
X/Open CAE Specification

Distributed Transaction Processing:

The TxRPC Specification

X/Open Company Ltd.

 November 1995, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

Distributed Transaction Processing: The TxRPC Specification

ISBN: 1-85912-115-2
X/Open Document Number: C505

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.org

ii X/Open CAE Specification

Contents

Part 1 TxRPC Communication Application
Programming Interface (API).. 1

Chapter 1 Introduction... 3
 1.1 X/Open DTP Model... 3
 1.2 X/Open Communication Resource Manager Interfaces.................... 4

Chapter 2 Model and Definitions.. 5
 2.1 X/Open DTP Model... 5
 2.1.1 Functional Components ... 6
 2.1.2 Interfaces between Functional Components...................................... 7
 2.2 Definitions .. 9
 2.2.1 Transaction .. 9
 2.2.2 Transaction Properties .. 9
 2.2.3 Distributed Transaction Processing ... 9
 2.2.4 Global Transactions ... 10
 2.2.5 Transaction Branches .. 10
 2.2.6 Remote Procedure Call ... 10
 2.2.7 Client and Server.. 11
 2.2.8 Manager Function.. 11
 2.2.9 Transactional RPC ... 11
 2.2.10 Interface Definition Language... 11
 2.2.11 TxRPC Communication Resource Manager 11
 2.3 TxRPC Model... 12
 2.4 Transaction Implications ... 13
 2.4.1 Transaction Functions Affecting a TxRPC CRM 13
 2.4.2 TxRPCs in a Transactional Environment .. 13
 2.5 Transaction Commitment ... 14
 2.6 Nested TxRPCs.. 14
 2.7 Non-transactional RPCs.. 14
 2.8 Transaction Rollback.. 15

Chapter 3 Interface Overview.. 17
 3.1 Interactions with the RPC Interface.. 18
 3.1.1 IDL Language Interactions .. 18
 3.1.2 Additional IDL Attributes.. 18
 3.1.3 Limiting IDL Attributes.. 18
 3.1.4 Context Handles .. 19
 3.1.5 OSI TP Protocol Sequence.. 19
 3.1.6 RPC Run-time Service Interactions.. 19
 3.1.7 IDL-only TxRPC CRMs... 20
 3.1.8 TxRPC Errors .. 20

Distributed Transaction Processing: The TxRPC Specification iii

Contents

 3.1.9 Object Support.. 20
 3.2 Interactions with the TX Interface... 21
 3.2.1 tx_begin() .. 21
 3.2.2 tx_close() ... 21
 3.2.3 tx_commit() .. 21
 3.2.4 tx_info() ... 21
 3.2.5 tx_open() ... 21
 3.2.6 tx_rollback() ... 21
 3.2.7 tx_set_commit_return() ... 21
 3.2.8 tx_set_transaction_control() ... 22
 3.2.9 tx_set_transaction_timeout().. 22

Chapter 4 Implementation Requirements ... 23
 4.1 AP Requirements .. 23
 4.2 Thread of Control ... 23
 4.3 TxRPC CRM Requirements .. 24
 4.3.1 Compliant TxRPC CRMs ... 24
 4.3.2 Public Information... 24
 4.4 TM Requirements ... 24

Part 2 TxRPC Application Service Element (ASE)................... 25

Chapter 5 Remote Task Invocation Model .. 27
 5.1 Model Components .. 27
 5.1.1 RTI Application Process Invocation .. 27
 5.1.2 RTI Service User Invocation .. 27
 5.1.3 RTI Application Entity Invocation... 27
 5.1.4 RTI Protocol Machine ... 27
 5.1.5 RTI Multiple Association Control Function....................................... 28
 5.1.6 Single Association Object... 28
 5.1.7 Single Association Control Function ... 28
 5.2 RTI Model Component Relationships.. 30
 5.2.1 RPC-ASE Service Primitives.. 30
 5.2.2 DC-ASE Service Primitives.. 30
 5.2.3 OSI TP Service Primitives .. 30
 5.2.4 RTI Service Primitives... 31
 5.3 RTI Communication Model.. 32
 5.3.1 Service Providers and Service Users.. 32
 5.3.2 Clients and Servers.. 32
 5.3.3 Processing a Call .. 32
 5.3.4 Contexts ... 33
 5.3.5 Dialogues... 34
 5.3.6 OSI TP Profiles.. 35
 5.3.7 Context Trees, Dialogue Trees and Transaction Trees 36
 5.3.8 Bound Data.. 37
 5.3.9 Using the RTI Communication Model .. 38
 5.4 Relationship of the RTI Model to OSI .. 39
 5.5 RTI Naming Model... 40

iv X/Open CAE Specification

Contents

 5.5.1 OSI Names Used in the RTI Model.. 40
 5.5.2 AP-Title.. 40
 5.5.3 AE-Qualifier .. 40
 5.5.4 A-Ctx-Name.. 40
 5.5.5 TPSU-Title ... 41
 5.5.6 AS-Name ... 41

Chapter 6 RTI Application Context Definition .. 43
 6.1 Application Context Name... 44
 6.2 Component ASEs.. 44
 6.3 Application Services... 44
 6.4 Persistent Application Functions... 44
 6.5 SACF Rules... 44
 6.6 MACF Rules... 45
 6.7 Optional Features.. 45
 6.8 Error Handling .. 45
 6.9 Context Manipulation.. 45
 6.10 Conformance ... 45

Chapter 7 RTI Service Definition.. 47
 7.1 Service Conventions... 48
 7.2 Service Functional Unit Description... 50
 7.3 Summary of Service Primitives.. 51
 7.4 Kernel Functional Unit... 52
 7.4.1 RTI-ESTABLISH-CONTEXT request... 53
 7.4.2 RTI-CALL-TASK request and indication.. 56
 7.4.3 RTI-CANCEL-CALL request and indication..................................... 59
 7.4.4 RTI-CALL-FAILURE indication ... 60
 7.4.5 RTI-CALL-RESULT request and indication 63
 7.5 Non-Transactional Functional Unit .. 64
 7.5.1 RTI-RELEASE-CONTEXT request and indication 65
 7.6 Transactional Functional Unit.. 66
 7.6.1 RTI-HEURISTIC-REPORT indication ... 67
 7.6.2 RTI-ROLLBACK-TRANS request and indication............................. 68
 7.6.3 RTI-END-TRANS request.. 69
 7.6.4 RTI-PREPARE-TRANS indication ... 70
 7.6.5 RTI-TRANS-READY request and indication..................................... 71
 7.6.6 RTI-COMMIT-TRANS request and indication 72
 7.6.7 RTI-TRANS-DONE request... 73
 7.6.8 RTI-TRANS-COMPLETE indication ... 74
 7.7 Sequencing Rules and State Tables ... 75
 7.7.1 State Table Conventions ... 75
 7.7.2 Variables... 76
 7.7.3 Actions ... 77
 7.7.4 States... 77
 7.7.5 State Tables.. 78

Distributed Transaction Processing: The TxRPC Specification v

Contents

Chapter 8 RTI Protocol Machine ... 81
 8.1 Use of Supportive Services ... 82
 8.1.1 Relationship to Other Services.. 82
 8.1.2 Mapping RTI-ESTABLISH-CONTEXT ... 83
 8.1.3 Mapping RTI-CALL-TASK .. 84
 8.1.4 Mapping RTI-CANCEL-CALL ... 85
 8.1.5 Mapping RTI-CALL-FAILURE... 85
 8.1.6 Mapping RTI-CALL-RESULT ... 86
 8.1.7 Mapping RTI-RELEASE-CONTEXT.. 86
 8.1.8 Mapping RTI-HEURISTIC-REPORT ... 86
 8.1.9 Mapping RTI-ROLLBACK-TRANS... 86
 8.1.10 Mapping RTI-END-TRANS... 86
 8.1.11 Mapping RTI-PREPARE-TRANS... 86
 8.1.12 Mapping RTI-TRANS-READY ... 86
 8.1.13 Mapping RTI-COMMIT-TRANS.. 86
 8.1.14 Mapping RTI-TRANS-DONE ... 86
 8.1.15 Mapping RTI-TRANS-COMPLETE... 87
 8.2 TP Services ... 88
 8.3 DC-ASE Services ... 89
 8.3.1 Service Primitives .. 89
 8.3.2 DC-BEGIN-DIALOGUE request and indication............................... 89
 8.3.3 DC-REJECT-DIALOGUE request and indication 90
 8.3.4 Protocol Procedure .. 91
 8.3.5 Parameter Mappings... 91
 8.3.6 Structure and Encoding of APDUs .. 93
 8.4 RPC-ASE Services... 95
 8.4.1 Service Conventions.. 95
 8.4.2 Service Primitives .. 96
 8.4.3 RPC-REQUEST... 96
 8.4.4 RPC-RESPONSE .. 98
 8.4.5 RPC-ORPHANED ... 98
 8.4.6 RPC-REMOTE-ALERT... 99
 8.4.7 RPC-FAULT .. 99
 8.4.8 RPC-NO-CONN .. 100
 8.4.9 RPC-DONE ... 101
 8.4.10 RPC-SHUTDOWN .. 101
 8.4.11 Protocol Procedures... 101
 8.4.12 Mapping to Lower Layers.. 104
 8.4.13 Parameter Mappings... 104
 8.4.14 Structure and Encoding of APDUs .. 105
 8.4.15 Sequencing .. 107
 8.5 RTI-MACF Procedures .. 112
 8.5.1 Rules ... 112
 8.5.2 Definitions ... 112
 8.5.3 RTI Request Procedures ... 113
 8.5.4 DC-ASE Indication Procedures... 115
 8.5.5 RPC-ASE Indication Procedures... 116
 8.5.6 TP Indication and Confirmation Procedures 117

vi X/Open CAE Specification

Contents

 8.5.7 Internal Events.. 121
 8.6 RTI-APDU Concatenation Rules ... 122
 8.7 Sequencing Rules and State Tables ... 123
 8.7.1 State Table Conventions ... 123
 8.7.2 Keys to State Table Abbreviations.. 125
 8.7.3 RTI Protocol State Tables.. 129

Chapter 9 Architectural Constants ... 137
 9.1 RPC Architectural Constants ... 137

Part 3 TxRPC Communication API Appendices 139

Appendix A RPC TxRPC Example.. 141
 A.1 IDL File.. 142
 A.2 Common Include Files — <util.h>.. 143
 A.3 Client Side .. 144
 A.4 Server Side.. 146
 A.5 Manager Functions ... 148

Appendix B IDL-only TxRPC Example... 149
 B.1 IDL File.. 150
 B.2 Common Include Files — <util.h>.. 150
 B.3 Client Side .. 151
 B.4 Manager Functions ... 152

Appendix C TxRPC API to Protocol Mapping.. 153
 C.1 Client Events.. 153
 C.1.1 Call.. 154
 C.1.2 Cancel... 154
 C.1.3 Call-Return.. 155
 C.1.4 Unhandled-Exception... 155
 C.1.5 tx_close()... 155
 C.1.6 tx_open()... 155
 C.1.7 RTI-CALL-FAILURE indication ... 155
 C.1.8 RTI-CALL-RESULTS indication ... 156
 C.1.9 tx_begin().. 156
 C.1.10 tx_commit().. 156
 C.1.11 tx_rollback() ... 157
 C.1.12 RTI-TRANS-READY indication.. 157
 C.1.13 RTI-COMMIT-TRANS indication.. 157
 C.1.14 RTI-HEURISTIC-REPORT indication ... 157
 C.1.15 RTI-ROLLBACK-TRANS indication ... 158
 C.1.16 RTI-TRANS-COMPLETE indication ... 158
 C.2 Server Events ... 158
 C.2.1 tx_close()... 159
 C.2.2 tx_open()... 159
 C.2.3 RTI-CALL-TASK indication .. 159
 C.2.4 RTI-CANCEL-CALL indication ... 159

Distributed Transaction Processing: The TxRPC Specification vii

Contents

 C.2.5 tx_rollback() ... 160
 C.2.6 RTI-COMMIT-TRANS indication.. 160
 C.2.7 RTI-PREPARE-TRANS indication ... 160
 C.2.8 RTI-ROLLBACK-TRANS indication ... 160
 C.2.9 RTI-TRANS-COMPLETE indication ... 161
 C.3 Mapping.. 161

Part 4 TxRPC ASE Appendices.. 165

Appendix D Mapping to RPC Terminology... 167
 D.1 Service Conventions... 167
 D.2 Service Primitive Names ... 167

Appendix E Scenarios.. 169
 E.1 Service Scenarios... 169

 Glossary ... 177

 Index... 181

List of Figures

2-1 Functional Components and Interfaces .. 5
3-1 The TxRPC Interface.. 17
5-1 RTI Model.. 29
5-2 RTI Service Primitive Mapping (Abstract) ... 31
5-3 RTI-SUI Context Tree.. 36
5-4 RTI Communication Model... 38
7-1 RTI Service Primitives Sequencing .. 48
E-1 Client Issues RTI-END-TRANS; Transaction Committed;

Active Context Handle ... 170
E-2 Client Issues RTI-END-TRANS; Server Issues Rollback;

Active Context Handle ... 171
E-3 Client Issues Rollback; No Context Handle... 172
E-4 Server Issues Rollback; No Context Handle .. 173
E-5 RPC Request and Response with No Segmentation 174
E-6 RPC Request and Response with Segmentation 175

List of Tables

5-1 Dialogues... 35
5-2 Required OSI TP Functional Units ... 35
7-1 RTI Service Primitives... 51
7-2 RTI-ESTABLISH-CONTEXT Parameters.. 53
7-3 RTI-CALL-TASK Parameters .. 56
7-4 RTI-CALL-FAILURE Parameters ... 60
7-5 RTI-CALL-RESULT Parameters.. 63
7-6 RTI-HEURISTIC-REPORT Parameters ... 67

viii X/Open CAE Specification

Contents

7-7 RTI-TRANS-DONE Parameters ... 73
7-8 RTI Service Non-transactional State Table... 78
7-9 RTI Service Transactional State Table.. 79
8-1 RTI Service Primitive Mapping Summary (Client) 82
8-2 RTI Service Primitive Mapping Summary (Server)................................ 83
8-3 Mapping of TP-P-ABORT Diagnostic ... 85
8-4 Mapping of TP-BEGIN-DIALOGUE.cnf Diagnostic 85
8-5 OSI TP Services Used by RTI-PM... 88
8-6 OSI TP Services Not Used by RTI-PM... 88
8-7 DC-ASE Service Primitives.. 89
8-8 DC-BEGIN-DIALOGUE Parameter Mapping ... 92
8-9 DC-REJECT-DIALOGUE Parameter Mapping 92
8-10 Context-Type and Functional-Units .. 93
8-11 RPC-ASE Service Primitives Summary... 96
8-12 rpc_request APDU Mapping... 104
8-13 rpc_response APDU Mapping.. 104
8-14 rpc_fault APDU Mapping.. 105
8-15 RPC-ASE States .. 107
8-16 Client RPC-ASE Events .. 108
8-17 Client RPC-ASE Preconditions ... 108
8-18 Client RPC-ASE Actions... 108
8-19 Client RPC-ASE State Table... 109
8-20 Server RPC-ASE Events.. 110
8-21 Server RPC-ASE Preconditions... 110
8-22 Server RPC-ASE Actions .. 110
8-23 Server RPC-ASE State Table .. 111
8-24 Abbreviations for Client Non-transactional States 125
8-25 Abbreviations for Client Transactional States ... 125
8-26 Abbreviations for Server Non-transactional States 126
8-27 Abbreviations for Server Transactional States... 126
8-28 RTI Protocol Client Outgoing Events .. 127
8-29 RTI Protocol Server Outgoing Events ... 127
8-30 RTI Protocol Preconditions.. 128
8-31 RTI Protocol Actions ... 128
8-32 RTI Protocol Client Non-transactional State Table................................. 129
8-33 RTI Protocol Client Transactional State Table ... 131
8-34 RTI Protocol Server Non-transactional State Table 133
8-35 RTI Protocol Server Transactional State Table... 134
9-1 Values for Fault Reasons .. 137
9-2 Packet Type Values .. 138
C-1 Client Output Events .. 161
C-2 Server Output Events and Action Routines... 162
C-3 API to Protocol Mapping for Non-transactional TxRPCs 162
C-4 API to Protocol Mapping for Transactional TxRPCs (Client)............... 163
C-5 API to Protocol Mapping for Transactional TxRPCs (Server) 164
D-1 Service Primitive Name Mapping.. 167

Distributed Transaction Processing: The TxRPC Specification ix

Contents

x X/Open CAE Specification

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

Distributed Transaction Processing: The TxRPC Specification xi

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

xii X/Open CAE Specification

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:

request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.

This Document

This document is a CAE specification (see above). It defines the TxRPC interface which is the
application programming interface to a communication resource manager. It also defines the
Remote Task Invocation (RTI) Service Definition and Protocol Specification which together form
the Application Service Element (ASE) for TxRPC.

This specification is designed to be used in conjunction with the X/Open DCE: Remote
Procedure Call specification (see the referenced X/Open DCE RPC specification). Readers are
expected to have a thorough understanding of the following sections of that specification:

• Part 1: Remote Procedure Call Introduction

— Chapter 1, Introduction to the RPC Specification

• Part 3: Interface Definition Language and Stubs

— Chapter 4, Interface Definition Language

— Chapter 5, Stubs (ignore pipes)

• Part 4: RPC Services and Protocols

— Chapter 6, Remote Procedure Call Model

— Chapter 7, RPC Service Definition

— Chapter 8, Statechart Specification Language Semantics

— Chapter 9, RPC Protocol Definitions

— Chapter 11, Connection-oriented RPC Protocol Machines

— Chapter 12, RPC PDU Encodings (ignore Connectionless sections)

— Chapter 14, Transfer Syntax NDR

— Appendix A, Universal Unique Identifier

— Appendix E, Reject Status Codes and Parameters

— Appendix F, IDL to C-language Mappings

Distributed Transaction Processing: The TxRPC Specification xiii

Preface

— Appendix I, Protocol Identifiers

— Appendix K, Architected and Default Values for Protocol Machines

— Appendix L, Protocol Tower Encoding

— Appendix N, IDL Data Type Declarations

— Appendix P, Conversation Manager Interface Definition.

In addition, those planning to implement an RPC TxRPC CRM (as opposed to an IDL-only
TxRPC CRM), need to be familiar with:

• Part 2: RPC Application Programmer’s Interface

— Chapter 2, Introduction to the RPC API

— Chapter 3, RPC API Manual Pages.

The structure of the TxRPC specification (this document) is as follows:

• Part 1: TxRPC Communication Application Programming Interface (API)

— Chapter 1 is an introduction to both the TxRPC API and the ASE.

— Chapter 2 provides an introduction to the X/Open DTP model and fundamental
definitions for the API.

— Chapter 3 is an overview of the TxRPC API.

— Chapter 4 summarises the implications of the TxRPC API on implementors.

• Part 2: TxRPC Application Service Element (ASE)

— Chapter 5 is an introduction to the RTI model.

— Chapter 6 defines the RTI Application Context.

— Chapter 7 defines the RTI Service Definition.

— Chapter 8 specifies the RTI Protocol Machine (RTI-PM).

— Chapter 9 contains known architectural constants that relate to RTI.

• Part 3: API Appendices

— Appendix A contains an example of the use of the RPC TxRPC interface.

— Appendix B contains an example of the use of the IDL-only TxRPC interface.

— Appendix C describes the mapping between the TxRPC API and RTI.

• Part 4: ASE Appendices

— Appendix D contains the mapping from the terminology used in the description of the
RPC-ASE to the terminology of OSF RPC.

— Appendix E provides examples of the usage of RTI.

There is a glossary and an index at the end.

xiv X/Open CAE Specification

Preface

Intended Audience

Parts 1 and 3 of this document are intended for application programmers who wish to write
portable programs that use global transactions and that communicate using the Remote
Procedure Call paradigm. The whole document is of interest to implementors of the TxRPC
application programming interface.

All readers are expected to be familiar with the X/Open documents Distributed Transaction
Processing: Reference Model and Distributed Transaction Processing: The TX (Transaction
Demarcation) Specification. Implementors are also expected to be familiar with the X/Open
document Distributed Transaction Processing: The XA Specification and the ISO Open
Systems Interconnection (OSI) standards listed in Referenced Documents on page xvii.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for filenames, keywords, type names, data structures and their
members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— variable names, for example, substitutable argument prototypes and environment
variables

— C-language functions; these are shown as follows: name()

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a C-language header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values, which may be declared in appropriate C-language header files by
means of the C #define construct.

• The notation [ABCD] is used to identify a coded return value in C.

• Syntax and code examples are shown in fixed width font.

• Variables within syntax statements are shown in italic fixed width font.

Where there are explicit references to terms used in the OSI standards, they are shown as in the
OSI standard; this means that OSI parameter values are shown in double quotes even when they
are not string literals.

Distributed Transaction Processing: The TxRPC Specification xv

Trade Marks

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Limited.

xvi X/Open CAE Specification

Referenced Documents

The following standards are referenced in this specification:

ASN.1
ISO 8824: 1990 Information Technology — Open Systems Interconnection — Specification of
Abstract Syntax Notation One (ASN.1).

BER
ISO/IEC 8825: 1990 (ITU-T Recommendation X.209 (1988)), Information Technology —
Open Systems Interconnection — Specification of Basic Encoding Rules for Abstract Syntax
Notation One (ASN.1).

ISO C
ISO/IEC 9899: 1990, Programming Languages — C (technically identical to ANSI standard
X3.159-1989).

ISO 8649
ISO 8649: 1988, Information Processing Systems — Open Systems Interconnection — Service
Definition for the Association Control Service Element.

ISO 8650
ISO 8650: 1988 Information Processing Systems — Open Systems Interconnection —
Protocol Specification for the Association Control Service Element.

ISO/IEC 9545
ISO/IEC 9545: 1989, Information Technology — Open Systems Interconnection —
Application Layer Structure.

ISO/IEC 9804
ISO/IEC 9804: 1994, Information Technology — Open Systems Interconnection — Service
Definition for the Commitment, Concurrency, and Recovery Service Element.

ISO/IEC 9805
ISO/IEC 9805: 1994, Information Technology — Open Systems Interconnection — Protocol
Specification for the Commitment, Concurrency, and Recovery Service Element.

OSI TP
ISO/IEC 10026, Information Technology — Open Systems Interconnection — Distributed
Transaction Processing, Parts 1 to 5:

Part 1: 1992, OSI TP Model
Part 2: 1992, OSI TP Service
Part 3: 1992, Protocol Specification
Part 4: 1995, Protocol Implementation Conformance Statement (PICS) proforma
Part 5: DIS 1993, Application context proforma and guidelines when using OSI TP.

OSI TP Profiles
ISO/IEC ISP 12061: 1995, Information Technology — Open Systems Interconnection —
International Standardized Profiles: OSI Distributed Transaction Processing, Parts 6 and 8:

Part 6: Application supported transactions — Shared control (ATP12)
Part 8: Provider supported unchained transactions — Shared control (ATP22).

Distributed Transaction Processing: The TxRPC Specification xvii

Referenced Documents

The following X/Open documents are referenced in this specification:

CPI-C, Version 2
X/Open CAE Specification, November 1995, Distributed Transaction Processing: The CPI-C
Specification, Version 2 (ISBN: 1-85912-135-7, C419).

DCE RPC
X/Open CAE Specification, August 1994, X/Open DCE: Remote Procedure Call
(ISBN: 1-85912-041-5, C309).

DTP
X/Open Guide, November 1993, Distributed Transaction Processing: Reference Model,
Version 2 (ISBN: 1-85912-019-9, G307).

TX
X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX
(Transaction Demarcation) Specification (ISBN: 1-85912-094-6, C504).

XA
X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN: 1-872630-24-3, C193 or XO/CAE/91/300).

XA+
X/Open Snapshot, July 1994, Distributed Transaction Processing: The XA+ Specification,
Version 2 (ISBN: 1-85912-046-6, S423).

XAP-TP
X/Open CAE Specification, April 1995, ACSE/Presentation: Transaction Processing API
(XAP-TP) (ISBN: 1-85912-091-1, C409).

XATMI
X/Open CAE Specification, October 1995, Distributed Transaction Processing: The XATMI
Specification (ISBN: 1-85912-130-6, C506).

XDCS
X/Open Guide, November 1992, Distributed Computing Services (XDCS) Framework
(ISBN: 1-872630-64-2, G212).

xviii X/Open CAE Specification

X/Open CAE Specification

Part 1:

TxRPC Communication Application Programming Interface (API)

X/Open Company Ltd.

Part 1: TxRPC Communication Application P rogramming Interface (API) 1

2 X/Open CAE Specification

Chapter 1

Introduction

This chapter provides an outline of the X/Open Distributed Transaction Processing Model and
explains the position of this specification as one of the Communication Resource Manager
(CRM) interfaces.

1.1 X/Open DTP Model
The X/Open Distributed Transaction Processing (DTP) model is a software architecture that
allows multiple application programs to share resources provided by multiple resource
managers, and allows their work to be coordinated into global transactions.

The X/Open DTP model comprises five basic functional components:

• an Application Program (AP), which defines transaction boundaries and specifies actions
that constitute a transaction

• Resource Managers (RMs) such as databases or file access systems, which provide access to
resources

• a Transaction Manager (TM), which assigns identifiers to transactions, monitors their
progress, and takes responsibility for transaction completion and for coordinating failure
recovery

• Communication Resource Managers (CRMs), which control communication between
distributed applications within or across TM domains

• a communication protocol, which provides the underlying communication services used by
distributed applications and supported by CRMs.

X/Open DTP publications based on this model specify portable Application Programming
Interfaces (APIs) and system-level interfaces that facilitate:

• portability of application program source code to any X/Open environment that offers those
APIs

• interchangeability of TMs, RMs and CRMs from various sources

• interoperability of diverse TMs, RMs and CRMs in the same global transaction.

Chapter 2 defines each component in more detail and illustrates the flow of control.

Part 1: TxRPC Communication Application P rogramming Interface (API) 3

X/Open Communication Resource Manager Interfaces Introduction

1.2 X/Open Communication Resource Manager Interfaces
An important aspect of distributed transaction processing applications is communication.
Within the product domain for DTP tools, there are several popular communication paradigms
in common use today or expected to be in common use in the future. The communication
paradigm chosen can significantly influence the architecture of the application. The unique
strengths of each paradigm make it attractive for specific applications.

The referenced DTP guide defines a functional component known as a Communication
Resource Manager (CRM), which provides access to a communication medium between
applications.

Because it is not possible to choose a single communication paradigm applicable to the entire
broad range of DTP applications, X/Open provides application programming interfaces (APIs)
for the most popular paradigms in order to bring the benefits of open systems to the widest
possible range of transaction processing applications. These are the request/response paradigm
and the conversational paradigm.

Many applications already running on open systems use the request/response paradigm.
X/Open specifications for this paradigm are the IDL-based TxRPC CRM interface (see this
document) and the library-based XATMI CRM interface (see the referenced XATMI
specification). TxRPC fits within the context of the X/Open Distributed Computing Services
Framework (XDCS) and allows application writers to invoke remote procedure calls (RPCs) in
the same form as local procedures, but with transaction semantics.

For applications choosing to use the conversational paradigm, where communication takes place
through an application-defined exchange of messages, X/Open offers the library-based
interfaces XATMI (see the referenced XATMI specification) and CPI-C (see the referenced CPI-C
specification).

4 X/Open CAE Specification

Chapter 2

Model and Definitions

This chapter discusses the TxRPC interface in general terms and provides necessary background
material for the rest of the specification. The chapter shows the relationship of the interface to
the X/Open DTP model. The chapter also states the design assumptions that the interface uses
and shows how the interface addresses common DTP concepts.

2.1 X/Open DTP Model
The boxes in the figure below are the functional components and the connecting lines are the
interfaces between them. The arrows indicate the directions in which control may flow.

Application Program (AP)

(RMs) (TM)

Resource
Managers

Transaction
Manager

(5)(1)

(3)

(2)

SUPERIOR NODE

OSI TP

SUBORDINATE NODE

(CRMs)

Communication

Managers
Resource

(4)

AP

RMs TM

OSI TP

CRMs

(6)

Figure 2-1 Functional Components and Interfaces

Descriptions of the functional components shown can be found in Section 2.1.1 on page 6. The
numbers in brackets in the above figure represent the different X/Open interfaces that are used
in the model. They are described in Section 2.1.2 on page 7.

For more details of this model and diagram, including detailed definitions of each component,
see the referenced DTP guide.

Part 1: TxRPC Communication Application P rogramming Interface (API) 5

X/Open DTP Model Model and Definitions

2.1.1 Functional Components

Application Program (AP)

The application program (AP) implements the desired function of the end-user enterprise. Each
AP specifies a sequence of operations that involves resources such as databases. An AP defines
the start and end of global transactions, accesses resources within transaction boundaries, and
normally makes the decision whether to commit or roll back each transaction.

Where two or more APs cooperate within a global transaction, the X/Open DTP model supports
three paradigms for AP to AP communication. These are the TxRPC, XATMI and CPI-C
interfaces.

Transaction Manager (TM)

The transaction manager (TM) manages global transactions and coordinates the decision to start
them, and commit them or roll them back. This ensures atomic transaction completion. The TM
also coordinates recovery activities of the resource managers when necessary, such as after a
component fails.

Resource Manager (RM)

The resource manager (RM) manages a defined part of the computer’s shared resources. These
may be accessed using services that the RM provides. Examples for RMs are database
management systems (DBMSs), a file access method such as X/Open ISAM, and a print server.

In the X/Open DTP model, RMs structure all changes to the resources they manage as
recoverable and atomic transactions. They let the TM coordinate completion of these
transactions atomically with work done by other RMs.

Communication Resource Manager (CRM)

A CRM allows an instance of the model to access another instance either inside or outside the
current TM Domain. Within the X/Open DTP model, CRMs use OSI TP services to provide a
communication layer across TM Domains. CRMs aid global transactions by supporting the
following interfaces:

• the communication paradigm (TxRPC, XATMI or CPI-C) used between an AP and CRM

• XA+ communication between a TM and CRM

• XAP-TP communication between a CRM and OSI TP.

A CRM may support more than one type of communication paradigm, or a TM Domain may use
different CRMs to support different paradigms. The XA+ interface provides global transaction
information across different instances and TM Domains. The CRM allows a global transaction to
extend to another TM Domain, and allows TMs to coordinate global transaction commit and
abort requests from (usually) the superior AP. Using the above interfaces, information flows
from superior to subordinate and vice versa.

6 X/Open CAE Specification

Model and Definitions X/Open DTP Model

2.1.2 Interfaces between Functional Components

There are six interfaces between software components in the X/Open DTP model. The numbers
correspond to the numbers in Figure 2-1 on page 5.

(1) AP-RM. The AP-RM interfaces give the AP access to resources. X/Open interfaces, such as
SQL and ISAM, provide AP portability. The X/Open DTP model imposes few constraints
on native RM APIs. The constraints involve only those native RM interfaces that define
transactions. (See the referenced XA specification.)

(2) AP-TM. The AP-TM interface (the TX interface) provides the AP with an Application
Programming Interface (API) by which the AP coordinates global transaction management
with the TM. For example, when the AP calls tx_begin() the TM informs the participating
RMs of the start of a global transaction. After each request is completed, the TM provides a
return value to the AP reporting back the success or otherwise of the TX call.

For details of the AP-TM interface, see the referenced TX (Transaction Demarcation)
specification.

(3) TM-RM. The TM-RM interface (the XA interface) lets the TM structure the work of RMs
into global transactions and coordinate completion or recovery. The XA interface is the
bidirectional interface between the TM and RM.

The functions that each RM provides for the TM are called the xa_*() functions. For
example the TM calls xa_start () in each participating RM to start an RM-internal transaction
as part of a new global transaction. Later, the TM may call in sequence xa_end()
xa_prepare() and xa_commit() to coordinate a (successful in this case) two-phase commit
protocol. The functions that the TM provides for each RM are called the ax_*() functions.
For example an RM calls ax_reg() to register dynamically with the TM.

For details of the TM-RM interface, see the referenced XA specification.

(4) TM-CRM. The TM-CRM interface (the XA+ interface) supports global transaction
information flow across TM Domains. In particular TMs can instruct CRMs by use of xa_*()
function calls to suspend or complete transaction branches, and to propagate global
transaction commitment protocols to other transaction branches. CRMs pass information to
TMs in subordinate branches by use of ax_*() function calls. CRMs also use ax_*() function
calls to request the TM to create subordinate transaction branches, to save and retrieve
recovery information, and to inform the TM of the start and end of blocking conditions.

For details of the TM-CRM interface, see the referenced XA+ specification.

The XA+ interface is a superset of the XA interface and supersedes its purpose. Since the
XA+ interface is invisible to the AP, the TM and CRM may use other methods to
interconnect without affecting application portability.

(5) AP-CRM. X/Open provides portable APIs for DTP communication between APs within a
global transaction. The API chosen can significantly influence (and may indeed be
fundamental to) the whole architecture of the application. For this reason, these APIs are
frequently referred to in this specification and elsewhere as communication paradigms . In
practice, each paradigm has unique strengths, so X/Open offers the following popular
paradigms:

• the TxRPC interface (this document)

• the XATMI interface (see the XATMI specification)

• the CPI-C interface (see the CPI-C specification).

Part 1: TxRPC Communication Application P rogramming Interface (API) 7

X/Open DTP Model Model and Definitions

X/Open interfaces, such as the three CRM APIs listed above, provide application portability
across products offering the same CRM API. The X/Open DTP model imposes few
constraints on native CRM APIs.

(6) CRM-OSI TP. This interface (the XAP-TP interface) provides a programming interface
between a CRM and Open Systems Interconnection Distributed Transaction Processing (OSI
TP) services. XAP-TP interfaces with the OSI TP Service and the Presentation Layer of the
seven-layer OSI model. X/Open has defined this interface to support portable
implementations of application-specific OSI services. The use of OSI TP is mandatory for
communication between heterogeneous TM domains. For details of this interface, see the
referenced XAP-TP specification and OSI TP standards.

8 X/Open CAE Specification

Model and Definitions Definitions

2.2 Definitions
For additional definitions see the referenced DTP guide.

2.2.1 Transaction

A transaction is a complete unit of work. It may comprise many computational tasks, which
may include user interface, data retrieval, and communication. A typical transaction modifies
shared resources. (The OSI TP standards (model) defines transactions more precisely.)

Transactions must be able to be rolled back . A human user may roll back the transaction in
response to a real-world event, such as a customer decision. A program can elect to roll back a
transaction. For example, account number verification may fail or the account may fail a test of
its balance. Transactions also roll back if a component of the system fails, keeping it from
retrieving, communicating, or storing data. Every DTP software component subject to
transaction control must be able to undo its work in a transaction that is rolled back at any time.

When the system determines that a transaction can complete without failure of any kind, it
commits the transaction. This means that changes to shared resources take permanent effect.
Either commitment or rollback results in a consistent state. Completion means either
commitment or rollback.

2.2.2 Transaction Properties

Transactions typically exhibit the following properties:

Atomicity The results of the transaction’s execution are either all committed or all rolled
back.

Consistency A completed transaction transforms a shared resource from one valid state to
another valid state.

Isolation Changes to shared resources that a transaction effects do not become visible
outside the transaction until the transaction commits.

Durability The changes that result from transaction commitment survive subsequent
system or media failures.

These properties are known by their initials as the ACID properties. In the X/Open DTP model,
the TM coordinates Atomicity at global level whilst each RM is responsible for the Atomicity,
Consistency, Isolation and Durability of its resources.

2.2.3 Distributed Transaction Processing

Within the scope of this document, DTP systems are those where work in support of a single
transaction may occur across RMs. This has several implications:

• The system must have a way to refer to a transaction that encompasses all work done
anywhere in the system.

• The decision to commit or roll back a transaction must consider the status of work done
anywhere on behalf of the transaction. The decision must have uniform effect throughout
the DTP system.

Even though an RM may have an X/Open-compliant interface such as Structured Query
Language (SQL), it must also address these two items to be useful in the DTP environment.

Part 1: TxRPC Communication Application P rogramming Interface (API) 9

Definitions Model and Definitions

2.2.4 Global Transactions

Every RM in the DTP environment must support transactions as described in Section 2.2.1 on
page 9. Many RMs already structure their work into recoverable units.

In the DTP environment, many RMs may operate in support of the same unit of work. This unit
of work is a global transaction . For example, an AP might request updates to several different
databases. Work occurring anywhere in the system must be committed atomically. Each RM
must let the TM coordinate the RM’s recoverable units of work that are part of a global
transaction.

Commitment of an RM’s internal work depends not only on whether its own operations can
succeed, but also on operations occurring at other RMs, perhaps remotely. If any operation fails
anywhere, every participating RM must roll back all operations it did on behalf of the global
transaction. A given RM is typically unaware of the work that other RMs are doing. A TM
informs each RM of the existence, and directs the completion, of global transactions. An RM is
responsible for mapping its recoverable units of work to the global transaction.

2.2.5 Transaction Branches

A global transaction has one or more transaction branches (or branches). A branch is a part of the
work in support of a global transaction for which the TM and the RM engage in a separate but
coordinated transaction commitment protocol. Each of the RM’s internal units of work in
support of a global transaction is part of exactly one branch.

A global transaction might have more than one branch when, for example, the AP uses a CRM to
communicate with remote APs. The CRM asks the TM to create a new transaction branch prior
to accessing a remote AP for the first time. Subsequent accesses to the same remote AP are
typically done within the same transaction branch. Accesses to different remote APs are
typically done in separate transaction branches.

After the TM begins the transaction commitment protocol, the RM receives no additional work
to do on that transaction branch. The RM may receive additional work on behalf of the same
transaction, from different branches. The different branches are related in that they must be
completed atomically. However, the TM directs the commitment protocol for each branch
separately. That is, an RM receives a separate commitment request for each branch.

2.2.6 Remote Procedure Call

A remote procedure call (RPC) is a programming paradigm similar to the well-known procedure
call mechanism. Both procedure call mechanisms transfer control and data within a program.

When a remote procedure is called, the parameters of the call are passed over the network to the
environment where the call is actually executed. Meanwhile, the calling environment waits for
the results of the procedure execution. Typically the calling environment is a program that is
referred to as a client. The environment where the call is executed is referred to as a server.
When the server (the called environment) finishes executing the procedure, it returns the results
back to the client (the calling environment) which then resumes execution as if returning from a
local procedure call.

10 X/Open CAE Specification

Model and Definitions Definitions

2.2.7 Client and Server

A client is a program that issues remote procedure calls; a server is a program that accepts remote
procedure calls. A program may be both a server and a client. The root client is the client that
initiated the transaction by calling tx_begin().

2.2.8 Manager Function

A manager function is the application procedure executed in a server that implements an
operation. A manager function is a part of the AP in the X/Open Distributed Transaction
Processing (DTP) Model.

2.2.9 Transactional RPC

Transactional RPCs are RPCs that are executed within the scope of a global transaction. The
transactional context of the caller is automatically communicated to the server. The manager
function in the server executes within the scope of the caller’s transaction. Therefore, any work
performed by the manager function with RMs is contained within the same global transaction as
the caller.

2.2.10 Interface Definition Language

An Interface Definition Language (IDL) is a language for specifying operations (procedures and
functions), parameters to these operations and data types. An operation description includes
whether an operation must be executed as a transactional RPC, may or may not be executed as a
transactional RPC, or must not be executed as a transactional RPC. For a complete definition of
the DCE IDL, read Section 4.2, IDL Language Specification, of the X/Open DCE RPC
specification.

2.2.11 TxRPC Communication Resource Manager

Section 2.1.1 on page 6 discusses the concept of a CRM. A TxRPC CRM is a CRM that uses the
interface specified herein to allow an AP to communicate with other APs using a remote
procedure call communication paradigm. These communication operations may propagate a
global transaction to other APs involved in the communication.

There are two types of TxRPC CRM, an IDL-only TxRPC CRM and an RPC TxRPC CRM. The
phrase TxRPC CRM is used to describe functions and features applicable to both; otherwise the
explicit reference is used.

Part 1: TxRPC Communication Application P rogramming Interface (API) 11

TxRPC Model Model and Definitions

2.3 TxRPC Model
The X/Open DCE RPC specification defines a remote procedure call facility. RPC provides
non-transactional RPCs for use by an AP. The RPC model specifies the mechanisms by which a
client locates a server and invokes a manager function. This model is described in Section 6.1,
Client/Server Execution Model, of the X/Open DCE RPC specification.

The TxRPC CRM includes and enhances RPC functionality. The TxRPC CRM permits the AP to
extend the implied context of a manager function to include the global transaction that the client
is working on at the time of the RPC. The API provided by the TxRPC CRM is a modified
version of the API in the X/Open DCE RPC specification. Specifically, some additional operator
and interface attributes within IDL are specified, the use of some operator and interface
attributes are restricted, and some parameter constructions used in operation specification are
restricted. These extensions and restrictions are specified in Chapter 3.

Operations that have either the transaction_mandatory or transaction_optional attributes
applied to them are called TxRPC operations, and calls to the corresponding manager functions
are defined to be TxRPCs. If a TxRPC takes place within the scope of a transaction, the call is
defined to be a transactional RPC.

Note: Not all TxRPCs are transactional RPCs. In particular, operations with the
transaction_optional attribute that are not invoked within the scope of a transaction
are not transactional RPCs.

12 X/Open CAE Specification

Model and Definitions Transaction Implications

2.4 Transaction Implications
The TxRPC CRM relies on the X/Open TX (Transaction Demarcation) interface, published
separately, for global transaction demarcation and management. In addition, certain functions
in the TxRPC interface directly affect the progress of the global transaction.

2.4.1 Transaction Functions Affecting a TxRPC CRM

Demarcation

The TxRPC CRM interface relies on the following functions of the Transaction Demarcation (TX)
interface:

tx_begin() A demarcation function that indicates that subsequent work performed by the
calling application thread of control is in support of a global transaction.

tx_commit() A demarcation function that commits all work done on behalf of the current global
transaction.

tx_rollback () A demarcation function that indicates an AP’s desire to roll back all work done on
behalf of the current global transaction.

Timeout

The timeout function of TX also affects the TxRPC interface:

tx_set_transaction_timeout ()
A function that specifies the time interval in which the transaction must complete.

Chaining

The TxRPC interface is also affected by transaction chaining:

tx_set_transaction_control ()
A function to set the AP to chained or unchained mode.

Information

The AP can determine if it is executing within the scope of a transaction by using the following
function:

tx_info () A function that returns global transaction information.

2.4.2 TxRPCs in a Transactional Environment

TxRPCs are used in an AP in the same manner as RPCs. A TxRPC becomes a transactional RPC
if its operation is specified as transaction-optional or transaction-mandatory and the call is
invoked within the scope of a transaction. A transaction normally proceeds as follows:

1. Initiating the global transaction: the AP calls the tx_begin() function to initiate a global
transaction.

2. Communicating via TxRPCs: the AP makes a sequence of transactional remote procedure
calls to servers which cause manager functions to be executed as part of the global
transaction.

3. Completing the global transaction: the AP calls the tx_commit() function to commit the
global transaction.

Part 1: TxRPC Communication Application P rogramming Interface (API) 13

Transaction Implications Model and Definitions

Under normal circumstances, the global transaction would be committed.

2.5 Transaction Commitment
The request to commit a transaction can only be made by the same AP thread that initiated the
transaction. More specifically, this means that the AP thread that calls tx_commit() must be the
same AP thread that called tx_begin().

2.6 Nested TxRPCs
An AP may be both a server and a client. For example, a manager function that is invoked by a
client via a transactional RPC may in turn make its own transactional RPC to another server,
thereby invoking another manager function. The second server is in the same global transaction
as the first server. The global transaction extends to work done by any sequence of nested
transactional RPCs initiated from a client.

Any server that is invoked by a client on behalf of a global transaction, and that makes
transactional RPCs to other servers on behalf of the same transaction, must complete those
transactional RPCs before returning to the original client. The transaction initiator must likewise
ensure that all transactional RPCs it made are completed before calling tx_commit().

2.7 Non-transactional RPCs
APs may make non-transactional RPCs in addition to transactional RPCs. Non-transactional
RPCs do not propagate global transactions; work done during non-transactional RPCs is not
contained in the scope of any transaction that may be active in the RPC caller.

There are two ways to invoke non-transactional RPCs. Firstly, the called operation is declared
with no transactional attribute. Using this mechanism, there is never any transaction context
communicated from the client to the server, even if the client is in a global transaction.
Secondly, the operation is declared with the transaction_optional attribute and is called outside
the scope of a global transaction. Again no transaction context is communicated from client to
server.

For the purposes of this specification, the invoked manager function of a non-transactional RPC
is executing as a client with respect to the TxRPC CRM. For example, the invoked manager
function may initiate and complete transactions, and those transactions are affected by the
setting of any transaction characteristics at the time of transaction initiation.

Although there are two ways for non-transactional RPCs to be invoked, the two operation
specifications are not interchangeable. Specifically, an operation that is specified without any
transaction attribute is not equivalent to an operation that has the transaction_optional attribute
and whose manager function is invoked outside the scope of a transaction. Both client and
server must use the same specification for a non-transactional RPC: either no transaction
attribute or the transaction_optional attribute.

14 X/Open CAE Specification

Model and Definitions Transaction Rollback

2.8 Transaction Rollback
Rollback occurs at the TM in response to a tx_rollback () call or for other reasons. When rollback
occurs at the TM, the TM informs the TxRPC CRM of this event. Subsequent behaviour depends
on whether rollback occurs in a root client or server.

When rollback occurs in the root client, the TM initiates a rollback which is propagated by the
TxRPC CRM. When all subordinates have been successfully rolled back, the client TxRPC CRM
notifies the TM of this fact.

When rollback occurs in the server TM (such as by a call of tx_rollback () by the manager
function), the TxRPC CRM marks the transaction rollback-only . This information is propagated
to the client TM when the manager function returns results. After the results have been returned,
the client remains in transaction mode and can still make TxRPC calls. However, any work
performed on behalf of the transaction is ultimately rolled back1.

It is recommended that in cases where the manager function calls tx_rollback () it also returns an
application-specific error to indicate that the transaction must be rolled back. In such a case the
client would normally call tx_rollback () after receiving results. However, the client is not
required to call tx_rollback ().

An intermediate node is both a client and a server at the same time. As the TxRPC CRM in a
server is not allowed to initiate a rollback unilaterally, if the AP issues tx_rollback (), the TxRPC
CRM marks the transaction rollback-only. This information is returned to the client when the
server returns, with the call results according to the rules above.

1. The state of the transaction is available to the AP by use of the tx_info () service.

Part 1: TxRPC Communication Application P rogramming Interface (API) 15

Model and Definitions

16 X/Open CAE Specification

Chapter 3

Interface Overview

This chapter gives an overview of the TxRPC interface and describes its relationship to the TX
interface. In an X/Open DTP system, TxRPC is the interface between an AP and a CRM, and TX
is the interface between an AP and a TM.

AP

RM TM CRM

OSI TP

TxRPC

Figure 3-1 The TxRPC Interface

The TxRPC CRM application programming interface is an extension of, and defined in terms of,
two other interfaces that are defined in the X/Open DCE RPC specification and the TX
(Transaction Demarcation) specification.

The communication part of the API for the TxRPC CRM is based on the X/Open DCE RPC
specification, which is composed of three parts: the specification of the IDL (Interface Definition
Language), programs involved in creating and processing an IDL file, and a collection of
routines that may be called from an AP. Two of these are modified for this specification. Firstly,
IDL is both restricted and expanded. The restrictions remove capabilities that are not well suited
to a transactional environment, while the additions are used to specify transactional properties
of operations. Secondly, for an RPC TxRPC CRM, some new parameter values for run-time
procedures specified in the X/Open DCE RPC specification must be made available.

The transaction management part of the API for the TxRPC CRM is based on the TX
(Transaction Demarcation) specification. The TX (Transaction Demarcation) specification
specifies behaviour only when called from a client AP (that is, the root of a transaction tree).
However, APs that use the TxRPC CRM interface may be servers (that is, intermediate or leaf
nodes of a transaction tree). Therefore, this document also discusses how the interface specified
in the TX (Transaction Demarcation) specification can be used within a server AP.

This chapter discusses the changes to the X/Open DCE RPC specification, and the relationship
to the TX (Transaction Demarcation) specification for the TxRPC CRM.

Part 1: TxRPC Communication Application P rogramming Interface (API) 17

Interactions with the RPC Interface Interface Overview

3.1 Interactions with the RPC Interface

3.1.1 IDL Language Interactions

The nature of a TxRPC CRM places limitations on the RPC options as specified in Section 4.2,
IDL Language Specification, of the X/Open DCE RPC specification. The sections below
document the ways that an RPC may be specified in order to be used by a TxRPC CRM. In
particular, the following two sections discuss which additional features are available and which
features of IDL must not be used in a specification for TxRPC calls.

3.1.2 Additional IDL Attributes

Operations that may carry transaction information must be identified in the IDL file through the
use of attributes defined in this TxRPC specification. Two mutually exclusive attributes are
available: transaction_mandatory and transaction_optional. These attributes may appear
anywhere that other IDL attributes are permitted in an IDL file. If an interface is specified as
either transaction-mandatory or transaction-optional, neither attribute may be specified for any
individual operation in the IDL file.

Operations that are specified as being transaction-mandatory may be invoked only within the
scope of a global transaction. When invoked, the work performed by the manager function is
included in the scope of the global transaction of the caller. If an attempt is made to invoke a
transaction-mandatory operation outside the scope of the caller’s transaction, the
txrpc_s_not_in_transaction status code is returned to the client and the manager function is not
executed.

Operations that are specified as being transaction-optional may be invoked within the scope of a
global transaction or outside a global transaction. When invoked within the scope of a global
transaction, the work performed by the manager function is included in the scope of the global
transaction of the caller. If invoked outside the scope of a transaction, the manager function does
not begin execution within the scope of any transaction. The manager function may, however,
initiate a transaction during its execution.

3.1.3 Limiting IDL Attributes

Transactional communication works best in an environment where each interaction can be
positively verified. Interactions with anonymous, unresponsive or changing recipients are not
consistent with transactional guarantees. Therefore, the following attributes (as defined in
Section 4.2.22, Operations, of the X/Open DCE RPC specification) may not be specified for a
TxRPC operation:

• broadcast

• maybe

• idempotent.

The following structured type (as defined in Section 5.1.4, Pipes, of the X/Open DCE RPC
specification) is not supported for TxRPC operations:

• pipe.

18 X/Open CAE Specification

Interface Overview Interactions with the RPC Interface

3.1.4 Context Handles

Context handles (as defined in Section 4.2.16.6, The context_handle Attribute, of the X/Open
DCE RPC specification) are user-defined data structures that hold data on a server between calls
of a client to that server. Context handles for a TxRPC CRM are declared, allocated on the server
side and interrogated on the client side with TxRPC just as with the unenhanced RPC
mechanisms. A context handle can be created in either a transactional or non-transactional call,
and may subsequently be used with both transactional and non-transactional operations. A
context handle used within a transaction may persist beyond the life of the transaction and may
subsequently be used within a new transaction.

The lifetime of the context handle is under the control of the application writer. A context
handle may be destroyed by the server as part of either a transactional or non-transactional
operation. Destroying a context handle has no effect on any current transaction. In the case of
communication failure however, the RPC run-time system may reclaim context handles. Server
APs are informed of this circumstance by having the associated context-handle run-down
procedures executed. Context run-down procedures are always invoked outside the scope of a
transaction.

Context handles are not bound to an interface. A context handle may be used with an operation
in any interface supported by the server that creates the handle.

Context handles do not refer to explicit transaction states in their user-defined data structures.
Like all APs, a TxRPC server AP can get information about the transactional state of the thread
by calling tx_info ().

The particular semantics of context handles when used in TxRPC calls are defined as follows:

• Multiple operations may only be guaranteed to execute in the same server address space via
use of a valid context handle. This is an example of where the behaviour of TxRPC context
handles differs from unenhanced RPC.

3.1.5 OSI TP Protocol Sequence

Interoperable TxRPC CRMs use the OSI TP protocols as described in this specification. The OSI
TP protocols assume an OSI transport and an OSI addressing mechanism. The binding services
of the RPC run-time environment must be able to select the OSI protocol sequence instead of the
TCP/IP protocol sequence. Therefore, an interoperable implementation of an RPC TxRPC CRM
must support the new predefined string ncacn_osi_tp as a selector for the OSI TP protocol
sequence. This string is not needed by the AP in the case of an IDL-only TxRPC CRM (the stack
should be defined by the environment). The ncacn_osi_tp string can be used as a parameter to
the unenhanced RPC run-time functions that select protocol sequences.

3.1.6 RPC Run-time Service Interactions

The function tx_open() must be called before a server’s TxRPC manager function is invoked on
behalf of a global transaction; the manner in which tx_open() is called is implementation-
dependent. The function tx_open() need not be called before invoking TxRPC manager functions
invoked on behalf of no global transaction. There is no requirement that tx_open() be called by a
client invoking any non-transactional RPCs.

If tx_open() is not called at the server before the manager function of a TxRPC operation is
invoked on behalf of a global transaction, the txrpc_s_no_tx_open_done status code is returned
to the client.

Part 1: TxRPC Communication Application P rogramming Interface (API) 19

Interactions with the RPC Interface Interface Overview

3.1.7 IDL-only TxRPC CRMs

IDL-only TxRPC CRMs support all language bindings derived from the IDL with the exception
of the handle_t type and the handle attribute. Further, IDL-only TxRPC CRMs need not provide
the programs or run-time routines specified in the X/Open DCE RPC specification.

3.1.8 TxRPC Errors

The following status codes may be returned to the client by a TxRPC CRM:

• txrpc_s_not_in_transaction

A transaction-mandatory operation was invoked outside the scope of the caller’s global
transaction.

• txrpc_s_no_tx_open_done

An operation was invoked but tx_open() was not called at the TxRPC server prior to the
manager function’s invocation.

Return of these status codes is required for compliant TxRPC CRM implementations.
Optionally, a TxRPC CRM may also support return of these errors by raising exceptions. The
corresponding exception codes which would be raised at the client are:

• txrpc_x_not_in_transaction

• txrpc_x_no_tx_open_done.

3.1.9 Object Support

As in unenhanced RPC, an object UUID can be associated with a TxRPC operation. The object
UUID can be used, in addition to the interface UUID and version, to affect selection of the server
AP. It can also be used within a server to support multiple implementations (base on object
type) of an interface.

20 X/Open CAE Specification

Interface Overview Interactions with the TX Interface

3.2 Interactions with the TX Interface
The following discussion of the interactions between a TxRPC CRM and the TX interface is made
under the assumption that a client is calling the tx_*() functions. However, a server may act as a
client if it is communicating with another server using TxRPC.

3.2.1 tx_begin()

The tx_begin() function initiates a global transaction. The AP that calls tx_begin() becomes the
transaction initiator. A manager function called within the scope of a transaction must not call
tx_begin().

3.2.2 tx_close()

The tx_close() function may be called by either the client or server in states defined by the TX
(Transaction Demarcation) specification.

3.2.3 tx_commit()

The tx_commit() function may be called only by the transaction initiator.

3.2.4 tx_info()

The tx_info () function may be called by either the client or server in states defined by the TX
(Transaction Demarcation) specification.

3.2.5 tx_open()

The tx_open() function may be called by either the client or server in states defined by the TX
(Transaction Demarcation) specification. However, a tx_open() call must have been made by a
server before it can receive any TxRPC calls. In a client, tx_open() must be called before any
TxRPC calls are made.

3.2.6 tx_rollback()

The tx_rollback () function may be called by either the client or server. When a manager function
calls tx_rollback (), the global transaction is marked rollback-only. See Section 2.8 on page 15 for
a discussion of transaction rollbacks in a TxRPC environment.

3.2.7 tx_set_commit_return()

The tx_set_commit_return() function may be called by either the client or server. The effect of
this call only pertains to transactions for which the AP is the transaction initiator. In particular,
if the call is made while a manager function is being called on behalf of a transactional RPC, the
value is remembered by the TM, but does not apply to the current transaction, or to the AP that
initiated the current transaction.

Part 1: TxRPC Communication Application P rogramming Interface (API) 21

Interactions with the TX Interface Interface Overview

3.2.8 tx_set_transaction_control()

The tx_set_transaction_control () function may be called by either the client or server. The effect
of this call only pertains to transactions for which the AP is the transaction initiator. In
particular, if the call is made while a manager function is being called on behalf of a
transactional RPC, the value is remembered by the TM, but does not apply to the current
transaction, or to the AP that initiated the current transaction.

3.2.9 tx_set_transaction_timeout()

The tx_set_transaction_timeout () function may be called by either the client or server. The effect
of this call only pertains to transactions for which the AP is the transaction initiator. In
particular, if the call is made while a manager function is being called on behalf of a
transactional RPC, the value is remembered by the TM, but does not apply to the current
transaction, or to the AP that initiated the current transaction.

22 X/Open CAE Specification

Chapter 4

Implementation Requirements

This chapter summarises the implications for implementors of the TxRPC CRM. It also identifies
features of this specification that implementors of a TxRPC CRM or application writers can
regard as optional.

These requirements are designed to facilitate portability: specifically, the ability to move an
application program to a different X/Open DTP system without modifying the source code. It is
anticipated that DTP products will be delivered as object modules and that the administrator
will control the mix and operation of components at a particular site by doing one or more of the
following:

• relinking object modules

• supplying text strings to the software components (or executing a vendor supplied
procedure that incorporates suitable text strings).

4.1 AP Requirements
Any AP in a DTP system must use a TM and delegate to it responsibility to control and
coordinate each global transaction.

The AP is not involved in either the commitment protocol or the recovery process. An AP thread
of control can have only one global transaction active at a time.

4.2 Thread of Control
It is important that the AP, TM, RMs, and CRMs agree on the definition of a thread of control.
The Transaction Processing Profile in the XDCS guide specifies that the operating system,
threading, communication and remote procedure call components be present. The threading
component of the XDCS guide allows for multiple threads within a single operating system
process. However, the XA specification defines thread of control to be an operating system
process. Special considerations may need to be made when constructing your DTP system. For
a further discussion of threads, see Section 6.1.7, Threads, of the X/Open DCE RPC specification.

Part 1: TxRPC Communication Application P rogramming Interface (API) 23

TxRPC CRM Requirements Implementation Requirements

4.3 TxRPC CRM Requirements

4.3.1 Compliant TxRPC CRMs

An implementor can choose to offer either or both of the two types of compliant TxRPC CRM:

• RPC TxRPC CRM

The XDCE RPC API, IDL, and Stubs are supported as defined by the following parts of the
referenced X/Open DCE RPC specification, except as modified by this (TxRPC) specification:

— Part 2: RPC Application Programmer’s Interface

— Part 3: Interface Definition Language and Stubs.

• IDL-only TxRPC CRM

The XDCE IDL only is supported as defined by the following chapter of the referenced
X/Open DCE RPC specification, except as modified by this (TxRPC) specification:

— Chapter 4: Interface Definition Language.

No XDCE RPC API run-time services are provided; default parameters are used by the stubs.
With the exception of Section 3.1.5 on page 19, all sections within Section 3.1 of this (TxRPC)
specification are applicable to IDL-only TxRPC CRMs.

Unless otherwise specified, all sections in this document are applicable to both RPC and IDL-
only TxRPC CRMs. These two types of CRM interoperate if the applications using the RPC
TxRPC CRM only use interface definitions that have been specified in the IDL subset permitted to
IDL-only applications.

4.3.2 Public Information

The X/Open TxRPC CRM must specify:

• the names of libraries or objects files, in the correct sequence, that the administrator must use
when linking applications with the X/Open TxRPC CRM

• compiler names and options to build transactional RPC interfaces

• initialisation of the RPC run-time system (this only applies to the RPC TxRPC CRM)

• special considerations needed to reconcile the thread model

• whether or not the TxRPC CRM is IDL-only.

4.4 TM Requirements
TMs must support interaction with the X/Open TxRPC CRM.

TMs do not communicate with each other directly. They rely on the TxRPC CRM for transaction
propagation and the propagation of the transaction completion protocol.

24 X/Open CAE Specification

X/Open CAE Specification

Part 2:

TxRPC Application Service Element (ASE)

X/Open Company Ltd.

Part 2: TxRPC Application Service Element (ASE) 25

26 X/Open CAE Specification

Chapter 5

Remote Task Invocation Model

This chapter describes the basic Remote Task Invocation (RTI) Model and the RTI
Communication Model. It also compares the RTI Model with the OSI TP Model and OSI
Application Layer Structure (ALS).

The basic structure of the RTI Model is derived from the OSI Application Layer Structure,
described in ISO/IEC 9545, and the ISO/IEC Distributed Transaction Processing standard,
described in the OSI TP Model, Service and Protocol standards.

5.1 Model Components
The four primary components of the RTI Model are the RTI Application Process Invocation, the
RTI Service User Invocation, the RTI Application Entity Invocation, and the RTI Protocol
Machine. Each RTI Application Process Invocation may have many RTI Service User
Invocations, each with its associated RTI Protocol Machine.

Figure 5-1 on page 29 depicts these components (and their sub-components) and shows how
they relate to each other. Section 5.4 on page 39 relates the components of the RTI Model to the
OSI TP Model and OSI Application Layer Structure.

5.1.1 RTI Application Process Invocation

An RTI Application Process Invocation (RTI-API) is an instance of an RTI Application Process
(RTI-AP).

5.1.2 RTI Service User Invocation

An RTI Service User Invocation (RTI-SUI) is a user of the RTI Service provided by an RTI-PM.
There is exactly one RTI-PM for each RTI-SUI. The service boundary between an RTI-SUI and
an RTI-PM is referred to as the RTI Service Boundary. This boundary is invariant to an RTI-SUI
regardless of the underlying communication protocol or protocols used by an RTI-PM. This
allows an RTI-PM to select the appropriate underlying communication protocol or protocols
without directly impacting its RTI-SUI.

5.1.3 RTI Application Entity Invocation

An RTI Application Entity Invocation (RTI-AEI) is an instance of an RTI Application Entity
(RTI-AE). The RTI-AE is the subcomponent of an RTI-AP that is responsible for providing RTI
based communication services.

5.1.4 RTI Protocol Machine

An RTI Protocol Machine (RTI-PM) contains a complete OSI TP Protocol Machine (TPPM),
integrating both the OSI TP service and the OSF Remote Procedure Call (OSF RPC) data transfer
service. The two primary components of an RTI-PM are the RTI Multiple Association Control
Function (RTI-MACF) and the Single Association Object (SAO). An RTI-PM can have multiple
SAOs, however only one SAO is used by an RTI-MACF at any one time. Each association being
used by an RTI-PM is represented by an SAO. The RTI-PM is described in Chapter 8.

Part 2: TxRPC Application Service Element (ASE) 27

Model Components Remote Task Invocation Model

5.1.5 RTI Multiple Association Control Function

The RTI Multiple Association Control Function (RTI-MACF) coordinates all cross-association
functions within an RTI-PM. In particular, the RTI-MACF ensures the proper sequencing of
Application Protocol Data Units (APDUs) across associations. These functions form a set of
multiple association coordination and sequencing rules that are called MACF rules.

The RTI-MACF contains the TP MACF which provides the OSI TP service to an RTI-PM. The
RTI-MACF, in turn, provides the RTI service primitives to an RTI-PM. The RTI-MACF is an
augmentation of the TP MACF and an RTI-PM is an augmentation of a TPPM.

5.1.6 Single Association Object

Each Single Association Object (SAO) contains one Single Association Control Function (SACF)
and a number of Application Service Elements (ASEs) that support RTI-SUI-specific
communication, and the single association aspects of an RTI-PM.

5.1.7 Single Association Control Function

The SACF is responsible for coordinating the use of a single association by multiple ASEs, and
for the sequencing of outgoing APDUs (generated by the ASEs) on that association. For
incoming APDUs, the SACF ensures delivery of the APDUs to the correct ASE. In general, the
SACF coordinates the use of the Presentation Service by the individual components of an SAO.
The SACF also increases communication efficiency by concatenating APDUs from one or more
ASEs into a single Presentation Service Data Unit (PSDU). These functions form a set of single
association coordination and sequencing rules that are called SACF rules.

In the RTI Model, the SACF coordinates the following ASEs:

• OSI Association Control Service Element (ACSE)

• OSI TP Application Service Element (TP-ASE)

• OSI Commitment, Concurrency and Recovery Application Service Element (CCR-ASE)

• Dialogue Control Application Service Element (DC-ASE)

• OSF Remote Procedure Call Application Service Element (RPC-ASE).

It should be noted that a CCR-ASE is only included in an SAO when data transfer with
transaction semantics is required by an RTI-SUI.

An RTI-PM integrates all the components described above and maps the service primitives
provided by the RTI-MACF to the RTI Service.

28 X/Open CAE Specification

Remote Task Invocation Model Model Components

RTI-SUI

RTI-AEI

RTI-API

RTI-PM

RTI-MACF TP-MACF

S
A
C
F

ACSE

TP-ASE

CCR-ASE

DC-ASE

RPC-ASE

OSI Presentation
OSI Session

OSI Transport

.

.

.

SAO

Figure 5-1 RTI Model

Part 2: TxRPC Application Service Element (ASE) 29

RTI Model Component Relationships Remote Task Invocation Model

5.2 RTI Model Component Relationships
Each component of the RTI Model defines a set of abstract services to describe the structure,
encoding and sequencing of APDUs. The relationship of the RTI Model components to each
other and to external architectures (that is, OSI TP and OSF RPC) can be expressed in terms of
how the abstract services provided by these components are mapped together to form the RTI
Service.

The RTI Model is an OSI Application Layer model. At the highest level of the RTI Model is the
RTI Service, and at the lowest level are the services provided by the OSI Presentation Layer. The
following discussion describes the RTI Application Layer structure. That is, the various service
primitives and services necessary to map the RTI Service to the OSI Presentation Layer. The
mapping or layering of these service primitives is shown in Figure 5-2 on page 31 and described
in Section 8.1.1 on page 82.

5.2.1 RPC-ASE Service Primitives

The service primitives that handle the OSF RPC data transfer for calls are modelled by the RPC-
ASE. The RPC-ASE provides the OSF RPC service primitives to an RTI-PM. The RPC-ASE is an
abstract model of the OSF RPC service and protocol integrated into the OSI TP environment for
use by an RTI-AEI. The RPC-ASE is described in Section 8.4 on page 95 and the OSF RPC service
and protocol are described in the referenced X/Open DCE RPC specification.

5.2.2 DC-ASE Service Primitives

The service primitives that handle the encoding of RTI-PM data (as opposed to RTI-SUI data)
necessary for the proper operation of the RTI protocol are modelled by the DC-ASE. The DC-
ASE provides general RTI protocol encoding service primitives to an RTI-PM. The DC-ASE is
described in Section 8.3 on page 89.

5.2.3 OSI TP Service Primitives

The OSI TP service primitives are modelled as being provided by the TP MACF component of a
TPPM. The TP MACF and the OSI TP service primitives are described in the OSI TP Model,
Service and Protocol standards.

The TP MACF makes use of the service primitives provided by the following ASEs:

1. TP Application Service Element (TP-ASE) — described in the OSI TP Model, Service and
Protocol standards

2. Association Control Service Element (ACSE) — described in ISO/IEC 8649 and 8650

3. OSI Commitment, Concurrency and Recovery Application Service Element (CCR-ASE) —
described in ISO/IEC 9804 and 9805.

The service primitives provided by these three ASEs and their use by a TPPM to provide the OSI
TP Service are described in the OSI TP Model, Service and Protocol standards.

30 X/Open CAE Specification

Remote Task Invocation Model RTI Model Component Relationships

5.2.4 RTI Service Primitives

The RTI service primitives are modelled as being provided by the RTI-MACF component of an
RTI-PM. The RTI-MACF makes use of the service primitives provided by the RPC-ASE, the
DC-ASE, and the TP MACF component of a TPPM (the OSI TP service primitives).

RTI Service Primitives

DC-ASE
Service Primitives

OSI TP Service Primitives

TP-ASE Service
Primitives

CCR-ASE Service
Primitives

RPC-ASE
Service Primitives

ACSE Service
Primitives

Presentation Layer Services

.

.

.
Figure 5-2 RTI Service Primitive Mapping (Abstract)

Part 2: TxRPC Application Service Element (ASE) 31

RTI Communication Model Remote Task Invocation Model

5.3 RTI Communication Model

5.3.1 Service Providers and Service Users

The term service provider describes an implementation of a particular service that accepts
requests from, and issues indications to, a service user. The term service user describes an entity
that issues requests to, and receives indications from, a service provider. In the RTI Model, the
RTI Service Provider (RTI-SP) provides the RTI Service to all RTI-SUIs and embodies the RTI-
PMs associated with those RTI-SUIs. The RTI-SP spans several RTI-APIs and is the conceptual
view of the RTI Service as a whole. Any user of the RTI Service is referred to as an RTI Service
User (RTI-SU). An RTI-SUI is an instance of an RTI Service User (RTI-SU). The service
boundary between an RTI-SU and the RTI-SP is the RTI Service Boundary.

5.3.2 Clients and Servers

In the RTI Model a call is initiated by a client RTI-SUI. It is then processed by a server RTI-SUI,
which returns the results to the client. When used without qualification, the terms client and
server refer to a client RTI-SUI and a server RTI-SUI respectively. When used to qualify other
RTI Model components, the terms client and server indicate that the particular component is
associated with either a client RTI-SUI or server RTI-SUI respectively.

5.3.3 Processing a Call

A call is processed as follows:

1. A client issues a call request to its RTI-PM.

2. The client RTI-PM then sends the call request to a server RTI-PM which issues a call
indication to a server.

3. When the server completes the processing associated with the call, it issues a call result
request to its RTI-PM.

4. The server RTI-PM then sends the call result request to the client RTI-PM which issues a
call result indication to the client.

If, at any time, the server is unable to process a call request, or when either a communication or
system failure occurs, a call failure indication is returned to the client.

All call requests issued by a client are completed by the receipt of either a call result indication or
a call failure indication.

All call indications received by a server must be completed by issuing a call result request,
except when a rollback indication is received.

32 X/Open CAE Specification

Remote Task Invocation Model RTI Communication Model

5.3.4 Contexts

Before issuing any call requests a client must first identify a server or servers that can process the
requests for the client. To do this a client issues an establish context request to its RTI-PM. This
request does not result in an immediate flow of protocol; rather it specifies a relationship
between a client and a server. This relationship is referred to as a context2. All call requests
issued within a particular context by a client are processed by the server identified by the
context. There is no restriction on the number of calls that may be made within a particular
context.

The client must maintain the relationship between each active context handle and the RTI
context that was used for the RPC operation that created the context handle. This allows
operations made with the context handle to be directed to the same server instance.

The type of context established specifies the characteristics of the relationship between a client
and a server. A context may be one of two types; it is either transaction-enabled or not
transaction-enabled . A context that is transaction-enabled can support both transactional and
non-transactional operations. A context that is not transaction-enabled only supports non-
transactional operations.

The context state is called transactional while it is associated with a transaction. This is from the
time that the context is used for a transactional RPC until transaction termination (commit or
rollback). At all other times the context state is said to be non-transactional .

The state of a context with transactions enabled can vary between transactional and non-
transactional. The state of a context without transactions enabled is always non-transactional.

Each call is made using a context that identifies the server or servers that can process the request.
New contexts are established as needed. A client can establish multiple contexts for the purpose
of accessing multiple servers or to maintain multiple context handles with the same server. A
context may be used to call operations in any interface supported by the server. A context with
transactions enabled can be used for both transactional and non-transactional operations. A
context without transactions enabled can only be used for non-transactional operations.

A context is established and maintained by an RTI-PM. A client considers a context to be
established immediately after issuing an establish context request. A server considers a context
to be established immediately upon receipt of a call made within the particular context.

Transactional contexts are maintained as long as the transaction is active. The context is
automatically released at transaction termination (commit or rollback) if there are no active
context handles that were created within that context. Otherwise, the context becomes non-
transactional.

Non-transactional contexts are maintained while there are active context handles that were
created within the context. The policy for releasing non-transactional contexts is
implementation-dependent.

2. When the term context is used alone, it refers to an RTI context (created by an Establish Context request to an RTI-PM in the
client, or by receipt of a Call Task indicator from the RTI-PM in the server). When referring to an RPC context, the term context
handle is used.

Part 2: TxRPC Application Service Element (ASE) 33

RTI Communication Model Remote Task Invocation Model

5.3.5 Dialogues

When a client issues the first call request within a particular context to an RTI-PM (the client
RTI-PM), the RTI-PM uses the information provided in the establish context request to establish
a dialogue with a server RTI-PM. A dialogue may be one of two types; it is either transaction-
enabled or not transaction-enabled A dialogue that is transaction-enabled is defined as an OSI TP
dialogue on which the OSI TP Dialogue, Shared Control, Unchained Transaction, and Commit
functional units have been selected. A dialogue that is not transaction-enabled is defined as an
OSI TP dialogue on which only the OSI TP Dialogue and Shared Control functional units have
been selected.

If a context is transaction-enabled, the underlying dialogue is created as transaction-enabled.
The dialogue is created in unchained transaction mode allowing the dialogue to be used for both
transactional and non-transactional RPCs.

If a context is not transaction-enabled, the underlying dialogue is created as not transaction-
enabled. The dialogue is created in non-transaction mode, and can only be used for non-
transactional RPCs.

The dialogue state is called transactional while it is associated with a transaction. This is from the
time that the context is used for a transactional RPC until transaction termination (commit or
rollback). At all other times the dialogue is said to be non-transactional .

The state of a dialogue with transactions enabled can vary between transactional and non-
transactional. The state of a dialogue without transactions enabled is always non-transactional.

If a non-transactional dialogue is selected for a transactional RPC, the client RTI-PM explicitly
requests to include the dialogue in the current transaction (by issuing a TP-BEGIN-
TRANSACTION request on the dialogue).

Transactional dialogues are maintained as long as the transaction is active. The dialogue is
automatically released at transaction termination (commit or rollback) if there are no active
context handles that were created within that dialogue. Otherwise, the dialogue becomes non-
transactional.

Non-transactional dialogues are maintained while there are active context handles that were
created within the dialogue. The policy for releasing non-transactional dialogues is
implementation-dependent.

Upon receipt of a begin dialogue indication, a server RTI-AEI creates an RTI-PM (the server RTI-
PM) to accept the dialogue. The acceptance of the dialogue by the server RTI-PM completes the
context establishment process. Once a dialogue is established between a client and a server
RTI-PM the client RTI-PM can then send call requests and receive call result indications over
that dialogue. Upon receipt of a call indication, a server RTI-PM then passes that indication to a
server for processing.

If a non-transactional dialogue fails while a call is in progress, a call failure indication is issued by
the client RTI-PM to the client. If a non-transactional dialogue fails when no call is in progress
and there are no active context handles, a new dialogue is transparently re-established on the
next call request as if it were the first call request issued within a context. If there are active
context handles, a subsequent call request will fail with an error indicating the context handle is
invalid. If a transactional dialogue fails while a call is in progress, a call failure indication
followed by a rollback transaction indication is issued by the client RTI-PM to the client. If a
transactional dialogue fails when no call is in progress, a rollback transaction indication is issued
by the client RTI-PM to the client.

Dialogues are established and maintained by the RTI-PM. Transactional dialogues (without any
active context handles) are automatically terminated by the RTI-PM upon transaction

34 X/Open CAE Specification

Remote Task Invocation Model RTI Communication Model

termination (commit or rollback). When tx_commit() is invoked, all client RTI-PMs for
transactional dialogues without active context handles set the dialogue to terminate with the
transaction (deferred end dialogue). This occurs for all client RTI-PMs in the transaction tree. If
the transaction aborts, the client RTI-PMs explicitly abort these dialogues. The termination
policy for non-transactional dialogues is implementation dependent. They can be terminated by
a client RTI-PM upon receipt of either a release context request from the client or a shutdown
request from the server. They can also be terminated by the server (by indicating deferred end
dialogue) during response processing, as long as there are no active context handles at the end of
the call.

Table 5-1 Dialogues

Context OSI-TP Dialogue
Context States Functional States Type of RPCs

Type Allowed Units Used Allowed Supported
Transaction Transactional Dialogue Transactional All
Enabled Non-Transactional Shared Control Non-Transactional

Commit
Unchained

Not Non-Transactional Dialogue Non-Transactional Non-Transactional
Transaction Shared Control including
Enabled transaction_optional

without a current
transaction

5.3.6 OSI TP Profiles

The TxRPC-ASE refers to OSI TP profiles ATP12 and ATP22 (see ISO/IEC ISP 12061). The
following table summarises the OSI TP functional units required by each one of these profiles (a
• symbol indicates that the specified functional unit is required for that profile):

Table 5-2 Required OSI TP Functional Units

Functional Units ATP12 ATP22
Dialogue • •
Polarized Control
Shared Control • •
Commit •
Unchained transactions •
Chained transactions
Handshake (•) (•)
Recovery •

Note: The Handshake functional unit is optional for ATP12 and ATP22. However, TxRPC
does not use the Handshake functional unit.

TxRPC uses a protocol set, as described in this specification, based on the ATP12 profile when a
call request is issued outside of a global transaction. TxRPC uses another protocol set, also as
described in this specification, based on the ATP22 profile when the TxRPC-ASE is used within a
global transaction. The choice between these sets is automatically supported by the TxRPC-ASE.

Part 2: TxRPC Application Service Element (ASE) 35

RTI Communication Model Remote Task Invocation Model

5.3.7 Context Trees, Dialogue Trees and Transaction Trees

A client can establish context with any number of servers for the purpose of sending calls to
those servers. By establishing context RTI-SUIs form a context tree. In a context tree, each node
of the tree is an RTI-SUI that is acting as a client to the subordinate RTI-SUIs below it and as a
server to the superior RTI-SUI above it. If an RTI-SUI has no superior, it is referred to as the root
RTI-SUI. If an RTI-SU has no subordinates, it is referred to as a leaf RTI-SUI. The RTI-SUIs
between the root and leaf RTI-SUIs are referred to as intermediate RTI-SUIs. An example of a
context tree is shown in Figure 5-3.

Context trees are supported by dialogues maintained by the RTI-PMs associated with each RTI-
SUI. By establishing dialogues RTI-PMs form a dialogue tree. For each context tree, a
corresponding dialogue tree is created where each node of the dialogue tree is an RTI-PM.

Server (Subordinate)

Client (Superior)

RTI-SUI

RTI-SUI RTI-SUI

RTI-SUI

RTI-SUI

RTI-SUI

RTI-SUI RTI-SUI RTI-SUI

RTI-SUI RTI-SUI

Root

Intermediate

Leaf

Figure 5-3 RTI-SUI Context Tree

A special case of a context tree is a transaction tree. Throughout this document, the term
transaction refers to a provider supported transaction as defined by OSI TP. A transaction tree is a
sub-tree of a context tree in which all of the contexts established are transactional contexts. All
RTI-SUIs that are part of a transaction tree are referred to as transaction participants . All
dialogues that support a transaction tree are transactional dialogues .

36 X/Open CAE Specification

Remote Task Invocation Model RTI Communication Model

5.3.8 Bound Data

The term bound data refers to any persistent data accessed by a transaction participant that exists
beyond the duration of a transaction. Bound data is bound by the rules of OSI TP to the state of
the transaction for the duration of the transaction.

The state of bound data at the time it is first accessed by a transaction participant is referred to as
the initial state . The state of bound data immediately after successful completion of a transaction
is referred to as the final state . Modifications made by the operations of transaction participants
change the bound data from the initial state to the final state. The modifications are indivisible
and either all are effected (placing the bound data in the final state) or none are effected (placing
the bound data in the initial state).

An intermediate state, referred to as the ready state identifies the state of bound data in which no
further modifications are made to the bound data before it is declared to be in the final state.

Part 2: TxRPC Application Service Element (ASE) 37

RTI Communication Model Remote Task Invocation Model

5.3.9 Using the RTI Communication Model

Figure 5-4 depicts the RTI Communication Model for a simple system consisting of only two
RTI-SUIs. The remote procedure calls made by the two RTI-SUIs are transported over a
dialogue that runs between the two RTI-PMs supporting the two RTI-SUIs. The dialogue is
carried over an association between two RTI-AEIs. The RTI-SUI on the left is the client RTI-SUI
that has caused the client RTI-PM on the left to create the dialogue with the server RTI-PM on
the right. Any call requests made by the client RTI-SUI to the client RTI-PM are sent to the
server RTI-PM. The server RTI-PM then causes the server RTI-SUI to execute the requested
operation.

RTI-API

RTI-AEI

RTI-PM

RTI-API

RTI-AEI

RTI-PM

Remote
Prodedure

Calls

Dialogue

Association

RTI-SUI RTI-SUI

Figure 5-4 RTI Communication Model

38 X/Open CAE Specification

Remote Task Invocation Model Relationship of the RTI Model to OSI

5.4 Relationship of the RTI Model to OSI
This section describes the relationship of the RTI model to the OSI TP model and the OSI
application layer structure.

The following components are defined or referred to in the OSI TP Model: the Application
Process (AP), the Application Process Invocation (API), the Application Entity (AE), the
Application Entity Invocation (AEI), the Transaction Processing Service Provider (TPSP), the
Transaction Processing Protocol Machine (TPPM), the Transaction Processing Service User
(TPSU), the Transaction Processing Service User Invocation (TPSUI).

In the RTI Model these components are mapped as follows:

• AP → RTI-AP

• API → RTI-API

• AE → RTI-AE

• AEI → RTI-AEI

• TPSP → Subfunction of RTI-SP

• TPPM → Subfunction of RTI-PM

• TPSU → RTI-SP

• TPSUI → RTI-PM.

Part 2: TxRPC Application Service Element (ASE) 39

RTI Naming Model Remote Task Invocation Model

5.5 RTI Naming Model
This section describes the naming information necessary for OSI communication within the RTI
Model and shows how those names are mapped to the components of the RTI Model.

5.5.1 OSI Names Used in the RTI Model

The following OSI names are used in the RTI Model:

• application-process-title (AP-Title)

• application-entity-qualifier (AE-Qualifier)

• application-context-name (A-Ctx-Name)

• transaction-process-service-user-title (TPSU-Title)

• abstract-syntax-name (AS-Name).

These names are described in the following sections.

5.5.2 AP-Title

An AP-Title names an AP for the purpose of establishing associations.

A conforming implementation must support an AP-Title of type ObjectID and must be able to
receive an AP-Title of type DirectoryName. Optionally, an implementation can support sending
an AP-Title of type DirectoryName.

AP-Title in the RTI Model is referred to as an RTI-AP-Title. The scope of an RTI-AP is
equivalent to the scope of an AP in OSI TP.

The value of an RTI-AP-Title is implementation-specific.

5.5.3 AE-Qualifier

An AE-Qualifier selects the AE within a particular AP that can accept the association that is
being established. The initiating and accepting AEIs are the end points of the association being
established.

The AE-Qualifier must be of the same form as the AP-Title. That is, if the AP-Title is of type
ObjectID the AE-Qualifier must be of type INTEGER. If the AP-Title is of type DirectoryName
the AE-Qualifier must be of type DirectoryName.

5.5.4 A-Ctx-Name

An A-Ctx-Name identifies the application context, and thereby the rules for communication
between the two AEIs using the association.

An A-Ctx-Name is of type ObjectID.

All ObjectIDs must be registered with a registration authority. It is the registration authority that
fixes the value of the ObjectID. That fixed value is then incorporated into each implementation.

The allowable A-Ctx-Names for the RTI Model are defined in Chapter 6.

40 X/Open CAE Specification

Remote Task Invocation Model RTI Naming Model

5.5.5 TPSU-Title

A TPSU-Title selects the TPSUI within a particular API that can accept the dialogue being
established. The initiating and accepting TPSUIs are the end points of the dialogue being
established.

TPSU-Title can be either of type Integer or PrintableString.

TPSU-Title is of type PrintableString in the RTI Model.

The allowable TPSU-Titles for the RTI Model are defined in Section 8.3.5 on page 91.

5.5.6 AS-Name

An AS-Name identifies a particular Abstract-Syntax definition.

An AS-Name is of type ObjectID.

Two AS-Names are defined by the RTI Model, one for the DC-ASE abstract syntax, one for the
RPC-ASE abstract syntax.

Part 2: TxRPC Application Service Element (ASE) 41

Remote Task Invocation Model

42 X/Open CAE Specification

Chapter 6

RTI Application Context Definition

This chapter contains the formal definition of the RTI Application Context. The RTI Model is
described in Chapter 5 and the RTI Communication Model in Section 5.3 on page 32.

ISO/IEC 9545 describes an Application Context as ‘‘a set of rules shared in common by two
AEIs in order to enable their cooperative operation’’.

The RTI Application Context makes use of the facilities of OSI TP. Note that OSI TP does not
define an application context of its own. OSI TP is a set of application layer services and an
application layer protocol used by OSI applications that require transaction semantics. Many
applications may make use of OSI TP, each defining its own Application Context.

The purpose of an Application Context definition is to restrict options, and apply rules beyond
those specified in the standards defining the ASEs that constitute the Application Context.

Part 2: TxRPC Application Service Element (ASE) 43

Application Context Name RTI Application Context Definition

6.1 Application Context Name
Two application-context names are defined for RTI. They are:

• RTI Application Context with Transactions Enabled

{iso(1) national-member-body(2) bsi(826) disc(0) xopen(1050)
txrpc(6) application-context(1) transactional-enabled(1)}

• RTI Application Context without Transactions Enabled

{iso(1) national-member-body(2) bsi(826) disc(0) xopen(1050)
txrpc(6) application-context(1) not-transaction-enabled(2)}

6.2 Component ASEs
The component ASEs of the RTI Application Context with Transactions Enabled and the RTI
Application Context without Transactions Enabled are identified as part of the RTI Model
presented in Chapter 5.

The RTI Application Context without Transactions Enabled includes all ASEs described in
Chapter 5, except the CCR-ASE.

The RTI Application Context with Transactions Enabled contains all ASEs described in Chapter
5.

6.3 Application Services
The RTI Application Context with Transactions Enabled and the RTI Application Context
without Transactions Enabled do not require the use of any AEI application services other than
those defined in this document and in the referenced standards.

6.4 Persistent Application Functions
The RTI Application Context without Transactions Enabled has no persistent application-
context rules.

The only persistent application-context rules for the RTI Application Context with Transactions
Enabled are those that pertain to bound-data as defined in the OSI TP Model, Service and
Protocol standards and described in Section 5.3.8 on page 37.

6.5 SACF Rules
All SACF rules defined for the RTI Application Context with Transactions Enabled or the RTI
Application Context without Transactions Enabled that are in addition to, and supplement,
those rules that are defined in the referenced standards can be found in Section 8.6 on page 122.

44 X/Open CAE Specification

RTI Application Context Definition SACF Rules

6.6 MACF Rules
All MACF rules defined for the RTI Application Context with Transactions Enabled and the RTI
Application Context without Transactions Enabled that are in addition to, and supplement,
those rules that are defined in the referenced standards can be found in Section 8.5 on page 112
and Section 8.7 on page 123.

6.7 Optional Features
The RTI Application Context without Transactions Enabled selects the RTI Kernel functional
unit and the RTI Non-Transactional functional unit. There are no optional features defined for
the RTI Application Context without Transactions Enabled.

The RTI Application Context with Transactions Enabled selects the RTI Kernel functional unit,
the RTI Non-Transactional functional unit and the RTI Transactional functional unit.

Rules and restrictions on the selection of RTI functional units (and component ASEs) are defined
in Section 7.2 on page 50.

Rules and restrictions on the selection of OSI TP functional units (and component ASEs) are
defined in Functional-Units on page 93.

6.8 Error Handling
If the rules and constraints of either the RTI Application Context with Transactions Enabled or
the RTI Application Context without Transactions Enabled are violated the underlying
association is aborted.

6.9 Context Manipulation
There are no Application Context rules that may be dynamically added, removed or modified
for either the RTI Application Context with Transactions Enabled or the RTI Application Context
without Transactions Enabled.

6.10 Conformance
There are no conformance requirements for the RTI Application Context with Transactions
Enabled or the RTI Application Context without Transactions Enabled other than those specified
in the referenced standards.

Part 2: TxRPC Application Service Element (ASE) 45

RTI Application Context Definition

46 X/Open CAE Specification

Chapter 7

RTI Service Definition

This chapter contains the definitions of the RTI service primitives. These service primitives, in
turn, define the RTI Service. The RTI service primitives exist to enable a client and server to
exchange information in a predictable manner.

The definition of the RTI service is presented as follows:

• a summary of the service primitives

• the classification of the service primitives into functional units, according to their ability to be
used independently of other functional units

• a description of each functional unit

• a description of the service primitives contained within each functional unit including a
request and indication parameter list.

All sequencing rules are implicit in the state tables shown in Section 7.7 on page 75.

Part 2: TxRPC Application Service Element (ASE) 47

Service Conventions RTI Service Definition

7.1 Service Conventions
The service description conventions used in this specification are as close as possible to OSI
service description conventions. Where it has been necessary to augment OSI conventions, it
has been done so in a way that preserves the general OSI convention style.

In the OSI application layer structure a service primitive is an event that occurs at the boundary
between a service user and a service provider in an open system. Similarly, RTI service
primitives are modelled as events that occur at the RTI Service Boundary between an RTI-SU (an
RTI-SUI) and an RTI-SP (an RTI-PM).

The RTI Service has two service primitive classes: requests (req) and indications (ind). Requests
are issued by an RTI-SUI and received by an RTI-PM. Indications are issued by an RTI-PM and
received by an RTI-SUI. Typically, although not necessarily, requests issued by one RTI-SUI are
received as indications by another RTI-SUI. In certain situations requests issued to an RTI-PM
are purely local events and do not directly generate protocol flows. Similarly, some indications
issued by an RTI-PM are the result of multiple protocol flows or local events (such as
communication failures). This sequence of RTI service primitives is shown in Figure 7-1.

Client
RTI-SUI

Server
RTI-SUI

RTI
Service

Boundary

req

ind

ind

req

RTI
Service

Boundary

Figure 7-1 RTI Service Primitives Sequencing

48 X/Open CAE Specification

RTI Service Definition Service Conventions

Tables are used to describe the component parameters of the RTI service primitives. Each table
consists of up to three columns, containing the name of the service parameter, the request
parameter usage, and the indication parameter usage. Each parameter is listed on a separate
line. Under the appropriate service primitive class columns, a code specifies the usage of the
parameter for the service primitive class specified in the vertical column:

M Parameter is mandatory.

U Parameter is a user option, and may or need not be provided depending on the
dynamic requirements of the RTI client or RTI server.

O Parameter is an RTI-PM option, and may or need not be provided depending on the
dynamic requirements of the provider.

C Parameter is conditional upon other parameters or the environment of a client or
server.

(blank) Parameter is never present.

The code (=) following one of the codes M, U, O or C indicates that the parameter is
semantically equivalent to the parameter in the service primitive to its immediate left in the
table. (For instance, an M(=) code in the indication service primitive column and an M in the
request service primitive column means that the parameter in the indication primitive column is
semantically equivalent to that in the request primitive column.)

The descriptions of the parameters specify the allowable data values.

Part 2: TxRPC Application Service Element (ASE) 49

Service Functional Unit Description RTI Service Definition

7.2 Service Functional Unit Description
The following functional units are defined:

• Kernel

The Kernel functional unit provides the RTI service primitives for establishing context and
calling remote tasks. The Kernel function unit is used in conjunction with the Non-
Transactional functional unit and, optionally, the Transactional functional unit.

• Non-Transactional

The Non-Transactional (Non-Trans) functional unit augments the Kernel functional unit. It
provides the necessary additional context release primitive for use with the Kernel service
primitives when non-transactional dialogues are terminated.

• Transactional

The Transactional (Trans) functional unit augments the Kernel and Non-Transactional
functional units. It provides additional transaction semantics service primitives when calls
with transaction semantics are required.

Functional units are selected by an RTI-PM when context is established.

The Kernel and Non-Transactional functional units are always selected. Additionally, the
Transactional functional unit may also be selected.

50 X/Open CAE Specification

RTI Service Definition Summary of Service Primitives

7.3 Summary of Service Primitives
The RTI service is invoked using a sequence of RTI service primitives. Table 7-1 lists:

• the RTI service primitives

• the service primitive type (req or ind) available to clients and servers

• the functional unit to which the service primitive belongs (Kernel, Non-Trans or Trans)

• the section of this document that fully describes the service primitive.

Table 7-1 RTI Service Primitives

Client Server Functional
Service Name Primitives Primitives Unit See

Section 7.4.1 on page 53.RTI-ESTABLISH-CONTEXT req Kernel
Section 7.4.2 on page 56.RTI-CALL-TASK req ind Kernel
Section 7.4.3 on page 59.RTI-CANCEL-CALL req ind Kernel
Section 7.4.4 on page 60.RTI-CALL-FAILURE ind Kernel
Section 7.4.5 on page 63.RTI-CALL-RESULT ind req Kernel
Section 7.5.1 on page 65.RTI-RELEASE-CONTEXT req/ind Non-Trans
Section 7.6.1 on page 67RTI-HEURISTIC-REPORT ind Trans
Section 7.6.2 on page 68.RTI-ROLLBACK-TRANS req/ind req/ind Trans
Section 7.6.3 on page 69.RTI-END-TRANS req Trans
Section 7.6.4 on page 70.RTI-PREPARE-TRANS ind Trans
Section 7.6.5 on page 71.RTI-TRANS-READY req/ind Trans
Section 7.6.6 on page 72.RTI-COMMIT-TRANS req/ind ind Trans
Section 7.6.7 on page 73.RTI-TRANS-DONE req req Trans
Section 7.6.8 on page 74.RTI-TRANS-COMPLETE ind ind Trans

Part 2: TxRPC Application Service Element (ASE) 51

Kernel Functional Unit RTI Service Definition

7.4 Kernel Functional Unit
The Kernel functional unit provides the RTI service primitives for establishing context and
calling remote tasks. The Kernel functional unit is used in conjunction with the Non-
Transactional and, optionally, the Transactional functional units.

These primitives enable an RTI-SUI to:

• establish client-server context

• request a call

• cancel an outstanding call

• receive the result of a call

• receive indication of a failure of a call.

The Kernel functional unit is always selected. Both client and server RTI-PMs must support this
functional unit. The functional units that are used by a particular context are determined when
the context is established. Rules that describe how the functional units may be combined are
described in Section 7.2 on page 50.

52 X/Open CAE Specification

RTI Service Definition Kernel Functional Unit

7.4.1 RTI-ESTABLISH-CONTEXT request

Function

An RTI-ESTABLISH-CONTEXT request is issued by a client to an RTI-PM to request that a
context be established between a client and a server.

This service primitive relates to one particular context.

Parameters

Table 7-2 RTI-ESTABLISH-CONTEXT Parameters

Parameter Name Req
RTI-AP-Title M
RTI-AE-Qualifier U
Object-UUID U
Client-Name M
Client-Authenticator-Type M
Client-Authenticator M
Interface-UUID M
Interface-Version-Major M
Interface-Version-Minor M
Context-Type M

RTI-AP-Title
This parameter is supplied by the client. It specifies the name of the server RTI-API that
processes calls made by the client within the context being established.

This parameter can have any value that is a valid RTI-AP-Title (AP-Title of an AP that
supports the RTI Service).

RTI-AE-Qualifier
This parameter is supplied by the client. It specifies the AE-Qualifier in which this server
RTI-API resides. This parameter is optional.

This parameter can have any value corresponding to a valid RTI-AE-Qualifier.

Object-UUID
This parameter is supplied by the client. It specifies an object UUID that can be used to
affect the selection of the server and the manager function within the server. This parameter
is optional.

This parameter can have any value that is a valid UUID as defined in the referenced
X/Open DCE RPC specification.

Client-Name
This parameter is supplied by the client. It specifies the name of the client issuing the
request. This parameter is used in conjunction with the Client-Authenticator to verify the
authenticity of the client.

This parameter can have any value that is a valid VisibleString.

Client-Authenticator-Type
This parameter is supplied by the client. It specifies the type of the Client-Authenticator

Part 2: TxRPC Application Service Element (ASE) 53

Kernel Functional Unit RTI Service Definition

parameter.

This parameter can have one of the following values:

DEFAULT-SECURITY

CUSTOMER-WRITTEN-SECURITY

Client-Authenticator
This parameter is supplied by the client. This parameter is used in conjunction with the
Client-Name to verify the authenticity of the client in an implementation-dependent
manner.

If the Client-Authenticator-Type is DEFAULT-SECURITY, this parameter can have any
value that is a valid VisibleString.

If the Client-Authenticator-Type is CUSTOMER-WRITTEN-SECURITY, this parameter can
have any value that is a valid OCTET STRING.

Interface-UUID
This parameter is supplied by the client. It specifies the UUID of the server interface to use
for calls to be made by the client within the context being established.

This parameter can have any value that is a valid UUID as defined in the referenced
X/Open DCE RPC specification.

Interface-Version-Major
This parameter is supplied by the client. It specifies the major version number of the server
interface identified by Interface-UUID.

This parameter can have any value that is a 16-bit non-negative integer.

Interface-Version-Minor
This parameter is supplied by the client. It specifies the minor version number of the server
interface identified by Interface-UUID.

This parameter can have any value that is a 16-bit non-negative integer.

Context-Type
This parameter is supplied by the client. It specifies whether the context being established is
enabled for transactional RPCs.

This parameter can have one of the following values:

TRANSACTION-ENABLED
This context is established with transactions enabled; both transactional and non-
transactional RPCs are supported.

NOT-TRANSACTION-ENABLED
This context is established without transactions enabled; only non-transactional RPCs
are supported.

54 X/Open CAE Specification

RTI Service Definition Kernel Functional Unit

Usage

• Only a client can issue an RTI-ESTABLISH-CONTEXT request.

• No other RTI service primitives can be issued by a client without first establishing context
with a server. Therefore an RTI-ESTABLISH-CONTEXT request must be issued by a client
prior to issuing any other RTI service primitive.

• An RTI-ESTABLISH-CONTEXT request does not result in an immediate flow of protocol; it
sets up a relationship between a client and a server and specifies the characteristics of that
relationship.

• Context is said to exist at a client from the moment an RTI-ESTABLISH-CONTEXT request is
issued until some other service primitive releases that context.

• The use of transactional RPCs requires that the context be established with Context-Type set
to TRANSACTION-ENABLED. If only non-transactional RPCs are required, NOT-
TRANSACTION-ENABLED can be specified. The control of this option is implementation
defined.

• Once an RTI-ESTABLISH-CONTEXT request has been issued by a client, only one of the
following events can occur:

— issue an RTI-RELEASE-CONTEXT request

— issue an RTI-CALL-TASK request

— issue an RTI-RELEASE-CONTEXT indication.

Part 2: TxRPC Application Service Element (ASE) 55

Kernel Functional Unit RTI Service Definition

7.4.2 RTI-CALL-TASK request and indication

Function

An RTI-CALL-TASK request is issued by a client to an RTI-PM to request a call.

An RTI-CALL-TASK indication is issued by an RTI-PM to a server to initiate a call.

These service primitives relate to one particular context.

Parameters

Table 7-3 RTI-CALL-TASK Parameters

Parameter Name Req Ind
Client-Name M
Client-Authenticator-Type M
Client-Authenticator M
Context-Type M
Interface-UUID M M(=)
Interface-Version-Major M M(=)
Interface-Version-Minor M M(=)
Object-UUID O(=)
Transaction-Attribute M M(=)
Operation-Number M M(=)
Arguments M M(=)

Client-Name
This parameter is supplied by the server RTI-PM. The value of this parameter depends upon
the context in which the call was made. It specifies the name of the client issuing the
request. This parameter is used in conjunction with the Client-Authenticator to verify the
authenticity of the client.

This parameter can have any value that is a valid VisibleString.

Client-Authenticator-Type
This parameter is supplied by the server RTI-PM. The value of this parameter depends upon
the context in which the call was made. It specifies the type of the Client-Authenticator
parameter.

This parameter can have one of the following values:

DEFAULT-SECURITY
The context being established uses default security.

CUSTOMER-WRITTEN-SECURITY
The context being established uses customer written security.

Client-Authenticator
This parameter is supplied by the server RTI-PM. The value of this parameter depends upon
the context in which the call was made. This parameter is used in conjunction with the
Client-Name to verify the authenticity of the client.

If the Client-Authenticator-Type is DEFAULT-SECURITY, this parameter can have any
value that is a valid VisibleString.

56 X/Open CAE Specification

RTI Service Definition Kernel Functional Unit

If the Client-Authenticator-Type is CUSTOMER-WRITTEN-SECURITY, this parameter can
have any value that is a valid OCTET STRING.

Context-Type
This parameter is supplied by the server RTI-PM. It specifies whether the call is being made
within a context with transactions enabled.

This parameter can have one of the following values:

TRANSACTION-ENABLED
This context was established with transactions enabled; both transactional and non-
transactional RPCs are supported.

NOT-TRANSACTION-ENABLED
This context was established without transactions enabled; only non-transactional
RPCs are supported.

Interface-UUID
This parameter is supplied by the client. It specifies the UUID of the server interface to use
for this call.

This parameter can have any value that is a valid UUID as defined in the referenced
X/Open DCE RPC specification.

Interface-Version-Major
This parameter is supplied by the client. It specifies the major version number of the server
interface identified by Interface-UUID.

This parameter can have any value that is a 16-bit non-negative integer.

Interface-Version-Minor
This parameter is supplied by the client. It specifies the minor version number of the server
interface identified by Interface-UUID.

This parameter can have any value that is a 16-bit non-negative integer.

Object-UUID
This parameter is supplied by the server RTI-PM. It is the object UUID specified when the
RTI context was established.

This parameter can have any value that is a valid UUID as defined in the referenced
X/Open DCE RPC specification.

Transaction-Attribute
This parameter is supplied by the client. It specifies the transaction attribute defined for the
operation.

This parameter can have one of the following values:

TRANSACTION-MANDATORY
The requested operation has the IDL transaction_mandatory attribute.

TRANSACTION-OPTIONAL
The requested operation has the IDL transaction_optional attribute.

TRANSACTION-NONE
The requested operation has neither the IDL transaction_mandatory nor
transaction_optional attribute.

Operation-Number
This parameter is supplied by the client. It specifies the operation number of the call within

Part 2: TxRPC Application Service Element (ASE) 57

Kernel Functional Unit RTI Service Definition

the interface specified by the Interface-UUID, which is associated with the context in which
the call was made.

This parameter can have any value that is a 16-bit non-negative integer as defined in
Parameters on page 96.

Arguments
This parameter is supplied by the client. It contains the input parameters to the call being
made.

Usage

• An RTI-CALL-TASK request can only be issued within an established context.

• Receipt of an RTI-CALL-TASK indication completes the context establishment with a server.

• An operation with a Transaction-Attribute of TRANSACTION-MANDATORY can only be
issued within the scope of a transaction. The Context-Type is TRANSACTION-ENABLED.

• If an operation with a Transaction-Attribute of TRANSACTION-MANDATORY or
TRANSACTION-OPTIONAL is issued within the scope of a transaction, the operation is a
transactional RPC. If the context is not already transactional, it is made transactional and the
associated dialogue is included in the global transaction. The manager function executes
under the global transaction. The Context-Type is TRANSACTION-ENABLED.

• If an operation with a Transaction-Attribute of TRANSACTION-OPTIONAL is issued
outside the scope of a transaction, the manager function begins execution in non-transaction
mode. Note that in this case, the context and the associated dialogue are necessarily non-
transactional. The Context-Type may be either TRANSACTION-ENABLED or NOT-
TRANSACTION-ENABLED.

• If the Transaction-Attribute is TRANSACTION-NONE the manager function begins
execution in non-transaction mode. This is true even if the call is issued within the scope of a
global transaction and the context is transactional and the associated dialogue has been
included in the transaction. The Context-Type may be either TRANSACTION-ENABLED or
NOT-TRANSACTION-ENABLED.

• Once an RTI-CALL-TASK request has been issued by a client, only one of the following
events can occur:

— issue an RTI-CANCEL-CALL request

— receive an RTI-CALL-RESULT indication

— receive an RTI-CALL-FAILURE indication

— receive an RTI-ROLLBACK-TRANS indication.

• Once an RTI-CALL-TASK indication has been received by a server, only one of the following
events can occur:

— issue an RTI-CALL-RESULT request

— receive an RTI-CANCEL-CALL indication

— receive an RTI-ROLLBACK-TRANS indication.

58 X/Open CAE Specification

RTI Service Definition Kernel Functional Unit

7.4.3 RTI-CANCEL-CALL request and indication

Function

An RTI-CANCEL-CALL request is issued by a client to an RTI-PM to request cancellation of an
outstanding call.

An RTI-CANCEL-CALL indication is issued by an RTI-PM to a server to indicate that an
outstanding call is requested to be cancelled.

These service primitives relate to one context.

Parameters

None.

Usage

• An RTI-CANCEL-CALL request can only be issued within an established context.

• An RTI-CANCEL-CALL request can only be issued by a client after an RTI-CALL-TASK
request has been issued and before an RTI-CALL-RESULT or RTI-CALL-FAILURE indication
is received. That is, while an outstanding call exists.

• Multiple RTI-CANCEL-CALL requests can be made by a client.

• If multiple RTI-CANCEL-CALL requests are made by a client, multiple RTI-CANCEL-CALL
indications may be received by the server processing the call.

• RTI-CANCEL-CALL indications are received by a server only after an RTI-CALL-TASK
indication has been received and before an RTI-CALL-RESULT request is issued. That is,
while an outstanding call exists.

• The context in which an RTI-CANCEL-CALL request is issued identifies the server that has
initiated the call that is to be cancelled.

• Once an RTI-CANCEL-CALL request has been issued by a client, only one of the following
events can occur:

— receive an RTI-CALL-RESULT indication

— receive an RTI-CALL-FAILURE indication

— receive an RTI-ROLLBACK-TRANS indication.

• Once an RTI-CANCEL-CALL indication has been received by a server, only one of the
following events can occur:

— issue an RTI-CALL-RESULT request

— receive an RTI-CANCEL-CALL indication

— receive an RTI-ROLLBACK-TRANS indication.

Part 2: TxRPC Application Service Element (ASE) 59

Kernel Functional Unit RTI Service Definition

7.4.4 RTI-CALL-FAILURE indication

Function

An RTI-CALL-FAILURE indication is issued by an RTI-PM to indicate to a client that a call has
failed.

This indication relates to one particular context.

Parameters

Table 7-4 RTI-CALL-FAILURE Parameters

Parameter Name Ind
Reason M

Reason
This parameter is supplied by the RTI-PM. It specifies the reason the call has failed.

This parameter can have one of the following values:

RTI-SERVICE-UNKNOWN
The server RTI-API specified on the RTI-ESTABLISH-CONTEXT request does not
support the RTI Service.

The specified context is no longer valid.

PROTOCOL-VERSION-NOT-SUPPORTED
The server RTI-API specified on the RTI-ESTABLISH-CONTEXT request does not
support the version of RTI Service specified by the client RTI-API.

The specified context is no longer valid.

CONTEXT-TYPE-NOT-SUPPORTED
The server RTI-API specified on the RTI-ESTABLISH-CONTEXT request does not
support the specified context type.

The specified context is no longer valid.

TRANSACTION-ATTRIBUTE-MISMATCH
The Transaction-Attribute specified in the RTI-CALL-TASK request does not match the
Transaction-Attribute known in the server.

PERMANENT-COMMUNICATION-FAILURE
A permanent communication failure between the client and server RTI-APIs has been
detected. Re-establishing the context will most likely be unsuccessful.

The specified context is no longer valid.

TRANSIENT-COMMUNICATION-FAILURE
A transient communication failure between the client and server RTI-APIs has been
detected. Re-establishing the context is possible.

PROTOCOL-MACHINE-FAILURE
A fatal RTI-PM failure has been detected.

The specified context is no longer valid.

60 X/Open CAE Specification

RTI Service Definition Kernel Functional Unit

INTERFACE-UNKNOWN
The server RTI-API specified on the RTI-ESTABLISH-CONTEXT request does not
support the Interface specified on the RTI-CALL-TASK request.

INTERFACE-PERMANENTLY-UNAVAILABLE
The server RTI-API specified on the RTI-ESTABLISH-CONTEXT request supports the
Interface specified on the RTI-CALL-TASK request but does not support the Interface
Version specified on the RTI-CALL-TASK request.

INTERFACE-TEMPORARILY-UNAVAILABLE
The server RTI-API specified on the RTI-ESTABLISH-CONTEXT request supports the
requested Interface and Interface Version specified on the RTI-CALL-TASK request but
does not have sufficient resources at this time to allow access.

ROLLBACK-IN-PROGRESS
A rollback of the current transaction has been detected.

The specified context is no longer valid (if there are no active context handles).

REASON-NOT-SPECIFIED
Reason not specified.

The specified context is no longer valid.

RPC-ACCESS-VIOLATION
The call has resulted in an access violation.

RPC-CANCEL
The call has been cancelled.

RPC-FLOATING-DIVIDE-BY-ZERO
The call has resulted in a floating-point divide by zero.

RPC-FLOATING-ERROR
The call has resulted in a floating-point error.

RPC-FLOATING-OVERFLOW
The call has resulted in a floating-point overflow.

RPC-FLOATING-UNDERFLOW
The call has resulted in a floating-point underflow.

RPC-INSUFFICIENT-RESOURCES
The server does not have sufficient resources to process the call.

RPC-INTEGER-DIVIDE-BY-ZERO
The call has resulted in an integer divide by zero.

RPC-INTEGER-OVERFLOW
The call has resulted in an integer overflow.

RPC-INVALID-OPERATION-NUMBER
An invalid operation number was specified on the RTI-CALL-TASK request.

RPC-INVOCATION-FAILURE
A fatal error was encountered while attempting to invoke the call.

RPC-MARSHALLING-ERROR
A marshalling error has been encountered.

RPC-PROTOCOL-ERROR
An RPC protocol error has been encountered.

Part 2: TxRPC Application Service Element (ASE) 61

Kernel Functional Unit RTI Service Definition

RPC-REASON-NOT-SPECIFIED
Reason not specified.

Usage

• Once an RTI-CALL-FAILURE indication has been received by a client, only one of the
following events can occur:

— issue an RTI-RELEASE-CONTEXT request

— issue an RTI-CALL-TASK request

— issue an RTI-END-TRANS request

— issue an RTI-ROLLBACK-TRANS request

— receive an RTI-RELEASE-CONTEXT indication

— receive an RTI-ROLLBACK-TRANS indication.

62 X/Open CAE Specification

RTI Service Definition Kernel Functional Unit

7.4.5 RTI-CALL-RESULT request and indication

Function

An RTI-CALL-RESULT request is issued by a server to an RTI-PM to return output parameters
after the completion of a call.

An RTI-CALL-RESULT indication is issued by an RTI-PM to a client to return output parameters
upon the completion of a call.

These service primitives relate to one particular context.

Parameters

Table 7-5 RTI-CALL-RESULT Parameters

Parameter Name Req Ind
Arguments M M(=)

Arguments
This parameter is supplied by the server. It contains the output parameters to the call being
completed.

Usage

• These service primitives can only be issued and received within an established context.

• An RTI-CALL-RESULT request can only be issued by a server for the purpose of reporting
back the result of a call.

• The context in which an RTI-CALL-RESULT request is issued identifies the client that
requested the call and to which the results are to be returned.

• Once an RTI-CALL-RESULT request has been issued by a server, only one of the following
events can occur:

— issue an RTI-ROLLBACK-TRANS request

— receive an RTI-CALL-TASK indication

— receive an RTI-ROLLBACK-TRANS indication

— receive an RTI-PREPARE-TRANS indication.

• Once an RTI-CALL-RESULT indication has been received by a client, only one of the
following events can occur:

— issue an RTI-RELEASE-CONTEXT request

— issue an RTI-CALL-TASK request

— issue an RTI-END-TRANS request

— issue an RTI-ROLLBACK-TRANS request

— receive an RTI-RELEASE-CONTEXT indication

— receive an RTI-ROLLBACK-TRANS indication.

Part 2: TxRPC Application Service Element (ASE) 63

Non-Transactional Functional Unit RTI Service Definition

7.5 Non-Transactional Functional Unit
The Non-Transactional functional unit augments the Kernel functional unit. It provides the
necessary context release primitive for use with the Kernel functional unit service primitives
when non-transactional contexts are terminated.

The Non-Transactional functional unit is always selected. Both client and server RTI-PMs must
support this functional unit. The functional units that are used by a particular context are
determined when the context is established. Rules that describe how the functional units may be
combined are described in Section 7.2 on page 50.

64 X/Open CAE Specification

RTI Service Definition Non-Transactional Functional Unit

7.5.1 RTI-RELEASE-CONTEXT request and indication

Function

An RTI-RELEASE-CONTEXT request is issued by a client to an RTI-PM to request the release of
an established context.

An RTI-RELEASE-CONTEXT indication is issued by an RTI-PM to a client to indicate that an
established context has been released.

These service primitives relate to one particular context.

Parameters

None.

Usage

• If an RTI-RELEASE-CONTEXT request is issued or an RTI-RELEASE-CONTEXT indication
received, no further requests can be issued or indications received in context of the released
context. The context is released.

• All service primitives issued within a context by a client, prior to the release of that context,
are guaranteed to be delivered to the corresponding server before the context is released.

• An RTI-RELEASE-CONTEXT request cannot be issued within the context of an outstanding
call.

Part 2: TxRPC Application Service Element (ASE) 65

Transactional Functional Unit RTI Service Definition

7.6 Transactional Functional Unit
The Transactional functional unit augments the Kernel functional unit. It provides transaction
service primitives for use with the Kernel and Non-Transactional functional unit service
primitives. These primitives enable the RTI-SUI to:

• initiate transaction termination

• rollback (undo) a transaction

• participate in two-phase commitment of the transaction

• receive the results of the two-phase commitment process.

The Transactional functional unit is selected for contexts with transactions enabled. Both client
and server RTI-PMs must support this functional unit. The functional units that are used by a
particular context are determined when the context is established. Rules that describe how the
functional units may be combined are described in Section 7.2 on page 50.

66 X/Open CAE Specification

RTI Service Definition Transactional Functional Unit

7.6.1 RTI-HEURISTIC-REPORT indication

Function

An RTI-HEURISTIC-REPORT indication is issued by an RTI-PM to indicate to a client that an
exception condition has been detected within the transaction tree.

This indication reports only non-fatal exception conditions, the established context is not
released by this indication.

Heuristic reports do not require any action on the part of a client.

This indication relates to only one context.

Parameters

Table 7-6 RTI-HEURISTIC-REPORT Parameters

Parameter Name Ind
Diagnostic M

Diagnostic
This parameter is supplied by the RTI-PM. It specifies the exception that occurred within
the transaction tree.

This parameter can have one of the following values:

HEURISTIC-MIX
The bound data handled by the RTI-SUI are in a state that is inconsistent with the
outcome of the transaction.

HEURISTIC-HAZARD
A communication failure has occurred within the RTI-SUI that may prevent reporting
of data inconsistency.

Usage

• Only a client can receive this indication.

• This indication is issued by an RTI-PM when a heuristic decision made by a transaction
participant in the transaction tree below a client causes an exception condition.

• The established context is not terminated by this indication.

Part 2: TxRPC Application Service Element (ASE) 67

Transactional Functional Unit RTI Service Definition

7.6.2 RTI-ROLLBACK-TRANS request and indication

Function

An RTI-ROLLBACK-TRANS request is issued by an RTI-SUI to an RTI-PM to initiate the
rollback of a transaction.

An RTI-ROLLBACK-TRANS indication is issued by an RTI-PM to an RTI-SUI to indicate that a
transaction is to be rolled back.

These service primitives relate to all transactional contexts.

Parameters

None.

Usage

• A server cannot issue an RTI-ROLLBACK-TRANS request within the context of an
outstanding call. If a server wants to request a rollback within the context of an outstanding
call, an RTI-CALL-RESULT request must be issued with appropriate arguments and wait for
a resulting RTI-ROLLBACK-TRANS indication. This rule exists because the TP-ROLLBACK
service does not allow rollback reason codes. By using the call result service primitives to
request a rollback, a server is able to supply a rollback reason to a client.

• If an RTI-ROLLBACK-TRANS request is issued by an RTI-SUI, all RTI-SUIs in that RTI-SUI’s
transaction tree receive RTI-ROLLBACK-TRANS indications.

• If for any reason an RTI-PM detects a failure that prevents a transaction from committing, it
issues an RTI-ROLLBACK-TRANS indication to all RTI-SUIs in the transaction tree.

• Once an RTI-ROLLBACK-TRANS request is issued or an RTI-ROLLBACK-TRANS
indication is received no Kernel functional unit service primitives may be issued or received
for contexts that do not have any active context handles.

• Upon receipt of an RTI-ROLLBACK-TRANS indication, an RTI-SUI must place all
recoverable resources in their initial state. When this has been completed an RTI-TRANS-
DONE request must be issued.

• An RTI-ROLLBACK-TRANS request cannot be issued during a transaction by an RTI-SUI if
that RTI-SUI has already issued an RTI-TRANS-READY request.

• All transactional contexts that do not have any active context handles associated with them
are released at the end of a transaction (in this case rollback completion — signalled by the
receipt of an RTI-TRANS-COMPLETE indication).

68 X/Open CAE Specification

RTI Service Definition Transactional Functional Unit

7.6.3 RTI-END-TRANS request

Function

An RTI-END-TRANS request is issued by a client that is the root of a transaction tree to an RTI-
PM to initiate the termination of a transaction.

This request signals the beginning of phase one of the two-phase commitment process. It
indicates that a client issues no further requests and requests that all transaction participants
issue RTI-TRANS-READY requests.

If all transaction participants in the transaction tree agree to commit and no service-provider
condition prevents commitment, a transaction commits.

If at least one transaction participant in the transaction tree refuses to commit or if a service-
provider condition prevents commitment, the transaction is rolled back.

This service primitive relates to all transactional contexts.

Parameters

None.

Usage

• This request can only be issued by a client that is the root of a transaction tree.

• This request can only be issued when both of the following are true:

— All processing for the transaction by a client has been successfully completed. That is, all
RTI-CALL-TASK requests issued by a client, relating to a transaction, have been
completed.

— A client issues no further call requests to a server during a transaction.

• The client RTI-PM sets deferred end dialogue for all transactional dialogues that do not have
any active context handles associated with them. This results in dialogue termination at
transaction completion.

• After this request has been issued, a client must place its bound data into the ready state and
then issue an RTI-TRANS-READY request. If for some reason a client cannot place its bound
data into the ready state, it must issue an RTI-ROLLBACK-TRANS request and return its
bound data to the initial state.

• After an RTI-END-TRANS request is issued, all RTI-SUIs in the transaction tree receive RTI-
PREPARE-TRANS indications.

Part 2: TxRPC Application Service Element (ASE) 69

Transactional Functional Unit RTI Service Definition

7.6.4 RTI-PREPARE-TRANS indication

Function

An RTI-PREPARE-TRANS indication is issued by an RTI-PM to a server to indicate that a
transaction is to be terminated, and that all server recoverable resources must be placed in the
ready state.

This indication signals the beginning of phase one of the two-phase commitment process for a
server.

This indication relates to all transactional contexts.

Parameters

None.

Usage

• This indication can only be received by a server.

• This indication can only be issued when both of of the following are true:

— All processing for a transaction by a client has been successfully completed. That is, all
RTI-CALL-TASK requests issued by a client, relating to a transaction, have been
completed.

— Placement of all server recoverable resources in the ready state is being requested.

• After all server recoverable resources are placed in the ready state, a server can issue an RTI-
TRANS-READY request.

• If for some reason a server cannot place its recoverable resources in the ready state, it must
issue an RTI-ROLLBACK-TRANS request.

70 X/Open CAE Specification

RTI Service Definition Transactional Functional Unit

7.6.5 RTI-TRANS-READY request and indication

Function

An RTI-TRANS-READY request is issued by a server RTI-SUI to an RTI-PM to indicate that all
RTI-SUI recoverable resources have been placed in the ready state. The request is an RTI-SUI’s
vote to proceed with commitment of a transaction.

The request signals the end of phase one of the two-phase commitment process for a server.

The request relates to all transactional contexts.

An RTI-TRANS-READY indication is issued by the RTI-PM to a client RTI-SUI to indicate that
the transaction subtree has all been placed into the ready state. This indication signals the end of
phase I for a client and relates to all transactional contexts.

Parameters

None.

Usage

• The request can only be issued by a server after receiving an RTI-PREPARE-TRANS
indication.

• After a server RTI-SUI has issued this request, no other request may be issued until an RTI-
COMMIT-TRANS indication or an RTI-ROLLBACK-TRANS indication has been received.

• The indication can only be received after a client RTI-SUI has issued an RTI-END-TRANS
request. It must be received before a client RTI-SUI issues an RTI-COMMIT request.

• After an RTI-TRANS-READY indication has been received, the transaction may still be rolled
back by a client RTI-SUI by issuing an RTI-ROLLBACK-TRANS request.

Part 2: TxRPC Application Service Element (ASE) 71

Transactional Functional Unit RTI Service Definition

7.6.6 RTI-COMMIT-TRANS request and indication

Function

An RTI-COMMIT-TRANS request is issued by a client RTI-SUI to indicate that the outcome of a
transaction is commitment, and to signal the beginning of phase two of the two-phase
commitment process for this RTI-SUI. The RTI-PM then generates an RTI-COMMIT-TRANS
indication to acknowledge the request.

An RTI-COMMIT-TRANS indication is issued by an RTI-PM to an RTI-SUI to indicate that the
outcome of a transaction is commitment.

The RTI-COMMIT-TRANS indication signals the beginning of phase two of the two-phase
commitment process for a server RTI-SUI.

The RTI-COMMIT-TRANS indication relates to all transactional contexts.

Parameters

None.

Usage

• A client RTI-SUI may issue an RTI-COMMIT-TRANS request only after receiving an RTI-
TRANS-READY indication.

• Upon receipt of the RTI-COMMIT-TRANS indication, an RTI-SUI is required to place all its
recoverable resources in their final state. When all its recoverable resources are in the final
state, an RTI-TRANS-DONE request must be issued.

• After the receipt of an RTI-COMMIT-TRANS indication an RTI-SUI does not receive an RTI-
ROLLBACK-TRANS indication for the duration of a transaction.

72 X/Open CAE Specification

RTI Service Definition Transactional Functional Unit

7.6.7 RTI-TRANS-DONE request

Function

An RTI-TRANS-DONE request is issued by an RTI-SUI to an RTI-PM to indicate that all actions
associated with a transaction have been completed, and that all its recoverable resources are in
either their initial or final states (rolled back or committed respectively).

If this request is being issued in response to an RTI-COMMIT-TRANS indication, then this
service primitive signals the end of phase two of the two-phase commitment process.

If this request is being issued in response to an RTI-ROLLBACK-TRANS indication, then this
service primitive signals the end of the rollback process.

This request relates to all transactional contexts.

Parameters

Table 7-7 RTI-TRANS-DONE Parameters

Parameter Name Req
Heuristic-Report U

Heuristic-Report
This parameter is supplied by the server to indicate that a heuristic decision has been made
and is to be reported.

This parameter can have one of the following values:

HEURISTIC-MIX
The bound data handled by the RTI-SUI are in a state that is inconsistent with the
outcome of the transaction.

HEURISTIC-HAZARD
A communication failure has occurred within the RTI-SUI that may prevent the
reporting of data inconsistency.

Usage

• This request can only be issued by an RTI-SUI to an RTI-PM after one of the following events:

— receiving an RTI-COMMIT-TRANS indication

— receiving an RTI-ROLLBACK-TRANS indication

— issuing an RTI-ROLLBACK-TRANS request.

Part 2: TxRPC Application Service Element (ASE) 73

Transactional Functional Unit RTI Service Definition

7.6.8 RTI-TRANS-COMPLETE indication

Function

An RTI-TRANS-COMPLETE indication is issued by an RTI-PM to an RTI-SUI to indicate that all
transaction participants have completed the termination of a transaction. Receipt of this
indication indicates that all recoverable resources are in either their initial or final states (rolled
back or committed respectively).

This indication signals the end of a transaction.

This indication releases all transactional contexts that do not have any active context handles
associated with them.

Parameters

None.

Usage

• This indication signals that a transaction has been completed, and that all resources related
may be released.

• This indication releases all transactional contexts that do not have any active context handles
associated with them.

74 X/Open CAE Specification

RTI Service Definition Sequencing Rules and State Tables

7.7 Sequencing Rules and State Tables
The RTI Service State Tables describe the allowed sequence of service events for a given RTI
Service boundary (between an RTI-SUI and an RTI-PM). The text of the previous chapters takes
precedence over these state tables.

A separate state of the tables is maintained for each context established for an RTI-SUI. Service
primitives that relate to a single context affect only the state for that particular context. Some
service primitives affect all transactional contexts; these service primitives are shown in bold.
Any service primitives so marked can be issued or received only once for all transactional
contexts.

The state tables specify predicates that must be satisfied in order for individual service
primitives to be allowed in a given state. These predicates are based on the values of variables.

The state tables also specify actions to be performed. These actions involve setting variables to
specified values. The referenced variables are of two types. One type is private to a single
context, these are referred to as local variables . The other is shared among all contexts established
for an RTI-SUI, these are referred to as global variables .

The overall state of an RTI-SUI consists of the state of all contexts established for that RTI-SUI,
together with the associated values of all local and global variables.

In order to simplify and to enhance readability two state tables are defined, the RTI Service
Transactional State Table and the RTI Service Non-Transactional State Table. State transitions for
non-transactional contexts are described by the non-transactional state table and state transitions
for transactional contexts are described by the transactional state table. Transitions occur
between these two state tables as context changes from non-transactional to transactional and
vice versa.

The complete state of an RTI-SUI is represented by a collection of one or more of these tables,
one for each context established. The RTI Service State Tables are listed in Section 7.7.5 on page
78.

When a new context is created, its initial state is I (the Idle State) in the RTI Service Non-
Transactional State Table, and all variables local to the context are set to FALSE.

7.7.1 State Table Conventions

In each state table:

• Each column (except the two left-most columns) represents a state.

• Each row (except the first) represents a service primitive.

• Each cell of the table represents a state transition.

State transitions are controlled by two factors, the incoming event triggering the transition and
zero or more predicate variables.

Service primitives that constitute incoming events are listed in the left-most column of the state
table (labelled Event). When a service primitive is shown in bold, the event is applied to all
transactional contexts. The RTI Service Primitives are discussed in Section 7.3 on page 51 and
summarised in Table 7-1 on page 51.

Variables are of the form Vx, where x is the two letter abbreviated name of the variable. If a
variable is listed in the state table prefixed by ¬ (logical NOT) then the value of that variable
must be FALSE in order for the transition predicated by that variable to occur. If a variable has
no prefix, the value of that variable must be TRUE in order for the transition predicated by that
variable to occur. The RTI Service variables are listed in Section 7.7.2 on page 76.

Part 2: TxRPC Application Service Element (ASE) 75

Sequencing Rules and State Tables RTI Service Definition

Variables may be listed as a precondition predicating all transitions associated with a particular
service primitive or may be listed in a particular cell of the state table predicating only the
transition represented by that cell. Precondition variables are listed in the second column of the
table (labelled Pre.). All precondition variables must evaluate as specified in order for any
transition in that row of the state table to occur. Cell variables (when they appear) are listed first
in each cell. All cell variables must evaluate as specified in order for the transition represented
by that cell to occur.

In addition to cell variables each cell of the state table may contain a set of actions to be
performed before the transition represented by the cell is made. Actions are of the form [x]
where x is the number of the action to be performed. The RTI Service Actions are listed in
Section 7.7.3 on page 77.

Lastly, each cell of the state table that represents a valid state transition contains the name of the
resulting state after the transition. The RTI Service States are listed in Section 7.7.4 on page 77.

If no valid state transition is listed in the cell at the intersection of a given service primitive and a
given state, it is illegal to issue that service primitive while in that state.

7.7.2 Variables

Vrs Root RTI-SUI.

This variable, when TRUE, indicates that an RTI-SUI is the root of the transaction tree.

This variable is global to all contexts used by an RTI-SUI, its initial value is TRUE.

Vcs Client RTI-SUI.

This variable, when TRUE, indicates that an RTI-SUI is a client (superior) partner in a
context tree.

This variable is local to a single context.

Vss Server RTI-SUI.

This variable, when TRUE, indicates that an RTI-SUI is a server (subordinate) partner in
a context tree.

This variable is local to a single context.

Vtc Transactional Call.

This variable, when TRUE, indicates that the call is a transactional RPC (transaction
mandatory or transaction optional within the scope of a global transaction).

This variable is local to a single context. It is set when an RTI-CALL-TASK.req is
received.

Vte Transactions Enabled.

This variable, when TRUE, indicates that the RTI context was created with transactions
enabled.

This variable is local to a single context. It is set when an RTI-ESTABLISH-
CONTEXT.req is received.

76 X/Open CAE Specification

RTI Service Definition Sequencing Rules and State Tables

7.7.3 Actions

[1] Actions related to issuing an RTI-ESTABLISH-CONTEXT request.

• Set Vcs to TRUE. When a context is created at the request of an RTI-SUI then that RTI-
SUI behaves as a client RTI-SUI when using that context.

• If the value of Context-Type is TRANSACTION-ENABLED, set Vte to TRUE;
otherwise, set it to FALSE.

[2] Actions related to issuing RTI-CALL-TASK request for a transactional RPC.

• Change the context to transactional and select the RTI Service Transactional State
Table.

[3] Actions related to the receipt of an RTI-CALL-TASK indication.

• If the context being created is a non-transactional context then select the RTI Service
Non-Transactional State Table.

• If the context being created is a transactional context then select the RTI Service
Transactional State Table.

• Set Vss to TRUE. When an RTI-CALL-TASK indication is received by an RTI-SUI the
context for that call has already been established. The RTI-SUI behaves as a server
RTI-SUI when using that context.

• If the context is transactional, set Vrs to FALSE. A server RTI-SUI cannot be the root of
a transaction tree if it is already part of a transaction tree.

7.7.4 States

I Idle.

CE Context Established.

CIP Call In Progress.

SP1 Start of Phase 1.

EP1 End of Phase 1.

SP2 Start of Phase 2.

EP2 End of Phase 2.

RBP Rollback in Progress.

RBC Rollback Complete.

Part 2: TxRPC Application Service Element (ASE) 77

Sequencing Rules and State Tables RTI Service Definition

7.7.5 State Tables

The RTI Service State Tables are listed in Table 7-8 and Table 7-9 on page 79.

Table 7-8 RTI Service Non-transactional State Table

Event Pre. I CE CIP
RTI-ESTABLISH-CONTEXT.req [1]

CE
RTI-CALL-TASK.req Vcs [2]

Vte CIP
Vtc

Vcs CIP
!Vtc

RTI-CALL-TASK.ind [3]
CIP

RTI-CANCEL-CALL.req Vcs CIP
RTI-CANCEL-CALL.ind Vss CIP
RTI-CALL-FAILURE.ind Vcs CE/I †

RTI-CALL-RESULT.req Vss I
RTI-CALL-RESULT.ind Vcs CE
RTI-RELEASE-CONTEXT.req Vcs I
RTI-RELEASE-CONTEXT.ind Vcs I

Note:

† State transition depends on severity of error. See Section 7.4.4 on page 60.

This is the initial state table for all client and server RTI-PMs.

78 X/Open CAE Specification

RTI Service Definition Sequencing Rules and State Tables

Service primitives shown in bold in the following table affect all transactional contexts.

Table 7-9 RTI Service Transactional State Table

Event Pre. CE CIP SP1 EP1 SP2 EP2 RBP RBC
RTI-CALL-TASK.req Vcs CIP
RTI-CALL-TASK.ind CIP ‡

RTI-CANCEL-CALL.req Vcs CIP
RTI-CANCEL-CALL.ind Vss CIP
RTI-CALL-FAILURE.ind Vcs CE/I †

RTI-CALL-RESULT.req Vss CE
RTI-CALL-RESULT.ind Vcs CE
RTI-HEURISTIC-REPORT.ind Vcs SP2 EP2 RBP RBC
RTI-ROLLBACK-TRANS.req RBP Vss RBP

RBP
RTI-ROLLBACK-TRANS.ind RBP Vss RBP RBP

RBP
RTI-END-TRANS.req Vrs SP1
RTI-PREPARE-TRANS.ind Vss SP1
RTI-TRANS-READY.req Vss EP1
RTI-COMMIT-TRANS.ind Vss SP2
RTI-TRANS-READY.ind Vrs EP1
RTI-COMMIT-TRANS.req Vrs SP2
RTI-COMMIT-TRANS.ind Vrs SP2 ♦

RTI-TRANS-DONE.req EP2 RBC
RTI-TRANS-COMPLETE.ind CE/I § CE/I §

Notes:

† State transition depends on severity of error. See Section 7.4.4 on page 60. If new
state is I (Idle), select the RTI Service Non-Transactional State Table.

‡ Note that even when a non-transactional RTI-CALL-TASK.ind is received, the RTI
context remains transactional for the purposes of reading Table 7-8 on page 78 and
Table 7-9. However, the manager function is initiated in non-transaction mode.

♦ It may appear that the RTI-COMMIT-TRANS.ind for the Root RTI-SUI is not
needed. However, this indication preserves a good mapping to OSI TP.
Furthermore, depending on the TM, CRM and OSI TP implementations, its
absence could imply a heuristic hazard condition for the ROOT RTI-SUI.

§ Select the RTI Service Non-Transactional State Table. If there are active context
handles associated with the context, the new state is CE (Context Established).
Otherwise, the new state is I (Idle).

Part 2: TxRPC Application Service Element (ASE) 79

RTI Service Definition

80 X/Open CAE Specification

Chapter 8

RTI Protocol Machine

This chapter describes the RTI Protocol Machine (RTI-PM). It does this by identifying the
externally-defined supportive services used (OSI TP services), and describes:

• use of supportive services

• TP Services

• DC-ASE services

• RPC-ASE services

• RTI-MACF procedures

• RTI-APDU concatenation rules

• sequencing rules and state tables.

All sequencing rules are implicit in the state tables.

Part 2: TxRPC Application Service Element (ASE) 81

Use of Supportive Services RTI Protocol Machine

8.1 Use of Supportive Services
The RTI-PM makes use of the services provided by the OSI TPPM (TP services), the DC-ASE
(DC services) and the RPC-ASE (RPC services). This section describes how RTI-PM makes use
of those supportive services.

8.1.1 Relationship to Other Services

The RTI services provided by the RTI-PM are mapped onto the services provided by the OSI
TPPM, DC-ASE and the RPC-ASE. These mappings are summarised in Table 8-1 below and
Table 8-2 on page 83.

Service primitives shown in bold have complex mapping rules. Consult the appropriate RTI
Service Primitive definition for details

Table 8-1 RTI Service Primitive Mapping Summary (Client)

RTI Service Primitives TP Service Primitives DC-ASE RPC-ASE
Service Primitives Service Primitives

RTI-ESTABLISH-CONTEXT.req DC-BEGIN-DIALOGUE.req
RTI-CALL-TASK.req TP-BEGIN-TRANSACTION.req DC-BEGIN-DIALOGUE.req RPC-REQUEST.req
RTI-CANCEL-CALL.req RPC-REMOTE-ALERT.req
RTI-CALL-FAILURE.ind TP-U-ABORT.ind DC-REJECT-DIALOGUE.ind RPC-FAULT.ind

TP-P-ABORT.ind
TP-BEGIN-DIALOGUE.cnf †

TP-ROLLBACK.ind
RTI-CALL-RESULT.ind RPC-RESPONSE.ind
RTI-RELEASE-CONTEXT.req TP-END-DIALOGUE.req
RTI-RELEASE-CONTEXT.ind TP-U-ABORT.ind DC-REJECT-DIALOGUE.ind RPC-SHUTDOWN.ind

TP-P-ABORT.ind
TP-BEGIN-DIALOGUE.cnf †

RTI-HEURISTIC-REPORT.ind TP-HEURISTIC-REPORT.ind
RTI-ROLLBACK-TRANS.req TP-ROLLBACK.req
RTI-ROLLBACK-TRANS.ind TP-ROLLBACK.ind

TP-P-ABORT.ind
RTI-END-TRANS.req TP-DEFERRED-END-DIALOGUE.req

TP-PREPARE.req
RTI-TRANS-READY.req TP-COMMIT.req
RTI-COMMIT-TRANS.ind TP-COMMIT.ind
RTI-TRANS-DONE.req TP-DONE.req

TP-U-ABORT.req
RTI-TRANS-COMPLETE.ind TP-COMMIT-COMPLETE.ind

TP-ROLLBACK-COMPLETE.ind

Notes:

† Only when Result parameter is set to "rejected(provider)".

82 X/Open CAE Specification

RTI Protocol Machine Use of Supportive Services

Table 8-2 RTI Service Primitive Mapping Summary (Server)

RTI Service Primitives TP Service Primitives DC-ASE RPC-ASE
Service Primitives Service Primitives

RTI-CALL-TASK.ind RPC-REQUEST.ind
RTI-CANCEL-CALL.ind RPC-REMOTE-ALERT.ind
RTI-CALL-RESULT.req RPC-RESPONSE.req
RTI-ROLLBACK-TRANS.req TP-ROLLBACK.req
RTI-ROLLBACK-TRANS.ind TP-ROLLBACK.ind

TP-P-ABORT.ind
RTI-PREPARE-TRANS.ind TP-PREPARE.ind
RTI-TRANS-READY.ind TP-READY.ind
RTI-COMMIT-TRANS.req TP-COMMIT.req
RTI-COMMIT-TRANS.ind TP-COMMIT.ind
RTI-TRANS-DONE.req TP-DONE.req
RTI-TRANS-COMPLETE.ind TP-COMMIT-COMPLETE.ind

TP-ROLLBACK-COMPLETE.ind

The following sections define the mapping of parameters on RTI service primitives onto the
parameters of supportive services (TP, DC-ASE and RPC-ASE).

8.1.2 Mapping RTI-ESTABLISH-CONTEXT

There is no direct protocol flow initiated by the RTI-ESTABLISH-CONTEXT request.

The parameters of the RTI-ESTABLISH-CONTEXT request are mapped onto the parameters of
the DC-BEGIN-DIALOGUE request by the client RTI-PM as follows:

RTI-AP-Title
Maps to RTI-AP-Title on the DC-BEGIN-DIALOGUE request.

RTI-AE-Qualifier
Maps to RTI-AE-Qualifier on the DC-BEGIN-DIALOGUE request.

Object-UUID
Maps to Object-UUID on both the DC-BEGIN-DIALOGUE and the RPC-REQUEST
requests.

Client-Name
Maps to Client-Name on the DC-BEGIN-DIALOGUE request.

Client-Authenticator-Type
Maps to Client-Authenticator-Type on the DC-BEGIN-DIALOGUE request.

Client-Authenticator
Maps to Client-Authenticator on the DC-BEGIN-DIALOGUE request.

Interface-UUID
Maps to Interface-UUID on the DC-BEGIN-DIALOGUE request.

Interface-Version-Major
Maps to Interface-Version-Major on the DC-BEGIN-DIALOGUE request.

Interface-Version-Minor
Maps to Interface-Version-Minor on the DC-BEGIN-DIALOGUE request.

Context-Type
Maps to Context-Type on the DC-BEGIN-DIALOGUE request.

Part 2: TxRPC Application Service Element (ASE) 83

Use of Supportive Services RTI Protocol Machine

8.1.3 Mapping RTI-CALL-TASK

The parameters of the RTI-CALL-TASK request are mapped onto the RPC-REQUEST request
and DC-BEGIN-DIALOGUE request by the client RTI-PM as follows:

Interface-UUID
Maps to Interface-UUID on the RPC-REQUEST request. Also maps onto Interface-UUID of
the DC-BEGIN-DIALOGUE request if this is the first RTI-CALL-TASK request within a
particular context.

Interface-Version-Major
Maps to Interface-Version-Major on the RPC-REQUEST request. Also maps onto Interface-
Version-Major of the DC-BEGIN-DIALOGUE request if this is the first RTI-CALL-TASK
request within a particular context.

Interface-Version-Minor
Maps to Interface-Version-Minor on the RPC-REQUEST request. Also maps onto Interface-
Version-Minor of the DC-BEGIN-DIALOGUE request if this is the first RTI-CALL-TASK
request within a particular context.

Transaction-Attribute
Maps to Transaction-Attribute on the RPC-REQUEST request.

Operation-Number
Maps to Operation-Number on the RPC-REQUEST request.

Arguments
Maps to Stub-Data on the RPC-REQUEST request.

The parameters of the DC-BEGIN-DIALOGUE indication and RPC-REQUEST indication (or
indications) are mapped onto the parameters of the RTI-CALL-TASK indication by the server
RTI-PM as follows:

Interface-UUID (from RPC-REQUEST.ind)
Maps to Interface-UUID on the RTI-CALL-TASK indication.

Interface-Version-Major (from RPC-REQUEST.ind)
Maps to Interface-Version-Major on the RTI-CALL-TASK indication.

Interface-Version-Minor (from RPC-REQUEST.ind)
Maps to Interface-Version-Minor on the RTI-CALL-TASK indication.

Object-UUID (from RPC-REQUEST.ind)
Maps to Object-UUID on the RTI-CALL-TASK indication.

Transaction-Attribute (from RPC-REQUEST.ind)
Maps to Transaction-Attribute on the the RTI-CALL-TASK indication.

Operation-Number (from RPC-REQUEST.ind)
Maps to Operation-Number on the RTI-CALL-TASK indication.

Stub-Data (from RPC-REQUEST.ind)
Maps to Arguments on the RTI-CALL-TASK indication.

Client-Name (from DC-BEGIN-DIALOGUE.ind)
Maps to Client-Name on the RTI-CALL-TASK indication.

Client-Authenticator-Type (from DC-BEGIN-DIALOGUE.ind)
Maps to Client-Authenticator-Type on the RTI-CALL-TASK indication.

84 X/Open CAE Specification

RTI Protocol Machine Use of Supportive Services

Client-Authenticator (from DC-BEGIN-DIALOGUE.ind)
Maps to Client-Authenticator on the RTI-CALL-TASK indication.

Context-Type (from DC-BEGIN-DIALOGUE.ind)
Maps to Context-Type on the RTI-CALL-TASK indication.

8.1.4 Mapping RTI-CANCEL-CALL

No parameter mapping.

8.1.5 Mapping RTI-CALL-FAILURE

The parameter Reason on the RPC-FAULT indication is mapped directly to the parameter
Reason with the same name on the RTI-CALL-FAILURE indication by the client RTI-PM.

The parameter Diagnostic of the TP-P-ABORT indication is mapped onto the parameter Reason
of the RTI-CALL-FAILURE indication by the client RTI-PM as shown in Table 8-3.

Table 8-3 Mapping of TP-P-ABORT Diagnostic

Diagnostic Reason
permanent-failure PERMANENT-COMMUNICATION-FAILURE
transient-failure TRANSIENT-COMMUNICATION-FAILURE
begin-transaction-reject not used
protocol-error PROTOCOL-MACHINE-FAILURE

The reason code PROTOCOL-MACHINE-FAILURE is mapped onto the parameter Reason of
the RTI-CALL-FAILURE indication by the client RTI-PM when a TP-U-ABORT indication results
in an RTI-CALL-FAILURE indication.

When the parameter Result is "rejected(provider)" on the TP-BEGIN-DIALOGUE confirmation,
the parameter Diagnostic is mapped onto the parameter Reason of the RTI-CALL-FAILURE
indication by the RTI-PM as shown in Table 8-4.

Table 8-4 Mapping of TP-BEGIN-DIALOGUE.cnf Diagnostic

Diagnostic Reason
recipient-unknown RTI-SERVICE-UNKNOWN
recipient-tpsu-title-unknown INTERFACE-UNKNOWN
tpsu-not-available(permanent) INTERFACE-PERMANENTLY-UNAVAILABLE
tpsu-not-available(transient) INTERFACE-TEMPORARILY-UNAVAILABLE
functional-unit-not-supported CONTEXT-TYPE-NOT-SUPPORTED
no-reason-given REASON-NOT-SPECIFIED

The parameter Reason-Code on the DC-REJECT-DIALOGUE indication maps directly to the
parameter Reason with the same name on the RTI-CALL-FAILURE indication by the client RTI-
PM.

The reason code ROLLBACK-IN-PROGRESS is mapped onto the parameter Reason of the RTI-
CALL-FAILURE indication by the client RTI-PM when a TP-ROLLBACK indication causes an
RTI-CALL-FAILURE indication.

Part 2: TxRPC Application Service Element (ASE) 85

Use of Supportive Services RTI Protocol Machine

8.1.6 Mapping RTI-CALL-RESULT

The parameter of the RTI-CALL-RESULT request is mapped onto the parameters of RPC-
RESPONSE request data by the server RTI-PM as follows:

Arguments
Maps to Stub-Data on the RPC-RESPONSE request.

The parameters on the RPC-RESPONSE indication are mapped onto the parameters of the RTI-
CALL-RESULT indication by the client RTI-PM as follows:

Stub-Data
Maps to Arguments on the RTI-CALL-RESULT indication.

8.1.7 Mapping RTI-RELEASE-CONTEXT

No parameter mapping.

8.1.8 Mapping RTI-HEURISTIC-REPORT

The parameters of the TP-HEURISTIC-REPORT indication are mapped onto the parameters of
the RTI-HEURISTIC-REPORT indication by the client RTI-PM as follows:

Heuristic Report
Maps to Diagnostic on the RTI-HEURISTIC-REPORT indication.

8.1.9 Mapping RTI-ROLLBACK-TRANS

No parameter mapping.

8.1.10 Mapping RTI-END-TRANS

No parameter mapping.

8.1.11 Mapping RTI-PREPARE-TRANS

No parameter mapping.

8.1.12 Mapping RTI-TRANS-READY

No parameter mapping.

8.1.13 Mapping RTI-COMMIT-TRANS

No parameter mapping.

8.1.14 Mapping RTI-TRANS-DONE

The parameters of RTI-TRANS-DONE request are mapped onto the parameters of the TP-DONE
request as follows:

Heuristic-Report
Maps to Heuristic-Report on the TP-DONE request.

86 X/Open CAE Specification

RTI Protocol Machine Use of Supportive Services

8.1.15 Mapping RTI-TRANS-COMPLETE

No parameter mapping.

Part 2: TxRPC Application Service Element (ASE) 87

TP Services RTI Protocol Machine

8.2 TP Services
TP services are defined in the OSI TP Service standard.

Table 8-5 identifies the OSI TP services used by the RTI-PM. Table 8-6 identifies the OSI TP
Services not used by the RTI-PM. All services used are part of the OSI TP Dialogue and Commit
functional units. No services from any other OSI TP functional unit are used.

All TP APDUs are carried as specified in Clauses 11.1 and 11.2 of the OSI TP Protocol standard.
No additional rules are required.

Table 8-5 OSI TP Services Used by RTI-PM

Services Request Indication Response Confirmation
TP-BEGIN-DIALOGUE X X
Confirmation set to negative

TP-BEGIN-DIALOGUE X
Result set to rejected(provider)

TP-BEGIN-DIALOGUE X X
Result set to rejected(user)

TP-END-DIALOGUE X X
TP-HEURISTIC-REPORT X
TP-U-ABORT X X
TP-P-ABORT X
TP-DEFERRED-END-DIALOGUE X X
TP-BEGIN-TRANSACTION X X X
TP-COMMIT X X
TP-DONE X
TP-COMMIT-COMPLETE X
TP-PREPARE X X
TP-READY X
TP-ROLLBACK X X
TP-ROLLBACK-COMPLETE X

Table 8-6 OSI TP Services Not Used by RTI-PM

TP-U-ERROR
TP-GRANT-CONTROL
TP-REQUEST-CONTROL
TP-HANDSHAKE
TP-HANDSHAKE-AND-GRANT-CONTROL
TP-DEFERRED-GRANT-CONTROL

88 X/Open CAE Specification

RTI Protocol Machine DC-ASE Services

8.3 DC-ASE Services
This section defines the DC-ASE services and specifies the structure and encodings of the DC-
ASE APDUs. The DC-ASE is an Application Service Element (ASE) that provides service
primitives for assisting in dialogue establishment.

The general documentation conventions used here are the same as those specified in Section 7.1
on page 48.

8.3.1 Service Primitives

The DC-ASE services are invoked by using the service primitives listed in Table 8-7.

Table 8-7 DC-ASE Service Primitives

Service Primitives Client Server See
Section 8.3.2.DC-BEGIN-DIALOGUE req ind
Section 8.3.3 on page 90.DC-REJECT-DIALOGUE ind req

Section 8.3.2 to Section 8.3.3 on page 90 inclusive define the service primitives of the DC-ASE.

8.3.2 DC-BEGIN-DIALOGUE request and indication

Function

The DC-BEGIN-DIALOGUE request and indication are used at dialogue establishment time to
pass information between the client and the server RTI-PM. This information is used by the
server RTI-PM to determine whether to accept or reject the incoming dialogue.

Parameters

Parameter Name Req Ind
Protocol-Version M M(=)
RTI-AP-Title M M(=)
RTI-AE-Qualifier U U(=)
Client-Name M M(=)
Client-Authenticator-Type M M(=)
Client-Authenticator M M(=)
Interface-UUID M M(=)
Interface-Version-Major M M(=)
Interface-Version-Minor M M(=)
Object-UUID O O(=)
Context-Type M M(=)

Protocol-Version
This parameter specifies the RTI protocol version number.

RTI-AP-Title
This parameter specifies the RTI application process title.

RTI-AE-Qualifier
This parameter specifies the AE-Qualifier in which this server RTI-API resides. This
parameter is optional.

Part 2: TxRPC Application Service Element (ASE) 89

DC-ASE Services RTI Protocol Machine

Client-Name
This parameter carries the principal’s name.

Client-Authenticator-Type
This parameter carries the security mechanism type.

Client-Authenticator
This parameter carries the authentication data.

Interface-UUID
This parameter specifies the UUID of the server interface for establishing this dialogue.

Interface-Version-Major
This parameter specifies the major version number of the server interface identified by the
Interface-UUID.

Interface-Version-Minor
This parameter specifies the minor version number of the server interface identified by the
Interface-UUID.

Object-UUID
This parameter specifies an (optional) object UUID for establishing this dialogue.

Context-Type
This parameter specifies the context type to be used.

Usage

The DC-BEGIN-DIALOGUE request may be issued only by the client RTI-PM.

The DC-BEGIN-DIALOGUE indication may be issued only by the server DC-ASE.

8.3.3 DC-REJECT-DIALOGUE request and indication

Function

The DC-REJECT-DIALOGUE request and indication are used at dialogue establishment time to
allow the server RTI-PM to reject a dialogue.

Only a server RTI-PM can issue a DC-REJECT-DIALOGUE request.

This request cannot be issued on a dialogue if the server RTI-PM has previously issued other
requests on that dialogue. The server RTI-PM cannot issue any other requests on a dialogue
once the DC-REJECT-DIALOGUE request has been issued. That is, this must be the first and last
request issued on a dialogue.

Parameters

Parameter Name Req Ind
Reason-Code M M(=)
Protocol-Versions C C(=)

Reason-Code
This parameter specifies a reason code. Reason-Code can take one of the following values:

PROTOCOL-VERSION-NOT-SUPPORTED
the requested RTI protocol version is not supported.

90 X/Open CAE Specification

RTI Protocol Machine DC-ASE Services

INTERFACE-PERMANENTLY-UNAVAILABLE
the server RTI-API specified on the DC-BEGIN-DIALOGUE request supports the
specified Interface but does not support the Interface Version specified.

INTERFACE-TEMPORARILY-UNAVAILABLE
the server RTI-API specified on the DC-BEGIN-DIALOGUE request supports the
requested Interface and Interface Version but does not have sufficient resources at this
time to allow access.

REASON-NOT-SPECIFIED
dialogue rejected for any other reason.

Protocol-Versions
If the reason-code has the value Protocol-Versions-Not-Supported, then this parameter
specifies all the Protocol-Versions supported by the server RTI-PM.

Usage

The DC-REJECT-DIALOGUE request may be issued only by the server RTI-PM.

The DC-REJECT-DIALOGUE indication may be issued only by the client DC-ASE.

8.3.4 Protocol Procedure

The protocol procedures for the DC-ASE are as follows:

DC-BEGIN-DIALOGUE request
The DC-ASE issues a TP-BEGIN-DIALOGUE request.

TP-BEGIN-DIALOGUE indication
The DC-ASE issues a DC-BEGIN-DIALOGUE indication.

DC-REJECT-DIALOGUE request
The DCE-ASE issues a TP-BEGIN-DIALOGUE response with the Result parameter set to
"rejected(user)".

TP-BEGIN-DIALOGUE confirmation
TP-BEGIN-DIALOGUE confirmation is mapped to the DC-ASE only when the Result
parameter is set to "rejected(user)". When the Result parameter is set to "rejected(user)" the
DC-ASE issues a DC-REJECT-DIALOGUE indication.

8.3.5 Parameter Mappings

Table 8-8 on page 92 describes the mapping of the parameters of the DC-BEGIN-DIALOGUE
request and indication service primitives. Parameters of the DC-BEGIN-DIALOGUE request
map to parameters of the TP-BEGIN-DIALOGUE request and conditionally to fields of the DC-
begin-dialogue APDU. Conversely, fields of the DC-begin-dialogue APDU and parameters of
the TP-BEGIN-DIALOGUE indication map to parameters of the DC-BEGIN-DIALOGUE
indication.

Part 2: TxRPC Application Service Element (ASE) 91

DC-ASE Services RTI Protocol Machine

Table 8-8 DC-BEGIN-DIALOGUE Parameter Mapping

DC-BEGIN-DIALOGUE TP-BEGIN-DIALOGUE DC-BEGIN-DIALOGUE
Parameter Parameter APDU field

Protocol-Version User-Data protocol-version
RTI-AP-Title Recipient-AP-Title
RTI-AE-Qualifier Recipient-AE-Qualifier
Client-Name User-Data client-name
Client-Authenticator-Type User-Data client-authenticator-type
Client-Authenticator User-Data client-authenticator
Interface-UUID Recipient-TPSU-Title
Interface-Version-Major Recipient-TPSU-Title
Interface-Version-Minor Recipient-TPSU-Title
Object-UUID Recipient-TPSU-Title
Context-Type Functional-Units

Application-Context-Name†

Confirmation‡

Notes:

† Always set to ObjectID for RTI Transactional or Non-transactional context.

‡ Always set to "negative".

Table 8-9 describes the mapping of the parameters of the DC-REJECT-DIALOGUE request to the
parameters of the TP-BEGIN-DIALOGUE response. Conversely, fields of the DC-REJECT-
DIALOGUE APDU and parameters of the TP-BEGIN-DIALOGUE confirmation are mapped to
the parameters of the DC-REJECT-DIALOGUE indication

Table 8-9 DC-REJECT-DIALOGUE Parameter Mapping

DC-REJECT-DIALOGUE TP-BEGIN-DIALOGUE DC-REJECT-DIALOGUE
Parameter Parameter APDU fields

Reason-Code User-Data reason-code
Protocol-Versions User-Data protocol-versions

Result†

Rollback‡

Notes:

† Always set to "rejected(user)".

‡ Always set to "false".

92 X/Open CAE Specification

RTI Protocol Machine DC-ASE Services

Recipient-TPSU-Title

Recipient-TPSU-Title is constructed by concatenating the Interface-UUID parameter, a single
space, the version-number and the Object-UUID. Recipient-TPSU-Title is encoded as a
PrintableString. The version-number is formed by concatenating the Interface-Version-Major
and Interface-Version-Minor separated by a single period. The total length of the Recipient-
TPSU-Title is 84 characters: 36 characters for Interface-UUID, one space character as a delimiter,
five characters (digits only) for Interface-Version-Major, a period, five characters (digits only) for
Interface-Version-Minor and 36 characters for Object-UUID3. Each of the 5-digit numbers is a
decimal representation of an unsigned 16-bit integer with a maximum value of 65,535.

Functional-Units

Functional-Units are derived as shown in Table 8-10.

Table 8-10 Context-Type and Functional-Units

Context-Type Functional-Unit
Transaction Enabled Dialogue, Shared Control, Commit, Unchained Transaction
Not Transaction Enabled Dialogue, Shared Control

8.3.6 Structure and Encoding of APDUs

The abstract syntax of each DC-ASE APDU is specified using ASN.1 (see the referenced ASN.1
standard).

-- Dialogue Control ASE APDUs

DC-apdus

{iso(1) national-member-body(2) bsi(826) disc(0) xopen(1050)
txrpc(6) abstract-syntax(2) dc-apdu(1) version1(1)}

DEFINITIONS ::=

BEGIN

IMPORTS

-- Transaction Processing
Transaction-Processing-APDUs FROM
{joint-iso-ccitt transaction-processing(10) modules(1)
apdu-abstract-syntax(1)}

-- Directory Service
DistinguishedName RelativeDistinguishedName FROM
InformationFramework
{joint-iso-ccitt ds(5) modules(1) informationFrame(1)}

3. Note that if the Object-UUID is not supplied, it is simply omitted from the Recipient-TPSU-Title.

Part 2: TxRPC Application Service Element (ASE) 93

DC-ASE Services RTI Protocol Machine

-- The following defines the type of the EXTERNAL
-- field, User-information exported by Transaction-Processing-APDUs

DC-begin-dialogue ::= [APPLICATION 1] IMPLICIT SEQUENCE
{

protocol-version BIT STRING
{version1 (0)}

client-name VisibleString,

client-authenticator-type INTEGER
{

default-security (1),
customer-written-security (2)

}

client-authenticator CHOICE
{

VisibleString,
OCTET STRING

}

}

DC-reject-dialogue ::=[APPLICATION 2] IMPLICIT SEQUENCE
{

reason-code ENUMERATED
{

protocol-version-not-supported (0),
interface-permanently-unavailable (1),
interface-temporarily-unavailable (2),
reason-not-specified (3)

}

protocol-versions BIT STRING OPTIONAL
{version1 (0)}

}

END

94 X/Open CAE Specification

RTI Protocol Machine RPC-ASE Services

8.4 RPC-ASE Services
The RPC-ASE implements the protocol described in the referenced X/Open DCE RPC
specification.

The X/Open DCE RPC specification specifies in architectural terms the well defined
communication capabilities of RPC. The communication capabilities provided by RPC are
referred to as the RPC Application Service Element (RPC-ASE) to maintain consistency within
the RTI model provided in this specification. This protocol is also described in Chapter 11,
Connection-oriented RPC Protocol Machines, of the X/Open DCE RPC specification. It is
respecified here to provide consistent style and terminology with the rest of the TxRPC
specification.

Fundamental to understanding the RPC-ASE is an understanding of the structure of the RPC-
ASE APDUs and the rules that govern the flow of these APDUs. The structure of the APDUs is
fully described in Section 12.6, Connection-oriented RPC PDUs, of the X/Open DCE RPC
specification.

This section defines the rules for flowing the APDUs defined in the X/Open DCE RPC
specification. It does so by defining the RPC-ASE service primitives for use by the RTI protocol
machine and their usage. The usage and sequencing rules defined are consistent with the rules
defined in the X/Open DCE RPC specification. The connection oriented protocol is used to flow
APDUs over an OSI TP dialogue, rather than a transport level connection as used in the X/Open
DCE RPC specification.

This section describes the RPC-ASE by defining service primitives, protocol procedures,
parameter mappings, and sequencing rules.

This section also identifies the RPC-ASE APDUs of the X/Open DCE RPC specification used by
this document.

8.4.1 Service Conventions

The Service description conventions used here are as close as possible to OSI service description
conventions.

The RPC-ASE has two service primitive classes: request (req) and indication (ind). Requests are
issued by the RPC-ASE service user (that is the RTI-PM) and received by the RPC-ASE.
Indications are issued by the RPC-ASE and received by the RPC-ASE service user (that is the
RTI-PM).

Typically, although not necessarily, a request issued by one RPC-ASE service user results in a
corresponding indication received by another RPC-ASE service user. In certain situations, a
request issued to the RPC-ASE is purely a local event and does not directly generate protocol
flow. Similarly, an indication issued by the RPC-ASE may result from a local event, not directly
from protocol flow.

The relationship to service description conventions used in the X/Open DCE RPC specification
is explained in Appendix D.

For consistency with the conventions used in other sections of this document and naming
conventions for international standards, the service primitive names do not match the names for
events and actions in the X/Open DCE RPC specification. The relationship to the event and
action names in the X/Open DCE RPC specification are described in Appendix D.

Part 2: TxRPC Application Service Element (ASE) 95

RPC-ASE Services RTI Protocol Machine

8.4.2 Service Primitives

The RPC-ASE service is invoked using a sequence of RPC-ASE service primitives. Table 8-11
summarises the RPC-ASE service primitives. This table contains the service primitive name,
primitive type at client (req or ind), primitive type at server (req or ind), and the section of this
document that fully describes the service primitive.

Table 8-11 RPC-ASE Service Primitives Summary

Primitive Name Client Server See
Section 8.4.3.RPC-REQUEST req ind
Section 8.4.4 on page 98.RPC-RESPONSE ind req
Section 8.4.5 on page 98.RPC-ORPHANED req ind
Section 8.4.6 on page 99.RPC-REMOTE-ALERT req ind
Section 8.4.7 on page 99.RPC-FAULT ind req
Section 8.4.8 on page 100.RPC-NO-CONN req req
Section 8.4.9 on page 101.RPC-DONE ind ind
Section 8.4.10 on page 101.RPC-SHUTDOWN ind req

Section 8.4.3 to Section 8.4.10 on page 101 define the service primitives.

8.4.3 RPC-REQUEST

Function

The RPC-REQUEST request is issued by the client RTI-PM to transmit an rpc_request APDU.

The RPC-REQUEST indication is issued by the server RPC-ASE to the server RTI-PM to indicate
the contents of an rpc_request APDU.

Parameters

Parameter Name Req Ind
Interface-UUID M M(=)
Interface-Version-Major M M(=)
Interface-Version-Minor M M(=)
Object-UUID O O(=)
Transaction-Attribute M M(=)
Operation-Number M M (=)
Stub-Data M M (=)
Last-Frag O O (=)
Auth-Type O O (=)
Auth-Level O O (=)
Auth-Value O O (=)

Interface-UUID
This parameter is supplied by the client RTI-PM. It indicates the server interface for the call.

Interface-Version-Major
This parameter is supplied by the client RTI-PM. It indicates the major version number of
the interface.

96 X/Open CAE Specification

RTI Protocol Machine RPC-ASE Services

Interface-Version-Minor
This parameter is supplied by the client RTI-PM. It indicates the minor version number of
the interface.

Object-UUID
This parameter is supplied by the client RTI-PM. It indicates the (optional) object UUID
associated with the call.

Transaction-Attribute
This parameter is supplied by the client RTI-PM. It indicates the transaction attribute
(TRANSACTION-MANDATORY, TRANSACTION-OPTIONAL or TRANSACTION-
NONE) of the call.

Operation-Number4

This parameter is supplied by the client RTI-PM. It indicates the operation number for the
call.

Stub-Data
This parameter is supplied by the client RTI-PM. It contains the user data.

Last-Frag
This parameter is supplied by the client RTI-PM. Its presence indicates the last rpc_request
fragment for a call.

Auth-Type5

This parameter is supplied by the client RTI-PM.

Auth-Level6

This parameter is supplied by the client RTI-PM.

Auth-Value7

This parameter is supplied by the client RTI-PM.

Usage

The RPC-REQUEST request may be issued only by the client RTI-PM.

The RPC-REQUEST indication may be issued only by the server RPC-ASE.

4. The Operation-Number (opn) is a 16-bit non-negative integer that identifies a particular operation within an interface. On a call
to a remote operation, this field contains the number of the target operation within the interface. (Operations are numbered in
the order in which they are defined in the interface, starting with 0.)

5. This parameter is not used in this version. It is reserved for future use.
6. This parameter is included for compatibility with future versions of RPC. It is not used in this version.
7. This parameter is not used in this version. It is reserved for future use.

Part 2: TxRPC Application Service Element (ASE) 97

RPC-ASE Services RTI Protocol Machine

8.4.4 RPC-RESPONSE

Function

The RPC-RESPONSE request is issued by the server RTI-PM to transmit an rpc_response APDU.

The RPC-RESPONSE indication is issued by the RPC-ASE to indicate an rpc_response APDU to
the client RTI-PM.

Parameters

Parameter Name Req Ind
Stub-Data M M (=)
Last-Frag O O (=)

Stub-Data
This parameter is supplied by the server RTI-PM. It contains the transaction context and the
user data.

Last-Frag
This parameter is supplied by the server RTI-PM. Its presence indicates the last
rpc_response fragment for the call.

Usage

The RPC-RESPONSE request may be issued only by the server RTI-PM.

The RPC-RESPONSE indication may be issued only by the client RPC-ASE.

8.4.5 RPC-ORPHANED

This section defines the RPC-ORPHANED service primitive.

Function

The RPC-ORPHANED request is issued by the client RTI-PM to transmit an rpc_orphaned
APDU.

The RPC-ORPHANED indication is issued by the server RPC-ASE to indicate an rpc_orphaned
APDU to the server RTI-PM.

RPC-ORPHANED is used to abruptly terminate a call in progress.

Parameters

None.

Usage

The RPC-ORPHANED request may be issued only by the client RTI-PM. The RPC-ORPHANED
request may be issued at most once for a call.

The RPC-ORPHANED indication may be issued only by the server RPC-ASE.

98 X/Open CAE Specification

RTI Protocol Machine RPC-ASE Services

8.4.6 RPC-REMOTE-ALERT

This section defines the RPC-REMOTE-ALERT service primitive.

Function

The RPC-REMOTE-ALERT service primitive is issued by the client RTI-PM to transmit an
rpc_remote_alert APDU.

The RPC-REMOTE-ALERT indication is issued by the server RPC-ASE to indicate an
rpc_remote_alert apdu to the server RTI-PM.

Parameters

None

Usage

The RPC-REMOTE-ALERT request may be issued only by the client RTI-PM. The RPC-
REMOTE-ALERT request may be issued multiple times.

The RPC-REMOTE-ALERT indication may be issued only by the server RPC-ASE.

8.4.7 RPC-FAULT

This section defines the RPC-FAULT service primitive.

Function

The RPC-FAULT request is issued by the server RTI-PM to transmit an rpc_fault APDU.

The RPC-FAULT indication is issued by the client RPC-ASE to indicate an rpc_fault APDU to the
client RTI-PM.

Parameters

Parameter Name Req Ind
Reason M M (=)
DNE O O (=)
Stub-Data O O (=)

Reason
This parameter is supplied by the server RTI-PM. This parameter can be one of the
following reasons. See Table 9-1 on page 137 for corresponding hexadecimal values.

• RPC-ACCESS-VIOLATION

• RPC-CANCEL

• RPC-FLOATING-DIVIDE-BY-ZERO

• RPC-FLOATING-ERROR

• RPC-FLOATING-OVERFLOW

• RPC-FLOATING-UNDERFLOW

• RPC-INSUFFICIENT-RESOURCES

Part 2: TxRPC Application Service Element (ASE) 99

RPC-ASE Services RTI Protocol Machine

• RPC-INTEGER-DIVIDE-BY-ZERO

• RPC-INTEGER-OVERFLOW

• RPC-INVALID-OPERATION-NUMBER

• RPC-INVOCATION-FAILURE

• RPC-MARSHALLING-ERROR

• RPC-PROTOCOL-ERROR

• RPC-REASON-NOT-SPECIFIED.

DNE
This parameter is supplied by the server RTI-PM. Its presence indicates the call did not
execute. Its absence indicates the call need not have executed.

Stub-Data8

This parameter is supplied by the server RTI-PM. It contains optional stub data.

Usage

The RPC-FAULT request may be issued only by the server RTI-PM.

The RPC-FAULT indication may be issued only by the client RPC-ASE.

8.4.8 RPC-NO-CONN

Function

The RPC-NO-CONN request is issued by the RTI-PM to request the RPC-ASE to terminate any
activities associated with the currently established context. The RPC-NO-CONN request
generates no protocol flow.

Parameters

None.

Usage.

The RPC-NO-CONN request may be issued by the client RTI-PM or server RTI-PM. The RPC-
NO-CONN request may be issued at any time.

8. This parameter is not used in this version. It is reserved for future use.

100 X/Open CAE Specification

RTI Protocol Machine RPC-ASE Services

8.4.9 RPC-DONE

This section defines the RPC-DONE indication service primitive.

Function

The RPC-DONE indication is issued by the RPC-ASE to indicate to the RTI-PM its readiness for
the next data fragment.9

Parameters

None.

Usage

The RPC-DONE indication may be issued either by the client RPC-ASE or server RPC-ASE.

8.4.10 RPC-SHUTDOWN

Function

The RPC-SHUTDOWN request is issued by the server RTI-PM to transmit an rpc_shutdown
APDU.

The RPC-SHUTDOWN indication is issued by the client RPC-ASE to indicate an rpc_shutdown
APDU to the client RTI-PM.

Parameters

None.

Usage

The RPC-SHUTDOWN request service primitive may be issued only by the server RTI-PM.

The RPC-SHUTDOWN indication service primitive may be issued only by the client RPC-ASE.

8.4.11 Protocol Procedures

A remote procedure call consists of a sequence of RPC-ASE APDUs. Each remote procedure call
is assigned a call_id value by the client RPC-ASE when the first rpc_request APDU is
transmitted. Uniqueness of call_id is defined in Section 6.1.3, Remote Procedure Calls, of the
X/Open DCE RPC specification.

Unless otherwise specified, every APDU transmitted by the client RPC-ASE and server RPC-ASE
for a given remote procedure call is assigned the same call_id value.

At any time an RPC-ASE has only one valid call_id value. Any APDUs with a call_id other than
the valid call_id are discarded.

9. Issuance of the RPC-DONE indication does not indicate any information about the state of data being transmitted, it only
indicates that the local RPC-ASE has fully received the data fragment and is ready to receive another. An implementation may
choose a policy for issuing the RPC-DONE indication for proper resource utilisation. This service primitive does not appear in
the X/Open DCE RPC specification. It was added to help clarify the operation of segmentation.

Part 2: TxRPC Application Service Element (ASE) 101

RPC-ASE Services RTI Protocol Machine

The call_id value is mapped to the call_id field of the RPC-ASE APDUs described in the X/Open
DCE RPC specification.

Client Protocol Procedures

The client RPC-ASE protocol procedures are as follows:

RPC-REQUEST request
On the first RPC-REQUEST request for a remote procedure call the client RPC-ASE
performs the following actions:

• determines a call_id and records it as the current call_id.

• sets the PFC_FIRST_FRAG flag.

If the Last-Frag parameter is present the RPC-ASE sets the PFC_LAST_FRAG flag.

The RPC-ASE transmits an rpc_request APDU.

If the Last-Frag parameter is not present the RPC-ASE issues an RPC-DONE indication.

RPC-REMOTE-ALERT request
The RPC-ASE transmits an rpc_remote_alert APDU.

The RPC-ASE queues an alert timeout timer.10

Once queued, an alert timeout timer is active until all operations related to the call are
complete and the client state machine returns to the idle state. In other words, once an alert
timeout timer has been queued in response to the RPC-REMOTE-ALERT request the call
must must complete (including all response fragments) before the alert timer expires to
avoid the actions of an alert timeout (issue RPC-FAULT.ind and transmit rpc_orphaned
APDU).

RPC-ORPHANED request
The RPC-ASE transmits an rpc_orphaned APDU.

The current call_id is invalidated.

RPC-NO-CONN request

The RPC-ASE discards any APDUs queued for transmission.

The current call_id is invalidated.

rpc_response APDU
The RPC-ASE issues an RPC-RESPONSE indication with parameters as follows:

• If the PFC_LAST_FRAG flag is set the Last-Frag parameter is supplied.

rpc_fault APDU
The RPC-ASE issues an RPC-FAULT indication. If the flag PFC_DID_NOT_EXECUTE is set
the DNE parameter is included on the indication.

The current call_id is invalidated.

rpc_shutdown APDU
The call_id field does not apply to the rpc_shutdown APDU.

10. The timeout period for alerts is implementation-specific.

102 X/Open CAE Specification

RTI Protocol Machine RPC-ASE Services

The RPC-ASE issues an RPC-SHUTDOWN indication.

AlertTimeout
An AlertTimeout indicates that the server has not responded to a remote alert in the
prescribed period of time. The RPC-ASE issues an RPC-FAULT indication to the RTI-PM
with reason code RPC-PROTOCOL-ERROR. Then the RPC-ASE transmits an rpc_orphaned
APDU.

The current call_id is invalidated.

Server Protocol Procedures

The server protocol procedures are as follows:

RPC-RESPONSE request
The RPC-ASE transmits an rpc_response APDU with flags as follows.

• On the first RPC_RESPONSE request for a call the RPC-ASE sets the PFC_FIRST_FRAG
flag.

• If the Last-Frag parameter is present the RPC-ASE sets the PFC_LAST_FRAG flag.

If the Last-Frag parameter is not present the RPC-ASE issues an RPC-DONE indication.

If the Last-Frag parameter is present the current call_id is invalidated.

RPC-FAULT request
The RPC-ASE transmits an rpc_fault APDU. If the DNE parameter is present on the request
the flag PFC_DID_NOT_EXECUTE is set by the RPC-ASE.

The current call_id is invalidated.

RPC-SHUTDOWN request
The RPC-ASE transmits an rpc_shutdown APDU.

The call_id field is not set for the rpc_shutdown APDU.

RPC-NO-CONN request
The RPC-ASE discards any APDUs queued for transmission.

The current call_id is invalidated.

rpc_request APDU
The RPC-ASE issues an RPC-REQUEST indication with parameters as follows:

• If the PFC_LAST_FRAG flag is set the Last-Frag parameter is supplied.

If the PFC_FIRST_FRAG flag is set the value of the call_id field is recorded as the current
call_id.

rpc_orphaned APDU
The RPC-ASE issues an RPC-ORPHANED indication.

The current call_id is invalidated.

rpc_remote_alert APDU
The RPC-ASE issues an RPC-REMOTE-ALERT indication.

Part 2: TxRPC Application Service Element (ASE) 103

RPC-ASE Services RTI Protocol Machine

8.4.12 Mapping to Lower Layers

All RPC-ASE APDUs are mapped onto the P-Data service.

8.4.13 Parameter Mappings

The mapping between service primitive parameters and corresponding APDU fields is shown in
the following tables.

Parameters on the RPC-REQUEST service primitive are mapped onto the rpc_request APDU as
shown in Table 8-12.

Table 8-12 rpc_request APDU Mapping

Parameter rpc_request APDU field
Interface-UUID context_id†

Interface-Version-Major context_id†

Interface-Version-Minor context_id†

Object-UUID object
Transaction-Attribute transaction_indicator‡

Operation-Number opnum
Stub-Data stub data goes here
Last-Frag PFC_LAST_FRAG
Auth-Type auth_type
Auth-Level auth_level
Auth-Value auth_value

Notes:

† Interface-UUID, Interface-Version-Major and Interface-Version-Minor are passed
indirectly via the context_id field of the rpc_request APDU. This field identifies a
presentation context negotiated for the association.

‡ This field is in the RPC request header extension (see Section 8.4.14 on page 105). If
there is a current transaction and the Transaction_Attribute is
transaction_mandatory or transaction_optional, the value is transactional_rpc.
Otherwise the value is non_transactional_rpc.

Parameters on the RPC-RESPONSE service primitive are mapped onto the rpc_response APDU
as shown in Table 8-13.

Table 8-13 rpc_response APDU Mapping

Parameter rpc_response APDU
Stub-Data stub data goes here
Last-Frag PFC_LAST_FRAG

Parameters on the RPC-FAULT service primitive are mapped onto the rpc_fault APDU as shown
in Table 8-14 on page 105.

104 X/Open CAE Specification

RTI Protocol Machine RPC-ASE Services

Table 8-14 rpc_fault APDU Mapping

Parameter rpc_fault APDU
Reason status
DNE PFC_DID_NOT_EXECUTE
Stub-Data stub data goes here

There is no parameter mapping for:

• rpc_shutdown APDU

• rpc_remote_alert APDU

• rpc_orphaned APDU.

8.4.14 Structure and Encoding of APDUs

The formal ASN.1 definition for the RPC-ASE APDUs is given below. The format and encoding
of the RPC-ASE APDUs is defined in Section 12.6, Connection-oriented RPC PDUs, of the
X/Open DCE RPC specification.

-- Remote Task Invocation RPC-ASE APDUs Version 1

RPC-apdus-1

{iso(1) national-member-body(2) bsi(826) disc(0) xopen(1050)
txrpc(6) abstract-syntax(2) rpc-apdu(2) version1(1)}

DEFINITIONS IMPLICIT TAGS ::=
BEGIN
RPC-ASE-apdu ::= OCTET STRING

-- The contents of the OCTET STRING can have one of six formats.
-- The six RPC-ASE-apdu formats are designated:
-- rpc_request APDU
-- rpc_response APDU
-- rpc_fault APDU
-- rpc_shutdown APDU
-- rpc_remote_alert APDU
-- rpc_orphaned APDU
-- The RPC-ASE-apdu formats are described in
-- Chapter 12.6 of the X/Open DCE RPC specification.

END

rpc_request APDU

The structure and encoding of the rpc_request APDU is defined in Section 12.6.4.9, The request
PDU, of the X/Open DCE RPC specification. A header extension, defined below, is added after
the standard rpc_request header (after the optional object field). This is followed by the stub
data (8-octet aligned) and the optional authentication trailer.

The rpc_request APDU is distinguished by the value rpc_request in the PTYPE field.

The format of the header extension is described below in IDL notation.

Part 2: TxRPC Application Service Element (ASE) 105

RPC-ASE Services RTI Protocol Machine

typedef struct
{

unsigned small rollback_indicator;
unsigned small transaction_indicator;

} xoext;

typedef union switch (long) ext_hdr
{

case
1: xoext a_xoext;

} extended_header;

/* Rollback indicator value to indicate no rollback */

#define no_rollback 0

/* Rollback indicator value to indicate rollback by server */

#define rollback_by_server 1

/* transaction_indicator value to indicate not transactional */

#define non_transactional_rpc 0

/* transaction_indicator value to indicate transactional */

#define transactional_rpc 1

rpc_response APDU

The structure and encoding of the rpc_response APDU is defined in Section 12.6.4.10, The
response PDU, of the X/Open DCE RPC specification. A header extension, defined in the
description of the rpc_request APDU, is added after the standard rpc_response header (after the
reserved field). This is followed by the stub data (8-octet aligned) and the optional
authentication trailer.

The rpc_response APDU is distinguished by the value rpc_response in the PTYPE field.

rpc_fault APDU

The structure and encoding of the rpc_fault APDU is defined in Section 12.6.4.7, The fault PDU,
of the X/Open DCE RPC specification.

The rpc_fault APDU is distinguished by the value rpc_fault in the PTYPE field.

rpc_shutdown APDU

The structure and encoding of the rpc_shutdown APDU is defined in Section 12.6.4.11, The
shutdown PDU, of the X/Open DCE RPC specification.

The rpc_shutdown APDU is distinguished by the value rpc_shutdown in the PTYPE field.

106 X/Open CAE Specification

RTI Protocol Machine RPC-ASE Services

rpc_remote_alert APDU

The structure and encoding of the rpc_remote_alert APDU is defined in Section 12.6.4.6, The
cancel PDU, of the X/Open DCE RPC specification.

The rpc_remote_alert APDU is distinguished by the value rpc_remote_alert in the PTYPE field.

rpc_orphaned APDU

The structure and encoding of the rpc_orphaned APDU is defined in Section 12.6.4.8, The
orphaned PDU, of the X/Open DCE RPC specification.

The rpc_orphaned APDU is distinguished by the value rpc_orphaned in the PTYPE field.

8.4.15 Sequencing

To simplify and enhance readability two state tables are defined, the RPC-ASE client state table
and the RPC-ASE server state table. State transitions for the client RPC-ASE are described by the
RPC-ASE client state table. State transitions for the server RPC-ASE are defined by the RPC-ASE
server state table.

Table 8-19 on page 109 and Table 8-23 on page 111 (the state tables) define the allowed sequence
of service events and protocol events for a given RPC-ASE.

A separate state is maintained for each context established by the RTI-PM. RPC-ASE service
primitives relate to one context only.

The state tables specify preconditions that must be satisfied in order for individual events to be
allowed in a given state. These preconditions are based on service primitive parameters and
protocol fields.

The state tables also specify actions to be performed. These actions involve issuing service
primitive indications and transmitting APDUs.

Table 8-15 identifies the states for Table 8-19 on page 109 and Table 8-23 on page 111.

Table 8-15 RPC-ASE States

State Description
I The idle state
RIP Request in Progress
CIP Call In Progress
RSP Response in Progress

Client RPC-ASE

Sequencing rules for the client RPC-ASE are shown in the following tables.

Part 2: TxRPC Application Service Element (ASE) 107

RPC-ASE Services RTI Protocol Machine

Table 8-16 Client RPC-ASE Events

Event Description
RPC-REQUEST.req RPC-REQUEST request received
RPC-ORPHANED.req RPC-ORPHANED request received
RPC-REMOTE-ALERT.req RPC-REMOTE-ALERT request received
RPC-NO-CONN.req RPC-NO-CONN request received
rpc_fault APDU rpc_fault APDU received
rpc_response APDU rpc_response APDU received
rpc_shutdown APDU rpc_shutdown APDU received
AlertTimeout AlertTimer timeout event occurred

Table 8-17 Client RPC-ASE Preconditions

Precondition Description
plf PFC_LAST_FRAG flag set
lfg Last-Frag parameter present
pdn PFC_DID_NOT_EXECUTE flag set

Table 8-18 Client RPC-ASE Actions

Action Description
irft Issue RPC-FAULT indication
irsp Issue RPC-RESPONSE indication
irsd Issue RPC-DONE indication
issr Issue RPC-SHUTDOWN
tral Transmit rpc_remote_alert APDU
treq Transmit rpc_request APDU
torp Transmit rpc_orphaned APDU
A1 Queue an alert timeout timer

108 X/Open CAE Specification

RTI Protocol Machine RPC-ASE Services

Table 8-19 Client RPC-ASE State Table

Event Precon I RIP CIP RSP
RPC-REQUEST.req ¬lfg treq treq

irsd irsd
RIP RIP

RPC-REQUEST.req lfg treq treq
CIP CIP

RPC-REMOTE-ALERT.req A1 A1 A1
tral tral tral
RIP CIP RSP

RPC-ORPHANED.req torp torp torp
I I I

rpc_response APDU plf I irsp irsp
I I

rpc_response APDU ¬plf I irsp irsp
RSP RSP

rpc_fault APDU ¬pdn I irft irft irft
I I I

rpc_fault APDU pdn I irft irft
I I

AlertTimeout I irft irft irft
torp torp torp

I I I
RPC-NO-CONN.req I I I
rpc_shutdown APDU issr issr issr

I RIP CIP

Part 2: TxRPC Application Service Element (ASE) 109

RPC-ASE Services RTI Protocol Machine

Server RPC-ASE

Sequencing rules for the server RPC-ASE are shown in the following tables.

Table 8-20 Server RPC-ASE Events

Event Description
rpc_request APDU rpc_request APDU received
rpc_remote_alert APDU rpc_remote_alert APDU received
rpc_orphaned APDU rpc_orphaned APDU received
RPC-NO-CONN.req RPC-NO-CONN request received
RPC-FAULT.req RPC-FAULT request received
RPC-RESPONSE.req RPC-RESPONSE request received
RPC-SHUTDOWN.req RPC-SHUTDOWN request received

Table 8-21 Server RPC-ASE Preconditions

Precondition Description
lrf PFC_LAST_FRAG flag set in received APDU
frf PFC_FIRST_FRAG flag set in received APDU
lsf The Last-Frag parameter is present
dne The DNE parameter is present

Table 8-22 Server RPC-ASE Actions

Action Description
ireq Issue RPC-REQUEST indication
iral Issue RPC-REMOTE-ALERT indication
iorp Issue RPC-ORPHANED indication
irfd Issue RPC-DONE indication
tflt Transmit rpc_fault APDU
trsp Transmit rpc_response APDU
tsht Transmit rpc_shutdown APDU

110 X/Open CAE Specification

RTI Protocol Machine RPC-ASE Services

Table 8-23 Server RPC-ASE State Table

Events Precon I RIP CIP RSP
rpc_request APDU frf & lrf ireq

CIP
rpc_request APDU frf & ¬lrf ireq

RIP
rpc_request APDU ¬frf & lrf I ireq

CIP
rpc_request APDU ¬frf & ¬lrf I ireq

RIP
rpc_remote_alert APDU I iral iral iral

RIP CIP RSP
rpc_orphaned APDU I iorp iorp iorp

I I I
RPC-RESPONSE.req lsf trsp trsp

I I
RPC-RESPONSE.req ¬lsf trsp trsp

irfd irfd
RSP RSP

RPC-FAULT.req ¬dne tflt tflt
I I

RPC-FAULT.req dne tflt tflt
I I

RPC-NO-CONN.req I I I
RPC-SHUTDOWN.req tsht

I

Part 2: TxRPC Application Service Element (ASE) 111

RTI-MACF Procedures RTI Protocol Machine

8.5 RTI-MACF Procedures
The MACF procedures of the RTI Protocol Machine (RTI-PM) are as follows:

• RTI requests

• DC-ASE indications

• RPC-ASE indications

• TP indications

• internal events.

8.5.1 Rules

The rules used for the operation of the procedures are as follows:

• The actions for each procedure must be executed in the described order.

• The RTI-PM completely executes all actions pertinent to an event before accepting a new
event. Furthermore, when an RTI-MACF procedure invokes the services of the lower layers
(for example RPC-ASE), it is assumed that the entire processing is atomic. That is, the MACF
procedure and all pertinent lower layer procedures are completely executed before a new
event is accepted.

• Unless otherwise stated, all procedures describe the actions for both the transactional and
non-transactional contexts.

8.5.2 Definitions

The following definitions are used in the descriptions of the RTI-PM procedures:

Request in progress
For the client RTI-PM one or more RPC-REQUEST requests (but none with Last-Frag
parameter) have been issued to the RPC-ASE.

For the server RTI-PM, one or more RPC-REQUEST indications have been received from the
RPC-ASE but none with Last-Frag parameter has been received.

Call in progress
For the client RTI-PM, an RPC-REQUEST request with Last-Frag parameter has been issued
to the RPC-ASE. The client RTI-PM may have received one or more RPC-RESPONSE
indications but none has been received with the Last-Frag parameter present.

For the server RTI-PM, an RPC-REQUEST request with Last-Frag parameter has been
received from the RPC-ASE but no RPC-RESPONSE request has been issued to the RPC-
ASE.

Response in progress
For the server RTI-PM, one or more RPC-RESPONSE requests have been issued to the RPC-
ASE but none with Last-Frag parameter has been issued.

Segmentation required
If the data supplied as the Arguments parameter of the RTI-CALL-TASK or RTI-CALL-
RESULT request is larger than the maximum RPC-ASE segment size, the segmentation of
data is required. The RTI-PM is responsible for performing the segmentation.

On the first attempt to issue any of the data transfer primitives of the RPC-ASE to transfer
the call or result data, the term segmentation required implies that the size of the user data is
larger than the maximum segment size. On any subsequent attempts to transfer the

112 X/Open CAE Specification

RTI Protocol Machine RTI-MACF Procedures

remaining portions of the data, the term segmentation required implies that the remaining
data is larger than the maximum segment.

Segmentation storage
This term is applicable only when segmentation is required.

For the client RTI-PM, the segmentation storage is the internal workspace used by the RTI-
PM to store the user data supplied by the Arguments parameter on the RTI-CALL-TASK
request; or to assemble the data to be provided to the client RTI-SUI on the Arguments
parameter of the RTI-CALL-RESULT indication.

For the server RTI-PM, the segmentation storage is the internal workspace used by the RTI-
PM to assemble the user data to be provided to the server RTI-SUI on the Arguments
parameter of the RTI-CALL-TASK indication; or to store the user data supplied by the
Arguments parameter on the RTI-CALL-RESULT request.

The RTI-PM maintains a separate segmentation storage for each context.

8.5.3 RTI Request Procedures

The RTI-PM MACF procedures for the RTI requests are as follows:

RTI-ESTABLISH-CONTEXT request

The RTI-PM remembers the parameters of the RTI-ESTABLISH-CONTEXT request for use when
the DC-BEGIN-DIALOGUE request is issued.

RTI-CALL-TASK request

If this is the first RTI-CALL-TASK request for a particular context, the RTI-PM issues a DC-
BEGIN-DIALOGUE request with the parameters from the previous RTI-ESTABLISH-CONTEXT
request and the RTI-CALL-TASK request.

If the call is transactional and the context is not already transactional, the context is made
transactional and the dialogue is included in the transaction; the RTI-PM issues a TP-BEGIN-
TRANSACTION request.

If segmentation is required, the RTI-PM:

1. saves the user data supplied by the Arguments parameter into the segmentation storage

2. issues an RPC-REQUEST request without Last-Frag parameter to transmit the first
segment of the call data.

If segmentation is not required, the RTI-PM issues an RPC-REQUEST request with Last-Frag
parameter to transmit the entire call data.

RTI-CANCEL-CALL request

The RTI-PM issues an RPC-REMOTE-ALERT request.

Part 2: TxRPC Application Service Element (ASE) 113

RTI-MACF Procedures RTI Protocol Machine

RTI-CALL-RESULT request

For non-transactional context, if the dialogue is already aborted or orphaned, the RTI-PM
ignores this request. In all other cases, the RTI-PM performs the following tasks:

If segmentation is required:

1. It saves the user data supplied by the Arguments parameter into the segmentation storage.

2. It issues an RPC-RESPONSE request without the Last-Frag parameter to transmit the first
segment of the call result data.

If segmentation is not required:

1. It issues an RPC-RESPONSE request with the Last-Frag parameter present to transmit the
entire call result data.

RTI-RELEASE-CONTEXT request

The RTI-PM issues a TP-END-DIALOGUE request with the Confirmation parameter set to
"false" and releases the non-transactional context.

RTI-ROLLBACK-TRANS request

This procedure applies to the transactional context only. The server RTI-PM performs the
following tasks:

1. If the first call is completed and a subsequent request is in progress, it issues an RPC-
FAULT request with the DNE parameter present and Reason parameter set to RPC-
REASON-NOT-SPECIFIED.11

2. If a response is in progress, it issues an RPC-FAULT request without the DNE parameter
and Reason parameter set to RPC-REASON-NOT-SPECIFIED.

The RTI-PM issues a TP-ROLLBACK request.

RTI-END-TRANS request

This procedure applies to the transactional context only. The server RTI-PM performs the
following tasks:

1. If there are no active context handles associated with the context, issue a TP-DEFERRED-
END-DIALOGUE request.

2. Issue a TP-PREPARE request.

11. The server RTI-PM can never receive this request while it is in the request in progress state with respect to the first call.

114 X/Open CAE Specification

RTI Protocol Machine RTI-MACF Procedures

RTI-TRANS-READY request

This procedure applies to the transactional context only.

The RTI-PM issues a TP-COMMIT request.

RTI-TRANS-DONE request

This procedure applies to the transactional context only.

The RTI-PM performs the following actions:

1. If processing a transaction rollback on the client side, and there are no active context
handles associated with the transactional context, it issues a TP-U-ABORT request. This is
so that the dialogue is terminated when the rollback processing is completed.

2. It issues a TP-DONE request.

8.5.4 DC-ASE Indication Procedures

The procedures for the DC-ASE indications are as follows:

DC-BEGIN-DIALOGUE indication

This indication is received by the server RTI-PM.

If the RTI-PM accepts the dialogue, no action is required.

If the RTI-PM rejects the dialogue, it issues the DC-REJECT-DIALOGUE request with one of the
following reason codes:

protocol-version-not-supported
The requested RTI protocol version is not supported. In this case, the protocol-versions
parameter of the DC-REJECT-DIALOGUE request indicates the protocol versions
supported by the server RTI-PM.

interface-permanently-unavailable
The version of the interface does not match the value of the interface-version parameter.

interface-temporarily-unavailable
The interface is known and its version matches the value of the interface-version parameter
but the interface is temporarily unavailable.

reason-not-specified
Dialogue rejected for any other reason.

DC-REJECT-DIALOGUE indication

This indication is received by the client RTI-PM when a request or a call is in progress.12

The RTI-PM performs the following actions:

1. It issues an RTI-CALL-FAILURE indication. The Reason-Code parameter of the DC-
REJECT-DIALOGUE indication is mapped onto the Reason parameter of the RTI-CALL-
FAILURE indication.

12. Since the dialogue is established as part of the first call, this indication can only be received while a request or a call is in
progress.

Part 2: TxRPC Application Service Element (ASE) 115

RTI-MACF Procedures RTI Protocol Machine

2. For non-transactional context, it releases the context and issues an RTI-RELEASE-
CONTEXT indication.

3. It issues an RPC-NO-CONN request.

8.5.5 RPC-ASE Indication Procedures

The procedures for RPC-ASE indication are as follows:

RPC-REQUEST indication

This indication indicates that one segment of the call request data has been received.

If the Last-Frag parameter is absent, the RTI-PM saves the call request data received on this
indication in the segmentation storage.

If the Last-Frag parameter is present:

1. The server RTI-PM passes the entire call request user data to the server RTI-SUI by issuing
an RTI-CALL-TASK indication.

2. If cancel call requests are pending, the server RTI-PM issues RTI-CANCEL-CALL
indications. The server RTI-PM issues one RTI-CANCEL-CALL indication for every RPC-
REMOTE-ALERT indication it has received while the request was in progress (see RPC-
REMOTE-ALERT indication on page 117).

RPC-RESPONSE indication

This action indicates that all or part of the call result data has been received.

If the Last-Frag parameter is absent, the RTI-PM saves the call result data received on this
indication in the segmentation storage.

If the Last-Frag parameter is present, the only or last segment has been received and the client
RTI-PM passes the entire call result data to the RTI-SUI by issuing an RTI-CALL-RESULT
indication.

RPC-FAULT indication

The RTI-PM issues an RTI-CALL-FAILURE indication. The Reason parameter of the RPC-
FAULT indication is mapped onto the Reason parameter of the RTI-CALL-FAILURE indication.

RPC-ORPHANED indication

This indication is received by the server RTI-PM.

The RTI-PM performs the following actions:

1. It issues an RPC-SHUTDOWN request. |

2. It reinitialises the segmentation storage.

3. If a call is in progress, it remembers the call has been orphaned.

116 X/Open CAE Specification

RTI Protocol Machine RTI-MACF Procedures

RPC-REMOTE-ALERT indication

This indication is received by the server RTI-PM.

The RTI-PM performs the following actions:

1. If a request is in progress, it increments the number of the pending cancel call requests.

2. If a call is in progress, it issues an RTI-CANCEL-CALL indication.

3. If a response is in progress, it takes no action

RPC-DONE indication

When received by the client RTI-PM, the client RTI-PM takes the following actions:

1. If segmentation is required, it issues an RPC-REQUEST request without the Last-Frag
parameter to transmit the next segment of the call data.

2. If segmentation is not required, it issues an RPC-REQUEST request with the Last-Frag
parameter to transmit the last segment of the call data.

When received by the server RTI-PM, the server RTI-PM takes the following actions:

1. If segmentation is required, issues an RPC-RESPONSE request without the Last-Frag
parameter.

2. If segmentation is not required, it issues an RPC-RESPONSE request with the Last-Frag
parameter present.

RPC-SHUTDOWN indication

This procedure applies to the non-transactional context only.

The client RTI-PM performs the following actions:

1. If a request is in progress or a call is in progress:

a. It issues an RPC-NO-CONN request.

b. It issues an RTI-CALL-FAILURE indication with the Reason parameter set to RPC-
INSUFFICIENT-RESOURCES.

2. It issues a TP-END-DIALOGUE request.

3. It releases the context and issues an RTI-RELEASE-CONTEXT indication.

8.5.6 TP Indication and Confirmation Procedures

The procedures for TP indications and confirmations are as follows:

TP-BEGIN-DIALOGUE confirmation

This confirmation is received by the client RTI-PM while a call is outstanding.13

13. Since dialogue establishment is initiated on the first call, the TP-BEGIN-DIALOGUE confirmation can only be received while a
call is outstanding. For transactional contexts, the above condition also guarantees that this confirmation is received prior to
transaction termination. Therefore, the Rollback parameter is always set to false.

Part 2: TxRPC Application Service Element (ASE) 117

RTI-MACF Procedures RTI Protocol Machine

The RTI-PM performs the following actions:

1. It issues an RTI-CALL-FAILURE indication.

2. For the non-transactional context, it releases the context and issues an RTI-RELEASE-
CONTEXT indication.

3. It issues an RPC-NO-CONN request.

TP-END-DIALOGUE indication

This indication is received by the server RTI-PM for a dialogue (transactional or non-
transactional).

The context is released.

TP-HEURISTIC-REPORT indication

This procedure applies to the transactional context only.

The client RTI-PM is informed of the actual or possible heuristic inconsistency within the
subordinate subtree when it receives a TP-HEURISTIC-REPORT indication.

The client RTI-PM issues an RTI-HEURISTIC-REPORT indication.

TP-U-ABORT indication

For the transactional context, if the server RTI-SUI has issued an RTI-TRANS-DONE request, the
server RTI-PM issues a TP-DONE request; otherwise, no action is taken.14

For the non-transactional context, the client RTI-PM performs the following actions:

1. If a request or a call is in progress, it issues an RTI-CALL-FAILURE indication with the
Reason parameter set to PROTOCOL-MACHINE-FAILURE.

2. It releases the context and issues an RTI-RELEASE-CONTEXT indication.

3. It issues an RPC-NO-CONN request.

For the non-transactional context, the server RTI-PM performs the following actions:

1. If a call is in progress, it remembers the dialogue is aborted.

2. If a request, a call, or a response is in progress, it issues an RPC-NO-CONN request.

TP-P-ABORT indication

For the transactional context:

• If the Rollback parameter is set to "true":

— If a request or a call is in progress, the client RTI-PM performs the following actions:

1. It issues an RTI-CALL-FAILURE indication.

2. It issues an RPC-NO-CONN request.

14. The above restriction is to ensure that the first TP-DONE request following a rollback initiating service primitive is issued to
TPPM only after the bound data handled by the requester RTI-SUI is placed in the initial state.

118 X/Open CAE Specification

RTI Protocol Machine RTI-MACF Procedures

— If a request, a call, or a response is in progress, the server RTI-PM issues an RPC-NO-
CONN request.

— The client or server RTI-PM issues an RTI-ROLLBACK-TRANS indication.

• If the Rollback parameter is set to "false" and the second phase of commitment has begun, the
RTI-PM issues a TP-DONE request.15

For the non-transactional context, the client RTI-PM performs the following actions:

1. If a request or a call is in progress, it issues an RTI-CALL-FAILURE indication.

2. It releases the context and issues an RTI-RELEASE-CONTEXT indication.

3. It issues an RPC-NO-CONN request.

For the non-transactional context, the server RTI-PM performs the following actions:

1. If a call is in progress, it records that the dialogue is aborted.

2. If a request, a call, or a response is in progress, it issues an RPC-NO-CONN request.

TP-DEFERRED-END-DIALOGUE indication

This procedure applies to the transactional context only.

This indication is received by the server RTI-PM.

No action is taken.

TP-BEGIN-TRANSACTION indication

This procedure applies only to non-transactional contexts with transactions enabled.

This indication is received by the server RTI-PM.

If the RTI-PM accepts the request, the context is made transactional.

If the RTI-PM rejects the request, it issues the RTI-CALL-FAILURE request with the Reason
parameter set to CONTEXT-TYPE-NOT-SUPPORTED (a transactional RPC was issued, but the
server RTI-PM does not support transactional operations).

TP-PREPARE indication

This procedure applies to the transactional context only.

A TP-PREPARE indication is received by an intermediate or leaf node only.

The server RTI-PM issues an RTI-PREPARE-TRANS indication.

15. For the transactional context, the TP-P-ABORT indication without the Rollback parameter can be received only after completion
of phase one of the two-phase commit protocol. The absence of the Rollback parameter signals the start of the recovery following
a communication failure.

Part 2: TxRPC Application Service Element (ASE) 119

RTI-MACF Procedures RTI Protocol Machine

TP-COMMIT indication

This procedure applies to the transactional context only.

The client or server RTI-PM issues an RTI-COMMIT-TRANS indication.

TP-COMMIT-COMPLETE indication

This procedure applies to the transactional context only.

The client or server RTI-PM issues an RTI-TRANS-COMPLETE indication.

All transactional dialogues (without any active context handles) are terminated and the client or
server RTI-PM releases all related contexts.

TP-READY indication

This procedure applies to the transactional context only.

If all transaction branches have reported ready, the RTI-PM generates an RTI-TRANS-READY
indication to the RTI-SUI.

TP-ROLLBACK indication

This procedure applies to the transactional context only.

This indication may be received by the client or the server RTI-PM at any time before the end of
phase one of the two-phase commit.

The RTI-PM performs the following actions:

1. On the client side, if a request or a call is in progress:

a. It issues an RTI-CALL-FAILURE indication with the Reason parameter set to
ROLLBACK-IN-PROGRESS.

b. It issues an RPC-NO-CONN request.

On the server side, if a request, a call, or a response is in progress, it issues an RPC-NO-
CONN request.

2. It issues an RTI-ROLLBACK-TRANS indication.

TP-ROLLBACK-COMPLETE indication

This procedure applies to the transactional context only.

The client or server RTI-PM issues an RTI-TRANS-COMPLETE indication.

All transactional dialogues (without any active context handles) are terminated and the client or
server RTI-PM releases the related transactional contexts.

120 X/Open CAE Specification

RTI Protocol Machine RTI-MACF Procedures

8.5.7 Internal Events

The procedures for internal events generated by the RTI-PM are as follows.

Internal-Call-Error

An Internal-Call-Error is an error detected by the RTI-PM that results in a call failure. The scope
of the error is limited to the call that is in progress.

If the client RTI-PM has a request or call in progress it performs the following actions:

1. It issues an RPC-ORPHANED request.

2. It issues an RTI-CALL-FAILURE indication with the Reason parameter set to
PROTOCOL-MACHINE-FAILURE.

The server RTI-PM performs the following actions:

1. If a request is in progress, it issues an RPC-FAULT request with the DNE parameter. The
Reason code is set to reflect the cause of the call error. The Reason code may be any
defined by the RPC-FAULT request service primitive.

2. If a call is in progress or a response is in progress, it issues an RPC-FAULT request without
the DNE parameter. The Reason code is set to reflect the cause of the call error. The
Reason code may be any defined by the RPC-FAULT request service primitive.

3. For the non-transactional context, it issues an RPC-SHUTDOWN request. If a call or a
response is in progress, it considers the call being orphaned and remembers this fact.

Internal-Fatal-Error

An Internal-Fatal-Error is an error detected by the RTI-PM that results in the immediate
termination of the dialogue.

For the non-transactional context the client RTI-PM performs the following actions:

1. It issues a TP-U-ABORT request.

2. If a request or a call is in progress:

a. It issues an RPC-NO-CONN request.

b. It issues an RTI-CALL-FAILURE indication with the Reason parameter set to
PROTOCOL-MACHINE-FAILURE.

3. It releases the context and issues an RTI-RELEASE-CONTEXT indication.

For the transactional context the client RTI-PM performs the following actions:

1. If a request or a call is in progress, it issues an RTI-CALL-FAILURE indication with the
Reason parameter set to PROTOCOL-MACHINE-FAILURE.

2. It issues an RTI-ROLLBACK-TRANS indication

3. It issues a TP-ROLLBACK request.

For the non-transactional context the server RTI-PM performs the following actions:

1. It issues a TP-U-ABORT request.

2. It issues an RPC-NO-CONN request.

Part 2: TxRPC Application Service Element (ASE) 121

RTI-MACF Procedures RTI Protocol Machine

For the transactional context the server RTI-PM performs the following actions:

• If the transaction could still be rolled back, that is before phase 2 of the two-phase commit
protocol:

1. It issues a TP-ROLLBACK request.

2. It issues an RTI-ROLLBACK-TRANS indication.16

• If a request, a call or a response is in progress, it issues an RPC-NO-CONN request.

8.6 RTI-APDU Concatenation Rules
RTI-APDUs may be concatenated according to the TP concatenation rules as stated in Clause
11.3 of the OSI TP Protocol standard. In this clause, the term UASE-APDU represents the RTI-
APDUs. No additional rules are required.

16. In the case of the first call on a dialogue, the above RTI-ROLLBACK-TRANS indication is issued only if a call or a response is in
progress, or if the transaction is in phase one of the two phase commit protocol.

122 X/Open CAE Specification

RTI Protocol Machine Sequencing Rules and State Tables

8.7 Sequencing Rules and State Tables
This section contains the state tables for the RTI-PM. All sequencing rules are implicit in the state
tables. In order to simplify and enhance readability, the client and server state tables are
separated into transactional and non-transactional cases. State transitions for non-transactional
contexts are described by the non-transactional state tables, and state transitions for
transactional contexts are described by the transactional state tables. Transitions occur between
these state tables as context changes from transactional to non-transactional and vice-versa.

When a new context is created, its initial state is I (the Idle State) in the RTI Protocol Client Non-
transactional State Table. The initial state for a server is I (the Idle State) in the RTI Protocol
Server Non-transactional State Table.

8.7.1 State Table Conventions

In each state table:

• Each column (except the two left-most columns) represents a state.

• Each row (except the first) represents an event.

• Each non-blank cell of the table represents a state transition.

State transitions are controlled by two factors, the incoming event triggering the transition and
zero or more precondition variables.

Incoming events are listed in the left-most column of the state table (labelled Events).

All precondition variables with the exception of pcp are booleans and can therefore take a value
of TRUE or FALSE. The precondition variable pcp is an integer and can thus take any integer
value. If the precondition variable pcp is listed in the state table followed by the expression =0
(equal to zero), the value of pcp must be zero for the transition to occur. Likewise if the
precondition variable pcp is listed in the state table followed by the expression ≠0 (not equal to
0), the value of pcp must not be zero for the transition to occur.

If a precondition variable is listed in the state table prefixed by ¬ (logical NOT), the value of that
variable must be FALSE for the transition predicated by that variable to occur. If a precondition
variable has no prefix, the value of that variable must be TRUE for the transition predicated by
that variable to occur.

Precondition variables are listed in the second column of the table (labelled Preconditions). All
precondition variables must evaluate as specified for any transition in that row of the state table
to occur. Precondition variables are evaluated from top to bottom with the first precondition
variable (or group of precondition variables) that evaluate being the ones to qualify the event.
Precondition variables are of the form px, where x is the two letter abbreviated name of the
variable.

Each cell of the state table may contain a set of actions or outgoing events (or both) to be
performed before the transition represented by the cell is made. Actions differ from outgoing
events in the following way; the results of action routines are not visible outside the RTI-PM,
whereas the results of outgoing events are always visible outside the RTI-PM. This distinction is
made for clarity and ease of reading. Actions are of the form An where n is an integer. Outgoing
events are of the form x where x is a three or four letter abbreviated name of the outgoing event.

Lastly, each cell of the state table that represents a valid state transition contains the name of the
resulting state after the transition.

If no valid state transition is listed in the cell at the intersection of a given event and a given
state, it is illegal for that event to occur while in that state.

Part 2: TxRPC Application Service Element (ASE) 123

Sequencing Rules and State Tables RTI Protocol Machine

Variables

pab Dialogue has been aborted

This variable, when TRUE, indicates that a dialogue has been aborted. It is initialised and
modified by action routines.

pcc At least one call has been started

This variable, when TRUE, indicates that at least one call has been started. It is initialised
and modified by action routines.

pch Context handles active

This variable, when TRUE, indicates that the dialogue has one or more active context
handles associated with it. It is initialised to FALSE at the creation of the RTI-PM. It is set
by the RTI-PM when an RPC_RESPONSE.req is issued or an RPC-RESPONSE.ind is
received. It is set TRUE when the first context handle is created and FALSE when the last
context handle is destroyed. It is used to control whether or not a dialogue should be
terminated when the transaction completes (commits or aborts).

pcp Cancel pending

This variable, unlike all other variables, is an integer. It is initialised to zero by an action
routine and incremented by an action routine each time an RPC-REMOTE-ALERT.ind is
received.

pra Ready All

This variable, when TRUE, indicates that a TP-READY.ind has been received and that all
other transaction branches have been previously indicated as ready.

psd Segment data

This variable, when TRUE, indicates that the data supplied on an RTI-CALL-TASK.req must
be segmented. It is set by the RTI-PM each time an RTI-CALL-TASK.req or RPC-DONE.ind
is received.

prt Root of the transaction tree

This variable, when TRUE, indicates that this is the root of the transaction tree. It is
initialised at the creation of the RTI-PM and is never modified.

plf Last Fragment

This variable, when TRUE, indicates that Last-Frag parameter is present. It is set by the
RTI-PM each time an RPC-REQUEST.ind is received.

ptc Transactional call

This variable, when TRUE, indicates that the call is a transactional RPC
(transaction_mandatory or transaction_optional within the scope of a global transaction).
It is set by the RTI-PM each time an RTI-CALL-TASK.req is received. It is used to control
whether a non-transactional dialogue should be included in the current transaction.

pte Transaction Enabled

This variable, when TRUE, indicates that transactions are enabled. It is set when context is
established.

124 X/Open CAE Specification

RTI Protocol Machine Sequencing Rules and State Tables

8.7.2 Keys to State Table Abbreviations

The following tables:

• Table 8-24
• Table 8-25
• Table 8-26 on page 126
• Table 8-27 on page 126
• Table 8-28 on page 127
• Table 8-29 on page 127
• Table 8-30 on page 128
• Table 8-31 on page 128

are keys to the RTI Protocol State Tables:

• Table 8-32 on page 129
• Table 8-33 on page 131
• Table 8-34 on page 133
• Table 8-35 on page 134.

Table 8-24 Abbreviations for Client Non-transactional States

Abbrev. Meaning
I Idle
CE Context Established
DE Dialogue Established
RIP Request in Progress
CIP Call in Progress

Table 8-25 Abbreviations for Client Transactional States

Abbrev. Meaning
DE Dialogue Established
RIP Request in Progress
CIP Call in Progress
SP1 Start of Phase 1
EP1 End of Phase 1
SP2 Start of Phase 2
EP2 End of Phase 2
RBP Rollback Pending
RBC Rollback Complete

Part 2: TxRPC Application Service Element (ASE) 125

Sequencing Rules and State Tables RTI Protocol Machine

Table 8-26 Abbreviations for Server Non-transactional States

Abbrev. Meaning
I Idle
DE Dialogue Established
RIP Request in Progress
CIP Call in Progress
RSP Response in Progress
ORP Orphaned Call

Table 8-27 Abbreviations for Server Transactional States

Abbrev. Meaning
DE Dialogue Established
RIP Request in Progress
CIP Call in Progress
RSP Response in Progress
ORP Orphaned Call
SP1 Start of Phase 1
EP1 End of Phase 1
SP2 Start of Phase 2
EP2 End of Phase 2
RBP Rollback Pending
RBC Rollback Complete

126 X/Open CAE Specification

RTI Protocol Machine Sequencing Rules and State Tables

Table 8-28 RTI Protocol Client Outgoing Events

Abbrev. Meaning
rabd DC-BEGIN-DIALOGUE.req
rrtr RPC-REQUEST.req without Last-Frag
rrlt RPC-REQUEST.req with Last-Frag
rrle RPC-ORPHANED.req
rrla RPC-REMOTE-ALERT.req
rrnc RPC-NO-CONN.req
rtbt TP-BEGIN-TRANSACTION.req
rtde TP-DEFERRED-END-DIALOGUE.req
rtrb TP-ROLLBACK.req
rtct TP-COMMIT.req
rtdn TP-DONE.req
rted TP-END-DIALOGUE.req
rtpr TP-PREPARE.req
rtab TP-U-ABORT.req
icf RTI-CALL-FAILURE.ind
icr RTI-CALL-RESULT.ind
itr RTI-TRANS-READY.ind
ict RTI-COMMIT-TRANS.ind
ihr RTI-HEURISTIC-REPORT.ind
ite RTI-TRANS-COMPLETE.ind
irc RTI-RELEASE-CONTEXT.ind
irt RTI-ROLLBACK-TRANS.ind

Table 8-29 RTI Protocol Server Outgoing Events

Abbrev. Meaning
rarj DC-REJECT-DIALOGUE.req
rrrp RPC-RESPONSE.req without Last-Frag
rrfd RPC-FAULT.req with DNE
rrfe RPC-FAULT.req without DNE
rrnc RPC-NO-CONN.req
rrlr RPC-RESPONSE.req with Last-Frag
rtdn TP-DONE.req
rtrb TP-ROLLBACK.req
rtcc TP-COMMIT.req
rtab TP-U-ABORT.req
ica RTI-CALL-TASK.ind
icc RTI-CANCEL-CALL.ind
ipt RTI-PREPARE-TRANS.ind
irt RTI-ROLLBACK-TRANS.ind
ict RTI-COMMIT-TRANS.ind
ite RTI-TRANS-COMPLETE.ind

Part 2: TxRPC Application Service Element (ASE) 127

Sequencing Rules and State Tables RTI Protocol Machine

Table 8-30 RTI Protocol Preconditions

Abbrev. Meaning
pab The dialogue has been aborted
pcc At least one call has been started
pch The dialogue has one or more active context handles
pcp Cancel pending

User argument data requires segmentation, that is,
the argument data is larger than the segment size

psd

prt Client is the root of the transaction
plf Last fragment parameter is present
ptc The call is transactional
pte Transactions are enabled

Table 8-31 RTI Protocol Actions

Abbrev. Meaning
A0 Set pcp to 0
A1 Set pab, pcc to false
A2 Assemble user data
A3 Set pab to true
A4 Add 1 to pcp
A5 Set pcc to true

128 X/Open CAE Specification

RTI Protocol Machine Sequencing Rules and State Tables

8.7.3 RTI Protocol State Tables

The following state tables describe the RTI protocol .

Table 8-32 RTI Protocol Client Non-transactional State Table

Events Precon- I CE DE RIP CIP
ditions (Idle)

RTI-ESTABLISH-CONTEXT.req CE
RTI-CALL-TASK.req ¬ptc rabd rrlt

¬psd rrlt CIP
CIP

¬ptc rabd rrtr
psd rrtr RIP

RIP
ptc rabd rtbt
pte rtbt rrlt

¬psd rrlt CIP †

CIP †

ptc rabd rtbt
pte rtbt rrtr
psd rrtr RIP †

RIP †

RTI-CANCEL-CALL.req rrla rrla
RIP CIP

RPC-RESPONSE.ind ¬plf A2
CIP

plf icr
DE

RPC-FAULT.ind icf icf
DE DE

RPC-DONE.ind ¬psd rrlt
CIP

psd rrtr
RIP

TP-BEGIN-DIALOGUE.cnf icf icf
irc irc
rrnc rrnc
I I

DC-REJECT-DIALOGUE.ind icf icf
irc irc
rrnc rrnc
I I

Part 2: TxRPC Application Service Element (ASE) 129

Sequencing Rules and State Tables RTI Protocol Machine

Events Precon- I CE DE RIP CIP
ditions (Idle)

TP-U-ABORT.ind icf icf
irc irc irc
rrnc rrnc rrnc
I I I

TP-P-ABORT.ind irc icf icf
rrnc irc irc
I rrnc rrnc

I I
RTI-RELEASE-CONTEXT.req rted

I I
RPC-SHUTDOWN.ind irc rrnc rrnc

rted rted rted
I icf icf

irc irc
I I

Internal-Call-Error rrle rrle
icf icf
DE DE

Internal-Fatal-Error irc rtab rtab rtab
I irc rrnc rrnc

I icf icf
irc irc
I I

Notes:

† This is the initial state table for all client RTI-PMs. Initiation of a transactional
RTI-CALL-TASK.req (ptc) results in the execution of a TP-BEGIN-
TRANSACTION.req (rtbt), and a switch to the RTI Protocol Client Transactional
State Table (see Table 8-33 on page 131).

130 X/Open CAE Specification

RTI Protocol Machine Sequencing Rules and State Tables

Table 8-33 RTI Protocol Client Transactional State Table

Events Precon- DE RIP CIP SP1 EP1 SP2 EP2 RBP RBC
ditions

RTI-CALL-TASK.req ¬psd rrlt
CIP

psd rrtr
RIP

RTI-CANCEL-CALL.req rrla rrla
RIP CIP

RTI-ROLLBACK-TRANS.req rtrb rtrb
RBP RBP

RTI-END-TRANS.req prt rtpr
pch SP1
prt rtde

¬pch rtpr
SP1

RTI-COMMIT-TRANS.req prt rtct
SP2

RTI-TRANS-DONE.req pch rtdn rtdn
EP2 RBC

¬pch rtdn rtab
EP2 rtdn

RBC
RPC-RESPONSE.ind ¬plf A2

CIP
plf icr

DE
RPC-FAULT.ind icf icf

DE DE
RPC-DONE.ind ¬psd rrlt

CIP
psd rrtr

RIP
TP-BEGIN-DIALOGUE.cnf icf icf
Result=rejected(provider) rrnc rrnc

I ‡ I ‡

DC-REJECT-DIALOGUE.ind icf icf
rrnc rrnc
rtrb rtrb
I † I †

TP-HEURISTIC-REPORT.ind ihr ihr ihr ihr
SP2 EP2 RBP RBC

TP-P-ABORT.ind rtdn
Rollback="false" EP1 SP2 EP2 RBP
TP-P-ABORT.ind irt icf icf irt irt
Rollback="true" RBP irt irt RBP RBP

rrnc rrnc
RBP RBP

Part 2: TxRPC Application Service Element (ASE) 131

Sequencing Rules and State Tables RTI Protocol Machine

Events Precon- DE RIP CIP SP1 EP1 SP2 EP2 RBP RBC
ditions

TP-COMMIT.ind ict
SP2

TP-COMMIT-COMPLETE.ind pch ite
DE †

¬pch ite
I †

TP-ROLLBACK.ind irt icf icf irt irt
RBP rrnc rrnc RBP RBP

irt irt
RBP RBP

TP-ROLLBACK-COMPLETE.ind pch ite
DE †

¬pch ite
rted
I †

TP-READY.ind ¬pra SP1
pra itr

EP1
Internal-Call-Error icf icf

rrle rrle
DE DE

Internal-Fatal-Error rtrb icf icf rtrb
irt rtrb rtrb irt
RBP irt irt RBP

RBP RBP

Notes:

† One or more calls can occur on a dialogue while it is joined to a transaction.
Between calls, the state is DE (Dialogue Established). Eventually, the transaction is
either committed or rolled back. In either case, this results in a shift back to the
RTI Protocol Client Non-Transactional State Table (see Table 8-32 on page 129).
The new state depends on whether or not there are still active context handles. If
so (pch), the new state is DE (Dialogue Established). Otherwise (¬pch), the
dialogue is terminated with the transaction, so the new state is I (Idle). These state
changes occur for TP-COMMIT-COMPLETE.ind and TP-ROLLBACK-
COMPLETE.ind. For TP-COMMIT-COMPLETE.ind, whether or not the dialogue
is terminated at transaction completion is effected by making TP-DEFERRED-
END-DIALOGUE.req (rtde) conditional on no context handles being active (¬pch)
on the RTI-END-TRANS.req. Because the dialogue is not terminated by TP-
DEFERRED-END-DIALOGUE if the transaction is rolled back, for TP-
ROLLBACK-COMPLETE.ind, TP-END-DIALOGUE.req (rted) is issued if there are
no active context handles (¬pch), to terminate the dialogue.

‡ If the initial call on a dialogue is transactional and the dialogue is rejected (TP-
BEGIN-DIALOGUE.cnf(result = rejected), or DC-REJECT-DIALOGUE.ind), the
state transition is to I (Idle) in the RTI Protocol Client Non-Transactional State
Table (see Table 8-32 on page 129).

132 X/Open CAE Specification

RTI Protocol Machine Sequencing Rules and State Tables

Table 8-34 RTI Protocol Server Non-transactional State Table

Events Precon- I DE RIP CIP RSP ORP
ditions (Idle)

DC-BEGIN-DIALOGUE.ind A1
DE
-or-
rarj
I

RTI-CALL-RESULT.req ¬psd rrlr DE
¬pab DE

psd rrrp DE
¬pab RSP

pab I I
RPC-REQUEST.ind ¬plf A0 A2

A2 RIP
RIP

plf ica ica
pcp=0 CIP CIP

plf ica ica
pcp≠0 icc icc

CIP CIP
RPC-DONE.ind ¬psd rrlr

DE
psd rrrp

RSP
RPC-REMOTE-ALERT.ind A4 icc RSP

RIP CIP
RPC-ORPHANED.ind DE ORP DE
TP-BEGIN-TRANSACTION.ind pte DE †

TP-U-ABORT.ind I rrnc rrnc rrnc A3
I A3 I ORP

CIP
TP-P-ABORT.ind I rrnc rrnc rrnc A3

I A3 I ORP
CIP

TP-END-DIALOGUE.ind I A3
ORP

Internal-Call-Error rrfd rrfe rrfe
DE ORP DE

Internal-Fatal-Error rtab rtab rtab rtab rtab
I rrnc rrnc rrnc I

I I I

Notes:

† This is the initial state table for all server RTI-PMs. Receipt of a TP-BEGIN-
TRANSACTION.ind results in a switch to the RTI Protocol Server Transactional
State Table (see Table 8-35 on page 134).

Part 2: TxRPC Application Service Element (ASE) 133

Sequencing Rules and State Tables RTI Protocol Machine

Table 8-35 RTI Protocol Server Transactional State Table

Events Precon- DE RIP CIP RSP ORP SP1 EP1 SP2 EP2 RBP RBC
ditions

RTI-CALL-RESULT.req ¬psd rrlr DE
DE

psd rrrp DE
RSP

RTI-ROLLBACK-TRANS.req pcc rrfd rrfe rtrb
rtrb rtrb RBP
RBP RBP

RTI-TRANS-READY.req rtcc
EP1

RTI-TRANS-DONE.req rtdn rtdn
EP2 RBC

RPC-REQUEST.ind ¬plf A0 A2
A2 RIP
RIP

plf A5 A5
pcp=0 ica ica

CIP CIP
plf A5 A5

pcp≠0 ica ica
icc icc
CIP CIP

RPC-DONE.ind ¬psd rrlr
DE

psd rrrp
RSP

RPC-ORPHANED.ind DE ORP DE
RPC-REMOTE-ALERT.ind A4 icc RSP

RIP CIP
TP-U-ABORT.ind rtdn

RBP RBC
TP-P-ABORT.ind rtdn
Rollback="false" EP1 SP2 EP2 RBP
TP-P-ABORT.ind irt irt irt irt irt irt irt
Rollback="true" RBP rrnc rrnc rrnc RBP RBP RBP

RBP RBP RBP
TP-PREPARE.ind ipt

SP1
TP-COMMIT.ind ict

SP2
TP-COMMIT-COMPLETE.ind pch ite

DE †

¬pch ite
I †

TP-ROLLBACK.ind irt irt irt irt irt irt irt
RBP rrnc rrnc rrnc RBP RBP RBP

RBP RBP RBP
TP-ROLLBACK-COMPLETE.ind pch ite

DE †

¬pch ite
DE

134 X/Open CAE Specification

RTI Protocol Machine Sequencing Rules and State Tables

Events Precon- DE RIP CIP RSP ORP SP1 EP1 SP2 EP2 RBP RBC
ditions

TP-DEFERRED-END-DIALOGUE.ind DE
TP-END-DIALOGUE.ind I †

Internal-Call-Error rrfd rrfe rrfe DE
DE DE DE

Internal-Fatal-Error ¬pcc I ‡ rrnc irt irt irt irt
I ‡ rtrb rtrb rtrb rtrb

rrnc rrnc RBP RBP
RBP RBP

pcc irt irt irt irt irt irt
rtrb rtrb rtrb rtrb rtrb rtrbb
RBP rrnc rrnc rrnc RBP RBP

RBP RBP RBP

Notes:

† One or more calls can occur on a dialogue while it is joined to a transaction.
Between calls, the state is DE (Dialogue Established). Eventually, the transaction is
either committed or rolled back. In either case, this results in a shift back to the
RTI Protocol Server Non-Transactional State Table (see Table 8-34 on page 133).
The new state depends on whether or not there are still active context handles. If
so (pch), the new state is DE (Dialogue Established). Otherwise (¬pch), the
dialogue is terminated with the transaction, so the new state is I (Idle). These state
changes occur for TP-COMMIT-COMPLETE.ind and TP-END-DIALOGUE.ind.
For TP-COMMIT-COMPLETE.ind, whether or not the dialogue is terminated at
transaction completion is effected by TP-DEFERRED-END-DIALOGUE.ind, which
is only be received if there are no active context handles(¬pch). Because the
dialogue is not terminated by TP-DEFERRED-END-DIALOGUE if the transaction
is rolled back, for TP-ROLLBACK-COMPLETE.ind the new state is DE (Dialogue
Established) in this state table. Subsequently, if there are no active context handles
(¬pch), TP-END-DIALOGUE.ind will be received and the new state is I (Idle) in
the RTI Protocol Server Non-Transactional State Table (see Table 8-34 on page 133).

‡ Switch to Table 8-34 on page 133.

Part 2: TxRPC Application Service Element (ASE) 135

RTI Protocol Machine

136 X/Open CAE Specification

Chapter 9

Architectural Constants

This chapter contains known architectural constants.

9.1 RPC Architectural Constants
The following RPC architectural constants are relevant:

• Transfer Syntax: ASN.1/BER, NDR

• MaxFragSize: 1022817

• PFC_CONC_MPX: 0

• PFC_MAYBE: 0

• The values for the reason code on the RPC-FAULT request and therefore the status field on
the rpc_fault APDU are given in Table 9-1 in hexadecimal form. For a complete listing of
constants see Section 12.6, Connection-oriented RPC PDUs, of the X/Open DCE RPC
specification.

Table 9-1 Values for Fault Reasons

Reason Code Value
RPC-ACCESS-VIOLATION 0x1C000002
RPC-CANCEL 0x1C00000D
RPC-FLOATING-DIVIDE-BY-ZERO 0x1C000003
RPC-FLOATING-ERROR 0x1C00000F
RPC-FLOATING-OVERFLOW 0x1C000005
RPC-FLOATING-UNDERFLOW 0x1C000004
RPC-INSUFFICIENT-RESOURCES 0x1C010014
RPC-INTEGER-DIVIDE-BY-ZERO 0x1C000001
RPC-INTEGER-OVERFLOW 0x1C000010
RPC-INVALID-OPERATION-NUMBER 0x1C010002
RPC-INVOCATION-FAILURE 0x1C00000C
RPC-MARSHALLING-ERROR 0x1C010017
RPC-PROTOCOL-ERROR 0x1C01000B
RPC-REASON-NOT-SPECIFIED 0x1C000012

17. MaxFragSize is computed from Maximum SSDU size (10240) minus the minimum Presentation Layer header size for large
fragments (12).

Part 2: TxRPC Application Service Element (ASE) 137

RPC Architectural Constants Architectural Constants

• The packet type values for the RPC packets used by RTI are given in Table 9-218. These are
values for the PTYPE APDU field in decimal form.

Table 9-2 Packet Type Values

Packet Type Value
rpc_request 0
rpc_response 2
rpc_fault 3
rpc_shutdown 17
rpc_remote_alert 18
rpc_orphaned 19

18. These values will be removed in a future version of this specification when the packet type values have been clearly documented
in the X/Open DCE RPC specification.

138 X/Open CAE Specification

X/Open CAE Specification

Part 3:

TxRPC Communication API Appendices

X/Open Company Ltd.

Part 3: TxRPC Communication API Appendices 139

140 X/Open CAE Specification

Appendix A

RPC TxRPC Example

This appendix contains an example using an RPC TxRPC CRM. It consists of the IDL file which
describes the TxRPC and the C-language code which implements the client, the server and the
manager functions for the TxRPC.

This example is not a complete application, it illustrates the various components necessary to
implement a TxRPC application.

Part 3: TxRPC Communication API Appendices 141

IDL File RPC TxRPC Example

A.1 IDL File
/*
*
* debitCredit.idl
*
* "Debit/Credit" program for TxRPC
*
*
*/

[
uuid(006690B8-23C6-19EC-A494-C037CF540000),
version(1.0), transaction_mandatory
]

interface debitCredit
{

void debit(
[in] handle_t h,
[in] long int account,
[in] long int amount

);

void credit(
[in] handle_t h,
[in] long int account,
[in] long int amount

);

}

142 X/Open CAE Specification

RPC TxRPC Example Common Include Files — <util.h>

A.2 Common Include Files — <util.h>
/*

* util.h
*
* Declarations of utility routine(s) shared by "debitCredit" client
* and server programs.
*/

#define ERROR_CHECK(status, text) \
if (status != error_status_ok) error_exit(status, text)

void error_exit(error_status_t status, char *text);

#define TX_ERROR_CHECK(status, text) \
if (status != TX_OK) fprintf(stderr, "%s: %d\n", text, status)

#define TXRPC_ERROR_CHECK(status, text) \
if (status != TXRPC_OK) fprintf(stderr, "%s: %d\n", text, status)

Part 3: TxRPC Communication API Appendices 143

Client Side RPC TxRPC Example

A.3 Client Side
/*

* debitCredit.c
*
* Client of "debitCredit" interface.
*/

#include <stdio.h>

#include "debitCredit.h"
#include "util.h"
#include <tx.h>

int main(int argc, char *argv[])
{

rpc_ns_handle_t import_context;
handle_t binding_h;
error_status_t status;
idl_char reply[REPLY_SIZE];
int tx_status;

if (argc < 2) {
fprintf(stderr, "usage: debitCredit <CDS pathname>\n");
exit(1);

}

/*
* Start importing servers using the name specified
* on the command line.
*/

rpc_ns_binding_import_begin(rpc_c_ns_syntax_default,
(unsigned_char_p_t) argv[1],
debitCreditif_v1_0_c_ifspec,
NULL,
& import_context,
& status);

ERROR_CHECK(status, "Can’t begin import");

/*
* Import the first server (we could iterate here,
* but we’ll just take the first one).
*/

rpc_ns_binding_import_next(import_context,
& binding_h,
& status);

ERROR_CHECK(status, "Can’t import");

144 X/Open CAE Specification

RPC TxRPC Example Client Side

/*
* Initialise the (C)RMs
*/

tx_status = tx_open();
TX_ERROR_CHECK(tx_status, "Can’t open");

/*
* Start the transaction
*/

tx_status = tx_begin();
TX_ERROR_CHECK(tx_status, "Can’t begin");

/*
* Make the remote calls.
*/

debit(binding_h, /* from account */ 100, /* amount */ 200);

credit(binding_h, /* to account */ 101, /* amount */ 200);

/*
* End the transaction
*/

tx_status = tx_commit();
TX_ERROR_CHECK(tx_status, "Can’t commit");

/*
* Finalise the (C)RMs
*/

tx_status = tx_close();
TX_ERROR_CHECK(tx_status, "Can’t close");

}

Part 3: TxRPC Communication API Appendices 145

Server Side RPC TxRPC Example

A.4 Server Side
/*

* debitCreditServer.c
*
* Main program (initialisation) for "debitCredit" server.
*/

#include <stdio.h>

#include "debitCredit.h"
#include "util.h"

int main(int argc, char *argv[])
{

unsigned32 status;
rpc_binding_vector_t *binding_vector;
int tx_status;

if (argc < 2) {
fprintf(stderr,

"usage: debitCreditServer <CDS pathname>\n");
exit(1);

}

/*
* Register interface with RPC run-time.
*/

rpc_server_register_if(debitCreditif_v1_0_s_ifspec,
NULL,
NULL,
& status);

ERROR_CHECK(status, "Can’t register interface");

/*
* Use OSI TP protocol sequence.
*/

rpc_server_use_protseq(ncacn_osi_tp, rpc_c_protseq_max_reqs_default,
& status);

ERROR_CHECK(status, "Can’t use protocol sequences");

/*
* Get the binding handles generated by the run-time.
*/

rpc_server_inq_bindings(&binding_vector,
&status);

ERROR_CHECK(status, "Can’t get bindings for server");

/*
* Register assigned endpoints with endpoint mapper (RPCD).

146 X/Open CAE Specification

RPC TxRPC Example Server Side

*/

rpc_ep_register(debitCreditif_v1_0_s_ifspec,
binding_vector,
NULL,
(unsigned_char_p_t) "debitCredit server version 1.0",
& status);

ERROR_CHECK(status, "Can’t register with endpoint map");

/*
* Export ourselves to the into the CDS name space.
*/

rpc_ns_binding_export(rpc_c_ns_syntax_default,
(unsigned_char_p_t) argv[1],
debitCreditif_v1_0_s_ifspec,
binding_vector,
NULL,
& status);

ERROR_CHECK(status, "Can’t export to CDS name space");

/*
* Initialise the (C)RMs
*/

tx_status = tx_open();
TX_ERROR_CHECK(tx_status, "Can’t open");

/*
* Start listening for calls.
*/

printf("Listening ...\n");

rpc_server_listen(rpc_c_listen_max_calls_default,
& status);

ERROR_CHECK(status, "Can’t start service threads");

/*
* Unregister from endpoint mapper.
*/

rpc_ep_unregister(debitCreditif_v1_0_s_ifspec,
binding_vector,
NULL,
& status);

ERROR_CHECK(status, "Can’t unregister from endpoint map");

Part 3: TxRPC Communication API Appendices 147

Server Side RPC TxRPC Example

/*
* Finalise the (C)RMs
*/

tx_status = tx_close();
TX_ERROR_CHECK(tx_status, "Can’t close");

}

A.5 Manager Functions
/*

* debitCreditManager.c
*
* Implementation of "debitCredit" interface.
*/

#include <stdio.h>
#include "debitCredit.h"

void debit(handle_t h,
idl_long_int account,
idl_long_int amount)

{
EXEC SQL /* something appropriate */;

}

void credit(handle_t h,
idl_long_int account,
idl_long_int amount)

{
EXEC SQL /* something appropriate */;

}

148 X/Open CAE Specification

Appendix B

IDL-only TxRPC Example

This appendix contains the same example as in Appendix A, but using an IDL-only TxRPC
CRM. The elements of the example are similar but in this case there is no server main function,
only the manager functions.

This example is not a complete application, it illustrates the various components necessary to
implement a TxRPC application.

Part 3: TxRPC Communication API Appendices 149

IDL File IDL-only TxRPC Example

B.1 IDL File
/*

*
* debitCredit.idl
*
* "Debit/Credit" program for TxRPC
*
*
*/

[
uuid(006690B8-23C6-19EC-A494-C037CF540000),
version(1.0), transaction_mandatory
]

interface debitCredit
{

void debit(
[in] long int account,
[in] long int amount

);

void credit(
[in] long int account,
[in] long int amount

);

}

B.2 Common Include Files — <util.h>
/*

* util.h
*
* Declarations of utility routine(s) shared by "debitCredit" client
* and server programs.
*/

#define ERROR_CHECK(status, text) \
if (status != error_status_ok) error_exit(status, text)

void error_exit(error_status_t status, char *text);

#define TX_ERROR_CHECK(status, text) \
if (status != TX_OK) fprintf(stderr, "%s: %d\n", text, status)

150 X/Open CAE Specification

IDL-only TxRPC Example Client Side

B.3 Client Side
/*

* debitCredit.c
*
* Client of "debitCredit" interface.
*/

#include <stdio.h>

#include "debitCredit.h"
#include "util.h"
#include <tx.h>

int main(int argc, char *argv[])
{

error_status_t status;
int tx_status;

if (argc < 2) {
fprintf(stderr, "usage: debitCredit <CDS pathname>\n");
exit(1);

}

/*
* Initialise the (C)RMs
*/

tx_status = tx_open();
TX_ERROR_CHECK(tx_status, "Can’t open");

/*
* Start the transaction
*/

tx_status = tx_begin();
TX_ERROR_CHECK(tx_status, "Can’t begin");

/*
* Make the remote calls.
*/

debit(/* from account */ 100, /* amount */ 200);

credit(/* to account */ 101, /* amount */ 200);

/*
* End the transaction
*/

tx_status = tx_commit();
TX_ERROR_CHECK(tx_status, "Can’t commit");

Part 3: TxRPC Communication API Appendices 151

Client Side IDL-only TxRPC Example

/*
* Finalise the (C)RMs
*/

tx_status = tx_close();
TX_ERROR_CHECK(tx_status, "Can’t close");

}

B.4 Manager Functions
/*

* debitCreditManager.c
*
* Implementation of "debitCredit" interface.
*/

#include <stdio.h>
#include "debitCredit.h"

void debit(idl_long_int account,
idl_long_int amount)

{
EXEC SQL /* something appropriate */;

}

void credit(idl_long_int account,
idl_long_int amount)

{
EXEC SQL /* something appropriate */;

}

152 X/Open CAE Specification

Appendix C

TxRPC API to Protocol Mapping

This appendix describes the mappings between the TxRPC API and the underlying protocol. For
reasons of completeness it is necessary to include a discussion of some aspects of the TX API
since this API has a direct bearing on the underlying protocol.

The Client protocol procedures, Server protocol procedures, Client table and Server table are
designed to be a complete and rigorous discussion of the API to protocol mappings required by
a TxRPC CRM. These sections are complementary and should be considered a single body of
information.

C.1 Client Events
Listed below are the client TxRPC CRM events that affect the flow of protocol. In general, only
events that affect the flow of protocol are discussed. However, some events which help in
establishing context or are useful in furthering understanding of the relationship between the
protocol and other components of the TxRPC CRM are also discussed.

Each event falls into one of three categories:

• events made visible by actions on the TxRPC CRM API

• events made visible by actions on the TX API

• events made visible by the RTI protocol machine.

The events made visible by the TxRPC CRM API are:

• Call (From AP to the CRM)

• Cancel (From AP to CRM)

• Call-Return (From CRM to AP)

• Exception (From CRM to AP).

The events made visible by the TX API for transactional and non-transactional TxRPC are:19

• tx_close() (From AP to TM)

• tx_open() (From AP to TM).

In addition, the events made visible by the TX API for transactional TxRPC only are:

• tx_begin() (From AP to TM)

• tx_commit() (From AP to TM)

• tx_rollback () (From AP to TM).

19. These events are defined in the TX (Transaction Demarcation) specification.

Part 3: TxRPC Communication API Appendices 153

Client Events TxRPC API to Protocol Mapping

The events made visible by the RTI protocol machine for transactional and non-transactional
TxRPC are:

• RTI-CALL-FAILURE indication (raised by the RTI-PM)

• RTI-CALL-RESULTS indication (raised by the RTI-PM).

In addition, the events made visible by the RTI protocol machine for transactional TxRPC only
are:

• RTI-TRANS-READY indication (raised by the RTI-PM)

• RTI-COMMIT-TRANS indication (raised by the RTI-PM)

• RTI-COMMIT-TRANS request (issue to the RTI-PM)

• RTI-END-TRANS request (issue to the RTI-PM)

• RTI-HEURISTIC-REPORT indication (raised by the RTI-PM)

• RTI-ROLLBACK-TRANS indication (raised by the RTI-PM)

• RTI-ROLLBACK-TRANS request (issue to the RTI-PM)

• RTI-TRANS-COMPLETE indication (raised by the RTI-PM)

• RTI-TRANS-DONE request (issue to the RTI-PM).

C.1.1 Call

This event is defined to be the point when control is transferred from the calling procedure in the
client to a called procedure (manager function). It is important to distinguish between the point
when control is transferred from the calling procedure and the point when the called procedure
(manager function) receives control since these are necessarily two separate points in time. The
Call event is the former. The Start-Call is the latter.

The Call event marks the start of a TxRPC in the client.

A Call is allowed only after tx_open(). If this is a transactional TxRPC, tx_begin() must also
precede the Call.

The first Call causes an RTI-ESTABLISH-CONTEXT request to be issued. All Call events issue
an RTI-CALL-TASK request.

C.1.2 Cancel

This event is defined to be the point when a cancel is requested.

A Cancel can only be issued while a call is in progress. A call is in progress from the point when
a Call is issued until the point when an RTI-CALL-FAILURE indication or an RTI-CALL-
RESULTS indication is raised. If the Call is transactional, an RTI-ROLLBACK-TRANS indication
may also be raised.

A Cancel causes an RTI-CANCEL-CALL request to be issued.

154 X/Open CAE Specification

TxRPC API to Protocol Mapping Client Events

C.1.3 Call-Return

This event is defined to be the point when control is transferred from the called procedure
(manager function) in a server to a calling procedure. It is important to distinguish between the
point when control is transferred from the called procedure (manager function) and the point
when the calling procedure regains control since these are necessarily two separate points in
time. The Return event is the former. The Call-Return event is the latter.

A Return marks the end of a TxRPC in the server. This is the normal return from a TxRPC.

A Return is allowed only while a call is in progress at the server. A call is in progress at the
server from the point when an RTI-CALL-TASK indication is raised until the point when a
Return or Unhandled-Exception is issued.

A Return causes an RTI-CALL-RESULTS request to be issued. If tx_rollback () has been called the
Transaction Context is set to indicate this. See Section 2.8 on page 15.

C.1.4 Unhandled-Exception

This event is defined to be the point when control is transferred from the called procedure
(manager function) in a server to a calling procedure via an exception mechanism. It is
important to distinguish between the point when control is transferred from the called
procedure (manager function) and the point when the calling procedure regains control since
these are necessarily two separate points in time. The Unhandled-Exception event is the former.
The Exception event is the latter.

An Unhandled-Exception marks the end of a TxRPC in the server. This is an abnormal return
from a TxRPC.

The Unhandled-Exception event is allowed only while a call is in progress at the server. A call is
in progress at the server from the point when an RTI-CALL-TASK indication is raised until the
point when a Return or Unhandled-Exception is issued.

An Unhandled-Exception causes an Internal-Call-Error to be raised.

C.1.5 tx_close()

The tx_close() event does not cause protocol to flow. It does cause an important state transition.

C.1.6 tx_open()

The tx_open() event must be issued prior to any other events.

The tx_open() event does not cause protocol to flow. It does cause an important state transition.

C.1.7 RTI-CALL-FAILURE indication

An RTI-CALL-FAILURE indication is raised only when a TxRPC is in progress. A call is in
progress from the point when a Call is issued until the point when an RTI-CALL-FAILURE
indication, or an RTI-CALL-RESULTS indication is raised. If the Call is transactional, an RTI-
ROLLBACK-TRANS indication may also be raised.

An RTI-CALL-FAILURE indication terminates an outstanding TxRPC by raising an exception. If
the default exception mechanism is overridden the appropriate parameter is populated and
control is returned to the calling procedure.

If the TxRPC is non-transactional, the Reason parameter may indicate that the context has been
destroyed, in which case the next Call event re-establishes context.

Part 3: TxRPC Communication API Appendices 155

Client Events TxRPC API to Protocol Mapping

C.1.8 RTI-CALL-RESULTS indication

An RTI-CALL-RESULTS indication is raised only when a TxRPC is in progress. A call is in
progress from the point when a Call is issued until the point when an RTI-CALL-FAILURE
indication, or an RTI-CALL-RESULTS indication is raised. If the Call is transactional, then an
RTI-ROLLBACK-TRANS indication may also be raised.

An RTI-CALL-RESULTS indication terminates an outstanding TxRPC by raising the Call-Return
event. This returns control to the calling procedure. It is important to distinguish between the
point when control is transferred from the called procedure (manager function) and the point
when the calling procedure regains control since these are necessarily two separate points in
time. The Call-Return event is the latter. The Return event is the former.

This is the normal return from a TxRPC.

C.1.9 tx_begin()

The tx_begin() event is allowed only after tx_open().

The participant which issues tx_begin() is the root of the transaction. The root is the coordinator
of the transaction.

The tx_begin() event does not cause protocol to flow. It does cause an important state transition.

C.1.10 tx_commit()

The tx_commit() event is allowed only after tx_begin().

The tx_commit() event is allowed only from the root of a transaction. The root is the coordinator
of the transaction.

If one or more TxRPCs have been called then an RTI-END-TRANS request is issued.

If one or more TxRPCs have been called and the local participant is able successfully to place all
bound data in the ready state, an RTI-TRANS-READY request is issued. The local participant
must be in the READY state20 when this request is issued.

If one or more TxRPCs have been called and the local node is unable successfully to place all
bound data in the ready state, an RTI-ROLLBACK-TRANS request is issued. When the local
participant has returned all bound data to the initial state an RTI-TRANS-DONE request is
issued.

If no TxRPCs have been called, this event does not cause protocol to flow.

20. This state is defined by the OSI TP Model, Service and Protocol standards.

156 X/Open CAE Specification

TxRPC API to Protocol Mapping Client Events

C.1.11 tx_rollback()

The tx_rollback () event is allowed only after tx_begin().

An intermediate or leaf node becomes a client when it issues a TxRPC. This event (issuing a
TxRPC) places the client in a state where tx_rollback () is disallowed. The client remains in this
state until either an RTI-CALL-RESULTS indication, an RTI-CALL-FAILURE indication or an
RTI-ROLLBACK-TRANS indication causes a state transition. These events mark the completion
of a TxRPC and thus the point when an intermediate or leaf node ceases to be a client.
Consequently, a client must be the root to issue tx_rollback ().

Servers may also issue tx_rollback (). See Section 2.8 on page 15 for a discussion of this.

If at least one TxRPC has been called an RTI-ROLLBACK-TRANS request is issued. After the
local participant has released bound data an RTI-TRANS-DONE request is issued.

If no TxRPCs have been made then this event does not cause protocol to flow.

C.1.12 RTI-TRANS-READY indication

At least one TxRPC must have been raised previously, the client RTI-SUI must have previously
issued an RTI-END-TRANS request, and the subordinate transaction branches must all have
reported ready for the RTI-TRANS-READY indication to be raised.

After the controlling TM has decided the final status of the transaction, the RTI-SUI may issue
either an RTI-COMMIT-TRANS request or an RTI-ROLLBACK-TRANS request.

C.1.13 RTI-COMMIT-TRANS indication

At least one TxRPC must have been made in order for the RTI-COMMIT-TRANS indication to
be raised.

An RTI-COMMIT-TRANS indication is raised when the outcome of a transaction is
commitment. After the local participant has placed bound data in the final state an RTI-
TRANS-DONE request is issued.

If the commit_return characteristic21 has been set to TX_COMMIT_DECISION_LOGGED, control
is returned to the calling procedure. Otherwise, the calling procedure remains blocked pending
completion of the transaction.

C.1.14 RTI-HEURISTIC-REPORT indication

At least one TxRPC must have been made in order for the RTI-HEURISTIC-REPORT indication
to be raised.

An RTI-HEURISTIC-REPORT indication is raised when either a heuristic mix or a heuristic
hazard has been detected in the the subordinate transaction subtree.

Policies regarding heuristic outcomes are beyond the scope of this specification.

21. This characteristic is defined in the TX (Transaction Demarcation) specification.

Part 3: TxRPC Communication API Appendices 157

Client Events TxRPC API to Protocol Mapping

C.1.15 RTI-ROLLBACK-TRANS indication

At least one TxRPC must have been made in order for the RTI-ROLLBACK-TRANS indication to
be raised.

An RTI-ROLLBACK-TRANS indication is raised when the current transaction is being rolled
back. After all bound data is released in the initial state a RTI-TRANS-DONE request is issued.

C.1.16 RTI-TRANS-COMPLETE indication

At least one TxRPC must have been made in order for the RTI-TRANS-COMPLETE indication to
be raised.

An RTI-TRANS-COMPLETE indication is raised when all subordinate transaction subtrees, with
the possible exception of subordinates from which a TP-HEURISTIC-REPORT indication has
been issued, have placed bound data in the final state. This marks the end of the transaction.

If the commit_return characteristic has been set to TX_COMMIT_COMPLETED then control is
returned to the calling procedure.

C.2 Server Events
Listed below are the server TxRPC CRM events that affect the flow of protocol. In general, only
events that affect the flow of protocol are discussed. However, some events which help in
establishing context or are useful in furthering the understanding the relationship between the
protocol and other components of the TxRPC CRM are also discussed, even though they might
not directly cause protocol to flow.

Each event falls into one of three categories:

• events made visible by actions on the TxRPC CRM API

• events made visible by actions on the TX API

• events made visible by the RTI protocol machine.

The events made visible by the TxRPC CRM API for transactional and non-transactional TxRPC
are:

• Return (From AP to CRM)

• Unhandled-Exception (From AP to CRM)

• Start-Call (From CRM to AP).

The events made visible by the TX API for transactional and non-transactional TxRPC are:

• tx_close() (From AP to CRM)

• tx_open() (From AP to CRM).

In addition, the event made visible by the TX API for transactional TxRPC only is:

• tx_rollback () (From AP to CRM).

158 X/Open CAE Specification

TxRPC API to Protocol Mapping Server Events

The events made visible by the RTI protocol machine for transactional and non-transactional
TxRPC are:

• Internal-Call-Error (issued to the RTI-PM)

• RTI-CALL-TASK indication (raised by the RTI-PM)

• RTI-CALL-RESULTS request (issued to the RTI-PM)

• RTI-CANCEL-CALL indication (raised by the RTI-PM).

In addition, the events made visible by the RTI protocol machine for transactional TxRPC only
are:

• RTI-COMMIT-TRANS indication (raised by the RTI-PM)

• RTI-PREPARE-TRANS indication (raised by the RTI-PM)

• RTI-ROLLBACK-TRANS indication (raised by the RTI-PM)

• RTI-ROLLBACK-TRANS request (issued to the RTI-PM)

• RTI-TRANS-COMPLETE indication (raised by the RTI-PM)

• RTI-TRANS-DONE request (issued to the RTI-PM)

• RTI-TRANS-READY request (issued to the RTI-PM).

C.2.1 tx_close()

The tx_close() event does not cause protocol to flow. It does cause an important state transition.

C.2.2 tx_open()

The tx_open() event must be issued prior to any other events.

The tx_open() event does not cause protocol to flow. It does cause an important state transition.

C.2.3 RTI-CALL-TASK indication

An RTI-CALL-TASK indication marks the start of a TxRPC at the server.

An RTI-CALL-TASK indication causes a Start-Call event to be raised. The Start-Call event is
defined to be the point when control is transferred to the called procedure (manager function)
from the calling procedure. It is important to distinguish between the point when control is
transferred from the calling procedure and the point when the called procedure (manager
function) receives control since these are necessarily two separate points in time. The Start-Call
event is the latter. The Call event is the former.

C.2.4 RTI-CANCEL-CALL indication

An RTI-CANCEL-CALL indication is raised only while a call is in progress at the server. A call
is in progress at the server from the point when an RTI-CALL-TASK indication is raised until the
point when a Return or Unhandled-Exception is issued.

An RTI-CANCEL-CALL indication causes an Exception to be raised. If the default exception
mechanism is overridden (for example comm_status or fault_status is used) the appropriate
parameter is populated.

Part 3: TxRPC Communication API Appendices 159

Server Events TxRPC API to Protocol Mapping

C.2.5 tx_rollback()

The tx_rollback () event is allowed only while a call is in progress at the server. A call is in
progress at the server from the point when an RTI-CALL-TASK indication is raised until the
point when a Return or Unhandled-Exception is issued.

The tx_rollback () event causes the local participant to release all bound data in the initial state
and to set the local prepare-time vote to be no. A rollback is not initiated at this time. Instead,
when the server (manager function) returns results the TxRPC CRM sets the Transaction Context
to indicate that a rollback has been issued in the server and the results are sent to the client. See
Section 2.8 on page 15.

C.2.6 RTI-COMMIT-TRANS indication

At least one TxRPC must have been made in order for the RTI-COMMIT-TRANS indication to
be raised.

An RTI-COMMIT-TRANS indication is raised when the outcome of a transaction is
commitment. After the local participant has placed bound data in the final state an RTI-
TRANS-DONE request is issued.

C.2.7 RTI-PREPARE-TRANS indication

At least one TxRPC must have been made in order for the RTI-PREPARE-TRANS indication to
be raised.

An RTI-PREPARE-TRANS indication is raised when a transaction is being committed.

If the local participant has issued tx_rollback () or if the local participant is unable to place all
bound data in the ready state, an RTI-ROLLBACK-TRANS request is issued. After the local
participant has released bound data an RTI-TRANS-DONE request is issued.

If the local participant has not issued tx_rollback () and the local participant is able successfully to
place all bound data in the ready state, an RTI-TRANS-READY request is issued. The local
participant must be in the READY state22 when this request is issued.

C.2.8 RTI-ROLLBACK-TRANS indication

At least one TxRPC must have been made in order for the RTI-ROLLBACK-TRANS indication to
be raised.

An RTI-ROLLBACK-TRANS indication is raised when the current transaction is being rolled
back. After all bound data is released in the initial state an RTI-TRANS-DONE request is issued.

22. This state is defined by the OSI TP Model, Service and Protocol standards.

160 X/Open CAE Specification

TxRPC API to Protocol Mapping Server Events

C.2.9 RTI-TRANS-COMPLETE indication

At least one TxRPC must have been made in order for the RTI-TRANS-COMPLETE indication to
be raised.

An RTI-TRANS-COMPLETE indication is raised when all subordinate transaction subtrees, with
the possible exception of subordinates from which a TP-HEURISTIC-REPORT indication has
been issued, have placed bound data in the final state. This marks the end of the transaction.

C.3 Mapping
The tables in this section show a mapping between the TxRPC API or TX API and the protocol.
The tables represent a single instance of an entity (client or server) and a transactional TxRPC, in
the context of a single transaction.

In general, only events that affect the flow of protocol are discussed. However, some events
which help in establishing context or are useful in furthering understanding of the relationship
between the protocol and other components of the TxRPC CRM are also discussed.

The tables do not attempt to describe the complete operation of the TxRPC CRM. They are,
however, complete and accurate descriptions of the mapping between the APIs and the
underlying protocol.

Table C-1 lists the possible output events for the client and Table C-2 on page 162 lists the
possible output events and action routines for the server.

In Table C-3 on page 162, Table C-4 on page 163 and Table C-5 on page 164, each row describes a
particular event. The first column identifies the event and, where relevant, a second column
identifies preconditions that are associated with that event. Every other column describes a
state. At the intersection of each event and state are all the actions taken and the state transition
which follows these actions. If the event-state pair is not allowed, the intersection is blank. If
there are no actions listed but there is a state transition, the event is allowable but there is no
action taken, at least not from a protocol and API point of view.

Events that provide input to these tables are described in the previous section.

Table C-1 Client Output Events

Output Events Definition of Event
Exception An exception is raised.
Call-Return Control is returned from an outstanding call.
R-E-C RTI-ESTABLISH-CONTEXT request
R-C-T RTI-CALL-TASK request
R-T-C RTI-COMMIT-TRANS request
R-C-C RTI-CANCEL-CALL request
R-E-T RTI-END-TRANS request
R-R-T RTI-ROLLBACK-TRANS request
R-T-R RTI-TRANS-READY request
R-T-D RTI-TRANS-DONE request

Part 3: TxRPC Communication API Appendices 161

Mapping TxRPC API to Protocol Mapping

Table C-2 Server Output Events and Action Routines

Output Events and
Action Routines Definition of Event
Start-Call A TxRPC is started in the server
Exception A CMA (POSIX) exception is raised
set vote no Set the local prepare-time vote to be no
I-C-E Internal-Call-Error
R-C-R RTI-CALL-RESULT request
R-R-T RTI-ROLLBACK-TRANS request
R-T-R RTI-TRANS-READY request
R-T-D RTI-TRANS-DONE request

Table C-3 API to Protocol Mapping for Non-transactional TxRPCs

Client Events Null Open Calling
R-E-C
R-C-TCall
Calling

R-C-CCancel Calling
tx_close() Null Null
tx_open() Open Open
RTI_CALL_FAILURE.ind exception

Open
RTI_CALL_RESULTS.ind return

Open
Server Events Null Open Called

R-C-RReturn Open
I-C-EUnhandled Exception Open

tx_close() Null Null
tx_open() Open Open Called

start-callRTI_Call_Task.ind Called
exceptionRTI_Cancel_Call.ind Called

162 X/Open CAE Specification

TxRPC API to Protocol Mapping Mapping

Table C-4 API to Protocol Mapping for Transactional TxRPCs (Client)

Client Events Precon- Null Open In-Tx Calling Idle Phase-1 Phase-2 Tx-Done
ditions

R-E-C R-C-T
R-C-T CallingCall
Calling

R-C-CCancel
Calling

tx_begin() In-Tx
tx_close () Null Null

Root and R-E-T
local yes Phase-1
vote
Root and R-E-T
local no R-R-T
vote R-T-D

Tx-Done
Chained In-Tx

tx_commit ()

¬Chained Open
tx_open() Open Open In-Tx Idle

R-R-T
R-T-D
Tx-Done

Chained In-Tx
tx_rollback ()

¬Chained Open
ExceptionRTI-CALL-FAILURE.ind
Idle
Call-ReturnRTI-CALL-RESULTS.ind
Idle

Root and R-T-C
local yes Phase-2RTI-TRANS-READY.ind
vote
Early R-T-D
Return In-Tx
Chained
Early R-T-D
Return Open
¬Chained
¬Early R-T-D

RTI-COMMIT-TRANS.ind

Return Tx-Done
RTI-HEURISTIC-REPORT.ind Tx-Done

Chained In-Tx
RTI-TRANS-COMPLETE.ind

¬Chained Open
R-T-D R-T-D R-T-D
Exception Tx-Done Tx-DoneRTI-ROLLBACK-TRANS.ind
Tx-Done

Part 3: TxRPC Communication API Appendices 163

Mapping TxRPC API to Protocol Mapping

Table C-5 API to Protocol Mapping for Transactional TxRPCs (Server)

Server Events Precon- Null Open Calling Idle Phase-1 Tx-Done
ditions

R-C-RReturn
Idle
I-C-EUnhandled Exception
Idle

tx_close () Null Null
tx_open() Open Open Calling

set vote no
tx_rollback ()

Calling
Start-Call Start-CallRTI-CALL-TASK.ind
Calling Calling

ExceptionRTI-CANCEL-CALL.ind
Calling

local vote R-T-R
yes Phase-1
local vote R-R-T
no R-T-D

RTI-PREPARE-TRANS.ind

Tx-Done
R-T-D R-T-DRTI-ROLLBACK-TRANS.ind
Tx-Done Tx-Done

R-T-DRTI-COMMIT-TRANS.ind
Tx-Done

RTI-TRANS-COMPLETE.ind Open

164 X/Open CAE Specification

X/Open CAE Specification

Part 4:

TxRPC ASE Appendices

X/Open Company Ltd.

Part 4: TxRPC ASE Appendices 165

166 X/Open CAE Specification

Appendix D

Mapping to RPC Terminology

This appendix describes the relationship between the service primitive names and conventions
used to describe the RPC-ASE as compared with those used in the X/Open DCE RPC
specification.

D.1 Service Conventions
The X/Open DCE RPC specification uses the service primitive class event and action to describe
the relationship to the service user. Events are issued by the service user and received by the
RPC service provider. Actions are issued by the RPC service provider and received by the
service user.

The service primitive class event in the X/Open DCE RPC specification corresponds to the
service primitive class request in the RPC-ASE description.

The service primitive class action in the X/Open DCE RPC specification corresponds to the
service primitive class indication in the RPC-ASE description.

D.2 Service Primitive Names
Table D-1 shows the mapping from the event and action routine names used in the X/Open
DCE RPC specification to the RPC-ASE primitive name.

Table D-1 Service Primitive Name Mapping

RPC Name RPC-ASE Primitive Names
TransmitReq event RPC-REQUEST.req
LastTransmitReq event RPC-REQUEST.req
LocalAlert event RPC-REMOTE-ALERT.req
NoConnInd event RPC-NO-CONN.req
LocalErr event RPC-ORPHANED.req

RPC-REQUEST.indHandleFrag action RPC-RESPONSE.ind
RaiseFault action RPC-FAULT.ind
SetShutdownRequested action RPC-SHUTDOWN.ind
RPCResp event RPC-RESPONSE.req
FaultDNE event RPC-FAULT.req
Fault event RPC-FAULT.req
ShutdownReq event RPC-SHUTDOWN.req
StopOrphan action RPC-ORPHANED.ind
ProcessAlertMsg action RPC-REMOTE-ALERT.ind
none RPC-DONE.ind

Part 4: TxRPC ASE Appendices 167

Mapping to RPC Terminology

168 X/Open CAE Specification

Appendix E

Scenarios

This appendix provides examples of RTI usage. The scenarios of RTI usage are not intended to
be exhaustive.

E.1 Service Scenarios
The following scenarios are intended to help outline possible protocol exchanges using the RTI
Service, and the RTI TP Service.

Part 4: TxRPC ASE Appendices 169

Service Scenarios Scenarios

T
P-

C
O

M
M

IT
.in

d

T
P-

C
O

M
M

IT
-C

O
M

PL
E

T
E

.in
d

T
P-

C
O

M
M

IT
-C

O
M

PL
E

T
E

.in
d

R
T

I-
C

O
M

M
IT

-T
R

A
N

S.
re

q

R
T

I-
C

O
M

M
IT

-T
R

A
N

S.
in

d

R
T

I-
E

N
D

-T
R

A
N

S.
re

q

T
P-

C
O

M
M

IT
.in

d

T
P-

C
O

M
M

IT
.r

eq

T
P-

R
E

A
D

Y
.in

d

T
P-

C
O

M
M

IT
.r

eq

R
T

I-
T

R
A

N
S-

D
O

N
E

.r
eq

R
T

I-
T

R
A

N
S-

C
O

M
PL

E
T

E
.in

d

T
P-

PR
E

PA
R

E
.r

eq

T
P-

PR
E

PA
R

E
.in

d

T
P-

D
O

N
E

.r
eq

T
P-

D
O

N
E

.r
eq

R
T

I-
PR

E
PA

R
E

-T
R

A
N

S.
in

d

R
T

I-
T

R
A

N
S-

R
E

A
D

Y
.r

eq

R
T

I-
C

O
M

M
IT

-T
R

A
N

S.
in

d

R
T

I-
T

R
A

N
S-

D
O

N
E

.r
eq

R
T

I-
T

R
A

N
S-

C
O

M
PL

E
T

E
.in

d

R
T

I-
PM

T
PP

M

SE
R

V
E

R

R
T

I-
PM

C
L

IE
N

T

T
PP

M

R
T

I-
T

R
A

N
S-

R
E

A
D

Y
.in

d

Figure E-1 Client Issues RTI-END-TRANS; Transaction Committed; Active Context Handle

170 X/Open CAE Specification

Scenarios Service Scenarios

R
T

I-
R

O
L

L
B

A
C

K
-T

R
A

N
S.

re
q

T
P-

R
O

L
L

B
A

C
K

-C
O

M
PL

E
T

E
..i

nd

T
P-

R
O

L
L

B
A

C
K

.r
eq

R
T

I-
T

R
A

N
S-

C
O

M
PL

E
T

E
.in

d

T
P-

PR
E

PA
R

E
.r

eq

T
P-

PR
E

PA
R

E
.in

d

T
P-

R
O

L
L

B
A

C
K

-C
O

M
PL

E
T

E
.in

d

R
T

I-
E

N
D

-T
R

A
N

S.
re

q

R
T

I-
PR

E
PA

R
E

-T
R

A
N

S.
in

d

R
T

I-
T

R
A

N
S-

D
O

N
E

.r
eq

R
T

I-
T

R
A

N
S-

C
O

M
PL

E
T

E
.in

d

T
P-

R
O

L
L

B
A

C
K

.in
d

R
T

I-
R

O
L

L
B

A
C

K
-T

R
A

N
S.

in
d

R
T

I-
T

R
A

N
S-

D
O

N
E

.r
eq

T
P-

D
O

N
E

.r
eq

T
P-

D
O

N
E

.r
eq

R
T

I-
PM

T
PP

M

SE
R

V
E

R

R
T

I-
PM

C
L

IE
N

T

T
PP

M

Figure E-2 Client Issues RTI-END-TRANS; Server Issues Rollback; Active Context Handle

Part 4: TxRPC ASE Appendices 171

Service Scenarios Scenarios

R
T

I-
T

R
A

N
S-

D
O

N
E

.r
eq

T
P-

U
-A

B
O

R
T

.in
d

R
T

I-
T

R
A

N
S-

D
O

N
E

.r
eq

T
P-

R
O

L
L

B
A

C
K

-C
O

M
PL

E
T

E
.in

d

T
P-

R
O

L
L

B
A

C
K

.in
d

T
P-

R
O

L
L

B
A

C
K

-C
O

M
PL

E
T

E
.in

d

R
T

I-
R

O
L

L
B

A
C

K
-T

R
A

N
S.

in
d

R
T

I-
T

R
A

N
S-

C
O

M
PL

E
T

E
.in

d

T
P-

R
O

L
L

B
A

C
K

.r
eq

T
P-

D
O

N
E

.r
eq

T
P-

D
O

N
E

.r
eq

T
P-

D
O

N
E

.r
eq

R
T

I-
R

O
L

L
B

A
C

K
-T

R
A

N
S.

re
q

R
T

I-
T

R
A

N
S-

C
O

M
PL

E
T

E
.in

d

T
P-

U
-A

B
O

R
T

.r
eq

R
T

I-
PM

T
PP

M

SE
R

V
E

R

R
T

I-
PM

C
L

IE
N

T

T
PP

M

Figure E-3 Client Issues Rollback; No Context Handle

172 X/Open CAE Specification

Scenarios Service Scenarios

R
T

I-
T

R
A

N
S-

D
O

N
E

.r
eq

T
P-

R
O

L
L

B
A

C
K

.in
d

T
P-

PR
E

PA
R

E
.r

eq

T
P-

PR
E

PA
R

E
.in

d
R

T
I-

PR
E

PA
R

E
-T

R
A

N
S.

in
d

T
P-

R
O

L
L

B
A

C
K

.r
eq

T
P-

R
O

L
L

B
A

C
K

-C
O

M
PL

E
T

E
.in

d

R
T

I-
R

O
L

L
B

A
C

K
-T

R
A

N
S.

re
q

R
T

I-
T

R
A

N
S-

C
O

M
PL

E
T

E
.in

d

R
T

I-
T

R
A

N
S-

C
O

M
PL

E
T

E
.in

d

T
P-

D
O

N
E

.r
eq

T
P-

D
O

N
E

.r
eq

T
P-

U
-A

B
O

R
T

.r
eq

T
P-

U
-A

B
O

R
T

.in
d

R
T

I-
T

R
A

N
S-

D
O

N
E

.r
eq

T
P-

D
O

N
E

.r
eq

T
P-

R
O

L
L

B
A

C
K

-C
O

M
PL

E
T

E
.in

d

R
T

I-
E

N
D

-T
R

A
N

S.
re

q
T

P-
D

E
FE

R
R

E
D

-E
N

D
-D

IA
L

O
G

U
E

.r
eq

T
P-

D
E

FE
R

R
E

D
-E

N
D

-D
IA

L
O

G
U

E
.in

d

R
T

I-
R

O
L

L
B

A
C

K
-T

R
A

N
S.

in
d

R
T

I-
PM

T
PP

M

SE
R

V
E

R

R
T

I-
PM

C
L

IE
N

T

T
PP

M

Figure E-4 Server Issues Rollback; No Context Handle

Part 4: TxRPC ASE Appendices 173

Service Scenarios Scenarios

R
PC

-R
E

Q
U

E
ST

.r
eq

D
C

-A
SE

-B
E

G
IN

-D
IA

L
O

G
U

E
.r

eq

R
T

I-
E

ST
A

B
L

IS
H

-C
O

N
T

E
X

T
.r

eq

T
P-

B
E

G
IN

-D
IA

L
O

G
U

E
.r

eq

R
T

I-
PM

R
PC

-A
SE

D
C

-A
SE

T
PP

M
T

P-
PM

D
C

-A
SE

R
PC

-A
SE

R
T

I-
PM

R
T

I-
C

A
L

L
-T

A
SK

.r
eq

T
P-

B
E

G
IN

-T
R

A
N

SA
C

T
IO

N
.r

eq

(L
as

t-
Fr

ag
)

R
T

I-
C

A
L

L
-R

E
SU

L
T

.in
d

R
PC

-R
E

SP
O

N
SE

.in
d

(L
as

t-
Fr

ag
)

rp
c_

re
qu

es
t A

PD
U

(P
FC

_F
IR

ST
_F

R
A

G
)

(P
FC

_L
A

ST
_F

R
A

G
)

rp
c_

re
sp

on
se

 A
PD

U

(P
FC

_F
IR

ST
_F

R
A

G
)

(P
FC

_L
A

ST
_F

R
A

G
)

T
P-

B
E

G
IN

-D
IA

L
O

G
U

E
.in

d

T
P-

B
E

G
IN

-T
R

A
N

SA
C

T
IO

N
.in

d

D
C

-A
SE

-B
E

G
IN

-D
IA

L
O

G
U

E
.in

d

R
PC

-R
E

Q
U

E
ST

.in
d

(L
as

t-
Fr

ag
)

R
T

I-
C

A
L

L
-T

A
SK

.in
d

R
T

I-
C

A
L

L
-R

E
SU

L
T

.r
eq

R
PC

-R
E

SP
O

N
SE

.r
eq

(L
as

t-
Fr

ag
)

Figure E-5 RPC Request and Response with No Segmentation

174 X/Open CAE Specification

Scenarios Service Scenarios

(P
FC

_F
IR

ST
_F

R
A

G
)

R
PC

-D
O

N
E

.in
d

R
PC

-R
E

Q
U

E
ST

.in
d

R
T

I-
C

A
L

L
-T

A
SK

.r
eq

R
PC

-R
E

Q
U

E
ST

.r
eq

R
PC

-D
O

N
E

.in
d

R
PC

-R
E

Q
U

E
ST

.r
eq

R
PC

-D
O

N
E

.in
d

R
PC

-R
E

Q
U

E
ST

.r
eq

(L
as

t-
Fr

ag
)

R
PC

-R
E

SP
O

N
SE

.in
d

R
PC

-R
E

SP
O

N
SE

.in
d

(L
as

t-
Fr

ag
)

rp
c_

re
qu

es
t A

PD
U

(P
FC

_F
IR

ST
_F

R
A

G
)

rp
c_

re
qu

es
t A

PD
U

rp
c_

re
qu

es
t A

PD
U

(P
FC

_L
A

ST
_F

R
A

G
)

rp
c_

re
sp

on
se

 A
PD

U

rp
c_

re
sp

on
se

 A
PD

U

(P
FC

_L
A

ST
_F

R
A

G
)

R
PC

-R
E

Q
U

E
ST

.in
d

R
PC

-R
E

Q
U

E
ST

.in
d

(L
as

t-
Fr

ag
)

R
PC

-R
E

SP
O

N
SE

.r
eq

R
PC

-R
E

SP
O

N
SE

.r
eq

(L
as

t-
Fr

ag
)

R
T

I-
C

A
L

L
-R

E
SU

L
T

.in
d

R
T

I-
C

A
L

L
-T

A
SK

.in
d

R
T

I-
C

A
L

L
-R

E
SU

L
T

.r
eq

R
T

I-
PM

T
PP

M

SE
R

V
E

R

R
T

I-
PM

C
L

IE
N

T

T
PP

M

Figure E-6 RPC Request and Response with Segmentation

Part 4: TxRPC ASE Appendices 175

Scenarios

176 X/Open CAE Specification

Glossary

ACSE
Association Control Service Element.

A-Ctx
Application Context.

AE
Application Entity.

AEI
Application Entity Invocation.

AE-Qualifier
Application Entity Qualifier.

ALS
Application Layer Structure.

AP
An Application Process (in the OSI TP Model) or an Application Program (in the X/Open
DTP Model).

APDU
Application Protocol Data Unit.

API
An Application Process Invocation (in the OSI TP Model) or an Application Programming
Interface (in the X/Open DTP Model).

AP-Title
Application Process Title.

ASE
Application Service Element. (See Part 2 of this specification.)

ASN.1
Abstract Syntax Notation One.

client
A program that issues RPCs. An RTI-SUI requesting a task invocation. The superior of a
dialogue. See Section 2.2.7 on page 11.

CRM
Communication Resource Manager.

final state
The state of bound data immediately after the successful completion of a transaction.

IDL
Interface Definition Language. See Section 2.2.10 on page 11.

initial state
The state of bound data at the time it is first accessed by a transaction participant.

ISO
International Organization for Standardization. A standards organisation with the

Part 4: TxRPC ASE Appendices 177

Glossary

membership composed of the standards organisations from each participating country. OSI
working groups generate the OSI Protocol Suite standards.

MACF
Multiple Association Control Function.

manager function
The AP executed in a server that implements an operation. See Section 2.2.8 on page 11.

Node-ID
The Node-ID is defined to be a globally administered 48-bit address as described in the ISO
TP Protocol standard.

Open Systems Interconnection
(OSI) A set of ISO standards that define a network architecture based on a 7-layer model for
communication between open systems. OSI management standards define Configuration,
Fault, Performance, Security and Accounting Management.

primitive
An event that occurs at an interface between the user of the service and the service provider
in an open system.

protocol machine
A finite state machine that generates a particular output, for example, service request,
indication, or network activity.

PSDU
Presentation Service Data Unit.

ready state
An intermediate state in which no further modifications are made to bound data before it is
declared to be in final state.

recoverable resources
The resource used to store the results of a recoverable operation. Recoverable resources are
bound data.

Remote Task Invocation Service Interface
(RTI-SI) The service boundary between the RTI Service User Invocation (RTI-SUI) and the
RTI Protocol Machine (RTI-PM) and between the RTI-SU and the RTI-SP.

Remote Task Invocation Service Provider
(RTI-SP) In the RTI Model, a collection of RTI-PMs within an RTI Application Process
Invocation (RTI-API).

Remote Task Invocation Service User
(RTI-SU) Any user of the RTI Service. An RTI-SUI is an instance of an RTI-SU.

Remote Task Invocation Service User Invocation
(RTI-SUI) A server that uses the RTI service provided by the RTI Protocol Machine. (RTI-
PM) There is one RTI-PM for each RTI-SUI.

RM
Resource Manager.

RPC
Remote Procedure Call. See Section 2.2.6 on page 10.

RTI
Remote Task Invocation.

178 X/Open CAE Specification

Glossary

RTI-AEI
RTI Application Entity Invocation.

RTI-AP
RTI Application Process.

RTI-API
RTI Application Process Invocation.

RTI-MACF
RTI Multiple Association Control Function.

RTI-PM
RTI Protocol Machine.

RTI-SI
Remote Task Invocation Service Interface.

RTI-SP
Remote Task Invocation Service Provider.

RTI-SU
Remote Task Invocation Service User.

RTI-SUI
Remote Task Invocation Service User Invocation.

SACF
Single Association Control Function.

SAO
Single Association Object.

server
A program that accepts RPCs. An RTI-SUI that initiates a task invocation in response to a
task invocation request from a client. The subordinate of a dialogue. See Section 2.2.7 on
page 11.

TM
Transaction Manager.

TPPM
A TP Protocol Machine in the OSI TP Model.

TPSP
A TP service provider in the OSI TP Model.

TPSU
A TP Service User in the OSI TP Model.

TPSUI
A TP Service User Invocation in the OSI TP Model.

transaction tree
A sub-tree of a dialogue tree in which all the dialogues are transactional dialogues.

transactional RPC
A TxRPC operation initiated from within the scope of a transaction. See Section 2.2.9 on
page 11.

Part 4: TxRPC ASE Appendices 179

Glossary

TxRPC CRM
An RM that uses the TxRPC interface. See Section 2.2.11 on page 11.

TxRPC operation
An RPC operation that has either the transaction_mandatory or transaction_optional
attribute.

universal time constant
(UTC) The value of Universal Coordinated Time as defined in ISO 8601. See the referenced
X/Open DCE RPC specification.

UUID
Universal Unique Identifier.

version number
The version number of the UUID architecture.

180 X/Open CAE Specification

Index

<util.h> ...143, 150
A-Ctx...40, 177
A-Ctx-Name ..40
access to resources..3
account verification..9
ACID properties..9

atomicity...9
consistency...9
coordination by TM ...9
durability..9
isolation ..9
responsibility of RM...9

ACSE...30, 177
AE ..39, 177
AE-Qualifier ..40, 177
AEI...39, 177
AlertTimeout...101, 108
ALS..27, 177
AP ..3, 39, 177

component ...6
CRM ..7
environment ..5

AP requirements ...23
AP-CRM interface...7
AP-RM interface..7
AP-Title ..40, 177
AP-TM interface..7
APDU..28, 177

DC-ASE services...89
RPC-ASE ..95
RTI-APDU concatenation rules.......................122
TP services ...88

API...3, 39, 177
portability...3

application
communication ...3
distribution ..3
portability...3
program..3

application context
application services..44
component ASE ..44
conformance ..45
context manipulation ..45
definition ..43
error handling ...45

MACF rules..45
name (transactional) ..44
not transaction-enabled44
optional features...45
persistent application functions........................44
RTI kernel...45
SACF rules ...44
transactional-enabled ..44

application layer structure......................................27
application program

component ...6
environment ..5
interface to CRM...7
interface to RM..7
interface to TM..7
sharing resources..3

application protocol data unit28
Application-Context-Name....................................92
architectural constants ..137

MaxFragSize ..137
PFC_CONC_MPX ..137
PFC_MAYBE ...137
transfer syntax ..137

Arguments ...56, 63
AS-Name ..41
ASE ..177
ASN.1 ...93, 105, 137, 177
atomicity ...9

TM..6
atomicity of commitment10
ATP12 ..35
ATP22 ..35
Auth-Level...96, 104
Auth-Type..96, 104
Auth-Value...96, 104
auth_level...104
auth_type ...104
auth_value ...104
autonomy of RMs...10
awareness

lack of between RMs..10
begin dialogue...34
BER ..137
bound data ...37

final state ..37
initial state..37

Distributed Transaction Processing: The TxRPC Specification 181

Index

call failure...34
Call Task indicator..33
CCR-ASE ..30
chaining ..13
client..11, 14, 32-33, 177
client protocol procedure

AlertTimeout...101
RPC-NO-CONN...101
RPC-ORPHANED..101
RPC-REMOTE-ALERT......................................101
RPC-REQUEST ...101
rpc_fault APDU..101
rpc_orphaned APDU...101
rpc_response APDU ..101
rpc_shutdown APDU..101

Client RPC-ASE ..108
Client-Authenticator.................53, 56, 83, 85, 89, 92
client-authenticator ..92
Client-Authenticator-Type.......53, 56, 83-84, 89, 92
client-authenticator-type ..92
Client-Name53, 56, 83-84, 89, 92
client-name...92
commit ..33-34

decision...6
commitment

atomic ...10
committing transactions ...9
common include file <util.h>143, 150
communication protocol...3
communication resource manager3

component ...6
interface to AP...7
interface to OSI-TP ...8
interface to TM..7

completion
coordinate ..6

completion of transactions9
component ...5

AP ..3, 6
AP-CRM interface ..7
AP-RM interface ...7
AP-TM interface..7
CRM ..3, 6
CRM-OSI TP interface ...8
failure ..6
interchangeability...3
interfaces between..7
interoperability ...3
RM ...3, 6
RM-TM interface...7
TM..3, 6

TM-CRM interface..7
computational task...9
Confirmation ...92
consistency ...9
consistent effect of decisions9
consistent state ..9
context...33

non-transactional context33
not transaction-enabled33
transaction-enabled..33
transactional context..33

context handle...33
context handles ...19
context state

non-transactional..33
transactional ..33

context tree...36
Context-Type53, 56, 83, 85, 89, 92
control ...5
CPI-C interface...6-7
CRM ..3, 177

component ...6
CRM (communication resource manager)............4
CRM-AP interface...7
CRM-OSI TP interface ...8
CRM-TM interface..7
database ..3
DBMS...6
DC-ASE Indication Procedures115

DC-BEGIN-DIALOGUE115
DC-REJECT-DIALOGUE..................................115

DC-ASE service primitives.....................................30
DC-ASE services ...89

DC-BEGIN-DIALOGUE89
DC-REJECT-DIALOGUE..............................89-90
primitives ...89

DC-BEGIN-DIALOGUE.........................89, 115, 133
Client-Authenticator89, 92
client-authenticator ..92
Client-Authenticator-Type...........................89, 92
client-authenticator-type92
Client-Name ..89, 92
client-name ..92
Context-Type...89, 92
Interface-UUID ...89, 92
Interface-Version-Major................................89, 92
Interface-Version-Minor89, 92
Object-UUID..89, 92
parameter mapping ...92
protocol procedure...91
Protocol-Version...89, 92

182 X/Open CAE Specification

Index

protocol-version ...92
RTI-AE-Qualifier ..89, 92
RTI-AP-Title ..89, 92
TP-BEGIN-DIALOGUE.................................91-92

DC-REJECT-DIALOGUE ...89-90, 92, 115, 129, 131
protocol procedure...91
Protocol-Version ...90
Protocol-Versions ...92
protocol-versions..92
Reason-Code ...90, 92
reason-code..92

decision to commit ...6
decision to commit or roll back9
definition

DTP model ...5
RPC..10
transaction properties..9

definitions...9
demarcation of transaction.......................................6
Diagnostic ..67
dialogue

not transaction-enabled34
transaction-enabled..34

dialogue tree ..36
DirectoryName ...40
distributed transaction processing (DTP)9
DNE...99, 105
DTP

implications of...9
DTP model ...3, 5

definition ..5
durability..9
Establish Context request33
failure of system component....................................9
file access method...6
file access system ..3
final state ..37, 177
flow of control ...5
flows ..169
functional component

AP ..6
CRM ..6
RM ...6
TM..6

functional model...5
functional unit ...50

Kernel..50
Non-transactional...50
Transactional ...50
transactional ..50

Functional-Units ...92

global transaction ...6
handle attribute...20
handle_t type...20
Heuristic-Report ...73
IDL...11, 177
IDL file ..142, 150
IDL language interactions.......................................18

additional attributes ..18
limiting attributes...18

IDL-only TxRPC
example ..149

IDL-only TxRPC example
client side ...151
common include file <util.h>...........................150
IDL file ..150
manager function ...152

implementation requirements23
AP ..23
thread of control ...23
TM..24

implications of DTP ...9
include file <util.h>..143, 150
indication (ind)..48
initial state..37, 177
interchangeability...3
interface ..5

AP-CRM ...7
AP-RM ..7
AP-TM...7
between components ...7
CPI-C ...6-7
CRM-OSI TP ..8
function...7
illustrated ...5
ISAM..6-7
SQL ..7
system-level ...3
TM-CRM...7
TM-RM..7
TX...7
TxRPC..6-7
XA ..7
XA+ ..6-7
XAP-TP...6, 8
XATMI ...6-7

Interface Definition Language (IDL)11
interface overview..17
interface TX..17
Interface-UUID.............53, 56, 83-84, 89, 92, 96, 104
Interface-Version-Major53, 56, 83-84

...89, 92, 96, 104

Distributed Transaction Processing: The TxRPC Specification 183

Index

Interface-Version-Minor........................53, 56, 83-84
...89, 92, 96, 104

Internal-Call-Error121, 130, 132-133, 135
Internal-Fatal-Error................121, 130, 132-133, 135
interoperability..3
ISAM..6

interface ..7
ISO ...177
isolation ..9
Kernel functional unit..52
Last-Frag ..96, 98, 104
location-independence of transaction work9
MACF..178

rules...45
manager function ...11, 178

as client ...14
mapping

RTI-CALL-FAILURE ...85
RTI-CALL-RESULT..86
RTI-CALL-TASK...84
RTI-CANCEL-CALL..85
RTI-COMMIT-TRANS ..86
RTI-END-TRANS...86
RTI-ESTABLISH-CONTEXT..............................83
RTI-HEURISTIC-REPORT86
RTI-PREPARE-TRANS86
RTI-RELEASE-CONTEXT..................................86
RTI-ROLLBACK-TRANS86
RTI-TRANS-COMPLETE87
RTI-TRANS-DONE..86
RTI-TRANS-READY..86

method of referencing transaction9
model...3

functional ...5
modifying shared resource.......................................9
native interface..7

constraints ..7
ncacn_osi_tp string ..19
nested TxRPCs...14
Node-ID..178
non-transactional ..33
non-transactional context33
non-transactional RPCs...14
not transaction-enabled...............................33-34, 44
object support

object UUID...20
object UUID ...20
Object-UUID53, 56, 83-84, 92, 96, 104
ObjectID ..40-41
Open Systems Interconnection............................178
Operation-Number........................56, 84, 89, 96, 104

operations known within RM................................10
opnum...104
OSF RPC ...27
OSI application layer structure..............................27
OSI TP

ATP12..35
ATP22..35
Chained Transactions ..35
Commit...35
Dialogue ...35
functional units required35
Handshake...35
Polarized Control ...35
profiles ..35
Recovery...35
service primitives ...30
Shared Control ..35
Unchained Transactions......................................35

OSI TP model
AE ..39
AEI...39
AP ..39
API...39
TPPM...39
TPSP ..39
TPSU..39
TPSUI ..39

OSI TP service ...27
not used by RTI-PM...88
used by RTI-PM..88

OSI TP standards ..6, 8
OSI TP-CRM interface ...8
overview of interface ...17
pab ...124
pcc..124
pch ...124
pcp ...124
PFC_DID_NOT_EXECUTE..................................105
PFC_LAST_FRAG ..104
plf ...124
portability...3
pra..124
primitive...178
PrintableString...41
protocol...3
protocol machine..178
protocol mapping...153, 161

client events...153
server events..158

protocol procedure
client..101

184 X/Open CAE Specification

Index

server...101
Protocol-Version..89-90, 92
protocol-version..92
Protocol-Versions..92
protocol-versions ..92
prt...124
psc ..124
psd ...124
PSDU...178
ptc ..124
pte ..124
public information..24
ready state ..178
Reason ..60, 99, 105
Reason-Code ...90, 92
reason-code..92
Recipient-AE-Qualifier..92
Recipient-AP-Title ..92
Recipient-TPSU-Title ...92
recoverable resources ..178
recovery

TM..6
referencing transaction

method of ...9
remote task invocation ..27
Remote Task Invocation Service Interface178
Remote Task Invocation Service Provider178
Remote Task Invocation Service User................178
Remote Task Invocation Service User
Invocation ..178
request (req)...48
resource...3

access to ..3
database..3
file access system..3
manager..3

resource manager
ACID properties responsibility9
component ...6
interface to AP...7
interface to TM..7

Result...92
RM ...3, 178

ACID properties responsibility9
component ...6

RM-AP interface..7
RM-TM interface...7
RMs

work done across..9
rollback..33-34
Rollback ..92

rolling back transactions ...9
RPC..10, 178

nested TxRPCs ..14
non-transactional RPCs.......................................14

RPC context ...33
RPC packet types

rpc_fault ...138
rpc_orphaned..138
rpc_remote_alert ..138
rpc_request ..138
rpc_response ...138
rpc_shutdown ...138

RPC terminology
mapping ...167
service conventions..167
service primitive names....................................167

RPC TxRPC
example ..141

RPC TxRPC example
client side ...144
common include file <util.h>...........................143
IDL file ..142
manager functions ...148
server side ..146

RPC-ACCESS-VIOLATION137
RPC-ASE

service primitives ..30
RPC-ASE Indication Procedures116

RPC-DONE..117
RPC-FAULT...116
RPC-ORPHANED..116
RPC-REMOTE-ALERT......................................117
RPC-REQUEST ...116
RPC-RESPONSE...116
RPC-SHUTDOWN...117

RPC-ASE service primitives
RPC-ASE service primitives100
RPC-DONE..96, 101
RPC-FAULT...96, 99
RPC-NO-CONN ...96
RPC-ORPHANED..96, 98
RPC-REMOTE-ALERT..................................96, 99
RPC-REQUEST ...96
RPC-RESPONSE...96, 98
RPC-SHUTDOWN96, 101

RPC-ASE services ...95
conventions..95
mapping to lower layers...................................104
parameter mapping ...104
primitives ...96

RPC-CANCEL...137

Distributed Transaction Processing: The TxRPC Specification 185

Index

RPC-DONE...............96, 101, 117, 129, 131, 133-134
RPC-FAULT......................96, 103, 110, 116, 129, 131

DNE...99, 105
PFC_DID_NOT_EXECUTE..............................105
Reason ..99, 105
Stub-Data ...99, 105

RPC-FAULT reason codes137
RPC-FLOATING-DIVIDE-BY-ZERO137
RPC-FLOATING-ERROR137
RPC-FLOATING-OVERFLOW............................137
RPC-FLOATING-UNDERFLOW........................137
RPC-INSUFFICIENT-RESOURCES137
RPC-INTEGER-DIVIDE-BY-ZERO137
RPC-INTEGER-OVERFLOW...............................137
RPC-INVALID-OPERATION-NUMBER...........137
RPC-INVOCATION-FAILURE137
RPC-MARSHALLING-ERROR...........................137
RPC-NO-CONN96, 100-101, 103, 108, 110
RPC-ORPHANED.....96, 98, 101, 108, 116, 133-134
RPC-PROTOCOL-ERROR....................................137
RPC-REASON-NOT-SPECIFIED........................137
RPC-REMOTE-ALERT...96, 101, 108, 117, 133-134

rpc_remote_alert APDU99
RPC-REQUEST.................96, 101, 108, 116, 133-134

Auth-Level...96, 104
Auth-Type..96, 104
Auth-Value ..96, 104
auth_level...104
auth_type ...104
auth_value ...104
Interface-UUID ...96, 104
Interface-Version-Major..............................96, 104
Interface-Version-Minor96, 104
Last-Frag ..96, 104
Object-UUID ...96, 104
Operation-Number......................................96, 104
opnum...104
parameter mapping ...104
PFC_LAST_FRAG..104
Stub-Data ...96, 104
Transaction-Attribute..................................96, 104

RPC-RESPONSE..............96, 103, 110, 116, 129, 131
Last-Frag ..98, 104
parameter mapping ...104
PFC_LAST_FRAG..104
Stub-Data ...98, 104

RPC-SHUTDOWN96, 101, 103, 110, 117, 130
rpc_fault APDU......................................101, 105, 108
rpc_orphaned APDU101, 103, 105, 110
rpc_remote_alert APDU.......................103, 105, 110
rpc_request APDU.................................103, 105, 110

rpc_response APDU..............................101, 105, 108
rpc_shutdown APDU............................101, 105, 108
RTI ...178

application entity..39
application entity invocation.......................27, 39
application process ..39
application process invocation....................27, 39
communication model27, 32
model ..27, 29
model component relationship30
model components...27
multiple association control function28
OSI TP protocol machine (TPPM).....................27
protocol machine27, 32, 39, 81
RTI-AE ..39
RTI-AEI...39
RTI-AP ..39
RTI-API...39
RTI-PM ...39
RTI-SP ...39
service boundary ..27
service primitives ...31
service provider..39, 48
service user ..48
service user invocation27, 36
service user invocation (RTI-SUI).....................32

RTI - service definition ..47
conventions..48
non-transactional functional unit64

RTI application context definition43
RTI communication model.....................................32

bound data...37
context ..33
context tree ..36
dialogue..34
dialogue tree..36
model ..38
processing a call..32
service provider..32
service user ..32
transaction participant ..36
transaction tree ...36
using..38

RTI context ...33
RTI model

relationship with OSI...39
RTI naming model..40

A-Ctx-Name ..40
AE-Qualifier...40
AP-Title...40
AS-Name..40

186 X/Open CAE Specification

Index

OSI names used ..40
TPSU-Title..40

RTI protocol machine (RTI-PM)............................81
DC-ASE services...89
Internal-Call-Error..121
Internal-Fatal-Error..121
mapping to RTI service primitives83
protocol procedure...101
relationship to other services.............................82
RPC-ASE services...95
RTI-APDU Concatenation Rules122
RTI-MACF procedures......................................112
sequencing rules ...123
state table conventions......................................123
state tables ...123
structure and encoding of APDUs93, 105
TP services ...88
use of supporting services..................................82

RTI Request Procedures
RTI-CALL-RESULT..114
RTI-CALL-TASK ..113
RTI-CANCEL-CALL ...113
RTI-END-TRANS...114
RTI-ESTABLISH-CONTEXT............................113
RTI-RELEASE-CONTEXT................................114
RTI-ROLLBACK-TRANS114
RTI-TRANS-DONE..115
RTI-TRANS-READY..115

RTI service definition
functional unit description.................................50
Kernel..50
Kernel functional unit..52
non-transactional..50
RTI-PM ...48
RTI-SP ...48
RTI-SU ..48
RTI-SUI ...48
sequencing rules ...75
service boundary ..48
service primitives ...51
service provider..48
service user ..48
state tables..75
transactional ..50
Transactional functional unit66

RTI usage scenarios..169
RTI-AE ..39
RTI-AE-Qualifier....................................53, 83, 89, 92
RTI-AEI...39, 179
RTI-AP..39, 179
RTI-AP-Title ..53, 83, 89, 92

RTI-APDU concatenation rules...........................122
RTI-API...39, 179
RTI-CALL-FAILURE..60

CONTEXT-TYPE-NOT-SUPPORTED85
functional-unit-not-supported85
INTERFACE-PERMANENTLY-............................
UNAVAILABLE..85
INTERFACE-TEMPORARILY-..............................
UNAVAILABLE..85
INTERFACE-UNKNOWN.................................85
mapping ...85
no-reason-given ..85
PERMANENT-COMMUNICATION-..................
FAILURE ..85
permanent-failure...85
protocol-error ..85
PROTOCOL-MACHINE-FAILURE.................85
Reason...60
REASON-NOT-SPECIFIED85
recipient unknown...85
recipient-tpsu-title-unknown85
rejected(provider)...85
RTI-SERVICE-UNKNOWN...............................85
service primitives ...51
state table..78-79
tpsu-not-available(permanent)85
tpsu-not-available(transient)85
TRANSIENT-COMMUNICATION-
FAILURE ..85
transient-failure ..85

RTI-CALL-RESULT..........................63, 114, 133-134
Arguments ...63
mapping ...86
service primitives ...51
state table..78-79

RTI-CALL-TASK..............................56, 113, 129, 131
Arguments ...56
Client-Authenticator56, 85
Client-Authenticator-Type...........................56, 84
Client-Name ..56, 84
Context-Type...56, 85
Interface-UUID ...56, 84
Interface-Version-Major................................56, 84
Interface-Version-Minor56, 84
mapping ...84
Object-UUID..56, 84
Operation-Number ..56, 84
service primitives ...51
state table..78-79
Stub-Data ...84
Transaction-Attribute56, 84

Distributed Transaction Processing: The TxRPC Specification 187

Index

RTI-CANCEL-CALL.......................59, 113, 129, 131
service primitives ...51
state table..78-79

RTI-COMMIT-TRANS72, 131
service primitives ...51
state table ...79

RTI-END-TRANS.....................................69, 114, 131
service primitives ...51
state table ...79

RTI-ESTABLISH-CONTEXT53, 113, 129
Client-Authenticator53, 83
Client-Authenticator-Type...........................53, 83
Client-Name ..53, 83
Context-Type...53, 83
Interface-UUID ...53, 83
Interface-Version-Major................................53, 83
Interface-Version-Minor53, 83
mapping ...83
Object-UUID..53, 83
RTI-AE-Qualifier ..53, 83
RTI-AP-Title ..53, 83
service primitives ...51
state table ...78

RTI-HEURISTIC-REPORT......................................67
Diagnostic ..67
mapping ...86
service primitives ...51
state table ...79

RTI-MACF..179
RTI-MACF procedures..112

call in progress ..112
definitions ..112
request in progress...112
response in progress ..112
rules...112
segmentation required112
segmentation storage ..113

RTI-PM ...39, 81, 179
sequencing rules ...107
state tables ...107
structure and encoding of APDUs....................93

RTI-PREPARE-TRANS..70
service primitives ...51
state table ...79

RTI-RELEASE-CONTEXT......................65, 114, 130
mapping ...86
service primitives ...51
state table ...78

RTI-ROLLBACK-TRANS...............68, 114, 131, 134
service primitives ...51
state table ...79

RTI-SI ..179
RTI-SP ...39, 179
RTI-SU...179
RTI-SUI ...179
RTI-TRANS-COMPLETE..74

mapping ...87
service primitives ...51
state table ...79

RTI-TRANS-DONE73, 115, 131, 134
Heuristic-Report ...73
mapping ...86
service primitives ...51
state table ...79

RTI-TRANS-READY71, 115, 134
service primitives ...51
state table ...79

SACF ...179
rules...44

SAO ...27, 179
scenarios ...169
sequencing rules.......................................75, 107, 123
server...11, 14, 32-33, 179
server protocol procedure

RPC-FAULT...103
RPC-NO-CONN...103
RPC-RESPONSE...103
RPC-SHUTDOWN...103
rpc_orphaned APDU...103
rpc_remote_alert APDU103
rpc_request APDU...103

service primitive class
C (conditional) ..49
indication (ind)..48
M (mandatory)..49
O (RTI-PM option) ...49
request (req)...48
U (user option) ..49

service primitives
DC-ASE...30
OSI TP ...30
RPC-ASE ..30
RTI ...31
RTI-CALL-FAILURE51, 60
RTI-CALL-RESULT..51, 63
RTI-CALL-TASK ..51, 56
RTI-CANCEL-CALL51, 59
RTI-COMMIT-TRANS..................................51, 72
RTI-END-TRANS...51, 69
RTI-ESTABLISH-CONTEXT........................51, 53
RTI-HEURISTIC-REPORT51, 67
RTI-PREPARE-TRANS51, 70

188 X/Open CAE Specification

Index

RTI-RELEASE-CONTEXT............................51, 65
RTI-ROLLBACK-TRANS51, 68
RTI-TRANS-COMPLETE51, 74
RTI-TRANS-DONE51, 73
RTI-TRANS-READY51, 71
TP MACF..30

shared resource
modifying...9
RM ...6

shared resources
permanence of changes to9

simultaneous updates across RMs........................10
single association control function28

CCR-ASE..28
DC-ASE...28
OSI ACSE ...28
RPC-ASE ..28
TP-ASE..28

single association object ..28
single association object (SAO)27
spanning RMs

distributed transactions ..9
specification

CPI-C interface ..6-7
TX interface..7, 17
TxRPC interface...6-7
XA interface ...7
XA+ interface...7
XAP-TP interface ..8
XATMI interface ..6-7

SQL
interface ..7

standards
OSI TP ...6, 8

state table...75, 78, 107, 123
actions ...77
Client RPC-ASE..107, 109
conventions ...75, 123
events..75, 123
RTI protocol client non-transactional129
RTI protocol client transactional.....................131
RTI protocol server non-transactional133
RTI protocol server transactional134
RTI service non-transactional......................75, 78
RTI service transactional75, 79
Server RPC-ASE Events............................107, 110
states..77
variables ...75-76, 124

state table (Client RPC-ASE)
AlertTimeout...108
RPC-NO-CONN...108

RPC-ORPHANED..108
RPC-REMOTE-ALERT......................................108
RPC-REQUEST ...108
rpc_fault APDU..108
rpc_response APDU ..108
rpc_shutdown APDU..108

state table (Server RPC-ASE)
RPC-FAULT...110
RPC-NO-CONN...110
RPC-RESPONSE...110
RPC-SHUTDOWN...110
rpc_orphaned APDU...110
rpc_remote_alert APDU110
rpc_request APDU...110

state table variables
pab ...124
pcc..124
pch ...124
pcp ...124
plf...124
pra..124
prt ..124
psc..124
psd ...124
ptc ..124
pte ..124
Vcs..76
Vrs..76
Vss..76
Vtc..76
Vte..76

status of work done anywhere9
structure and encoding of APDUs................93, 105
Stub-Data..................................84, 96, 98-99, 104-105
supporting services ..82
system component

failure of ...9
system-level interface ..3
thread of control ...23
TM ...3, 6, 179

ACID properties coordination.............................9
API...7
atomicity...6
recovery ..6

TM requirements ..24
TM-AP interface..7
TM-CRM interface..7
TM-RM interface...7
TP Indication and Confirmation Procedures....117

TP-BEGIN-DIALOGUE117
TP-BEGIN-TRANSACTION indication119

Distributed Transaction Processing: The TxRPC Specification 189

Index

TP-COMMIT ...120
TP-COMMIT-COMPLETE120
TP-DEFERRED-END-DIALOGUE.................119
TP-END-DIALOGUE ..118
TP-HEURISTIC-REPORT118
TP-P-ABORT ...118
TP-PREPARE...119
TP-READY...120
TP-ROLLBACK...120
TP-ROLLBACK-COMPLETE120
TP-U-ABORT ..118

TP MACF
service primitives ...30

TP services ...88
TP-ASE..30
TP-BEGIN-DIALOGUE......88, 91-92, 117, 129, 131

Application-Context-Name92
Confirmation ...92
Functional-Units ...92
Recipient-AE-Qualifier..92
Recipient-AP-Title..92
Recipient-TPSU-Title ...92
Result ..92
Rollback..92
User-Data ...92

TP-BEGIN-TRANSACTION34, 88, 133
TP-BEGIN-TRANSACTION indication119
TP-COMMIT.....................................88, 120, 132, 134
TP-COMMIT-COMPLETE.............88, 120, 132, 134
TP-DEFERRED-END-DIALOGUE.......88, 119, 135
TP-DEFERRED-GRANT-CONTROL...................88
TP-DONE ...88
TP-END-DIALOGUE......................88, 118, 133, 135
TP-GRANT-CONTROL ..88
TP-HANDSHAKE..88
TP-HANDSHAKE-AND-GRANT-CONTROL..88
TP-HEURISTIC-REPORT.......................88, 118, 131
TP-P-ABORT88, 118, 130-131, 133-134
TP-PREPARE ..88, 119, 134
TP-READY...88, 120, 132
TP-REQUEST-CONTROL88
TP-ROLLBACK................................88, 120, 132, 134
TP-ROLLBACK-COMPLETE........88, 120, 132, 134
TP-U-ABORT88, 118, 130, 133-134
TP-U-ERROR...88
TPPM ..39, 179
TPSP ..39, 179
TPSU ...39, 179
TPSU-Title ..41
TPSUI ..39, 179

transaction
actions ...3
boundary ..6
commit decision..6
completion ...3, 6
defining boundaries ...3
definition of..9
demarcation ...6-7
enabled..35
failure ..3
global...3, 6
identifier assigning...3
manager..3
not enabled ..35
properties ...9
recovery ..3
RM-internal..10

transaction commitment ...14
transaction information...13
transaction manager

ACID properties coordination.............................9
API...7
atomicity...6
interface to AP...7
interface to CRM...7
interface to RM..7
recovery ..6

transaction participant ..36
transaction rollback..15

in server ..15
transaction tree ...36, 179
transaction work

location-independence of9
Transaction-Attribute..........................56, 84, 96, 104
transaction-enabled ..33-34
transaction-mandatory..18
transaction-optional ...18
transactional ..33
transactional context..33
Transactional functional unit66
transactional RPC11-12, 179
transactional-enabled ..44
transactions

committing...9
rolling back ..9

transaction_mandatory ...12
transaction_optional ..12, 14
TX (Transaction Demarcation) Interface13, 17

interactions with...21
tx_begin()...13-14, 21
tx_close()..21

190 X/Open CAE Specification

Index

tx_commit()...13-14, 21
tx_info() ...13, 15, 19, 21
tx_open() ...19, 21
tx_rollback()..13, 15, 21
tx_set_commit_return()......................................21
tx_set_transaction_control()........................13, 21
tx_set_transaction_timeout()13, 21

TX interface..7, 17
TxRPC API

protocol mapping...153
TxRPC CRM ..11, 180

IDL-only TxRPC CRM...................................11, 20
RPC TxRPC CRM ...11

TxRPC CRM requirements24
compliant TxRPC CRMs24
public information ...24

TxRPC interface ...6-7
TxRPC Model...12
TxRPC operation...180
txrpc_s_not_in_transaction status20
txrpc_s_no_tx_open_done status..........................20
txrpc_x_not_in_transaction exception.................20
txrpc_x_no_tx_open_done exception.............19-20
tx_open()

from the client ...19
from the server..19

undoing work..9
uniform effect of decisions..9
unit of work ...9
universal time constant ...180
User-Data ...92
UUID...20, 180
Vcs..76
version number...180
Vrs ..76
Vss ..76
Vtc ..76
Vte..76
work done ..9
work done across RMs ..9
work done anywhere

status of ..9
X/Open publications ...3
X/Open specification

CPI-C interface ..6-7
TX interface..7, 17
TxRPC interface...6-7
XA interface ...7
XA+ interface...7
XAP-TP interface ..8
XATMI interface ..6-7

X/Open-compliant interface....................................9
XA interface ...7
XA+ interface ...6-7
XAP-TP interface ..6, 8
XATMI interface ..6-7

Distributed Transaction Processing: The TxRPC Specification 191

Index

192 X/Open CAE Specification

