); may indicate an error in the
local configuration information or result from an XATMI-FAILURE
indication.

TPENOENT

Returned by tpacall (), tpcall () and tpconnect(); results when the type and
subtype of the input buffer do not match those supported by the XATMI-
ASE.

TPEITYPE

Returned by tpcall (), tpgetrply() and tpconnect(); results when the type and
subtype of the received reply buffer from the service cannot be mapped into
the receiver’s typed buffer.

TPEOTYPE

Returned by tpcall (), tpacall (), tpconnect() and tpcancel(); may indicate an
error in the local configuration information or result from an XATMI-
FAILURE indication.

TPETRAN

Returned by tpacall, tpcall, tpgetrply, tpconnect, tpdiscon, tpsend, tprecv;
results from local processing.

TPETIME

Returned by tpcall () and tpgetrply(); results from an XATMI-FAILURE
indication (determined by the Diagnostic parameter, see Section 13.16 on
page 170).

TPESVCFAIL

Returned by tpcall () and tpgetrply(); results from an XATMI-FAILURE
indication (determined by the Diagnostic parameter, see Section 13.16 on
page 170).

TPESVCERR

Returned by tpacall (), tpcall (), tpgetrply(), tpconnect(), tpsend() and tprecv();
results from local processing.

TPEBLOCK

Returned by tpacall (), tpcall (), tpgetrply(), tpconnect(), tpsend() and tprecv();
results from local processing.

TPGOTSIG

Returned by all functions; results when a function is called in an invalid
state.

TPEPROTO

Returned by all functions; results from local processing.TPESYSTEM

Returned by all functions; results from local processing.TPEOS

Returned by tpgetrply() and tpconnect;() results from local processing.TPELIMIT

Returned by tpgetrply(), tpcancel(), tpdiscon(), tpsend() and tprecv(); results
from local processing.

TPEBADDESC

Part 2: XATMI Application Service Element (ASE) 183

Mapping to the XATMI Interface Return Codes XATMI-ASE Protocol Specification

Return Code Mapping from XATMI-ASE
One of the following events has occurred:TPEEVENT
TPEV_DISCONIMM: returned by tpsend() and tprecv(); results from an
XATMI-FAILURE indication, an XATMI-DISCON indication or an XATMI-
ROLLBACK indication.
TPEV_SVCFAIL: returned by tpsend() and tprecv(); results from an
XATMI-FAILURE indication.
TPEV_SVCERR: returned by tpsend() and tprecv(); results from an XATMI-
FAILURE indication.
TPEV_SENDONLY: returned by tprecv(); results from an XATMI-DATA
indication.
TPEV_SVCSUCC: returned by tprecv(); service has finished (an XATMI-
REPLY indication was received).

184 X/Open CAE Specification

Chapter 14

Structure and Encoding of XATMI-ASE APDUs

This chapter defines the structure and encoding of the XATMI-ASE Application Protocol Data
Units (APDUs) as well as the mappings of X/Open’s XATMI Buffer Types to these APDUs.

14.1 Abstract Syntax
The abstract syntax of each APDU is specified using ASN.1 (see the referenced ASN.1 standard).

-- XATMI-ASE APDUs
XATMI-APDUs

-- An OBJECT IDENTIFIER must be registered by X/Open
{iso(1) national-member-body(2) bsi(826) disc(0) xopen(1050)

xatmi(4) apdus-abstract-syntax(1) version1(0)}

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- EXPORTS
-- all definitions --

-- top level APDU CHOICE

XATMI-APDU ::= CHOICE
{

xatmi-call-ri [1] XATMI-CALL-RI,
xatmi-reply-ri [2] XATMI-REPLY-RI,
xatmi-failure-ri [3] XATMI-FAILURE-RI,
xatmi-connect-ri [4] XATMI-CONNECT-RI,
xatmi-data-ri [5] XATMI-DATA-RI,
xatmi-data-grant-control-ri [6] XATMI-DATA-GRANT-CONTROL-RI

}

-- individual APDU definitions

XATMI-CALL-RI ::= SEQUENCE
{

service [1] VisibleString,
data [2] XATMI-typed-buffer OPTIONAL

}

XATMI-REPLY-RI ::= SEQUENCE
{

user-code [1] INTEGER,
data [2] XATMI-typed-buffer OPTIONAL

}

Part 2: XATMI Application Service Element (ASE) 185

Abstract Syntax Structure and Encoding of XATMI-ASE APDUs

XATMI-FAILURE-RI ::= SEQUENCE
{

diagnostic [1] ENUMERATED
{recipient-xatmi-su-failure (10),

application-service-failure (11)
},

reply [2] XATMI-REPLY-RI OPTIONAL
}

XATMI-CONNECT-RI ::= XATMI-CALL-RI

XATMI-DATA-RI ::= SEQUENCE
{

data [1] XATMI-typed-buffer OPTIONAL
}

XATMI-DATA-GRANT-CONTROL-RI ::= SEQUENCE
{

data [1] XATMI-typed-buffer OPTIONAL
}

-- supporting type definitions --

XATMI-typed-buffer ::= SEQUENCE
{

type [1] VisibleString,
subtype [2] VisibleString OPTIONAL,
data [3] XATMI-buffer-types

}

XATMI-buffer-types ::= CHOICE
{

X-octet [1] OCTET STRING,
X-common [2] SEQUENCE OF X-common,
X-c-type [3] SEQUENCE OF X-c-type,
X-u-defined [4] SEQUENCE OF ANY

}

X-common ::= CHOICE
{

short [1] INTEGER,
short-n [2] SEQUENCE OF INTEGER,
long [3] INTEGER,
long-n [4] SEQUENCE OF INTEGER,
char [5] OCTET STRING,
char-n [6] OCTET STRING,
char-translate-n [7] T61String,
char-translate [8] T61String

}

186 X/Open CAE Specification

Structure and Encoding of XATMI-ASE APDUs Abstract Syntax

X-c-type ::= CHOICE
{

short [1] INTEGER,
short-n [2] SEQUENCE OF INTEGER,
integer [3] INTEGER,
integer-n [4] SEQUENCE OF INTEGER,
long [5] INTEGER,
long-n [6] SEQUENCE OF INTEGER,
char [7] OCTET STRING,
char-n [8] OCTET STRING,
char-translate-n [9] T61String,
float [10] REAL,
float-n [11] SEQUENCE OF REAL,
double [12] REAL,
double-n [13] SEQUENCE OF REAL,
char-translate [17] T61String,
char-n-n [18] SEQUENCE OF OCTET STRING,
char-translate-n-n [19] SEQUENCE OF T61String,
char-string [20] OCTET STRING,
char-string-n [21] SEQUENCE OF OCTET STRING,
char-string-translate [22] T61String,
char-string-translate-n [23] SEQUENCE OF T61String

}

END -- of XATMI-ASE definitions

Part 2: XATMI Application Service Element (ASE) 187

Mapping X/Open XATMI Buffer Types Structure and Encoding of XATMI-ASE APDUs

14.2 Mapping X/Open XATMI Buffer Types
The X/Open XATMI buffer types, X_OCTET, X_COMMON and X_C_TYPE, are valid settings
for the type element of the XATMI-typed-buffer SEQUENCE defined in the previous section.

The following table shows how the X/Open XATMI Buffer Types map to ASN.1.

Buffer Type ASN.1 Type
X_OCTET OCTET STRING
X_COMMON SEQUENCE
X_C_TYPE SEQUENCE

Table 14-1 Mapping of XATMI Buffer Types to ASN.1

The following table summarises the mapping of the elements of the above X/Open Buffer Types
to ASN.1. Mappings for both C and COBOL data types are shown.

Buffer Type C Type COBOL Type ASN.1 Type
X_OCTET char[n] PIC X(n) [1] OCTET STRING
X_COMMON short PIC S9(4) COMP-5 [1] INTEGER

short[n] PIC S9(4) COMP-5 OCCURS n TIMES [2] SEQUENCE OF INTEGER
long PIC S9(9) COMP-5 [3] INTEGER
long[n] PIC S9(9) COMP-5 OCCURS n TIMES [4] SEQUENCE OF INTEGER
char PIC X [5] OCTET STRING
char PIC X [8] T61String
char[n] PIC X(n) [6] OCTET STRING
char[n] PIC X(n) [7] T61String

X_C_TYPE short N/A [1] INTEGER
short[n] N/A [2] SEQUENCE OF INTEGER
integer N/A [3] INTEGER
integer[n] N/A [4] SEQUENCE OF INTEGER
long N/A [5] INTEGER
long[n] N/A [6] SEQUENCE OF INTEGER
char N/A [7] OCTET STRING
char N/A [17] T61String
char[n] N/A [8] OCTET STRING
char[n] N/A [9] T61String
char[m][n] N/A [18] SEQUENCE OF OCTET STRING
char[m][n] N/A [19] SEQUENCE OF T61String
float N/A [10] REAL
float[n] N/A [11] SEQUENCE OF REAL
double N/A [12] REAL
double[n] N/A [13] SEQUENCE OF REAL
char[n] null-terminated N/A [20] OCTET STRING
char[m][n] null-terminated N/A [21] SEQUENCE OF OCTET STRING
char[n] null-terminated N/A [22] T61String
char[m][n] null-terminated N/A [23] SEQUENCE OF T61String

Table 14-2 Mapping of XATMI Buffer Type Elements to ASN.1

In the above table the notation type[n] for the C-language types refers to an unnamed array of n
elements of type type. The notation type[m][n] refers to a two-dimensional array of type type.
For the C types above denoted as null-terminated, the null terminator, or terminators in the case
of two-dimensional arrays, is not transmitted in APDUs; rather, it is used locally to distinguish
between ASN.1 types. The ASN.1 tags are shown in brackets preceding a data type’s ASN.1
type.

188 X/Open CAE Specification

Structure and Encoding of XATMI-ASE APDUs Mapping X/Open XATMI Buffer Types

When the XATMI CRM performs transparent encoding and decoding of character data, it maps
the characters to either T.61 or PrintableString.

When mapping to or from PrintableString, an implementation must support the full set of
PrintableString characters as defined by ASN.1 (a subset of the US ASCII printable characters).

When mapping to or from T.61, an implementation must support at least the following
characters:

• T.61 primary control characters:

BS position 0/8
LF position 0/10
FF position 0/12
CR position 0/13

• T.61 Space, position 2/0

• T.61 primary graphic characters, positions 2/1 − 7/14, the US ASCII printable characters.

For this set of characters, interoperation is assured among all implementations of XATMI.

For the additional character sets and character extensions and escape sequences that can occur in
T.61, interoperation may or may not be possible. This depends on which character sets are
supported in the sending and receiving implementations.

Part 2: XATMI Application Service Element (ASE) 189

Structure and Encoding of XATMI-ASE APDUs

190 X/Open CAE Specification

X/Open CAE Specification

Part 3:

XATMI Communication API Appendices

X/Open Company Ltd.

Part 3: XATMI Communication API Appendices 191

192 X/Open CAE Specification

Appendix A

C Programming Examples

This appendix contains examples that highlight the use of the XATMI functions; they are not
meant to convey complete and correct programs.

A.1 Example 1
The following example shows the sequence of calls made by a Client Application and a Server
Application that illustrates the use of the request/response Service Paradigm in the C
programming language.

Client AP

DATA_BUFFER *dptr; /* DATA_BUFFER is a typed buffer of type */
DATA_BUFFER *cptr; /* X_C_TYPE and subtype dc_buf. The structure */
long dlen, clen; /* contains a character array named input and an */
int cd; /* integer named output. */

/* allocate typed buffers */
dptr = (DATA_BUFFER *) tpalloc("X_C_TYPE", "dc_buf", 0);
cptr = (DATA_BUFFER *) tpalloc("X_C_TYPE", "dc_buf", 0);

/* populate typed buffers with input data */
strcpy(dptr->input, "debit account 123 by 50");
strcpy(cptr->input, "credit account 456 by 50");

tx_begin(); /* start global transaction */

/* issue asynchronous request to DEBIT, while it is processing... */
cd = tpacall("DEBIT", (char *) dptr, 0, TPSIGRSTRT);

/* ...issue synchronous request to CREDIT */
tpcall("CREDIT", (char *) cptr, 0, (char **) &cptr, &clen, TPSIGRSTRT);

/* retrieve DEBIT’s reply */
tpgetrply(&cd, (char **) &dptr, &dlen, TPSIGRSTRT);

if (dptr->output == OK && cptr->output == OK)
tx_commit(); /* commit global transaction */

else
tx_rollback(); /* rollback global transaction */

Part 3: XATMI Communication API Appendices 193

Example 1 C Programming Examples

Service AP

/* this routine is used for DEBIT and CREDIT */
debit_credit_svc(TPSVCINFO *svcinfo)
{

DATA_BUFFER *dc_ptr;
int rval;

/* extract request typed buffer */
dc_ptr = (DATA_BUFFER *) svcinfo->data;

/*
* Depending on service name used to invoke this
* routine, perform either debit or credit work.
*/

if (!strcmp(svcinfo->name, "DEBIT")) {
/*

* Parse input data and perform debit
* as part of global transaction.
*/

} else {
/*

* Parse input data and perform credit
* as part of global transaction.
*/

}

if (DBMS update successful) {
rval = TPSUCCESS;
dc_ptr->output = OK;

} else {
rval = TPFAIL; /* global transaction will not commit */
dc_ptr->output = NOT_OK;

}
/* send reply and return from service routine */
tpreturn(rval, 0, (char *) dc_ptr, 0, 0);

}

194 X/Open CAE Specification

C Programming Examples Example 2

A.2 Example 2
The following example shows the sequence of calls made by a Client Application and a Server
Application that illustrates the use of the Conversational Service Paradigm in the C
programming language.

Client AP

DATA_BUFFER *ptr; /* DATA_BUFFER is a typed buffer of type */
long len, event; /* X_C_TYPE and subtype inq_buf. The structure */
int cd; /* contains a character array named input and an */

/* array of integers named output. */

/* allocate typed buffer */
ptr = (DATA_BUFFER *) tpalloc("X_C_TYPE", "inq_buf", 0);

/* populate typed buffer with input data */
strcpy(ptr->input, "retrieve all accounts with balances less than 0");

tx_begin(); /* start global transaction */

/*connect to conversational service, send input data, & yield control*/
cd = tpconnect("INQUIRY", (char *) ptr, 0, TPRECVONLY|TPSIGRSTRT);

do {
/* receive 10 account records at a time */
tprecv(cd, (char **) &ptr, &len, TPSIGRSTRT, &event);
/*

* Format & display in AP-specific manner the accounts returned.
*/

} while (tperrno != TPEEVENT);

if (event == TPEV_SVCSUCC)
tx_commit(); /* commit global transaction */

else
tx_rollback(); /* rollback global transaction */

Part 3: XATMI Communication API Appendices 195

Example 2 C Programming Examples

Service AP

/* this routine is used for INQUIRY */
inquiry_svc(svcinfo)
TPSVCINFO *svcinfo;
{

DATA_BUFFER *ptr;
long event;
int rval;

/* extract initial typed buffer sent as part of tpconnect() */
ptr = (DATA_BUFFER *) svcinfo->data;

/*
* Parse input string, ptr->input, and retrieve records.
* Return 10 records at a time to client. Records are
* placed in ptr->output, an array of account records.
*/

do {
/* gather from DBMS next 10 records into ptr->output array */

tpsend(svcinfo->cd, (char *) ptr, 0, TPSIGRSTRT, &event);
} while (more records exist);

if (inquiry successful) {
rval = TPSUCCESS;

} else {
rval = TPFAIL; /* global transaction will not commit */

}

/* terminate service routine, send no data, and */
/* terminate connection */
tpreturn(rval, 0, NULL, 0, 0);

}

196 X/Open CAE Specification

Appendix B

COBOL Programming Examples

This appendix contains examples that highlight the use of XATMI functions. These are not
intended to convey complete and correct programs.

B.1 Example 1
The following example shows the sequence of calls made by a Client Application and a Server
Application that illustrates the use of the request/response Service Paradigm in the COBOL
programming language.

Client AP

01 CREDIT-REQ
COPY CREDIT.

*
01 DEBIT-REQ
COPY DEBIT.

*
* WK-AREA is used for replies.
*

01 WK-AREA PIC X(100).
*

01 CREDIT-REP REDEFINES WK-AREA.
COPY CREDIT.

*
01 DEBIT-REP REDEFINES WK-AREA.
COPY DEBIT.

*
* Start Global Transaction
*

CALL "TXBEGIN".
*
* Set up TPTYPE-REC
*

MOVE "X_COMMON" TO REC-TYPE.
MOVE "dbuf" TO SUB-TYPE.
MOVE LENGTH OF DEBIT-REQ TO LEN.

*
* Set up DEBIT-REQ
*

MOVE "debit account 123 by 50" TO INPUT IN DEBIT-REQ.
*
* Set up the TPSVCDEF-REC
*

MOVE LOW-VALUES TO TPSVCDEF-REC.
MOVE "DEBIT" TO SERVICE-NAME.

*
CALL "TPACALL" USING

TPSVCDEF-REC TPTYPE-REC DEBIT-REQ TPSTATUS-REC.

Part 3: XATMI Communication API Appendices 197

Example 1 COBOL Programming Examples

*
* Set up TPTYPE-REC
*

MOVE "X_COMMON" TO REC-TYPE.
MOVE "cbuf" TO SUB-TYPE.
MOVE LENGTH OF CREDIT-REQ TO LEN.

*
* Set up CREDIT-REQ
*

MOVE "credit account 456 by 50" TO INPUT IN CREDIT-REQ.
*
* Set up the TPSVCDEF-REC
*

MOVE LOW-VALUES TO TPSVCDEF-REC.
MOVE "CREDIT" TO SERVICE-NAME.

*
CALL "TPACALL" USING

TPSVCDEF-REC TPTYPE-REC CREDIT-REQ TPSTATUS-REC.
*
* Set up TPTYPE-REC
*

MOVE LENGTH OF WK-AREA TO LEN.
*
* Set up the TPSVCDEF-REC
*

MOVE LOW-VALUES TO TPSVCDEF-REC.
SET TPGETANY TO TRUE.
CALL "TPGETRPLY" USING

TPSVCDEF-REC TPTYPE-REC WK-AREA TPSTATUS-REC.
*
* Check SUB-TYPE to determine which record was received
*

IF SUB-TYPE = "cbuf"
MOVE OUTPUT IN CREDIT-REP TO OUTPUT IN CREDIT-REQ

ELSE
MOVE OUTPUT IN DEBIT-REP TO OUTPUT IN DEBIT-REQ.

*
* Set up TPTYPE-REC for second reply
*

MOVE LENGTH OF WK-AREA TO LEN.
*
* Set up the TPSVCDEF-REC
*

MOVE LOW-VALUES TO TPSVCDEF-REC.
SET TPGETANY TO TRUE.
CALL "TPGETRPLY" USING

TPSVCDEF-REC TPTYPE-REC WK-AREA TPSTATUS-REC.

IF SUB-TYPE = "cbuf"
MOVE OUTPUT IN CREDIT-REP TO OUTPUT IN CREDIT-REQ

ELSE
MOVE OUTPUT IN DEBIT-REP TO OUTPUT IN DEBIT-REQ.

198 X/Open CAE Specification

COBOL Programming Examples Example 1

*
IF REQ-SUCCEED IN DEBIT-REQ AND REQ-SUCCEED IN CREDIT-REQ

CALL "TXCOMMIT"
ELSE

CALL "TXROLLBACK".

Service AP

*
* WK-AREA is where service requests are read into.
*

01 WK-AREA PIC X(100).
*

01 DEBIT-REC REDEFINES WK-AREA.
COPY DEBIT.

*
01 CREDIT-REC REDEFINES WK-AREA.
COPY CREDIT.

*
MOVE LENGTH OF WK-AREA TO LEN.

*
CALL "TPSVCSTART" USING

TPSVCDEF-REC TPTYPE-REC WK-AREA TPSTATUS-REC.
*

IF SERVICE-NAME = "DEBIT"
CALL "PROCESS-DEBIT" USING DEBIT-REC

ELSE
CALL "PROCESS-CREDIT" USING CREDIT-REC.

*
IF UPDATE-SUCCEEDED

* DBMS update successful
SET TPSUCCESS TO TRUE
SET REQ-SUCCEED TO TRUE

ELSE
* Ensure transaction rolls back

SET TPFAIL TO TRUE
SET REQ-FAIL TO TRUE.

*
COPY TPRETURN REPLACING DATA-REC BY WK-AREA.

Part 3: XATMI Communication API Appendices 199

Example 2 COBOL Programming Examples

B.2 Example 2
The following example shows the sequence of calls made by a Client Application and a Server
Application that illustrates the use of the Conversational Service Paradigm in the COBOL
programming language.

Client AP

*
* INQUIRY-REC can hold 10 inquiry records.
*

01 INQUIRY-REC.
COPY INQUIRY.

*
CALL "TXBEGIN".

*
* Issue TPCONNECT to INQUIRY.
*

MOVE "X_COMMON" TO REC-TYPE.
MOVE "inq_buf" TO SUB-TYPE.
MOVE LENGTH OF INQ-REC TO LEN.
MOVE LOW-VALUES TO TPSVCDEF-REC.
SET TPRECVONLY TO TRUE.

MOVE "INQUIRY" TO SERVICE-NAME.
*

CALL "TPCONNECT" USING
TPSVCDEF-REC TPTYPE-REC INQUIRY-REC TPSTATUS-REC.

RECV.
*
* Issue a TPRECV and process 10 records at a time.
*

MOVE LOW-VALUES TO TPSVCDEF-REC.
SET TPNOCHANGE TO TRUE.
CALL "TPRECV" USING

TPSVCDEF-REC TPTYPE-REC INQUIRY-REC TPSTATUS-REC.
*
* Format and display in AP-specific manner the account returned.
*

IF NOT TPEEVENT
GO TO RECV.

*
IF TPEV-SVCSUCC

CALL "TXCOMMIT"
ELSE

CALL "TXROLLBACK".

200 X/Open CAE Specification

COBOL Programming Examples Example 2

Service AP

*
01 INQUIRY-REC.
COPY INQUIRY.

*
* Gather input parameters about service request.
*

CALL "TPSVCSTART" USING
TPSVCDEF-REC TPTYPE-REC INQUIRY-REC TPSTATUS-REC.

*
* Gather from DBMS next 10 records and send them to client.
*
SEND.

MOVE LOW-VALUES TO TPSVCDEF-REC.
SET TPSENDONLY TO TRUE.
CALL "TPSEND" USING

TPSVCDEF-REC TPTYPE-REC INQUIRY-REC TPSTATUS-REC.

IF MORE RECORDS
GO TO SEND.

IF INQUIRY-SUCCEEDED
SET TPSUCCESS TO TRUE

ELSE
SET TPFAIL TO TRUE

*
* No data to send back with TPRETURN.
*

MOVE SPACES TO REC-TYPE.
COPY TPRETURN REPLACING DATA-REC BY INQUIRY-REC.

Part 3: XATMI Communication API Appendices 201

COBOL Programming Examples

202 X/Open CAE Specification

Appendix C

TX Extensions for the XATMI Interface

XATMI requires no extensions to the TX (Transaction Demarcation) interface.

Part 3: XATMI Communication API Appendices 203

TX Extensions for the XATMI Interface

204 X/Open CAE Specification

X/Open CAE Specification

Part 4:

XATMI Application Service Element Appendix

X/Open Company Ltd.

Part 4: XATMI Application Service Element Appendix 205

206 X/Open CAE Specification

Appendix D

Scenarios

This appendix contains examples of the usage of XATMI-ASE. Implementors should note that
although the examples may appear to be strikingly similar to existing OSI TP implementations,
such as those based on the XAP-TP, these examples should not be construed as exact usage of
such implementations.

D.1 Synchronous Service Request within a Global Transaction
This scenario uses client mappings 1 and 3, and server mappings 25 and 31.

...

.................................

XATMI
Provider

XATMI
ProviderAP

..

..

..

..

..

..

...

......

. .

TP-BEGIN-DIALOGUE req
TP-BEGIN-DIALOGUE ind

TP-DEFER-END-DIALOGUE req
TP-DEFER-END-DIALOGUE ind

TP-DATA req

TP-DATA req

TP-DATA ind

TP-DATA ind

TP-GRANT-CONTROL req

TP-GRANT-CONTROL req

TP-GRANT-CONTROL ind

TP-GRANT-CONTROL ind

XATMI-CALL req

XATMI-CALL ind

XATMI-REPLY req

XATMI-REPLY ind

.....

CLIENT SERVER

tpcall()

tpservice()

tpreturn(TPSUCCESS)

OSI TP/
OSI Stack
Provider

OSI TP/
OSI Stack
Provider

XATMI
PM

XATMI
PM

AP

.............

...

.

.

.

.

.

.

.

.

.

..........

..

......

...............

................

.

.

.

.

.

.

.

.

.

..

.....................................

...........................

......

...............

...

................

............................

...

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Part 4: XATMI Application Service Element Appendix 207

Asynchronous Service Request within a Global Transaction Scenarios

D.2 Asynchronous Service Request within a Global Transaction
This scenario uses client mappings 1 and 3, and server mappings 25 and 31.

.............

CLIENT SERVER

...

.

.

.

.

.

.

.

.

.

..........

..

......

...............

................

.

.

.

.

.

.

.

.

.

..

.....................................

...........................

......

...............

...

................

............................

...

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

21

22

16

17

18

19

20

..................................

.................................

XATMI
Provider

XATMI
Provider

AP

..

..

..

..

..

..

......................

..

......

. .

TP-BEGIN-DIALOGUE req
TP-BEGIN-DIALOGUE ind

TP-DEFER-END-DIALOGUE req
TP-DEFER-END-DIALOGUE ind

TP-DATA req

TP-DATA req

TP-DATA ind

TP-DATA ind

TP-GRANT-CONTROL req

TP-GRANT-CONTROL req

TP-GRANT-CONTROL ind

TP-GRANT-CONTROL ind

XATMI-CALL req

XATMI-CALL ind

XATMI-REPLY req

XATMI-REPLY ind

..

.....

...............

tpacall()

tpgetrply ()
tpservice()

tpreturn(TPSUCCESS)

OSI TP/
OSI Stack
Provider

OSI TP/
OSI Stack
Provider

XATMI
PM

XATMI
PM

AP

208 X/Open CAE Specification

Scenarios Synchronous Service Request outside any Global Transaction

D.3 Synchronous Service Request outside any Global Transaction
This scenario uses client mappings 1 and 4, and server mappings 25 and 32.

......

......

13

14

15

16

17

18

...

...............................

XATMI
Provider

XATMI
Provider

AP

..

..

..

..

..

..

..

.....

. .

TP-BEGIN-DIALOGUE req
TP-BEGIN-DIALOGUE ind

TP-DATA req
TP-DATA ind

TP-GRANT-CONTROL req
TP-GRANT-CONTROL ind

XATMI-CALL req

XATMI-CALL ind

XATMI-REPLY req

..... tpcall(TPNOTRAN)

tpservice()

tpreturn(TPSUCCESS)

OSI TP/
OSI Stack
Provider

OSI TP/
OSI Stack
Provider

XATMI
PM

XATMI
PM AP

.............

.......................................

.

.

.

.

.

.

........

...

.............

................

.

.

.

.

.

.

...

.............................

...................

...............

..................................

...........

..........................

..

1

2

SERVERCLIENT

3

4

5

6

7

8

9

10

11

12P-DATA req
P-DATA ind

TP-END-DIALOGUE req
TP-END-DIALOGUE ind

XATMI-REPLY ind

Part 4: XATMI Application Service Element Appendix 209

Asynchronous Service Request with No Reply Scenarios

D.4 Asynchronous Service Request with No Reply
This scenario uses client mapping 2 and server mapping 27.

TP-DATA ind
TP-DATA req

TP-END-DIALOGUE ind

TP-BEGIN-DIALOGUE ind

TP-END-DIALOGUE req

TP-BEGIN-DIALOGUE req

. .

.................................

................

..

..

..

..

.. ..

AP XATMI
Provider

XATMI
Provider

.....

...

12

SERVERCLIENT

11

10

9

8

7

6

5

4

3

2

1

...

.................

...

.......................

.....................................

..................................

.

.

.

.

.

.

................

...

.

.

.

.

.

.

.....................................

.............

AP
XATMI

PM
XATMI

PM
OSI TP/

OSI Stack
Provider

OSI TP/
OSI Stack
Provider

tpreturn(TPSUCCESS)

tpservice()

tpacall(TPNOREPLY)
.....

XATMI-CALL ind

XATMI-CALL req

210 X/Open CAE Specification

Scenarios Service Return Failure within a Global Transaction

D.5 Service Return Failure within a Global Transaction
This scenario uses client mappings 1, 5, 20, 8 and 23, and server mappings 25, 33, 45, 43 and 48.

TP-GRANT-CONTROL req

TP-DATA req

TP-BEGIN-DIALOGUE req

TP-DEFER-END-DIALOGUE req

tpacall()

tprollback()

CLIENT SERVER

AP AP
XATMI

Provider
XATMI

Provider
XATMI

PM
XATMI

PM
OSI TP /
OSI Stack
Provider

OSI TP /
OSI Stack
Provider

TP-ROLLBACK-COMPLETE ind

TP-ROLLBACK-COMPLETE ind

TP-U-ABORT req

TP-U-ABORT ind

TP-ABORT-RI
(user,rollback)

XATMI-COMPLETE ind

XATMI-COMPLETE ind

XATMI-DONE req

XATMI-DONE req

TP-DONE req

TP-DONE req

XATMI-FAILURE req

XATMI-FAILURE ind

30

2

XATMI-CALL req

TP-GRANT-CONTROL ind
11

TP-DATA ind
10

XATMI-CALL ind
12

TP-BEGIN-DIALOGUE ind

TP-DEFER-END-DIALOGUE ind

tpgetrply()
17

7

1

26

tpservice()
13

tpreturn(TPFAIL)
14

15

24

25

31

16

23

22

18

27

19

28

20

29

4

5

6

3

8

9

21

Part 4: XATMI Application Service Element Appendix 211

Transaction Rollback Scenarios

D.6 Transaction Rollback
This scenario uses client mappings 20, 19 and 23, and server mappings 42, 45 and 50.

CLIENT SERVER

AP AP
XATMI

Provider
XATMI

Provider
XATMI

PM
XATMI

PM
OSI TP /
OSI Stack
Provider

OSI TP /
OSI Stack
Provider

TP-U-ABORT req

TP-DONE req

TP-ROLLBACK-COMPLETE ind

TP-U-ABORT req

TP-ROLLBACK-COMPLETE ind

XATMI-COMPLETE ind

XATMI-DONE req

TP-DONE req

tx_rollback()
1

XATMI-ROLLBACK req
2

XATMI-DONE req
4

5

6

XATMI-ROLLBACK ind

11

10

13

12

TP-ROLLBACK ind
9

7

14

15

XATMI-COMPLETE ind
8

TP-ROLLBACK req
3

212 X/Open CAE Specification

Scenarios Network Failure within a Transaction

D.7 Network Failure within a Transaction
This scenario uses client mappings 1 and 6, and server mappings 25, 31 and 46.

TP-GRANT-CONTROL ind

TP-P-ABORT ind
TP-P-ABORT ind

TP-GRANT-CONTROL req
TP-DATA ind

TP-DATA req
TP-DEFER-END-DIALOGUE ind

TP-DEFER-END-DIALOGUE req
TP-BEGIN-DIALOGUE ind

TP-BEGIN-DIALOGUE req

. .

...............

.......................................

......................

..

..

..

..

.. ..

AP XATMI
Provider

XATMI
Provider

.................................

..................................

21
20

19
18

17

16

15

.............

14

13

12

11

10

9

8

7

6

5

4

3

2

1

...

............................

................

...

..................

...............................

.....................................

.................................

.......................

.

.

.

.

.

.

.

.

.

................

......................

..

.................

.

.

.

.

.

.

.

.

.

..

CLIENT SERVER

APXATMI
PM

XATMI
PM

OSI TP/
OSI Stack
Provider

OSI TP/
OSI Stack
Provider

tpreturn(TPSUCCESS)

tpservice()
tpgetrply ()

tpacall()

...............

.....

..

XATMI-FAILURE ind
XATMI-ROLLBACK ind

XATMI-REPLY req

XATMI-CALL ind

XATMI-CALL req

Part 4: XATMI Application Service Element Appendix 213

Dialogue Setup Failure Scenarios

D.8 Dialogue Setup Failure
This scenario uses client mappings 1 and 7, and server mapping 27.

SERVERCLIENT

tpacall()

.....

XATMI-FAILURE ind

XATMI-CALL req

TP-GRANT-CONTROL req

TP-DATA req

TP-BEGIN-DIALOGUE(Reject) rspTP-BEGIN-DIALOGUE(Reject) cnf

TP-DEFER-END-DIALOGUE req

TP-BEGIN-DIALOGUE ind

TP-BEGIN-DIALOGUE req

. .

.......

.......................................

..

..

..

..

.. ..

AP XATMI
Provider

XATMI
Provider

...

11

10

9
8

7
6

5

4

3

2

1

...

...

..

...........................

...........

................

.................

...............................

..

.

.

.

.

.

.

.

.

.

.................

.............

APXATMI
PM

XATMI
PM

OSI TP/
OSI Stack
Provider

OSI TP/
OSI Stack
Provider

214 X/Open CAE Specification

Scenarios Service Request Cancel

D.9 Service Request Cancel
This scenario uses client mapping 8 and server mapping 34.

7

5
4

3

CLIENT SERVER

2

1

.......................

...............................

..................

...........

.............

................

...............................

................

.............

APXATMI
PM

XATMI
PM

OSI TP/
OSI Stack
Provider

OSI TP/
OSI Stack
Provider

tpcancel()

tpreturn()

.....

XATMI-CANCEL req

XATMI-CANCEL ind
TP-U-ABORT ind

TP-U-ABORT req

. .

............

......

..

..

..

..

.. ..

AP XATMI
Provider

XATMI
Provider

......

........................

6

Part 4: XATMI Application Service Element Appendix 215

Transaction Commit Scenarios

D.10 Transaction Commit
This scenario uses client mappings 14, 15, 16, 17, 18 and 22, and server mappings 40, 41, 42, 43
and 47.

SERVERCLIENT

.

.

XATMI-PREPARE req

XATMI-READY ind

XATMI-COMMIT req

XATMI-COMMIT ind

XATMI-COMMIT ind

XATMI-COMPLETE ind

XATMI-PREPARE ind

............

..... tx_commit()

OSI TP/
OSI Stack
Provider

OSI TP/
OSI Stack
Provider

XATMI
PM

XATMI
PM

AP

.............

................

...........................

................

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

.................

...........

...........

...........................

.................

..

..

..

..

..

..

..

.

..................

..

..

..

..

......

.......................

..........................

...

1

2

3
4

5

7

9

13

18

19

20

21

22

23

17
16

15

11

..

TP-DONE req

TP-DONE req

..................

....................

................

.......

........
.................

.............

XATMI-DONE req

XATMI-DONE req

XATMI-COMMIT req

XATMI-COMPLETE ind

..........

......

..........

...............

6

8

10

12
14

.......................

XATMI
Provider

XATMI
Provider

AP

..

..

..

..

..

..

........................

. .

TP-PREPARE-ALL req

TP-READY-ALL ind
TP-COMMIT-ALL req

TP-COMMIT ind
TP-COMMIT ind

TP-COMMIT-ALL req

TP-PREPARE ind

TP-COMMIT-COMPLETE indTP-COMMIT-COMPLETE ind

216 X/Open CAE Specification

Scenarios Conversational Service Request (Service Gets Control)

D.11 Conversational Service Request (Service Gets Control)
This scenario uses client mapping 9 and server mapping 28.

XATMI-CONNECT req

XATMI-CONNECT ind

.....

...............

tpconnect(TPRECVONLY)

tpservice()

OSI TP/
OSI Stack
Provider

OSI TP/
OSI Stack
Provider

XATMI
PM

XATMI
PM AP

SERVERCLIENT

.............

.......................

.

.

.

.

.

.

.

.

.

...

................

.

.

.

.

.

.

.

.

.

.....................

.....................................

...............

...

........

...

1

2

3

4

5

6

7

8

9

10

11

12

13

...

XATMI
Provider

XATMI
ProviderAP

..

..

..

..

..

..

......................

..................

. .

TP-BEGIN-DIALOGUE req

TP-BEGIN-DIALOGUE ind
TP-DEFER-END-DIALOGUE req

TP-DEFER-END-DIALOGUE ind

TP-DATA req
TP-DATA ind

TP-GRANT-CONTROL req
TP-GRANT-CONTROL ind

Part 4: XATMI Application Service Element Appendix 217

Conversational Service Request (Requester Keeps Control) Scenarios

D.12 Conversational Service Request (Requester Keeps Control)
This scenario uses client mapping 10 and server mapping 29.

TP-BEGIN-DIALOGUE rsp

TP-BEGIN-DIALOGUE ind
TP-DEFER-END-DIALOGUE req

TP-DEFER-END-DIALOGUE ind
TP-DATA req

TP-DATA ind

SERVERCLIENT

XATMI-CONNECT req

XATMI-CONNECT ind

.....

...............

tpconnect(TPSENDONLY)

tpservice()

OSI TP/
OSI Stack
Provider

OSI TP/
OSI Stack
Provider

XATMI
PM

XATMI
PM AP

.............

............................

.

.

.

.

.

.

................................

...................

................

.

.

.

.

.

.

..........................

...............................

................

.

.

.

..

..........

...

1

2

3

4

5

6

7

8

9

10

11

12

13

...

XATMI
Provider

XATMI
ProviderAP

..

..

..

..

..

..

..........................

...............

. .

TP-BEGIN-DIALOGUE req

TP-BEGIN-DIALOGUE cnf

218 X/Open CAE Specification

Scenarios Conversational Send and Receive with Grant Control

D.13 Conversational Send and Receive with Grant Control
This scenario uses client mappings 12 and 13, and server mappings 38 and 39.

XATMI-DATA req

XATMI-DATA ind

XATMI-DATA ind

XATMI-DATA req

.....

tprecv()

tprecv()

tpsend()

tpsend(TPRECVONLY)

OSI TP/
OSI Stack
Provider

OSI TP/
OSI Stack
Provider

XATMI
PM

XATMI
PM

AP

.............

......

.

.

.

..................................

.

.

.

...

............................

................

.

.

.

.......................................

..........................

.......................

..........

.............................

............................

................

......

......

..........

1

2

SERVERCLIENT

3

4
5

6

7

8

9

10

11

12
TP-DATA req

TP-DATA ind
........

13

14

15

16

18
17

..........................

.....................

XATMI
Provider

XATMI
Provider

AP

..

..

..

..

..

..

..........

..................................

. .

TP-DATA req
TP-DATA ind

TP-GRANT-CONTROL req
TP-GRANT-CONTROL ind

Part 4: XATMI Application Service Element Appendix 219

Disconnection of Conversational Service Scenarios

D.14 Disconnection of Conversational Service
This scenario uses client mapping 11 and server mapping 36.

TP-U-ABORT ind
TP-U-ABORT req

. .

...............

.....

..

..

..

..

.. ..

AP XATMI
Provider

XATMI
Provider

.

.

.

..........................

9

8

7
6

5

4
3

CLIENT SERVER

2

1

..........

........

................

......................

..................

............

...............

................

................................

.................

.............

APXATMI
PM

XATMI
PM

OSI TP/
OSI Stack
Provider

OSI TP/
OSI Stack
Provider

tpdiscon()

tprecv()

tpreturn(TPFAIL)

.....

XATMI-DISCON req

XATMI-DISCON ind

220 X/Open CAE Specification

Index

<xatmi.h> header..23
error values ..24
flags ...23
global variables ...24
service information structure23
service return values..23
typed buffer constants ...24
XATMI events..24

Abstract Syntax Name...115
access to resources..3
account verification..9
ACID properties..9

atomicity...9
consistency...9
coordination by TM ...9
durability..9
isolation ..9
responsibility of RM...9

ACN ..115
ACSE...116, 118
AEQ ...115
AET..115
AP...3

component ...6
CRM ..7
environment ..5

AP (application program).....................................116
AP-CRM interface...7
AP-RM interface..7
AP-TM interface..7
API

portability...3
application

communication ...3
distribution ..3
portability...3
program..3

application context...117
ACSE...118
CCR ...118
identifier ...117
TP-ASE..118
XATMI-ASE ...118

Application Context Name115
Application Entity Qualifier.................................115
Application Entity Title...115

Application Process Title115
application program ..116

component ...6
environment ..5
interface to CRM...7
interface to RM..7
interface to TM..7
sharing resources..3

Application-Service-Failure.........................127, 170
APT..115
ASN ...115
asynchronous request/response17, 59
atomicity ...9

TM..6
atomicity of commitment10
ATP11 ..112
ATP21 ..112
ATP31 ..112
autonomy of RMs...10
awareness

lack of between RMs..10
Begin-Transaction124, 130, 164

XATMI-CALL..153
XATMI-CONNECT157, 167

buffer sub-type name...21, 63
buffer type name...21, 63
buffers ...15
C-language

buffer sub-type name...21
buffer type name...21
conversational service paradigm................15, 18
dynamic advertising ..16
effect on service calls ...20
functions ...14-16, 25
interface overview..13
manual pages ..25
naming rules..21
programming examples....................................193
request/response service paradigm...........15, 17
service name..21
service names ..16
state tables..99
transaction implications......................................19
typed buffers ...15, 103

CCR ...116, 118
chained transaction ..11

Distributed Transaction Processing: The XATMI Specification 221

Index

client ..10
client role..145
client role mappings ..146

TP-BEGIN-DIALOGUE147
TP-COMMIT-ALL..147
TP-COMMIT-COMPLETE147
TP-DATA..147
TP-DEFERRED-END-DIALOGUE.................147
TP-DONE...147
TP-END-DIALOGUE ..147
TP-GRANT-CONTROL....................................147
TP-HEURISTIC-REPORT147
TP-P-ABORT ...147
TP-PREPARE-ALL...147
TP-READY-ALL ...147
TP-ROLLBACK...147
TP-ROLLBACK-COMPLETE147
TP-U-ABORT ..147
XATMI-CALL..147
XATMI-CANCEL ...147
XATMI-COMMIT...147
XATMI-COMPLETE ..147
XATMI-CONNECT..147
XATMI-DATA..147
XATMI-DISCON ..147
XATMI-DONE...147
XATMI-FAILURE ...147
XATMI-HEURISTIC ..147
XATMI-PREPARE ..147
XATMI-READY...147
XATMI-REPLY ..147
XATMI-ROLLBACK ..147

COBOL-language
API style ...56
buffer sub-type name...63
buffer type name...63
conversational service paradigm..........55, 57, 60
dynamic advertising ..58
effect on service calls ...62
functions ...56-60, 65
interface overview..55
manual pages ..65
naming rules..63
programming examples....................................197
request/response service paradigm.....55, 57, 59
service name..63
service names ..58
state tables..99
transaction implications......................................61
transaction timeout ..62
typed records ..57, 103

commit
decision...6

commitment
atomic ...10

committing transactions ...9
communication protocol...3
communication resource manager3

component ...6
interface to AP...7
interface to OSI-TP ...8
interface to TM..7

completion
coordinate ..6

completion of transactions9
component ...5

AP ..3, 6
AP-CRM interface ..7
AP-RM interface ...7
AP-TM interface..7
CRM ..3, 6
CRM-OSI TP interface ...8
failure ..6
interchangeability...3
interfaces between..7
interoperability ...3
RM ...3, 6
RM-TM interface...7
TM..3, 6
TM-CRM interface..7

component ASEs...118
computational task...9
concatenation rules

MACF..120
SACF ...119

consistency ...9
consistent effect of decisions9
consistent state ..9
control ...5
conversational ...121
conversational service

paradigm...........................11, 13, 15, 18, 55, 57, 60
CPI-C interface...6-7
CRM...3

component ...6
CRM (communication resource manager)............4
CRM-AP interface...7
CRM-OSI TP interface ...8
CRM-TM interface..7
database ..3
DBMS...6
decision to commit ...6

222 X/Open CAE Specification

Index

decision to commit or roll back9
definition

application-level chaining11
client ..10
DTP model ...5
local configuration ...11
server...11
service ...10
transaction properties..9

definitions...9
demarcation of transaction.......................................6
design

general principles ...12
relationship with OSI TP12

Diagnostic..127, 141, 182
XATMI-FAILURE.......................................160, 170

distributed transaction processing (DTP)9
DTP

implications of...9
DTP model ...3, 5

definition ..5
durability..9
dynamic advertising ..16, 58
effect on service calls ...20, 62
explicit start of transaction required11
failure of system component....................................9
file access method...6
file access system ..3
flags

TPBLOCK...67
TPBLOCK (TPACALL)69
TPBLOCK (TPCALL)...74
TPBLOCK (TPCONNECT)79
TPBLOCK (TPGETRPLY)83
TPBLOCK (TPRECV) ..85
TPBLOCK (TPSEND) ..92
TPCHANGE ..67
TPCHANGE (TPCALL)......................................74
TPCHANGE (TPGETRPLY)...............................82
TPCHANGE (TPRECV)......................................85
TPCONV ..23, 67
TPCONV (tpservice()) ..50
TPCONV (TPSVCSTART)..................................96
TPGETANY ...23, 67
TPGETANY (tpgetrply())38
TPGETANY (TPGETRPLY)................................82
TPGETHANDLE ..67
TPGETHANDLE (TPGETRPLY).......................82
TPNOBLOCK..23, 67
TPNOBLOCK (tpacall())26
TPNOBLOCK (TPACALL).................................69

TPNOBLOCK (tpcall())30
TPNOBLOCK (TPCALL)....................................74
TPNOBLOCK (tpconnect())34
TPNOBLOCK (TPCONNECT)..........................79
TPNOBLOCK (tpgetrply())38
TPNOBLOCK (TPGETRPLY)83
TPNOBLOCK (tprecv()).....................................42
TPNOBLOCK (TPRECV)....................................85
TPNOBLOCK (tpsend())48
TPNOBLOCK (TPSEND)....................................92
TPNOCHANGE ...23, 67
TPNOCHANGE (tpcall())..................................30
TPNOCHANGE (TPCALL)74
TPNOCHANGE (tpgetrply())...........................38
TPNOCHANGE (TPGETRPLY)........................82
TPNOCHANGE (tprecv())42
TPNOCHANGE (TPRECV)85
TPNOREPLY ...23, 67
TPNOREPLY (tpacall())......................................26
TPNOREPLY (TPACALL)68
TPNOREPLY (tpservice())50
TPNOREPLY (TPSVCSTART)96
TPNOSIGRSTRT ..67
TPNOSIGRSTRT (TPACALL)69
TPNOSIGRSTRT (TPCALL)74
TPNOSIGRSTRT (TPCONNECT)79
TPNOSIGRSTRT (TPGETRPLY).......................83
TPNOSIGRSTRT (TPRECV)86
TPNOSIGRSTRT (TPSEND)93
TPNOTIME..23, 67
TPNOTIME (tpacall()) ..26
TPNOTIME (tpcall()) ..30
TPNOTIME (TPCALL)..74
TPNOTIME (tpconnect())34
TPNOTIME (TPCONNECT)79
TPNOTIME (tpgetrply())38
TPNOTIME (TPGETRPLY)83
TPNOTIME (tprecv())...42
TPNOTIME (TPRECV)..86
TPNOTIME (tpsend())..48
TPNOTIME (TPSEND)92
TPNOTRAN..23, 67
TPNOTRAN (tpacall())26
TPNOTRAN (TPACALL)...................................68
TPNOTRAN (tpcall()) ..30
TPNOTRAN (TPCALL)......................................73
TPNOTRAN (tpconnect()).................................34
TPNOTRAN (TPCONNECT)............................78
TPNOTRAN (TPSVCSTART)............................96
TPRECVONLY..23, 67
TPRECVONLY (tpconnect())34

Distributed Transaction Processing: The XATMI Specification 223

Index

TPRECVONLY (TPCONNECT)........................79
TPRECVONLY (tpsend())48
TPRECVONLY (TPSEND)..................................92
TPRECVONLY (tpservice())..............................51
TPRECVONLY (TPSVCSTART)........................96
TPREPLY ..67
TPREPLY (TPACALL)...68
TPREPLY (TPSVCSTART)..................................96
TPREQRSP...67
TPREQRSP (TPSVCSTART)...............................96
TPSENDONLY..23, 67
TPSENDONLY (tpconnect())34
TPSENDONLY (TPCONNECT)78
TPSENDONLY (TPSEND)92
TPSENDONLY (tpservice())..............................51
TPSENDONLY (TPSVCSTART)........................96
TPSIGRSTRT ...23, 67
TPSIGRSTRT (tpacall())26
TPSIGRSTRT (TPACALL)..................................69
TPSIGRSTRT (tpcall())..31
TPSIGRSTRT (TPCALL)74
TPSIGRSTRT (tpconnect())................................34
TPSIGRSTRT (TPCONNECT)79
TPSIGRSTRT (tpgetrply()).................................38
TPSIGRSTRT (TPGETRPLY)..............................83
TPSIGRSTRT (tprecv())42
TPSIGRSTRT (TPRECV).....................................86
TPSIGRSTRT (tpsend())48
TPSIGRSTRT (TPSEND).....................................93
TPTIME...67
TPTIME (TPACALL) ...69
TPTIME (TPCALL) ..74
TPTIME (TPCONNECT)79
TPTIME (TPGETRPLY)83
TPTIME (TPRECV) ..86
TPTIME (TPSEND) ..93
TPTRAN...23, 67
TPTRAN (TPACALL)..68
TPTRAN (TPCALL)...74
TPTRAN (TPCONNECT)...................................78
TPTRAN (tpservice())...50
TPTRAN (TPSVCSTART)...................................96

flow of control ...5
flows ..207
free() ...29, 37, 41
functional component

AP ..6
CRM ..6
RM ...6
TM..6

functional model...5

Functional-Unit-combination-not-
supported...127, 170
functions

C ...14
COBOL ...56

global transaction ...6
global variables ...24
Grant-Control..130, 133

XATMI-CONNECT157, 167
XATMI-DATA ...162, 177

half duplex ...18, 60
Heuristic-Report...138, 179
implications of DTP ...9
implicit start of transaction11
index to functions

C ...14
COBOL ...56

interchangeability...3
interface ..5

AP-CRM ...7
AP-RM ..7
AP-TM...7
between components ...7
CPI-C ...6-7
CRM-OSI TP ..8
function...7
illustrated ...5
ISAM..6-7
SQL ..7
system-level ...3
TM-CRM...7
TM-RM..7
TX...7
TxRPC..6-7
XA ..7
XA+ ..6-7
XAP-TP...6, 8
XATMI ...6-7

interface overview..13, 55
interface TX..13
interface XATMI..13
interoperability..3
ISAM..6

interface ..7
isolation ..9
location-independence of transaction work9
MACF rules..120

concatenation ..120
mapping ...120
sequencing ...120

malloc() ..29, 37, 41

224 X/Open CAE Specification

Index

manual pages ..25, 65
mapping ...111

between OSI TP and XATMI-ASE...................151
to XATMI return codes......................................183

mapping from OSI TP...164, 167, 169, 171, 175-177
mapping from XATMI interface123
mapping rules

MACF..120
SACF ...119

mapping to OSI TP.................................155, 158-163
mapping transaction services178
mapping XATMI buffer types188
method of referencing transaction9
model...3

functional ...5
modifying shared resource.......................................9
naming model ...115
naming rules..21, 63

buffer sub-type name21, 63
buffer type name ..21, 63
service name..21, 63

native interface..7
constraints ..7

No-Reply-Option ...124, 164
XATMI-CALL..153

operations known within RM................................10
OSI TP ...116

ATP11..112
ATP21..112
ATP31..112
chained transactions ..112
commit..112
communication model111
dialogue..112
functional units required..................................112
handshake..112
mapping with XATMI-ASE..............................151
polarized control ..112
profiles ..112
recovery..112
shared control ...112
unchained transactions112

OSI TP MACF..145
OSI TP naming model ...115

Abstract Syntax Name115
Application Context Name115
Application Entity Qualifier115
Application Entity Title115
Application Process Title..................................115
Transaction Processing Service User Title115

OSI TP relationship ..12

OSI TP services
used by the XATMI-ASE...................................150

OSI TP standards ..6, 8
OSI TP-CRM interface ...8
OSI TPPM...145
overview of interface ...13, 55
paradigm

conversational service....11, 13, 15, 18, 55, 57, 60
request/response service........................11, 13, 15
17, 55, 57, 59 ...

Permanent-Failure..127, 170
portability...3
primitive...121
programming examples................................193, 197
protocol...3
protocol specification ..145
Protocol-Error ...127, 170
realloc() ..29, 37, 41
Reason-not-specified127, 170
Recipient-TPSU-title-required.....................127, 170
Recipient-TPSU-title-unknown...................127, 170
Recipient-Unknown.......................................127, 170
Recipient-XATMI-SU-Failure.......................127, 170
recovery

TM..6
referencing transaction

method of ...9
Rejected-XATMI-Provider............................127, 170
request/response..121
request/response service

paradigm...........................11, 13, 15, 17, 55, 57, 59
resource...3

access to ..3
database..3
file access system..3
manager..3

resource manager
ACID properties responsibility9
component ...6
interface to AP...7
interface to TM..7

return code ...66
RM..3

ACID properties responsibility9
component ...6

RM-AP interface..7
RM-TM interface...7
RMs

work done across..9
rolling back transactions ...9
SACF..113-114

Distributed Transaction Processing: The XATMI Specification 225

Index

SACF rules ...119
concatenation ..119
mapping ...119
sequencing ...119
transaction states ..119

SAO..113-114
scenarios ...207
sequence of tp routines..14
sequencing rules ...99, 142

MACF..120
SACF ...119

server...11
server role...145
server role mappings ...148

TP-BEGIN-DIALOGUE149
TP-COMMIT-ALL..149
TP-COMMIT-COMPLETE149
TP-DATA..149
TP-DEFERRED-END-DIALOGUE.................149
TP-DONE...149
TP-END-DIALOGUE ..149
TP-GRANT-CONTROL....................................149
TP-P-ABORT ...149
TP-PREPARE-ALL...149
TP-ROLLBACK...149
TP-ROLLBACK-COMPLETE149
TP-U-ABORT ..149
XATMI-CALL..149
XATMI-CANCEL ...149
XATMI-COMMIT...149
XATMI-COMPLETE ..149
XATMI-CONNECT..149
XATMI-DATA..149
XATMI-DISCON ..149
XATMI-DONE...149
XATMI-FAILURE ...149
XATMI-PREPARE ..149
XATMI-REPLY ..149
XATMI-ROLLBACK ..149

service ...10
service information structure

XATMI_SERVICE_NAME_LENGTH..............23
service name..21, 63
service names ..16, 58
service primitive summary121
service return values

TPFAIL ...23, 46, 67
TPSUCCESS ..23, 46, 67

Service-Name..124, 130
XATMI-CALL..153, 164
XATMI-CONNECT157, 167

shared resource
modifying...9
RM ...6

shared resources
permanence of changes to9

simultaneous updates across RMs........................10
spanning RMs

distributed transactions ..9
specification

CPI-C interface ..6-7
TX interface..7, 13
TxRPC interface...6-7
XA interface ...7
XA+ interface...7
XAP-TP interface ..8
XATMI interface ..6-7, 13

SQL
interface ..7

standards
OSI TP ...6, 8

start of transaction
implicit by chaining ...11

state table ...99, 142
actions...143
advertising functions...100
C-language...99
COBOL-language ...99
conversational service functions.....................101
interface functions allowed................................99
request/response service functions................101
service routine functions100
typed buffer functions100
valid states ...142
variables ...142

status of work done anywhere9
synchronous request/response17, 59
syntax ..185
system component

failure of ...9
system-level interface ..3
TM..3, 6

ACID properties coordination.............................9
API...7
atomicity...6
recovery ..6

TM (transaction manager)116
TM-AP interface..7
TM-CRM interface..7
TM-RM interface...7
tp routines

COBOL ...56

226 X/Open CAE Specification

Index

order of use ..14
sequence of ..14

tp*() routines..14
TP-ASE..118
TP-BEGIN-DIALOGUE...145

client role mappings ..147
server role mappings...149
XATMI-CALL.ind mapping.............................165
XATMI-CALL.req mapping156
XATMI-CONNECT.ind mapping168
XATMI-CONNECT.req mapping158
XATMI-FAILURE.ind mapping172

TP-COMMIT..145
TP-COMMIT-ALL..145

client role mappings ..147
server role mappings...149
XATMI-COMMIT.ind mapping181
XATMI-COMMIT.req mapping.......................178

TP-COMMIT-COMPLETE
client role mappings ..147
server role mappings...149
XATMI-COMPLETE.ind mapping182

TP-DATA ..145
client role mappings ..147
server role mappings...149
XATMI-CALL.req mapping156
XATMI-CONNECT.req mapping158
XATMI-DATA.req mapping.............................162
XATMI-REPLY.req mapping............................159

TP-DEFERRED-END-DIALOGUE.....................145
client role mappings ..147
server role mappings...149
XATMI-CALL.ind mapping.............................165
XATMI-CALL.req mapping156
XATMI-CONNECT.ind mapping168
XATMI-CONNECT.req mapping158
XATMI-ROLLBACK.ind mapping182

TP-DONE
client role mappings ..147
server role mappings...149
XATMI-DONE.req mapping............................179

TP-END-DIALOGUE
client role mappings ..147
server role mappings...149
XATMI-CALL.req mapping156
XATMI-REPLY.ind mapping............................169
XATMI-REPLY.req mapping............................159

TP-GRANT-CONTROL
client role mappings ..147
server role mappings...149
XATMI-CALL.ind mapping.............................165

XATMI-CONNECT.ind mapping168
XATMI-CONNECT.req mapping158
XATMI-DATA.ind mapping.............................177
XATMI-DATA.req mapping.............................162
XATMI-REPLY.ind mapping............................169

TP-HEURISTIC-REPORT
client role mappings ..147
XATMI-HEURISTIC.ind mapping..................182

TP-P-ABORT
client role mappings ..147
server role mappings...149
XATMI-CANCEL.ind mapping.......................175
XATMI-CONNECT.req mapping158
XATMI-DISCON.ind mapping........................176
XATMI-ROLLBACK.ind mapping181

TP-PREPARE...145
XATMI-PREPARE.ind mapping......................180
XATMI-ROLLBACK.ind mapping182

TP-PREPARE-ALL ...145
client role mappings ..147
server role mappings...149
XATMI-PREPARE.req mapping......................178

TP-READY ...145
TP-READY-ALL..145

client role mappings ..147
XATMI-READY.ind mapping..........................181

TP-ROLLBACK
client role mappings ..147
server role mappings...149
XATMI-ROLLBACK.ind mapping182
XATMI-ROLLBACK.req mapping..................180

TP-ROLLBACK-COMPLETE
client role mappings ..147
server role mappings...149
XATMI-COMPLETE.ind mapping182

TP-U-ABORT ..163, 171
client role mappings ..147
server role mappings...149
XATMI-CANCEL.ind mapping.......................175
XATMI-DISCON.ind mapping........................176
XATMI-DONE.req mapping............................179
XATMI-FAILURE.req mapping.......................160
XATMI-ROLLBACK.ind mapping182
XATMI-ROLLBACK.req mapping..................180

TPACALL...56-57, 59, 68
tpacall()....................................14-17, 26, 99, 101, 123

XATMI return code mapping...........................184
TPADVERTISE ...56, 58, 71
tpadvertise()....................................14, 16, 28, 99-100
tpalloc() ..14-15, 29, 99-100

Distributed Transaction Processing: The XATMI Specification 227

Index

TPBLOCK
in TPACALL..69
in TPCALL ...74
in TPCONNECT ...79
in TPGETRPLY..83
in TPINTRO...67
in TPRECV ...85
in TPSEND...92

TPCALL ..56-59, 73
tpcall() ..14-17, 30, 99, 123

XATMI return code mapping...........................184
TPCANCEL ...56, 58-59, 77
tpcancel() ..14, 17, 33, 99, 101

XATMI return code mapping...........................184
TPCHANGE

in TPCALL ...74
in TPGETRPLY..82
in TPINTRO...67
in TPRECV ...85

TPCONNECT..56-58, 60, 78
tpconnect()........................14-16, 18, 34, 99, 101, 123

XATMI return code mapping...........................184
TPCONV ..23

in TPINTRO...67
in tpservice() ...50
in TPSVCSTART...96

TPDISCON ..56, 60, 81
tpdiscon()14, 18, 36, 42, 99, 101, 123

XATMI return code mapping...........................184
TPEBADDESC...24

in TPCANCEL...77
in tpcancel()...33
in TPDISCON..81
in tpdiscon() ..36
in TPGETRPLY..83
in tpgetrply()...39
in TPINTRO...66
in TPRECV ...87
in tprecv() ..43
in TPSEND...93
in tpsend() ...49
XATMI return code mapping...........................184

TPEBLOCK ..24
in TPACALL..70
in tpacall()..27
in TPCALL ...75
in tpcall()..32
in TPCONNECT ...80
in tpconnect()..35
in TPGETRPLY..84
in tpgetrply()...39

in TPINTRO...66
in TPRECV ...87
in tprecv() ..44
in TPSEND...94
in tpsend() ...49
XATMI return code mapping...........................184

TPEEVENT...24
in TPINTRO...66
in TPRECV ...87
in tprecv() ..44
in TPSEND...94
in tpsend() ...49
XATMI return code mapping...........................184

TPEGOTSIG...66
TPEINVAL ...24

in TPACALL..69
in tpacall()..26
in TPADVERTISE...71
in tpadvertise() ...28
in tpalloc() ...29
in TPCALL ...75
in tpcall()..31
in TPCONNECT ...79
in tpconnect()..35
in TPGETRPLY..83
in tpgetrply()...39
in TPINTRO...66
in tprealloc()..41
in TPRECV ...87
in tprecv() ..43
in TPSEND...93
in tpsend() ...49
in TPSVCSTART...96
in tptypes() ..52
in TPUNADVERTISE ..98
in tpunadvertise() ..53
XATMI return code mapping...........................184

TPEITYPE...24
in TPACALL..69
in tpacall()..27
in TPCALL ...75
in tpcall()..31
in TPCONNECT ...79
in tpconnect()..35
in TPINTRO...66
XATMI return code mapping...........................184

TPELIMIT...24
in TPACALL..69
in tpacall()..27
in TPADVERTISE...71
in tpadvertise() ...28

228 X/Open CAE Specification

Index

in TPCONNECT ...79
in tpconnect()..35
in TPINTRO...66
XATMI return code mapping...........................184

TPEMATCH...24
in TPADVERTISE...71
in tpadvertise() ...28
in TPINTRO...66

TPENOENT ...24
in TPACALL..69
in tpacall()..27
in tpalloc() ...29
in TPCALL ...75
in tpcall()..31
in TPCONNECT ...79
in tpconnect()..35
in TPINTRO...66
in TPUNADVERTISE ..98
in tpunadvertise() ..53
XATMI return code mapping...........................184

TPEOS ...24
in TPACALL..70
in tpacall()..27
in TPADVERTISE...71
in tpadvertise() ...28
in tpalloc() ...29
in TPCALL ...76
in tpcall()..32
in TPCANCEL...77
in tpcancel()...33
in TPCONNECT ...80
in tpconnect()..35
in TPDISCON..81
in tpdiscon() ..36
in TPGETRPLY..84
in tpgetrply()...40
in TPINTRO...66
in tprealloc()..41
in TPRECV ...88
in tprecv() ..44
in TPSEND...94
in tpsend() ...49
in TPSVCSTART...96
in tptypes() ..52
in TPUNADVERTISE ..98
in tpunadvertise() ..53
XATMI return code mapping...........................184

TPEOTYPE...24
in TPCALL ...75
in tpcall()..31
in TPGETRPLY..83

in tpgetrply()...39
in TPINTRO...66
in TPRECV ...87
in tprecv() ..43
XATMI return code mapping...........................184

TPEPROTO ..24
in TPACALL..70
in tpacall()..27
in TPADVERTISE...71
in tpadvertise() ...28
in tpalloc() ...29
in TPCALL ...76
in tpcall()..32
in TPCANCEL...77
in tpcancel()...33
in TPCONNECT ...80
in tpconnect()..35
in TPDISCON..81
in tpdiscon() ..36
in TPGETRPLY..84
in tpgetrply()...40
in TPINTRO...66
in tprealloc()..41
in TPRECV ...87
in tprecv() ..44
in TPSEND...94
in tpsend() ...49
in TPSVCSTART...96
in tptypes() ..52
in TPUNADVERTISE ..98
in tpunadvertise() ..53
XATMI return code mapping...........................184

tperrno()
error values ..24

TPESVCERR ..24
in TPCALL ...75
in tpcall()..31
in TPGETRPLY..84
in tpgetrply()...39
in TPINTRO...66
in tpreturn() ...45-46
in tpservice() ...51
XATMI return code mapping...........................184

TPESVCFAIL...24
in TPCALL ...75
in tpcall()..31
in TPGETRPLY..84
in tpgetrply()...39
in TPINTRO...66
XATMI return code mapping...........................184

TPESYSTEM ..24

Distributed Transaction Processing: The XATMI Specification 229

Index

in TPACALL..70
in tpacall()..27
in tpadvertise() ...28
in tpalloc() ...29
in tpcall()..32
in tpcancel()...33
in tpconnect()..35
in tpdiscon() ..36
in TPGETRPLY..84
in tpgetrply()...40
in TPINTRO...66
in tprealloc()..41
in TPRECV ...87
in tprecv() ..44
in TPSEND...94
in tpsend() ...49
in TPSVCSTART...96
in tptypes() ..52
in TPUNADVERTISE ..98
in tpunadvertise() ..53
XATMI return code mapping...........................184

TPETIME ..24
in TPACALL..69
in tpacall()..27
in TPCALL ...75
in tpcall()..31
in TPCONNECT ...80
in tpconnect()..35
in TPDISCON..81
in tpdiscon() ..36
in TPGETRPLY..84
in tpgetrply()...39
in TPINTRO...66
in TPRECV ...87
in tprecv() ..44
in tpreturn()...46
in TPSEND...94
in tpsend() ...49
XATMI return code mapping...........................184

TPETRAN...24
in TPACALL..69
in tpacall()..27
in TPCALL ...75
in tpcall()..31
in TPCANCEL...77
in tpcancel()...33
in TPCONNECT ...79
in tpconnect()..35
in TPINTRO...66
XATMI return code mapping...........................184

TPEV-DISCONIMM
in TPINTRO...66

TPEV-NOEVENT
TPINTRO ...66

TPEV-SENDONLY
in TPINTRO...66

TPEV-SVCERR
in TPINTRO...66

TPEV-SVCFAIL
in TPINTRO...66

TPEV-SVCSUCC
in TPINTRO...66

TPEV_DISCONIMM..24
in tpdiscon() ..36
in tprecv() ..42
in tpreturn() ...45-46
in tpsend() ...48
XATMI return code mapping...........................184

TPEV_SENDONLY ..24
in tprecv()...42-43
XATMI return code mapping...........................184

TPEV_SVCERR ...24
in tprecv() ..43
in tpreturn() ...45-47
in tpsend() ...48
in tpservice() ...51
XATMI return code mapping...........................184

TPEV_SVCFAIL..24
in tprecv()...42-43
in tpreturn() ...45-47
in tpsend() ...49
XATMI return code mapping...........................184

TPEV_SVCSUCC..24
in tprecv()...42-43
in tpreturn() ...45-46
XATMI return code mapping...........................184

TPFAIL..23
in TPINTRO...67
in tprecv() ..43
in tpreturn()...46
XATMI-FAILURE.ind mapping171

tpfree() ..14-15, 37, 99-100
TPGETANY..23

in TPGETRPLY..82
in tpgetrply()...38
in TPINTRO...67

TPGETHANDLE
in TPGETRPLY..82
in TPINTRO...67

TPGETRPLY...56-57, 59, 82
tpgetrply().........................14-15, 17, 38, 99, 101, 123

230 X/Open CAE Specification

Index

XATMI return code mapping...........................184
TPGOTSIG ...24

in TPACALL..70
in tpacall()..27
in tpcall()..32
in tpconnect()..35
in tpgetrply()...40
in tprecv() ..44
in tpsend() ...49
XATMI return code mapping...........................184

TPINTRO..66
return code...66

TPNOBLOCK ..23
in TPACALL..69
in tpacall()..26
in TPCALL ...74
in tpcall()..30
in TPCONNECT ...79
in tpconnect()..34
in TPGETRPLY..83
in tpgetrply()...38
in TPINTRO...67
in TPRECV ...85
in tprecv() ..42
in TPSEND...92
in tpsend() ...48

TPNOCHANGE ...23
in TPCALL ...74
in tpcall()..30
in TPGETRPLY..82
in tpgetrply()...38
in TPINTRO...67
in TPRECV ...85
in tprecv() ..42

TPNOREPLY..23
in TPACALL..68
in tpacall()..26
in TPINTRO...67
in tpservice() ...50
in TPSVCSTART...96

TPNOSIGRSTRT
in TPACALL..69
in TPCALL ...74
in TPCONNECT ...79
in TPGETRPLY..83
in TPINTRO...67
in TPRECV ...86
in TPSEND...93

TPNOTIME..23
in TPACALL..69
in tpacall()..26

in TPCALL ...74
in tpcall()..30
in TPCONNECT ...79
in tpconnect()..34
in TPGETRPLY..83
in tpgetrply()...38
in TPINTRO...67
in TPRECV ...86
in tprecv() ..42
in TPSEND...92
in tpsend() ...48

TPNOTRAN ..23
in TPACALL..68
in tpacall()..26
in TPCALL ...73
in tpcall()..30
in TPCONNECT ...78
in tpconnect()..34
in TPINTRO...67
in TPSVCSTART...96

TPOK
in TPINTRO...66

TPPM...145
tprealloc()...14-15, 41, 99-100
TPRECV..56-57, 60, 85
tprecv()14-15, 18, 42, 99, 101, 123

XATMI return code mapping...........................184
TPRECVONLY..23

in TPCONNECT ...79
in tpconnect()..34
in TPINTRO...67
in TPSEND...92
in tpsend() ...48
in tpservice() ...51
in TPSVCSTART...96

TPREPLY
in TPACALL..68
in TPINTRO...67
in TPSVCSTART...96

TPREQRSP
in TPINTRO...67
in TPSVCSTART...96

TPRETURN..56-57, 60, 89
tpreturn()14-15, 18, 42-43, 45, 99-101, 123
TPSEND..56-57, 60, 92
tpsend()14-15, 18, 48, 99, 101, 123

XATMI return code mapping...........................184
TPSENDONLY..23

in TPCONNECT ...78
in tpconnect()..34
in TPINTRO...67

Distributed Transaction Processing: The XATMI Specification 231

Index

in TPSEND...92
in tpservice() ...51
in TPSVCSTART...96

tpservice()14-15, 50, 99-100, 123
TPSIGRSTRT ...23

in TPACALL..69
in tpacall()..26
in TPCALL ...74
in tpcall()..31
in TPCONNECT ...79
in tpconnect()..34
in TPGETRPLY..83
in tpgetrply()...38
in TPINTRO...67
in TPRECV ...86
in tprecv() ..42
in TPSEND...93
in tpsend() ...48

TPSU-not-available(permanent)127, 170
TPSU-not-available(transient).....................127, 170
TPSUCCESS...23

in TPINTRO...67
in tprecv() ..43
in tpreturn()...46

TPSUT ...115
TPSVCFAIL..46
TPSVCINFO......................................28, 34, 42, 48, 50
TPSVCSTART56-57, 95, 99-100
TPTIME

in TPACALL..69
in TPCALL ...74
in TPCONNECT ...79
in TPGETRPLY..83
in TPINTRO...67
in TPRECV ...86
in TPSEND...93

TPTRAN...23, 50
in TPACALL..68
in TPCALL ...74
in TPCONNECT ...78
in TPINTRO...67
in TPSVCSTART...96

tptypes() ...14-15, 52, 99-100
TPUNADVERTISE.......................................56, 58, 98
tpunadvertise()...............................14, 16, 53, 99-100
transaction

actions ...3
boundary ..6
commit decision..6
completion ...3, 6
defining boundaries ...3

definition of..9
demarcation ...6-7
failure ..3
global...3, 6
identifier assigning...3
manager..3
properties ...9
recovery ..3
RM-internal..10

transaction implications....................................19, 61
transaction manager

ACID properties coordination.............................9
API...7
atomicity...6
interface to AP...7
interface to CRM...7
interface to RM..7
recovery ..6

Transaction Processing Service User Title.........115
transaction states ..119
transaction timeout ..20, 62
transaction work

location-independence of9
transactions

committing...9
rolling back ..9

Transient-Failure ..127, 170
TX extensions for XATMI interface203
TX interface..7, 13

interactions with...19, 61
tpdiscon()...42
tpreturn() ...42
TXBEGIN..61-62
TXCOMMIT...61
TXROLLBACK..61
TXSETTIMEOUT..62
tx_begin()...19-20, 50
tx_commit() ..19, 42, 48, 50
tx_rollback()19, 42, 48, 50
tx_set_transaction_timeout()20

TXBEGIN ..61-62
TXCOMMIT...61
TXROLLBACK..61
TxRPC interface ...6-7
TXSETTIMEOUT ..62
tx_begin() ...19-20, 50
tx_commit() ..19, 42, 48, 50

mapping from XATMI.......................................123
transaction services..178
XATMI-COMPLETE.ind...................................182
XATMI-HEURISTIC ..141

232 X/Open CAE Specification

Index

XATMI-HEURISTIC.ind182
XATMI-PREPARE ..135
XATMI-PREPARE.req178
XATMI-ROLLBACK.ind...................................181

tx_rollback()..19, 42, 48, 50
mapping from XATMI.......................................123
transaction services..178
XATMI-CANCEL.ind ..176
XATMI-COMPLETE.ind...................................182
XATMI-FAILURE.ind........................171-172, 174
XATMI-HEURISTIC ..141
XATMI-HEURISTIC.ind182
XATMI-ROLLBACK ..140
XATMI-ROLLBACK.ind...................................182
XATMI-ROLLBACK.req180

tx_set_transaction_timeout().................................20
typed buffer constants

X_COMMON ..24, 67
X_C_TYPE..24
X_OCTET ...24, 67

typed buffers..15
C-language...103-104
X_COMMON ..104
X_C_TYPE..105
X_OCTET ...104

typed record...57
typed records

COBOL-language.......................................103, 107
X_COMMON ..107
X_OCTET ...107

unchained transaction ...11
undoing work..9
uniform effect of decisions..9
unit of work ...9
usage scenarios ...207
User-Code...126-127

XATMI-FAILURE.......................................160, 170
XATMI-REPLY..159, 169

User-Data.................................124, 126-127, 130, 133
XATMI-CALL..153, 164
XATMI-CONNECT157, 167
XATMI-DATA ...162, 177
XATMI-FAILURE.......................................160, 170
XATMI-REPLY..159, 169

variables ...142
Clnt ..142
Conv..143
Ctrl...143
Reply ...142
Svr..142
Tran..143

work done ..9
work done across RMs ..9
work done anywhere

status of ..9
X-COMMON ...67
X-OCTET ..67
X/Open publications ...3
X/Open specification

CPI-C interface ..6-7
TX interface..7, 13
TxRPC interface...6-7
XA interface ...7
XA+ interface...7
XAP-TP interface ..8
XATMI interface ..6-7, 13

X/Open-compliant interface....................................9
XA interface ...7, 123
XA+ interface ...6-7
XAP-TP interface ..6, 8
XATMI

ACSE...111
application context...117
communication model111

XATMI event
TPEV_DISCONIMM..24
TPEV_SENDONLY ..24
TPEV_SVCERR ...24
TPEV_SVCFAIL..24
TPEV_SVCSUCC..24

XATMI interface ..6-7, 13
C index..14
COBOL index ..56

XATMI-AEI ..113-114
XATMI-API ..113-114
XATMI-ASE.....................................111, 113-114, 118

application entity invocation113-114
application process invocation113-114
application service element......................113-114
context definition ...117
mapping with OSI TP..151
multiple association control function113-114
OSI TP services used ...150
protocol machine ..113-114
protocol specification ..145
relationship with other ASEs...........................145
service definition ..121
service user invocation..............................113-114
single association control function113-114
single association object113-114
state tables ...142
structure ...113

Distributed Transaction Processing: The XATMI Specification 233

Index

usage scenarios ...207
XATMI-ASE APDU ..185

abstract syntax ..185
mapping XATMI buffer types..........................188
structure and encoding185

XATMI-ASE context definition............................117
ACSE...118
CCR ...118
component ASEs ..118
TP-ASE..118
XATMI-ASE ...118

XATMI-ASE service definition.............................121
mapping from XATMI interface......................123
service primitive summary121

XATMI-ASE services..124
XATMI-CALL122-124, 144, 153, 164

Begin-Transaction124, 153, 164
client role mappings ..147
mapping from OSI TP164
mapping to OSI TP...155
No-Reply-Option...............................124, 153, 164
server role mappings...149
Service-Name124, 153, 164
User-Data...124, 153, 164

XATMI-CANCEL...........122-123, 129, 144, 161, 175
client role mappings ..147
mapping from OSI TP175
mapping to OSI TP...161
server role mappings...149

XATMI-COMMIT122-123, 137, 144, 178, 181
client role mappings ..147
server role mappings...149

XATMI-COMPLETE..............122-123, 139, 144, 182
client role mappings ..147
server role mappings...149

XATMI-CONNECT122-123, 130, 144, 157, 167
Begin-Transaction130, 157, 167
client role mappings ..147
Grant-Control130, 157, 167
mapping from OSI TP167
mapping to OSI TP...158
server role mappings...149
Service-Name130, 157, 167
User-Data...130, 157, 167

XATMI-DATA.................122-123, 133, 144, 162, 177
client role mappings ..147
Grant-Control133, 162, 177
mapping from OSI TP177
mapping to OSI TP...162
server role mappings...149
User-Data...133, 162, 177

XATMI-DATA-GRANT-CONTROL-RI
XATMI-DATA.req mapping.............................162

XATMI-DATA-RI
XATMI-DATA.req mapping.............................162

XATMI-DISCON............122-123, 132, 144, 163, 176
client role mappings ..147
mapping from OSI TP176
mapping to OSI TP...163
server role mappings...149

XATMI-DONE122-123, 138, 144, 179
client role mappings ..147
Heuristic-Report...138, 179
server role mappings...149

XATMI-FAILURE...........122-123, 127, 144, 160, 170
Application-Service-Failure.....................127, 170
client role mappings ..147
Diagnostic..127, 160, 170
Functional-Unit-combination-not-........................
supported...127, 170
mapping from OSI TP171
mapping to OSI TP...160
Permanent-Failure127, 170
Protocol-Error ...127, 170
Reason-not-specified.................................127, 170
Recipient-TPSU-title-required.................127, 170
Recipient-TPSU-title-unknown...............127, 170
Recipient-Unknown127, 170
Recipient-XATMI-SU-Failure127, 170
Rejected-XATMI-Provider........................127, 170
server role mappings...149
TPSU-not-available(permanent).............127, 170
TPSU-not-available(transient).................127, 170
Transient-Failure ..127, 170
User-Code..127, 160, 170
User-Data...127, 160, 170

XATMI-FAILURE-RI..160
XATMI-HEURISTIC122-123, 141, 144, 182

client role mappings ..147
Diagnostic..141, 182

XATMI-MACF ...113-114
XATMI-PM.......................................111, 113-114, 145

ACSE...116
AP ..116
CCR ...116
mapping to the X/Open DTP model116
OSI TP...116
state tables ...142
TM ...116

XATMI-PREPARE..122-123, 135, 144-145, 178, 180
client role mappings ..147
server role mappings...149

234 X/Open CAE Specification

Index

XATMI-CALL.req mapping156
XATMI-READY122-123, 136, 144, 180

client role mappings ..147
XATMI-REPLY................122-123, 126, 144, 159, 169

client role mappings ..147
mapping from OSI TP169
mapping to OSI TP...159
server role mappings...149
User-Code..126, 159, 169
User-Data...126, 159, 169

XATMI-REPLY-RI...159
XATMI-ROLLBACK......122-123, 140, 144, 180-181

client role mappings ..147
server role mappings...149

XATMI-SUI113-114, 121, 145
state tables ...142

XATMI_SERVICE_NAME_LENGTH23
X_COMMON24, 67, 104, 107, 188
X_C_TYPE ...24, 105, 188
X_OCTET24, 67, 104, 107, 188

Distributed Transaction Processing: The XATMI Specification 235

Index

236 X/Open CAE Specification

