
CAE Specification

Systems Management:

Universal Measurement Architecture (UMA)

The Open Group

 February 1997, The Open Group

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

CAE Specification

Systems Management: Universal Measurement Architecture (UMA)

ISBN: 1-85912-117-9
Document Number: C427

Published in the U.K. by The Open Group, February 1997.

Any comments relating to the material contained in this document may be submitted to:

The Open Group
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

OGSpecs@opengroup.org

Portions of this document are derived from a document produced by UNIX International which
contained the following copyright notice:

Copyright  1997, Computer Measurement Group
Permission to use, copy, modify, and distribute this documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice appears in all copies and that
both that copyright notice and this permission notice appear in supporting documentation, and
that the name Computer Measurement Group (CMG) not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior permission. CMG makes
no representations about the suitability of this documentation for any purpose. It is provided "as
is" without express or implied warranty.

ii CAE Specification

Contents

Part 1 UMA Guide

Part 2 Measurement Layer Interface (MLI) CAE Specification

Part 3 Data Capture Interface (DCI) CAE Specification

Part 4 Data Pool Definitions (DPD) CAE Specification

Systems Management: Universal Measurement Architecture (UMA) iii

Contents

iv CAE Specification

Preface

The Open Group

The Open Group is an international open systems organisation that is leading the way in
creating the infrastructure needed for the development of network-centric computing and the
information superhighway. Formed in 1996 by the merger of the X/Open Company and the
Open Software Foundation, The Open Group is supported by most of the world’s largest user
organisations, information systems vendors and software suppliers. By combining the strengths
of open systems specifications and a proven branding scheme with collaborative technology
development and advanced research, The Open Group is well positioned to assist user
organisations, vendors and suppliers in the development and implementation of products
supporting the adoption and proliferation of open systems.

With more than 300 member companies, The Open Group helps the IT industry to advance
technologically while managing the change caused by innovation. It does this by:

• consolidating, prioritising and communicating customer requirements to vendors

• conducting research and development with industry, academia and government agencies to
deliver innovation and economy through projects associated with its Research Institute

• managing cost-effective development efforts that accelerate consistent multi-vendor
deployment of technology in response to customer requirements

• adopting, integrating and publishing industry standard specifications that provide an
essential set of blueprints for building open information systems and integrating new
technology as it becomes available

• licensing and promoting the X/Open brand that designates vendor products which conform
to X/Open Product Standards

• promoting the benefits of open systems to customers, vendors and the public.

The Open Group operates in all phases of the open systems technology lifecycle including
innovation, market adoption, product development and proliferation. Presently, it focuses on
seven strategic areas: open systems application platform development, architecture, distributed
systems management, interoperability, distributed computing environment, security, and the
information superhighway. The Open Group is also responsible for the management of the
UNIX trade mark on behalf of the industry.

The X/Open Process

This description is used to cover the whole Process developed and evolved by X/Open. It
includes the identification of requirements for open systems, development of CAE and
Preliminary Specifications through an industry consensus review and adoption procedure (in
parallel with formal standards work), and the development of tests and conformance criteria.

This leads to the preparation of a Product Standard which is the name used for the
documentation that records the conformance requirements (and other information) to which a
vendor may register a product. There are currently two forms of Product Standard, namely the
Profile Definition and the Component Definition, although these will eventually be merged into
one.

Systems Management: Universal Measurement Architecture (UMA) v

Preface

The X/Open brand logo is used by vendors to demonstrate that their products conform to the
relevant Product Standard. By use of the X/Open brand they guarantee, through the X/Open
Trade Mark Licence Agreement (TMLA), to maintain their products in conformance with the
Product Standard so that the product works, will continue to work, and that any problems will
be fixed by the vendor.

Open Group Publications

The Open Group publishes a wide range of technical literature, the main part of which is
focused on specification development and product documentation, but which also includes
Guides, Snapshots, Technical Studies, Branding and Testing documentation, industry surveys
and business titles.

There are several types of specification:

• CAE Specifications

CAE (Common Applications Environment) Specifications are the stable specifications that
form the basis for our product standards, which are used to develop X/Open branded
systems. These specifications are intended to be used widely within the industry for product
development and procurement purposes.

Anyone developing products that implement a CAE Specification can enjoy the benefits of a
single, widely supported industry standard. In addition, they can demonstrate product
compliance through the X/Open brand. CAE Specifications are published as soon as they
are developed, so enabling vendors to proceed with development of conformant products
without delay.

• Preliminary Specifications

Preliminary Specifications usually address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations. They are
published for the purpose of validation through implementation of products. A Preliminary
Specification is not a draft specification; rather, it is as stable as can be achieved, through
applying The Open Group’s rigorous development and review procedures.

Preliminary Specifications are analogous to the trial-use standards issued by formal standards
organisations, and developers are encouraged to develop products on the basis of them.
However, experience through implementation work may result in significant (possibly
upwardly incompatible) changes before its progression to becoming a CAE Specification.
While the intent is to progress Preliminary Specifications to corresponding CAE
Specifications, the ability to do so depends on consensus among Open Group members.

• Consortium and Technology Specifications

The Open Group publishes specifications on behalf of industry consortia. For example, it
publishes the NMF SPIRIT procurement specifications on behalf of the Network
Management Forum. It also publishes Technology Specifications relating to OSF/1, DCE,
OSF/Motif and CDE.

Technology Specifications (formerly AES Specifications) are often candidates for consensus
review, and may be adopted as CAE Specifications, in which case the relevant Technology
Specification is superseded by a CAE Specification.

vi CAE Specification

Preface

In addition, The Open Group publishes:

• Product Documentation

This includes product documentation — programmer’s guides, user manuals, and so on —
relating to the Pre-structured Technology Projects (PSTs), such as DCE and CDE. It also
includes the Single UNIX Documentation, designed for use as common product
documentation for the whole industry.

• Guides

These provide information that is useful in the evaluation, procurement, development or
management of open systems, particularly those that relate to the CAE Specifications. The
Open Group Guides are advisory, not normative, and should not be referenced for purposes
of specifying or claiming conformance to a Product Standard.

• Technical Studies

Technical Studies present results of analyses performed on subjects of interest in areas
relevant to The Open Group’s Technical Programme. They are intended to communicate the
findings to the outside world so as to stimulate discussion and activity in other bodies and
the industry in general.

• Snapshots

These provide a mechanism to disseminate information on its current direction and thinking,
in advance of possible development of a Specification, Guide or Technical Study. The
intention is to stimulate industry debate and prototyping, and solicit feedback. A Snapshot
represents the interim results of a technical activity.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision to align with new developments
and associated international standards. To distinguish between revised specifications which are
fully backwards compatible and those which are not:

• A new Version indicates there is no change to the definitive information contained in the
previous publication of that title, but additions/extensions are included. As such, it replaces
the previous publication.

• A new Issue indicates there is substantive change to the definitive information contained in
the previous publication of that title, and there may also be additions/extensions. As such,
both previous and new documents are maintained as current publications.

Corrigenda

Readers should note that Corrigenda may apply to any publication. Corrigenda information is
published on the World-Wide Web at http://www.opengroup.org/public/pubs.

Ordering Information

Full catalogue and ordering information on all Open Group publications is available on the
World-Wide Web at http://www.opengroup.org/public/pubs.

Systems Management: Universal Measurement Architecture (UMA) vii

Preface

This Document

This is a CAE Specification. It presents a compendium of the Universal Measurement
Architecture (UMA) documents, which comprises a UMA Guide plus a set of three
specifications. The 4 documents are:

• UMA Guide (see Part 1 of this specification).

This Guide reviews the issues surrounding performance measurement in Open Systems,
describes the general UMA architecture, and discusses the relationships that the UMA has
with other technologies. This UMA Guide is also available separately.

• UMA Measurement Layer Interface (MLI) specification (see Part 2 of this specification).

This defines the functional characteristics of the MLI, and the underlying semantics and
function calls that implement them. It also defines a format for headers appended to
measurement data captured through the DCI.

• UMA Data Capture Interface (DCI) specification (see Part 3 of this specification).

This is the interface between the data capture layer and the measurement control layer of the
UMA architecture.

• UMA Data Pool Definitions (see Part 4 of this specification).

The data pool defines a set of performance metrics which may be accessed by the two UMA
interfaces.

Audience

The UMA Guide is intended for those who wish to gain an introduction to the issues involved in
performance measurement. It is also intended as an introduction to the UMA and the associated
MLI, DCI and DPD specifications.

The target audience for the UMA Specifications is both system designers who need to implement
the respective interfaces, and performance professionals who need to understand how to deploy
these interfaces to optimium advantage.

Structure

• Part 1: UMA Guide

• Part 2: Measurement Layer Iinterface (MLI) CAE Specification

• Part 3: Data Capture Interface (DCI) CAE Specification

• Part 4: Data Pool Definitions (DPD) CAE Specification

viii CAE Specification

Trade Marks

UNIX is a registered trade mark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Limited.

Systems Management: Universal Measurement Architecture (UMA) ix

Referenced Documents

The following documents are referenced in this guide:

ASN.1
ISO 8824: 1990, Information Technology — Open Systems Interconnection — Specification
of Abstract Syntax Notation One (ASN.1).

BER
ISO/IEC 8825: 1990 (ITU-T Recommendation X.209 (1988)), Information Technology —
Open Systems Interconnection — Specification of Basic Encoding Rules for Abstract Syntax
Notation One (ASN.1).

DMI
ISO/IEC 10165-2: 1992, Information Technology — Open Systems Interconnection —
Structure of Management Information — Part 2: Definition of Management Information.

GDMO
ISO/IEC 10165-4:1992, Information Technology — Open Systems Interconnection —
Structure of Management Information — Part 4: Guidelines for the Definition of Managed
Objects.

GSS
CAE Specification, 1995, Generic Security Service API (GSS-API) Base (ISBN:1-85912-131-4).

NMF Strategy for Migration to GDMO
OSI/NM Forum Strategy for Migration to GDMO; Forum 010, Issue 1.0, January 1991.

SMF
ISO/IEC 10164: 1992 Information Technology — Open Systems Interconnection — Systems
Management (Parts 1 to 13 inclusive).

XMP
CAE Specification, March 1994, Systems Management: Management Protocol API (ISBN 1-
85912-027-X, C306).

XOM, Issue 2
CAE Specification, February 1994, OSI-Abstract-Data Manipulation API (XOM), Issue 2
(ISBN: 1-85912-008-3, C315).

XSH, Issue 5
CAE Specification, January 1997, System Interfaces and Headers, Issue 5
(ISBN: 1-85912-181-0, C606).

x CAE Specification

Referenced Documents

UMA Specifications

MLI
CAE Specification, January 1997 — Systems Management: UMA Measurement Layer
Interface, Part 2 of ‘‘Universal Measurement Architecture (UMA)’’ CAE Specification (ISBN
1-85912-117-9, C427).

Contained in Part 2 of this UMA specification.

DCI
CAE Specification, January 1997 — Systems Management: UMA Data Capture Interface,
Part 3 of ‘‘Universal Measurement Architecture (UMA)’’ CAE Specification (ISBN
1-85912-117-9, C427).

Contained in Part 3 of this UMA specification.

DPD
CAE Specification, January 1997 — Systems Management: UMA Data Pool Definitions, Part
4 of ‘‘Universal Measurement Architecture (UMA)’’ CAE Specification (ISBN 1-85912-117-9,
C427).

Contained in Part 4 of this UMA specification.

Systems Management: Universal Measurement Architecture (UMA) xi

Referenced Documents

xii CAE Specification

Guide

Part 1:

UMA Guide

The Open Group

ii Guide

Contents

Chapter 1 Introduction... 1
 1.1 Performance Measurement in Open Systems....................................... 1
 1.2 Issues addressed by the UMA.. 2
 1.2.1 Kernel Data.. 2
 1.2.2 Measurement Applications ... 3
 1.2.3 Distributed systems... 5
 1.3 Scope and Purpose of UMA.. 6

Chapter 2 Overview of UMA Architecture.. 7
 2.1 Data Capture Layer .. 8
 2.2 Data Capture Interface .. 8
 2.3 Measurement Control Layer .. 8
 2.4 Data Services Layer .. 8
 2.5 Local Measurement Application ... 8
 2.6 Measurement Layer Interface .. 9
 2.7 Measurement Application Layer... 9

Chapter 3 Features and Benefits of the UMA Interfaces 11
 3.1 Features and Benefits of the DCI ... 11
 3.1.1 Performance Management and the DCI ... 11
 3.1.2 DCI Service.. 12
 3.1.3 Name Space... 12
 3.1.4 Polled Metric and Event Support ... 13
 3.2 Features and Benefits of the MLI... 14
 3.2.1 Data Collection, Reporting and Recording .. 14
 3.2.2 UMA Messages... 14
 3.2.3 Screening and Filtering of Data .. 15
 3.2.4 Constructed Workloads and Summarisation 15
 3.2.5 UMA Data Storage... 15
 3.2.6 Data Capture Synchronisation.. 17

Chapter 4 UMA Data Pool ... 19
 4.1 UMA Name Space .. 19
 4.2 Data Pool Data Segments .. 21

Chapter 5 Distributed UMA... 23
 5.1 Extensible UMA Services and Configurations 24
 5.2 Interoperability.. 27

Part 1: UMA Guide iii

Contents

Chapter 6 Relationship of UMA to Other Technologies....................... 29
 6.1 Relationship to Frameworks .. 30
 6.2 SNMP and UMA... 32
 6.3 DMI and UMA... 33

 Glossary ... 35

 Index... 37

List of Figures

1-1 Collection Time Skew from Separate Collection Components............ 2
1-2 Components of a Distributed Transaction ... 4
2-1 UMA Reference Model ... 7
3-1 DCI Structure and Client/Server Relationships 12
3-2 Seamless Switch - Historical to Recent Data.. 16
3-3 Backwards Seek - Recent to Historical Data .. 16
4-1 UMA Name Space Structure ... 19
5-1 Fundamental Distributed UMA Configurations & Communications 24
5-2 ‘‘Small’’ Data Services Layer on a Local Host ... 24
5-3 Flexible UMA Services and Configurations... 26
6-1 UMA-CORBA Relationship... 31

iv Guide

Preface

This Document

This X/Open Guide reviews the problem space of performance measurement in open systems,
and introduces the architecture, features and benefits provided by the three X/Open Universal
Measurement Architecture (UMA) specifications:

• UMA Measurement Layer Interface (MLI) specification

• UMA Data Capture Interface (DCI) specification

• UMA Data Pool Definitions (DPD) specification

and serves as an introduction to these specifications.

These UMA specifications are published in Parts 2, 3 and 4 respectively of this document.

This UMA Guide is also available separately, as X/Open document number G507, ISBN 1-
85912-122-5.

Audience

This Guide is intended for those who wish to gain an introduction to the issues involved in
performance measurement.

It is also intended as an introduction to the X/Open UMA and the associated MLI, DCI and DPD
specifications as listed above.

Structure

• Chapter 1. Introduction — outlines the issues involved in addressing performance
measurement in open systems, and explains the scope and purpose of the X/Open UMA
specifications.

• Chapter 2, Overview of UMA Architecture — explains the UMA architecture.

• Chapter 3, Features and Benefits of the UMA Interfaces — brings out the advantages of the
UMA approach to performance measurement.

• Chapter 4, UMA Data Pool — describes particular features of the Data Pool within the UMA
architecture.

• Chapter 5, Distributed UMA — addresses extensibility and interoperability issues
associated with UMA.

• Chapter 6, Relationship of UMA to Other Technologies — discusses other technologies
impacting the UMA space.

Part 1: UMA Guide v

Preface

vi Guide

Acknowledgements

X/Open acknowledges the substantial contribution of the Performance Management Working
Group (PMWG), initially under the sponsorship of UNIX Systems Laboratories (USL) and
currently of the Computer Measurement Group (CMG), in the development of this Guide and
the three associated UMA specifications (MLI, DCI and DPD).

PMWG contributors to this UMA Guide include:

Robert Berry, IBM Corporation, Austin, TX, USA
Ram Chelluri: AT&T/Global Information Solutions, Dayton, OH, USA
Jim Van Sciver: Open Software Foundation, Cambridge, MA, USA
Leon Traister†: Amdahl Corporation, Sunnyvale, CA, USA

0. Editor.

Part 1: UMA Guide vii

Acknowledgements

viii Guide

Chapter 1

Introduction

1.1 Performance Measurement in Open Systems
The commercialisation of POSIX-based computing is continuing at a rapid pace, adding
capabilities not just expected, but desperately needed by MIS shops and new commercial users.
One such feature is performance management. The users familiar with mainframe data
processing environments are used to having sophisticated tools available to determine resource
utilisation, predict system capacities and growth paths, and even to compare CPU models for
making purchase decisions.

Although the open system concept is creating a revolution in applications development and
system migration paths, certain capabilities (such as performance management) have not been
standardised. Currently there is generally insufficient performance management functionality in
Open Systems, and even where it does exist it is often provided in a different way on systems
from different vendors.

Key areas of work in the development of the UMA specifications include performance data
availability and interfaces for its collection. Until the data and interfaces are standardised, each
computer vendor, performance software vendor, or large end user is faced with the task of
kernel modification to collect the necessary data, development of a proprietary kernel interface
to move the data to user-space, and development of custom performance monitoring and
management software. Until such interfaces are standardised, few performance management
tools will be built because of the cost of their migration between operating system versions or
POSIX-based system implementations.

As open systems become the operating systems of choice for larger, faster, and more complex
computer systems, there is an increased need to effectively manage these systems. But there
exists little software to support performance management of these complex systems. For
example, administrators of standard UNIX systems must rely on the system activity reporter
(sar) data to manage their systems. However, such information is often insufficent in scope,
inadequate in depth and cannot be properly controlled, especially by multiple performance
management applications in distributed environments. Performance management of large
applications, including databases, often has to rely on accounting data to measure activity, but
such data can be inappropriate since it was intended for a different purpose.

There are several reasons for the lack of performance management software. One reason is that
many of the desired metrics are not available. Another reason is the fear that release-to-release
kernel changes will make it necessary to frequently modify performance-related applications.
This discourages developers from using any but the most basic metrics or developing any but
the most basic applications, particularly in cases where the application must execute on
platforms supplied by different vendors. There are, furthermore, no well-defined interfaces for
obtaining even the existing performance data from the kernel, and the current access methods
are restrictive and expensive.

Systems Management: UMA Specification, Part 1 - Universal Measurement Architecture 1

Issues addressed by the UMA Introduction

1.2 Issues addressed by the UMA
In this section, the reasons for the definition of the UMA are outlined in terms of the issues that
have arisen with existing performance facilities in Open Systems.

1.2.1 Kernel Data

Extracting performance data from the kernel of an Open System has traditionally been done by
methods which involve user level utilities accessing the kernel data structures. An example of
this is the UNIX /dev/kmem interface which has historically been the primary interface used by
UNIX System performance measurement utilities for extracting data from the kernel. This
mechanism generally relies on the user level performance utility using the name of a particular
data structure to derive from the symbol table the virtual address of the structure. It can then
access the kernel data (using /dev/kmem in the case of UNIX) to seek to and read the value of
that data structure. The advantage of this approach is its generality: if the address of a data
structure can be found, its value can be read. But its generality is also a disadvantage. Since
almost any data structure can be used to provide performance data, the tendency is to do so
without regard to whether it is supported. This makes it very difficult to maintain a performance
application across releases when data structures change. For example, programs such as ps and
sadc have been notoriously difficult to maintain from release to release.

Processing Cost

The retrieval of each virtually contiguous piece of information requires a seek system call and a
read system call to extract the information from the kernel. If there are many such pieces, the
central processing unit (cpu) costs of gathering the information can be very high. Also, since
each piece requires a separate seek and read, it is very hard to guarantee that the data obtained is
consistent.

Access Permissions

For security reasons kernel data is not set to be readable by ordinary users. Thus performance
utilities (such as ps and sadc in the case of UNIX) must be run as privileged programs. Ordinary
programs must invoke the performance utilities and read data either through pipes or files. This
adds to the cost of accessing this information.

Binary Compatibility

In order to reduce the number of seeks and reads necessary to obtain the data, many metrics are
combined into a single data structure (for example, sysinfo in UNIX). The result is that
programs must be aware of the layout and contents of the data structure. If the data structure
layout or content change significantly between releases, binary compatibility cannot be
maintained; the programs must be recompiled with new headers that reflect the new data
structure layout and contents.

Data Synchronisation

Using a variety of user space collectors to gather data can result in skewed collection times due
to the scheduling delays for each process (see Figure 1-1 for a UNIX example). Hence if two user
level utilities (for example sar and stats in the case of UNIX) obtain performance information
that is then analysed as if it refers to the same time period, this skew means that the usefulness
of the data is impaired. A common source of user level collection would reduce such time skews.

2 Guide

Introduction Issues addressed by the UMA

 process
scheduling
 delay

kernel data 1

sar collection

read delay

stats collection

read delay

kernel data 2

user

kernel

 total measurement time skew

sar |______|_______|_____|______|______|_____|______|_____|_______|

stats |_ _____|______|_______|_____|______|______|_______|___ ___|______|

clock |_ _____|______|______|______|______|______|______|______|______|

Figure 1-1 Collection Time Skew from Separate Collection Components

Data Applicability

The privileged utilities that collect kernel information needed for performance analysis is often
oriented towards a particular use for the data. An example of this is the use of accounting
information for performance analysis. The effect of this is that performance applications often
get information they do not want, get it in the wrong form or cannot get it at all.

1.2.2 Measurement Applications

Existing performance measurement applications suffer from the lack of facilities specific to their
requirements to obtain performance information. The issues in the previous section concerning
kernel data obviously contribute to the problems faced by these applications but in addition
there are general issues that apply.

Multiple Data Collection

There may be several measurement applications running, performing different analyses of
performance information. It is commonly the case that there is no common collection
mechanism between such applications, resulting in the same data being collected, distributed
and stored separately by each application.

Control of Collection

Where there are several measurement applications running, each may try to control the way in
which performance data is collected resulting in a conflict. So, for example, where a privileged
program is invoked to collect performance information, one application may set the collection
interval to one value and another may set it to a different value.

Systems Management: UMA Specification, Part 1 - Universal Measurement Architecture 3

Issues addressed by the UMA Introduction

Methods of Collection

Where measurement applications have to use a variety of mechanisms to effect the collection of
performance information, the writing of such applications is unnecessarily complex. Different
methods have to be written to collect very similar data from different sources and provision
must be made for additional methods to appear for different systems and new release.

Real Time Data

Measurement applications that wish to have access to real time data as opposed to historical
data have to use different mechanisms. The effect of this is that data may be collected,
distributed and stored more than once and that it is difficult to write an application that will
work on both real time and historical data.

Events

By the nature of the mechanisms that are used to obtain performance information it is difficult to
integrate events, and the information they contain, into the pool of performance information.
Measurement applications should be able, if they wish, to access events as well as
synchronously requested data.

New Information

Increasingly systems are becoming capable of dynamic reconfiguration (for example hot pull
discs) and measurement applications need to be able to find out dynamically the objects that
exist and the performance information they can supply. Measurement applications also need to
have a mechanism by which they can be notified of changes that have occurred (that is, an event
mechanism).

Data Description

Generic measurement applications need to be able to handle classes of objects without
necessarily being aware of detailed differences between different classes of the same general
type. So, for example, it should be possible for a measurement application to be able to use the
performance information from any make and type of disc device. However, specialised
applications should be able to make use of detailed information from a particular make of
device.

4 Guide

Introduction Issues addressed by the UMA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA

R1 O R2 O + R3 O + R4+

TRANSACTION MANAGEMENT
 ENGINES

DATABASE ENGINES

Figure 1-2 Components of a Distributed Transaction

1.2.3 Distributed systems

Finally, we must consider the distributed environment. In the past, performance analysis
activities of a single platform at a time were meaningful because most, if not all, of the
processing of a user interaction took place on a single platform. In the emerging open systems
environment, however, this is no longer the case. Figure 1-2 illustrates the situation where a
user interaction is serviced by processing on a number of platforms and in addition, these
platforms may be supplied by a variety of vendors. In this case, the response time experienced
by the user is dependent on the response times of the individual service platforms and on the
response times of various network components. To be able to perform an analysis of response
time requires that data be captured and tagged with identification at least at a transaction level
and that there be a mechanism that can gather this data from distributed systems where it is
captured1.

1. The tagging of workload components is predominately the concern of provider instrumentation and the analysis of performance
data is an issue for measurement applications; both are formally outside of the scope of UMA itself, which is focused on the
control of data acquisition and on the delivery and management of performance data. UMA does provide a mechanism
(UMAWorkInfo instances) for containing and transmitting a flexible number of workload identifiers which may include a
transaction ID. It will be necessary to track emerging instrumentation methodologies and standards efforts from DCE, ISO, and
OMG working groups to ensure that UMA remains capable of appropriate functionality in this area.

Systems Management: UMA Specification, Part 1 - Universal Measurement Architecture 5

Scope and Purpose of UMA Introduction

1.3 Scope and Purpose of UMA
To help address the above data collection issues and limitations, the following three
specifications for Universal Measurement Architecture (UMA) have been developed:

• UMA Performance Measurement Data Pool (DPD)

• UMA Data Capture Interface (DCI)

• UMA Measurement Layer Interface (MLI).

This Guide describes the benefits and features of the Universal Measurement Architecture, and
serves as an introduction to these UMA specification documents for those new to this
architecture.

The Universal Measurement Architecture (UMA) provides support for the collection,
management and reporting of performance data and events.

Its goals include:

• standardisation and portability of interfaces and data

• collection from both kernel and application sources

• distributed access - multiple system images

• control of collection overhead through common collection, configurable metrics and
threshold filtering of data

• improved data capture synchronisation

• scalable and extensible services

• seamless access between historical and current data

• simple specification of interval and event data reporting.

UMA, therefore, may be considered as a powerful agent for collecting and managing
performance data.

The following Chapters describe the interfaces and services in more detail.

6 Guide

Chapter 2

Overview of UMA Architecture

The UMA reference model defines four layers and two interfaces as shown in Figure 2-1.

System
Performance

Monitor

Local
Management
Application

Kernel Data Application Data

System
Model

Network
Monitor

Tuning
Advisor

MLI (Measurement Layer Interface)

DCI (Data Capture Interface)

Data Capture Layer

Data Services Layer
- access network
- format data to standards
- maintain archive
- distribute data

- merger requests
- synchronize capture
- timestamp

- cpu
- disk
- memory
- network

- events
- traces

- subsystems
. oltp
. dbms

- user applications

- events
- traces

Measurement Application Layer

Measurement Control Layer

. . .

Figure 2-1 UMA Reference Model

In this Chapter, these layers and interfaces are briefly described from the bottom up, that is,
starting from the Data Capture Layer.

Systems Management: UMA Specification, Part 1 - Universal Measurement Architecture 7

Data Capture Layer Overview of UMA Architecture

2.1 Data Capture Layer
The Data Capture Layer is responsible for collecting raw data. Its architecture together with the
Data Capture Interface (DCI) allow data from multiple sources to be obtained by a single
consumer above the DCI, and this in turn improves the synchronisation of the data collection.

2.2 Data Capture Interface
The Data Capture Interface is the interface between the Measurement Control Layer and the
Data Capture Layer. It provides the means for dynamically extending data collection to new
providers such as databases without affecting existing programs.

2.3 Measurement Control Layer
The Measurement Control Layer schedules and synchronises data collection through the Data
Capture Interface.

2.4 Data Services Layer
The Data Services Layer accepts measurement requests from Measurement Application
Programs (MAPs) through the Measurement Layer Interface, and distributes data to the
destination requested by the MAP. A destination may include, the MAP itself, a private file or
the UMA Data Storage (UMADS), which will be described later.

A feature of UMA is that the interface between the Data Services Layer and the Measurement
Control Layer is not formally specified. These two layers, though functionally distinct, and
which constitute a logical service layer for the MLI, may be combined in some implementations.

2.5 Local Measurement Application
Where the facilities provided by the Measurement Control Layer and the Data Services Layer are
not required, Local Measurement Applications can be provided which use the DCI directly. Such
an application could also function as an agent for distributing performance data outside the
scope of the UMA.

8 Guide

Overview of UMA Architecture Measurement Layer Interface

2.6 Measurement Layer Interface
The Measurement Layer Interface (MLI) is the interface between the Measurement Application
Layer and the Data Services Layer. It provides the medium for all interactions between a MAP
and UMA, thus isolating the application for the implementation details of the rest of UMA.

The Measurement Layer Interface allows transparent communication across networks, therefore
a MAP running on one system can request and examine data from another system. Together
with the Data Services Layer, it provides an infrastructure for the distribution of data over large
numbers of heterogeneous sites and multiple platforms.

2.7 Measurement Application Layer
The Measurement Application Layer consists of the various Measurement Application Programs
(MAPs) that provide services for technical support of management goals. These MAPs may
consist of performance monitors, capacity planning tools, tuning advisors, and so on.

Systems Management: UMA Specification, Part 1 - Universal Measurement Architecture 9

Overview of UMA Architecture

10 Guide

Chapter 3

Features and Benefits of the UMA Interfaces

This Chapter provides further description of the interfaces defined in the two UMA interface
specifications:

• the UMA Data Capture Layer Interface (DCI) specification (see reference DCI)

• the UMA Measurement Layer Interface (MLI) specification (see reference MLI).

It also describes how they relate to one another.

3.1 Features and Benefits of the DCI
The Data Capture Interface (DCI) is the lowest architectural layer in the Universal Measurement
Architecture (UMA). This section will describe the DCI and the services provided by the DCI,
give an understanding of the problems solved by this layer, and the problems that the DCI was
not meant to solve.

The DCI is a collection of programming interfaces. The DCI specification defines the set of DCI
interfaces and the arguments and return values for those interfaces. The DCI specification also
defines the service provided by these programming interfaces.

3.1.1 Performance Management and the DCI

The DCI addresses several important problems in the performance management arena:

• it provides a consistent interface between system functions that are providing metrics and
those functions that consume these metrics

• it allows any system entity, applications, daemons, or the operating system to provide
metrics

• it separates the metric source from the method for acquiring the metrics. This allows metric
consumers to use a uniform acquisition method regardless of source.

One of the problems the DCI was not meant to solve is the transmission of data across the
network. The DCI interfaces explicitly limit their scope to metric transmission between
providers and consumers on the same system. The reason for this scope limitation is that the
intersystem metric transmission problem is already addressed by both the higher UMA
architectural level (MLI and Data Services Layer) and by existing solutions, such as SNMP.

In summary, the DCI is a relatively simple collection of interfaces to provide a uniform
mechanism for transmitting and collecting performance information from any system entity,
from the operating system to applications. Its primary benefits are the standardisation of the
collection interface, the elimination of prior knowledge of the metrics being collected, and use of
a uniform access mechanism regardless of metric source.

Systems Management: UMA Specification, Part 1 - Universal Measurement Architecture 11

Features and Benefits of the DCI Features and Benefits of the UMA Interfaces

3.1.2 DCI Service

The service provided by this API (Application Programming Interface) is twofold. First, the DCI
acts as a connection broker between those system components which produce metrics (metric
providers) and those system components which consume metrics (metric consumers). Second, the
DCI provides a repository, called the DCI name space, for metric providers to store information
about the set of available metrics. Metrics consumers can traverse and interrogate the DCI name
space to find out information about the available metric set. It is not the metrics that are stored
in the name space, instead it is information about the metrics; the metrics themselves are
managed and supplied by the individual metrics providers. The DCI structure and the
client/server relationships are illustrated in Figure 3-1.

Metrics
Provider

Provider Data
Capture Library

Consumer Data
Capture Library

Metrics
Consumer

Metrics
Server

Metrics
Name
Space

Data

Capture

Interface

Figure 3-1 DCI Structure and Client/Server Relationships

To clarify the relationship of this figure with the one previous showing the full UMA
architecture, it should be observed that when an implementation includes the MLI, the UMA
Data Services and Measurement Control Layers (which are the MLI service layers) play the role
of a DCI metrics consumer.

3.1.3 Name Space

Through use of the DCI, performance applications and MLI service consumers can traverse the
name space and find out what type of metrics are available, the units and data types of
individual metrics, the number and type of available measured objects, and human readable
descriptive labels for both the metrics and measured objects.

Through the use of wildcards in the description of a metric, a metric consumer can request
multiple metrics in one call. This enables the cost of delivering the metrics to be reduced and the
skew between metrics to be minimised.

In the terminology used by the DCI specification, the metrics name space contains names for
metric classes and instances of those classes. A metric class is a grouping of metrics and the
information used to describe that metric set. These metric attributes are such things as units and
data types. A metric instance is a representation of a measured object, such as a disk. Thus there
can be a metric class which describes disk I/O metrics and that class can have five instances, one

12 Guide

Features and Benefits of the UMA Interfaces Features and Benefits of the DCI

for each of the system’s disk drives. A metrics consumer can find out about the metrics by
reading the metric class attributes. The consumer can then read the disk performance data for
one or all class instantiations. It is at this point the DCI’s connection broker service comes into
play. The metrics consumer does not require prior knowledge of which provider supports the
desired metric set nor does it need to know the mechanics of how those metrics are delivered.
This is all handled by the DCI service and the relationship it maintains with the set of system
providers.

3.1.4 Polled Metric and Event Support

There are two types of data supported by the DCI: polled metrics and events. The distinction
between the two is whether the consumer or provider is primarily responsible for metric
delivery. In the case of polled metrics, the consumer gets metrics at whatever rate is convenient.
In the case of event metrics, consumers must wait for providers to deliver events as these events
occur. Traces in UMA are implemented as high frequency events and are normally directed to a
file by the DCI consumer.

Systems Management: UMA Specification, Part 1 - Universal Measurement Architecture 13

Features and Benefits of the MLI Features and Benefits of the UMA Interfaces

3.2 Features and Benefits of the MLI
The Measurement Layer Interface (MLI) is an application programming interface (API) and a set
of services (the UMA Data Services Layer) that simplify the implementation of measurement
application programs (MAPs) in a distributed environment.

Note: In the following discussion we refer to both polled data and events as data .

The MLI implements the following aspects of the UMA architecture:

• allows simple specification of polled data and event collection parameters,

• establishes a consistent message architecture for UMA data, and data is available in simply
parsed structures

• manages the distributed collection, reporting and recording of current and historical data

• provides synchronised capture of data

• implements filtering of data based on selection criteria and thresholds to minimise network
traffic

• implements seamless switching between current and historical data.

3.2.1 Data Collection, Reporting and Recording

Through the MLI, a MAP can specify the types and characteristics of data to be reported to a
MAP. UMA distinguishes between the reporting of data to a MAP and data collection. A MAP
requests data from a specified source to be reported to a specified destination. The UMA services
act on behalf of a MAP to perform the actual data collection through the Data Capture Interface
(DCI). Performance overhead is minimised by making use of existing collections in progress for
other MAPs that have requested the same performance measurement data or events.

3.2.2 UMA Messages

UMA messages provide the basis for transmitting existing notifications and data from UMA to a
MAP. In addition, they are the default basis for transmitting requests between Data Services
Layers on distributed nodes. The data in UMA messages is identified by classes and subclasses;
this is defined in detail in Chapter 4.

Control Messages

UMA control messages include MAP requests to the UMA facility, UMA condition notifications
from UMA to a MAP, and in distributed environments, request and acknowledgment messages
between remote and local Data Services Layers.

Data Messages

Data Messages contain either interval data, event data or configuration data:

• interval data is requested by a MAP for capture at the end of a specified time interval. The
data reported through the MLI is the difference in value of the requested metrics over the
interval, or absolute counter values

• event data consists of notification messages to the MAP indicating that some predefined set of
system events has occurred. The system events include UMA configuration (for example, the
availability of metrics), system configuration (for example, hardware information — such as
number/type of processors), and process-end summaries.

14 Guide

Features and Benefits of the UMA Interfaces Features and Benefits of the MLI

• configuration data contains data informing an MLI-based application of the data classes and
subclasses available for each registered provider to the DCI.

Certain message subclasses have both interval and event forms. This permits the MAP to select
whether data is to be reported at each interval end, at an event (for example, the termination of a
process), or both.

Depending on the specified destination, a data message may be directed to the MAP itself, to
UMADS (a common UMA data storage facility), or to a private file for later processing.

3.2.3 Screening and Filtering of Data

UMA provides two means by which the message traffic to a MAP (and possibly connected
network traffic) can be reduced:

• establish threshold settings, thereby preventing the transmission of data messages unless the
threshold conditions are satisfied (for example when the runqueue length reaches a
particular value)

• adjust the granularity of the collected data (for example, by restricting reporting to a
particular process or user id).

3.2.4 Constructed Workloads and Summarisation

The UMA MLI supports requesting of workload construction by permitting the labelling of
workloads. These constructed workloads typically represent the result of a request for filtering
and/or summarisation of workload metric subclasses. For example, one could request the
selection of all commands starting with the letters ‘‘abc’’ and one could additionally request that
a specific per-work unit metric subclass report its process metrics over the sum of all processes
whose command names start with these same letters.

A constructed workload is assigned an identifier by the caller which can then be used to tag this
workload for later reference.

A special constructed workload that is the complement of a specified workload is also available.
The complement workload metrics are derived by subtracting the selected per-work-unit
workload data values from the available global equivalents. For example, for reporting at the
process level, if the selection criterion is ‘‘User Name: Albert’’, then the cpu utilization metric for
the complement workload would consist of the global cpu utilization minus the usage for all
processes running under the user name ‘‘Albert’’.

3.2.5 UMA Data Storage

UMA provides for the reading and writing of messages to and from conventional (private) files.
In addition, UMA provides UMADS, a common facility for access and maintenance of historical
data.

UMADS maintains individually accessible collections of data by host, but there is no
requirement that data for a specific host be kept on that host. Instead, a systems administrator
can arrange to have UMADS collections for any number of hosts stored on performance data
servers.

Systems Management: UMA Specification, Part 1 - Universal Measurement Architecture 15

Features and Benefits of the MLI Features and Benefits of the UMA Interfaces

Seamless Access

UMA provides seamless access between historical and recent (live) data. This means that a MAP
may be receiving UMADS historical data until the time reaches the present, at which time UMA
automatically switches its source to provide live data (see Figure 3-2).

UMADS
(Historical Performance Data)

RECENT
(Live Performance Data)

· ·

Current Message Next Message

Get next messages issued by the MAP

Time

Figure 3-2 Seamless Switch - Historical to Recent Data

UMA also provides a seek mechanism, so that a MAP can navigate through time and can
seamlessly access UMADS data from the present time (or the reverse). A seek from RECENT
(current data) to UMADS (historical data) is illustrated in Figure 3-3.

UMADS
(Historical Performance Data)

RECENT
(Live Performance Data)

Backwards seek (6 intervals) issued by the MAP

Time

.

Current Data IntervalNext Data Interval

Figure 3-3 Backwards Seek - Recent to Historical Data

16 Guide

Features and Benefits of the UMA Interfaces Features and Benefits of the MLI

3.2.6 Data Capture Synchronisation

The UMA Data Services and Measurement Control Layers enable better synchronised data
capture in two ways:

• first, the UMA Data Services can utilise global time synchronisation facilities, if they are
available, to ensure that polled data collections on different platforms occur at the same time

• second, on each individual platform, the UMA Measurement Control Layer merges all
measurement requests for polled data so that they may be requested at one time by a single
process. This reduces the time skew of the data to the length of the collection time itself.
UMA provides an optional additional check on the time skew at the UMA subclass collection
level. If the collection time duration for the subclass is inordinately long, the capture can be
re-attempted immediately.

Systems Management: UMA Specification, Part 1 - Universal Measurement Architecture 17

Features and Benefits of the UMA Interfaces

18 Guide

Chapter 4

UMA Data Pool

The UMA Data Pool is the conceptual grouping of all performance data, and is represented at
both the DCI and MLI. The representation at these two interfaces is different due to the different
purposes of the interfaces but there is a direct mapping between the representations.

The UMA Data Pool groups data into classes and subclasses. Each data class can have several
subclasses. The class identifies the major grouping (for example, memory, processor) and the
subclass provides a specific grouping with class (virtual memory usage, block I/O counters).
Within a subclass there is data (or metrics) which can be used to represent various kinds of data,
including absolute counts, different counter values over an interval, and event data.

4.1 UMA Name Space
Figure 4-1 illustrates characteristics of the UMA name space.

Provider

Class

Class

Instance

Datum

class.0class.x

etc.

root

system
data pool

etc.

 instance.0instance k

 datum.0datum z

system
proprietary

etc. etc.

application.n

.

·
·

etc.

 class.0class.y

DCI
Structure

MLI
Structure

Provider

Class

Subclass

Instance
(array or

 data element)

Datum

Figure 4-1 UMA Name Space Structure

First, there are the levels of granularity as seen by an MLI or DCI consumer. These levels descend
through class, subclass, instances and individual data items. Instances are used to identify
specific occurrences of data, for example, a process id or disk drive address. In addition, there
are metric attributes that describe the data itself. These include data type, units, labels, and
event attributes. An MLI application accesses these by requesting specific UMA Configuration

Systems Management: UMA Specification, Part 1 - Universal Measurement Architecture 19

UMA Name Space UMA Data Pool

subclasses. A DCI consumer can request these through a set of API calls.

Another characteristic is that of a provider dimension (shown as the first level under the name
space root). The UNIX kernel is one such provider, albeit one for which the class definitions have
been already addressed in detail. Providers for other operating systems are not only possible but
will be encouraged, as will providers for user application components such as DBMS or
transaction management components. End-users may also wish to instrument their mission-
critical applications and include this performance data in the UMA name space as well.

It should be noted that there are some differences between the MLI and DCI views of the name
space. The DCI maintains a name space structure which allows multiple class and instance
levels (instances and data may only occur at the lowest class level in order to avoid object
naming ambiguities). The MLI consumer (that is, a MAP) sees data assembled in simple
class/subclass structures presented in data messages. Instances of a metric are either uniquely
designated by an identifier in the subclass2 or by an array index (for example, system call
number). The DCI name space cross reference number may be used to uniquely identify each
metric in an MLI-based application (for example, for specifying a threshold variable). This
number is a string of period-separated numeric characters representing class, subclass and
position number in the provider’s Data Pool3.

2. For example, as described in the referenced DPD Specification per work unit subclasses, a process identifier is a UMAWorkInfo
instance in the DCI and MLI namespaces.

3. See, for example the xref data names in the referenced DPD Specification.

20 Guide

UMA Data Pool Data Pool Data Segments

4.2 Data Pool Data Segments
The Data Pool specification describes three conceptual data segments or groupings within a data
subclass. These are:

• basic
This is a segment of universally supplied data for the subclass as defined by the Data Pool.
Every implementation of UMA is expected to supply this segment and its data.

• enhanced
This is a segment of data whose structure and content are defined by the Data Pool, but this
segment or some of its data may or may not be present in a particular implementation.

• extension
This segment may be present. It is data specific to a vendor’s hardware or software
implementation.

The presence or absence of particular segments or data items are indicated by attributes in UMA
configuration subclasses.

Systems Management: UMA Specification, Part 1 - Universal Measurement Architecture 21

UMA Data Pool

22 Guide

Chapter 5

Distributed UMA

The performance management of distributed environments implies that in general data can be
collected on separate network-connected hosts, archived on any host or hosts an administrator
chooses to, and can be accessed by sufficiently authorised MAPs executing anywhere in the
network.

Systems Management: UMA Specification, Part 1 - Universal Measurement Architecture 23

Extensible UMA Services and Configurations Distributed UMA

5.1 Extensible UMA Services and Configurations
The UMA Data Services Layer is, for each host, the hub of UMA communications between hosts.
In a simple form, this situation is depicted in Figure 5-1.

Measurement Layer

Interface (MLI)
DATA SERVICES

LAYER
(LOCAL)

MEASUREMENT
 CONTROL
 LAYER

DATA CAPTURE
 LAYER

MEASUREMENT
APPLICATION

LAYER

Data Capture

Interface (DCI)

DATA SERVICES
LAYER

(REMOTE)

MEASUREMENT
 CONTROL
 LAYER

DATA CAPTURE
 LAYER

"Local Host" "Remote Host"

Figure 5-1 Fundamental Distributed UMA Configurations & Communications

Figure 5-1 shows a full UMA configuration on the local host (the host executing a MAP)
communicating with a remote host that is, in this case, executing only the bottom three UMA
Layers.

It is quite possible on the other hand to have the local host exist only to be a platform for control
and display of performance data collected elsewhere. In this case, it will not be executing a
Measurement Control Layer nor a Data Capture Layer, but instead, just a Data Services Layer
and the MAP (together with its linked MLI). Furthermore, its Data Services Layer is much
simplified, since it has no local data collections to coordinate or process, and it may not even be
supporting a local UMADS. This situation is depicted below in Figure 5-2.

24 Guide

Distributed UMA Extensible UMA Services and Configurations

Measurement Layer

Interface (MLI)
SMALL

DATA SERVICES
LAYER

(LOCAL)

MEASUREMENT
APPLICATION

LAYER

Data Capture

Interface (DCI)

DATA SERVICES
LAYER

(REMOTE)

MEASUREMENT
 CONTROL
 LAYER

DATA CAPTURE
 LAYER

"Local Host"

"Remote Host"
Figure 5-2 ‘‘Small’’ Data Services Layer on a Local Host

Here the local Data Services Layer (referred to as ‘‘small’’) is much simplified, merely acting as a
forwarding service for local MLI requests to the remote host and for responses and data from the
remote host back to the MAP through the MLI.

In practice, one would like to deploy instances of UMA components that provide only those
services that may be required in a given case. For example, there is no need to (nor is it desirable
to) deploy an instance of the Data Services Layer that implements UMADS reading and writing
on a host that is exclusively an object for data collection.

A related step to deploying only those UMA services required in a given instance is to deploy
only those configuration components required. For example, there is no need to deploy either
local Measurement Control or Data Capture Layers on a host that is used only for the analysis
and display of performance data from other hosts.

Systems Management: UMA Specification, Part 1 - Universal Measurement Architecture 25

Extensible UMA Services and Configurations Distributed UMA

Figure 5-3 depicts a sampling of possible UMA service and configuration instances.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Data Services
Layer

Measurement
Control

Layer

Data Capture
Layer

Auxiliary Analysis
and Display Station

Measurement
Layer

Interface
(MLI)

Full UMA Node
Implementation

Data Capture

Interface
(DCI)

UMA-Compatible
Capture Platform

Small Data
Services Layer

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

Small Data
Services

 and
Measurement

Control
Layers

Data Capture
Layer

Measurement
Application

Layer

Network

Service

UMA-Compatible
Capture Platform

with Agents

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Small Data
Services

 and
Measurement

Control
Layers

Data Capture
Layer

Gateway Local

Network

Service

Other
Management

Protocols

Mgt
Cmds

Network

Service

Figure 5-3 Flexible UMA Services and Configurations

Moving from left to right, we first have a host that is used exclusively for analysis and display of
data - it implements only the MLI and a ‘‘small’’ Data Services Layer. Next, is a ‘‘full’’
configuration that has all of the layers of the UMA reference model and all of its services - this
host is used both as an object of data collection, a repository of archival performance data
(UMADS), and as a platform for analysis and display applications. The next two platforms are
used only for the collection of live data (they have no read or write access to UMADS) and so
implement only ‘‘small’’ Data Services Layers. The rightmost platform additionally supports
two local measurement applications, one that monitors its performance and issues local
management commands (not part of UMA) that make adjustments to promote better
performance of certain critical applications, the other to export some of the performance data via
other protocols (to an SNMP-based monitor, for example).

26 Guide

Distributed UMA Interoperability

5.2 Interoperability
The Measurement Layer Interface supports the semantics of distributed data sources and
destinations. The effect of this is that a Measurement Application Program (MAP) can request
data from a number of sources throughout the distributed systems and these will be presented,
at the MLI, in a co-ordinated manner. In addition, a MAP can specify both the source and
destination of the data, thus enabling it to control the storage of measurement data on a
Performance Data Server. The Data Services Layer is responsible for co-ordinating the distribution
of data, which it does by interactions between such layers on each system that is involved in
providing a UMA service.

The default protocol and interface by which Data Services Layers communicate is TCP/IP with
sockets (using the registered ports).

UMA messages contain information on byte ordering, enabling them to be used between
systems which have different conventions.

Systems Management: UMA Specification, Part 1 - Universal Measurement Architecture 27

Distributed UMA

28 Guide

Chapter 6

Relationship of UMA to Other Technologies

This Chapter briefly consider the relationships that the UMA architecture and functionality have
with other system management or measurement technologies in open system environments.

Systems Management: UMA Specification, Part 1 - Universal Measurement Architecture 29

Relationship to Frameworks Relationship of UMA to Other Technologies

6.1 Relationship to Frameworks
In the context of distributed systems management frameworks, the UMA measurement model
fits naturally into CORBA-based4 environments. The Measurement Application Programs are
clients using the services provided by the Data Services Layer and this gives a number of
administrative and functional benefits provided by these frameworks. These include:

• the definition of services that provide discrete functionality enables individual systems to be
configured to provide only those services that are required.

Thus, for example, on one node that functions as a measurement data server, we might wish
to configure a measurement server instance that includes the method for writing to a
historical archive of performance data, but not do so at another node that functions only as a
business application entity, that is, an object that provides performance metrics about itself.

• the ability to identify and authenticate a measurement application program and its invoker,
and to authorise access to appropriate measurement data services (security).

For example, some measurement applications and users might have authorisation to write to
some specific database within a measurement data archive but not to others, or some users
might have the authorisation to see performance data concerning some business
application(s) but not others, etc.

• the ability to transparently operate measurement applications, server objects, and Data
Capture Layer collector objects across locations in a network.

This implies, for instance, that a measurement application at one network location (a
manager system) may request and receive data from a measurement server or managed
system at another network location without having to directly establish contact with the
remote provider. The measurement model formulates such access as a peer-to-peer
communications between objects in the Data Services Layer.

• providing a repository for well-defined interfaces.

For the measurement model these would be the Measurement Layer Interface (MLI) and the
Data Capture Interface (DCI).

4. Common Object Request Broker Architecture, an approach for supporting distributed object-oriented applications, formulated
by the OMG.

30 Guide

Relationship of UMA to Other Technologies Relationship to Frameworks

Figure 6-1 illustrates a possible mapping of the UMA onto CORBA.

Object Request
Broker (ORB)

Management
Services

Object
Services

Object Request
Broker (ORB)

Managed
Object

MAP/MLI DSL/MCL/DCI DSL/MCL/DCI
Data

Providers

Task Oriented
Mgmt Object

Object
Services

Management
Services

Management
Application

Task Oriented
Mgmt Object

Figure 6-1 UMA-CORBA Relationship

Systems Management: UMA Specification, Part 1 - Universal Measurement Architecture 31

SNMP and UMA Relationship of UMA to Other Technologies

6.2 SNMP and UMA
The Simple Network Management Protocol (SNMP) is based on an architectural model that
consists of a number of network management stations and network elements. The management
stations execute management applications which monitor and control the network elements.
The network elements are devices such as hosts, gateways, terminal servers, which have
management agents responsible for performing the network management functions requested
by the network management stations. The SNMP protocol is used to communicate management
information between the network management station and the agents in the network elements.

The Management Information Base (or MIB) is a virtual data store through which managed
objects are accessed. Objects in the MIB are defined using Abstract Syntax Notation One
(ASN.1) (which is how data objects are defined in the UMA DCI name space). Object types
include integers, IP addresses and counters (non-negative integers).

Although the MIB has included some host level information, most of it is not of the fine
granularity required for system performance management. The MIB focus has been primarily on
network information, whereas the UMA Data Pool has focused extensively on the host with
some network data included. In this sense, the MIB and the UMA Data Pool are mostly
complementary.

SNMP as a protocol implies that the management station and the agent in a network element
communicate via the network, thus data collection implies network load. In UMA, this is not
necessarily true; one can have a local DCI or MLI consumer on a host that collects, analyzes and
acts on data collected for that host, with no resulting network load. Furthermore, where data is
to be exported from a host, UMA intrinsically provides mechanisms for data selection and
threshold filtering, thus reducing network traffic to only the most essential.

Architecturally, UMA and SNMP can complement each other in the following two ways:

• using SNMP protocol, a provider can acquire and supply extended network information to
UMA from the MIB to UMA consumers.

This is done in the most straightforward manner by registering the name space contents for
MIB- provided data under an SNMP provider position in the DCI name space.

• UMA may act as a data- or event-supplying agent to a management application using SNMP
protocols.

Depending on the complexity of the task, either a simple DCI consumer application or a
MAP can play this agent role. Using a MAP built on the MLI, it is possible to produce either
composite numerical information or SNMP traps based on data simultaneously acquired
from a set of distributed platforms.

It is expected that a number of organisations will investigate and prototype implementations
based on either or both of these approaches to the SNMP/UMA relationship.

32 Guide

Relationship of UMA to Other Technologies DMI and UMA

6.3 DMI and UMA
The Desktop Management Interface (DMI) specification from the Desktop Management Task
Force (DMTF) describes a general API for obtaining management information from system
components. As a single system interface, it cannot really be compared with UMA which
through its MLI and Data Services Layer gathers data from distributed nodes and archives it in a
location-transparent fashion. Furthermore, DMI has no provision for maintenance of or access
to historical data.

On cursory examination, the DMI may appear to have similar function to the DCI component of
UMA. Both have the goal of providing component instrumentation to management
applications. Both are single system interfaces. Both provide for polled data acquisition as well
as component events.

However, there are substantial differences. These arise from the DCI having been designed
specifically for performance management. This has resulted in a richer name space and
navigation mechanism (consider, for example, the unrestricted name space depth and the
wildcarding capability supported by the DCI); the ability to obtain large amounts of data
spanning different system components with relatively small queries and to do so at a high rate
— the DMI instead mandates the formulation of requests into small units making the requesting
of large amounts of data require the issuing of many requests. Furthermore, the UMA interfaces
and name space can support the notion of trace by use of high-speed events, for which
substantial volumes of data can be directed to a file at a very high rate.

As for events (sometimes called indications in the DMI specification), the DMI requires that each
management application that may wish to be notified of even just a single event receive all
events, which requires management applications to filter for those events they wish to examine.
In server environments, there will be many events occurring (say, for example, process
terminations) and it would be most inefficient to notify all management applications of each and
every one. The UMA interfaces allow consumers to specify event sensitivity so that the DCI and
the Data Services Layer will selectively notify their consumers of only those events that were
selected.

Considering next the DMI MIF file that describes a component’s manageable characteristics , this
file must be loaded (or reloaded) in its entirety into the MIF database each time there is a change
to the availability of a characteristic . This approach to registration is far more suited to relatively
static data such as represented by system configuration and availability information than it is to
rapidly changing metric availability. Performance management requires (and the DCI provides)
more dynamic registration right down to the metric and instance levels as might, for instance, be
represented by the appearance and termination of a process thread.

It is therefore expected that systems will support both DMI and UMA. UMA (through the DCI)
will provide access to the typically very dynamic and high volume performance data, while DMI
will make configuration and vital product data available (for example). Where appropriate, DCI
providers could make use of the DMI to obtain the configuration information required to
support the UMA Data Pool. This would ensure a single source for this type of data.

Systems Management: UMA Specification, Part 1 - Universal Measurement Architecture 33

Relationship of UMA to Other Technologies

34 Guide

Glossary

CORBA
Common Object Request Broker Architecture, from the OMG. See the referenced CORBA
specification.

DBMS
DataBase Management System

DCI
Data Capture Interface

DMI
Desktop Management Interface, from the DMTF.

DMTF
Desktop Management Task Force: a special-interest group developing a Desktop Management
Interface for systems management of distributed desktop computer resources.

DPD
Data Pool Definition

/dev/kmem
Historically, this is the primary interface used by UNIX system performance measurement
utilities for extracting data from the kernel.

interoperability
The ability of distributed systems - software and hardware on multiple machines and from
multiple vendors - to communicate effectively.

kernel
The name commonly used to refer to the central processing software which all interfaces (to
memory, device drivers and input/output subsystems) use in a computer system.

MAP
Measurement Application Program

MIB
Management Information Base

MIS
Management Information System

MLI
Measurement Layer Interface

OMG
Object Management Group

ORB
Object Request Broker: provides the means by which clients make and receive requests and
responses.

PMWG
Performance Management Working Group (PMWG). This group was initially sponsored by
UNIX Systems Laboratories (USL) and is now sponsored by Computer Measurement Group
(CMG).

Systems Management: UMA Specification, Part 1 - Universal Measurement Architecture 35

Glossary

POSIX
A group of operating system interface and environment standards, developed under the aegis of
the Institute of Electrical and Electronic Engineers (IEEE), and based on the UNIX operating
system documentation, which are designed to support application portability at the source level.

ps
A UNIX environment command to display the status of current processes.

sadc
data collection process associated with sar.

sar
system activity reporter - a tool in the UNIX environment.

sysinfo
A UNIX environment structure that contains system information.

SNMP
Simple Network Management Protocol: a protocol for managing networks which use the
Internet Protocol Suite (IPS).

UMA
Universal Measurement Architecture

UMADS
UMA Data Storage

36 Guide

Index

/dev/kmem...35
accounting ..1
agent ..8
applications..3
benefits..11
client/server relationship12
collection time skew...3
constructed workloads..15
CORBA ...30, 35
data capture layer ...8
data capture synchronisation.................................17
data collection ...14
data pool...19
data screening and filtering....................................15
data segment..21
DBMS ..1, 35
DCI ...6-8, 35
DCI benefits ...11
DCI data types...13
DCI features...11
DCI service...12
DCI structure ...12
distributed systems ..5
distributed transaction ..5
distributed UMA...23
DMI..35
DMI and UMA ..33
DMTF..33, 35
DPD ...6, 35
event support ..13
extensibility..24
features ...11
frameworks..30
interoperability ...27, 35
kernel...35
kernel data..2
local measurement application................................8
MAP ..8, 24, 35
measurement application layer9
measurement control layer.......................................8
metric...1
MIB ..35
MIS...35
MLI...6-7, 9, 35
MLI benefits ...14
MLI features...14

name space...19
OMG..30, 35
ORB..35
other technologies ..29
performance management......................................11
PMWG ..35
polled metric support ..13
POSIX..1, 36
ps..36
sadc..36
sar...1, 36
scope & purpose ...6
SNMP ..36
SNMP and UMA...32
sysinfo ...36
UMA..2, 6, 36
UMA & CORBA..31
UMA configurations ..24
UMA data pool ...19, 33
UMA messages ...14
UMA name space ...19
UMA name space structure....................................19
UMA reference model ...7
UMA services ..24
UMADS..15, 24, 36

Systems Management: UMA Specification, Part 1 - Universal Measurement Architecture 37

Index

38 Guide

CAE Specification

Part 2:

UMA Measurement Layer Interface (MLI)

The Open Group

ii CAE Specification

Contents

Chapter 1 Introduction... 1
 1.1 Purpose ... 1
 1.2 Scope of the Universal Measurement Architecture............................. 2
 1.3 Definitions, Acronyms and Abbreviations.. 3
 1.4 Conformance ... 3

Chapter 2 UMA Reference Model... 5
 2.1 Functional Layers.. 5
 2.2 Interfaces... 6
 2.3 UMA Characteristics .. 7

Chapter 3 UMA Sessions.. 9
 3.1 Session Characteristics .. 9
 3.1.1 MLI Calls ... 9
 3.1.2 MLI Security.. 9
 3.2 Basics of UMA Messages... 11
 3.2.1 Data Messages .. 11
 3.2.2 Control Messages... 12

Chapter 4 Data Collection, Reporting and Recording............................ 13
 4.1 UMA Collection and Reporting... 13
 4.1.1 Capture Synchronisation and Data Coherency................................. 13
 4.1.2 Data Reporting - Intervals.. 13
 4.1.3 Data Reporting - Events ... 14
 4.1.4 Trace Data.. 14
 4.1.5 Screening and Filtering Data ... 14
 4.1.5.1 Subclass Screening.. 14
 4.1.5.2 Work Unit Data Filtering... 14
 4.1.6 Constructed Workloads and Summarisation 15
 4.1.7 Data Buffering and Delivery.. 15
 4.1.8 Recent Data Facility... 15
 4.2 UMA Data Recording .. 16
 4.2.1 UMADS (UMA Data Storage) ... 16
 4.2.2 Compatible Granularity ... 17
 4.2.3 Private Files... 17

Chapter 5 The MLI Application Programming Interface 19
 5.1 Overview of MLI Calls .. 19
 5.2 MLI Call Parameters... 20
 5.3 MLI Macro Operators .. 24
 5.4 UMA MLI Call Descriptions... 25
 umaClose() ... 26

Part 2: UMA Measurement Layer Interface (MLI) iii

Contents

 umaCreate() ... 27
 umaGetAttr() ... 31
 umaGetMsg()... 32
 umaGetReason() .. 34
 umaReconnect() ... 35
 umaRelease() .. 37
 umaRequestConfig().. 38
 umaSeek() ... 47
 umaSetAttr().. 49
 umaSetThreshold() .. 53
 umaStart().. 56
 umaStop()... 62

Chapter 6 UMA Message and Header Formats... 65
 6.1 UDU Message Headers.. 65
 6.2 UDU Control Segments ... 65
 6.2.1 Compatibility Support.. 66
 6.2.2 Status Reporting... 66
 6.2.3 UMA API Message Header Format for Control UDUs 67
 6.2.4 UMA API Control Segment Format for Control UDUs................... 69
 6.2.5 Hints ... 70
 6.3 UDU Data Segments .. 71
 6.3.1 UMA API Message Header Formats for Data UDUs....................... 73
 6.3.2 Interval Header Extension and Data UDU Basic Segment 75
 6.3.3 Event Header Extension and Data UDU Basic Segment 77
 6.3.4 Optional and Extension Segments ... 79
 6.3.5 Variable Length Data... 80
 6.3.6 Array Data... 81

Chapter 7 Distributed UMA... 83
 7.1 Message Transport.. 84
 7.1.1 Logical Buffer Sizing ... 84
 7.1.2 Byte Ordering ... 84
 7.2 Message Buffering - Normal Priority Channel 86
 7.3 Message Buffering - High Priority Channel .. 87
 7.4 Logical Message Protocol.. 88
 7.4.1 Forwarded Requests - Message Class - Command 89
 7.4.1.1 Message Subclass - Create .. 89
 7.4.1.2 Message Subclass - Reconnect ... 89
 7.4.1.3 Message Subclass - Set Attribute... 89
 7.4.1.4 Message Subclass - Close .. 89
 7.4.1.5 Message Subclass - Start.. 90
 7.4.1.6 Message Subclass - Set Threshold... 90
 7.4.1.7 Message Subclass - Release... 90
 7.4.1.8 Message Subclass - Request Data.. 91
 7.4.1.9 Message Subclass - Stop .. 91
 7.4.1.10 Message Subclass - Seek.. 91
 7.4.1.11 Message Subclass - Request Configuration..................................... 92

iv CAE Specification

Contents

 7.4.2 Message Class - Connection Status.. 93
 7.4.2.1 Message Subclass - Connection Ack... 93
 7.4.2.2 Message Subclass - Reconnect Ack... 93
 7.4.3 Message Class - Condition... 94
 7.4.3.1 Message Subclass - Informational ... 94
 7.4.3.2 Message Subclass - Warning .. 94
 7.4.3.3 Message Subclass - Severe .. 94
 7.4.3.4 Message Subclass - Fatal ... 95

Chapter 8 The UMA Configuration Class .. 97
 8.1 Subclass - System Description ... 97
 8.2 MLI Subclass Information... 98
 8.3 Subclass - UMA Providers .. 99
 8.3.1 MLI Subclass Information.. 99
 8.4 Subclass - UMA Work Units... 100
 8.4.1 MLI Subclass Information.. 100
 8.5 Subclass - Implementation.. 101
 8.5.1 MLI Subclass Information.. 101
 8.6 Subclass - States .. 103
 8.6.1 MLI Subclass Information.. 103
 8.7 Subclass - Names .. 104
 8.7.1 MLI Subclass Information.. 104
 8.8 Subclass - UMA Restart ... 105
 8.8.1 MLI Subclass Information.. 105

Appendix A C Language Header Files... 107
 A.1 <mli.h>.. 108
 A.2 <uma.h>.. 118

Appendix B Future Directions ... 127
 B.1 UMA Generalized Command Interface ... 127

 Glossary ... 129

 Index... 133

List of Figures

2-1 UMA Layers and Interfaces ... 5
2-2 Components and Interfaces of UMA... 6
5-1 UMASubClassAttr Mapping to a Dynamic MLI Subclass.................... 41
6-1 UMA Data UDU Message Layout.. 72
7-1 Distributed UMA - Host/DSL Relationships .. 83

List of Tables

5-1 A Common MLI Call Sequence .. 19
6-1 UMA API UMA Control Message Header ... 67

Part 2: UMA Measurement Layer Interface (MLI) v

Contents

6-2 UMA API UDU Control Segment .. 69
6-3 Conditions Using Hint Fields.. 70
6-4 UMA API Data UDU Message Header ... 73
6-5 UMA API Interval Header Extension and Data UDU Basic Segment 75
6-6 UMA API Event Header Extension and Data UDU Basic Segment.... 77
6-7 Optional Segment Header ... 79
6-8 Extension Segment Header.. 79
6-9 Format for Variable Length Data Items... 80
6-10 Format for Array Data Items ... 81
7-1 MLI Calls and Resulting DSL-to-DSL Messages..................................... 88

vi CAE Specification

Preface

This Document

This document is a CAE Specification. It provides a set of specifications for the functional
characteristics of the Universal Measurement Architecture’s (UMA) Measurement Layer
Interface (MLI), and describes the underlying semantics and the function calls that implement
these characteristics. The MLI also defines a format for headers appended to data captured by
the low-level Data Capture Interface (DCI). (These headers are part of the control and status
messages sent between UMA and the applications it serves.)

There are two associated UMA specifications which, along with the MLI specification, define the
UMA system:

• UMA Data Capture Interface (DCI) specification (see Part 3 of this specification).

This is the interface between the data capture layer and the measurement control layer of the
UMA architecture.

• UMA Data Pool Definitions (see Part 4 of this specification).

The data pool defines a set of performance metrics which may be accessed by the two UMA
interfaces.

The UMA Guide (see Part 1 of this specification). reviews the issues surrounding performance
measurement in Open Systems, describes the general UMA architecture, and discusses user
considerations in adopting the UMA.

Audience

The target audience for this document is both system designers, who need to implement this
interface, and performance professionals, who need to understand how this interface can be
used.

Structure

• Chapter 1, Introduction — defines the objectives of this specification and defines terms and
acronyms.

• Chapter 2, UMA Reference Model — defines the layers and interfaces of the UMA Reference
Model.

• Chapter 3, UMA Sessions — describes the characteristics of UMA sessions, introduces MLI
calls, and gives an overview of the messages used for communication between Measurement
Application Programs (MAPs) and UMA.

• Chapter 4, Data Collection, Reporting, and Recording — introduces the concepts used by
UMA in data collection and reporting to a MAP, and discusses the UMA Data Storage
(UMADS) data recording facility.

• Chapter 5, MLI Application Programming Interface — defines the MLI calls used to manage
UMA sessions, and to specify and access reported data.

• Chapter 6, UMA Message and Header Formats — defines control and data segments
formats.

Part 2: UMA Measurement Layer Interface (MLI) vii

Preface

• Chapter 7, Distributed UMA — defines specifications that allow multiple UMA
implementations to interoperate in a distributed environment.

• Chapter 8, The UMA Configuration Class — defines the messages that describe the
parameters pertainin to a specific UMA implementation and data providers.

• Appendix A, C Language Header Files — presents the <mli.h> and <uma.h> header files.

• Appendix B, Future Directions — describes a generalized command interface for the MLI
that is currently undergoing development.

viii CAE Specification

Acknowledgements

This specification was developed by the Performance Management Working Group. The PMWG
was originally part of UNIX International, and is now part of the Computer Measurement
Group.

X/Open gratefully acknowledges the work of the PMWG in the development of this
specification and in the review process for this publication.

Major contributors to the Measurement Layer Interface specification include:

Peter Benoit Digital Equipment Corp. Ansgar Erlenkoetter Tandem Computers, Inc.
Paul Farr Aim Technology Lewis T. Flynn Amdahl Corporation
Tony Gaseor AT&T Bell Laboratories Javad Habibi Amdahl Corporation
Jim Richard Amdahl Corporation Leon Traister† Amdahl Corporation
Neal Wyse Sequent Computer Systems, Inc. Seung Yoo Amdahl Corporation

Participants who have made contributions to the process of developing these specifications are
listed below along with their corporate affiliation at the time of their contribution. Our sincere
apologies to anyone whom we may have missed.

Sara Abraham Amdahl Corporation
Subhash Agrawal BGS Systems Barrie Archer ICL
Robert Berry IBM Corporation Tom Beretvas IBM Corporation
Wolfgang Blau Tandem Computers, Inc. Jim Busse NCR Corporation
David Butchart Digital Equipment Corp. David Chadwick Performance Awareness Corp.
Ram Chelluri AT&T Global Information Solutions Danny Chen AT&T Bell Laboratories
Niels Christiansen IBM Corporation Paul Curtis Hitachi computer Products (America), Inc.
Paul Douglas Digital Equipment Corp. Janice Dumont AT&T Bell Laboratories
Jerome Feder UNIX System Laboratories Mark Feldman Sequent Computer Systems, Inc.
Thierry Fevrier Hewlett-Packard Ken Gartner Hitachi Computer Products (America), Inc.
Joseph Glenski Cray Research, Inc. Dave Glover Hewlett-Packard
Jay Goldberg UNIX System Laboratories William Hidden Open Software Foundation
Liz Hookway NCR Corporation John Howell Amdahl Corporation
Ken Huffman Hewlett-Packard Mario Jauvin Bell Northern Research
Chester John IBM Corporation Sue John IBM Corporation
Rebecca Koskela Cray Research, Inc. Bill Laurune Digital Equipment Corp.
Ted Lehr IBM Corporation Greg Mansfield Instrumental
Shane McCarron UNIX International Michael Meissner Open Software Foundation
Marge Momberger IBM Corporation Bernice Moy Open Software Foundation
Henry Newman Instrumental Jee-Fung Pang Digital Equipment Corp.
James Pitcairn-Hill Open Software Foundation David Potter Open Systems Performance, Inc.
Melur K. Raghuraman Digital Equipment Corp. O. T. Satyanarayanan Amdahl Corporation
Yefim Somin BGS Systems Steve Sonnenberg Landmark Systems
Douglas R. Souders UNIX System Laboratories Jim Van Sciver Open Software Foundation
Jaap Vermeulen Sequent Computer Systems, Inc. Michael Wallulis Digital Equipment Corp.
Ping Wang Open Software Foundation Steve Whitney Boeing Computer Services
Elizabeth Williams Super Computer Research Willie Williams Open Software Foundation

† Editor

Part 2: UMA Measurement Layer Interface (MLI) ix

Acknowledgements

x CAE Specification

Chapter 1

Introduction

1.1 Purpose
This document is one of a family of documents that comprise the Universal Measurement
Architecture (UMA), which define interfaces and data formats for Performance Measurement.
UMA was originally defined by the Performance Management Working Group (PMWG) and
subsequently adopted by The Open Group.

This document is a specification for the functional characteristics of the Measurement Layer
Interface (MLI), as defined in the UMA Reference Model in Chapter 2. The document describes
the underlying semantics and the function calls that implement them. It also defines a format
for headers appended to data as captured by the low-level Data Capture Interface (DCI). (These
headers are part of the control and status messages sent between UMA and the applications it
serves.)

The UMA is defined in the following documents:

• Universal Measurement Architecture Guide (see reference UMA). This document provides
an overview of the UMA.

• UMA Measurement Layer Interface Specification (this document).

• UMA Data Capture Interface Specification (see reference DCI). This document defines a
standard programming interface for capturing system and application provided data.

• UMA Data Pool Definitions (see reference DPD). This document defines a performance data
pool for the analysis and management of computer systems, and an organisation to facilitate
the collection and use of such data.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 1

Scope of the Universal Measurement Architecture Introduction

1.2 Scope of the Universal Measurement Architecture
The scope of the Universal Measurement Architecture is:

• to provide a set of common measurement control and data delivery services for (client)
performance applications

• to provide seamless access to current and historical measurement data

• to insulate the operating system kernel from performance display and analysis applications
by means of a common application programming interface (API)

• to maintain portability of user tools to any systems that implement the architecture (again
through the common API)

• to provide specific mechanisms for data capture that implement metric registration functions
from distinct data providers

• to provide a mechanism for control of the instrumentation that coordinates the capture of
kernel and non-kernel data sources

• to support access to distributed performance functions and data from remote nodes.

The UMA architecture specifies two interfaces:

• the MLI — a high-level application programming interface for specification and reporting of
formatted measurement data, (this document)

and

• the DCI — a low-level application programming interface for acquisition of raw kernel, trace,
event, and subsystem data, (see reference DCI).

In addition, the architecture provides services for distributing data to multiple applications, for
maintaining historical data, and for synchronising the capture of metrics from different sources.

Performance and capacity management of operating systems have been considered internal to
the operating system and as such differ from one operating system to another operating system,
and from one implementation to another implementation. Most operating systems have, as a
matter of necessity, performance analysis modules, narrowly targeted at the type of hardware,
software and networking facilities implemented within the system.

Most operating systems provide ad-hoc developed or tailored performance metrics. Some of
these tools are developed as internal support tools for benchmarking or on demand of
performance analysts and capacity planners. These tools are generally also confined to one
machine only and can not be interrogated remotely.

The new era of networking and interoperability views performance management and capacity
planning from the user’s perspective. Multiple machines and operating systems can be involved
in the interaction with the user. This approach requires capture and presentation of performance
metrics to be clearly defined and portable between platforms and operating systems.

2 CAE Specification

Introduction Definitions, Acronyms and Abbreviations

1.3 Definitions, Acronyms and Abbreviations
Terms, acronyms and abbreviations used in this specification are defined in the Glossary.

1.4 Conformance
A conformant implementation must support all of normative requirements in this MLI
specification, that is, as specified in chapters 1 - 8) except in the following respects:

1. Support of unsolicited events:

MLI support of unsolicited events is optional. When a measurement application requests
delivery of unsolicited events from an MLI implementation which does not support this
feature, status and reason codes will be returned from the call indicating the condition.

2. Support of metric, instance tag and work unit description by metadata:

MLI support of metric, instance tag and work unit description by metadata is optional.
This information, when available, is presented in the ‘‘Subclass Attributes’’ subclass of the
class ‘‘UMA Configuration’’ solicited with the umaRequestConfig() MLI call. When not
supported, an attempt to retrieve this subclass will return status and reason codes
indicating that the subclass is not implemented.

3. Support of dynamic data:

MLI support of dynamic data is optional. The availability of dynamic classes and
subclasses is indicated in the subclass ‘‘Implementation’’ of class ‘‘UMA Configuration’’ by
the setting of the bit flag UMA_DYNAMIC for each class and subclass. Support of
dynamic data implies the MLI support of metric metadata.

4. Support of protocol section contents in control messages:

The only required usage of the control UDU header protocol section is that the umaCreate()
and umaReconnect() logical message protocols and their acknowledgements include the
protocol section field describing the sending platform’s wordsize (mh_wdsize). The other
fields may be used to support private protocols between MLI service layers. The presence
or absence of the additional protocol fields has no impact on the use of the MLI API.

5. MLI use of the DCI:

Use of the DCI by the MLI for data acquisition is optional. However, if the DCI is used as a
source of data, the user should refer to the DCI conformance requirements.

6. Enhanced security services:

These are specified external to the MLI.

7. WorkInfo granularities:

While MLI implementation of the Workload definition mechanism (using UMAWorkInfo)
is mandatory, the availability of specific WorkInfo granularities is defined by the data
provider.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 3

Introduction

4 CAE Specification

Chapter 2

UMA Reference Model

The UMA reference model defines four layers and two interfaces, as shown in Figure 2-1.

Measurement
Application

Data
Services

Measurement
Control

Data Capture

Measurement Layer
Interface (MLI)

. .. .

Data Capture
Interface (DCI)

.

Layer 1

Layer 2

Layer 3

Layer 4

Figure 2-1 UMA Layers and Interfaces

2.1 Functional Layers
In order, from data capture to application program, the functional layers are:

• the Data Capture Layer (DCL), which collects the raw data

• the Measurement Control Layer (MCL), which manages the data collection

• the Data Services Layer (DSL), which distributes data to archive, to networked (that is,
distributed) components, to files, and directly to MAPs, and which handles measurement
requests, data transformation, and filtering

• the Measurement Application Layer (MAL), which consists of the various MAPs requesting
data collection and providing service capabilities for technical support of management goals.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 5

Interfaces UMA Reference Model

2.2 Interfaces
UMA establishes two programmatic interfaces which concern data provider developers and
measurement applications:

• a Data Capture Interface (DCI) to request data through collection orders to UMA-compatible
data providers. The DCI lies between the DCL and the MCL, and is used to register, provide,
and acquire data. (See reference DCI).

• a Measurement Layer Interface (MLI), an application programming interface for
measurement applications to communicate with the UMA facility. The MLI lies between the
DSL and the MAL, and is used by MAPs to specify collection and reporting attributes.

Note: The interface between the DSL and the MCL is not formally specified. These two layers,
though functionally distinct, may be combined in some implementations.

Figure 2-2 illustrates the two programmatic interfaces (DCI and MLI) in relation to the
functionality of UMA components.

MAP MAP MAP
Measurement
Application
Programs

MLI

DATA SERVICES
distribute data

format data to standards
maintain archive
access network

MEASUREMENT CONTROL
merge requests

synchronise capture
timestamp

collection orders
status requests

DCI

DATA CAPTURE

measurement data
events

status messages

Figure 2-2 Components and Interfaces of UMA

6 CAE Specification

UMA Reference Model UMA Characteristics

2.3 UMA Characteristics
The three layers, DCL, MCL, and DSL, and the two interfaces, DCI and MLI, comprise the basic
UMA facility. When this document describes UMA or refers to UMA characteristics, it is
describing the combined capabilities of these layers and interfaces. The MLI isolates a MAP
from the implementation details of the rest of UMA. Interactions between a MAP and UMA are
carried out through the MLI.

The UMA reference model provides several advantages over the older data collection and
display programs such as sar. The structure of the DCL, and the DCI, permits the extension of
data collection to new devices or services without affecting existing programs.

Additionally, the architecture of the DCL allows the data from multiple providers to be collected
by a single layer and this in turn improves the synchronisation of the collected data. For
example, since the data reported by sar and various other statistical commands use different data
collection routines, there is an unpredictable time delay between datapoints collected by one
program and datapoints collected by the other. With UMA, the collection is more closely
synchronised.

By having UMA manage the collection and distribution of data, multiple application programs
can use the same collected data. This results in savings of memory, disk space, and system
overhead. The MLI and the DSL allow transparent communication across networks, therefore a
MAP running on one system can manage and display data from another system across the
network.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 7

UMA Reference Model

8 CAE Specification

Chapter 3

UMA Sessions

This Chapter describes:

• Session characteristics

• UMA messages.

3.1 Session Characteristics
The UMA facility is that part of UMA that provides data and session services to the MAP
(through the MLI).

A MAP accesses the services of the UMA facility by first establishing a session and then issuing
the appropriate MLI calls. A session is a channel of communication over which the MLI sends
messages to the UMA facility to set up and control the reporting of data and to receive status
and data messages.

Each session has an associated data source, a data destination, and property flags that specify
certain fixed characteristics of the session; these constitute the session context. The creation and
specification of the session and its context are described in the description of the umaCreate()
call.

A session also has certain changeable attributes. These include a session start time, a session end
time, a reporting priority, a reporting interval size, and search control attributes. The start time
session attribute determines when reporting is to begin. There is an internally maintained
session current time that indicates the time of the data interval currently being reported.
Nominally, the session current time is initially set to the session start time (subject to constraints
imposed by the settings of the certain session search attributes, as will be later described).

3.1.1 MLI Calls

The MLI calls are the means by which a MAP communicates with the UMA facility to establish
and access UMA sessions. All MLI calls return a status code indicating the general outcome of
the call. Further detail regarding failed calls can be obtained by invoking the umaGetReason() call.

A number of UMA-defined data types are used for specifying UMA objects such as classes,
subclasses, message flags, etc. The type definitions, their values and valid operator definitions
are incorporated into a MAP by including header file <uma.h> (see Appendix A on page 107).

3.1.2 MLI Security

When enhanced security provisions are required beyond what is the operating system default,
the MLI and UMA Data Services Layer (DSL) encapsulate the security-related exchanges with
other entities. This means that the MLI library does not give the MAP explicit access to
security-related keys or tickets. Instead, the MLI library itself acquires an authentication key and
sends it to the Data Services Layer (DSL), where it is authenticated. Subsequently issued tickets
and encryption/decryption keys are retained by the MLI library for use until expiration. Thus,
the MAP proper and its user do not necessarily know that encryption, or what levels of security
are in effect. The only visible result of a security interaction between local and remote UMA
Data Services Layers (DSLs) is a possible UMR_PERMISSION reason code returned from session
establishment, and data solicitation MLI calls if access is denied.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 9

Session Characteristics UMA Sessions

To ensure interoperability between various implementations that support such enchanced
security, the Generic Security Service API (GSS-API) is to be used as the default security API by
the UMA DSL for session establishment, and, where desired by administrators, for ensuring
per-message integrity and confidentiality. These enhanced security services are optional for
both implementers and administrators. This means that implementations are possible that do
not support enhanced security and that administrators may select their use or non-use when
available by means of installation or configuration options. GSS-API potentially supports a
variety of underlying security mechanisms. (See reference GSS).

10 CAE Specification

UMA Sessions Basics of UMA Messages

3.2 Basics of UMA Messages
Once a session is established, a MAP communicates with the UMA facility by means of MLI
calls. These result in the MLI formatting messages that are delivered to the UMA facility. The
MLI provides a set of functions and utilities that provide for the creation, sending, receiving and
handling of these messages. Information from UMA to the MAP is also communicated (through
the MLI) via messages. The MAP accesses these messages with the MLI function umaGetMsg().

Messages divide into two groups: data and control. Both data and control messages contain data
items identified by the class and subclass.

All messages consist of a header and one or more segments. In addition, data messages have an
extension header between the header and segments. The header provides the basic information
necessary to start extracting information from the message, including the time stamp of the
message, the duration (if an interval message), and offsets into the message body for the
segments. Additionally, the class and subclass of a message are indicated.

The message, its header and segments, include ASN.1/BER encoded tags and length descriptors
(used for parsing the message). (ASN.1/BER encoding is used in data communication between
open systems.) The contents and detailed structure of the segments (body) depends on the class
and subclass.

3.2.1 Data Messages

Data messages contain either interval or event data:

• Interval data is that which is specifically scheduled for capture at each expiration of a
specified time interval. The data reported for that interval is the increment of the item values
over the interval or, if requested, the value of the metric accumulated from a startup through
that interval.

• Event data consists of notification messages to the MAP indicating that some predefined set
of events has occurred. The currently defined events include UMA configuration data,
system configuration data, and process-end summaries. Other classes and subclasses for
event data may be defined. Delivery of event data to the measurement application may be
requested as in-band (that is, in timestamp sequence) or out-of-band (ahead of timestamp
sequence).

The type of data is indicated by a flag in the header.

Data segments for both interval and event data can contain the following:

• Basic data, which each UMA implementation must supply (segment must be present)

• Optional data, which is generally available but not mandatory (segment is optional)

• Extension data, which is vendor defined (segment is optional).

Each of the data segments begins with an ASN.1/BER tag-length prefix. The location of each
segment is specified in the extension header as an offset from a message global start position.

The UMA configuration data describes which classes, subclasses, and data fields are
implemented. The system configuration data describes the hardware and software configuration
of the system. It includes system parameters statically defined at boot time and hardware status
changes such as disk mounts and unmounts.

The class identifies the major grouping (memory, processor, and so on) and subclass provides a
specific grouping within class (virtual memory usage, block I/O counters, and so on). The
definitions and grouping of data items by these classes and subclasses are documented in the
document, Data Pool Definition (see reference DPD).

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 11

Basics of UMA Messages UMA Sessions

A MAP initiates ongoing reporting of data for a class and subclass via a umaStart() call.
Depending on the specified destination, data may be directed to the MAP itself, to UMADS, or to
a file. A MAP may use the umaRequestConfig() call to request one time event data, that is, UMA or
system configuration data.

Because of the flexibility and extensibility of UMA messages, a MAP may need to trace through
several fields and data structures in the header and extension header to extract the requested
segment.

3.2.2 Control Messages

Control messages include MAP requests to the UMA facility, UMA condition notifications from
UMA to a MAP, and, in distributed environments, request and acknowledgement messages
between remote and local Data Services Layers.

12 CAE Specification

Chapter 4

Data Collection, Reporting and Recording

4.1 UMA Collection and Reporting
UMA distinguishes between the reporting of data to a MAP and the collection of data. A MAP
requests reporting from a specified source to a destination (which may be the MAP itself) in the
form of UMA messages. The UMA facility acts on behalf of a MAP to perform the actual data
collection through the Data Capture Interface (DCI). This may mean initiating the collection or
making use of an existing collection in progress for other MAPs that have requested the same
measurement classes and subclasses. Data from the DCI will have an appropriate header
appended to it and may undergo certain transformations and filtering before it is reported to one
or more MAPs.

The UMA Data Capture Layer (DCL) is responsible for data collection to UMA-controlled
structures from hardware registers, system counters and tables, driver counters and tables, etc.
The collection of data has occurred when the data is in a structure controlled by UMA, that is, a
structure that cannot be modified until a UMA component permits it.

Most subclasses defined in the Data Pool Definition (see reference DPD) specify interval data
reporting, that is reporting of a difference in data values over the duration of the interval or a data
value at the end of the interval. Reporting of absolute (undifferenced) data values at each
interval can be chosen by specifying a flag UMA_WORKLOAD_ABSOLUTE in the umaStart()
MLI call. In addition, there are subclasses associated with events and subclasses that may have
both interval and event forms.

4.1.1 Capture Synchronisation and Data Coherency

Specifying capture synchronisation means that UMA Measurement Control will attempt to
schedule data capture from different DCL data providers or instances of DCLs so that they occur
at very near the same time. Capture coherency means that, as defined by implementation
criteria, the collection of a UMA subclass will be as near an atomic operation as possible. This
means that a collection may be rejected and retried if the atomicity criteria are not met.

4.1.2 Data Reporting - Intervals

In UMA, data is reported at intervals that a MAP specifies. Data collections take place at regular
interval times, that is, at predictable wall clock times as measured from 12 midnight. See the
umaSetAttr() specification for a definition of regular intervals.

If the session start time or the reporting request (umaStart()) occurs at a time between regular
collection times, the first interval reported for the session may be for a shorter duration than that
specified. All subsequent collections will be of the correct duration and at regular times.

A MAP may request exemption from regular interval collections for a session by specifying the
session property UMA_NOTREGULAR. Session properties will be discussed in detail in a
subsequent section.

If historical data has been requested (from UMADS, or a file), data may not be available at the
specified interval. In this case, the UMA facility supplies data at the archive interval up to the
point where either recent data or current data are available at the requested interval. The UMA
message header specifies the applicable interval for any supplied data. The MAP can prevent

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 13

UMA Collection and Reporting Data Collection, Reporting and Recording

data being retrieved from UMADS by setting the RECENT_ONLY session attribute to TRUE.

4.1.3 Data Reporting - Events

Event data in UMA consists of notification messages to the data consumer that some predefined
set of system events specified by the class and subclass have occurred. The requester defines a
UMA start/end time window for which these notifications are to be received. The data sources
and destinations are specified as for interval UMA data.

By specifying certain event-related flags in the umaStart() MLI call, delivery of event data to the
measurement application may be requested as either in-band (that is, in timestamp sequence) or
out-of-band (ahead of timestamp sequence). This will be further discussed in the description for
the umaStart() call.

Certain UMA subclasses defined in the Data Pool Definitions (see reference DPD) have both
event and interval forms. For example, all Per Work Unit data pool subclasses admit both forms.
This permits the MAP to select whether data is to be reported at each interval end, at an event,
say, the termination of the process or at a process change in group ID, or both.

The UMA Configuration subclass is reported either as solicited event using the
umaRequestConfig() MLI call or as an unsolicited event specified in a umaStart() MLI call.

4.1.4 Trace Data

Trace data in UMA is treated as high-volume event data. The requester specifies a UMA
start/end time window during which he wishes to have the trace data collected. The class and
subclass define the specific trace(s) activated. Because of the potentially high data volumes,
trace data should normally be directed to a file.

4.1.5 Screening and Filtering Data

UMA provides two data interpretation capabilities that permit the reduction of message traffic
to the MAP:

• Screening of subclasses

• Work Unit Data Filtering.

4.1.5.1 Subclass Screening

Assuming that the provider can measure and deliver data at the required level of granularity, it
is possible to restrict reporting of subclasses that have met threshold criteria. Interval data
transmissions to a MAP are screened, based on a set of variable values that are compared to
session-specific threshold settings.

A MAP session will be able to establish and change threshold settings which will inhibit
transmission of data to the session for those intervals where the associated variables are within
the threshold ranges. The MAP session uses the umaSetThreshold() function to establish or
change thresholds.

4.1.5.2 Work Unit Data Filtering

It is possible to select subclass data by various Per Work Unit criteria, for example:

• Process ID

• Command Name

14 CAE Specification

Data Collection, Reporting and Recording UMA Collection and Reporting

• Command Name in conjunction with User ID

• Process ID in conjunction with Transaction ID.

This is discussed further in the description of the umaStart() call.

4.1.6 Constructed Workloads and Summarisation

The UMA MLI supports requesting of workload construction by permitting the labelling of
workloads specified in the umaStart() call. These constructed workloads typically represent the
result of a request for filtering and/or summarisation of workload metric subclasses. The
summarisation is over the elementary workloads specified by selection criteria in the umaStart()
call. Thus, for example, one could request the selection of all commands starting with the letters
‘‘abc’’ and one could additionally request that a specific per-work unit metric subclass report its
process metrics over the sum of all processes whose command names start with these same
letters. A constructed workload is assigned an identifier by the caller which can then be used to
tag this workload for later reference. The workload tag is implemented in UMA data messages
as a special case of an instance tag.

A special constructed workload that is the complement of a specified workload is also available.
The complement workload metrics are derived by subtracting the selected per-work-unit
workload data values from the available global equivalents. For example, for reporting at the
process level, if the selection criterion is <User Name: Albert>, then the cpu utilization metric for
the complement workload would consist of the global cpu utilization minus the usage for all
processes running under the user name ‘‘Albert’’.

4.1.7 Data Buffering and Delivery

Normally, the Data Services Layer (DSL) will buffer data messages associated with intervals that
are destined for a MAP. That is, they are not sent until an event happens that requires the buffer
to be sent and then they are sent in a block. This triggering event might be the end of a reporting
interval, the arrival of the last message requested, a buffer getting filled, etc. The deblocking of
such messages is generally handled by the MLI.

Data messages associated with events having the out-of-band attribute are sent to the MLI as
soon as they arrive.

4.1.8 Recent Data Facility

UMA provides a Recent Data facility to hold a limited number of the most recent data messages
for MAP-requested interval sizes. The number of intervals and the granularities potentially
maintained by this facility would be specified by the systems administrator in a configuration
file for each UMA instance.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 15

UMA Data Recording Data Collection, Reporting and Recording

4.2 UMA Data Recording

4.2.1 UMADS (UMA Data Storage)

The UMADS facility consists of an interface and a set of storage mechanisms for access by the
DSL. Data in UMADS may be structured or recorded in implementation-specific ways. The only
requirements are that the data be capable of being read by the DSL, that it support positioning in
time via the umaSeek() MLI call, and that the DSL can format its contents to the message
standards. UMADS, therefore, functions as a time-indexed, non-volatile cache.

For specification of UMADS access, either the source and destination parameters of the
umaCreate() function may be set to a string of the form "UMADS[(dbid)]"1 , which denotes a
specific UMADS. In particular, the dbid may be used to designate any of a number of UMADS
areas, for example hourly, daily, etc. Access to these areas may be controlled to permit either
public or private read/write through the use of an administrative UMADS authorisation file.

Requests to UMADS can be originated by a MAP making historical reporting references. These
historical references may occur in one of two ways. First, a MAP may explicitly constrain access
to UMADS by specifying it as the source. Second, a historical reference may result from a
positioning to a time that is before any contained in the Recent Data facility.

Data messages are sent to the MAP from UMADS or the Recent Data in exactly the same form,
thus providing a seamless link of historical and current data. Interval sizes from the historical
data sources may, however, be either larger or not integer divisors of the requested interval. In
this case, the data provided from these sources may be at a different interval size (the UMA data
message header will indicate the size). If this is not satisfactory for some applications, the user
may consider use of specially collected data saved in a private UMADS area.

The UMA MLI supports location transparency for UMADS data. This means that:

1. UMADS data for a specific host (sysid) does not have to be located on that host

and

2. The measurement application does not need to know where host-specific UMADS data is
located.

UMA MLI calls, therefore, can refer to the object system through its symbolic name and let UMA
locate the historical data for it - this is the presumed location. Alternatively, a caller may specify a
location as a source or destination for UMADS data for a given session, if security policy permits
it.

No special MLI calls are required for a MAP to access UMADS; however an administrator may
need to perform certain support and maintenance that are specific to UMA. Examples include
dbid initialisation, copy-in or copy-out by class and subclass, setting retention periods by
class/subclass, and so on.

1. In subsequent text, "UMADS[(dbid)]" will frequently be abbreviated to "UMADS".

16 CAE Specification

Data Collection, Reporting and Recording UMA Data Recording

4.2.2 Compatible Granularity

For any host, several UMADS areas can be established, each having a different interval size. This
allows users to select UMADS data with an interval size that is compatible with various live
interval sizes (for example, the UMADS interval size could be a multiple of the live interval.)

Interval sizes can be mixed within a single UMADS area. This should be done, however, so that
it is consistent and easily handled by MAPs. For example:

• a single short interval size for peak hours, and a longer interval size for off-peak hours

• short intervals for a few minutes at the beginning of each hour.

4.2.3 Private Files

UMA provides for the reading and writing of session messages to and from conventional flat
files.

Specification of private files, for reading or for writing is via the source and destination parameters
of the umaCreate() call. The details are discussed in the description of umaCreate(). It is
important to note that UMA does not support seamless switching between private files and
Recent Data. (Seamless Switching between UMADS and Recent Data is supported.) When a
private file is the source in the umaCreate() call, it is the only source of data for the session.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 17

Data Collection, Reporting and Recording

18 CAE Specification

Chapter 5

The MLI Application Programming Interface

This section discusses MLI calls and their associated parameters.

5.1 Overview of MLI Calls
Since different MAPs have different purposes, there is no single sequence of system calls. The
following table illustrates the relationship between a typical sequence of MLI calls.

Note that the calls umaCreate(), umaReconnect() and umaGetMsg() are the only MLI calls that
exhibit blocking behavior until they either complete or time out.

Open a session, specify source and destination and return a
session id used in later calls to identify the session.

umaCreate()

Obtain system and UMA configuration information (for
example, what classes and subclasses are available, and what
processors and devices are connected or enabled).

umaRequestConfig()

Specify or change session attributes.umaSetAttr()

Specify threshold values for filtering reported subclasses.umaSetThreshold()

Specify which data to start reporting. UMA starts any necessary
data collection.

umaStart()

Release held starts. By default when a session is created, the data
reporting is held until a umaRelease() call.

umaRelease()

Return a data or control message for the session.umaGetMsg()

Except for umaCreate() and umaReconnect(), which return reasons
through their own parameter lists, MLI retains status and reason
codes for the most recent MLI call. The umaGetReason() call
returns these codes.

umaGetReason()

The MLI maintains a notion of the time of the start of the next
data interval. This call changes that time. The requested time
may be in the past, present or future.

umaSeek()

Tell UMA to stop reporting specified data. Data collection will
continue if other sessions collect the same data.

umaStop()

Release the held stops.umaRelease)

Shuts down a session. Data collection may continue. Refer to the
UMA_NOTERM property in umaCreate().

umaClose()

Reestablishes the control connection to a previous non-
terminating session that had been closed.

umaReconnect()

Table 5-1 A Common MLI Call Sequence

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 19

Overview of MLI Calls The MLI Application Programming Interface

5.2 MLI Call Parameters
The parameters for MLI calls are as follows. The UMA or C data type is indicated in brackets,
for example [int].

attrpairs In umaSetAttr() and umaGetAttr(), a set of name-value pairs terminated by NULL,
specifying (changeable) session attributes. The names are specified by quoted
strings. Currently, these names include:

ETIME Specifies the ending time of data reporting, that is, times greater than
ETIME are not reported. [UMATimeSec]

INTERVAL Specifies the session data reporting interval in seconds.
[UMATimeSec]

HISTORY_ONLY
Indicates that only historical data is requested either from UMADS or
from a specified input file. [UMABoolean] Setting this attribute
TRUE may cause the session’s current time pointer to be repositioned
to an earlier time and may make times later than those in UMADS or
the specified file unreachable (unless reset). Setting this attribute to
TRUE will automatically set the attribute RECENT_ONLY to FALSE.

The default value for HISTORY_ONLY depends on the session source
as described in the manual page of the umaSetAttr() MLI call.

PARTIAL When regular interval collection times are in effect, setting PARTIAL
to TRUE indicates that a requested change of interval size can take
place at the next regular collection time for the shorter of the new
and old intervals [UMABoolean]. Otherwise, the change would take
place at the time that the old interval and new interval start times
occur together. Therefore, this specification may result in either a
single truncated (partial) old or new interval at the time the change is
made, depending on whether the new interval is shorter or longer
than the old. The default value of PARTIAL is FALSE.

Note that this specification has no meaning when regular interval
collection times are not in effect.

RECENT_ONLY
Indicates that only data from the Recent Data Facility is requested
from UMA, that is, private file or UMADS data are excluded.
[UMABoolean] It is an error to attempt to set this attribute to TRUE
when either a private file or UMADS have been designated as the
source. Setting this attribute to TRUE may cause the session’s current
time pointer to be repositioned and it may make times prior to those
in the Recent Data Facility unreachable (unless reset). Setting this
attribute to TRUE will automatically set the attribute
HISTORY_ONLY to FALSE. The default value for RECENT_ONLY
depends on the session source as described in the manual page of the
umaSetAttr() MLI call.

PRIO A non-negative integer specifying the session attribute: relative
priority of data message delivery to the MAP. [UMAPrio] Increasing
values designate decreasing priority. The default value of PRIO is 3.
The highest priority is for PRIO equal to zero.

20 CAE Specification

The MLI Application Programming Interface MLI Call Parameters

STIME Specifies the starting time of data collection. Times equal to or
greater than STIME are reported subject to their being less than or
equal to ETIME. [UMATimeSec]

channel_flag In umaGetMsg(), specifies whether umaGetMsg() should return only in-band
messages (UMA_IN_BAND_ONLY), only out-of-band messages
(UMA_OUT_OF_BAND_ONLY) or either in-band or out-of-band messages
(UMA_ANY_BAND). When only out-of-band messages are to be delivered, in-
band messages are held until a call is made to umaGetMsg() with the channel_flag
set to either UMA_ANY_BAND or UMA_IN_BAND_ONLY. Similarly, when only
in-band messages are requested, out-of-band messages are held until a call is made
with the channel_flag set to either UMA_ANY_BAND or
UMA_OUT_OF_BAND_ONLY.

dclass specifies a message class. [UMAClass]

dsubcls specifies a message subclass. [UMASubClass]

dbid In umaCreate(), specifies the data base id in UMADS. [<string>].

destination In umaCreate() specifies the MAP itself, an output file or UMADS as a destination
for reporting. See the umaCreate() call manual page for a complete description of
values. [<string>]

flushflags In umaStop(), contains the flags that indicate which previously issued umaStart()
requests are cancelled. [UMAFlushFlags] The possible values of flushflags are:

UMA_HELD Cancel only those requests that have been started but not
released.

UMA_RELEASED Cancel only those start requests that have been released.

UMA_ALLSTARTED Cancel both held and released requests.

location In umaCreate(), qualifies source and destination with a specification similar to that
defined for sysid, that is, a qualified node name (e.g. srv.accting.acme.com), or as
an IP address in string form with periods (e.g. 129.210.1.1). [<string>]

position In umaSeek(), a relative position measured in intervals from a specified time.
[UMAInt4]

provider In umaRequestConfig(), umaSetThreshold(), umaStart() and umaStop(), designates
the registered provider for which collection classes and subclasses are specified.
[UMAProvider] The defined constant <OS>_DATAPOOL is used to designate the
classes and subclasses defined by an operating system-specific datapool2.

reason A reason code for a UMA error indication in umaCreate(), umaReconnect(), and
umaGetReason(). [UMAReasonCode]

segflags In umaStart(), these are flags that specify the segment types to be reported.
[UMASegFlags] The segment types defined in the Data Pool Definitions (see
reference DPD) currently include:

1. UMA_ASEG, indicating that all available segment types are to be reported.

2. For example, UNIX_DATAPOOL, is the operating system provider for Unix-based systems.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 21

MLI Call Parameters The MLI Application Programming Interface

2. UMA_BSEG, indicating universally supplied data.

3. UMA_OSEG, indicating optional data defined in the standard.

4. UMA_ESEG, indicating vendor-specific data.

sessid Specifies a session identifier. [UMASessId]

sess_req In umaGetMsg() specifies a requested session. [UMASessId]

sess_ret A returned session identifier in umaGetMsg(). [UMASessId]

source In umaCreate(), specifies the source(s) of data for reporting to be current collections
from UMA data providers, an input file, or UMADS. [<string>]

sprops In umaCreate(), contains the session property flags. [UMAProp] Session property
flags are set, reset, cleared, and tested with the macro operators UMA_SET,
UMA_RESET, UMA_CLEAR, and UMA_ISSET, respectively. All property flags are
initially in a reset state. Currently, these properties include:

1. A property UMA_COHERENT for an MLI requester session to specify that it
requires that subclass coherency criteria be applied to collections.

2. A session property flag UMA_NOTERM to allow all reporting associated
with the session to continue if the session is closed. This allows a collection
and reporting activity to continue in a background mode.

3. A session property flag UMA_NOTREGULAR for a session to request
exemption from common, regularised interval data reporting.

4. A property flag UMA_SYNCH for a requester session to specify that it
requires time synchronisation between different UMA data providers.

subclass In umaStart(), specifies the UMA subclass to be reported. [UMASubClass]

sysid In umaCreate() and umaReconnect(), specifies the node from which data is to be
collected. May be specified as a qualified node name (for example
srv.payroll.acme.com) or as an IP address in string form with periods (for example
129.210.1.1). [<string>]

timeout In umaGetMsg(), specifies a time in seconds and microseconds to wait for a
message to be available before returning. In umaCreate() and umaReconnect(),
specifies a time in seconds and microseconds to wait for communication and
establishing or re-establishing a session. The time used is the sum of timeout.tv_sec
seconds plus timeout.tv_usec microseconds. [UMATimeVal]

tstamp In umaSeek(), defines a time stamp in seconds, for UMA data interval searches.
[UMATimeStamp]

whence In umaSeek, specifies whether the seek is relative to UMA_CTIME, UMA_LTIME,
UMA_STIME or to a timestamp.

UMAWorkInfo
In umaRequestConfig(), the composite of a set of UMAWorkDescr structures
returned in the metadata class ‘‘Configuration’’, subclass ‘‘WorkInfo Attributes’’.
UMAWorkInfo defines the work unit tags that a provider may use to link a specific
instance of metric subclass collection with a logical workload. UMAWorkInfo tags
are global for a provider. See the umaRequestConfig() MLI call for details.

UMAWorkDefn
In umaStart() and umaStop(), a structure used to specify reporting filters by use of

22 CAE Specification

The MLI Application Programming Interface MLI Call Parameters

UMAWorkInfo items, instances, and granularity of reporting. See the umaStart()
MLI call for details.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 23

MLI Macro Operators The MLI Application Programming Interface

5.3 MLI Macro Operators
The definitions and implementations of MLI flags (for example session property, message
header indicators, etc.) are generally hidden from the MAP developer. Any necessary
manipulations and operations on these types by MAPs (and by UMA components themselves)
are to be handled by a set of provided macro operators:

UMA_SET(FIELD, FLAG) /* set FLAG in FIELD */
UMA_RESET(FIELD, FLAG) /* reset FLAG in FIELD */
UMA_ISSET(FIELD, FLAG) /* test IN FIELD */
UMA_CLEAR(FIELD) /* clear all flags in FIELD */
UMA_SESSIONEXISTS(sessid) /* test session existence */

Note that a flag field must first be cleared (using UMA_CLEAR) before it is first used.

The macro operator definitions are established by including the <uma.h> header file.

24 CAE Specification

The MLI Application Programming Interface UMA MLI Call Descriptions

5.4 UMA MLI Call Descriptions
This section contains syntactical and functional descriptions of UMA MLI session calls. A MAP
developer includes the header file <uma.h> to establish the parameter type declarations.

Each call is described by a model definition that includes the returned type, the function name,
and its formal parameters. This is followed by a specification of the formal parameter types as
expected by the MLI and a description of the interface behaviour. A list of UMA status and
reason codes applicable to the call concludes the call description (definitions of these codes are
included with the UMA type definitions for UMAStatusCode and UMAReasonCode, respectively).

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 25

umaClose() The MLI Application Programming Interface

NAME
umaClose - Shut down one or all active sessions of a MAP.

SYNOPSIS
#include <uma.h>

UMAStatusCode umaClose(
UMASessId sessid /* in */
UMAReasonCode *reason /* out */

);

DESCRIPTION
The function umaClose() shuts down the session denoted by sessid. Data will continue to be
collected and reported to the session’s destination (until the session’s end time is reached) if the
UMA_NOTERM property flag was set when the session was created (see umaCreate() on page
27.

DIAGNOSTICS
The returned value of umaClose() indicates the general outcome (status code). Status and reason
codes that apply to umaClose() include:

STATUS REASON EXPLANATION
—UMS_SUCCESS UMR_NOREASON
Communications error when sending messages
to UMA facility

UMS_COMM UMR_SEND

Invalid sessid specifiedUMS_SESSID —
Resource not availableUMS_SESSION UMR_RESOURCE

26 CAE Specification

The MLI Application Programming Interface umaCreate()

NAME
umaCreate - Establish a new session for a MAP.

SYNOPSIS
#include <uma.h>

UMAStatusCode umaCreate(
char *destination, /* in */
char *sysid, /* in */
char *source, /* in */
UMAProp sprops, /* in */
UMASessId *sessid, /* out */
UMATimeVal *timeout /* in */
UMAReasonCode *reason /* out */

);

[Editor’s note for the CAE Draft:
The principal change to this call is to allow the explicit specification of import and export
private files in canonical message format.

DESCRIPTION
The source designator may be any of:

"RECENT" /* recent data only */
"[<location>:]UMADS[(dbid)]" /* UMADS data only */
"[<location>:]UMADS[(dbid)] + RECENT" /* UMADS and recent data */
"UMA_SFILE" /* environment-specified file */
"[<location>:]<path>[(import)]" /* private file */

The destination designator may be any of:

"[<location>:]UMADS[(dbid)]" /* UMADS data only */
"UMA_DFILE" /* environment-specified file */
"[<location>:]<path>[(export)]" /* private file */
UMA_MAP /* defined macro MAP destination */

The function umaCreate() requests the UMA facility to open a session with the specified source
(source of the performance data) and destination (where the data is to be reported). The session
properties are indicated by sprops. The returned parameter sessid is subsequently used by the
calling MAP to communicate with UMA over this session.

If a connection to sysid and a session are not established within timeout.tv_sec seconds plus
timeout.tv_usec microseconds, umaCreate() will return with a status code of UMS_COMM and
reason code UMR_TIMEOUT.

<location> identifies a specific UMADS or file physical location. It overrides the presumed
location established by UMA administration. If unspecified, the default source location is the
presumed location for sysid. The default destination location is that in effect for source.
<location> is specified either as a qualified node name (e.g. server.accting.acme.com), or as an IP
address in string form with periods (e.g. 129.210.1.1).

The data reported is for the node designated by sysid. The string "UMA_LOCAL" designates the
node that is executing the Data Services Layer (DSL) accessed by this MAP.

Note that sysid is the system for which the data is reported; it is not necessarily the system on
which data resides.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 27

umaCreate() The MLI Application Programming Interface

To specify reporting of current collections from UMA data providers and UMADS in a seamless
fashion, a string of the form ‘‘UMADS + RECENT’’ is used for source. (In this context ‘‘UMADS’’
is an abbreviation for ‘‘[<location>:]UMADS[(dbid)]’’.) To restrict the source to the current
collections (i.e. to the contents of the Recent Data Facility), the string ‘‘RECENT’’ is used. To
restrict the source to UMADS only, a string of the form ‘‘UMADS’’ is used.

In addition, data may be read from a private file as follows:

1. If source is the string "UMA_SFILE", the MAP’s environment is searched for a string
"UMA_SFILE=[<location>:]<path>[(import)]";

otherwise

2. source contains a direct specification of the form [<location>:]<path>[(import)].

If destination is "UMA_MAP" then the data collected will be queued for reading by the issuing
session. If the destination is not "UMA_MAP" or "UMADS", the data will be written to the file
specified by destination as follows:

1. if destination is the string "UMA_DFILE", the MAP’s environment is searched for a string of
the form "UMA_DFILE=[<location>:]<path>[(export)]";

otherwise

2. destination contains a direct specification of the form [<location>:]<path>[(export)].

Note that when the destination is "UMADS" and the source is not "UMADS", the only source
permitted is the Recent Data Facility; that is, source must be "RECENT" or it may be "UMADS +
RECENT" with the RECENT_ONLY attribute set to TRUE.

If the source and destination are two different UMADS areas (i.e. for different sysids or different
dbids), the following additional characteristics apply to interval sizes:

1. If an interval in the source UMADS area is equal to or greater than the specified session
interval, the destination interval actually written will be a copy of the source UMADS
interval;

otherwise

2. intervals from the source UMADS area are aggregated until the time that is a multiple of
the requested destination interval is reached or exceeded.

In addition, if the destination UMADS area already exists, the first interval actually written will
be one that strictly follows the last one existing in the destination. That is, data will only be
appended and not overwritten or merged.

Data from a file source may only be written to a not-previously-existing UMADS area. Data
written to a private file destination can only be written to a not-previously-existing file, that is,
file destinations cannot be appended.

Private files are normally written so that they may be read by the UMA implementation that
created the file. If, however, it is desired to write such a file in UMA message format so that it
may be read by any UMA implementation, the ‘‘(export)’’ suffix is added to the file path
following the file name as in /home/uma/daily(export). As a source, the ‘‘(import)’’ suffix is
added instead. Export private files are written in Canonical A message format and include all
necessary metadata.

Also note that sources or destinations that are specified by a simple file name will be searched
for in or written to the MAP’s current working directory.

28 CAE Specification

The MLI Application Programming Interface umaCreate()

If permissions allow the user and the MAP to create a session, and if the session can be
successfully established, the argument sessid is set to the session identifier and the call returns a
status of UMS_SUCCESS.

SESSION PROPERTIES
A session may be opened by a MAP purely for the setup of data reporting directed to a named
destination (that is, a destination other than the MAP itself). In this case, once the setup is
complete, the invoking MAP may no longer be needed and the session may then be shut down.
Reporting to the specified destination can be made to continue by setting the session property
UMA_NOTERM. It is not valid to specify UMA_NOTERM when the destination is a MAP. If,
after shutting down a session with the UMA_NOTERM property, it is necessary to resume
control of the reporting, a umaReconnect() call may be issued for the same destination named in
the session that originated the reporting.

UMA will not normally attempt to schedule data collections from different UMA Data Capture
Layer instances (that is, Data Capture Layers on different hosts) so that they occur at the same
point in time, that is they will not necessarily be synchronised). Setting the session property
UMA_SYNCH indicates that for this session, global collector synchronisation is requested.

UMA permits the application of collection atomicity criteria to ensure that the data collected
within UMA subclasses are coherent. (If the criteria are not met, UMA will attempt to repeat the
collection). Setting the session property UMA_COHERENT indicates that for this session, data
coherency criteria are to be applied if they exist. Coherency criteria are specified as a time
window value for allowable skew and a retry count in the configuration file for the UMA
instance.

The session property UMA_NOTREGULAR can be set to exempt a session from the enforced
use of regular intervals. The maximum interval is equivalent to 24 hours in any case. See the
discussion for the MLI function call umaSetAttr() for more details about intervals.

DIAGNOSTICS
The returned values of umaCreate() indicate the outcome of the call (status code) and the reason
for a failed status (reason code). If the call is not successful, the returned value of sessid will not
be defined. Status and reason codes that apply to umaCreate() include:

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 29

umaCreate() The MLI Application Programming Interface

STATUS REASON EXPLANATION
No error encounteredUMS_SUCCESS UMR_NOREASON
Attempt to connect to UMA
failed

UMS_COMM UMR_CONNECT

Network errorUMR_NETWORK
Communications error when
receiving messages from
UMA

UMR_RECEIVE

Insufficient system resourcesUMR_RESOURCE
Communications error when
sending messages to UMA

UMR_SEND

System error while
communicating with UMA

UMR_SYSERR

Timeout while attempting to
connect to UMA

UMR_TIMEOUT

This destination is currently
the target of another session

UMS_DEST UMR_ACTIVE

Conflict between source and
destination

UMR_CONFLICT

Specified destination
unknown

UMR_UNKNOWN

Conflict between property
and destination

UMS_PROPERTY UMR_CONFLICT

Property invalidUMR_INVALID
Control message header not
recognised by UMA Data
Services

UMS_PROTOCOL UMR_HEADER

Control message content not
recognised by UMA Data
Services

UMR_MESSAGE

Maximum resources
exceeded for this MAP

UMS_SESSION UMR_MAX

Access deniedUMR_PERMISSION
Resource not availableUMR_RESOURCE
System error while
establishing session

UMR_SYSERR

UMADS error while
establishing session

UMR_UMADS

Specified source unidentifiedUMS_SOURCE UMR_UNKNOWN

30 CAE Specification

The MLI Application Programming Interface umaGetAttr()

NAME
umaGetAttr - Obtain a session’s attributes.

SYNOPSIS
#include <uma.h>

UMAStatusCode umaGetAttr(
UMASessId sessid, /* in */

... /* in/out */
);

DESCRIPTION
umaGetAttr() returns the session attributes for the session denoted by sessid.

The sessid parameter is followed by a null-terminated variable length list of name variable pairs
(attrpairs), each pair consisting of a quoted attribute name followed by a comma and the
attribute variable. Attributes for the names specified in this list are returned to their
corresponding variables. See the description of the umaSetAttr call and Section 5.2 for details on
syntax and available session attributes. The variable length argument list must be terminated by
a NULL argument.

EXAMPLE
This example assumes that there is an active session with sessid sessid1.

#include <uma.h>

UMAStatusCode status;
UMASessId sessid1;
UMATimeSec stime;
UMATimeSec intval;

status=umaGetAttr(sessid1, "STIME", &stime, "INTERVAL",
&intval, (char*)NULL);

DIAGNOSTICS
The returned value of umaGetAttr() indicates the general outcome (status code). Supplementary
reason code for a failed status can be obtained by calling the umaGetReason() function. Status
and reason codes that apply to umaGetAttr() include:

STATUS REASON EXPLANATION
No error encounteredUMS_SUCCESS UMR_NOREASON
An invalid attribute name
specified

UMS_ATTR UMR_INVALID

End of session encounteredUMS_EOS —
Invalid session specifiedUMS_SESSID —

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 31

umaGetMsg() The MLI Application Programming Interface

NAME
umaGetMsg - Return a pointer to the next available data or control message.

SYNOPSIS
#include <uma.h>

UMAStatusCode umaGetMsg(
UMASessId sess_req, /* in */
UMAChannelFlags channel_flag, /* in */
UMASessId *sess_ret, /* out */
char **msg_ptr, /* out */
UMATimeVal *timeout /* in */

);

DESCRIPTION
The umaGetMsg() call is used to access data and control messages for a session. It sets the
pointer msg_ptr to the next available message for the session indicated by sess_ret. The message
will either be a data message or a control status message. The setting of channel_flag determines
whether messages are to be selected from the in-band queue only (UMA_IN_BAND_ONLY), the
out-of-band queue only (UMA_OUT_OF_BAND_ONLY), or from any band
(UMA_ANY_BAND).

If there are no queued messages for this session, umaGetMsg() will wait at most timeout.tv_sec
seconds plus timeout.tv_usec microseconds for a message to appear. If the numeric value of both
fields is zero, the return is immediate whether there is a message queued or not (if a message is
queued, it will be returned). If the pointer argument timeout is the null pointer, the call blocks
until either a message has been queued, or until an interrupt signal (SIGINT) is received by the
caller, in which case no message is returned and the status code is set to the defined value
UMS_SIGNAL and the reason code to UMR_INTR. In any event, an interrupt signal will always
result in an immediate return with this status and reason code.

If no message is queued and no error has occurred (within the time specified by timeout), the
function returns the defined status value UMS_NOMSG. In this case, the function
umaGetReason() will return the reason code UMR_TIMEOUT.

sess_req identifies the session requested. If the defined value UMA_ANYSESSION is specified
for sess_req, then, if a message is returned, it will be from the highest priority session having
messages queued. If the call fails or is interrupted, the reason code obtained via the function
umaGetReason() for any existing session will indicate the condition.

In any case, sess_ret will be set to the sessid for the session message actually returned. If no
message is returned, sess_ret is set to UMA_NULLSESSION.

When a session end time is reached, umaGetMsg() will return an end of session condition
message (UMA_EOS). A session whose destination is a file or UMADS will be automatically
closed when this end time is reached.

When end-of-file is detected on the source for a session whose source is UMADS or a file,
uma_GetMsg() will return an end-of-file condition message (UMA_EOF). A session whose
destination is a file or UMADS will be automatically closed when this end-of-file condition is
encountered.

If any of the required session attributes STIME, ETIME, or INTERVAL have not been set,
umaGetMsg() will return a NULL message pointer (msg_ptr). In this case, the returned status
code will be set to UMS_ATTR with reason code UMR_INCOMPLETE.

32 CAE Specification

The MLI Application Programming Interface umaGetMsg()

DIAGNOSTICS

The returned value of umaGetMsg() indicates the general outcome (status code). Supplementary
reason code for a failed status can be obtained by calling the umaGetReason() function. Status
and reason codes that apply to umaGetMsg() include:

STATUS REASON EXPLANATION
No error encounteredUMS_SUCCESS UMR_NOREASON
Required attribute not specifiedUMS_ATTR UMR_INCOMPLETE
Communications error when
receiving messages from UMA

UMS_COMM UMR_RECEIVE

Communications error when
sending messages to UMA

UMR_SEND

System error while
communicating with UMA

UMR_SYSERR

Timeout occurred, no message
is returned

UMS_NOMSG UMR_TIMEOUT

Invalid sessid specifiedUMS_SESSID —
Insufficient system resourcesUMS_SESSION UMR_RESOURCE
System error while setting
signal handler

UMS_SIGNAL UMR_SYSERR

Interrupt signal (SIGINT)
caught

UMR_INTR

Invalid timeout value specifiedUMS_TIME UMR_INVALID

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 33

umaGetReason() The MLI Application Programming Interface

NAME
umaGetReason - Return the reason and status codes pertaining to an established session.

SYNOPSIS
#include <uma.h>

UMAStatusCode umaGetReason(
UMASessId sessid, /* in */
UMAStatusCode *status, /* out */
UMAReasonCode *reason /* out */

);

DESCRIPTION
The function umaGetReason() returns a reason code (along with the status code for an established
session (denoted by sessid). The reason code returned by umaGetReason() is for the most recent
preceding MLI call for that session.

NOTE
umaCreate() and umaReconnect() functions return reasons through their parameter lists.

DIAGNOSTICS
Status and reason codes that apply to umaGetReason() include:

STATUS REASON EXPLANATION
No error encounteredUMS_SUCCESS UMR_NOREASON
Invalid sessidUMS_SESSID —

34 CAE Specification

The MLI Application Programming Interface umaReconnect()

NAME
umaReconnect - Re-establish the connection to a previously closed session.

SYNOPSIS
#include <uma.h>

UMAStatusCode umaReconnect(
char *destination, /* in */
char *sysid, /* in */
UMASessId *sessid, /* out */
UMATimeVal *timeout /* in */
UMAReasonCode *reason /* out */

);

DESCRIPTION
umaReconnect() requests the re-establishment of control between the calling MAP and the
specified destination on the specified sysid. The specified destination must be either "UMADS"
or a private file and it must be currently active, that is, being reported to. The session that
originally specified the reporting must have been created with the UMA_NOTERM property,
and must no longer exist at the time of the umaReconnect() call. The new session, denoted by
sessid, will have the same attributes and properties as the session previously active for this same
destination.

If a connection to sysid and a session are not established within timeout.tv_sec seconds plus
timeout.tv_usec microseconds, umaReconnect() will return with a status code UMS_COMM and
reason code UMR_TIMEOUT.

The destination designator may be any of:

"[<location>:]UMADS[(dbid)]" /* UMADS data only */
"UMA_DFILE" /* environment-specified file */
"[<location>:]<path>" /* private file */

<location> identifies a specific UMADS or file location. It overrides the presumed location
established by UMA administration.

The semantics of sysid in umaReconnect() are the same as for the umaCreate() call.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 35

umaReconnect() The MLI Application Programming Interface

DIAGNOSTICS
The returned value of umaReconnect() indicates the general outcome (status code). The
supplementary reason code for a failed status is returned as an argument to the function. Status
and reason codes that apply to umaReconnect() include:

STATUS REASON EXPLANATION
No error encounteredUMS_SUCCESS UMR_NOREASON
Attempt to connect to UMA failedUMS_COMM UMR_CONNECT
Network errorUMR_NETWORK
Communications error when receiving
messages from UMA

UMR_RECEIVE

Insufficient system resourcesUMR_RESOURCE
Communications error when sending
messages to UMA

UMR_SEND

System error while communicating with
UMA

UMR_SYSERR

Timeout while attempting to connect to
UMA

UMR_TIMEOUT

This destination is currently the target of
another session

UMS_DEST UMR_ACTIVE

Specified destination invalidUMR_INVALID
Control message header not recognised by
UMA Data Services

UMS_PROTOCOL UMR_HEADER

Control message content not recognised by
UMA Data Services

UMR_MESSAGE

Maximum resources exceeded for this MAPUMS_SESSION UMR_MAX
Access deniedUMR_PERMISSION
Resource not availableUMR_RESOURCE
System error while establishing the sessionUMR_SYSERR
UMADS error while establishing the sessionUMR_UMADS

36 CAE Specification

The MLI Application Programming Interface umaRelease()

NAME
umaRelease - coordinate and start or stop reporting the requested classes and subclasses or
activate threshold settings.

SYNOPSIS
#include <uma.h>

UMAStatusCode umaRelease(
UMASessId sessid /* in */

);

DESCRIPTION
umaRelease() informs the UMA facility to execute any assembled requests from previous
umaStart(), umaStop() and umaSetThreshold() calls for the indicated session(s). The parameter
sessid may be assigned the defined symbol UMA_ALLSESSIONS to indicate that any such
assembled requests MAP should be released and executed.

NOTE
umaRelease() will take effect only when all the required session attributes STIME, ETIME, and
INTERVAL have been set.

DIAGNOSTICS
The returned value of umaRelease() indicates the general outcome (status code). Supplementary
reason code for a failed status can be obtained by calling the umaGetReason() function. Status
and reason codes that apply to umaRelease() include:

STATUS REASON EXPLANATION
No error encounteredUMS_SUCCESS UMR_NOREASON
Communications error while sending
messages to UMA (one or more sessions)

UMS_COMM UMR_SEND

Invalid session specifiedUMS_SESSID —
Insufficient resource (one or more sessions)UMS_SESSION UMR_RESOURCE

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 37

umaRequestConfig() The MLI Application Programming Interface

NAME
umaRequestConfig - request the reporting of system and UMA configuration information to a
MAP.

SYNOPSIS
#include <uma.h>

UMAStatusCode umaRequestConfig(
UMASessId sessid, /* in */
UMAProvider provider, /* in */
UMAClass dclass, /* in */
UMASubClass dsubcls /* in */

);

DESCRIPTION
The function umaRequestConfig() requests the reporting of configuration data as specified by
provider, dclass and dsubcls for the session specified by sessid. The defined symbols
UMA_ALLCLASSES and UMA_ALLSUBCLASSES may be used for dclass or dsubcls respectively,
to indicate that all classes and subclasses are to be selected.

STRUCTURES AND METADATA
The following terminology will be used in this discussion:

Instantiated Subclasses
MLI subclasses are equivalent to DCI classes that contain metric items. Such DCI
subclasses will be designated "instantiated subclasses". Instantiated subclasses may not
contain other classes.

Built-in Classes and Subclasses
The MLI supports static classes and subclasses that are defined to user applications by the
inclusion of header files of predefined structures for the subclasses. Messages in these
built-in classes and subclasses are available the "Canonical C" form of UMA UDUs and do
not require metadata for interpretation. Metadata may, however, be optionally supplied in
the form of "Class Attributes" and "Subclass Attributes" subclass messages in the "UMA
Configuration Class"

Dynamic Classes and Subclasses
Dynamic classes and subclasses are those that a provider explicitly registers, typically with
the UMA DCI. These classes and subclasses may come and go during the course of a
provider instantiation and require that metadata provided by the "Subclass Attribute"
subclass messages in the "UMA Configuration Class" be used to interpret them. Messages
in dynamic classes and subclasses are made available in the "Canonical A" form of MLI
UDUs. Built-in classes may not have dynamic subclasses.

The subclass ‘‘Implementation’’ of class ‘‘UMA Configuration’’ contains a class-type array.
In addition to implementation status, this array contains two bit flags, UMA_BUILTIN and
UMA_DYNAMIC. UMA_BUILTIN will be set if the class is available as a built-in class,
UMA_DYNAMIC will be set if the class has been dynamically registered by its provider. If
a class-type has UMA_DYNAMIC set then metadata in a ‘‘Subclass Attributes’’ subclass of
class ‘‘UMA Configuration’’ will always be available to describe its subclasses.

In the case when both built-in and dynamic forms of a subclass are defined, the MAP may
select which is to be delivered by setting the UMA_WORKLOAD_DYNAMIC flag in the
umaStart() call. The MLI service layer will then construct UDU messages according to
whichever form has been selected.

38 CAE Specification

The MLI Application Programming Interface umaRequestConfig()

Class and Subclass Handles
Data Pool classes and subclasses are manipulated by MAPs (MLI consumers) using class
and subclass handles (of types UMAClass and UMASubClass). The handles have static
values for built-in classes and subclasses. For dynamic classes and subclasses, the class
and subclass handles are dynamically assigned by the MLI service functions (the local
UMA Data Services Layer serving the requesting MAP). A common DSL service to all
local MAPs provides consistent handle values to all its local MAPs for the duration of the
DSL’s existence.

An MLI subclass handle is identical to the DPD (or DCI) class identifier of the deepest class
in the class hierarchy, that is the class that directly contains metrics. On the other hand, the
class handle is the representative name for all the elements in the naming hierarchy that
define the DPD class name from "uma" up to (but not including) the terminal class
identifier.

Providers
The MLI recognizes a provider as an explicit entity that registers and supplies metric
classes and subclasses. As the DCI does not explicitly support this notion of provider, it is
assumed, by convention, that the highest level class (or in some cases, classes) registered
by a DCI provider be used to identify a provider entity (or entities).

The metadata classes, subclasses and structures returned by umaRequestConfig() are as follows:

UMAClassAttr
The UMAClassAttr structure provides the i18n (internationalization) and ASCII name
labels for a class, identifies the metric-containing subclasses available in the class and
provides labels for them. A set of structures for a single class is returned in a message of
subclass ‘‘Class Attributes’’ in response to a MLI call umaRequestConfig() with a defined
class handle and a subclass wildcard (UMA_ALLSUBCLASSES). It is also sent when there
is a configuration change affecting the class if a umaStart() MLI call has been issued for
class ‘‘UMA Configuration’’ subclass ‘‘Class Attributes’’ (or UMA_ALLSUBCLASSES).

The UMAClassAttr structure is defined as follows:

typedef struct UMAClassAttr {
UMAClassId class; /* class handle */
UMAVarLenDescr classLabel; /* class label struct */
UMAArrayDescr subClassId; /* array of DPD sunclass ids */
UMAArrayDescr subClassStatus; /* subclass status array */
UMAVarArrayDescr subClassLabel; /* subcl label struct array */

} UMAClassAttr;

This structure contains the class handle followed by a descriptor for its label (the actual
label contents are in the UMA message UDU Basic Segment VLDS). These are followed by
an array descriptor for the array of Data Pool subclass identifiers available in this class.
(These subclass identifiers are the same as those registered by a DCI provider as class
identifiers for classes that directly contain metrics.) For each subclass there is an element
of a subclass-status array that describes the implementation status of the subclass, a value
consisting of one of UMA_NOTIMPLEMENTED, UMA_DISABLED or UMA_ENABLED.
Additional flag values in this array describe whether each subclass is available as
INTERVAL data, EVENT data (or both).

The MLI service layer (the DSL) will compose a label to correspond to a class handle that is
the concatenation, separated by periods, of the DCI class labels for each class in the path to
the terminal, metric containing class.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 39

umaRequestConfig() The MLI Application Programming Interface

Each subclass label is contained in a UMALabel structure defined as follows:

typedef struct UMALabel {
UMAUint4 size; /* size of this structure */
UMAVarLenDescr ascii; /* descriptor for the variable */

/* UMATextString for ascii label */
UMAElementDescr i18n /* descriptor for the variable */

/* length data for i18n label */
UMAVarLenData data; /* label data for ascii and i18n */

} UMALabel;

UMASubClassAttr
The UmaSubClassAttr structure is the container for the metadata describing a UMA
subclass. It includes descriptors for instance tags, work unit identifiers and metrics (data)
corresponding to a given DCI metric class identifier. It is sent in a message of UMA class
"Configuration", subclass "Subclass Attributes". This message is sent either when solicited
by an UMARequestConfig() call or when there is a configuration change affecting the
relevant UMA subclass and the "Configuration" subclass "Subclass Attributes" (or
UMA_ALLSUBCLASSES) has been requested in a umaStart() call.

typedef struct UMASubClassAttr {
UMASubClassHandles handles; /* cl/subcl handles,flags */
UMAVarArrayDescr instanceTags; /* instance tag */

/* descriptor array */
UMAVarArrayDescr workUnits; /* work unit descr array */
UMAVarArrayDescr dataBasic; /* basic data desc array */
UMAVarArrayDescr dataOptional; /* optional data descr array */
UMAVarArrayDescr dataExtended; /* extended data descr array */

} UMASubClassAttr;

UMASubClassHandles
The UMA class and subclass handles are contained in the UMASubClassHandles structure
in messages of class ‘‘UMA Configuration’’, subclass ‘‘Subclass Attributes’’:

typedef struct UMASubClassHandles {
UMAClass class; /* UMA class handle */
UMASubClass subClass; /* UMA subclass handle */

} UMASubClassHandles;

The following figure shows how the UMASubClassAttr structure, which is contained in a
UMA UDU of class ‘‘Configuration’’, subclass ‘‘Subclass Attributes’’ describes a UMA data
UDU. In the figure, a data subclass is mapped that has its Data Pool Document (DPD)
identifier provided in two components. The first component is an array of UMAClassId
items that are the elements of the fully-qualified class name and the second component is
just the subclass identifier by itself. These are mapped to the handles ‘‘X’’ and ‘‘Y’’,
respectively.

Note that in the descriptor subclass ‘‘Subclass Attributes’’, the Basic Segment VLDS
(Variable Length Data Section) contains variable length data that itself includes arrays of
additional descriptive data structures. These structures will be defined in the ensuing
discussion.

40 CAE Specification

The MLI Application Programming Interface umaRequestConfig()

VLDS Prefix

Basic Segment VLDS:

UDU Basic Segment:

Basic Segment Prefix

instance tag descrs

work unit descrs

instance tag descrs

cl/subcl handles

data attr (basic)

data attr (optional)

data attr (vendor)

segment
local start

Notes:
1) UMA DATA SUBCLASS DESCRIPTION sent in

response to umaRequestConfig() MLI call.
2) UMA DATA SUBCLASS sent at session intervals

in response to umaStart() call.
3) [a] denotes array of type definitions.
4) Metric data item may be data value or

descriptor if an array or of variable length.

UMA DATA SUBCLASS
DESCRIPTION

•
•

instance tag[1] UMAVarLenDescr

instance tag[n] UMAVarLenDescr

work unit[n] UMAVarLenDescr

work unit[1] UMAVarLenDescr

Basic Segment VLDS

metric data item[1] Value or descr

UMA Header UMAHeader

class "X"
subclass "Y"

Basic Segment Prefix

•
•

•
•

metric data item[n]

UDU Basic Segment:

instance tag value(s)

work unit value(s)

Other var len data

UDU Vendor Segment:

Vendor Segment VLDS

UDU Optional Segment:

Optional Segment VLDS

VLDS Prefix

segment
local start

TypeUMA DATA SUBCLASS

•
•

•
•

•
•

UMA Header

class "Configuration"
subclass "Subclass

Attributes"

Type

UMAHeader

work unit descrs

data attr (basic)

data attr (vendor)

data attr (optional)

UMASubClassHandles

UMAVarArrayDescr

UMAVarArrayDescr

UMAVarArrayDescr

UMAVarArrayDescr

UMAVarArrayDescr

UMAInstTagDescr[a]

UMAWorkDescr[a]

UMADataAttr[a]

UMADataAttr[a]

UMADataAttr[a]

Figure 5-1 UMASubClassAttr Mapping to a Dynamic MLI Subclass

UMAInstTagDescr
UMA defines a fully qualified metric name as consisting of a class identifier, a metric
instance identifier and a metric datum identifier. The metric class identifier is potentially
multilevel and having multiple identifier components such as {data pool cpu per_thread}.

i. Metric Class Identifier
The mapping of the class identifier proceeds by assigning its lowest level (rightmost)
class identifier component to the UMA subclass id in the UMA SubClassAttr
structure and the remaining set of higher level components (to the left of it) to the
array of identifier components for the UMA class id in this same structure. These
metric class id components represent the segment of a complete path to instantiated
subclasses that are defined within a UMA Data Pool.

ii. Instance Levels
The metric instance identifier uniquely identifies a metric class instantiation for a
specific system object. Like the DCI metric class identifier, the metric instance
identifier may have multiple levels, however, at each level the number of bytes in the
identifier may vary. As an example, consider {chan1 bus2 cont1 disk2} which
represents a specific channel, bus, controller and disk.

Metric instance identifiers are mapped level-by-level to instance tags in the UMA
UDU and this mapping is described by the set of UMAInstTagDescr structures, one

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 41

umaRequestConfig() The MLI Application Programming Interface

per level. Instance tags are special data items that appear in an MLI basic data UDU
immediately following header information.

typedef struct UMAInstTagDescr {
UMAUint4 size; /* size of this struct */
UMAUint4 flags; /* indic mapped explicit, */

/* as data array indices */
/* (lowest level only) */

UMADataType type; /* instance tag data type */
UMAInstTagType itType; /* instance tag type */
UMAUint4 itSize; /* tag size in bytes */
UMALabel label; /* ascii and i18n label */

} UMAInstTagDescr;

When mapping to instance tags from instance identifiers, the order is preserved,
meaning that the highest level component of the instance identifier appears
(following the instance tag for the workload identifier) as the first instance tag, the
next highest as the second instance tag, and so on. The instance tag data type
determines whether the instance tag position in the metric data subclass fixed section
for the segment is the tag data proper or if it is a data descriptor for variable length
data, with the actual tag data in the data segment’s VLDS pointed to by an offset in
the descriptor. For example if the instance tag data type is UMA_UINT4, the tag data
would be in the fixed data section, if the type is UMA_TEXTSTRING or
UMA_OCTETSTRING, the fixed section would contain descriptors of type
UMATextDescr or UMAElementDescr, respectively.

The UMAInstTagDescr structure describes levels of the metric instance identifier that are
mapped explicitly to instance tags. However, the lowest level of the instance identifier
may be mapped implicitly to an MLI UDU data array where this is deemed to be
advantageous. In this case data type of the array index (corresponding to the instance tag
data type) is always an integer. For example, the DCI_SYSCALL instance in the Data Pool
Class "Processor", Subclass "Global System Call Counters" is mapped to an array with each
index representing the numeric system call identifier.

UMAWorkDescr
The UMAWorkInfo definitions for a provider are a set of work units. These can be used
jointly in a umaStart() specification to define filters and reporting granularities for per-
work-unit subclasses. For example "Joe" might be a case of a work unit name
corresponding to the UMAWorkInfo identifier "User Name" and "run_db" might be a case of
a work unit name corresponding to the identifier "Command Name". When used jointly in
the UMAWorkDefn of umaStart() structure they indicate that the Per Work-Unit subclass
data is filtered for user "Joe" and the command "run_db". The available set of work unit
identifiers depends on the provider type and is defined for for that provider type in the
Data Pool.

There is some similarity between the UMAWorkInfo structure and instance identifiers and
levels. A key difference is that a for a given provider type, a defined set of WorkInfo work
unit identifiers is valid for all Per Work-Unit MLI classes and subclasses, while a fixed
selection instance tags (UMA instance levels and types) are specifically defined for a
particular MLI class and subclass. For example, only the instance types UMA_WORKID
and UMA_PROCESSOR are valid in the Data Pool Subclass "Per Work Unit Processor
Times", whereas any or all of the UMAWorkInfo identifiers defined for the provider may be
used with this same subclass.

42 CAE Specification

The MLI Application Programming Interface umaRequestConfig()

Another important difference between UMAWorkInfo and instance levels is that the
implementation of UMAWorkInfo granularities is optional with any provider, while every
provider must implement the instance levels as specified in the data pool. A provider has
the following choices concerning the implementation of UMAWorkInfo:

a. Implement filtering as specified by a consumer’s WorkInfo request for all or some of
the UMAWorkInfo components,

b. Implement tagging only for all or some of the WorkInfo components,

c. Implement neither

The possible work unit identifiers supplied by a provider are defined by a set of
UMAWorkDescr structures. This set of structures is contained in a message of UMA class
‘‘UMA Configuration’’, subclass ‘‘UMA Work Units’’ which is solicited with the
umaRequestConfig() MLI call. The UMAWorkDescr structure is defined:

typedef struct UMAWorkDescr {
UMAUint4 size; /* size of this struct */
UMADataType dType /* Work Unit data type */
UMAWorkType wType; /* Work Unit type */
UMALabel label; /* ascii and i18n labels */

} UMAWorkDescr;

UMADataAttr
The mapping of Data Pool metric values to the UMA Data UDU is described by the set of
UMADataAttr structures. Data pool metric values are mapped to the same data types as
defined in the Data Pool. Flag indicators in UMADataAttr indicate the implementation
status of the item (UMA_NOTIMPLEMENTED, UMA_ENABLED or UMA_DISABLED)
and whether the data is for the interval or is an absolute count. The descriptor type
indicates whether the data is directly mapped at the offset or whether it is mapped through
a descriptor to the UDU segment VLDS (Variable Length Data Section).

typedef struct UMADataAttr {
UMAUint4 size; /* size of this struct */
UMADataType type; /* data type of metric */
UMAUint4 status; /* status: NOTIMPLEMENTED, */

/* DISABLED, ENABLED */
UMAUnit units; /* data units */
UMAUint4 dataFlags; /* flags on units */

/* rates, counts, */
/* intervalization */

UMAUint4 offset; /* to data item or descr */
/* from segment start */

UMADescrType descrType /* Descriptor type */
/* (or none) */

UMALabel label; /* ascii and i18n labels */
} UMADataAttr;

DISCOVERY OF PROVIDERS, CLASSES, AND SUBCLASSES
This section summarizes the behavior of the MLI UMARequestConfig() call as used to discover
what providers have registered and to discover what classes and subclasses are available for a
given provider.

Wildcards
The defined values UMA_ALLCLASSES and UMA_ALLSUBCLASSES are wildcards for
MLI classes and subclasses, respectively.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 43

umaRequestConfig() The MLI Application Programming Interface

Available Providers
Executing the MLI call umaRequestConfig() with a class wildcard (UMA_ALLCLASSES), a
subclass "UMA Providers", returns a message of class "UMA Configuration" and subclass
"UMA Providers" that contains a list of providers available for this session’s destination. The
provider, dclass and dsubcls specifications are ignored. This class and subclass specification is
also available to umaStart() as an event.

Available Classes for a Provider
Executing the MLI call umaRequestConfig() with a class wildcard (UMA_ALLCLASSES) and
a subclass of "Implementation" returns a message of class ‘‘UMA Configuration’’ and
subclass: ‘‘Implementation’’ that contains the status arrays for the classes and subclasses
defined for the provider. These include both built-in and dynamic classes and subclasses.
This class and subclass specification is also available to umaStart() as an event.

Available Subclasses for a Class
Executing the MLI call umaRequestConfig() with a defined class handle and a subclass "Class
Attributes" returns the subclass ‘‘Class Attributes’’ of class ‘‘UMA Configuration’’. This
returns the identifiers, labels and status of either built-in or dynamic subclasses. This class
and subclass specification is also available to umaStart() as an event.

Retrieving Metadata for a Subclass
Executing the MLI call umaRequestConfig() with both class and subclass handles other than
for the class "UMA Configuration" returns a message of class ‘‘UMA Configuration’’ and of
subclass ‘‘Subclass Attributes’’.

Possible Work Units for a Provider
Executing the MLI call umaRequestConfig() with a class handle of UMA_ALL_CLASSES and
a subclass of ‘‘UMA Work Units’’ returns a message of class ‘‘UMA Configuration’’ and of
subclass ‘‘UMA Work Units’’.

44 CAE Specification

The MLI Application Programming Interface umaRequestConfig()

umaRequestConfig() METADATA SUMMARY
The following table summarizes the use of the umaRequestConfig() call for obtaining UDU
message descriptions. For, simplicity, the effects of the UMA_REPORT_DYNAMIC flag has
been omitted from this table.

Returns

Specified Class Specified Subclass "UMA Configuration" For

Subclass

All available
providers for this
sysid

UMA_ALLCLASSES "UMA Providers" "UMA Providers"

All metric classes and
subclasses for the
provider

UMA_ALLCLASSES "Implementation" "Implementation"

"States" "States"
etc. etc.

All metric subclasses
in class denoted by
Class Handle

<class handle> "Implementation" "Implementation"

"Class Attributes"

All metric subclasses
in class denoted by
Class Handle

<class handle> "Subclass Attributes" "Subclass Attributes

All UMAWorkInfo
work units possible
for this provider

UMA_ALLCLASSES "Work Units" "Work Units"

All of the above
class/subclass
information
subclasses

All configuration and
metric classes for the
provider

UMA_ALLCLASSES UMA_ALLSUBCLASSES

NOTES
UMA_ALLCLASSES implies UMA_ALLSUBCLASSES.

umaRequestConfig() call responses are always returned to the originating MAP, regardless of the
specified destination. These same status classes and subclasses may be directed to the session-
specified destination as event data, by specifying them in umaStart() calls.

The umaRequestConfig() call differs from umaStart() in that it solicits an out-of-band response
and does so only once for each solicitation.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 45

umaRequestConfig() The MLI Application Programming Interface

DIAGNOSTICS
The returned value of umaRequestConfig() indicates the general outcome (status code).
Supplementary reason code for a failed status can be obtained by calling the umaGetReason()
function. Status and reason codes that apply to umaRequestConfig() include:

STATUS REASON EXPLANATION
No error encounteredUMS_SUCCESS UMR_NOREASON
Access denied to this
configuration data

UMS_CLASS UMR_PERMISSION

Specified configuration class not
available

UMR_DISABLED

Specified configuration class
invalid

UMR_INVALID

Specified configuration class not
implemented

UMR_NOTIMPLEMENTED

Communications error when
sending messages to UMA

UMS_COMM UMR_SEND

End of session encounteredUMS_EOS —
Access denied to this providerUMS_PROVIDER UMR_PERMISSION
Unknown data providerUMR_UNKNOWN
Invalid sessid specifiedUMS_SESSID —
Lack of some system resourcesUMS_SESSION UMR_RESOURCE
Specified configuration subclass
not available

UMS_SUBCLASS UMR_DISABLED

Specified configuration subclass
invalid

UMR_INVALID

Specified configuration subclass
not implemented

UMR_NOTIMPLEMENTED

46 CAE Specification

The MLI Application Programming Interface umaSeek()

NAME
umaSeek - reposition to the interval of data with the specified timestamp.

SYNOPSIS
#include <uma.h>

UMAStatusCode umaSeek(
UMASessId sessid, /* in */
UMAInt4 position, /* in */
UMAWhence whence, /* in */
UMATimeSpec *tstamp /* in */

);

DESCRIPTION
The starting time for data reporting is nominally defined by the stime session parameter.
Reporting normally continues forward from this point. However, it is also possible to position
reporting by seeking to times either in Recent Data or UMADS facilities using umaSeek().

umaSeek() specifies that the next reporting interval corresponds to time tstamp, offset by number
of intervals specified in the signed integer position.

1. The parameter position may be zero, negative, or positive.

2. The parameter tstamp may be any one of the following (subject to the values of the session
attributes RECENT_ONLY and HISTORY_ONLY):

• If the whence parameter is UMA_TSTAMP, the seek is relative to an arbitrary timestamp
of type UMATimeSpec specified in the tstamp parameter.

• A defined value UMA_CTIME, that specifies the session current time setting
(timestamp of the last message retrieved by umaGetmsg(),

• A defined value UMA_LTIME, that specifies the latest time available from the source,
subject to the constraint that the specified session end time is not exceeded,

• A defined value UMA_STIME, that specifies the session start time.

If the session attribute RECENT_ONLY is set to TRUE, then seeks are confined to the data
intervals in the Recent Data Facility.

If the session attribute HISTORY_ONLY is set to TRUE, then seeks are confined to UMADS.

All specified data collection (as opposed to reporting) continues during umaSeek() operations. The
new data is not reported until it is reached in time sequence.

Note that the effect of a successful umaSeek() call is immediate, in that the next umaGetMsg() call
will access data or status messages resulting from the repositioning. umaSeek() is defined only
for sessions whose destination is the MAP.

If any of the session attributes STIME, ETIME, or INTERVAL have not been set, no positioning
action will be taken and umaSeek() will return a UMS_ATTR status code with reason code
UMR_INCOMPLETE.

NOTES
If a umaSeek() call is made to a time prior to the STIME, the next call to umaGetMsg() will return
a message of class: UMA_CONDITION, subclass: UMA_INFO, source: UMA_DSL, id:
UMA_STIME_BOUNDS. A subsequent call to umaGetMsg()() will return data from the first
interval in the session.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 47

umaSeek() The MLI Application Programming Interface

f a umaSeek() call is made to a time prior to the ETIME, the subsequent calls to umaGetMsg() will
return a message of class: UMA_CONDITION, subclass: UMA_INFO, source: UMA_DSL, id:
UMA_EOS.

A seek with position 0 and UMA_CTIME will ‘‘reposition’’ to the current message. This will
cause the next umaGetmsg() to return this same message.

A seek with UMA_LTIME must have a zero or negative position, otherwise an error return of
status UMS_TIME, reason UMR_CONFLICT will result.

The following may result in unpredictable positioning:

i. A umaSeek() call with UMA_CTIME (current time) used prior to a umaGetmsg() call,

ii. Two consecutive calls to umaSeek() with no intervening successful call to umaGetmsg().

DIAGNOSTICS
The returned value of umaSeek() indicates the general outcome (status code). Supplementary
reason code for a failed status can be obtained by calling the umaGetReason() function. Status
and reason codes that apply to umaSeek() include:

STATUS REASON EXPLANATION
No error encounteredUMS_SUCCESS UMR_NOREASON
All required attributes not specifiedUMS_ATTR UMR_INCOMPLETE
Communications error when sending
messages to UMA

UMS_COMM UMR_SEND

System error while communicating with
UMA

UMR_SYSERR

Communications error while receiving
messages from UMA

UMR_RECEIVE

Seek undefined with session destinationUMS_DEST UMR_CONFLICT
End of session encounteredUMS_EOS —
Invalid sessid specifiedUMS_SESSID —
Insufficient system resourcesUMS_SESSION UMR_RESOURCE
Conflicting time positions specifiedUMS_TIME UMR_CONFLICT
Invalid time positions specifiedUMR_INVALID

48 CAE Specification

The MLI Application Programming Interface umaSetAttr()

NAME
umaSetAttr - specify (or change) a session’s attributes.

SYNOPSIS
#include <uma.h>

UMAStatusCode umaSetAttr(
UMASessId sessid, /* in */

... /* in */
);

DESCRIPTION
Once a session is established (by a umaCreate() call), a MAP can issue a umaSetAttr() call to set or
change the attributes for the session denoted by sessid.

The sessid parameter is followed by a null-terminated variable length list of name-value pairs
(attrpairs), each pair consisting of a quoted attribute name followed by a comma and the
attribute value. (Example: "PRIO", 5).

The session attributes and their defaults are:

Default by Source
Attribute Type

File UMADS RECENT UMADS+RECENT

STIME UMATimeSec Min Time None UMA_TIME_NOW None

ETIME UMATimeSec Max Time None UMA_TIME_MAX UMA_TIME_MAX

INTERVAL UMATimeSec File UMADS None None

PRIO UMAPrio 3 3 3 3

HISTORY_ONLY UMABoolean TRUE TRUE FALSE FALSE

RECENT_ONLY UMABoolean FALSE FALSE TRUE FALSE

PARTIAL UMABoolean FALSE FALSE FALSE FALSE

The settings of these attributes affects the session context for other MLI calls in the following
ways.

Data reporting for the specified session will be for intervals of size specified by attribute
INTERVAL from STIME to ETIME.

Unless the session property UMA_NOTREGULAR has been set, intervals will be regular
meaning:

1. If the number of seconds is greater than or equal to 3600 (1 hour), then the number of
seconds must integrally divide 24*3600 and the equivalent number of hours must be a
whole number. This is equivalent an interval specification of 1, 2, 3, 4, 6, 8, 12, or 24 hours.

2. If the number of seconds is greater than or equal to 60 but less than 3600, then the number
of seconds must integrally divide 3600 and the equivalent number of minutes must be a
whole number. This is equivalent to an interval specification of 1, 2, 3, 4, 5, 6, 10, 12, 15, 20,
or 30 minutes.

3. If the number of seconds is less than 60, then the number of seconds must integrally divide
60. This is equivalent to an interval specification of 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, or 30
seconds.

In any case, the interval duration must not be greater than 24 hours.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 49

umaSetAttr() The MLI Application Programming Interface

If the session start time or the reporting request (umaStart()) occurs at a time between regular
collection times, the first interval reported for the session may be for a shorter duration than that
specified. All subsequent collections will be of the correct duration and at regular times.

The STIME and ETIME attributes are specified in units of calendar time measured in seconds
since January 1, 1970 and are expressed as Coordinated Universal Time. The defined constant
UMA_TIME_NOW may be used as a value for STIME or ETIME to specify an immediate start
time or end time, respectively. The defined constant UMA_TIME_MIN may be used as a value
for STIME to specify a session start time prior to any recorded data. The defined constant
UMA_TIME_MAX may be used as a value for ETIME to specify that the end time is indefinite
and that the session will be ended by an explicit umaClose() call.

If the session property UMA_NOTERM is set (in umaCreate()) and the time specified by ETIME
is reached, the session is automatically closed. If UMA_NOTERM is not set, a notification
message is sent to the issuing MAP indicating end-of-session reached, in which case the MAP may
either seek back in time or close the session. Note that setting the ETIME attribute to
UMA_TIME_NOW results in an immediate end of reporting.

Note that the attributes STIME and ETIME must be specified prior to any umaGetMsg(),
umaRequestConfig() and umaSetThreshold() calls. In addition, INTERVAL must be specified prior
to a umaRelease() that contains start or stop requests that have specified interval data.

The session start time STIME may be changed at any time before a previously specified start
time has occurred. Once this time has passed, however, it can only be changed to an earlier
time.

The effect of setting the STIME attribute when a session is initialized is to position the session’s
current time pointer to this value. Subsequent changes to the STIME attribute do not change the
session’s current time pointer.

The reporting end time ETIME may also be changed at any time before a previously specified
time has occurred. Once this time has passed, it may be extended by a MAP destination
(‘‘UMA_MAP’’) to a later time. For a file or UMADS destination, however, the session will be
atomatically closed when this time is reached. See also the umaGetMsg() description for status
and reason codes when the destination is a MAP.

Positive values of INTERVAL are taken to be the reporting interval size in seconds. A zero
specification for INTERVAL is an error when the session source contains ‘‘RECENT’’ as part of
its specification. When the source is UMADS or a file, a specified interval of zero is treated as a
wildcard in that data is reported at the stored interval value in those sources; any positive integer
interval specification is ignored in these cases. Alternatively, if the INTERVAL attribute is the
defined constant UMA_TIME_MAX, a single interval will be defined from the time of first
reporting to the session end time or the session close. This last capability is useful for collections
that are to last the duration of a programmatically determined interval, as may happen in
benchmarking activities.

The INTERVAL attribute does not affect data requested for reporting as events; reporting of
events is on an individual basis for each event occuring in the start/stop window.

The relative priority of data delivery to the MAP, is designated by the PRIO attribute, a non-
negative integer, with increasing values indicating decreasing priorities. This priority is in effect
only when retrieving data with the umaGetMsg() call and specifying the defined value
UMA_ANYSESSION for the requested session. (See umaGetMsg()).

The session attributes HISTORY_ONLY and RECENT_ONLY limit searches to UMADS or to the
Recent Data Facility, respectively, when source has been specified as "UMADS + RECENT". For
further details, see the descriptions for these attributes under attrparams in Section 5.2.

50 CAE Specification

The MLI Application Programming Interface umaSetAttr()

When regular intervals are in effect, setting the session attribute PARTIAL to TRUE indicates that
a requested change of interval size can take place at the next regular collection time for the
shorter of the new and old intervals. This specification may result in a single truncated old or
new interval at the time the change is made.

Summary of Data Source Specification

The following table shows the effect of various selections of source parameters and the session
attributes RECENT_ONLY and HISTORY_ONLY in UMA. An attempt to set both
RECENT_ONLY and HISTORY_ONLY to TRUE results in an error.

umaCreate() source RECENT_ONLY HISTORY_ONLY Source Used

ErrorRECENT FALSE FALSE

Recent DataRECENT TRUE FALSE

RECENT FALSE TRUE Error
UMADS FALSE FALSE UMADS
UMADS TRUE FALSE Error
UMADS FALSE TRUE UMADS

Recent Data
and
UMADS

UMADS + RECENT FALSE FALSE

Recent DataUMADS + RECENT TRUE FALSE

UMADS + RECENT FALSE TRUE UMADS
Private File FALSE FALSE Error
Private File TRUE FALSE Error
Private File FALSE TRUE Private File

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 51

umaSetAttr() The MLI Application Programming Interface

EXAMPLE
The following example assumes that there is an active session with a sessid of sessid1. The
function timec() in the example converts a string valued time specification to seconds since
January 1, 1970).

#include <uma.h>

UMAStatusCode status;
UMASessId sessid1;

status = umaSetAttr(sessid1, "STIME", timec("2pm"),
"INTERVAL", 120, "PRIO", 1,
"RECENT_ONLY", TRUE, (char*)NULL);

DIAGNOSTICS
In the case of an error, no action will be taken on any specified attributes. The returned value of
umaSetAttr() indicates the general outcome (status code). Supplementary reason code for a
failed status can be obtained by calling umaGetReason(). Status and reason codes that apply to
umaSetAttr() include:

STATUS REASON EXPLANATION
No error encounteredUMS_SUCCESS UMR_NOREASON
Invalid attribute name specifiedUMS_ATTR UMR_INVALID
Attributes conflictUMR_CONFLICT
Communications error when sending
messages to UMA

UMS_COMM UMR_SEND

End of sessionUMS_EOS —
Invalid interval duration specifiedUMS_INTERVAL UMR_INVALID
Interval conflicts with
source/destination

UMR_CONFLICT

Invalid priority specifiedUMS_PRIORITY UMR_INVALID
Invalid sessidUMS_SESSID —
Resource not availableUMS_SESSION UMR_RESOURCE
Invalid time specifiedUMS_TIME UMR_INVALID
STIME/ETIME conflict with other
attribute

UMR_CONFLICT

52 CAE Specification

The MLI Application Programming Interface umaSetThreshold()

NAME
umaSetThreshold - establish or change UMA threshold values.

SYNOPSIS
#include <uma.h>

UMAStatusCode umaSetThreshold(
UMASessId sessId, /* in */
UMAProvider provider, /* in */
UMAClass class, /* in */
UMASubClass subClass, /* in */
UMASegFlags segment, /* in */
char *selectExpr /* in */
char *workload /* in */

);

DESCRIPTION

The function umaSetThreshold() formats a message to the UMA facility to report data for a class,
subClass and segment from provider as specified in a prior umaStart() call in this same session,
only if the selection expression selectExpr evaluates to TRUE. Filtering may be reset either by
field or for an entire selection expression using the reset expression resetExpr. The action of
umaSetThreshold() can be restricted to a previously defined constructed workload (see
umaStart()) by use of the workload parameter. A NULL pointer for workload indicates that the
umaSetThreshold() action is to be global.

Note that umaSetThreshold() calls do not take effect until a umaRelease() call is made. This same
umaRelease() call can contain umaStart() calls in its scope, as long as they precede the related
umaSetThreshold() call(s). Multiple calls for the same session, provider, class and subClass are
ORed, meaning that if any one of the selection expressions evaluates to TRUE, the designated
subclass segments are reported to the calling MAP. If a umaSetThreshold() call is made
referencing an unstarted class, subclass, or segment, no action is taken and the status
UMS_SUBCLASS and reason UMR_NOTSTARTED are returned.

A select expression is defined as follows:

select_expr:
<compare_expr>

| <compare_expr> <lo> <select_expr>
| <reset_expr>

lo:
’|’ /* or */

| ’&’ /* and */

compare_expr:
<field_des> <ro> <numeric_value>

reset_expr:
RESET /* Resume segment reporting */

| <field_des> RESET /* Reset at the field level */

ro:
LT /* less than */

| LE /* less than or equal to */

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 53

umaSetThreshold() The MLI Application Programming Interface

| EQ /* equal to */
| GT /* greater than */
| GE /* greater than or equal to */
| NE /* not equal to */
| NLT /* not less than */
| NGT /* not greater than */

field_des:
$<field_index> /* ith scalar field in UMA data */

/* message or any element, */
/* if an array */

| $<namespace_ref> /* Data Pool namespace reference */

field_index:
<integer>

namespace_ref:
<DP xref> /* Fully qualified Data Pool xref */

/* including the enclosing < > marks. */
numeric value:

a value convertible by %f input conversion in C.

As the logical operator ’&’ has higher precedence than ’|’, parentheses may be required to
indicate the desired meaning. In addition, the relational operators (ro) have a higher precedence
than the logical operators (lo).

EXAMPLES

"$3 GT 75"

"$5 LE 10 | $6 GT 50"

"$5 LE 10 & ($7 GT 60 | $9 GE 70)"

"$<2.1.93> GT 10 & $<2.1.94> GT 5)" /* DCI xrefs */

"$5 RESET" /* Remove $5 from filtering expression */

DIAGNOSTICS
The returned value of umaSetThreshold() indicates the general outcome (status code).
Supplementary reason code for a failed status can be obtained by calling the umaGetReason()
function. Status and reason codes that apply to umaSetThreshold() include:

54 CAE Specification

The MLI Application Programming Interface umaSetThreshold()

STATUS REASON EXPLANATION
No error encounteredUMS_SUCCESS UMR_NOREASON
Specified class not availableUMS_CLASS UMR_DISABLED
Specified class invalidUMR_INVALID
Specified class not
implemented

UMR_NOTIMPLEMENTED

Communications error when
sending to UMA

UMS_COM UMR_SEND

Invalid selection expressionUMS_EXPRESSION UMR_INVALID
Specified field disabledUMS_FIELD UMR_DISABLED
Specified field invalidUMR_INVALID
Specified field not
implemented

UMR_NOTIMPLEMENTED

Invalid session specifiedUMS_SESSID —
Specified subclass disabledUMS_SUBCLASS UMR_DISABLED
Specified subclass invalidUMR_INVALID
Specified subclass not
implemented

UMR_NOTIMPLEMENTED

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 55

umaStart() The MLI Application Programming Interface

NAME
umaStart - specify the classes and subclasses of data to be reported.

SYNOPSIS
#include <uma.h>

UMAStatusCode umaStart(
UMASessId sessid, /* in */
UMAProvider provider, /* in */
UMAClass class, /* in */
UMASubClass subClass, /* in */
UMASegFlags segFlags, /* in */
UMAWorkDefn *workDefn /* in */

);

[Editor’s note for the CAE Draft:
There are two major areas of revision in umaStart(). The first is to make specification of
UMAWorkInfo and instance filters flexible and extensible in the DCI. This is now done by
the use the WorkDefn structure. The second change is to be able to assign a identifier to a
workload constructed by UMAWorkInfo filtering and/or summarization so that the
workload can be manipulated or accessed during the same session or at a later time in a
reference to UMADS.

Neither of these changes affect the ability to start classes and subclasses individually as
described in the Preliminary Specification.]

DESCRIPTION
The function umaStart() specifies the class and subclass of data to be reported for the session
denoted by sessid. Data reporting will be started for the specified provider, class, and subClass.
(UMA will initiate data collection, if necessary). The defined symbols UMA_ALLCLASSES and
UMA_ALLSUBCLASSES may be used for class and subClass respectively, to indicate that all
classes and all subclasses are to be selected. Note that UMA_ALLCLASSES implies
UMA_ALLSUBCLASSES.

Either interval or event forms of reporting may be selected for subclasses where these forms are
defined to be valid in the Data Pool Definitions (see reference DPD). Events are usually reported
out-of-band, that is they are reported ahead of any other currently queued data messages. In-
band delivery can be specified using the UMAWorkDefn structure described below.

The Data Pool Definition (see reference DPD), describes three conceptual data segments or
groupings within a UMA data subclass:

1. Basic - This is a segment of universally supplied data for the subclass as defined by the
Measurement Data Pool.

2. Optional - This is a segment of data whose structure and contents are defined by the
Measurement Data Pool but this segment may or may not be present in a particular
implementation.

3. Extension - This is data whose structure and contents are defined by a specific vendor or
reseller for the system. This segment may or may not be present.

segFlags indicates which data segments are to be reported (UMA_BSEG, UMA_OSEG and
UMA_ESEG for basic, optional, and extension, respectively).

destination (set in the umaCreate() call) controls whether the data is reported to the requesting
MAP or if it is to be recorded in UMADS or in an output file.

56 CAE Specification

The MLI Application Programming Interface umaStart()

Normally, UMA will wait to start collection and reporting after a umaRelease() call is made
subsequent to the umaStart(), however the umaStart() will not actually take effect until the
session attributes STIME, ETIME, INTERVAL have been set.

In addition, umaStart() requests will be validated and assembled within UMA but not acted
upon until two conditions are satisfied:

1. the time specified by attribute STIME has occurred

and

2. a umaRelease() call has been made.

This will allow a coordinated start time for a set of session measurements within the time
window defined by attributes STIME and ETIME

Specification of UMAWorkInfo values and instances for reporting will be by use of the
UMAWorkDefn structure defined as follows:

typedef struct UMAWorkDefn {
UMAUint4 size; /* size of this struct */
UMAUint4 rFlags; /* reporting flags */
UMATextDescr workIdSpec; /* workload id offset/size */
UMAUint4 granularity; /* granularity request */
UMAUint4 wFlags; /* workload flags */
UMAVarLenDescr workInfoSpec /* offset to WorkInfo data */
UMAVarLenDescr instanceSpec /* offset to instance data */
UMAVarLenData data; /* WorkInfo, instance specs*/

} UMAWorkDefn;

The UMAWorkDefn structure provides the definition of a constructed workload and
specification under the control of a number of flags described below. If the structure pointer for
workDefn in the input parameters is NULL, then UMAWorkInfo selection, instance selection,
workload selection by identifier, or summarization will not be requested.

The workload specification flags include:

UMA_WORKLOAD_ABSOLUTE
Requests that this workload be defined by use of absolute (not intervalized) counters for
this class and subclass.

UMA_WORKLOAD_COMPLEMENT
Requests that this definition is of a complement constructed workload, meaning that a
metric values in this workload consist of those available in the corresponding global metric
class and subclass minus the values of the corresponding metrics in this per-work-unit class
and subclass.

UMA_WORKLOAD_SUMMARIZED
Requests that the data for this constructed workload be summarized to level specified in the
UMAWorkDefn structure granularity flag even if the data provider to UMA does not
directly support this granularity. Satisfying this request does however depend on the data
provider’s being able to tag this UMAWorkInfo level. This is indicated in the metadata
provided by the UMA message of class "Configuration", subclass "Subclass Attributes" as a
supported UMAWorkInfo level. A request for summarization at a granularity level that is
not available is an error (UMS_WORKLOAD, UMR_GRANULARITY).

The reporting specification flags include:

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 57

umaStart() The MLI Application Programming Interface

UMA_REPORT_DYNAMIC
Requests that the DCI return structure form of this subclass (Canonical A) should be
reported by the MLI. Otherwise, the built-in structure form (Canonical C) is reported.

UMA_REPORT_EVENT
Requests that the asynchronous event form of the specified class and subclass be reported
to the MAP.

UMA_REPORT_WORKLOAD
Requests that the workload data form of the specified class and subclass be reported to the
MAP.

UMA_EVENT_FINALDATA
Requests that the final data event for the specified class and subclass be reported to the
MAP. Final data can be reported on components of the workload requested via the
selection criteria to the extent supported by the data provider. For example, if commands
‘‘abc*’’ are selected for user 123, then, final data will reported whenever each such
command teminates.

UMA_EVENT_INBAND
Requests that event messages of the specified class and subclass be delivered to the MAP
in_band, that is, they are to be reported in time sequence along with any queued data
messages.

The UMAWorkSpec structure for specifying selection of UMAWorkInfo values is defined:

typedef struct UMAWorkSpec {
UMUint4 wSpecSize; /* size of this structure */
UMAUint4 wSelect; /* WorkInfo level select bits */
UMAVarArrayDescr wSpecDescr; /* WorkInfo specs descr */
UMAVarLenData data; /* WorkInfo level spec value */

} UMAWorkSpec;

And each WorkInfo level specification is in a UMAWorkLvlSpec structure:

typedef struct UMAWorkLvlSpec {
UMAUint4 wLvlSize; /* size of this structure */
UMAUint4 wLvlType; /* enum type of WorkInfo spec*/

/* UMA_TEXTSTRING, */
/* UMA_UINT4, etc assigned */

UMAVarLenData data; /* work spec/expr */
} UMAWorkLvlSpec;

Note that the descriptor entries workIdSpec, workInfoSpec measure offsets from the start of
their containing structure, UMAWorkDefn, and wSpecDescr measures offset from the start of
UMAWorkSpec. Also, each structure’s initial size field (of type UMAUint4) is preceded by
sufficient padding so that the size field begins on a 4-byte word boundary.

The UMAWorkInfo levels and their data types are described by the UMAWorkDescr structures
contained in a UMA message of class "UMA Configuration", subclass "WorkInfo Attributes". If
the data type in UMAWorkDescr is text, a text regular expression may be used for selection in
UMAWorkLvlSpec 3. If the UMAWorkInfo data type is integer, either an integer or a text regular

3. More specifically, a Basic Regular Expression as defined in the XSI Specification.

58 CAE Specification

The MLI Application Programming Interface umaStart()

expression with integer semantics may used as a selection specification (e.g. a range such as [22-
25]). A wildcard integer value ’0xffffffff’ specifies that all UMAWorkInfo values are to be
selected.

The UMAInstSpec structure for specifying selection of instances is defined:

typedef struct UMAInstSpec {
UMAUint4 iSpecSize; /* size of this structure */
UMAUint4 iSelect; /* instance level select bits */
UMAVarArrayDescr iSpecsDescr; /* instance level specs descr */
UMAVarLenData data; /* instance level spec values */

} UMAInstSpec;

And each instance level specification is defined using the UMAInstLvlSpec structure:

typedef struct UMAInstLvlSpec {
UMAUint4 iLvlSize; /* size of this structure */
UMAUint4 iLvlType; /* enum type of instance spec*/

/* UMA_TEXTSTRING, */
/* UMA_UINT4, etc assigned */

UMAVarLenData data; /* instance spec/expr */
} UMAInstLvlSpec;

Here again, the descriptor entries (instanceSpec, iSpecsDescr) measure offsets from the start of
their containing structures (UMAWorkDefn and UMAInstSpec, respectively), and each
structure’s initial size field (of type UMAUint4) is preceded by sufficient padding so that the size
field begins on a 4-byte word boundary.

The instance levels and their data types are described by the UMAInstTagDescr structures in a
UMA message of class "UMA Configuration", subclass "Subclass Attributes". If the instance level
data type is integer, either an integer or a text regular expression with integer semantics may
used as a selection specification (e.g. a range such as [22-25]). A special wildcard integer value
’0xffffffff’ specifies that all instance values are to be selected.

As an example using the Unix Data Pool Definitions, consider a UMAWorkDefn structure that
requests reporting granularity at the process level for command names commencing with the
letters abc (UMAWorkInfo command name), executing on processors 2 through 4 (processor
instances). The layout of the UMAWorkDefn structure would be as follows (assuming a
compiler that aligns UMAUint4 on 4-byte word boundaries):

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 59

umaStart() The MLI Application Programming Interface

0x0000006c /* size of this structure (108) */
UMA_REPORT_WORKLOAD /* report workload flag (rFlags) */
0x00000020 /* offset to workload id (32) */
0x00000007 /* size of workload id */
UMA_WORKINFO_PROCESS_ID /* report process granularity */
0x00000000 /* workload is intervalized (wFlags */
0x00000024 /* offset to WorkInfo data (36) */
0x00000048 /* offset to instance data (72) */
"work001" /* workload identifier */
0x0 /* padding (1 byte) */
0x00000021 /* size of UMAWorkSpec structure (36)*/
UMA_WORKINFO_COMMAND_NAME /* WorkInfo selection by command */
0x00000010 /* offset to array of wrk selns (16) */
0x00000001 /* array count is 1 item (command) */
0x00000017 /* size of UMAWorkLvlSpec struct */
0x00000007 /* type is UMA_TEXTSTRING (enum) */
0x00000009 /* size of text string struct (9) */
"abc.*" /* regexpr string for command */
0x000000 /* padding (3 bytes) */
0x00000024 /* size of UMAInstSpec structure (36 */
UMA_PROCESSOR /* bit value for processor instance */
0x0000000f /* offset to array of inst selections*/
0x00000001 /* array count is 1 item (processor) */
0x00000011 /* size of UMAInstLvlSpec struct (17)*/
0x00000007 /* type is UMA_TEXTSTRING (enum) */
0x00000009 /* size of text string struct (9) */
"[2-4]" /* processor 2 through 4 selection */
0x000 /* padding (3 bytes) */

Note that The double-quote (") is used here to indicate that the content of the data field is text,
that is, the quote does not appear in the data.

DIAGNOSTICS
The returned value of umaStart() indicates the general outcome (status code). Supplementary
reason code for a failed status can be obtained by calling the umaGetReason() function. Status
and reason codes that apply to umaStart() include:

60 CAE Specification

The MLI Application Programming Interface umaStart()

STATUS REASON EXPLANATION
No error encounteredUMS_SUCCESS UMR_NOREASON
Specified class not availableUMS_CLASS UMR_DISABLED
Specified class invalidUMR_INVALID
Specified class not
implemented

UMR_NOTIMPLEMENTED

Access denied to this
class/subclass

UMR_PERMISSION

Communications error when
sending messages to UMA

UMS_COMM UMR_SEND

End of sessionUMS_EOS —
UMS_EVENT UMR_NOTIMPLEMENTED Event not implemented

Specified flag is invalidUMS_FLAGS UMR_INVALID
Node not recognisedUMS_NODE UMR_UNKNOWN
Access denied to this
provider

UMS_PROVIDER UMR_PERMISSION

Unknown data providerUMR_UNKNOWN
Invalid session specifiedUMS_SESSID —
Resource not availableUMS_SESSION UMR_RESOURCE
Specified subclass not
available

UMS_SUBCLASS UMR_DISABLED

Specified subclass invalidUMR_INVALID
Specified subclass not
implemented

UMR_NOTIMPLEMENTED

Workload granularity not
supported

UMS_WORKLOAD UMR_GRANULARITY

Invalid regular expressionUMR_REGEXP

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 61

umaStop() The MLI Application Programming Interface

NAME
unaStop - stop reporting of data classes and subclasses.

SYNOPSIS
#include <uma.h>

UMAStatusCode umaStop(
UMASessId sessid, /* in */
UMAProvider provider, /* in */
UMAClass class, /* in */
UMASubClass subClass, /* in */
UMASegFlags segFlags, /* in */
UMAFlushFlags flushFlags, /* in */
UMAWorkDefn *workDefn; /* in */

);

DESCRIPTION
umaStop() requests the UMA facility to stop reporting the data specified by provider, class,
subClass, and, optionally, a workload as defined in workDefn over sessid. If the pointer to the
UMAWorkDefn structure is not NULL, umaStop() terminates reporting on the specified class and
subclass. This action can be limited to a specified workload and/or workload components by
optionally specifying them in a UMAWorkDefn structure parameter. (Note that collection may
continue if other sessions have requested the same subclass.)

The defined symbols UMA_ALLCLASSES and UMA_ALLSUBCLASSES may be used for class
and subclass, respectively, to indicate that all classes and all subclasses are to be stopped. Note
that the symbol UMA_ALLCLASSES implies UMA_ALLSUBCLASSES.

The segFlags parameter indicates which data segments are to be stopped (UMA_BSEG,
UMA_OSEG, UMA_ESEG, UMA_ASEG for basic, optional, extension, and all, respectively). Not
specifying segflags is equivalent to having specified UMA_ASEG.

The flushFlags parameter further specifies which previously issued umaStart()s are cancelled.
The flag settings include UMA_ALLSTARTED, UMA_HELD, or UMA_RELEASED to indicate
whether all requests or only those held or only those released are to be stopped.

In addition to specifying a class and subclass to be stopped, the caller can specify that reporting
of a previously defined workload or class/subclass components be terminated for this session
using the UMAWorkDefn structure (see umaStart() for a full description of the structure). The
fields in the UMAWorkDefn structure that are used and not used by umaStop() are shown here:

typedef struct UMAWorkDefn {
UMAUint4 size; /* size of this struct */
UMAUint4 rFlags; /* reporting flags */
UMATextDescr workIdSpec; /* workload id offset/size */
UMAUint4 granularity; /* not used in umaStop() */
UMAUint4 wFlags; /* not used in umaStop() */
UMAVarLenDescr workInfoSpec /* not used in umaStop() */
UMAVarLenDescr instanceSpec /* not used in umaStop() */
UMAVarLenData data; /* not used in umaStop() */

} UMAWorkDefn;

62 CAE Specification

The MLI Application Programming Interface umaStop()

Unused fields of type UMAVarLenData must have valid size components but any contained
data will be ignored by umaStop(). The workload identifier (work_id) limits the action of
umaStop to the specified workload. If it is a null string, the reporting flags (rFlags) can still be
used to stop components for all workloads:

UMA_REPORT_EVENT
Requests that reporting of the asynchronous event form of the specified class and subclass
be terminated (for this workload identifier).

UMA_REPORT_WORKLOAD
Requests that the reporting of the workload data form of the specified class and subclass be
terminated (for this workload identifier).

UMA_EVENT_FINALDATA
Requests that the reporting of final data event for the specified class and subclass be
terminated (for this workload identifier).

UMA_EVENT_INBAND
Requests that in-band reporting of event messages of the specified class and subclass be
changed to out-of-band reporting if event reporting is still to be continued (for this
workload identifier).

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 63

umaStop() The MLI Application Programming Interface

DIAGNOSTICS
The returned value of umaStop() indicates the general outcome (status code). Supplementary
reason code for a failed status can be obtained by calling the umaGetReason() function. Status
and reason codes that apply to umaStop() include:

STATUS REASON EXPLANATION
No error encounteredUMS_SUCCESS UMR_NOREASON
Specified class not availableUMS_CLASS UMR_DISABLED
Specified class invalidUMR_INVALID
Specified class not
implemented

UMR_NOTIMPLEMENTED

Communications error when
sending messages to UMA

UMS_COMM UMR_SEND

End of sessionUMS_EOS —
UMS_EVENT UMR_NOTIMPLEMENTED Event not implemented

Specified flag invalidUMS_FLAGS UMR_INVALID
Specified node not
recognised

UMS_NODE UMR_UNKNOWN

Unknown data providerUMS_PROVIDER UMR_UNKNOWN
Invalid session specifiedUMS_SESSID —
Resource not availableUMS_SESSION UMR_RESOURCE
Specified subclass disabledUMS_SUBCLASS UMR_DISABLED
Specified subclass invalidUMR_INVALID
Specified subclass not
implemented

UMR_NOTIMPLEMENTED

64 CAE Specification

Chapter 6

UMA Message and Header Formats

UMA API messages, called UMA Data Units (UDUs), consist of a tagged header and either a
control segment or one or more data segments. A limited degree of ASN.1/BER encoding has
been provided by incorporating ASN.1 tags and length descriptors at the message, header, and
segment levels.

6.1 UDU Message Headers
The class and subclass of a message are indicated in the message header. These are as defined
by the UMA API unless flags (in the mh_flags field) indicate that they are specific to a provider.
The provider identifier is specified in the header (in the mh_provider field). Thus, depending on
these flag settings, a provider may be a source of either datapool-defined data or of data that is
unique to that provider. An example of the difference would be a datapool-defined DBMS data
class that is provided by the XYZ product designated by the integer nnn (flag setting off) versus
a DBMS data class that is specific to XYZ (flag setting on). Both would have the integer nnn in
the provider identifier field.

A UDU Indicators field in the message header includes specification of data encoding formats.
Three canonical formats are defined:

1. Canonical A, which provides data in the native format of the processor where captured
along with metadata (see reference DCI). In this form the metadata must be used to
interpret subclass data.

2. Canonical B, which encodes all items following the UDU Indicators field according to
ASN.1/BER tag-length-value format. Where tags and lengths are already specified in the
message or segment headers, they would be incorporated into the BER encoding for
Canonical B Format.

3. Canonical C, which permits data to be mapped to standardised C structures. In this
format there is limited ASN.1/BER encoding at the constructed types level (for example,
headers and data segments). In this format, metadata may also be made available.

6.2 UDU Control Segments
UDU control segments contain directives to UMA to take some action (for example, create a
session, start measuring some class/subclass, query a status, etc.)

The UDU header indicates that the UDU contains a control segment by a flag and by the control
segment class.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 65

UDU Control Segments UMA Message and Header Formats

6.2.1 Compatibility Support

The UDU header optionally contains a ‘‘Protocol Section’’ that provides UMA-specific, vendor-
specific, and platform-specific level and version information that may be needed for
interoperable or vendor-optimized communications between UMA Data Services Layers.

The protocol parameters supported are:

UMA Communications Protocols (mhpro_umacps)
Indicates communications protocols supported (indicated in the acknowledgement) - Flag
0x0001 is TCP/IP with socket interface

UMA Message Format Specification Level (mhpro_umamflvl)
Indicates the UMA message header and UDU format specification level — Level 1 is the
level specified by this document.

UMA+Message Specification Base Level (mhpro_umasblvl)
Indicates the document specification base - Level 1 is the level specified by this document.

UMA Vendor Name
Indicates vendor name in text form (mhpro_vndname).

UMA Vendor Protocol Level
Indicates private vendor protocol level available (mhpro_vndplvl).

Protocol level indicators are positive integers, nominally 0-127.

6.2.2 Status Reporting

Control segments can report status back to the MAP. For all status messages, the class is the
defined constant C_CONDITION. The subclass identifies the severity.

The source field, cs_source, identifies the UMA component affected:

• Data Capture Layer

• Data Services Layer

• UMADS

• Recent data facility.

The subclass of a message identifies the severity of the problem. The severity may be one of the
following:

• Informational

• Warning

• Severe (the session has had an unrecoverable error)

• Fatal (UMA has had an unrecoverable error).

The body identifies the condition (through defined constants). For each source, there is a
separate list of possible conditions. In addition, the message includes a textual description of the
problem, for example:

"Data not collected for this interval"
"Requested timestamp not contained in any interval"
"End of session encountered"

The text description is useful for reporting the condition back to a user. It can be used, for
example, in printing a status message to the user’s terminal.

66 CAE Specification

UMA Message and Header Formats UDU Control Segments

6.2.3 UMA API Message Header Format for Control UDUs

The following table shows the proposed UMA message header format for control messages.

Table 6-1 UMA API UMA Control Message Header

Data Type Name Description
BER-encoded UMA message
indicator tag 0x7fd5cd41

UMAOctetString[4] mh_msgtag

ASN.1/BER length of mh_msglenUMAOctetString[1] mh_msglenlen
Leading bit always 1; shows
mh_msglen length of 3 octets.

1000 0011

Length of the message including
the standard header starting at
the next field

UMAOctetString[3] mh_msglen

UDU Header Tag 0xbf1081
(includes length of mh_hdrlen in
the low order 7 bits). The first
octet of the string marks the
global start of the message.

UMAOctetString[3] mh_hdrtag

Length of UDU HeaderUMAOctetString[1] mh_hdrlen
UDU Indicators tag (for mh_flags)
indicators - 0x9f3081 (includes
length of mh_flags in the low
order 7 bits).

UMAOctetString[3] mh_indtag

Length of UDU IndicatorsUMAOctetString[1] mh_indlen
UDU IndicatorsUMAMsgFlags mh_flags
UDU contains control
information

1...

Canonical A format4010.

Canonical B format001.

Canonical C format011.

16-bit byte order H to L51... 0...

16-bit byte order L to H1... 1...

integer component order H to L1... .0..

integer component order L to H1... .1..

First message for this class, this
system ID

1... 1...

4. Format designated (A, B, or C) is in effect for the remainder of the message following the optional Protocol Section.
5. Local DSL preferred byte order in Create and Reconnect protocol.
6. Specification Level indicators are positive integers, nominally 0-127

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 67

UDU Control Segments UMA Message and Header Formats

Data Type Name Description
Last message for this class, this
system ID

1...1..

dst not in effect1...0

dst in effect1...1

Protocol Section present1... 1...

UDU Protocol Section tag (if
section present) - 0xbf708n
(includes length of protocol
section, n, in the low order 7 bits).

UMAOctetString[3] mh_protag

Tag for this platform’s wordsize -
0x9f7181 (includes length of
mhpro_wdsize in the low order 7
bits).

UMAOctetString[3] mhpro_wdsztag

This platform’s wordsize in bytesUMAOctetString[1] mhpro_wdsize
Tag for UMA Communication
Protocols - 0x9f7384 (includes
length of mhpro_umaplvl in the
low order 7 bits).

UMAOctetString[3] mhpro_cplvltag

UMA Message Communications
Protocols supported

UMAUint4 mhpro_umacps

Tag for UMA Message Format
Level - 0x9f7581 (includes length
of mhpro_umamflvl in the low
order 7 bits)

UMAOctetString[3] mhpro_mflvltag

UMA Message Format
Specification Level6

UMAOctetString[1] mhpro_umamflvl

Tag for UMA Specification Base
Level - 0x9f7681 (includes length
of mhpro_umamslvl in the low
order 7 bits)

UMAOctetString[3] mhpro_sblvltag

UMA Message Specification Base
Level

UMAOctetString[1] mhpro_umasblvl

Tag for Vendor Name string -
0x9f778n (includes length of
mhpro_vndname in the low order
7 bits, max length 64).

UMAOctetString[3] mhpro_vndtag

Vendor Name - Text not null
terminated

UMAOctetString[] mhpro_vndname

Vendor Protocol Level tag -
0x9f7981 (includes length of
mhpro_vndplvl in the low order 7
bits).

UMAOctetString[3] mhpro_vndptag

Vendor Protocol LevelUMAOctetString[1] mhpro_vndplvl
Timestamp of message creationUMATimeStamp mh_time

68 CAE Specification

UMA Message and Header Formats UDU Control Segments

Data Type Name Description
UMA class of the messageUMAClass mh_class
UMA subclass of the messageUMASubclass mh_subclass
Host network address that
generated the data in the message

UMAOctetString[8] mh_address

Host network address type (e.g.
internet, SNA, ...)7

UMAOctetString[4] mh_addr_family

6.2.4 UMA API Control Segment Format for Control UDUs

The following table shows the UMA control segment format for control messages (Canonical C
format shown).

Data Type Name Description
BER-encoded control segment tag
0xbfd5c300 ("UC", counter 0x00)

UMAOctetString[4] cs_segtag

ASN.1/BER length of cs_seglenUMAOctetString[1] cs_seglenlen
Leading bit always 1; indicates
cs_seglen length of 3.

1000 0011

Length of the control segment that
follows (not including this field);
the next octet marks the local start
position for this segment

UMAOctetString[3] cs_seglen

.

Control Segment Content

.

Table 6-2 UMA API UDU Control Segment

7. The provider identifier is an integer which may refer to the operating system kernel, its subcomponents, or to subsystems such as
DBMSs, transaction managers, or other applications. A default value of the identifier may be established by vendors of
subsystems for their products. However these must be capable of being overridden by systems administrators at sites where
they are in use. The provider identifier is mapped to text labels by the subclass ‘‘UMA Providers’’ of the class ‘‘UMA
Configuration’’.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 69

UDU Control Segments UMA Message and Header Formats

6.2.5 Hints

The message body provides three hint fields. The following table lists the conditions that use the
hint fields.

Condition Hint 1 Hint 2 Hint 3
U_EGAP Start time of gap Duration of gap not used
RHIST_GAP
DSL_NODATA Start time of interval Duration of interval not used
DSL_GAP Start time of gap Duration of gap not used
DSL_EOS Session end time not used not used
DSL_INTVL Closest available interval not used not used
U_EOF Timestamp of last not used not used

interval in data source.
Either UMADS or file.

Table 6-3 Conditions Using Hint Fields

When provided, the MAP can use the hints to respond to the condition. Here are two examples:

1. If an interval of data does not exist, a gap message will be sent. The first two of the hint
fields are used with gap messages: the first contains the gap start time and the second
contains the gap duration. A MAP graphing the data can use the hints in a gap message to
display the start time and duration of the gap.

2. Another situation that uses the hint fields is when a MAP requests data for an interval that
UMA is unable to provide. This situation will happen if the interval is not already being
collected and the site-configured maximum number of collectors are active. In this case,
hint 1 provides the closest available interval size.

Each hint field is a union of the following data types:

• UMAInt4

• UMAInt8

• UMATimeSec

• UMATimeNsec

• UMATimeUsec

• UMATimeStamp.

Each hint field is preceded by a hint type field, which identifies the type actually used for the
hint.

70 CAE Specification

UMA Message and Header Formats UDU Data Segments

6.3 UDU Data Segments
UDU data segments contain either interval or event data (traces are treated as a form of event
data). The presence of either category is indicated by a flag in the message header. Interval data
is that which is specifically scheduled for capture at each expiration of a specified time interval.
The data reported for the interval is the increment of the item values over the interval.

Within the categories of interval or event data, there are currently three kinds of data segments
as defined by the Data Pool Definitions (see reference DPD):

1. Basic data, which each implementation must supply

2. Optional data, which is generally available in open operating systems but is not
mandatory

3. Extension data, which is associated with a class and subclass, but is vendor and/or
implementation-specific.

Following each fixed data segment section (Basic, Enhanced, Extension) there is a VLDS
(Variable Length Data Section) that may contain one or more data items of varying length (for
example, text strings, arrays). Each of these variable length items is pointed to and described by
descriptors of the appropriate type (for example UMATextDescr, UMAArrayDescr) in the fixed
length section.

Each of the UDU data segments begins with an ASN.1/BER tag-length prefix. The location of
each segment is specified in the UDU header as an offset from a message global start position.

The following figure, UMA Data UDU Message Layout, illustrates the details of how a data
UDU is assembled.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 71

UDU Data Segments UMA Message and Header Formats

UMA Message (UDU)

UDU Header

UDU indicators

Interval

Extension

Basic Segment offset

Basic Segment

Fixed Section

Array Descriptor:

Array offset

Basic Segment

VLDS

Array Entry

•

•

•

•

•

•

•

•

Global Start

Local Start

7fd5cd41
83nnnnnn
bf0181nn

/* UMA UDU Message indicator "UMA" */
/* UMA UDU Message length = 0xnnnnnn */
/* uduHdr tag (0x01) and length (0xnn) */

9f038102
0000

/* uduIndicators tag (0x03) and length (0xnn) */
/* uduIndicators */

bf0581nn /* uduHdrIntx tag (0x05) and length (0xnn) */

bfd5c200
83nnnnnn

/* uduUBS Basic Segment Indicator ("UB", counter 0x00) */
/* UDU Basic Segment Fixed Section length (0xnnnnnn) */

bfd5c280
83nnnnnn

/* uduUBA Basic Segment VLDS indicator ("UB", counter 0x80) */
/* UDU Basic Segment VLDS length (0xnnnnnn) */

/* Note: Variable Length Data Section abbreviated "VLDS" */

/* OPTIONAL SEGMENT (not shown) */

bfd5cf00
83nnnnnn

/* uduUOS Optional Segment indicator ("UO", counter 0x00) */
/* UDU Optional Segment Fixed Section length (0xnnnnnn) */

bfd5cf80
83nnnnnn

/* uduUOS Optional Segment VLDS indicator ("UO", counter 0x80) */
/* UDU Optional Segment VLDS length (0xnnnnnn) */

/* EXTENSION SEGMENT (not shown) */

bfd5c500
83nnnnnn

/* uduUES Extension Segment indicator ("UE", counter 0x00) */
/* UDU Extension Segment Fixed Section length (0xnnnnnn) */

bfd5c580
83nnnnnn

/* uduUES Extension Segment VLDS indicator ("UE", counter 0x80) */
/* UDU Extension Segment VLDS length (0xnnnnnn) */

Figure 6-1 UMA Data UDU Message Layout

72 CAE Specification

UMA Message and Header Formats UDU Data Segments

6.3.1 UMA API Message Header Formats for Data UDUs

The following table shows the UMA message header format for data UDUs (Canonical C format
shown).

Table 6-4 UMA API Data UDU Message Header

Data Type Name Description
BER-encoded UMA message
indicator tag 0x7fd5cd41

UMAOctetString[4] mh_msgtag

ASN.1/BER length of mh_msglenUMAOctetString[1] mh_msglenlen
Leading bit always 1; indicates
mh_msglen length of 3 octets.

1000 0011

Length of the message including
the standard header starting at
the next field

UMAOctetString[3] mh_msglen

UDU Header Tag 0xbf0181
(includes length of mh_hdrlen in
the low order 7 bits). The first
octet of the string marks the
global start of the message.

UMAOctetString[3] mh_hdrtag

Length of UDU HeaderUMAOctetString[1] mh_hdrlen
UDU IndicatorsUMAMsgFlags mh_flags
UDU contains interval/event data0...

Canonical A format010.

Canonical B format001.

Canonical C format011.

16-bit byte order H to L0... 0...

16-bit byte order L to H0... 1...

integer component order H to L0... .0..

integer component order L to H0... .1..

Interval data (interval header
extension will be present)

0... 1...

Event or trace data (event header
extension will be present)

0... 0...

dst not in effect0... ...0

dst in effect0... ...1

First message for this class, this
system ID

0... 1...

Last message for this class, this
system ID

0...1..

Last message for this subclass0...1

Class specified is provider-
specific

0... 1...

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 73

UDU Data Segments UMA Message and Header Formats

Data Type Name Description
Subclass specified is provider-
specific

0...1..

Threshold screening has been
applied to this UDU

0...1

Timestamp of message creation
(data received from Data Capture
Interface)

UMATimeStamp mh_time

UMA class of the messageUMAClass mh_class
UMA subclass of the messageUMASubClass mh_subclass
Host network address that
generated the data in the message

UMAOctetString[8] mh_address

Host network address type
(Internet, SNA, etc.)

UMAOctetString[4] mh_addr_family

Identifier of the data provider that
registered to supply this data.

UMAUint4 mh_provider

The instance of this provider.UMAUint4 mh_provinst

74 CAE Specification

UMA Message and Header Formats UDU Data Segments

6.3.2 Interval Header Extension and Data UDU Basic Segment

The following table shows the interval header extension and basic segment for data UDUs
(Canonical C format shown).

Table 6-5 UMA API Interval Header Extension and Data UDU Basic Segment

Data Type Name Description
Interval Data Header Extension (Type UMAIntExt)

BER-encoded header interval
extension tag and length of
mhix_ixlen (0xbf0581)

UMAOctetString[3] mhix_ixlenlen

Length of the interval extensionUMAOctetString[1] mhix_ixlen
Interval extension flagsUMAMsgFlags mhix_flags
First message for interval, this
system ID

1...

Last message for interval, this
system ID

.1..

Source for this data was recent
history

..1.

Datetime measurement
scheduled as timestamp (nsec)

UMATimeStamp mhix_schedtime

Actual timestamp for this
interval (nsec)

UMATimeStamp mhix_intime

Duration of this interval in
microseconds

UMATimeUsec mhix_intlen

Offset from global start to basic
data segment, if it is present
(zero otherwise)

UMAUint4 mhix_baseoff

Offset from global start to
optional segment, if it is present
(zero otherwise)

UMAUint4 mhix_optoff

Offset from global start to
extension segment, if it is
present (zero otherwise)

UMAUint4 mhix_extoff

Data UDU Basic Segment
BER-encoded basic data
segment tag 0xbfd5c200 ("UB",
counter 0x00). This and the next
2 fields are included in the type
UMASegDescr.

UMAOctetString[4] bs_segtag

ASN.1/BER length of bs_seglenUMAOctetString[1] bs_seglenlen
Leading bit always 1; indicates
bs_seglen length of 3.

1000 0011

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 75

UDU Data Segments UMA Message and Header Formats

Data Type Name Description
Length of the basic segment that
follows, not including this field
or the length of the Variable
Length Data Section (VLDS); the
next octet marks the local start
position for this segment.

UMAOctetString[3] bs_seglen

.
Basic Segment Data
.

UDU VLDS
ASN.1/BER-encoded VLDS tag
0xbfuutt80 This and the next 2
fields are included in the type
UMASegDescr.

UMAOctetString[4] vlds_sectag

Basic segmentuutt = 0xd5c2
Optional segmentuutt = 0xd5cf
Extension segmentuutt = 0xd5c5
ASN.1/BER length of
vlds_seclen

UMAOctetString[1] vlds_seclenlen

Leading bit always 1; gives
vlds_seclen length 3 octets.

1000 0011

VLDS length (not including this
field)

UMAOctetString[3] vlds_seclen

.
Variable length data item
.

76 CAE Specification

UMA Message and Header Formats UDU Data Segments

6.3.3 Event Header Extension and Data UDU Basic Segment

The following table shows the event header extension and basic segment for data UDUs
(Canonical C format shown).

Table 6-6 UMA API Event Header Extension and Data UDU Basic Segment

Data Type Name Description

Event Data Header Extension (Type UMAEvtExt)
BER-encoded event header
extension tag and length of
mhex_exlen (0xbf0681).

UMAOctetString[3] mhex_exlenlen

Length of the event header
extension

UMAOctetString[1] mhex_exlen

Timestamp of this event (nsec)UMATimeStamp mhex_evtime
Offset from global start to basic
data segment, if it is present (zero
otherwise)

UMAUint4 mhex_baseoff

Offset from global start to
optional segment, if it is present
(zero otherwise)

UMAUint4 mhex_optoff

Offset from global start to
extension segment, if it is present
(zero otherwise)

UMAUint4 mhex_extoff

Data UDU Basic Segment
BER-encoded basic data segment
tag 0xbfd5c200 ("UB", counter
0x00). This and the next 2 fields
are included in the type
UMASegDescr.

UMAOctetString[4] bs_segtag

ASN.1/BER length of bs_seglenUMAOctetString[1] bs_seglenlen
Leading bit always 1; indicates
bs_seglen length of 3.

1000 0011

Length of the basic segment that
follows, not including this field
and not including the length of
the VLDS; the next octet marks
the local start position for this
segment.

UMAOctetString[3] bs_seglen

.

.
Basic Segment Data
.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 77

UDU Data Segments UMA Message and Header Formats

Data Type Name Description
.

UDU VLDS
ASN.1/BER-encoded VLDS tag
0xbfuutt80. This and the next 2
fields are included in the type
UMASegDescr.

UMAOctetString[4] vlds_sectag

Basic segmentuutt = 0xd5c2
Optional segmentuutt = 0xd5cf
Extension segmentuutt = 0xd5c5
ASN.1/BER length of vlds_seclenUMAOctetString[1] vlds_seclenlen
Leading bit always 1; indicates
vlds_seclen length of 3 octets.

1000 0011

VLDS length (not including this
field)

UMAOctetString[3] vlds_seclen

.

.
Variable length data item
.

78 CAE Specification

UMA Message and Header Formats UDU Data Segments

6.3.4 Optional and Extension Segments

The Data Capture Committee Measurement Data Pool document defines two data segments in
addition to that for basic data. The optional segment contains standard data that is part of the
pool, but may be implemented at an individual vendor’s choice. The extension segment contains
additional data items that a specific vendor considers useful.

Data Type Name Description
BER-encoded optional data segment
tag 0xbfd5cf00 ("UO", counter 0x00)

UMAOctetString[4] os_segtag

ASN.1/BER length of os_seglenUMAOctetString[1] os_seglenlen
Leading bit always 1; indicates
os_seglen length of 3.

1000 0011

Length of the optional segment that
follows, not including this field and
not including the length of the VLDS;
the next octet marks the local start
position for this segment.

UMAOctetString[3] os_seglen

.

.
Optional Segment Data
.
.

Table 6-7 Optional Segment Header

Data Type Name Description
BER-encoded extension data
segment tag 0xbfd5c500 ("UE",
counter 0x00)

UMAOctetString[4] es_segtag

ASN.1/BER length of es_seglenUMAOctetString[1] es_seglenlen
Leading bit always 1; indicates
es_seglen length of 3.

1000 0011

Length of the extension segment that
follows, not including this field; the
next octet marks the local start
position for this segment.

UMAOctetString[3] es_seglen

.

.
Extension Segment Data
.
.

Table 6-8 Extension Segment Header

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 79

UDU Data Segments UMA Message and Header Formats

6.3.5 Variable Length Data

In a UDU data segment (basic, optional, extension), a variable length data item is comprised of
two parts. The first is a fixed-length descriptor giving the offset to the item from the segment
local start position and the length of the item. The second part is the variable length data itself
which is located in the segment’s VLDS. Variable length text data, described by the UMA type
UMATextDescr is an example of the use of this format.

Data Type Name Description
.

Fields preceding descriptorxxxxxx pppppp
.

Offset from segment local start to
variable length data item yyy

UMAUint4 yyy_off

Length of the variable length data
item (in bytes)

UMAUint4 yyy_len

.
Field(s) following variable length
data descriptor

xxxxxx ffffff

UDU VLDS
ASN.1/BER-encoded VLDS tag
0xbfuutt80

UMAOctetString[4] vlds_sectag

Basic segmentuutt = 0xd5c2
Optional segmentuutt = 0xd5cf
Extension segmentuutt = 0xd5c5
ASN.1/BER length of vlds_seclenUMAOctetString[1] vlds_seclenlen
Leading bit always 1; indicates
vlds_seclen length of 3 octets.

1000 0011

VLDS length (not including this
field)

UMAOctetString[3] vlds_seclen

.

.
Variable length data item
.

Table 6-9 Format for Variable Length Data Items

80 CAE Specification

UMA Message and Header Formats UDU Data Segments

6.3.6 Array Data

In a UMA data message segment (basic, optional, extension), an array data entry is comprised of
two parts. The first is a fixed-length descriptor (of type UMAArrayDescr) giving the offset to the
array from the segment local start position, the count of array elements, and the size of each.
The second part is the array itself which is located in the segment’s VLDS.

Data Type Name Description
.

Fields preceding array descriptorxxxxxx pppppp
.

Offset from segment local start to first
element of array yyy

UMAUint4 yyy_off

Number of array elements in yyyUMAUint4 yyy_elmtcount
Size of each array element in yyyUMAUint4 yyy_elmtsize

.
Field(s) following array descriptorxxxxxx ffffff

.

.

UDU VLDS
BER-encoded VLDS tag 0xbfuutt80UMAOctetString[4] vlds_sectag
Basic segmentuutt = 0xd5c2
Optional segmentuutt = 0xd5cf
Extension segmentuutt = 0xd5c5
ASN.1/BER length of vlds_seclenUMAOctetString[1] vlds_seclenlen
Leading bit always 1; indicates vlds_seclen
length of 3 octets.

1000 0011

VLDS length of following (not including this
field)

UMAOctetString[3] vlds_seclen

.
Array Data
.
.

Table 6-10 Format for Array Data Items

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 81

UMA Message and Header Formats

82 CAE Specification

Chapter 7

Distributed UMA

This chapter defines specifications that will allow multiple UMA implementations to
interoperate in a distributed environment. The UMA MLI interface supports the semantics of
distributed data sources and destinations. Examples include the explicit use of a remote node
name for sysid in umaCreate(), or references to (implicitly) remote UMADS areas.

The UMA Data Services Layer (DSL) provides this distributed support either directly or
indirectly through the use of other service providers, but in any case certain DSL-to-DSL
communications must be provided to implement these distributed functions. Ensuring
interoperability between DSLs implemented by different vendors and on different hardware
architectures will require common messages (logical protocol) and a common message
transport. As the DSL is the coordinator of distributed services for UMA, the subsequent
discussion will be focused on this functional layer.

For the purposes of this discussion, the local DSL is defined as being a UMA Data Services Layer
that co-resides with a requesting MAP and MLI on a local host. A remote DSL will mean a
responding Data Services Layer on a remote host that is to provide data to the requesting MAP
and MLI via the local DSL. The remote host may or may not have MAPs executing, nor does it
necessarily have a Data Capture Layer (meaning it may be a UMADS data provider only). The
following figure illustrates the relationship:

Data Capture
Layer

Data Capture
Layer

Measurement
Control
Layer

Measurement
Control
Layer

Data Services
Layer

(Local)

Data Services
Layer

(Local)

Measurement
Application

Layer

Data Capture
Interface (DCI)

Measurement Layer
Interface (MLI)

"Local Host" "Remote Host"

Figure 7-1 Distributed UMA - Host/DSL Relationships

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 83

Message Transport Distributed UMA

7.1 Message Transport
The default message transport for UMA is TCP/IP with a socket interface8. This choice is based
on the need for both efficiency and reliability in transporting UMA control and data messages.
To fulfill the requirements for connection establishment, and in- and out-of-band message
delivery, the following ports are defined:

uma The service name for a registered port used to establish connections between
local and remote Data Service Layers. Once the connection is established, this
port is used to deliver command messages, interval data messages, and those
event data messages that are to be sent in-band.

The constant UMA_PORT, giving the port number for the service defined, is
defined in the header file <mli.h>.

uma_high A port used to deliver status messages and event data messages that are to be
sent out-of-band. See the umaStart() call description in a previous section for a
further discussion of in-band and out-of-band reporting. This port is
dynamically assigned and is returned in the Connection ack and Reconnection
ack subclass messages defined by the logical protocol. See Section 7.4 on page
88 for further details.

7.1.1 Logical Buffer Sizing

When establishing a connection with a remote DSL, either as a consequence of a umaCreate() or a
umaReconnect() call, a remote DSL uses a message buffer of size indicated by the ‘‘maximum
buffer size to be used for communications’’ field in the Create or Reconnect control messages sent
by the local DSL. This ensures compatible message exchanges governed by the socket interface.

7.1.2 Byte Ordering

In order to ensure that a remote DSL correctly interprets control and data messages sent by a
local DSL host that has a different byte order data architecture for integers, the UMA message
header contains indicator flags in field mh_flags to indicate the byte order of the host sending the
message. These indicators are interpreted thus:

1. If the indicator for the 16-bit byte order is on (a binary 1), each 16-bit component of an
integer quantity has internal byte order from low to high with increasing addresses and its
low order byte is coincident with the component starting address (little endian).
Otherwise, the component has byte order high to low with its high order byte at the
component starting address (big endian).

2. If the indicator for the integer component order is on (a binary 1), the 16-bit components of
the integer are ordered from low to high with increasing addresses; the start of the low
order 16-bit component is coincident with the integer starting address. Otherwise, the 16-
bit components are ordered from high to low with the start of the high order 16-byte
component coincident with the integer starting address.

Furthermore, the default byte ordering for all integers or integer-based quantities in the UMA
message header (including mh_flags itself) is network standard byte order. This is mandatory for

8. The OMG is in the process of defining message and transport specifications for CORBA that will ensure that different Object
Request Broker (ORB) implementations will interoperate. In future, PMWG will evaluate these specifications when they are
finalised, along with others, to determine their applicability for UMA message transport.

84 CAE Specification

Distributed UMA Message Transport

the Create and Reconnect logical messages, and in these instances the byte ordering indicators
in mh_flags represent the local DSL’s preferred byte ordering for header content. In the
Connection Acknowledement, the DSL server indicates the header byte order it will use for the
Acknowledgement and for all subsequent messages.

Lastly, UMADS data is always transported to a local DSL with the same byte ordering as for the
host on which it originated. This means that a receiving DSL will always see the same byte
ordering regardless of the architecture of the platform that may be acting as a data server.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 85

Message Buffering - Normal Priority Channel Distributed UMA

7.2 Message Buffering - Normal Priority Channel
Messages sent on the normal priority channel — uma — may be blocked with other messages in
a single buffer for the purposes of efficient transmission.

A token called a seek number, a monotonically increasing integer, is included in the buffer. The
seek number is increased with each umaSeek() call to reflect that a change is to take place in the
MAP’s (and the MLI’s) notion of current time for the session. The seek number is provided so
that both local and remote data buffers may be resynchronised after the repositioning. This
resynchronisation consists of discarding data buffers with lower seek numbers. The normal
priority channel buffer format is:

UMAUint4 Byte count of data in buffer in bytes not including this field

UMAUint8 Seek number

 Message 1

 Message 2

 .

 .

 Message n

86 CAE Specification

Distributed UMA Message Buffering - High Priority Channel

7.3 Message Buffering - High Priority Channel
Status messages and out-of-band condition messages from a source DSL are sent via the high
priority channel, uma_high, and may be blocked with other messages in a single buffer. The
buffer format is as follows:

UMAUint4 Byte count of data in buffer in bytes not including this field

 Message 1

 Message 2

 .

 .

 Message n

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 87

Logical Message Protocol Distributed UMA

7.4 Logical Message Protocol
Messages sent from DSL to DSL include both control and data messages. Control messages
include:

1. Requests resulting from calls to an MLI to be acted on by a remote DSL (class Command,
subclass depends on MLI call, eg. subclass ’Seek’)

2. Status messages from a remote DSL for the local DSL (for example, class Connection Status)

3. Condition messages from a remote DSL to be forwarded to a local MLI/MAP (class
Condition, subclass depends on type, for example Informational, Severe)

Data messages from a remote DSL are sent to the local DSL, and depending on the MLI session
destination, may either be written to UMADS or private files by the local DSL or may be
forwarded to a MAP/MLI.

The general structure of UMA control and data messages has been described in a previous
section. The remainder of this section describes specific messages used for DSL-to-DSL
communications organised by the types defined above.

The following table summarises the relationship of MLI calls, messages emitted by the MLI’s
associated DSL, and remote DSLs in a distributed environment.

MLI Call Local DSL Remote DSL Notes
’Command’ Message Status/Condition/Data

Request Subclass Response Subclass
umaClose() Close - -
umaCreate() Create Connection Ack Synchronous response
umaGetAttr() - - -

Buffer (Data,
Condition, Status)

Request to replenish
buffer

umaGetMsg() Request Data

umaGetReason() - - -
umaReconnect() Reconnect Reconnect Ack Synchronous response
umaRelease() Release - -
umaRequestConfig() Request Configuration - -
umaSeek() Seek - -
umaSetAttr() Set Attribute - One message per attribute

MLI may issue prior
Request Configuration to
verify class/subclass
status

umaSetThreshold() Set Threshold -

MLI may issue prior
Request Configuration to
verify class/subclass
status

umaStart() Start -

umaStop() Stop - -

Table 7-1 MLI Calls and Resulting DSL-to-DSL Messages

Note that condition messages (class Condition, subclasses Informational , Warning , Severe or Fatal)
may be sent to the MLI as a result of any of the above MLI calls. These messages may be
originated by either the remote or local DSL.

88 CAE Specification

Distributed UMA Logical Message Protocol

7.4.1 Forwarded Requests - Message Class - Command

These messages are in class Command and result from MLI requests. The subclass depends on
the specific action requested.

7.4.1.1 Message Subclass - Create

This message requests that the UMA facility create a session.

UMAHeader standard UMA message header.

UMASegDescr ASN.1/BER tags and lengths for the segment.

UMAUint4 maximum buffer size to be used for communications.

UMAUint4 user id for remote authorisations.

UMAUint4 remote host I/P address for which data is to be reported.

UMATextDescr source as specified in MLI umaCreate() call.

UMATextDescr destination as specified in MLI umaCreate() call.

UMAProp session properties as specified in MLI umaCreate() call.

7.4.1.2 Message Subclass - Reconnect

This message informs the UMA facility to reestablish session control to a previously shut down
session with the NOTERM property.

UMAHeader standard UMA message header.

UMASegDescr ASN.1/BER tags and lengths for the segment.

UMAUint4 maximum buffer size to be used for communications.

UMATextDescr destination as specified in MLI umaReconnect() call.

7.4.1.3 Message Subclass - Set Attribute

This message informs the UMA facility of the session attributes. One attribute is sent per
message.

UMAHeader standard UMA message header.

UMASegDescr ASN.1/BER tags and lengths for the segment.

UMATextDescr attribute name. The following attribute strings are defined: "STIME",
"ETIME", "INTERVAL", "PRIO", "HISTORY_ONLY", "RECENT_ONLY",
"PARTIAL".

UMAInt4 attribute value.

7.4.1.4 Message Subclass - Close

This is a request to shut down a session. This message is composed of a header only. The
subclass field in the header identifies the request.

UMAHeader standard UMA message header.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 89

Logical Message Protocol Distributed UMA

7.4.1.5 Message Subclass - Start

This message informs the UMA facility to report data specified by the fields in this subclass (that
is, class, subclass, . . .)

UMAHeader standard UMA message header.

UMASegDescr ASN.1/BER tags and lengths for the segment.

UMAProvider data provider as specified in the umaStart() MLI call.

UMAClass data class as specified in the umaStart() MLI call.

UMASubClass data subclass as specified in the umaStart() MLI call.

UMASegFlags data segments as specified in the umaStart() MLI call. The value will be
one of UMA_BSEG, UMA_OSEG, UMA_ESEG, UMA_ASEG representing
basic, optional, vendor extension, and all, respectively.

UMAUint4 length of workload definition structure or zero, if none specified.

UMAWorkDefn workload definition structure as specified in the umaStart() call. This
parameter is optional and will not be present if the preceding sentinel
length indicator is zero.

7.4.1.6 Message Subclass - Set Threshold

This message informs the UMA facility to report data specified by the fields in this subclass (that
is, class, subclass, . . .) only if the selection expression evaluates to true.

UMAHeader standard UMA message header.

UMASegDescr ASN.1/BER tags and lengths for the segment.

UMAProvider data provider as specified in the umaSetThreshold() MLI call.

UMAClass data class as specified in the umaSetThreshold() MLI call.

UMASubClass data subclass as specified in the umaSetThreshold() MLI call.

UMASegFlags data segments as specified in the umaSetThreshold() MLI call. The value
will be one of UMA_BSEG, UMA_OSEG, UMA_ESEG, UMA_ASEG
representing basic, optional, vendor extension, and all, respectively.

UMATextDescr selection expression as specified in the umaSetThreshold() MLI call. See
the description for the umaSetThreshold() MLI call for expression syntax.

UMATextDescr workload identifier as specified in the umaSetThreshold() call.

7.4.1.7 Message Subclass - Release

This message informs the UMA facility to begin the collection and reporting of started data
classes and subclasses. This message is composed of a header only. The subclass field in the
header identifies the request.

UMAHeader standard UMA message header.

90 CAE Specification

Distributed UMA Logical Message Protocol

7.4.1.8 Message Subclass - Request Data

This message informs the UMA facility that a receiving buffer is empty and therefore able to
receive more data.

UMAHeader standard UMA message header

UMAUint4 buffer selection. The value will be one of UMA_HIGH_BUFF,
UMA_NORM_BUFF, representing high and normal buffers, respectively.

7.4.1.9 Message Subclass - Stop

This message informs the UMA facility to stop reporting data specified by the fields in this
subclass (that is, class, subclass, . . .)

UMAHeader standard UMA message header.

UMASegDescr ASN.1/BER tags and lengths for the segment.

UMAProvider data provider as specified in the umaStop() MLI call.

UMAClass data class as specified in the umaStop() MLI call.

UMASubClass data subclass as specified in the umaStop() MLI call.

UMASegFlags data segments as specified in the umaStop() MLI call. The value will be
one of UMA_BSEG, UMA_OSEG, UMA_ESEG, UMA_ASEG representing
basic, optional, vendor extension, and all, respectively.

UMAFlushFlags queue of data to flush as specified in the umaStop() MLI call. The value
will be one of UMA_HELD, UMA_RELEASED, UMA_ALLSTARTED, to
indicate whether held requests or only those released or all started requests
are to be stopped.

UMAUint4 length of workload definition structure or zero, if none specified.

UMAWorkDefn workload definition structure as specified in the umaStop() call. This
parameter is optional and will not be present if the preceding sentinel
length indicator is zero.

7.4.1.10 Message Subclass - Seek

This message informs the UMA facility to reposition the next reported interval.

UMAHeader standard UMA message header.

UMASegDescr ASN.1/BER tags and lengths for the segment.

UMAWhence whence value: one of UMA_CTIME, UMA_LTIME, UMA_STIME or
UMA_TSTAMP. Indicates what the seek is relative to.

UMATimeSpec if the whence is UMA_TSTAMP, this field contains an arbitrary timestamp
value which the seek is relative to.

UMAInt4 relative position (number of intervals of data messages) from timestamp
as specified in the umaSeek() MLI call. The value may be zero, positive,
or negative.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 91

Logical Message Protocol Distributed UMA

UMAUint4 port number for high priority channel (uma_high).

UMATimeStamp session’s current time (as known by the local DSL).

UMAUint4 session’s last seek number (as known by the local DSL).

7.4.1.11 Message Subclass - Request Configuration

This message requests that the UMA facility return (as messages) the configuration status of
classes and subclasses specified in the fields.

UMAHeader standard UMA message header.

UMASegDescr ASN.1/BER tags and lengths for the segment.

UMAProvider data provider as specified in the umaRequestConfig() MLI call.

UMAClass configuration data class as specified in the umaRequestConfig() MLI call.

UMASubClass configuration data subclass as specified in the umaRequestConfig() MLI
call.

UMAUint4 port number for high priority channel (uma_high).

92 CAE Specification

Distributed UMA Logical Message Protocol

7.4.2 Message Class - Connection Status

7.4.2.1 Message Subclass - Connection Ack

This message is a status acknowledgment for a connection request.

UMAHeader standard UMA message header.

UMASegDescr ASN.1/BER tags and lengths for the segment.

UMAStatusCode status code. This code identifies the general outcome of the connection
request. Defined values are specified elsewhere in this document.

UMAReasonCode reason code. This code provides more in depth identification for a status
code. Defined values are specified elsewhere in this document.

7.4.2.2 Message Subclass - Reconnect Ack

This message is a status acknowledgment for a reconnection request.

UMAHeader standard UMA message header.

UMASegDescr ASN.1/BER tags and lengths for the segment.

UMAStatusCode status code. This code identifies the general outcome of the connection
request. Defined values are specified elsewhere in this document.

UMAReasonCode reason code. This code provides more in depth identification for a status
code. Defined values are specified elsewhere in this document.

UMATextDescr source.

UMAProp session properties.

UMAAttr session attributes.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 93

Logical Message Protocol Distributed UMA

7.4.3 Message Class - Condition

7.4.3.1 Message Subclass - Informational

This message provides informational status regarding a condition that has occurred in UMA.

UMAHeader standard UMA message header.

UMASegDescr ASN.1/BER tags and lengths for the segment.

UMAInt4 source of the condition.

UMAInt4 condition identifier.

char[] condition description.

UMAInt4 type of hint1.

UMAHint value of hint1.

UMAInt4 type of hint2.

UMAHint value of hint2.

UMAInt4 type of hint3.

UMAHint value of hint3.

7.4.3.2 Message Subclass - Warning

This message provides warning status regarding a condition that has occurred in UMA.

UMAHeader standard UMA message header.

UMASegDescr ASN.1/BER tags and lengths for the segment.

UMAInt4 source of the condition.

UMAInt4 condition identifier.

char[] condition description.

UMAInt4 type of hint1.

UMAHint value of hint1.

UMAInt4 type of hint2.

UMAHint value of hint2.

UMAInt4 type of hint3.

UMAHint value of hint3.

7.4.3.3 Message Subclass - Severe

This message provides status regarding a severe condition that has occurred in UMA.

UMAHeader standard UMA message header.

UMASegDescr ASN.1/BER tags and lengths for the segment.

UMAInt4 source of the condition.

UMAInt4 condition identifier.

94 CAE Specification

Distributed UMA Logical Message Protocol

char[] condition description.

UMAInt4 type of hint1.

UMAHint value of hint1.

UMAInt4 type of hint2.

UMAHint value of hint2.

UMAInt4 type of hint3.

UMAHint value of hint3.

7.4.3.4 Message Subclass - Fatal

This message provides status regarding a fatal condition that has occurred or is imminent in
UMA.

UMAHeader standard UMA message header.

UMASegDescr ASN.1/BER tags and lengths for the segment.

UMAInt4 source of the condition.

UMAInt4 condition identifier.

char[] condition description.

UMAInt4 type of hint1.

UMAHint value of hint1.

UMAInt4 type of hint2.

UMAHint value of hint2.

UMAInt4 type of hint3.

UMAHint value of hint3.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 95

Distributed UMA

96 CAE Specification

Chapter 8

The UMA Configuration Class

This chapter describes the ‘‘UMA Configuration’’ class and its subclasses. Messages in this class
give data pertaining to the specific UMA implementation, data providers, and to the UMA
configuration parameters on this particular system.

This class is an MLI-only class, created from the examination of the name space.

8.1 Subclass - System Description
A message of the subclass is produced on demand and when a change occurs in the parameters
reflected in its content.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 97

MLI Subclass Information The UMA Configuration Class

8.2 MLI Subclass Information
(H)UMAHeader Standard UMA data header.

(H)UMAEvtExt event data header extension.

(B)UMASegDescr ASN.1/BER tags and lengths for the basic data segment.

(B)UMAOctetString[8] name of the operating system that created this message.

(B)UMAOctetString[8] version of the operating system that created this message.

(B)UMAOctetString[8] release of the operating system that created this message.

(B)UMAOctetString[8] version of UMA that created this message.

(B)UMAMsgFlags time representation indicators

.... 0000 duration is UMATimeStamp

.... 0001 duration is UMATimeVal

.... 0010 duration is UMATimeSpec

.... 0000 timestamp is UMATimeStamp

.... 0001 timestamp is UMATimeVal

.... 0010 timestamp is UMATimeSpec

(B)UMATextDescr descriptor for the standard time designator as defined for TZ in the
System Interface Definitions (see reference XSH).

(B)UMATextDescr descriptor for the standard time offset from UTC [+/-]hh[:mm[:ss]]
as defined for TZ in the System Interface Definitions (see reference
XSH). time offset is the value to be added to local time to arrive at
UTC (Universal Coordinated Time).

(B)UMATextDescr descriptor for the alternative time designator as defined for TZ in the
System Interface Definitions (see reference XSH).

(B)UMATextDescr descriptor for the alternative time offset from UTC [+/-]hh[:mm[:ss]]
as defined for TZ in the System Interface Definitions (see reference
XSH).

(B)UMATextDescr descriptor for the rule to change to and from alternative time,
date[/time],date[/time,] as defined for TZ in the System Interface
Definitions (see reference XSH). Each time field describes when, in
current local time, the change to the other time is made.

98 CAE Specification

The UMA Configuration Class Subclass - UMA Providers

8.3 Subclass - UMA Providers
A message of the subclass is produced on demand and, if requested, when a change occurs in the
parameters reflected in its content. It describes what providers are available.

8.3.1 MLI Subclass Information

(H)UMAHeader standard UMA data header.

(H)UMAEvtExt event data header extension.

(B)UMASegDescr ASN.1/BER tags and lengths for the basic data segment.

(B)UMAArrayDescr descriptor for the array of provider integer ids.

(B)UMAVarArrayDescr descriptor for the array of provider labels of type UMALabel.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 99

Subclass - UMA Work Units The UMA Configuration Class

8.4 Subclass - UMA Work Units
A message of the subclass is produced on demand and, if requested, when a change occurs in the
parameter reflected in its content. It defines the possible UMA Work Units that can be in effect
with per-work-unit data subclasses.

8.4.1 MLI Subclass Information

(H)UMAHeader standard UMA data header.

(H)UMAEvtExt event data header extension.

(B)UMASegDescr ASN.1/BER tags and lengths for the basic data segment.

(B)UMAVarArrayDescr descriptor for the array of UMAWorkDescr structures.

100 CAE Specification

The UMA Configuration Class Subclass - Implementation

8.5 Subclass - Implementation
A message of the subclass is produced on demand and, if requested, when a change occurs in the
parameter reflected in its content. It describes which classes, subclasses and fields are
implemented.

8.5.1 MLI Subclass Information

(H)UMAHeader standard UMA data header.

(H)UMAEvtExt event data header extension.

(B)UMASegDescr ASN.1/BER tags and lengths for the basic data segment.

(B)UMAUint4 the highest class id implemented.

(B)UMAArrayDescr descriptor for the class-status array.

(B)UMAArrayDescr descriptor for the class-subclass count array.

(B)UMAArrayDescr descriptor for the class-subclass index array.

(B)UMAArrayDescr descriptor for the basic subclass status array.

(B)UMAArrayDescr descriptor for the optional subclass status array.

(B)UMAArrayDescr descriptor for the extension subclass status array.

(B)UMASegDescr ASN.1/BER tags and lengths for the basic segment variable length data
section.

(B)UMAUint4[] the class-status array. This array, when indexed by the class id shows the
implementation status of a given class. The value of each array element
will be one of NOTIMPLEMENTED, DISABLED, or ENABLED.
NOTIMPLEMENTED has the obvious meaning, DISABLED means that
this class is implemented, but was omitted from the system at
configuration time or disabled dynamically, ENABLED means that this
class is available to be collected.

(B)UMAUint4[] the class-subclass count array. This array, when indexed by class id gives
the count of subclass ids implemented for this class.

(B)UMAUint4[] the class-subclass index array. This array, when indexed by class id gives
the index of the first subclass of this class in the subclass status array.

(B)UMAUint4[] the subclass basic status array. This array, when indexed by the class-
subclass index plus the subclass id gives the implementation status of
basic segment of this subclass. The possible values are the same as in the
class status array.

(B)UMAUint4[] the subclass optional status array. This array, when indexed by the class-
subclass index plus the subclass id gives the implementation status of
optional segment of this subclass. The possible values are the same as in
the class status array.

(B)UMAUint4[] the subclass extension status array. This array, when indexed by the
class-subclass index plus the subclass id gives the implementation status
of extension segment of this subclass. The possible values are the same as
in the class status array.

(B)UMAUint4[] the subclass-field count array. This array, when indexed by class-subclass
index gives the count of field sequence ids implemented for this subclass.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 101

Subclass - Implementation The UMA Configuration Class

(B)UMAUint4[] the subclass-field index array. This array, when indexed by class-subclass
index gives the index of the first field of this subclass in the field status
array.

(B)UMAUint4[] the field basic status array. This array, when indexed by the subclass-field
index plus the field sequence id gives the implementation status of this
field in the basic segment. The possible values are the same as in the class
status array.

(B)UMAUint4[] the subclass optional status array. This array, when indexed by the
subclass-field index plus the field sequence id gives the implementation
status of this field in the optional segment. The possible values are the
same as in the class status array.

(B)UMAUint4[] the subclass extension status array. This array, when indexed by the
subclass-field index plus the field sequence id gives the implementation
status of this field in the extension segment. The possible values are the
same as in the class status array.

102 CAE Specification

The UMA Configuration Class Subclass - States

8.6 Subclass - States
A message of the subclass is produced on demand and describes the current state of each
segment type of a given class/subclass.

8.6.1 MLI Subclass Information

(H)UMAHeader standard UMA data header.

(H)UMAEvtExt event data header extension.

(B)UMASegDescr ASN.1/BER tags and lengths for the basic data segment.

(B)UMAArrayDescr descriptor for the class-subclass basic state array.

(B)UMAArrayDescr descriptor for the class-subclass optional state array.

(B)UMAArrayDescr descriptor for the class-subclass extension state array.

(B)UMASegDescr ASN.1/BER tags and lengths for the basic segment variable length
data section.

(B)UMAUint4[] the class-subclass basic state array. This array, when indexed by the
class-subclass index plus the subclass id shows the session’s state of
a given class/subclass basic segment. The value of each array
element will be one of NOTSTARTED, RELEASED, and HELD.
NOTSTARTED and RELEASED have the obvious meaning. HELD
means that the session has started the specified class/subclass, and
has not yet issued a umaRelease().

(B)UMAUint4[] the class-subclass optional state array. This array, when indexed by
the class-subclass index plus the subclass id shows the session’s state
of a given class/subclass optional segment. The value of each array
element will be one of NOTSTARTED, RELEASED, and HELD.
NOTSTARTED and RELEASED have the obvious meaning. HELD
means that the session has started the specified class/subclass, and
has not yet issued a umaRelease().

(B)UMAUint4[] the class-subclass extension state array. This array, when indexed by
the class-subclass index plus the subclass id shows the session’s state
of a given class/subclass extension segment. The value of each array
element will be one of NOTSTARTED, RELEASED, and HELD.
NOTSTARTED and RELEASED have the obvious meaning. HELD
means that the session has started the specified class/subclass, and
has not yet issued a umaRelease().

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 103

Subclass - Names The UMA Configuration Class

8.7 Subclass - Names
A message of the subclass is produced on demand and describes the class name, the subclass
name and the abbreviated subclass name.

8.7.1 MLI Subclass Information

(H)UMAHeader standard UMA data header.

(H)UMAEvtExt event data header extension.

(B)UMASegDescr ASN.1/BER tags and lengths for the basic data segment.

(B)UMAArrayDescr descriptor for the class name array.

(B)UMAArrayDescr descriptor for the subclass name array.

(B)UMAArrayDescr descriptor for the subclass abbreviated name array.

(B)UMASegDescr ASN.1/BER tags and lengths for the basic segment variable length
data section.

(B)char[][] the class name array. This array, when indexed by the class-subclass
index plus the subclass id gives the class name.

(B)char[][] the subclass name array. This array, when indexed by the class-
subclass index plus the subclass id gives the subclass name.

(B)char[][] the subclass abbreviated name array. This array, when indexed by
the class-subclass index plus the subclass id gives the abbreviated
subclass name.

104 CAE Specification

The UMA Configuration Class Subclass - UMA Restart

8.8 Subclass - UMA Restart
This subclass specifies the last UMA restart. In this context, UMA refers to an active data
services entity capable of servicing MAPs and able to start data collection as needed.

8.8.1 MLI Subclass Information

(H)UMAHeader standard UMA data header.

(H)UMAEvtExt event header extension.

(B)UMASegDescr ASN.1/BER tags and lengths for the basic data segment.

(B)UMATimeStamp UMA restart time

(1)UMASegDescr ASN.1 tags and lengths for the basic segment variable length data
section.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 105

The UMA Configuration Class

106 CAE Specification

Appendix A

C Language Header Files

The following two sections present the <mli.h> and <uma.h>, header files.

These two header files are included because they define the data types and structures more
exactly than English text.

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 107

<mli.h> C Language Header Files

A.1 <mli.h>

#ifndef MLI_H
#define MLI_H

#include <limits.h>
#include <sys/uma.h>

/*
******************** NOTICE ***********************************
* The <dci.h>, <mli.h> and <uma.h> header files
* introduce UMA symbols which may conflict with other
* symbols defined in an application. Symbols with the
* following prefixes are therefore reserved to UMA:
* DCI
* dci
* UMA
* UMR
* UMS
*
* Note that the header files are provided as advisory
* reference examples.
******************** END OF NOTICE ****************************
*/

/**/
/* UMA data types */
/**/
typedef UMAInt4 UMAEvent;
typedef UMAUint4 UMAFlushFlags;
typedef UMAInt4 UMAPrio;
typedef UMAInt4 UMAProp;
typedef UMAInt4 UMAReasonCode;
typedef UMAUint4 UMASegFlags;
typedef UMAInt4 UMASessId;
typedef UMAInt4 UMAStatusCode;
typedef UMAInt4 UMAChannelFlags;
typedef UMAInt4 UMAWhence;

/**/
/* UMA Workload Definition Structures */
/**/

/* The UMAWorkDefn structure provides the definition of a constructed
* workload and specification:
*/

typedef struct UMAWorkDefn {
UMAUint4 size; /* size of this struct */
UMAUint4 rFlags; /* reporting flags */
UMATextDescr workIdSpec; /* workload id offset/size */
UMAUint4 granularity; /* granularity request */
UMAUint4 wFlags; /* workload flags */
UMAVarLenDescr workInfoSpec /* offset to WorkInfo data */
UMAVarLenDescr instanceSpec /* offset to instance data */
UMAVarLenData data; /* WorkInfo, instance specs*/

} UMAWorkDefn;

108 CAE Specification

C Language Header Files <mli.h>

/* The UMAWorkSpec structure for specifying selection of
* UMAWorkInfo values:
*/

typedef struct UMAWorkSpec {
UMUint4 wSpecSize; /* size of this structure */
UMAUint4 wSelect; /* WorkInfo level select bits */
UMAVarArrayDescr wSpecDescr; /* WorkInfo specs descr */
UMAVarLenData data; /* WorkInfo level spec value */

} UMAWorkSpec;

/* And each WorkInfo level specification is in a UMAWorkLvlSpec
* structure:
*/

typedef struct UMAWorkLvlSpec {
UMAUint4 wLvlSize; /* size of this structure */
UMAUint4 wLvlType; /* enum type of WorkInfo spec*/

/* UMA_TEXTSTRING, */
/* UMA_UINT4, etc assigned */

UMAVarLenData data; /* work spec/expr */
} UMAWorkLvlSpec;

/* The UMAInstSpec structure for specifying selection of instances is
* defined:
*/

typedef struct UMAInstSpec {
UMAUint4 iSpecSize; /* size of this structure */
UMAUint4 iSelect; /* instance level select bits */
UMAVarArrayDescr iSpecsDescr; /* instance level specs descr */
UMAVarLenData data; /* instance level spec values */

} UMAInstSpec;

/* And each instance level specification is defined using the
* UMAInstLvlSpec structure:
*/

typedef struct UMAInstLvlSpec {
UMAUint4 iLvlSize; /* size of this structure */
UMAUint4 iLvlType; /* enum type of instance spec*/

/* UMA_TEXTSTRING, */
/* UMA_UINT4, etc assigned */

UMAVarLenData data; /* instance spec/expr */
} UMAInstLvlSpec;

/**/
/* Workload Reporting Flags */
/**/
#define UMA_REPORT_DYNAMIC 1<<0
#define UMA_REPORT_EVENT 1<<1
#define UMA_REPORT_WORKLOAD 1<<2
#define UMA_EVENT_FINALDATA 1<<3
#define UMA_EVENT_INBAND 1<<4

/**/
/* Dynamic and builtin data availability */
/**/
#define UMA_BUILTIN 0x0001 /* builtin data available */

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 109

<mli.h> C Language Header Files

#define UMA_DYNAMIC 0x0002 /* dynamic data available */

/**/
/* UMA Configuration Description Structures */
/* Returned in Messages of Class UMA Configuration */
/**/

/* The UMAClassAttr structure is returned in the message of subclass
* "Class Attributes" It provides the i18n, and ascii name labels for
* a class, identifies the metric-containing subclasses available in
* the class and provides labels for them.
*/

typedef struct UMAClassAttr {
UMAClassId class; /* class handle */
UMAVarLenDescr classLabel; /* class label struct */
UMAArrayDescr subClassId; /* array of DPD subcl ids */
UMAArrayDescr subClassStatus; /* subclass status array */
UMAVarArrayDescr subClassLabel; /* subcl label struct array */

} UMAClassAttr;

/* The UMALabel structure is used to provide both ascii and i18n
* labels for UMA providers, subclasses, instance tags, work units,
* and for data elements.
*/

typedef struct UMALabel {
UMAUint4 size; /* size of this structure */
UMAVarLenDescr ascii; /* descriptor for the variable */

/* UMATextString for ascii label */
UMAElementDescr i18n; /* descriptor for the variable */

/* length data for i18n label */
UMAVarLenData data; /* label data for ascii and i18n */

} UMALabel;

/* The UmaSubClassAttr structure is the container for the metadata
* describing a UMA subclass. It includes descriptors for instance
* tags, work unit identifiers and metrics. It is sent in a message
* of subclass "Subclass Attributes".
*/

typedef struct UMASubClassAttr {
UMASubClassHandles handles; /* cl/subcl handles,flags */
UMAVarArrayDescr instanceTags; /* instance tag */

/* descriptor array */
UMAVarArrayDescr workUnits; /* work unit descr array */
UMAVarArrayDescr dataBasic; /* basic data desc array */
UMAVarArrayDescr dataOptional; /* optional data descr array */
UMAVarArrayDescr dataExtended; /* extended data descr array */

} UMASubClassAttr;

/* The UMA class and subclass handles are contained in the
* UMASubClassHandles structure in messages of subclass
* ‘‘Subclass Attributes’ ’.
*/

typedef struct UMASubClassHandles {
UMAClass class; /* UMA class handle */
UMASubClass subClass; /* UMA subclass handle */

110 CAE Specification

C Language Header Files <mli.h>

} UMASubClassHandles;

/* Metric instance identifiers are mapped level-by-level to
* instance tags in the UMA UDU and this mapping is described by
* the set of UMAInstTagDescr structures, one per level.
*/

typedef struct UMAInstTagDescr {
UMAUint4 size; /* size of this struct */
UMAUint4 flags; /* indic mapped explicit, */

/* as data array indices */
/* (lowest level only) */

UMADataType type; /* instance tag data type */
UMAInstTagType itType; /* instance tag type */
UMAUint4 itSize; /* tag size in bytes */
UMALabel label; /* ascii and i18n label */

} UMAInstTagDescr;

/* The possible work unit identifiers supplied by a provider
* are defined by a set of UMAWorkDescr structures. This set
* of structures is contained in a message of subclass
* ‘‘UMA Work Units’’.
*/

typedef struct UMAWorkDescr {
UMAUint4 size; /* size of this struct */
UMADataType dType /* Work Unit data type */
UMAWorkType wType; /* Work Unit type */
UMALabel label; /* ascii and i18n labels */

} UMAWorkDescr;

/* The mapping of Data Pool metric values to the UMA Data UDU is
* described by the set of UMADataAttr structures.
* Flag indicators show the implementation status of an item
* (NOTIMPLEMENTED, ENABLED, or DISABLED) and whether the data is
* for the interval or is an absolute count. The UMADataAttr
* are contained in messages of subclass ‘‘Subclass Attributes’ ’.
*/

typedef struct UMADataAttr {
UMAUint4 size; /* size of this struct */
UMADataType dataType; /* data type of metric */
UMAUint4 status; /* status: NOTIMPLEMENTED, */

/* DISABLED, ENABLED */
UMAUnit units; /* data units */
UMAUint4 dataFlags; /* flags on units */

/* rates, counts, */
/* intervalization */

UMAUint4 offset; /* to data item or descr */
/* from segment start */

UMADescrType descrType /* Descriptor type */
/* (or none) */

UMALabel label; /* ascii and i18n labels */
} UMADataAttr;

/**/
/* UMA control classes */
/**/
#Define UMA_COMMAND 1

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 111

<mli.h> C Language Header Files

#define UMA_CONDITION 2
#define UMA_STATUS 3

/**/
/* UMA message command subclasses */
/**/
#define UMA_CREATE 0
#define UMA_RECONNECT 1
#define UMA_SETATTR 2
#define UMA_CLOSE 3
#define UMA_START 4
#define UMA_SETTHRESH 5
#define UMA_RELEASE 6
#define UMA_GETDATA 7
#define UMA_STOP 8
#define UMA_SEEK 9
#define UMA_REQCONFIG 10

/**/
/* UMA message status subclasses */
/**/
#define UMA_CONN_ACK 1
#define UMA_RECONN_ACK 2

/**/
/* UMA message command segment types */
/**/
typedef struct UMACreate {

UMAHeader cs_header; /* Message header */
UMASegDescr cs_segdescr; /* Segment descriptor */
UMAUint4 cs_buff_size; /* Maximum comm. buffer size */
UMAUint4 cs_uid; /* For permission validation */
UMATextDescr cs_src; /* source of the data */
UMATextDescr cs_dest; /* destination of data */
UMAProp cs_props; /* Session properties */

} UMACreate;

typedef struct UMAReconnect {
UMAHeader cs_header; /* Message header */
UMASegDescr cs_segdescr; /* Segment descriptor */
UMAUint4 cs_buff_size; /* Maximum comm. buffer size */
UMATextDescr cs_dest; /* destination of data */

} UMAReconnect;

typedef struct UMASetAttr {
UMAHeader cs_header; /* Message header */
UMASegDescr cs_segdescr; /* Segment descriptor */
UMATextDescr cs_name; /* Attribute name */
UMAInt4 cs_value; /* Attribute value */

} UMASetAttr;

typedef struct UMAClose {
UMAHeader cs_header; /* Message header */

} UMAClose;

typedef struct UMAStart {
UMAHeader cs_header; /* Message header */
UMASegDescr cs_segdescr; /* Segment descriptor */
UMAProvider cs_provider; /* data provider identifier */

112 CAE Specification

C Language Header Files <mli.h>

UMAClass cs_class; /* data class */
UMASubClass cs_subclass; /* data subclass */
UMASegFlags cs_flags; /* segment flags */
UMAUint4 cs_sentinel; /* len of wkld defn struct */
UMAWorkDefn cs_wklddefn; /* workload defn struct */

} UMAStart;

typedef struct UMASetThreshold {
UMAHeader cs_header; /* Message header */
UMASegDescr cs_segdescr; /* Segment descriptor */
UMAProvider cs_provider; /* data provider identifier */
UMAClass cs_class; /* data class */
UMASubClass cs_subclass; /* data subclass */
UMASegFlags cs_flags; /* segment flags */
UMATextDescr cs_expression; /* selection expression */
UMATextDescr cs_wkldId; /* workload identifier */

} UMASetThreshold;

typedef struct UMARelease {
UMAHeader cs_header; /* Message header */

} UMARelease;

typedef struct UMARequestData {
UMAHeader cs_header; /* Message header */
UMAUint4 cs_buffer; /* buffer selection */

} UMARequestData;

typedef struct UMAStop {
UMAHeader cs_header; /* Message header */
UMASegDescr cs_segdescr; /* Segment descriptor */
UMAProvider cs_provider; /* data provider identifier */
UMAClass cs_class; /* data class */
UMASubClass cs_subclass; /* data subclass */
UMASegFlags cs_flags; /* segment flags */
UMAFlushFlags cs_flush; /* which Q to flush */
UMAUint4 cs_sentinel; /* len of wkld defn struct */
UMAWorkDefn cs_wklddefn; /* workload defn struct */

} UMAStop;

typedef struct UMASeek {
UMAHeader cs_header; /* Message header */
UMASegDescr cs_segdescr; /* Segment descriptor */
UMATimeStamp cs_tstamp; /* Search timestamp */
UMAInt4 cs_pos; /* relative position */
UMATimeStamp cs_currtime; /* session’s current time */
UMAUint4 cs_lastseek; /* last seek number */

} UMASeek;

typedef struct UMARequestConfig {
UMAHeader cs_header; /* Message header */
UMASegDescr cs_segdescr; /* Segment descriptor */
UMAProvider cs_provider; /* data provider identifier */
UMAClass cs_class; /* data class */
UMASubClass cs_subclass; /* data subclass */

} UMARequestConfig;

/**/
/* UMA message status segment types */
/**/

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 113

<mli.h> C Language Header Files

typedef struct UMAConnectAck {
UMAHeader cs_header; /* Message header */
UMASegDescr cs_segdescr; /* Segment descriptor */
UMAStatusCode cs_status; /* Status of session creation */
UMAReasonCode cs_reason; /* Reason of the failure */

} UMAConnectAck;

typedef struct UMAReconnectAck {
UMAHeader cs_header; /* Message header */
UMASegDescr cs_segdescr; /* Segment descriptor */
UMAStatusCode cs_status; /* Status of reconnection */
UMAReasonCode cs_reason; /* Reason of the failure */

} UMAReconnectAck;

/**/
/* UMA message condition */
/**/
typedef struct UMACondition {

UMAHeader cs_header; /* header */
UMASegDescr cs_segdescr; /* segment descriptor */
UMAInt4 cs_source; /* Source of the condition */
UMAInt4 cs_cond_id; /* Condition identification */
UMATextDescr cs_cond_descr /* Condition description */
UMAInt4 cs_hint1_type; /* Type of cs_hint1 */
union cs_hint1 {

UMAInt4 hint1_int4;
UMAInt8 hint1_int8;
UMATimeSec hint1_timesec;
UMATimeUsec hint1_timeusec;
UMATimeNsec hint1_timensec;
UMATimeStamp hint1_timestamp;

} cs_hint1;
UMAInt4 cs_hint2_type; /* Type of cs_hint2 */
union cs_hint2 {

UMAInt4 hint2_int4;
UMAInt8 hint2_int8;
UMATimeSec hint2_timesec;
UMATimeUsec hint2_timeusec;
UMATimeNsec hint2_timensec;
UMATimeStamp hint2_timestamp;

} cs_hint2;
UMAInt4 cs_hint3_type; /* Type of cs_hint3 */
union cs_hint3 {

UMAInt4 hint3_int4;
UMAInt8 hint3_int8;
UMATimeSec hint3_timesec;
UMATimeUsec hint3_timeusec;
UMATimeNsec hint3_timensec;
UMATimeStamp hint3_timestamp;

} cs_hint3;
} UMA_Condition;

/**/
/* UMA message condition subclasses */
/**/
#define UMA_INFO 1
#define UMA_WARNING 2
#define UMA_SEVERE 3
#define UMA_FATAL 4

114 CAE Specification

C Language Header Files <mli.h>

/**/
/* UMA message condition codes for source */
/**/
#define DCL 1
#define DSL 2
#define UMADS 3
#define RECENT_HIST 4

/**/
/* UMA Condition Message Identifiers */
/**/
#define UMA_GAP -1 /* Timestamp in a gap in recent history */
#define UMA_NODATA -2 /* Requested segments not in current */

/* interval */
#define UMA_EOS -3 /* End time has been reached for this */

/* session */
#define UMA_EOF -4 /* End of source file has been reached */
#define UMA_INTVL -5 /* Requested interval is not available */
#define UMA_OPEN -6 /* Error opening a source file */
#define UMA_FLOCK -7 /* Source file is locked by another */

/* session */
#define UMA_PERMISSION -8 /* Permission error opening a source */

/* file */
#define UMA_FILE_TYPE -9 /* Source file is of invalid file type */
#define UMA_BAD_FILE -10 /* Source file is corrupted */
#define UMA_READ -11 /* Error reading a source file */
#define UMA_WRITE -12 /* Error writing to a source file */
#define UMA_ALLOC -13 /* Error while allocating memory */
#define UMA_STIME_BOUNDS -14 /* Seek to time prior to session start */

/* time */

/**/
/* UMA message condition codes for hint types */
/**/
#define UMA_HINT_INT4 1
#define UMA_HINT_INT8 2
#define UMA_HINT_TIMESEC 3
#define UMA_HINT_TIMEUSEC 4
#define UMA_HINT_TIMENSEC 5
#define UMA_HINT_TIMESTAMP 6

/**/
/* Miscellaneous constants */
/**/
#ifdef NULL
#undef NULL
#endif
#define NULL 0

#ifdef TRUE
#undef TRUE
#endif
#define TRUE 1

#ifdef FALSE
#undef FALSE
#endif
#define FALSE 0

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 115

<mli.h> C Language Header Files

#define UMA_ANYSESSION INT_MAX
#define UMA_ALLSESSIONS INT_MAX
#define UMA_ALLCLASSES INT_MAX
#define UMA_ALLSUBCLASSES INT_MAX
#define UMA_TIME_MAX INT_MAX
#define UMA_TIME_MIN INT_MIN
#define UMA_NULLSESSION -1
#define UMA_TIME_NOW -999
#define UMA_ANY_BAND 0x0001
#define UMA_IN_BAND_ONLY 0x0002
#define UMA_OUT_OF_BAND_ONLY 0x0004

#define UMA_PORT 1797 /* Port number for UMA service */

/**/
/* UMA session flags */
/* The following flags override the default (opposite) */
/**/
#define UMA_NOTERM 0x0001
#define UMA_NOTREGULAR 0x0002
#define UMA_SYNCH 0x0008
#define UMA_EVENT 0x0010
#define UMA_COHERENT 0x0020

/**/
/* UMA seek tstamp */
/**/
#define UMA_STIME -1
#define UMA_CTIME -2
#define UMA_LTIME -3
#define UMA_TSTAMP -4

/**/
/* UMA flush flags */
/**/
#define UMA_ALLSTARTED 1
#define UMA_HELD 2
#define UMA_RELEASED 3

/**/
/* UMA Class and Subclass Status */
/**/
#define UMA_ENABLED 1 /* Class/Subclass available */
#define UMA_DISABLED 2 /* Class/Subclass implemented, */

/* but omitted from the system */
/* at configuration time */

#define UMA_NOTIMPLEMENTED 3 /* Class/Subclass not implemented */

/**/
/* Network Family */
/**/
#define UMA_INET 1 /* Internet Protocol */

/**/
/* UMA macro operations */
/**/
#define UMA_SET(FIELD, FLAG) ((FIELD) |= (FLAG))
#define UMA_RESET(FIELD, FLAG) ((FIELD) &= (FLAG))
#define UMA_ISSET(FIELD, FLAG) ((FIELD) & (FLAG))

116 CAE Specification

C Language Header Files <mli.h>

#define UMA_CLEAR(FIELD) ((FIELD) &= 0)

/**/
/* UMA Status Codes */
/**/
#define UMS_SUCCESS 0 /* No error */
#define UMS_NODE -1 /* Invalid/Unknown host name */
#define UMS_TIME -2 /* Invalid time */
#define UMS_SOURCE -3 /* Invalid source */
#define UMS_DEST -4 /* Invalid destination */
#define UMS_CLASS -5 /* Invalid class */
#define UMS_SUBCLASS -6 /* Invalid subclass */
#define UMS_INTERVAL -7 /* Invalid interval */
#define UMS_PROPERTY -8 /* Invalid property */
#define UMS_SESSID -9 /* Invalid session identifier */
#define UMS_PRIORITY -10 /* Invalid Priorit */
#define UMS_PROTOCOL -11 /* Protocol error */
#define UMS_COMM -12 /* Communication failure */
#define UMS_SESSION -13 /* Error has occurred in this session */
#define UMS_NOMSG -14 /* No message received from UMA */
#define UMS_SIGNAL -15 /* A interrupt has occurred */
#define UMS_EOS -16 /* Session is about to end */
#define UMS_ATTR -17 /* Invalid attribute specified */
#define UMS_UID -18 /* Invalid UID */
#define UMS_FLAGS -19 /* Invalid flags */
#define UMS_EXPRESSION -20 /* Invalid selection expression */
#define UMS_EVENT -21 /* unsolicited event unsupported */

/**/
/* UMA Reason Codes */
/**/
#define UMR_NOREASON 0 /* No reason */
#define UMR_INVALID -1 /* An invalid parameter specified */
#define UMR_UNKNOWN -2 /* Unknown src, dest, node, etc */
#define UMR_NETWORK -3 /* Network unreacheable */
#define UMR_TIMEOUT -4 /* A timeout has occured */
#define UMR_MAX -5 /* Max number of sessions reached */
#define UMR_NOTIMPLEMENTED -6 /* Class, subclass or event not */

/* implemented */
#define UMR_DISABLED -7 /* Class or Subclass disabled */
#define UMR_CONNECT -8 /* Error in connecting to UMA */
#define UMR_RECEIVE -9 /* Error when receiving from UMA */
#define UMR_SEND -10 /* Error when sending to UMA */
#define UMR_CONFLICT -11 /* Invalid Comb. of arguments */
#define UMR_INCOMPLETE -12 /* A required attribute not spec. */
#define UMR_PERMISSION -13 /* Permission denied */
#define UMR_ACTIVE -14 /* Session already active */
#define UMR_SYSERR -15 /* UMA has encountered a system err */
#define UMR_RESOURCE -16 /* Lack of system resource */
#define UMR_UMADS -17 /* Error accessing UMADS */
#define UMR_INTR -18 /* An interrupt has occured */
#define UMR_HEADER -19 /* An invalid header encountered */
#define UMR_MESSAGE -20 /* An invalid message encountered */
#define UMR_NOTSTARTED -21 /* Subclass not started */

#endif /* MLI_H */

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 117

<mli.h> C Language Header Files

A.2 <uma.h>

#ifndef UMA_H
#define UMA_H

#include <sys/types.h>

/*
* ****************** NOTICE ***********************************
* The <dci.h>, <mli.h> and <uma.h> header files
* introduce UMA symbols which may conflict with other
* symbols defined in an application. Symbols with the
* following prefixes are therefore reserved to UMA:
* DCI
* dci
* UMA
* UMR
* UMS
*
* Note that the header files are provided as advisory
* reference examples.
* ****************** END OF NOTICE ****************************
*/

/**/
/* UMA data types */
/**/

typedef int UMAInt4;
typedef unsigned int UMAUint4;
typedef longlong_t UMAInt8;
typedef ulonglong_t UMAUint8;

typedef UMAInt4 UMABoolean;
typedef UMAUint4 UMAProvider;
typedef UMAUint4 UMAClass;
typedef UMAUint4 UMAMsgFlags;
typedef UMAUint4 UMANetAddr;

#ifdef ORIGINALUMA
typedef unsigned char UMAOctetString;
#else
/* make sure that unsigned char in MLI definition is used correctly */
#endif

typedef UMAUint4 UMASchedClass;
typedef UMAUint4 UMASubClass;

typedef struct UMASegDescr {
unsigned char segtag[4];
unsigned char seglenlen;
unsigned char seglen[3];

} UMASegDescr;

typedef time_t UMATimeSec;
typedef UMAInt8 UMATimeNsec;
typedef UMAInt8 UMATimeUsec;

118 CAE Specification

C Language Header Files <uma.h>

typedef UMAInt8 UMATimeStamp;

#ifdef timespec
typedef struct timespec UMATimeSpec;
#else
typedef struct UMATimeSpec {

UMAUint4 tv_sec;
UMAUint4 tv_nsec;

} UMATimeSpec;
#endif

#ifndef timeval
typedef struct timeval UMATimeVal;
#else
typedef struct UMATimeVal {

UMAUint4 tv_sec;
UMAUint4 tv_usec;

} UMATimeVal;
#endif

/* Support for random access to variable length members of structures
* requires that the address of these members is derived from fixed
* size structures at known offsets within the main structure
* definition. There are several types of variable length member descriptor
* structures, all of which contain the offset required to locate the
* variable length data. The ’offset’ is considered relative to the
* base address of the parent structure of the variable length member
* descriptor. Extra information concerning the variable length data
* may also be available.
*
* Note that it is not possible to determine whether a variable length
* data has been initialized before it is referenced. As a convention,
* the offset plus length equal 0 could be used to indicate an
* uninitialized variable length data item.
*/

/* used as a place holder for variable length data in structs.
/* --- */
typedef unsigned char UMAVarLenData; /* Variable-length-date */

/* container */

/* descriptor for a single variable length element which contains
its own size
/* --- */
typedef struct UMAVarLenDescr {

UMAUint4 offset; /* offset to beginning of data */
} UMAVarLenDescr;

/* descriptor for variable length element (which doesn’t contain */
/* its own size) */
/* --- */
typedef struct UMAElementDescr {
UMAUint4 offset; /* offset to beginning of data */
UMAUint4 size; /* size of the whole structure */
} UMAElementDescr;

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 119

<uma.h> C Language Header Files

/* descriptor for variable length text */
/* --- */
typedef struct UMATextDescr {
UMAUint4 offset; /* offset to beginning of data */
UMAUint4 count; /* count of elements in the text */
} UMATextDescr;

/* struct for a variable length string
/* --- */
typedef struct UMAString {

UMAUint4 size; /* size of the entire structure */
char string[1]; /* the variable length */

/* text string */
} UMATextString, UMAOctetString;

/* descriptor for variable length array of fixed size elements */
/* --- */
typedef struct UMAArrayDescr {

UMAUint4 offset; /* offset to beginning of data */
UMAUint4 count; /* count of elements in the array */
UMAUint4 size; /* size of each element of the array */

} UMAArrayDescr;

/* descriptor for variable length array of variable sized elements
/* --- */
typedef struct UMAVarArrayDescr {

UMAUint4 offset; /* offset to beginning of data */
UMAUint4 count; /* count of elements in the array*/

} UMAVarArrayDescr;

/* --- */
* Constants for common units in UMA
* Units are organised into 5 types:
* size, time, count, derived and info units
*
*/

#define UMA_UNITS_TIME 0x10000
#define UMA_UNITS_COUNT 0x20000
#define UMA_UNITS_SIZE 0x30000
#define UMA_UNITS_DERIVED 0x40000
#define UMA_UNITS_INFO 0x50000

enum UMAUnit {
/* time units */
UMA_SECS = 0x01 | UMA_UNITS_TIME,
UMA_MILLISECS = 0x02 | UMA_UNITS_TIME,
UMA_MICROSECS = 0x03 | UMA_UNITS_TIME,
UMA_NANOSECS = 0x04 | UMA_UNITS_TIME,
UMA_PICOSECS = 0x05 | UMA_UNITS_TIME,
UMA_TICKS = 0x06 | UMA_UNITS_TIME,

/* count units */
UMA_COUNT = 0x01 | UMA_UNITS_COUNT,
UMA_EVENT = 0x02 | UMA_UNITS_COUNT,
UMA_PAGES = 0x03 | UMA_UNITS_COUNT,
UMA_BLOCKS = 0x04 | UMA_UNITS_COUNT,
UMA_CHARACTERS = 0x05 | UMA_UNITS_COUNT,
UMA_QLENGTH = 0x06 | UMA_UNITS_COUNT,

120 CAE Specification

C Language Header Files <uma.h>

UMA_PROCESSES = 0x07 | UMA_UNITS_COUNT,
UMA_TASKS = 0x08 | UMA_UNITS_COUNT,
UMA_THREADS = 0x09 | UMA_UNITS_COUNT,
UMA_JOBS = 0x0a | UMA_UNITS_COUNT,
UMA_USERS = 0x0b | UMA_UNITS_COUNT,
UMA_TRANSACTIONS = 0x0c | UMA_UNITS_COUNT,
UMA_MESSAGES = 0x0d | UMA_UNITS_COUNT,
UMA_SESSIONS = 0x0e | UMA_UNITS_COUNT,
UMA_STREAMSMODULES = 0x0f | UMA_UNITS_COUNT,
UMA_STREAMSHEADS = 0x10 | UMA_UNITS_COUNT,
UMA_STREAMSMSGS = 0x11 | UMA_UNITS_COUNT,
UMA_PACKETS = 0x12 | UMA_UNITS_COUNT,
UMA_INODES = 0x13 | UMA_UNITS_COUNT,
UMA_FILES = 0x14 | UMA_UNITS_COUNT,
UMA_FILESYSTEMS = 0x15 | UMA_UNITS_COUNT,
UMA_READS = 0x16 | UMA_UNITS_COUNT,
UMA_WRITES = 0x17 | UMA_UNITS_COUNT,
UMA_SEEKS = 0x18 | UMA_UNITS_COUNT,
UMA_IOCTLS = 0x19 | UMA_UNITS_COUNT,
UMA_CONNECTIONS = 0x1a | UMA_UNITS_COUNT,
UMA_RETRIES = 0x1b | UMA_UNITS_COUNT,
UMA_MOUNTS = 0x1c | UMA_UNITS_COUNT,
UMA_REWINDS = 0x1d | UMA_UNITS_COUNT,
UMA_POSITIONINGS = 0x1e | UMA_UNITS_COUNT,
UMA_MARKS = 0x1f | UMA_UNITS_COUNT,
UMA_PORTS = 0x20 | UMA_UNITS_COUNT,
UMA_PROCESSORS = 0x21 | UMA_UNITS_COUNT,
UMA_DISKS = 0x22 | UMA_UNITS_COUNT,
UMA_NETS = 0x23 | UMA_UNITS_COUNT,
UMA_SLINES = 0x24 | UMA_UNITS_COUNT,
UMA_BUSSES = 0x25 | UMA_UNITS_COUNT,
UMA_CHANNELS = 0x26 | UMA_UNITS_COUNT,
UMA_NOUNITS = 0x27 | UMA_UNITS_COUNT,

/* size units */
UMA_BYTES = 0x01 | UMA_UNITS_SIZE,
UMA_KBYTES = 0x02 | UMA_UNITS_SIZE,
UMA_MBYTES = 0x03 | UMA_UNITS_SIZE,
UMA_GBYTES = 0x04 | UMA_UNITS_SIZE,
UMA_TBYTES = 0x05 | UMA_UNITS_SIZE,

/* derived data units. */
/* The values from 0x01-0x9f are reserved. */
/* Values from 0xa0-0xfe may be used for vendor extensions. */
/* 0x00 and 0xff are unavailable for use */
UMA_DERIVED_SUM2 = 0x01 | UMA_UNITS_DERIVED,
UMA_DERIVED_SUM3 = 0x02 | UMA_UNITS_DERIVED,
UMA_DERIVED_DIFFERENCE = 0x03 | UMA_UNITS_DERIVED,
UMA_DERIVED_AVERAGE = 0x04 | UMA_UNITS_DERIVED,
UMA_DERIVED_PERCENT = 0x05 | UMA_UNITS_DERIVED,
UMA_DERIVED_PRODUCT = 0x06 | UMA_UNITS_DERIVED,
UMA_DERIVED_VARIANCE = 0x07 | UMA_UNITS_DERIVED,

/* info units */
UMA_CPU = 0x01 | UMA_UNITS_INFO,
UMA_MEMORY = 0x02 | UMA_UNITS_INFO,
UMA_TASKID = 0x03 | UMA_UNITS_INFO,
UMA_THREADID = 0x04 | UMA_UNITS_INFO,
UMA_PRECEDENCE = 0x05 | UMA_UNITS_INFO,

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 121

<uma.h> C Language Header Files

UMA_ORDER = 0x06 | UMA_UNITS_INFO,
UMA_DATA = 0x07 | UMA_UNITS_INFO,
UMA_TRUEFALSE = 0x08 | UMA_UNITS_INFO,
UMA_MODEL = 0x09 | UMA_UNITS_INFO,
UMA_POSITION = 0x0a | UMA_UNITS_INFO,
UMA_SECSMILLI = 0x0b | UMA_UNITS_INFO,
UMA_ADDR = 0x0c | UMA_UNITS_INFO,
UMA_SIZE = 0x0d | UMA_UNITS_INFO,
UMA_PROTECT = 0x0e | UMA_UNITS_INFO,
UMA_OBJECTNAME = 0x0f | UMA_UNITS_INFO,
UMA_MEMOFFSET = 0x10 | UMA_UNITS_INFO,
UMA_BYTESIZE = 0x11 | UMA_UNITS_INFO,
UMA_MODEL_ID = 0x12 | UMA_UNITS_INFO,
UMA_STATE = 0x13 | UMA_UNITS_INFO,
UMA_PROCESSOR_SPEED = 0x14 | UMA_UNITS_INFO

};
typedef enum UMAUnit UMAUnit;

/* --- */
/* Instance type definitions. */
enum UMAInstTagType {

UMA_SINGLEINST = 1, /* A single instance of */
/* value ’0’ exists */

UMA_WORKINFO = 2, /* UMA_WORKINFO enumeration */
UMA_WORKID = 3, /* Data associated */

/* with UMA_WORKINFO */
UMA_MSG_QUEUE = 4,
UMA_SEMAPHORE = 5,
UMA_SHR_SEGMENT = 6,
UMA_PROCESSOR = 7, /* processor number */
UMA_FSGROUP = 8,
UMA_MOUNTPOINT = 9,
UMA_INODE = 10, /* inode number */
UMA_DISKID = 11, /* disk device number */
UMA_BUCKET_NO = 12,
UMA_DISKPARTITION = 13,
UMA_ACCESS_PORT = 14,
UMA_DEVICE = 15, /* generic device number */
UMA_KERNEL_TABLES = 16,
UMA_CHANNEL = 17, /* channel number */
UMA_IOP = 18, /* IO processor number */
UMA_PATH = 19,
UMA_SYSCALL = 20, /* system call number */
UMA_ENUMERATION = 21,
UMA_STREAMS = 22,
UMA_CONTROLLERID = 23, /* controller number */
UMA_SCHED_CLASS = 24, /* scheduling class type */
UMA_LOGICALVOL = 25,
UMA_REMOTE_FSTYPES = 26,
UMA_IPADDR = 27,
UMA_FILESERVER_COMMAND = 28,
UMA_FILECLIENT_COMMAND = 29,
UMA_SERVER_COMMAND = 30,
UMA_CLIENT_COMMAND = 31,
UMA_MEMOBJECT_ID = 32,
UMA_HOSTPORT = 33,
UMA_TASKPORT = 34,
UMA_THREADPORT = 35,
UMA_DPGRPORT = 36,

122 CAE Specification

C Language Header Files <uma.h>

UMA_PRCSCTLPORT = 37,
UMA_VMADDRESS = 38

};
typedef enum UMAInstTagType UMAInstTagType;

/* -- */
/* Default UMAWorkInfo definitions: */
#define UMA_WORKINFO_PROJECT 1<<0
#define UMA_WORKINFO_GROUP_ID 1<<1
#define UMA_WORKINFO_EFFECTIVE_GROUP_ID 1<<2
#define UMA_WORKINFO_USER_ID 1<<3
#define UMA_WORKINFO_EFFECTIVE_USER_ID 1<<4
#define UMA_WORKINFO_SESSION_ID 1<<5
#define UMA_WORKINFO_TTY 1<<6
#define UMA_WORKINFO_NQS 1<<7
#define UMA_WORKINFO_SCHEDULING_CLASS 1<<8
#define UMA_WORKINFO_SCHED_GRP 1<<9
#define UMA_WORKINFO_TRANSACTION_ID 1<<10
#define UMA_WORKINFO_PROCESS_GRP 1<<11
#define UMA_WORKINFO_PARENT_PROCESS_ID 1<<12
#define UMA_WORKINFO_COMMAND_NAME 1<<13
#define UMA_WORKINFO_PROCESS_ID 1<<14
#define UMA_WORKINFO_THREAD_ID 1<<15

/* fundamental data types */
enum UMADataType {

UMA_INT4 = 1,
UMA_INT8 = 2,
UMA_UINT4 = 3,
UMA_UINT8 = 4,
UMA_BOOLEAN = 5,
UMA_OCTETSTRING = 6,
UMA_TEXTSTRING = 7,
UMA_TIMEVAL = 8,
UMA_TIMESPEC = 9,
UMA_TIMESTAMP = 11,
UMA_DERIVED = 12,
UMA_CLASSDATA = 13

};
typedef enum UMADataType UMADataType;

/* descriptor types */
enum UMADescrType {

UMA_NODESCR = 0,
UMA_ELEMENTDESCR = 1,
UMA_TEXTDESCR = 2,
UMA_ARRAYDESCR = 3,
UMA_VARARRAYDESCR = 4,
UMA_VARLENDESCR = 5

};
typedef enum UMADescrType UMADescrType;

/**/
/* Standard UMA message header */
/**/

typedef struct UMAHeader {
unsigned char mh_msgtag[4]; /* BER encoded indicator tag */

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 123

<uma.h> C Language Header Files

unsigned char mh_msglenlen; /* ASN.1/BER length of length */
unsigned char mh_msglen[3]; /* msg length from next field */
unsigned char mh_hdrtag[3]; /* msg header tag */
unsigned char mh_hdrlen; /* msg header length */
UMAMsgFlags mh_flags; /* Data Modes */
UMATimeUsec mh_time; /* timestamp of msg creation */
UMAClass mh_class; /* UMA Class of the message */
UMASubClass mh_subclass; /* UMA Subclass of the message */
unsigned char mh_address[8]; /* Host network address */
unsigned char mh_addr_family; /* Host network address type */
UMAUint4 mh_provider; /* Data provider */
UMAUint4 mh_provinst; /* Data provider instance */

} UMAHeader;

/**/
/* UMA interval message header extension */
/**/

typedef struct UMAIntExt {
unsigned char mhix_ixlenlen; /* Extension tag and length */
unsigned char mhix_ixlen[3]; /* Extension length */
UMAMsgFlags mhix_flags; /* Interval extension flags */
UMATimeSec mhix_schedtime; /* Time of sched. measurement */
UMATimeUsec mhix_intime; /* Actual interval start time */
UMATimeUsec mhix_intlen; /* Actual interval duration */
UMAUint4 mhix_baseoff; /* Global to basic offset */
UMAUint4 mhix_optoff; /* Global to optional offset */
UMAUint4 mhix_extoff; /* Global to extension offset */

} UMAIntExt;

/**/
/* UMA event message header extension */
/**/

typedef struct UMAEvtExt {
unsigned char mhex_exlenlen; /* Extension tag and length */
unsigned char mhex_exlen[3]; /* Length of event extension */
UMAMsgFlags mhex_flags; /* Event extension flags */
UMATimeUsec mhex_evtime; /* Timestamp of event */
UMAUint4 mhex_baseoff; /* Global to basic offset */
UMAUint4 mhex_optoff; /* Global to optional offset */
UMAUint4 mhex_extoff; /* Global to extension offset */

} UMAEvtExt;

/**/
/* UMA message header data modes */
/**/

#define UMA_THRESH 0x0001 /* Threshold screening applied */
#define UMA_UNUSED1 0x0002 /* Available for future use */
#define UMA_PROV_SCLASS 0x0004 /* Subclass is provider-specific */
#define UMA_PROV_CLASS 0x0008 /* Class is provider-specific */
#define UMA_L_SUB 0x0010 /* Last message for this subclass */
#define UMA_UNUSED2 0x0020 /* Available for future use */
#define UMA_L_CLASS 0x0040 /* Last message for this class */
#define UMA_F_CLASS 0x0080 /* First message for this class */
#define UMA_DST 0x0100 /* Daylight Saving times in effect */
#define UMA_UNUSED4 0x0200 /* Available for future use */
#define UMA_EVTHDR 0x0400 /* Event header extension present */

124 CAE Specification

C Language Header Files <uma.h>

#define UMA_INTVAL 0x0800 /* Interval header extension present */
#define UMA_UNUSED5 0x1000 /* Available for future use */
#define UMA_R_L 0x2000 /* R-L byte ordering */
#define UMA_B_FORM 0x4000 /* Canonical B format */
#define UMA_CNTRL 0x8000 /* Control message */

/**/
/* UMA interval/event message header extension flags */
/**/

#define UMA_UNUSED6 0x0001 /* Available for future use */
#define UMA_UNUSED7 0x0002 /* Available for future use */
#define UMA_UNUSED8 0x0004 /* Available for future use */
#define UMA_UNUSED9 0x0008 /* Available for future use */
#define UMA_UNUSED10 0x0010 /* Available for future use */
#define UMA_UNUSED11 0x0020 /* Available for future use */
#define UMA_UNUSED12 0x0040 /* Available for future use */
#define UMA_UNUSED13 0x0080 /* Available for future use */
#define UMA_ASEG 0x0100 /* All segments requested */
#define UMA_ESEG 0x0200 /* Extension segment present */
#define UMA_OSEG 0x0400 /* Optional segment present */
#define UMA_BSEG 0x0800 /* Basic segment present */
#define UMA_UNUSED14 0x1000 /* Available for future use */
#define UMA_SRC_RECENT 0x2000 /* Source for this msg: recent hist */
#define UMA_L_INT 0x4000 /* Last message for interval */
#define UMA_F_INT 0x8000 /* First message for interval */

#endif /* UMA_H */

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 125

C Language Header Files

126 CAE Specification

Appendix B

Future Directions

B.1 UMA Generalized Command Interface
An additional MLI capability is currently being prototyped to assist in remote administration of
UMA-instrumented platforms by creating and administering remotely available services. This
capability, called the "UMA Generalized Command Interface" or UMA-CCI, extends the
available message classes with the class "GCI". UMA-GCI currently has the following subclasses
defined:

INIT
Initialize all GCI variables and build GCIService array

LIST
Return GCIService structure with data_err_size set

GETDATA
Returns public GCIService array

ATTRIBUTES(register)
Sets a GCIService available for use (administrative only)

EXEC
Executes an available GCIService

GETSTATUS
Check execution status of GCIService

GETERROR
Retrieve error output of GCIService

ATTRIBUTES(remove)
Sets a GCIService unavailable for use (administrative only)

ATTRIBUTES(hide)
Hides a GCIService from other users (administrative only)

SAVE
Save the GCIService array (administrative only)

END
Free GCIService array

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 127

Future Directions

128 CAE Specification

Glossary

ascii
Term used in this specification for referencing the American Standard Code for Interchange of
Information: 8-bit (128-character) code set.

ASN.1/BER
Abstract Syntax Notation One / Basic Encoding Rules - The ASN.1 language describes all
abstract syntaxes in the OSI architecture. An abstract syntax is a named group of types. BER,
the Basic Encoding Rules, is a transfer syntax used to communicate data between open systems.
It includes those aspects of the rules used in the formal specification of data which embody a
specific representation of that data. BER is capable of encoding any abstract syntax that can be
described using ASN.1.

API
Application Program Interface - In general, a standard interface for programmatic access to
services; MLI, a service API for UMA, is defined in this document.

Collection Interval
The time between successive captures of a specific set of data items. The term interval is also
used to mean the data for a collection interval having a certain time stamp and duration.

Constructed Workload
A named workload data collection that results from a joint specification of any one or more of:
Multiple class/subclass specifications, a granularity/summarization specification, an instance or
UMAWorkInfo filtering specification, a complement workload specification.

DCI
Data Capture Interface - A standard UMA interface to access data sources such as kernel and
subsystem data structures, hardware dependent data, and data which is event-generated.

Data Capture Layer
A UMA entity concerned with the collection of raw data from the operating system kernel and
from other sources. Data is considered collected when it exists assembled into data structures of
predefined class and subclass in storage controlled by services contained in the measurement
model.

Data Acquisition Node
A physical entity (for example, a processor) that executes a UMA Data Capture and a UMA Data
Services Layer.

Data Class
The general system measurement entity to be collected. For example, the data classes for UMA
include system configuration information, processor and memory usage information, and other
like categories.9

Data Provider
A logical entity in the Data Capture Layer that makes data available to UMA and its users,

9. Data classes and subclasses for the Universal Measurement Architecture are described in the accompanying document Data Pool
Definitions (see reference DPD).

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 129

Glossary

usually through the DCI.

Data Services Layer
The layer responsible for data distribution to measurement applications (which use the MLI for
archival data storage), management of services and resources required for distributed
measurement access and control, measurement requesting, and data format transformations
required for recording and transmission.

Data Subclass
A specific grouping of data within a data class. Each data class may have several data
subclasses. For instance, the Data Pool class processor contains subclasses such as Global
Measured Processor Times and Global System Call Counters, etc.

Event Data
In the context of UMA, this represents the reporting of one or more system events (for example,
process termination, creation, signal delivery, logon, etc.).

i18n
abbreviation used in this specification for the term internationalization (which has 18 letters
between its first and last letters)

Measurement Application Layer
This functional layer contains the application primitives and tools used to report currently
captured and archival performance data to the end-user (or to an automated stand-in). These
applications are called Measurement Application Programs (MAPs).

Measurement Application Node
A physical entity that executes a MAP and a UMA Data Services Layer.

MAP
Measurement Application Program

Measurement Control Layer
The layer responsible for managing the capture of data, including its synchronisation, and for
providing any necessary buffer or queue management for data assembled by the data capture
mechanism.

Measurement Interval
A continuous time interval during which measurement activity and reporting is requested by a
MAP.

Message
In UMA, a basic unit of control or data information. Each UMA message contains a header
portion which identifies the class and subclass of the information contained in the rest of the
message.

MAP
Measurement Application Program - A UMA-based application program providing end-user
services.

MLI
Measurement Layer Interface - The MLI comprises the Application Programming Interface (API)
for UMA, and the management of UMA message transport.

Presumed Location (UMADS)
The location of historical data for a node that UMA determines through administrative policy.

Recent Data Facility
A UMA storage entity that caches the most current data captured by DCL data providers.

130 CAE Specification

Glossary

Regular Expression
In the context of the MLI, a text matching pattern constructed according to the rules described
for Basic Regular Expressions (BREs) in the System Interface (XSH) CAE Specification (see
reference XSH).

Reporting Interval
The union of one or more contiguous collection intervals to be seen by a MAP or by UMADS.
Thus the reporting interval may be identical to a collection interval or it may have a duration
that is (nominally) a multiple of the collection interval duration.

Sampling Interval
The time between successive samples during data capture.

Session
In UMA, a logical communications channel between a MAP and the UMA facility. A MAP can
establish multiple concurrent sessions.

Trace Data
In the context of UMA, reported trace data is data for a set of selected related events.

UDU
UMA Data Unit - The contents of a UMA API message. The UDU consists of a header portion
and either a control segment or one or more data segments.

UMA
Universal Measurement Architecture - A common, flexible measurement control and data
delivery mechanism.

UMADS
UMA Data Storage - An archive that stores historical performance, resource usage, and
accounting information. (In UMA, historical data is that for which the time of capture is earlier
than time now.)

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 131

Glossary

132 CAE Specification

Index

<mli.h>..107-108
<uma.h>...25, 107, 118
API...19, 129
API message ..65
array data items format...81
ascii ..129
ASN.1/BER ...11, 65, 129
basic data..11, 71
buffering ...15, 84
byte ordering ...84
call parameters ..20
call sequence..20
calls..19, 88
capacity planning ...2
capture coherency ..13
capture synchronisation..13
coherency ...13
Collection Interval..129
collection vs reporting...13
command class messages89
common message ...83
common message transport83
component ...66
components..6
condition...66
condition class messages ..94
configuration parameters..97
Constructed Workload..129
constructed workloads..15
context...9
control message...11-12
control segment...65

component ...66
condition ..66
severity ...66

control segment format ...69
control UDU message header format...................67
Data Acquisition Node..129
data capture interface ..6
Data Capture Layer..129
Data Class ..129
data collection ...7
data distribution ...7
data message ...11
Data Provider ..129
data reporting events...14

data reporting interval...13
data segment..11
Data Services Layer..130
data storage..16
Data Subclass...130
data UDU basic segment75, 77
data UDU message header format........................73
data unit..65
DCI...129
decryption ..9
distributed UMA...83
DSL-to-DSL messages ...88
encryption ..9
event..14, 71
event data...11
Event Data..130
event header extension..77
extension data ...11, 71
extension segment header79
filtering..14
functional layers..5
header file...107
hint field..70
i18n ..130
interfaces...6
interoperability ...2, 83
interval..13, 71
interval data...11
interval header extension..75
macro operators ..24
maintenance...16
MAP...130
Measurement Application Layer130
Measurement Application Node.........................130
Measurement Control Layer................................130
Measurement Interval ...130
measurement layer interface6
message...11
Message ..130
message body hint field...70
message header...11, 65
message protocol ..88
message segment ..11
message transport ..84
MLI ..130
MLI application programming interface19

Systems Management: UMA Specification, Part 2 - Measurement Layer Interface (MLI) 133

Index

MLI call parameters ...20
MLI call sequence ...20
MLI calls ...9, 19, 88
MLI macro operators ...24
MLI message..11
MLI security...9
networking...2
optional data..11, 71
optional segment header...79
performance analysis ...2
performance metric ..2
PMWG...1
presumed location..16
Presumed Location (UMADS).............................130
private data..16
private file ..17
public data..16
recent data..15
Recent Data Facility ...130
Regular Expression ..131
regular interval..13
Reporting Interval ..131
Sampling Interval ...131
sar...7
scope of MLI ..2
screening...14
security..9
Session ..131
session characteristics..9
session context ..9
session creation ...9
session service ...9
severity..66
status class messages ...93
support..16
synchronisation...13
trace ...71
trace data ..14
Trace Data ..131
transparent communication7
UDU ..65, 131
UDU control segment ..65
UDU data segment ...71
UDU message header ..65
UMA..1, 131
UMA API message ...65
UMA characteristics...7
UMA components ..6
UMA configuration..97
UMA Data Capture Interface1
UMA Data Pool Definitions......................................1

UMA data storage ..16
UMA data unit ..65
UMA Guide..1
UMA interfaces ...5
UMA layers ..5
UMA Reference Model ..1
UMA reference model ...7
UMA-specific maintenance action........................16
UMA-specific support action.................................16
umaClose() ..26
umaCreate() ..27
UMADS ..16, 131
umaGetAttr() ..31
umaGetMsg()..32
umaGetReason() ..34
umaReconnect() ...35
umaRelease()...37
umaRequestConfig() ...38
umaSeek() ..47
umaSetAttr() ...49
umaSetThreshold() ..53
umaStart()..56
umaStop() ..62
Universal Measurement Architecture....................1
variable length data items format80
variable length data section....................................71
VLDS ...71

134 CAE Specification

CAE Specification

Part 3:

UMA Data Capture Interface (DCI)

The Open Group

ii CAE Specification

Contents

Chapter 1 Introduction... 1
 1.1 Purpose ... 1
 1.2 Scope.. 2
 1.2.1 Goals... 3
 1.2.2 Performance .. 4
 1.2.3 Standardisation and Portability.. 4
 1.2.4 Multiple Metrics Sources.. 4
 1.2.5 Extensibility .. 4
 1.2.6 Efficient Enablement for Multi-system Measurement 4
 1.2.7 Polled Metrics and Events.. 5
 1.2.8 Modification of Configuration Data .. 5
 1.2.9 Security .. 5
 1.2.10 Multiprocessor Systems ... 5
 1.2.11 Internationalisation ... 5
 1.2.12 Interoperability... 6
 1.2.13 Non-goals .. 6
 1.3 Definitions, Acronyms and Abbreviations.. 6
 1.4 Conformance ... 6

Chapter 2 DCI Architectural Description .. 7
 2.1 Overview .. 7
 2.2 DCI Services... 9
 2.3 DCI Components .. 11
 2.4 Metrics Name Space... 12
 2.5 Secure Implementation.. 14
 2.6 Operating System Interaction .. 16
 2.7 Overview of DCI Functions.. 17
 2.8 Typical Use of DCI Functions... 18
 2.8.1 Polled Data Acquisition.. 18
 2.9 Possible Implementation Strategies.. 23

Chapter 3 Overview of the DCI Specification ... 25
 3.1 Conventions... 26
 3.1.1 Naming Conventions.. 26
 3.1.2 Data Type Conventions .. 26
 3.1.3 Treatment of Variable Length Structures.. 27
 3.2 Metrics Name Space... 29
 3.2.1 Mapping DCI Name Space to a Network Representation.............. 29
 3.3 DCI API Data Types ... 30
 3.3.1 DCIClassId.. 30
 3.3.2 DCIDatumId... 30
 3.3.3 DCIInstanceId... 30

Part 3: UMA Data Capture Interface (DCI) iii

Contents

 3.3.4 DCIMetricId.. 31
 3.3.4.1 Use of DCI Name Space Structures .. 31
 3.3.5 DCIDatumId Reservation .. 32
 3.3.5.1 Special polled and event metrics ... 32
 3.3.5.2 Support for derivation of metrics.. 32
 3.3.6 DCIMetricId Code Sample... 33
 3.3.7 DCIClassId Code Sample... 33
 3.3.8 DCIInstanceId... 34
 3.3.9 DCIInstanceId Structure Examples.. 34
 3.3.10 Wildcards... 36
 3.3.11 Access Control.. 36
 3.4 DCI Name Space Attribute Structures ... 38
 3.4.1 DCIClassAttr .. 39
 3.4.1.1 DCILabel... 41
 3.4.1.2 DCIInstLevel.. 43
 3.4.1.3 DCIDataAttr... 45
 3.4.1.4 DCIEventAttr... 46
 3.4.2 DCIInstAttr ... 47
 3.4.3 Events and Event Data Attributes.. 47
 3.4.3.1 DCIEventDataAttr.. 48
 3.4.3.2 DCIEvent.. 48
 3.4.4 Data Types... 52
 3.4.5 Measurement Units ... 53
 3.4.6 Invalid Data... 56
 3.4.7 DCI Server/Provider Communication.. 57
 3.4.7.1 Provider Operations for Polled Metrics ... 59
 3.4.7.2 Provider Methods for Polled Metrics.. 60
 3.5 DCI Routine Return Status and Structures ... 64

Chapter 4 DCI Routines Overview .. 69
 4.1 Routine Summary and Subset Implementations 69
 4.1.1 Basic Support .. 71
 4.1.2 Multiple Providers... 72
 4.1.3 Access Control.. 72
 4.1.4 Event Delivery Support .. 73
 4.1.5 Set Capability.. 73
 4.2 Routine Status Values .. 74

Chapter 5 Metrics Consumer Routines.. 81
 dciAddHandleMetric().. 82
 dciAlloc ().. 85
 dciClose ().. 86
 dciConfigure() .. 87
 dciFree().. 91
 dciGetClassAttributes() .. 92
 dciGetData () .. 94
 dciGetInstAttributes()... 98
 dciInitialize () ... 101

iv CAE Specification

Contents

 dciListClassId ().. 104
 dciListInstanceId()... 106
 dciOpen().. 109
 dciPerror() .. 112
 dciRemoveHandleMetric().. 114
 dciSetData() ... 117
 dciTerminate().. 121

Chapter 6 Metrics Provider Routines.. 123
 dciAddInstance() ... 124
 dciPostData() ... 127
 dciRegister()... 130
 dciRemoveInstance() ... 132
 dciSetClassAccess() ... 134
 dciSetInstAccess().. 136
 dciUnregister()... 139
 dciWaitRequest() ... 141

Chapter 7 Event Routines... 145
 dciPostEvent().. 146
 dciWaitEvent()... 148

Appendix A C Language Header Files... 153
 A.1 <uma.h>.. 153
 A.2 <dci.h>... 153

 Glossary ... 165

 Index... 167

List of Figures

2-1 Generalised Data Capture Architecture.. 7
2-2 Data Capture Architecture... 8
2-3 Decentralised DCI Implementation Example.. 23
3-1 DCI Structure Organisation... 27
3-2 Name Space Example ... 31
3-3 DCIInstanceId Diagram ... 34
3-4 DCIInstanceID: Two Instance Levels... 35
3-5 DCIInstanceId: Two Instance Levels, Wildcarding................................ 35
3-6 DCIClassAttr Diagram ... 41
3-7 DCIEventAttr and DCIEventDataAttr Structures 51
3-8 DCIDatumId for Derived Metric Support .. 55
3-9 DCIReturn Structure Example.. 64

List of Tables

3-1 The UMAInstTagType Enumeration.. 44

Part 3: UMA Data Capture Interface (DCI) v

Contents

3-2 UMADataType Values .. 52
3-3 Size Units ... 53
3-4 Time Units ... 54
3-5 System Abstraction Count Units.. 54
3-6 Hardware Activity Count Units ... 55
3-7 Derived Data Units.. 56
3-8 Metrics with no Units.. 56
3-9 Method Types ... 57
3-10 Types of Operations .. 58
3-11 Valid Operations for Each Method Type .. 59
4-1 DCI Routines, Grouped by Use .. 69
4-2 DCI Routines, Grouped by Implementation Subset 70

vi CAE Specification

Preface

This Document

This document is a CAE Specification. It defines the requirements for a programming interface
for the lowest layer in the Universal Measurement Architecture (UMA) — the interface between
the data capture layer and the measurement control layer. It includes sufficient background for
the reader to understand the problem being solved and the source of the programming interface
requirements, as well as defining an interface (the DCI) which meets these requirements.

There are two associated UMA specifications which along with the DCI specification define the
UMA system:

• UMA Measurement Layer Interface (MLI) specification (see Part 2 of this specification).
This defines the functional characteristics of the MLI, and the underlying semantics and
function calls that implement them. It also defines a format for headers appended to
measurement data captured through the DCI.

• UMA Data Pool Definitions (see Part 4 of this specification).
The data pool defines a set of performance metrics which may be accessed by the two UMA
interfaces.

The UMA Guide (see Part 1 of this specification) reviews the issues surrounding performance
measurement in Open Systems, describes the general UMA architecture, and discusses user
considerations in adopting the UMA.

Audience

The target audience for this document is both system designers, who need to implement this
interface, and performance professionals, who need to understand how this interface can be
used.

Structure

• Chapter 1, Introduction — provides a high level overview of the requirements

• Chapter 2, DCI Architectural Description — describes the overall architecture of the Data
Capture Interface, presenting in tutorial style a general description of the problem being
solved and the requirements for a solution

• Chapter 3, Overview of the DCI Specification — describes the metrics name space, metric
attributes and data types, and a summary of the groups of routines decribed in the following
chapters. In the case of any conflicts between the material presented in Chapter 2 or Chapter
3 the reader should consider Chapter 3 to be authoritative.

• Chapter 4, DCI Routines Overview — provides an overview of the DCI routines described
in more detail in the subsequent chapter

• Chapter 5, Metrics Consumer Routines — describes the interfaces used by Metrics
Consumers

• Chapter 6, Metrics Provider Routines — describes the interfaces used by Metrics Providers

• Chapter 7, Event Routines — describes the interfaces which handle events

Part 3: UMA Data Capture Interface (DCI) vii

Preface

• Appendix A, C Language Header Files — presents the <dci.h> header file.

viii CAE Specification

Acknowledgements

This specification was developed by the Performance Management Working Group (PMWG).
The PMWG was originally part of UNIX International, and is now part of the Computer
Measurement Group.

the Open Group gratefully acknowledges the work of the PMWG in the development of this
specification and in the review process for this publication.

Major contributors to the Data Capture Interface specification include:

Sara Abraham Amdahl Corporation Peter Benoit Digital Equipment Corp.
Robert Berry† IBM Corporation Niels Christiansen IBM Corporation
Paul Curtis Hitachi Computer Products (America), Inc. Paul Douglas Digital Equipment Corp.
Janice Dumont AT&T Bell Laboratories Mark Feldman Sequent Computer Systems, Inc.
Ken Gartner Hitachi Computer Products (America), Inc. Javad Habibi Amdahl Corporation
Suzanne John IBM Corporation Bill Laurune Digital Equipment Corp.
Jee-Fung Pang Digital Equipment Corp. David Potter Open Systems Performance, Inc.
Jim Van Sciver†† Open Software Foundation Jaap Vermeulen Sequent Computer Systems, Inc.
Ping Wang Open Software Foundation

Participants who have made contributions to the process of developing these specifications are
listed below along with their corporate affiliation at the time of their contribution. Our sincere
apologies to anyone whom we may have missed.

Subhash Agrawal BGS Systems Barrie Archer ICL
Tom Beretvas IBM Corporation Wolfgang Blau Tandem Computers, Inc.
Jim Busse NCR Corporation David Butchart Digital Equipment Corp.
David Chadwick Performance Awareness Corp. Ram Chelluri AT&T Global Information Solutions
Danny Chen AT&T Bell Laboratories Ansgar Erlenkoetter Tandem Computers, Inc.
Paul Farr Aim Technology Jerome Feder UNIX System Laboratories
Thierry Fevrier Hewlett-Packard Lewis T. Flynn Amdahl Corporation
Tony Gaseor AT&T Bell Laboratories Joseph Glenski Cray Research, Inc.
Dave Glover Hewlett-Packard Jay Goldberg UNIX System Laboratories
William Hidden Open Software Foundation Liz Hookway NCR Corporation
John Howell Amdahl Corporation Ken Huffman Hewlett-Packard
Mario Jauvin Bell Northern Research Chester John IBM Corporation
Suzanne John IBM Corporation Rebecca Koskela Cray Research, Inc.
Ted Lehr IBM Corporation Greg Mansfield Instrumental
Shane McCarron UNIX International Michael Meissner Open Software Foundation
Marge Momberger IBM Corporation Bernice Moy Open Software Foundation
Henry Newman Instrumental James Pitcairn-Hill Open Software Foundation
Melur K. Raghuraman Digital Equipment Corp. O. T. Satyanarayanan Amdahl Corporation
Yefim Somin BGS Systems Jim Richard Amdahl Corporation
Steve Sonnenberg Landmark Systems Douglas R. Souders UNIX System Laboratories
Leon Traister Amdahl Corporation Michael Wallulis Digital Equipment Corp.
Steve Whitney Boeing Computer Services Elizabeth Williams Super Computer Research
Willie Williams Open Software Foundation Neal Wyse Sequent Computer Systems, Inc.
Seung Yoo Amdahl Corporation

† Editor
†† Past Editor

Part 3: UMA Data Capture Interface (DCI) ix

Acknowledgements

x CAE Specification

Chapter 1

Introduction

1.1 Purpose
This document is one of a family of documents that comprise the Universal Measurement
Architecture (UMA), which define interfaces and data formats for performance measurement.
UMA was originally defined by the Performance Management Working Group (PMWG) and
subsequently adopted by The Open Group.

This document defines the requirements for a programming interface for the lowest layer in the
UMA performance metrics architecture. The purpose of this document is twofold. The first is to
provide sufficient background for the reader to understand the problem being solved and the
source of the programming interface requirements. The second is to provide a specification of
an interface that would meet these requirements.

The UMA is defined in the following documents:

• Guide to the Universal Measurement Architecture (see reference UMA). This document
provides an overview of the UMA.

• UMA Measurement Layer Interface Specification (see reference MLI). This document defines
functional characteristics for a high-level open Application Program Interface (API) to be
used by Measurement Application Programs (MAPs) to request and receive data. It also
defines header formats to be appended to the data captured by a low-level Data Capture
Interface (DCI).

• UMA Data Capture Interface Specification (this document).

• UMA Data Pool Definitions (see reference DPD). This document defines a performance data
pool (a set of operating system metrics) for the analysis and management of computer
systems, and an organisation to facilitate the collection and use of such data. The Data Pool
specification describes the metric data types, and groups metrics into classes and subclasses.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 1

Scope Introduction

1.2 Scope
Performance and capacity management of operating systems have been considered ’internal’ to
the operating system and as such differ from operating system to operating system and from
implementation to implementation. Most operating systems have, as a matter of necessity,
performance analysis modules, narrowly targeted at the type of hardware, software and
networking facilities implemented within the system.

Most operating systems provide ad-hoc developed or tailored performance metrics and tools.
Some of these tools are developed as internal support tools for benchmarking, or on demand of
performance analysts and capacity planners. These tools are generally also confined to one
machine only and can not be interrogated remotely.

The new era of networking and interoperability views performance management and capacity
planning from the user’s perspective. Multiple machines and operating systems can be involved
in the interaction with the user. This approach requires the capture and reporting of
performance metrics to be clearly defined and portable between platforms and operating
systems.

Historically, many operating systems have not had a well defined interface for acquiring
information about system performance. These systems typically provide a number of user
commands for obtaining the status of system resources, such as ps, sar and the stat commands
of UNIX. However, programs which require instrumentation beyond that provided by these
utilities, or applications which require higher metric acquisition rates, have resorted to
interrogating the operating system themselves. In these cases, privileged access to system
memory (for example, kernel memory in UNIX, system control blocks for MVS) is the only
available mechanism. Such access is notoriously slow, and can require the development and
maintenance of specialised subsystems linked in with the operating system. Clearly, a flexible,
extensible interface to system metrics is required.

The Performance Management Working Group has provided a solution to this problem. This
solution, the Universal Measurement Architecture (UMA), specifies two architectural layers for
system performance metrics. The uppermost layer specifies an API for the transfer of formatted
measurement data. The lower layer specifies the interface for acquiring raw measurement data.
The term formatted implies that the upper layer provides measurement services that modify the
content and format of the data on behalf of the user. For details, see the Measurement Layer
Interface specification (reference MLI). Raw implies that the measurement data is acquired in its
original, unchanged form.

The Data Capture Layer is the term used for this lowest layer in this performance metrics
architecture. The programming interface for the Data Capture layer is called the Data Capture
Interface, or DCI. Measurements provided by the DCI are intended to be collected, interpreted,
or distributed by higher level applications or services before their consumption by a user. The
DCI provides an alternative to, and eventually a replacement for, older mechanisms such as
reading the kernel memory device on UNIX systems.

The DCI is intended for anyone writing system performance monitoring or management tools.
A correctly specified Data Capture Interface provides several benefits to the performance
community. The first is that they will be able to write portable measurement applications
because they will not have to adapt the application to each operating system variant and release.
Another benefit is that the DCI will allow toolmakers to provide services beyond those that
could be supported by the current state of metric acquisition. Also, by establishing a solid
foundation, higher levels of standardisation, as described by the UMA, can be specified. Finally,
DCI can become part of the lowest layers of the emerging effort to standardise distributed
system management.

2 CAE Specification

Introduction Scope

1.2.1 Goals

There are two classes of goals for the DCI. The first class consists of those goals that meet the
needs of the performance community. The second class consists of those goals that must be met
to satisfy requirements that the system imposes on any new interfaces.

The DCI application programming interface must meet the following goals to satisfy the needs
of the performance community. (A detailed description of each goal follows this section.)

Performance
The addition and use of the DCI should not significantly alter the performance of an
existing system.

Standardisation
Standardise the interface for retrieving performance data.

Portability
The DCI should be implementable on a wide variety of systems.

Multiple Metrics Sources
The DCI should allow for metric providers other than the operating system.

Extensibility
The DCI should have little or no inherent knowledge of the structure of the data being
provided.

Efficient Enablement for Multi-system Measurement
The DCI, while limiting its scope to metrics provided by a single system, must allow for an
efficient multi-system measurement solution.

Polled Metrics and Events
Both passive and interrupt driven metrics acquisition must be supported.

Modification of Configuration Data
The DCI should allow for the possibility that metrics, such as configuration values, be
modified by a properly privileged MAP. It is implementation defined whether such
modification requests are honoured.

The following are requirements imposed by the current state of operating system software.

Security
The interface should not preclude a secure implementation.

Multiprocessor Support
The interface should not preclude implementation on multiprocessor architectures.

Internationalisation
Any textual information should be capable of supporting an internationalised
implementation.

Interoperability
The interface should fit into a distributed environment.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 3

Scope Introduction

1.2.2 Performance

The addition of any metrics acquisition subsystem should not noticeably affect the performance
of the measured system. (Many performance tool builders assert that system performance
should not be altered by more than 5% when there is measurement activity.) Although it is
beyond this specification to stipulate a performance degradation figure, that figure belongs in an
implementation’s design specification, the performance goal does impose a requirement that the
programming interfaces specified in this document be capable of being implemented in the most
efficient manner possible on the target operating system.

1.2.3 Standardisation and Portability

The reason for these two goals stems from a desire to have this API be accepted as a standard for
system metrics acquisition. The intent is to propagate the Data Capture Interface across a wide
range of systems so that performance applications can themselves be ported to those systems.
To do so, the specification of the programming interface cannot impose constraints which would
make implementations difficult. An example of such a constraint would be a requirement that
the entire DCI be implemented in either the system or user address space. Such a requirement
unnecessarily limits the implementor’s options, possibly precluding implementation on some
systems, and would thus decrease DCI availability to the performance community.

1.2.4 Multiple Metrics Sources

The goal of allowing non-operating system information providers arises from practical
considerations. Metrics collection and management is a system problem. Not all metrics
necessarily reside in the operating system. Many metrics also exist in user space server
programs or in applications. This decentralised information is exaggerated in the case of
microkernel operating system architectures, although it also exists in operating systems with
traditional structures. This goal allows the API to not only cover a wide range of system types
but also allows for the introduction of vendor supplied metrics to a local system. This goal
requires that loadable subsystems, such as device drivers, streams modules, and transaction
processing applications, be able to register and provide their metrics.

1.2.5 Extensibility

One of the keys to extensibility is to allow variable representations of metric data. If the API
requires that applications have prior knowledge of the availability of metrics and their data
types, then this information would have to be maintained separately. When the metadata
(information that describes a data structure) and the data it describes are disjoint, then possible
version skew problems are introduced. Therefore it is a requirement that the API specify "self-
describing" data structures. The solution should allow applications to read both the metrics
metadata and the data it describes and not require prior knowledge of the metadata contents.

1.2.6 Efficient Enablement for Multi-system Measurement

The limitation of this API’s scope to the information coming from a single system is motivated
by practicality. (In this document, a single system refers to any machine or machines which use
a single operating system image and could be uniquely identified on a network.) The Data
Capture API provides the most basic of services: locating system information and providing that
information to a higher level application. More complex services, such as distributing the
information across a network of machines or data reduction, will use the information gathered
by this API and should be provided by higher layers. Limiting the scope of this specification to a
single system has the added benefit of deferring the problems of heterogeneous data
representation to higher layers, where they belong. However, defining the scope to cover a

4 CAE Specification

Introduction Scope

single system should not prevent solutions of multiple system issues at the higher layers.

1.2.7 Polled Metrics and Events

Much of performance monitoring consists of polling activity counts. However it is also useful to
provide event driven information. An application should be able to request notification of one or
more events. The event features should not preclude supporting a wide range of event
throughput requirements; from low speed events such as disk mounting and unmounting to the
high bandwidth required by trace packages.

1.2.8 Modification of Configuration Data

Often the application measuring performance may wish to take steps to address a perceived
performance problem. This might take the form of configuration changes (e.g., widening
network timeout windows). The DCI can offer a front-end to simple configuration management,
if the underlying implementation supports it.

1.2.9 Security

It is now a computer industry requirement that security issues be addressed whenever
specifying the collection and distribution of information. The information specified by the Data
Pool document (see reference DPD) covers the activity of an entire system. A secure system
implementation must concern itself with discretionary and mandatory access control between
objects (metrics) and subjects (metrics requesters) before allowing the metrics to be propagated.
This specification has been designed to be implemented on systems with the full range of
security requirements: from no security to the highest security levels. Note that although this
specification must allow for highly secure implementations the choice of security level is
dependent on the target system.

1.2.10 Multiprocessor Systems

Multiprocessor systems are becoming commonplace in the computing world. Any
programming interface must take into account these systems and allow for the provision of a
thread-safe environment. When designing with multiprocessor systems in mind, one should
avoid the introduction of global variables. Global variables work perfectly well in single
threaded environments but require synchronised access in multi-threaded environments.
Beyond taking care to not introduce functions which require undue synchronisation,
multiprocessor support should be relatively straight forward.

1.2.11 Internationalisation

It is no longer acceptable in the world of computing to limit textual output to English. Should
the specification call for the use of any text fields, these fields should be capable of providing the
native system’s ability to support internationalised text. As with security, the decision to
provide internationalised text is dependent on the target implementation.

Such is the frequency of use of the word internationalization , that it it commonly abbreviated in
this and other documents to i18n or I18n .

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 5

Scope Introduction

1.2.12 Interoperability

Although this API is intended to be a single machine interface, it should provide the metrics in a
format that does not make it difficult to transport those values in a heterogeneous, networked
environment. Furthermore, application software should be capable of operating upon the data
regardless of the machine that is eventually used for the operation. It is intended that this
interface work well as low level support for a range of distributed management and
performance applications.

1.2.13 Non-goals

This section describes features which are considered to be out of the scope of this specification.

• It is not within the scope of this document to provide specific implementation details, such as
the mechanism that must be used to access operating system metrics. Those details would
be found in a design specification. In fact, this specification attempts to leave the designer as
much room as possible in the selection of the implementation.

• This specification does not cover management services for information providers. This work
focuses on the lowest level services: data transfer from providers to users. Operations which
control a system’s collection of information providers belong in a higher level design.

1.3 Definitions, Acronyms and Abbreviations
Terms, acronyms and abbreviations used in this specification are defined in the Glossary.

1.4 Conformance
A conformant implementation must support the basic support functions as listed in Table 4-2 on
page 70 of this specification. In addition, an implementation may support any of the following
DCI API subsets:

• Multiple Providers

• Event Support

• Set Capability Support

• Access Control.

These are also listed in Table 4-2 on page 70.

For each of these additional capabilities supported in an implementation, all DCI APIs in the
corresponding subset must be implemented in their entirety.

Functions in unsupported subsets must be implemented to the extent that they return the
[DCI_NOIMPLEMENTATION] error code.

6 CAE Specification

Chapter 2

DCI Architectural Description

2.1 Overview
The Data Capture Interface is the lowest layer in the UMA performance metrics architecture.
The problem the DCI must solve is how to transmit metrics efficiently from the various sources
or providers to the metric consumers or upper architectural layers.

In addition to the responsibility of transferring system metrics, the DCI design must also meet
the goals laid down in the introduction. The design of the interface must be especially concerned
with the goals of extensibility, portability, and with gathering of metrics from multiple sources.

The problem to be solved by the DCI is a communications problem, in this case, the
communication of system metrics between multiple information providers and multiple
information consumers where all of the providers and consumers reside on a single system.
Although metrics information comes from a single system, the ‘‘system’’ is not a monolithic
entity, but a collection of services. These services include the operating system (what is
traditionally thought of as the ‘‘system’’), user space server programs, and applications. Thus it
is useful, in spite of the DCI single system scope, to describe the solution in networking terms.

The DCI solution can be seen in Figure 2-1.

Metrics
Provider.1

Metrics
Consumer.1

Metrics
Provider.x

Metrics
Consumer.y

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

Data Capture
Interface

Data Capture
Service

Figure 2-1 Generalised Data Capture Architecture

In Figure 2-1, the collection of system metrics are made available by multiple metric providers.
The set of providers for a system is the total supply of that system’s performance metrics. In
addition to the providers, there are a variable number of applications that are potential metric
consumers. The consumer applications could be the final consumer for the performance

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 7

Overview DCI Architectural Description

information or they could be acting as an intermediary. These metric consumers could form the
lower level of system performance display or collection programs. They could also be network
applications which forward and/or accumulate performance information from multiple
systems. As indicated by the arrows, metrics flow from the providers to the consumers.

Both the providers and consumers use the same interface — the DCI — to perform their tasks,
although they use different aspects of that interface. The ‘‘service’’ provided by the DCI is a set
of functions that can be used by the metrics providers and consumers. These functions give
providers the ability to transmit metrics and consumers to receive metrics without prior
knowledge of each other’s existence or of the underlying transport mechanism. This work is
carried out invisibly by the underlying service, referred to as the DCI metrics service or server.

The concepts of ‘‘provider’’ and ‘‘consumer’’ refer to roles adopted with respect to the interface.
Any particular software entity is free to adopt each of these roles as required. In particular,
whilst a provider may obtain performance data by ‘‘private’’ means, it may also obtain such data
by being a consumer. Such a situation may arise, for example, where a provider used basic
performance data to provide performance information which related to higher level entities
within a system.

Thus the Data Capture Interface can be completely described by its set of functions, the structure
of the transmitted data, and the behaviour of the DCI Server. The details of this specification can
be found in Chapter 3. The rest of this chapter provides sufficient background information to
enable the reader to understand the context for this specification. This section describes the
services provided by the Data Capture Interface, the means by which those services are
provided, the components that make up the DCI, and where those components reside.

The relationships between consumers, providers, and the DCI service can be seen in Figure 2-2.
In comparison to Figure 2-1 on page 7, this diagram identifies the main DCI elements. It shows
that the Data Capture Interface corresponds to a service boundary layer for providers and
consumers. This boundary represents the scope of the DCI specification.

Metrics
Provider

Metrics
Consumer

Data Capture
Library

Data Capture
Library

Data Capture

Interface

Metrics
Server

Metrics
Name Space

Figure 2-2 Data Capture Architecture

8 CAE Specification

DCI Architectural Description DCI Services

2.2 DCI Services
The DCI provides two primary services:

• one makes the connection between metrics providers and consumers

• the other maintains a metrics name space on behalf of the providers and consumers.

In its role as a metrics transport mechanism, the DCI allows consumers to acquire metrics
without having any inherent knowledge of their source. Likewise, providers can transmit
metrics without any knowledge of their destination. This metrics transport service is analogous
to a layer in a network architecture.

Note: The reader should note that the scope of the DCI is limited to transporting metrics
between providers and consumers on a single system.

Most systems have multiple transport mechanisms that can be used to pass data between the
metrics providers and the metrics consumers. These mechanisms can be divided into two
classes. The first class requires the metrics provider to actively participate in the transport. The
second class requires no action on the part of the metric provider other than the registration and
maintenance of the statistics.

An example of the latter class is shared memory: the metrics provider indicates the location of its
metric to the DCI service, and the service then provides this address to interested metrics
consumers. An example of a transport mechanism which requires provider action is sockets: the
metrics provider would have to wait for and reply to consumer requests for its metrics.

The type of transport is unspecified and completely up to the DCI implementor. A sample of
possible transport mechanisms are shared memory, proc file system, Streams, Mach messages,
sockets, pipes, remote procedure calls, and files. An implementation could even use more than
one type of transport mechanism. An example is the use of system calls to acquire kernel
metrics and a user space IPC mechanism, such as shared memory, to acquire application
metrics.

It is very important to realise that the type of transport mechanism is invisible to the providers
and consumers. What is specified by the DCI is a small set of generic methods that providers can
use to send their metrics. When a provider registers its metrics in the name space, it specifies the
method to be used by that provider to supply metric values. When a consumer queries a
metric’s value, the particular method registered by the metric provider is invoked to obtain the
desired data.

The second service provided by the DCI is maintenance of a metrics name space. The name
space consists of a hierarchical structure which lists the metrics that have been registered by all
providers. The programming interface specifies the structure of this name space, the provider
routines for registering and unregistering new metrics in this space, and the consumer routines
to interrogate the name space. Additional information maintained within the name space
includes attribute structures describing metric data layout and type, as well as implementation
defined access control information.

The DCI Server stores metric attribute structures. These structures describe the characteristics of
each metric and are used to allow the metrics to be self-identifying . Metrics consumers do not
have to have any prior knowledge about metric characteristics such as its data type, units, etc.

The DCI Server stores access control information. Different systems have varying requirements
for how strictly system information should be restricted. The specification of a hierarchical
name space and the storage and use of access control information in that name space allows the
DCI to meet the range of requirements. The choice of how much access control is used is
entirely up to the implementation, this specification simply makes access control possible. This

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 9

DCI Services DCI Architectural Description

subject is described in more detail in Section 2.5 on page 14, which covers secure implementation
strategies.

The metric server’s maintenance of a name space implies that a long term relationship has been
established between a provider and the server. The extent to which this relationship is
preserved in the event of subsystem failure is implementation defined. In particular, the impact
of the abnormal termination of the server (or any provider) on metrics that have been registered
in the namespace must be defined by the implementation.

10 CAE Specification

DCI Architectural Description DCI Components

2.3 DCI Components
As can be seen in Figure 2-2 on page 8, the entire metrics acquisition architecture consists of:

• a set of metrics providers which, upon request, transmit collections of metrics

• a set of metrics consumers who query for the existence of desired metrics and subsequently
fetch metric values

• a library which is part of the provider’s or consumer’s address space and makes the DCI
available

• a DCI Server which provide metric directory services, registration services, and establishes
connections between providers and consumers

• consumers may communicate with the DCI Server to alter the configuration of some metrics,
or to establish new values. The DCI Server may pass these or other requests to the providers,
if the providers are designed to receive them.

The drawn boundary very definitely does not indicate the division of functions between system
and user address spaces. Any system specific mechanisms necessary to provide the service
functions and metrics transport are not within the scope of this specification. This restriction of
the scope of this specification makes it possible to meet the goals of implementation on a wide
range of systems and support for application metrics.

Also the existence in Figure 2-2 on page 8 of a box labeled DCI Server does not impose a
requirement that all server functions reside within a single software module. DCI
implementations can divide the server functions between the library and any service provider in
the manner appropriate for the target system. As an example, the DCI services could be
implemented with multiple DCI Servers, for performance reasons. Alternatively, there could be
no DCI Server but the Data Capture services could be implemented entirely in the library
routines.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 11

Metrics Name Space DCI Architectural Description

2.4 Metrics Name Space
Metrics are individual units of information. They correspond either to data acquired in a polled
manner (for example, statistical information such as dispatch_count , transaction_count , or
configuration/status information such as number_of_disks), or to data delivered in the form of an
event (for example, thread_termination).

Metrics are grouped into metric classes. For example, all statistics relating to per-thread cpu
statistics could be grouped into a single metric class. A metric class is only a template: it must
be instantiated by a metric provider before the actual data available for the class’s metrics can be
identified. For example, the provider of per-thread cpu statistics would instantiate this class for
each thread. The thread_id would then provide the additional information required to identify a
specific thread’s cpu metrics.

The purpose of the DCI metric name space is to establish a unique name for a metric. This name
consists of three parts:

• a metric class identifier

• a metric instance identifier

• a metric datum identifier.

A fully qualified metric name consists of a metric class identifier, a metric instance identifier and a
metric datum identifier. Once a name for a metric has been registered by a metrics provider, this
name can be returned by the library routines which list registered metrics, and can also be used
as an argument to routines that return values for the metric. The textual form of the metric
name can be written as:

{ {DCIClassId} {DCIInstanceId} {DCIDatumId} }

The metric class identifier names an abstraction, meaning that the name has no physical
representation in the system. Metric class identifiers indicate a unique location in the metric
class hierarchy. For example, a metric class identifier of {datapool cpu per_thread} might
indicate the class of per-thread cpu statistics. This name does not indicate any particular data
(since the metric instance identifier, thread_id, has not been specified). Nor is a specific datum
indicated (for example, dispatch_count, queue_length). The metric class identifier identifies a
class (or template , record or struct) containing metric datum identifiers. This class is instantiated
by the provider for a particular set of instance identifiers, that is, threads.

When used with a metric class identifier, the metric instance identifier uniquely identifies a
specific metric class instantiation. The instance identifier can correspond directly to some
system object, such as a process identifier, a device number, etc. Like the metric class identifier,
the instance identifier can have multiple levels. This flexibility allows for multi-dimensional
metric classes, for example, per-thread/per-disk I/O statistics. The metric class identifier for
such a class might be {datapool io per_thread per_disk}; a metric instance identifier would
consist of two parts: a thread_id and a disk_id — for example, {8145 disk0}.

Note that there is a special kind of instance identifier that is used for classes that have a single
instantiation. Such classes typically include metrics of a global (or system-wide) nature, for
example, refer to the global physical I/O counters class in the Data Pool Definitions
specification. Such classes are registered as having UMA_SINGLEINST instance types. The
consumer then provides an instance identifier of 0 to reference this single instance. See Section
3.4.1.2 on page 43 for elaboration on the instance level structure (DCIInstLevel); it is this
structure that describes the attributes of instance identifiers. See also the <uma.h> file for
specifics regarding instance types.

12 CAE Specification

DCI Architectural Description Metrics Name Space

When used with a metric class identifier and a metric instance identifier, the metric datum
identifier serves to uniquely name a metric. This metric corresponds either with a statistic (for
example, dispatch_count), or an event (for example, thread termination). A special value (or
wildcard) for the metric datum identifier can be provided to indicate that all metrics within an
instantiated class are involved in a particular DCI operation.

Although DCI operations are optimised for transfer of information at the instantiated class level,
one can also perform operations at the metric datum (within an instantiated class) level. This
ability is used, for example, to wait for individual events or collections of individual events
which are not members of the same class. The datum identifier specifies a metric within a fully
qualified class and instance identifier.

Consider the following complete name space example illustrating the class ‘‘I/O Device Data’’
and subclass ‘‘Disk Device Data’’. This example is drawn from the companion specification,
UMA Performance Measurement Data Pool Definition (see reference DPD). The disk device
data subclass could have a metric datum that returns ‘‘Number of Blocks Read’’. This metric
class could be represented symbolically as:

{ datapool io_data disk_data }

or the corresponding numeric name, such as 1.11.2. Note that only a single 4 byte integer is used
for each level in the metric class hierarchy.

If one were interested in collecting only the number of blocks read for disk0, then the metric
identifier used in the DCI routines must explicitly list the class, instance, and datum. This can be
represented symbolically as:

{ { datapool io_data disk_data } { disk0 } { blocks_read } }

Like the metric class identifier, the instance identifier can have multiple levels. Unlike the metric
class identifier, each instance identifier level represents an instance of an existing system value
and can be multiple bytes long.

Extending the above example, if a machine has a complicated I/O system that consists of a
channel/bus/controller/disk hierarchy, then the number of blocks read on the first channel,
second bus, first controller, and second drive would be identified by:

{ { datapool io_data disk_data_by_busaddress } { chan1 bus2 cont1 disk2 } { blocks_read } }

These examples serve to introduce but not explicitly define the DCI name space. Refer to the
specification in Chapter 3 for more detail.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 13

Secure Implementation DCI Architectural Description

2.5 Secure Implementation
The issue of secure implementations of this programming interface must be addressed since the
problem being solved by the DCI Server is in the class of applications that are most affected by
security policy: applications that manage decentralised information on a single system. Also,
the design of a secure programming interface cannot be an afterthought since it is exceedingly
difficult to retrofit security into an existing design without changing the nature of the design. If
we then couple these requirements with the fact that the trend is for higher system security
levels to be increasingly important in procurement specifications, the motivation for secure
implementations is clear.

There is an important point to keep in mind here. Although this specification describes how to
implement a secure version of the programming interface, it does not mandate a particular
security level. The choice of how secure a particular implementation should be is for the
designer to decide. This programming interface should be flexible enough so that security levels
can range from no security checks at all to the highest mandated standards without any
modification to the interfaces.

In summary, a secure implementation must be able to allow for discretionary and mandatory
access control, and it must prevent the creation of covert timing and storage channels. To this
end, this specification adapts a key principle in security: economy of mechanism. This principle
means that a system’s existing security mechanisms should be used for the implementation of
secure access control to metrics. The implication is that this specification will allow for the use
of those controls but not specify what those controls are nor how they are implemented. The
advantage to this approach, from a security perspective, is that this interface will use known,
proven, access control subsystems.

Several features have been added to the design to explicitly support secure implementations.
The class/subclass hierarchy fits nicely into a security model. It allows the hierarchy to be
ordered from least to most privileged information. There are some side effects to this
hierarchical ordering. First, there must be separate metrics hierarchies for each subject. To allow
multiple subjects with different access levels to register metrics at the same hierarchical level
would create a security nightmare. This implies that the total metrics name space consists of a
root, a level containing each class of provider’s metrics, and sublevels for the metrics’ classes and
subclasses.

Each request to obtain or modify metrics, classes or instances is subject to a security check, if the
implementation supports it. The consumer’s access is checked against the access registered for
the requested metrics class and instance. If wildcards are used to request multiple classes or
instances then access is checked against the entire branch of metrics.

Another aspect of the design that is affected by security is the requirement that a chosen
transport mechanism must be capable of asynchronously notifying the DCI Server that a
provider has exited without unregistering metrics. This notification is necessary to allow the
server to collect and discard defunct branches of the metrics name space.

From a practical point of view, most designers will choose to use file system access control
mechanisms for their secure implementations. The file system used for the metrics hierarchy
should be modelled after mechanisms used to implement secure temporary file systems. The
latter solves the problem of how to handle file access to the same root by providing a multi-level
directory access mechanism. For example, subjects with the highest access level could see all the
files in the temporary file system while those with lower levels could only see those files
appropriate to their level. (Some secure systems mandate that not only can a subject not have
access to an illegal object but it cannot even know that the object exists.)

14 CAE Specification

DCI Architectural Description Secure Implementation

A final point in this section is that even though an existing file system is used for access control,
there is no requirement that the file system also be used for data transport. There is a separation
between the need to verify a consumer’s access to metrics and how those metrics are delivered
from the provider to the consumer.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 15

Operating System Interaction DCI Architectural Description

2.6 Operating System Interaction
On implementations which supply the C library routines fork, exec and exit, certain
requirements are made. It is implementation-defined whether a process which is currently using
an initialised DCI subsystem and which may have open handles, pending events, or other DCI
state, will transmit this state to its forked child. It is implementation-defined whether the forked
child will be able to issue DCI calls without error.

A process that overlays itself with a new image by using the exec system call does not inherit
any DCI state that the previous image had; all DCI handles the previous image had open are
closed, instances provided by the previous image are implicitly removed, classes registered by
the previous image which have no remaining instances are implicitly unregistered, and all DCI
resources that the previous image held are returned to the system. Resources which have been
explicitly defined as persistent will not be reclaimed due to the exec system call. An example of
persistent state which will continue to exist in the system after an image overlayed itself using
the exec system call, is class attribute information with the DCI_PERSISTENT_CLASS flag set
which was registered with the dciRegister() call.

Upon termination of a process, for example, by using the exit system call, all its DCI handles are
closed, all its pending event information is lost, all instances provided by the process are
implicitly removed, all classes registered by the process which have no remaining instances are
unregistered, and all DCI resources that this process held are returned to the system. Resources
which have been explicitly defined as persistent will not be reclaimed at process termination. An
example of persistent state which will continue to exist in the system after a process terminated,
is class attribute information with the DCI_PERSISTENT_CLASS flag set which was registered
with the dciRegister() call.

16 CAE Specification

DCI Architectural Description Overview of DCI Functions

2.7 Overview of DCI Functions
There are four primary classifications of DCI functions:

• polled metrics consumer functions

• polled metrics provider functions

• event functions

• other functions.

The consumer functions allow metric consumers to traverse the DCI name space, acquire metric
class and data attributes, and obtain data. Metric class attributes consist of that data which
describes the metrics to be collected, and these are commonly known as metadata . Metric class
attributes consist of, among other things, a text label, access control information, units, data
type, and offset within the collected data buffer.

The provider functions allow metric providers to modify the name space by registering or
unregistering metric classes, adding or deleting instances of those classes. These functions also
allow providers to communicate with the DCI server to provide polled metrics to consumers.
The set of communication functions used depends on the method the provider has registered
with the DCI service when adding an instance of a metric class to the name space.

The event functions cover both the provider and consumer categories, and are used to transmit
event information. The event functions transmit events directly from provider to consumer.

The other functions consist of configuration requests, security management and metric
modification. These requests may be handled entirely by the DCI Server or made visible to the
provider, if it has indicated an interest.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 17

Typical Use of DCI Functions DCI Architectural Description

2.8 Typical Use of DCI Functions
This section is a tutorial introduction to how the DCI functions can be used by applications. It is
intended to illustrate the use of the DCI in support of various performance measurement
functions.

As noted in Section 1.2 on page 2, the DCI provides the programming interface for the lowest
layer of a metrics architecture. As such, there are many different applications for which the DCI
is an important interface. Below are a few examples:

• a simple application reporting a small subset of metric values at a regular interval (as would
a DCI-based implementation of the traditional UNIX iostat, vmstat commands)

• a subsystem provider extending the name space with metrics relevant to that provider’s
operation (for example, an illustration of how a database vendor could use the DCI to surface
transaction metrics)

• an application that starts collection for a subset of events and directs these events to a file for
subsequent postprocessing

• a profiling application using events to dynamically track system cpu activity

• an application that navigates through the data of several metric classes to satisfy a particular
thread of analysis

• a (UMA) Data Services layer implementation that manages requests for data at different rates
for different applications, translates these requests into appropriate DCI calls, manages the
collected data and reports the requested information to the appropriate requesters.

2.8.1 Polled Data Acquisition

This simple application collects disk configuration information. Data is collected once every 10
seconds, and interval statistics are computed and printed. The application knows the location of
the desired metrics in the name space since the programmer consulted the Data Pool Definition
documentation for the target system. The steps this application takes are:

1. Initialise a connection to the DCI subsystem.

2. Open a set of metrics desired and use the resulting handle for the dciGetData() call. (This
handle can be used subsequently to obtain informational messages about new instances
that have been created within the metric id list specified.)

3. Obtain the class attributes structure. This will be needed for subsequent parsing of
instance structures and returned data for metrics in this class.

4. Poll ‘‘forever’’, collecting system statistics. After each poll, the return status is checked to
ensure that the call succeeded. If successful, the data is passed along to a routine which
will check each return value, and extract the data to be computed and printed. After the
data is printed, the data buffer is freed and the poll restarted.

5. When complete (a fatal interruption of the dciGetData() in the case of this program), close
the handle and disconnect from the DCI Server.

Of course, error checking has been minimised to produce a simple coding example.

This example uses macros or function calls which are not part of the API, but if such
functionality was available, a sample output for a system with a single disk would look like the
following:

18 CAE Specification

DCI Architectural Description Typical Use of DCI Functions

****** Polled the metrics @ Wed Sep 14 13:44:45 1994
capacity c3780
sector_size 1000
track_size c000
addr e002
major 1
minor 6200
channel_paths 4
status 1
vendor The Disk Vendor
vendor_designation The Disk Model
cu_vendor_designation The Controller Model

#include <sys/time.h>
#include <sys/dci.h>
extern int errno;

extern DCIMetricId *makemetricid();

/* first level */
#define DATAPOOL 2 /* from Data Pool Definition documentation */
/* second level */
#define SYSTEM_CONFIG 11
/* third level */
#define DISK 10

/* macro to extract the classid from a metric id */
#define getDCIClassIdfromDCIMetricId(x) ((DCIClassId*)((char*)(x) + (x)->classId.offset))

main()
{

DCIMetricId *midp=0;
DCIClassId *cidp; /* class for time metrics */
DCIReturn *returneddata=0; /* generic return buffer */
DCIReturn *classattrdata=0; /* classattribute data */
DCIRetval *rtvl; /* individual return status */
DCIStatus status; /* return status of functions */
DCIClassAttr *classattr; /* pointer the class attributes */
DCIHandle handle; /* descriptor returned from dciOpen */
int class[] = { DATAPOOL, SYSTEM_CONFIG, DISK}; /* metric class desired */
int polling = 1; /* if 1, continue to poll */
void *thedata; /* pointer to the returned data */

/* initialise the connection to the DCI Server */
status = dciInitialize(DCIVersion *) NULL, (DCIVersion *) NULL);
if (!(status & DCI_SUCCESS)) {

dciPerror (status, errno, 0, "dciInitialize failed");
exit(1);
}

/* make a metric id using an application provided function and
* the specified class. The metric id will contain wildcards
* in all instance levels.
*/

midp = makemetricid(class, 3);

/* open up the metric. Let the library allocate the return data buffer */
status = dciOpen(&handle, midp, 1, &returneddata, 0, 0);
if (status & DCI_FATAL)

goto quit;

/*
* obtain the class attributes. These are used to extract particular

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 19

Typical Use of DCI Functions DCI Architectural Description

* metrics when a whole class of metric data is returned. The DCI
* server will automatically allocate the correct size return
* buffer. Extract the actual class attribute super structure
* from the request returned data.
*/

cidp = getDCIClassIdfromDCIMetricId(midp);
status = dciGetClassAttributes(handle, cidp, 1, &classattrdata, 0);
if (status & DCI_FATAL)

goto quit;
rtvl = (DCIRetval *)(&classattrdata->retval);
classattr = (DCIClassAttr *)((char *)rtvl + rtvl->dataOffset);

while (polling) {
/* free the return buffer for reuse */
dciFree(returneddata); returneddata = 0;

/* poll for the data placing the data and return
* status in the same buffer.
*/

status = dciGetData(handle, midp, 1, &returneddata, 0,
0, 0, (UMATimeVal *)0);

if (status & DCI_FATAL) {
/* application provided error printing call */
dciPerror(status, errno, 0, "dciGetData failed");

goto quit;
}

/* the poll was successful. Call a compute-and-print
* routine. The routine takes the class attribute
* structure and the data returned and derives the
* data desired.
*/

rtvl = (DCIRetval *)(&returneddata->retval);
if (rtvl->dataSize) {

thedata = (char *)((char *)returneddata + rtvl->dataOffset);
computeandprint(classattr, thedata);

}
sleep(10); /* the polling rate */

}

quit:
/* free any buffers the library allocated, close the handle and

* shutdown the connection to the DCI Server.
*/

if (midp)
dciFree(midp);

if (returneddata)
dciFree(returneddata);

if (classattrdata)
dciFree(classattrdata);

status = dciClose (handle);
dciTerminate();
exit(0);

}

/* create a metric Id for the given class with wildcarded datumId
* and instances. Note that memory allocation has been trivialised
* for the example. The caller must free the metric id when done.
*/

DCIMetricId
*makemetricid(int *classarray, int numclasses)
{

DCIClassId *cidp;

20 CAE Specification

DCI Architectural Description Typical Use of DCI Functions

DCIInstanceId *iidp;
DCIMetricId *midp;
int size, i;

/* for ease of example, overallocate a DCIMetricId structure */
midp = (DCIMetricId *)malloc(128);
if (!midp)

return(midp);

/* fill in the classid, using macros not part of the DCI API.
* The data for the classid will be appended to the end of the
* base DCIMetricId structure.
*/

midp->classId.offset = sizeof(DCIMetricId);
cidp = (DCIClassId *)((char *)midp + midp->classId.offset);
cidp->identifier.offset = sizeof(DCIClassId);
cidp->identifier.count = numclasses;
cidp->size = dcisizeof (cidp) + (numclasses * sizeof(UMAUint4));
for (i=0;i<numclasses;i++)

dciclassidlevel(cidp,i) = classarray[i];

/* fill in the instanceid, using macros not part of the DCI API */
midp->instanceId.offset = midp->classId.offset + cidp->size;
iidp = (DCIInstanceId *)((char *)midp + midp->instanceId.offset);
iidp->inputMask = DCI_ALL_INSTANCES; /* wildcard overrides actual instances */
iidp->outputMask = DCI_ALL;
iidp->size = sizeof(DCIInstanceId) + 4;

/* fill in the metric id now */
midp->datumId = DCI_ALL; /* all metrics */
midp->size = 128; /* the size allocated */
return(midp);

}

/* Takes a class attribute structure and the data and prints the
* current values. For ease of example, assume all the data is
* 4 bytes in size (except for textstrings) -- normally one
* must check the data type and correctly print the data.
*/

computeandprint(DCIClassAttr *ca, char *databuf)
{

int numdatums, i, currentdata;
char *labeltext, *currentstr;
struct timeval tv;
DCIDataAttr *da;

gettimeofday(&tv, (struct timezone *)0);
printf("****** Polled the metrics @ %s", ctime((time_t *)&tv));

/* number of datums in the class */
numdatums = ca->dataAttr.count;
da = (DCIDataAttr *) dciclassattrdataattr(ca);

/* for each datum, print the label and current value of data */
for (i=0; i<numdatums; i++) {

labeltext = (char *) &
((UMATextString *)(dcilabelascii(dcidataattrlabel(da))))->string;
currentdata = *(int *)(databuf + da->offset);
if (da->type == UMA_TEXTSTRING) {

/* the offset actually points to a UMATextString */
currentstr = (char *) &

((UMATextString *)(databuf + currentdata))->string;
printf("%-25.25s %s0, labeltext, currentstr);

} else {
printf("%-25.25s %8x0, labeltext, currentdata);

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 21

Typical Use of DCI Functions DCI Architectural Description

}
/* next data attribute */
da = (DCIDataAttr *)((char *)da + da->size);

}

return(0);
}

22 CAE Specification

DCI Architectural Description Possible Implementation Strategies

2.9 Possible Implementation Strategies
There are three major decisions to make when implementing the Data Capture Interface. The
implementor must decide:

• the degree of centralisation

• the underlying transport mechanisms

• the security level.

These three factors, centralisation, transport, and security, dictate the size and difficulty of the
implementation.

Firstly, consider centralisation. The initial architecture diagram shows all interactions going
through a centralised DCI Server; however this is not an implementation requirement. The
specification consists of the routines provided at the boundary layer and the behaviour of the
underlying transport mechanism, and not the implementation details. Figure 2-3 shows an
implementation which uses a library to implement the programming interface. The outermost
provider/consumer pair are using the DCI Server to list available metrics or register new
metrics. The innermost pair are transmitting metrics in a connection that was previously
established by information provided by the server. Note that the location of the DCI Server is
not specified. It could be implemented in either user or system space, or in a combination of the
two. An implementation could go further and eliminate a centralised DCI Server, performing all
services as part of library routines.

Metrics
Provider

Metrics
Consumer

Data Capture
Library

Data Capture
Library

Data Capture

Interface

Metrics
Server

Metrics
Name Space

Metrics
Provider

Metrics
Consumer

Data Capture
Library

Data Capture
Library

Figure 2-3 Decentralised DCI Implementation Example

When implementing the DCI, one or more underlying transport mechanisms must be chosen.
The choice of transport can be any system specific communications mechanism, such as sockets,
shared memory, shared files, and various IPC mechanisms. When choosing a transport
mechanism, the designer must consider the number of concurrent operations, speed, portability,
if the implementation is intended for more than one operating system type, and the ability to

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 23

Possible Implementation Strategies DCI Architectural Description

detect inadvertent provider and consumer termination. The latter feature is important if the
implementation saves connection related state, such as whether a consumer passed access
control.

Finally, an implementor must choose the implementation’s security level. This has the largest
effect on a secondary choice, the DCI name space implementation. As mentioned in Section 2.5
on page 14, secure implementations must implement the name space using a previously
implemented secure facility, such as a file system. If the implementor chooses a lower security
level, then the name space can be implemented without this constraint.

24 CAE Specification

Chapter 3

Overview of the DCI Specification

This is the specification for the Data Capture Interface. The material in this chapter is
authoritative and overrides any possibly conflicting material in the first two chapters of this
document. This and the next chapter cover the following material:

• definitions for the metrics name space

• definition of metric class attributes, including data type and unit values

• a summary of the routines and a guide for subset implementations

• a list and explanation of routine status values

• descriptions of the basic routines used by metrics consumers

• descriptions of the basic routines used by metrics providers

• descriptions of the extended routines for event support.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 25

Conventions Overview of the DCI Specification

3.1 Conventions

3.1.1 Naming Conventions

This section follows a naming convention for the three types of programming language
constructs defined here: constants, type definitions, and routine names. (The rules followed are
the same as those followed by the MLI layer (see reference MLI).) The purpose of this
convention is to clearly identify the Data Capture facilities in a program, to determine what type
of object a particular DCI name represents, and to avoid name space conflicts.

To this end:

• constant names have an uppercase ‘‘DCI_’’ (or ‘‘UMA_’’) prefix followed by an all uppercase
name

• type definition names have an uppercase ‘‘DCI’’ (or ‘‘UMA_’’) prefix followed by a mixed
case name

• DCI library routines have a lowercase ‘‘dci’’ prefix followed by a mixed case name.

An additional naming convention is that only English alphabetic characters are used. For type
definitions and routine names, non-alphabetic characters, such as underscore, are not used as
delimiters within a name.

3.1.2 Data Type Conventions

A set of data types has been defined for the DCI. The primary purpose of these data type
definitions is to ensure that different DCI implementations support the same data types. All DCI
data types are defined in the <uma.h> header file in Part 2 of this publication; they have the
uppercase ‘‘UMA’’ prefix, followed by a mixed case name (for example, UMAInt4, UMAUint4,
UMAInt8).

26 CAE Specification

Overview of the DCI Specification Conventions

3.1.3 Treatment of Variable Length Structures

Many structures in the Data Capture Interface have variable length. For example, metric class
identifiers are unconstrained in the number of levels. Further, many variable length structures
may themselves be contained in other variable length structures. The DCI has adopted a
consistent mechanism for the layout and description of such structures.

Most DCI structures have the same organisation:

size

fixed
part

variable
part

Figure 3-1 DCI Structure Organisation

Size is the size of the entire structure (including any variable part). The fixed part contains only
simple fixed size entities (for example, UMAUint4, DCIDatumId), as well as fixed sized
descriptors for any variable length data in the rest of the structure (for example,
UMAVarLenDescr). The variable part contains all variable data. It may include many variable
structures, each of which is described by a fixed size descriptor in the fixed part of the overall
structure.

There are no constraints on the placement of the different variable length structures within the
variable part of the overall structure; each descriptor ‘‘points’’ to its corresponding variable part
using an offset mechanism - every descriptor contains an offset field which is a byte offset to be
applied to the base of the structure in question. Thus the offset field is always a small positive
integer. Because the offset is added to the base address of the structure in question and then
indirected, it must always produce a correct address within the structure. Variable length data
which is optional must have a valid offset to data of 0 size to prevent improper address
indirection.

There are different types of descriptors for different types of variable length entities (for
example, array of fixed size elements, string, array of variable length elements). Each of these
descriptor types is presented in the <uma.h> file, and DCI structures are presented in the
<dci.h> file. Each file is a valid/compilable C-language include file. In each of these structures,
the variable part is described uniformly as being of type UMAVarLenData; this is simply a
placeholder for the entire variable section.

It is worthwhile noting two interesting properties of variable sized DCI structures that result
from using descriptors. First is that the order of the data in the variable part of a structure may
not be the same as the order of the fixed sized fields that point to it. So for example, if a structure
contains descriptors field1and field2 , in that order in the fixed part, it is valid for the data pointed

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 27

Conventions Overview of the DCI Specification

at by field2 to precede the data pointed at by field1 in the variable length area. (It is NOT valid for
fields to overlap.) Second is that it is also valid for the variable part of a structure to contain
‘‘holes’’ which are never referenced. A hole would be accounted for in the size field of the
enclosing structure, but would not be described by any of the descriptors. If individual variable
length structures are properly located using the offset field located in their descriptors (located in
the fixed part of the overall structure), both these interesting properties will be transparent.

Note that the foregoing discussion applies to most variable length structures; there are some
exceptions involving primitive structures (for example, UMATextString) that do not require the
flexibility of the offset mechanism, and thus are optimised to be as small and simply-organised
as possible.

28 CAE Specification

Overview of the DCI Specification Metrics Name Space

3.2 Metrics Name Space
The Data Capture Interface supports a hierarchical name space that is used to uniquely identify
specific instances of available metrics. Metric providers make additions and deletions to the
contents of the name space as they make metrics available and unavailable to metrics
consumers. Metric consumers query the name space to obtain metric names; these names are
used to obtain actual metric values.

The other purposes of this name space are to provide a mechanism for storage of the
descriptions of what type of data is available, the metric class attributes, and to provide a
hierarchical structure suitable for implementing an access control mechanism.

The metrics name space is grouped into two layers: one layer to identify a metric class, or metric
datum within a metric class, and another layer to identify the available instances for a metric
class. The first layer is represented by the metric class identifier combined with the metric
datum identifier. The second layer is represented by the metric instance identifier. Together the
two name space layers uniquely identify a metric instance. The components associated with this
name space are the DCIClassId, DCIInstanceId, DCIDatumId. The DCIMetricId is a
combination of all three components.

File systems typically store any of their supported object types, such as files or devices, at any
position in their name space. The DCI imposes more structure upon its name space by
identifying different levels with different object types and restricting the positions at which
objects can be stored. The reason behind these restrictions is that the DCI name space is not a
general purpose file system but is intended to support a very specific purpose. The structure
and function of the DCI name space are described in the following sections.

3.2.1 Mapping DCI Name Space to a Network Representation

One of the primary goals of the DCI name space design is that it map well to a network
representation. This section describes how one might approach such a mapping and how this
approach affected the name space design.

A fully qualified metric name consists of a metric class identifier, a metric instance identifier and
a metric datum identifier. A metric class identifier is a sequence of class levels, where each class
level is a 4 byte integer. A metric instance identifier is a sequence of instance levels, where each
instance level is a multiple of 4 bytes. Instance levels are intended to represent natural values
found within a system; as such, they are not arbitrarily limited in size or range. For a given class,
however, the number of instance levels is defined, as is the size of each instance level.

The DCI interfaces allow metrics to be selected individually, or as a group within an instantiated
class. The metric datum identifier is a 4 byte integer, with values 0 and 2ˆ32 - 1 reserved. Thus,
there are at most 2ˆ32 - 2 unique metric data within any instantiated class.

To summarise, the metrics name space features:

• subdivision of name space into a class/datum identifier hierarchy and instance identifier
hierarchy

• reserving values 0 and 2ˆ32 - 1 in the class/datum name space for use as a delimiter and
wildcard, respectively.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 29

DCI API Data Types Overview of the DCI Specification

3.3 DCI API Data Types
DCI structures do not need the delimiter necessary in the network representation as they can
rely on the structure boundaries themselves. The C structures are presented first and then
described in subsequent sections. The detailed descriptions include code fragments for how
these structures are used.

The structures are defined as follows:

3.3.1 DCIClassId

typedef struct DCIClassId {
UMAUint4 size;
UMAVarLenData data;

} DCIClassId;

The usage of the structure elements is as follows:

size The total number of contiguous bytes of storage in the structure and all its
associated variable length data, which must be a multiple of 4.

data Variable length data

3.3.2 DCIDatumId

typedef UMAUint4 DCIDatumId;

The usage of the structure elements is as follows:

DCIDatumId Datum identifier

3.3.3 DCIInstanceId

typedef struct DCIInstanceId {
UMAUint4 size;
UMAUint4 inputMask;
UMAUint4 outputMask;
UMAVarLenData data; /* Type: defined by DCIClassAttr */

} DCIInstanceId;

The usage of the structure elements is as follows:

size The total nutotal number of contiguous bytes of storage in the structure and all its
associated variable length data, which must be a multiple of 4.

inputMask A bitmap indicating which levels are included in this instance id. Only included
levels will have instance identifiers in the data area of this structure. Levels not
included (i.e., those for which their corresponding inputMask bit is off, set to 0), are
interpreted as wildcarded. Bit 0 corresponds to the first instance level registered
for the class; bit 1 for the second, and so on.

outputMask A bitmap indicating which levels in the instance id to be filled in by the
provider/DCI Server. At least one level must be selected (set to 1).

data Variable length structure holding the single instance identifier. The instance
identifier contains a sequence of instance levels; the number of instance levels and
the size of each instance level can be found in the DCIClassAttr structure

30 CAE Specification

Overview of the DCI Specification DCI API Data Types

3.3.4 DCIMetricId

typedef struct DCIMetricId {
UMAUint4 size;
UMAVarLenDescr classId; /* Type: DCIClassId */
UMAVarLenDescr instanceId; /* Type: DCIInstanceId */
DCIDatumId datumId;
UMAVarLenData data;

} DCIMetricId;

The usage of the structure elements is as follows:

size The total number of contiguous bytes of storage in the structure and all its
associated variable length data, which must be a multiple of 4.

classId Indirection to class identifier (variable size)

instanceId Indirection to instance identifier (variable size)

datumId Datum identifier

data Variable length data (DCIClassId and DCIInstanceId structures)

3.3.4.1 Use of DCI Name Space Structures

The following diagram gives an example of how the name space structures are used. The solid
boxes identify individual classes and the dashed boxes instances of those classes. The root of
this DCI name space is labeled metrics and is an uninstantiated class. There are two labeled
subclasses, one being the data pool and the other an application. The data pool is a predefined
group that lists operating system metrics used to describe system behaviour. See the companion
document, Data Pool Definitions (see reference DPD), for a list of those metrics.

metrics

.

data pool

.

processor etc

global measured
processor times

per processor
counters

UMA_SINGLEINST Processor_0

application

Instance_0

Instance_1

Processor_1

Figure 3-2 Name Space Example

The Data Pool is organised as a class/subclass hierarchy. In Figure 3-2 there is a processor class
with two sample subclasses, global measured processor times and per processor counters. In

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 31

DCI API Data Types Overview of the DCI Specification

this example, there are two processor instances of the perprocessorcounters class, but only a
single instance of the globalmeasuredprocessortimes class. In the DCI, a class with a single
instance is specified with an instance type of UMA_SINGLEINST. The DCI name space class
hierarchy is not limited to two class levels, as might be surmised from the accompanying
diagram. This is merely a Data Pool convention.

Note that there are measurements available for two instances of the application metric class.
These are probably differentiated by the process identifier of each running copy of the
application. There is an important point here. The DCI name space class hierarchy is abstract
and represents the organisation of metric classes. The DCI name space instance hierarchy
represents system values and uses those values directly. In the example, the application metric
class can be instantiated by process identifier and the Data Pool’s processor metrics by process
number. Instantiated classes are simply those classes which can support instances.
Uninstantiated classes are simply positions in the name space and provide its hierarchical
structure. An instantiated class cannot have subclasses.

Another point that can be drawn from this example is that the DCI is optimised to work with
entire metric classes. One can specify individual metrics within an instantiated class by using an
explicit value for the datumId in the DCIMetricId structure, but it is expected that this use will
be the exception rather than the rule. Usually a single wildcarded datumId would be specified
to efficiently obtain all the metrics available within an instantiated class.

The positioning of the datumId below the instance in the name space implies that metrics are
consistently provided across all instances of a class. In general, this will be the case. However,
there are situations in which it is not possible for certain instances of a class to provide all
metrics within the class. As an example, if a subclass were used for disk metrics, one might
provide part of the subclass for one disk instance and a different part for a second disk instance.

3.3.5 DCIDatumId Reservation

3.3.5.1 Special polled and event metrics

The DCIDatumId is a UMAUint4 (32 bit) quantity. Certain values of the DCIDatumId are
reserved for special polled metrics and event metrics; further, several DCIDatumId values are
reserved for vendor use:

Reserved Polled metric DCIDatumId value
DCI_INVALIDDATUMID 0x000000ff

Reserved Event metric DCIDatumId value
DCI_FINALDATA_EVENT 0x000000f8
DCI_INSTANCEADDED 0x000000f7
DCI_INSTANCEREMOVED 0x000000f6
DCI_DATACHANGED 0x000000f5

Reserved for vendor use 0x000000e8 - 0x000000ef

3.3.5.2 Support for derivation of metrics

Measurement application developers frequently need to derive reported metrics from the raw
metrics available on a system. While the key focus of the DCI is to provide access to the raw
metrics, it also supports such derivation through an encoding of the DCIDatumId. This
encoding allows metric providers to record relationships between metrics within a class. These
relationships can then be interpreted by consumers.

32 CAE Specification

Overview of the DCI Specification DCI API Data Types

A derived metric is defined by explicitly encoding the manner of its derivation in the derived
metric’s DatumId. Each derived metric holds a place in the class namespace.

The types of relationships that can be expressed include:

Sum The derived metric is obtained by adding two other metrics in the class.

Ratio The derived metric is obtained by taking the ratio of two other metrics in the class.

See Data Types and Measurement Units for a complete description of derived metric support.

Note that derived metric support is limited to the encoding of inter-metric relationships. Each
derived metric holds a place in the namespace, but there is no derived data available through the
DCI. No actual derivation occurs within the DCI; this remains the responsibility of the
consumer.

3.3.6 DCIMetricId Code Sample

A completely named metric consists of the DCIClassId, the DCIInstanceId within that class, and
the DCIDatumId. The DCIMetricId contains the size of the sum of the individual parts, so
traversing a list of DCIMetricIds becomes a simple task (although complicated by casting
requirements due to the variable size of the DCIMetricId structure). The following code
performs a traversal of a list of DCIMetricIds having length metricIdListCount:

DCIMetricId *aMetricIdPointer;
DCIMetricId aMetricIdList[];
int metricIdListCount;

aMetricIdPointer = aMetricIdList;
while (metricIdListCount--)
{

... do something with the current metricId

aMetricIdPointer =
(DCIMetricId *) ((char *)aMetricIdPointer
+ aMetricIdPointer->size);

}

3.3.7 DCIClassId Code Sample

Although defined as a fixed size structure, the actual metric class identifier is a variable size 4
byte integer array. The DCIMetricId contains a reference to this array by offset, element size and
number of elements. The array follows the structure directly, as started by the variable length
data declaration.

Thus, to walk the integers in a DCIClassId, the following code fragment could be used:

DCIClassId *aClassId;
int i, numlevels;

numlevels = dciclassidlen(aClassId);
for (i = 0; i < numlevels; i++) {
{

... do something with dciclassidlevel(aClassId, i)
}

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 33

DCI API Data Types Overview of the DCI Specification

Note that the size of each array element is always four bytes.

3.3.8 DCIInstanceId

A single metric instance identifier is enclosed in the DCIInstanceId structure. A metric instance
identifier is used to select one of otherwise identical groups of metrics. The metric instance
identifier is used to distinguish among several instantiations of objects such as disks, processors,
processes, etc. Thus a metric instance identifier is closely associated with the object being
measured.

The DCI does not reserve any instance values to represent wildcards and therefore the
DCIInstanceId contains a bitmask to indicate wildcarding of a particular level in a metric
instance identifier. Since these flags are represented as a bitmap in a 4 byte integer (UMAUint4),
the maximum number of levels for a metric instance identifier is 32. The bitmap indicates which
instance levels are explicitly included in the DCIInstanceId structure; those not explicitly
included (i.e., those for which their corresponding bit is off) are wildcarded. The bitmap starts at
bit position 0 and the metric instance identifier levels start at level 0.

Figure 3-3 shows the layout of the DCIInstanceId structure.

The size of the entire DCIInstanceId structure and all its associated variable length data is stored
in the size member of the DCIInstanceId structure. Instance levels within a single metric
instance identifier can vary in size, but are always a multiple of 4 bytes. The actual information
about the instance levels is encoded in the DCIClassAttr structure defined later in this
document.

size 4 bytes

4 bytes

4 bytes

data
instance level ids

end of fixed part

inputMask (bitmap)

ouputMask (bitmap)

Figure 3-3 DCIInstanceId Diagram

3.3.9 DCIInstanceId Structure Examples

The DCIInstanceId structure allows applications to efficiently specify the following:

• single instance values with multiple levels

• single instance values with wildcarded levels. The number of levels and the size of each level
is wildcarded. This wildcard is represented by inputMask = DCI_ALL_INSTANCES. It is
essentially a requirement whenever a wildcarded class is presented in a DCIMetricId. In this
case, one cannot know if the number of instance levels in all classes matching the wildcard
will be identical.

As an example, consider a metric class which is instantiated on a per-processor, per-disk basis
and that both these metric instance identifier level types are four byte values. Specifying the
metric instance identifier for processor 1, disk 2 is as shown in Figure 3-4, assuming that the
instance values for processor1 = 1, disk2 = 2. The first instance level value (level 0) specifies the
processor and the second one (level 1) the disk. Note that the outputMask is set to 2ˆ32-1
indicating that all instance levels are to be filled in when this DCIInstanceId is returned in any

34 CAE Specification

Overview of the DCI Specification DCI API Data Types

DCIReturn structure.

size

00000003 (hex)

ffffffff (hex)

20

1

0:

4:

8:

12:

16: 2
data

inputMask (bitmap)

ouputMask (bitmap)

Figure 3-4 DCIInstanceID: Two Instance Levels

Note that the structure sizes would not change if both levels in the above instance were specified
as one byte values. There is an implicit four byte padding since the single byte instance must be
written to a four byte aligned instance field.

Using the above example, specifying all disks for processor 1 would be as shown in Figure 3-5.

size

00000001 (hex)

ffffffff (hex)

16

1

0:

4:

8:

12:

16:
data

inputMask (bitmap)

ouputMask (bitmap)

Figure 3-5 DCIInstanceId: Two Instance Levels, Wildcarding

Note that the second bit (bit 1) in the inputMask is set to 0, indicating that level 1 is wildcarded.
The value for level 2 must not be specified. Note that the instance id structure is smaller than
the previous example.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 35

DCI API Data Types Overview of the DCI Specification

3.3.10 Wildcards

Wildcards are used with all three name space levels, classes, instances, and individual metrics.
The DCI name space class hierarchy reserves the integer value of 2ˆ32 - 1 (all bits in the integer
are set) as the "DCI_ALL" wildcard value for any particular class level. This convention is used
to specify groups of metric classes. Any integer in a metric class identifier can be wildcarded. In
the case of instance ids, wildcards will always expand into valid instances without error, unless
no instances can be found for the class.

Similarly, metric instance identifier levels can be wildcarded. As seen in the previous section’s
examples, this wildcarding is via a different mechanism than the class identifier. This is because
no field of an instance can be reserved for a wildcard value. The wildcard must be specified
outside of the instance range. Note that instance levels are wildcarded by setting bits in the
inputMask to 0, and that there is a special "DCI_ALL_INSTANCES" inputMask value that
wildcards all instance levels.

As noted in Section 3.3.9 on page 34, the metric datum identifier uses the same wildcard as the
metric class identifier, the value 2ˆ32 - 1 ("DCI_ALL"). When this wildcard is used it indicates all
metrics in the instantiated class. This also signals that all data is presented as a single entity,
rather than broken out by datum identifier separately, as is explained in Section 3.4.1.3 on page
45.

3.3.11 Access Control

One of the purposes of a hierarchical name space is to enable the implementation of secure
access control mechanisms. This is done by storing access control information at the nodes of
the hierarchy. This information can then be used by the DCI Server in cooperation with the
underlying operating system to provide discretionary and mandatory access control. Access
control can be performed at both the class and instance levels. The DCI access control data type
is:

typedef struct DCIAccess {
UMAUint4 size;
UMAVarLenData access;

} DCIAccess;

The usage of the structure elements is as follows:

size The total number of contiguous bytes of storage in the structure and all its
associated variable length data, which must be a multiple of 4.

access Byte array containing the access information.

The purpose of defining a variable sized field structure is to allow for the wide variation in
access control structures between operating systems and differing security levels. A DCIAccess
structure for standard UNIX might have a size of twelve and the access field of DCIAccess
would store the access mode and the owner’s group and user id. A system with a more
complicated access control system may store variable access control lists in a DCIAccess
structure.

The degree of access control is entirely up to the implementation of the DCI Server. Some
implementations may choose for performance reasons to support absolutely no access control.
These implementations would not bother to store or check access control information. A higher
level of access control may store and check access structures only at the class level. The most
pervasive implementations would store a DCIAccess structure at both the class and instance
levels. There is no access control at the metric datum identifier level.

36 CAE Specification

Overview of the DCI Specification DCI API Data Types

Highly secure implementations may go further and layer the DCI name space on existing, secure
file systems in order to conserve mechanism and provide complete mandatory and discretionary
access control. Again, the choice of how much access control is entirely up to the
implementation and should be documented locally.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 37

DCI Name Space Attribute Structures Overview of the DCI Specification

3.4 DCI Name Space Attribute Structures
The purpose of name space attributes is to, as much as possible, allow the information stored in
the name space to be self describing. These descriptions are registered by the metrics provider
when adding metric classes and instances. The objects in the DCI namespace that must be
described to a consumer are metric classes, instantiations of those classes (instances), and the
characteristics of the data associated with each individual metric.

The attribute structures are kept separate from the data itself for performance reasons. It is
expected that many DCI applications will be reading the same data multiple times so it makes
sense to read the invariant information once, put it aside, and then read the changing data as
much as the application requires.

There are two main attribute structures:

DCIClassAttr
Describes the attributes of an entire class. This includes some flags, a label, and
implementation defined access control information.

The metric class attributes also describes the characteristics of the data associated with each
metric datum contained in the class definition. Two substructures are employed for this
purpose: the DCIDataAttr substructure describes the characteristics of metric datums that
correspond to polled metrics; the DCIEventAttr substructure describes the characteristics of
metric datums that correspond to events.

In particular, the DCIDataAttr substructure describes the datum id, the data type, the data
units, and a label for each metric. Further, since most DCI routines return entire instantiated
classes (which contain the data for all polled metrics in each instance), the DCIDataAttr
substructure also indicates an offset within an entire return structure at which each
individual polled metric’s data can be directly located.

For events, the DCIEventAttr substructure describes the datum id, and the label. In
addition, events can return additional data (for example, an event associated with a timer
interrupt could pass the current value of the program counter; such information could be
postprocessed to obtain a profile of application (or system) behaviour). Each event can
have several pieces of additional data returned. The characteristics of such event data is
described through the inclusion in the DCIEventAttr substructure of one DCIEventDataAttr
substructure for each such piece of data to be returned when the event actually occurs.
These event specific structures are described in Section 3.4.3 on page 47.

The number and type of instance levels with which this class is to be instantiated is also
described in this attribute structure (for example, is this a per-thread class, a per-processor
and per-disk class, etc.).

The DCIClassAttr structure can be extended with implementation specific information
(termed, local extensions). One possible use for this optional section is a text formatting
string for displaying class information.

DCIClassAttr structures are created by metric providers, and registered with the DCI Server
at class registration time.

The DCIClassAttr structure for a particular metric class can be obtained with the DCI call
dciGetClassAttributes().

Details of the DCIClassAttr structure are presented in Section 3.4.1 on page 39.

DCIInstAttr
Describes the attributes for a specific instantiation of a class (an instance). This descriptive
data includes the instance label, and implementation defined access control information. As

38 CAE Specification

Overview of the DCI Specification DCI Name Space Attribute Structures

with the metric class attribute structure, the instance attribute structure is extensible with an
implementation specific (optional) extension.

DCIInstAttr structures are created by metric providers at instance registration time; they are
included with the structure describing the instance method.

The DCIInstAttr structure for a particular instance can be obtained with the DCI call
dciGetInstAttributes(). Details of the DCIInstAttr structure are presented in Section 3.4.2 on
page 47.

3.4.1 DCIClassAttr

The DCIClassAttr structure describes the attributes of a class. These class attributes are set by
the provider of a class in the call to dciRegister() that registers the class and cannot be changed
unless the class is unregistered with the dciUnregister() call. They may be retrieved by any
consumer with the proper access rights using the dciGetClassAttributes() function.

The DCIClassAttr structure provides a label for the class, defines access control information for
the class, describes every individual metric supported by the class, and describes the structure of
the class’s instance space. It also provides for local extensions to the class attributes structure.
Several of the fields contained in the following definition have variable size.

typedef struct DCIClassAttr {
UMAUint4 size;
UMAUint4 flags;
UMAVarLenDescr access;
UMAVarLenDescr method;
UMAVarLenDescr label;
UMAArrayDescr instLevel;
UMAVarArrayDescr dataAttr;
UMAVarArrayDescr eventAttr;
UMAElementDescr extensions;
UMAVarLenData data;

} DCIClassAttr;

The usage of the structure elements is as follows:

size The total number of contiguous bytes of storage in the structure and all its
associated variable length data, and must be a multiple of 4.

flags One or more bit mapped flags with the following possible values:

DCI_ENABLED
This class is enabled and available for use. Absence of this flag means the
class is disabled.

DCI_NOTIMPLEMENTED
This class is unimplemented.

DCI_NOTAPPLICABLE
This class is not applicable to the measured system and hence not available.

DCI_OBSOLETE
This class is being phased out and is not available.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 39

DCI Name Space Attribute Structures Overview of the DCI Specification

DCI_PROVIDER_INSTANCE
The provider for this class does not register instances with the DCI Server.
When a list of instance is requested by a consumer, the Server must request
that list directly from the provider using the class method. If this flag is set, it
is an error not to specify a class method also.

DCI_PERSISTENT_CLASS
The class should not be removed from the namespace (that is, unregistered)
when the process that registered this class terminates (for example, issues the
exit() system call). (See Section 2.6 on page 16, "Operating System Interaction"
for a discussion of persistence.)

DCI_POSSIBLEINVALIDDATA
This may return invalid data for some metrics for some instances. The
application must check the DCI_INVALIDDATUMID metric for a list of other
class metrics which are not valid.

access Descriptor to the initial access control information for the class.

method Descriptor to a DCIMethod structure for a class method. If the size of this
structure is zero, then there is no class method.

label Descriptor for a variable length ASCII and internationalised text label describing
this class. If no label is desired, this must still contain a valid zero length string.

instLevel Descriptor for a variable length DCIInstLevel structure that describes each instance
present in this class.

dataAttr Descriptor for an array of variable length DCIDataAttr structures, each
representing an polled metric supported by this class.

eventAttr Descriptor for an array of variable length DCIEventAttr structures, each
representing an event metric defined in this class.

extensions Descriptor for a variable length implementation specific block of class information.

data Data section for all variable length information in this structure.

The relationship between the various fields in this data structure is illustrated in the
DCIClassAttr diagram in Figure 3-6.

40 CAE Specification

Overview of the DCI Specification DCI Name Space Attribute Structures

size

flags

access

method

label

instLevel

dataAttr

eventAttr

extensions

DCIAccess

DCIMethod

DCILabel

DCIInstLevel
array

DCIDataAttr
array

DCIEventAttr
array

local
extensions

Figure 3-6 DCIClassAttr Diagram

3.4.1.1 DCILabel

The label attributes structure contains two forms of the label. The first is a null terminated
ASCII string and the second is an internationalised description. Both variable sized fields must
be padded out to a four byte boundary.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 41

DCI Name Space Attribute Structures Overview of the DCI Specification

The DCILabel structure is:

typedef struct DCILabel{
UMAUint4 size;
UMAVarLenDescr ascii;
UMAElementDescr i18n;
UMAVarLenData data;

} DCILabel;

The usage of the structure elements is as follows:

size Total number of contiguous bytes of storage in the structure and all its associated
variable length data, which must be a multiple of 4.

ascii Descriptor for the variable length UMATextString for the ASCII label.

i18n Descriptor for the variable length data for the internationalised description.

data Data of DCIlabel for ascii and i18n.

The internationalised label indicated with the i18n descriptor is optional, and the internal
structure (of the variable length contents) is unspecified because of the wide range of structures
used to describe internationalised text. A typical example of the contents of the i18n label would
be the name of a message catalogue and the index number of a message in that catalog.

There are some important points about DCILabel. One is that once a metric class, instance or
datum has been labeled then the metric provider cannot relabel it unless the metric has been
completely unregistered. Unregistering a metric class or instance can be detected by consumers.
See the dciOpen() and dciClose() routine descriptions for how this is done.

In order for applications to search the name space using a semantically meaningful label (rather
than the metric identifier), these labels should be unique, that is:

• metric class labels should be unique within each level of the DCI name space class hierarchy

• instance labels should be unique within each level of the DCI name space instance hierarchy

• individual metric (datum) labels should be unique within the class.

This ability to search the name space by label implies that providers must have registered a label
with each name space entity (metric class, metric instance, metric datum), and that these labels
should obey the uniqueness criteria outlined above. Maintaining unique labels is the
responsibility of the entity that registers the class or adds a new instance. No DCI library
function will return an error status if the label is not unique.

The following characters are reserved and should not be used in the ascii component of the
DCILabel:

42 CAE Specification

Overview of the DCI Specification DCI Name Space Attribute Structures

! (exclamation)
@ (at sign)
(hash, pound sign)
$ (dollar sign)
% (percent)
ˆ (caret)
& (ampersand)
* (asterisk)
(,) (parentheses)
[,] (square brackets)
{,} (braces)
| (vertical bar)
, (comma)
. (period)
’ (single quote)
" (double quote)
’ (back tick)
: (colon)
; (semicolon)
... (any non printing character, excep t " " (blank))

This reservation allows implementers to record meta-information in labels associated with
datumIds, Class Attributes and Instance Attributes.

3.4.1.2 DCIInstLevel

The DCIInstLevel structure is used in an instantiated DCI class attributes structure to describe
each instance level. This structure allows classes to have multiple, self described instance levels.
For example, multilevel instances can be used to categorise metrics as "per-processor, per-disk
I/O metrics" in a multiprocessor system with asymmetric I/O where disk drives are partitioned
between processors.

The DCIInstLevel structure is shown in Figure 3-6.

typedef struct DCIInstLevel {
UMADataType type;
UMAInstTagType itype;
UMAUint4 size;

} DCIInstLevel;

The usage of the structure elements is as follows:

type Type of the instance level value.

itype Instance type.

size Size of the instance level value in bytes.

Each instance level has an instance type (itype) and an instance value type (type) associated
with it. Note that different classes can be instantiated by different types of instances. For
example, consider a class having a 2 level instantiation: per-processor/per-device statistics. In
this example, the class is instantiated by processor id, and by device id. There would be two
DCIInstLevel structures associated with this class. The processor id instance level has a
particular instance type (itype) associated with it (UMA_PROCESSOR); its instance value type
(type) might be UMA_UINT4 (indicating that a four byte unsigned integer is used to record a
specific processor id). The device id instance level has a different instance type (itype)
associated with it (for example, UMA_DEVICE); its instance value type (type) might be

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 43

DCI Name Space Attribute Structures Overview of the DCI Specification

UMA_UINT8 (indicating that an eight byte unsigned integer is used to record a specific device
number).

Instance types facilitate correct class-to-class navigation. In cases where several classes share a
common instance representation (say, one instance level is the processor number, with itype
UMA_PROCESSOR in each of the related classes), it is extremely useful to find the correlated
metrics in each class. This can only be done if each instance representation in the system is
identical for all relevant classes. For example, for two different classes which produce
information per processor and have an itype of UMA_PROCESSOR, the numerical value for
‘‘Processor #2’’ must be identical.

UMAInstTagTypes are shown in Table 3-1, and enumerated in the <uma.h> file described in Part 2
of this publication. UMADataTypes are shown in Table 3-2 on page 52, and enumerated
explicitly in the <uma.h> file in Part 2 of this publication.

Instance Type Comment
UMA_SINGLEINST a single instance of value ’0’ exists
UMA_WORKINFO UMA_WORKINFO enumeration
UMA_WORKID data associated with DCI_WORKINFO
UMA_MSG_QUEUE
UMA_SEMAPHORE semaphore handle
UMA_SHR_SEGMENT shared segment handle
UMA_PROCESSOR processor number
UMA_FSGROUP
UMA_MOUNTPOINT
UMA_INODE inode number
UMA_DISKID disk device number
UMA_BUCKET_NO an index into a histogram
UMA_DISKPARTITION
UMA_ACCESS_PORT
UMA_DEVICE generic device number
UMA_KERNEL_TABLES
UMA_CHANNEL channel number
UMA_IOP I/O processor number
UMA_PATH
UMA_SYSCALL system call number
UMA_ENUMERATION
UMA_STREAMS
UMA_CONTROLLERID controller number
UMA_SCHED_CLASS scheduling class type
UMA_LOGICALVOL logical volume identifier
UMA_REMOTE_FSTYPES
UMA_IPADDR IP address
UMA_FILESERVER_COMMAND file server command
UMA_FILECLIENT_COMMAND client command to a file server
UMA_SERVER_COMMAND command to DCI server
UMA_CLIENT_COMMAND command issued by DCI client
UMA_MEMOBJECT_ID a memory object identifier

Table 3-1 The UMAInstTagType Enumeration

Note that there is a special kind of instance type called UMA_SINGLEINST. This is the instance
level type used by a provider registering a class known to have only a single instance. Such
classes typically include metrics of a global (or system-wide) nature: for example, refer to the
global physical I/O counters class in the Data Pool Definitions (DPD) specification.

44 CAE Specification

Overview of the DCI Specification DCI Name Space Attribute Structures

Also included is the specific size of the identifier for this particular instance level. The purpose
of the DCIInstLevel size field is to indicate the specific size of each level, in a multiple level
instance specification. In the above example, processor ids require 4 bytes and device numbers
require 8. The DCIInstanceId structure instances.size field would be 12 (the sum of the size of
each level in a multilevel instance). The DCIInstLevel size field would be 4 for the processor
instance level, and 8 for the device instance level in this class’s DCIClassAttr structure.

3.4.1.3 DCIDataAttr

The DCIDataAttr structure is used to describe an individual polled metric. It is used as an array
field of the DCIClassAttr structure which is used as an argument to dciRegister() when the class
is registered. The DCIDataAttr structure is defined as follows:

typedef struct DCIDataAttr {
UMAUint4 size;
DCIDatumId datumId;
UMADataType type;
UMAUnit units;
UMAUint4 flags;
UMAUint4 offset;
UMAVarLenDescr label;
UMAVarLenData data;

} DCIDataAttr;

The usage of the structure elements is as follows:

size This is the total number of contiguous bytes of storage in the structure and all its
associated variable length data, which must be a multiple of 4.

datumId The datum identifier for this metric which must be unique within the class that
defines it. It must be in the range 1 to 2ˆ32-2, since 0 is a delimiter value and 2ˆ32-1
is the wildcard value. Each polled metric datumId must be distinct from all other
datumIDs in the same class, including those for events.

type The datatype for this metric. This describes the representation of data as
enumerated in Table 3-2 on page 52.

units For data that expresses a count or time, units expresses more information about the
quality of the data; for example, the metric could be a count of pages, or a count of
disks. For some types of metrics (such as text strings), units does not give
additional information, and UMA_NOUNITS may be specified. In the case that
type is UMA_DERIVED, the units field represents the actual derived data metric
(see Table 3-7 on page 56). Table 3-3 on page 53, Table 3-4 on page 54, Table 3-5 on
page 54 and Table 3-6 on page 55 represent various associated units values. This is
the units used to describe this polled metric.

flags This describes other characteristics of the metric ID, in terms of what method
operations the provider supports on the metric. See Section 3.4.7 on page 57 for
more information on method operations and definitions of the DCI_OP_ flags. In
particular, it should be set to the union of one or more of the following values:

DCI_QUERYABLE
The metric is queryable using the DCI_OP_GETDATA operation.

DCI_SETTABLE
The metric is settable using the DCI_OP_SETDATA operation.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 45

DCI Name Space Attribute Structures Overview of the DCI Specification

DCI_RESERVABLE
The metric is reservable using the DCI_OP_RESERVEDATA operation, and
releasable using the DCI_OP_RELEASEDATA operation.

offset When polled metric data is returned as a result of being specified using a wildcard
as the datumId, all the data within a single class is returned in a single block. This
field is the offset into that block where this polled metric starts.

label Descriptor for a variable length ASCII and internationalised text label describing
this polled metric. If no label is desired, this must still contain a valid zero length
string.

data Data section for all variable length information in this structure.

3.4.1.4 DCIEventAttr

The DCIEventAttr structure is used to describe an individual event metric. It is used as an array
field of the DCIClassAttr structure which is used as an argument to dciRegister() when the class
is registered. The DCIEventAttr structure is defined as follows:

typedef struct DCIEventAttr {
UMAUint4 size;
DCIDatumId datumId;
UMAVarLenDescr label;
UMAVarArrayDescr eventDataAttr;
UMAVarLenData data;

} DCIEventAttr;

The usage of the structure elements is as follows:

size This is the total number of contiguous bytes of storage in the structure and all its
associated variable length data, which must be a multiple of 4.

datumId The datum identifier for this metric which must be unique within the class that
defines it. It must be in the range 1 to 2ˆ32-2, since 0 is a delimiter value and 2ˆ32-1
is the wildcard value. Each event datumId must be distinct from all other
datumIDs in the same class, including those for polled metrics.

label Descriptor for a variable length ASCII and internationalised text label describing
this event. If no label is desired, this must still contain a valid zero length string.

eventDataAttr
This is a descriptor for the event data that correspond to this event. The descriptor
points to an array of DCIEventDataAttr structures, each of which specifies the
format of one piece of data that is attached to an event metric by the provider
when it is generated. See Section 3.4.3 on page 47 for information on how this
relates to the event data itself.

data Data section for all variable length information in this structure.

46 CAE Specification

Overview of the DCI Specification DCI Name Space Attribute Structures

3.4.2 DCIInstAttr

Instance attributes are considerably simpler than metric class attributes. The DCIInstAttr
structure can be used to discover a particular instance’s label and access control information.
There is also a provision for local extensions to this structure. The DCIInstAttr structure
definition is:

typedef struct DCIInstAttr {
UMAUint4 size;
UMAUint4 flags;
UMAVarLenDescr access;
UMAElementDescr extension;
UMAVarLenDescr label;
UMAVarLenData data;

} DCIInstAttr;

The usage of the structure elements is as follows:

size This is the total number of contiguous bytes of storage in the structure and all its
associated variable length data, which must be a multiple of 4.

flags Special instance state flags.

access Descriptor for the DCIAccess access control structure for this instance.

extension Descriptor for variable length extension associated with this instance.

label Descriptor for variable length DCILabel structure associated with this instance.

data The actual variable length data (DCIAccess, DCILabel and extensions) associated
with this instance.

The flags field contains a sequence of bit mapped flags. The values of these flags are given in the
<dci.h> file. Their descriptions are below:

DCI_PERSISTENT_INSTANCE
The instance should not be removed from the namespace (that is, unregistered) when the
process that registered this instance terminates (for example, issues the exit() system call).
(See Section 2.6 on page 16, "Operating System Interaction" for a discussion of persistence.)

3.4.3 Events and Event Data Attributes

The only information required for some events is simply that they have occurred. However,
there is a wide range of applications for events that have a need for associated data to describe
additional characteristics of the event. The event related data structures in the DCI attempt to be
flexible enough to match this requirements range without imposing undue burden upon the
simple cases.

There are two specialised structures used only with events. The first structure, the
DCIEventDataAttr, is used in the DCIEventAttr to describe event data to be delivered along the
event when it occurs. The second, DCIEvent, is the structure used when an event occurs to
describe the event itself, and pass along any associated event data.

Note that event metric attributes are separated from event data to improve event delivery
performance by decreasing the size of the transmitted structures; the nonvariant attributes may
be fetched only once and saved for future reference by the MAP.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 47

DCI Name Space Attribute Structures Overview of the DCI Specification

3.4.3.1 DCIEventDataAttr

The DCIEventDataAttr structure is used in the DCIEventAttr structure. For example, if a
provider needs to pass along three additional pieces of data whenever an event occurs, the count
field of the eventDataAttr structure (in the DCIEventAttr structure, see Figure 3-7 on page 51) is
set to three, and there will be three of the following structures in the variable length section of
the DCIEventAttr structure.

typedef struct DCIEventDataAttr {
UMAUint4 size
UMADataType type;
UMAUnit units;
UMAUint4 offset;
UMAVarLenDescr label;
UMAVarLenData data;

} DCIEventDataAttr;

The usage of the structure elements is as follows:

size This is the total number of contiguous bytes of storage in the structure and all its
associated variable length data, which must be a multiple of 4.

type This is the type of this event datum. This type implies either a fixed number or a
variable number of bytes in the case of UMA_TEXTSTRING or
UMA_OCTETSTRING.

units This is the units of this event datum.

offset This is the offset into the DCIEvent structure where this event is to be found.

label Descriptor for a variable length ASCII and internationalized text label describing
this event datum. If no label is desired, this must still contain a valid zero length
string.

data Data section for all variable length information in this structure.

There are several things to note about this structure. First is the fact that it does not describe a
DCI metric. There is no mechanism to automatically retrieve the value of selected metrics
whenever an event is reported. This structure describes raw data that will be delivered directly
by a provider to the DCI Server when the provider makes a dciPostEvent() call.

Second, if the provider does not plan to transmit event data for an event, then the count field of
the eventDataAttr structure (in the DCIEventAttr structure, see Figure 3-7 on page 51) is zero,
and no DCIEventDataAttr structures will be present. A consumer can check the structure of the
event data by using the dciGetClassAttributes() to retrieve this structure for any event metrics in
the class.

3.4.3.2 DCIEvent

The DCIEvent structure describes the occurrence of an event itself. This is the structure that a
consumer receives from dciWaitEvent(). Part of the information in this structure is furnished
when an event is reported using dciPostEvent(), and part is furnished by the DCI Server itself, as
follows.

Consumers have control over the format of output events; this control is expressed through the
content of the datumId used at the time of the dciOpen(). The datumId is logically divided into 3
pieces: 12 bits of user specified flags, 12 bits of user specified event id and 8 bits of datum id.
[Recall that the datumId for polled metrics is partitioned to support derived metrics. Note that
for both polled and event metrics, the low order 8 bits are reserved for the unique datum id.]

48 CAE Specification

Overview of the DCI Specification DCI Name Space Attribute Structures

The flags determine the format and content of the returned data for this event:

DCI_EVENTHDR
An event header is to be included in the posted event structure

DCI_EVENTHDRCLASSID
A class id is to be included in the posted event structure

DCI_EVENTHDRINSTANCEID
An instance id is to be included in the posted event structure

DCI_EVENTHDRTIMESTAMP
A time stamp of the type UMATimeSpec is to be included in the posted event structure

DCI_EVENTHDRVENDORTIMESTAMP
A timestamp of an implementation defined format is included in the posted event structure

DCI_EVENTHDRCOMPTIMESTAMP
A compressed timestamp is to be included in the posted event structure

DCI_EVENTHDRSTREAMID
An event stream identifier is to be included in the posted event structure

DCI_EVENTHDRDATA
The event data is to be included in the event structure

Values for these flags are set by the provider at dciRegister() time to indicate the providers
capability with respect to reporting data for the corresponding event. At dciOpen() time the DCI
Server will use the provider’s flags as a mask to determine the extent to which it can satisfy the
consumer’s request for event format and content. (For example, if the provider registered events
indicating no DCI_EVENTHDR, then a consumer’s request for event headers will be denied.)

These flags are also returned by the DCI Server as part of the header associated with all returned
events (assuming the consumer has requested that an event header be included as part of the
returned event’s data).

The event header (DCI_EVENTHDR) is optional. If it is not present, this indicates that the
structure of the event data is implementation defined. If it is present, then the event data is
defined as follows:

• If the DCI_EVENTHDRCLASSID flag is enabled, then a complete class identifier is included
in each event. The class identifier corresponds to the class in which this event is defined as an
event metric.

• If the DCI_EVENTHDRINSTANCEID flag is enabled, then a complete instance identifier is
included in each event. The instance identifier uniquely identifies the instance that generated
this event.

• If the DCI_EVENTHDRTIMESTAMP flag is enabled, the DCI Server attaches a timestamp to
every event when it occurs. This timestamp can be used by a consumer for event ordering.
The timestamp field represents the value of the system time of day as close as possible to the
actual posting of the event. Note that events will not typically have unique timestamps, so
additional information may be required in an implementation if event uniqueness is
required.

• If the DCI_EVENTHDRVENDORTIMESTAMP is enabled, the DCI Server attaches a
timestamp of an implementation defined format to every event when it occurs.

• If the DCI_EVENTHDRCOMPTIMESTAMP flag is enabled, then an implementation defined
compressed timestamp is included in the event data. Typically, this would consist of the

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 49

DCI Name Space Attribute Structures Overview of the DCI Specification

lower order 32 bits of the full 64 bit timestamp.

• If the DCI_EVENTHDRSTREAMID flag is enabled, then an implementation defined 32-bit
identifier is included in the event data that can be used to discriminate between different
event streams (for example, say from different processors on a symmetric multiprocessor
system).

• If the DCI_EVENTHDRDATA flag is enabled, then the event data, as described in the
DCIEventDataAttr structure, is included in the event.

For events containing an eventHeader, the event structure is defined as follows:

typedef struct DCIEvent {
UMAUint4 eventHeader;
UMAVarLenData data;

} DCIEvent;

Note that the structure of events lacking an event header is implementation defined.

The usage of the structure elements is as follows:

eventHeader The event header is a variable length structure. The first word consists of 12 bits of
flags, 12 bits of event id and 8 bits of size. If the size byte contains 0xff, then the
event’s size exceeds 256 bytes and a subsequent 32 bit word contains the actual
size of the event.

data Data section for all variable length information in this structure. This includes any
data mandated by the presence of the event header flags, followed by the variable
length data prescribed for this event metric by its registered DCIEventDataAttr
structure.

Figure 3-7 on page 51 shows how the information in the three structures, DCIEventAttr,
DCIEventDataAttr, and DCIEvent are related.

50 CAE Specification

Overview of the DCI Specification DCI Name Space Attribute Structures

size

datumId

label

eventDataAttr

DCILabel

size

type

units

offset

label

DCILabel

size

type

units

offset

label

DCILabel

.............

.............

DCIEventAttr
Structure

DCIEvent
Structure

DCIEvent
Structure

DCIEventDataAttr[0]

DCIEventDataAttr
[eventDataAttr.count - 1]

Figure 3-7 DCIEventAttr and DCIEventDataAttr Structures
(with reference to DCIEvent structure)

When a provider reports an event using the dciPostEvent() function, the DCI Server combines the
information furnished by the provider with the information it provides itself to form a DCIEvent
structure. The DCI Server then passes this structure to any consumers who are waiting for this
event.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 51

DCI Name Space Attribute Structures Overview of the DCI Specification

3.4.4 Data Types

The dataType field in the attributes structures describes the metric type. By examining the value
of dataType one can determine the type and size of data object for the associated metric. These
are necessary for correct interpretation of the data described by the attributes structure.

The following table lists the symbolic name for the UMA data type value, the related UMA data
type, the size of the data type in bytes, and a brief description. It is important to note that the
UMA data type values are simply a flag indicating the type and the UMA data type column are
the types themselves. So a UMA_INT4 value in dataType states that a UMAInt4, or a four byte
integer, is being used for a particular metric.

UMA Data Type Value UMA Data Type Size in Bytes Description
UMA_INT4 UMAInt4 4 four byte integer
UMA_INT8 UMAInt8 8 eight byte integer
UMA_UINT4 UMAUint4 4 four byte unsigned integer
UMA_UINT8 UMAUint8 8 eight byte unsigned integer
UMA_BOOLEAN UMABoolean 4 boolean value, with

FALSE = 0, TRUE != 0
UMA_OCTETSTRING UMAOctetString variable octet string
UMA_TEXTSTRING UMATextString variable variable length text data
UMA_TIMEVAL UMATimeVal 8 UNIX like time structure
UMA_TIMESPEC UMATimeSpec 8 time interval in nanoseconds
UMA_DERIVED — 0 data that must be derived

from other metrics.
UMA_CLASSDATA UMAClassData variable all polled metrics

within the same class.

Table 3-2 UMADataType Values

The first five data types listed in Table 3-2 consist of signed and unsigned integers of different
sizes. The next four entries describe different structures. In all cases, the size of a data object is
padded to a four-byte boundary. (The reason for this restriction is so that structures built from a
combination of these data types can always be four-byte aligned. When performing unaligned
accesses, such as reading a four-byte integer at an address having the least significant bit set,
some system architectures suffer serious performance degradation, or are simply unable to
perform the access.)

Three variable length data types are supported: UMAOctetString, UMATextString and
UMAClassData. The data structures for the first two types are identical: a variable length byte
array called ‘‘string’’ and a ‘‘size’’ field includes the size of the entire structure along with the
variable length data and enough padding ensure that the ‘‘size’’ field is always a multiple of 4
bytes in size. While the UMATextString data type is composed of a null-terminated array of
bytes, the UMAOctetString may include embedded nulls or multibyte characters. This
interpretation of the UMAOctetString data is beyond the scope of this specification.

typedef struct UMAString {
UMAUint4 size; /* size of entire structure */
char string[1] /* variable length text string */

} UMATextString, UMAOctetString

The data structure for the UMAClassData depends on the context in which it appears. Its
purpose is to compactly identify the contents of the Final Data event associated with a class.
Providers for classes that support final data events must return final values for all polled metrics
in that class prior to instance termination. The definition of UMAClassData simplifies the
registration of such a Final Data event by requiring that the DCIEventDataAttr for that event
declare the type of data as UMAClassData. [This avoids requiring repetition of all attributes for

52 CAE Specification

Overview of the DCI Specification DCI Name Space Attribute Structures

all polled metrics explicitly in the DCIEventDataAttr structure.] The Final Data event for a
particular class would contain a single Event Data Attribute having type UMAClassData, units
UMA_NOUNITS, and offset 0.

The UMATimeVal and UMATimeSpec structures specify a time interval in terms of a number of
seconds and a number of fractional seconds: in the case of UMATimeVal the fractional seconds
are measured in microseconds and in the case of UMATimeSpec the fractional seconds are
measured in nanoseconds. These time interval structures are used for timeout parameters as
well as timestamps; in the latter case, the number of seconds is given relative to the date Jan 1,
1970 at 12 am (also known as the Epoch). These time intervals are malformed if the number of
seconds is negative or if the fractional number of seconds is negative or if the total fractional
component is greater than or equal to 1 second.

The UMA_DERIVED data type is used to encode relationships between datums within a single
class. When used as the type of a particular DCIDatumId, the corresponding UMAUnit field
should be examined to determine the specific interrelationship that is encoded. See Measurement
Units for further discussion of the supported encodings.

Note that a data type of UMA_DERIVED indicates that the associated metric is not available
directly, but must be derived from other metrics using the encoded interrelationship. Such a
derived metric cannot be explicitly specified for data retrieval, but must be part of a whole class
of retrieved data (i.e., the class has been fetched with the wildcarded datumId). The values of
derived metrics must be obtained by the application; there is no DCI API support for doing so
directly.

3.4.5 Measurement Units

The attributes structure unit field of typedef UMAUnit is used to indicate what the metric is
measuring (or, in the case of derived metrics, how the metric is related to other metrics). For
non-derived metrics, the purpose of the unit field is to provide additional descriptive
information about the properties of the metric to the measurement application (the DCI
consumer). For example, for metrics that report memory related size information, the unit field
indicates whether the value returned is expressed in bytes, kilobytes, megabytes, etc. For
metrics that indicate time values, the unit field indicates whether the value returned is in
seconds, milliseconds, microseconds, nanoseconds, etc.

The DCI provides for five distinct unit types: size, time, count, info and derived. (There is an
additional unit type: UMA_NOUNITS, used for metrics for which the units designation is not
meaningful.) Within each unit type there are many values; these are enumerated below in a
series of tables.

Size
UMA_BYTES bytes
UMA_KBYTES kilobytes
UMA_MBYTES megabytes
UMA_GBYTES gigabytes
UMA_TBYTES terabytes

Table 3-3 Size Units

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 53

DCI Name Space Attribute Structures Overview of the DCI Specification

Time
UMA_SECS seconds
UMA_MILLISECS milliseconds
UMA_MICROSECS microseconds
UMA_NANOSECS nanoseconds
UMA_PICOSECS picoseconds
UMA_TICKS machine clock ticks

Table 3-4 Time Units

There are a large number of object types that can be counted and new operating systems can
always invent new types of objects. The purpose here is to identify some of the commonly
measured objects and establish some unit field values for these. The types of objects being
counted can be divided naturally into two types: software objects or ‘‘system abstractions’’ and
hardware objects.

Counts of System Abstractions
UMA_COUNT an unspecified count
UMA_EVENT an unspecified event
UMA_PAGES memory pages
UMA_BLOCKS disk blocks
UMA_CHARACTERS characters
UMA_QLENGTH queue length
UMA_PROCESSES processes
UMA_TASKS tasks
UMA_THREADS threads
UMA_JOBS jobs
UMA_USERS users
UMA_TRANSACTIONS transactions
UMA_MESSAGES messages
UMA_SESSIONS sessions
UMA_STREAMSMODULES streams modules
UMA_STREAMSHEADS streams heads
UMA_STREAMSMSGS message blocks
UMA_PACKETS packets
UMA_INODES inodes
UMA_FILES files
UMA_FILESYSTEMS file systems

Table 3-5 System Abstraction Count Units

54 CAE Specification

Overview of the DCI Specification DCI Name Space Attribute Structures

Counts of Hardware Activity or Objects
UMA_READS reads
UMA_WRITES writes
UMA_SEEKS seeks
UMA_IOCTLS ioctls
UMA_CONNECTIONS connections
UMA_RETRIES retries
UMA_MOUNTS mounts
UMA_REWINDS rewinds
UMA_POSITIONINGS positionings
UMA_MARKS tape marks
UMA_PORTS ports
UMA_PROCESSORS processors
UMA_DISKS disks
UMA_NETS networks
UMA_SLINES serial lines
UMA_BUSSES busses
UMA_CHANNELS I/O channels

Table 3-6 Hardware Activity Count Units

Two of the above counts, UMA_COUNT and UMA_EVENT, can be used for undefined counts
and events. There will, of course, be objects that are not listed here or vendor specific objects. A
value of UMA_NOUNITS indicates that units are not applicable to this metric. To handle future
and vendor expansion this specification reserves the numerical range 0-2ˆ16 for predefined DCI
unit values. The rest of unit’s numerical range is available for extension.

Refer to the <uma.h> file at the end of this specification for a mapping of DCI units to a specific
enumerated type.

For derived metrics (i.e., those whose dataType attributes field is recorded as UMA_DERIVED),
the units indicate precisely how this derived metric is related to other metrics in the class.

Inter-metric relationships are encoded explicitly in the DCIDatumId of each derived metric. For
this purpose, the DCIDatumId is partitioned in the following manner:

arg1 arg2 arg3 id

Figure 3-8 DCIDatumId for Derived Metric Support

Where arg1, arg2 and arg3 are the unique (within a class) last 8 bits of the DCIDatumIds of the
other metrics in the class to which the derived metric is related.

The following types of relationships can be expressed:

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 55

DCI Name Space Attribute Structures Overview of the DCI Specification

Manifest Constant Argument Definition Formula
UMA_DERIVED_SUM2 arg1 = a value arg1 + arg2

arg2 = a value
UMA_DERIVED_SUM3 arg1 = a value arg1 + arg2 + arg3

arg2 = a value
arg3 = a value

UMA_DERIVED_DIFFERENCE arg1 = a value arg1 - arg2
arg2 = a value

UMA_DERIVED_AVERAGE arg1 = a value arg1 / arg2
arg2 = a value

UMA_DERIVED_PERCENT arg1 = a value arg1 / (arg1 + arg2)
arg2 = a value

UMA_DERIVED_PRODUCT arg1 = a value arg1 * arg2
arg2 = a value

UMA_DERIVED_VARIANCE arg1 = a count (arg3/arg1)-(arg2)ˆ2/arg1
arg2 = a sum
arg3 = a sum of squares

Table 3-7 Derived Data Units

(Note that a definition of standard deviation is not given since standard deviation is derived
directly from variance, and does not depend on relationships between other metrics.)

Finally, for certain metrics, the units designation is not meaningful. In these cases, the
UMA_NOUNITS value is selected.

For situations in which "units" do not apply
UMA_NOUNITS indicates units do not apply to this metric

Table 3-8 Metrics with no Units

3.4.6 Invalid Data

There are cases where a whole class of data cannot be retrieved for all instances, such as the
"byteswritten" count for ReadOnly devices, or the size of unmounted disk partitions. In these
cases, rather than splinter the class to contain only the valid metrics, an additional data structure
can be returned with the fetched data and the application can check whether the data it seeks is
valid or not. As a performance optimization, the application need only check each data metric
for validity if a hint bit is set in the class attributes flags (DCI_POSSIBLEINVALIDDATA) and
the informational return status DCI_INVALIDDATAPRESENT is received. In the case of
dciWaitEvent(), there is no way to return DCI_INVALIDDATAPRESENT and the measurement
application (consumer) is obligated to examine each piece of data for whole classes that have the
DCI_POSSIBLEINVALIDDATA attribute flag set.

A special datumId (DCI_INVALIDDATUMID) is reserved for use in classes which need to
express partial class data for some instances. The dciRegister() will fail if a class is specified with
DCI_POSSIBLEINVALIDDATA and a DCI_INVALIDDATUMID was not. This associated data
for this datumId is a variable length DCIInvalidData structure (since this structure is variable
length, the data offset for the datumId represents an indirect offset to the actual structure). This
structure is an array of DCIDatumIds which are not valid in the presented class data for this
instance. If an invalid metric is explicitly referenced (using dciGetData() or dciSetData() with a
non-wildcarded DCIDatumId) then the error DCI_INVALIDDATA will be generated. If this class
can produce invalid data, but all metrics are valid for this instance, the offset for the
DCIInvalidData structure is 0 and should not be referenced.

56 CAE Specification

Overview of the DCI Specification DCI Name Space Attribute Structures

If a particular metric is marked as invalid, then its value should not be referenced by the
application. Such invalid metrics may not be settable with dciSetData(), depending upon the
provider.

For example, if a class of data is returned with the informational status
DCI_INVALIDDATAPRESENT, then the invalid list must be checked before referencing a metric
in the returned list. One must obtain the UMAUint4 offset for the DCI_INVALIDDATUMID; if
the offset is zero, then no validity data needs to be consulted (although in this case, the
implementation should have not generated the DCI_INVALIDDATAPRESENT status). If the
offset is non-zero, then it is added to the base address of the returned data and cast to a
DCIInvalidData structure pointer. Use the macro *dciinvaliddatacount* to determine how many
invalid metrics exist and the macro *dciinvaliddatumid* to check each DCIDatumId in the list.

3.4.7 DCI Server/Provider Communication

The DCI Server needs to communicate with a provider for several purposes. When a
dciGetData() or dciSetData() request is made, the DCI Server must forward the request to the
appropriate provider and then return the appropriate data to the consumer that requested it.
When a consumer calls dciConfigure() to configure a metric, the DCI Server must ask the
provider to perform the configuration operation. Finally, if a provider has specified
DCI_PROVIDER_INSTANCE in the flags field of the DCIClassAttr, then that provider is saying
that it will never make any calls to dciAddInstance() or dciRemoveInstance(). So whenever the DCI
Server needs to find out what instances are available, it must explicitly ask the provider to find
out what instances currently exist. Typically, a DCI Server will need this information in order to
respond to a dciListInstanceId() or dciGetInstAttributes() request from a consumer. One reason a
provider may decide to do this is that the instance space of a class is changing very rapidly and
the overhead of making frequent calls to dciAddInstance() and dciRemoveInstance() is deemed
unacceptable to system performance. Methods are the mechanism that allow a provider to
instruct the DCI Server exactly how to perform this communication.

The DCI specifies four method types, as outlined in the following table, which are explained in
detail in further sections.

Method Explanation
DCI_WAIT Provider blocks waiting for requests
DCI_STORE DCI Server stores posted data
DCI_ADDRESS DCI Server retrieves data from provider’s address space
DCI_CALLBACK DCI Server requests data by calling a routine in

provider’s address space

Table 3-9 Method Types

All DCI implementations must provide at least the DCI_WAIT method for portability, but may
choose to either implement or not implement the other three methods since these may depend
on features that may not be available on some operating systems. Also, some methods available
to user space metric providers may not be available to operating system metric providers on the
same machine. For example, it doesn’t make sense to have a device driver block waiting for a
metrics request. An implementation may also freely specify additional method types as well.
The DCI Server returns an error if a provider attempts to specify an inappropriate or unavailable
method.

Methods can be specified on a class basis using dciRegister() when the class is registered, or for a
specific instance using dciAddInstance() when the instance is added. For a
DCI_PROVIDER_INSTANCE class, a provider may only (and must) specify a class method,
since instance data is managed by the provider. In all other cases, either an instance method, a

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 57

DCI Name Space Attribute Structures Overview of the DCI Specification

class method, or both may be specified.

A method, either a class method or an instance method, may support several of the different
types of requests that a DCI Server may make to a provider. The type of request is embodied in
one of seven bitmap operation codes.

Operation Type Corresponding Consumer API Call
DCI_OP_GETDATA dciGetData()
DCI_OP_CONFIGURE dciConfigure()
DCI_OP_LISTINSTANCES dciListInstanceId() for

DCI_PROVIDER_INSTANCE class
DCI_OP_GETINSTATTR dciGetInstAttributes() for

DCI_PROVIDER_INSTANCE class
DCI_OP_SETDATA dciSetData()
DCI_OP_RESERVEDATA dciSetData()
DCI_OP_RELEASEDATA dciSetData()

Table 3-10 Types of Operations

When the DCI Server executes a method, it indicates which operation it is requesting. If the
provider registered both a class method and an instance method, the DCI Server tries the
instance method first. If that method fails it retries the operation using the class method. If any
of the methods fail, the DCI Server returns an error to the requesting consumer.

The provider responds to the request with a dciPostData() call, which also indicates to which
type of operation it is responding. All <specified> methods, except DCI_ADDRESS, use
dciPostData() to deliver the metrics and other data to the DCI Server.

The DCIMethod structure is used to identify a method. It can describe a class method if set in
the DCIClassAttr structure, or can describe an instance method if used as an argument to
dciAddInstance(). The DCI Server can then use the information in this structure to determine
what method to use to satisfy requests from a consumer.

typedef struct DCIMethod {
UMAUint4 size;
DCIMethodType type;
UMAElementDescr method;
UMAVarLenData data;

} DCIMethod;

The usage of the structure elements is as follows:

size This is the total number of contiguous bytes of storage in the structure and all its
associated variable length data, which must be a multiple of 4.

type The method type which indicates how data will be retrieved, and is one of
DCI_WAIT, DCI_STORE, DCI_ADDRESS, or DCI_CALLBACK.

method Descriptor for variable length method data.

data Data for the variable length attributes and method data.

Not every method type can support every operation. Although described in detail below, Table
3-11 on page 59 summarises which methods may support which operations. Attempting to
specify an unsupported operation in a DCIMethod argument results in an error code of
DCI_METHODOPUNAVAILABLE.

58 CAE Specification

Overview of the DCI Specification DCI Name Space Attribute Structures

Method Types
Method Operations

DCI_WAIT DCI_STORE DCI_ADDRESS DCI_CALLBACK
DCI_OP_GETDATA yes yes yes yes
DCI_OP_CONFIGURE yes no no yes
DCI_OP_LISTINSTANCES yes no no yes
DCI_OP_GETINSTATTR yes no no yes
DCI_OP_SETDATA yes yes yes yes
DCI_OP_RESERVEDATA yes yes yes yes
DCI_OP_RELEASEDATA yes yes yes yes

Table 3-11 Valid Operations for Each Method Type

The following sections describe the use of provider operations, dciPostData() and methods in
detail.

3.4.7.1 Provider Operations for Polled Metrics

In most cases all data transferred from the DCI Server to the provider, or vice versa, are encoded
in a DCIReturn structure. The exception is DCI_ADDRESS, in which case the DCI Server
retrieves the requested data itself. To clarify the role of the metric identifiers and corresponding
data for each operation, the DCIReturn structure in both directions are described in detail for
each operation. First some behaviour identical to all methods is described.

Class identifiers can never be wildcarded at the provider level. So, wildcards are not permitted
in the class identifiers in any of the DCIReturn structures passed between DCI Server and
provider. Datum identifiers can always be wildcarded, although in some methods the datum
identifiers are ignored. For DCI_PROVIDER_INSTANCE classes the instance identifier can be
wildcarded in any of the operations. For all other classes the instance identifier cannot be
wildcarded. Note that the DCI_OP_LISTINSTANCES and DCI_OP_GETINSTATTR operations
are only used for DCI_PROVIDER_INSTANCE classes. A DCI_PROVIDER_INSTANCE class
provider expands the wildcarded instance identifiers as necessary.

Since the data returned by the provider is located in a separate data buffer, all offsets in the
return DCIReturn structure are relative to the start of this data buffer.

DCI_OP_GETDATA
The DCIReturn structure as it is received by the provider contains fully specified metric
identifiers. Summary and status values are unused.

The DCIReturn structure returned by the provider repeats or expands all metric identifiers
appropriately with offsets to the actual data, which conforms to the previously registered
attributes structure. In the case of a datum identifier wildcard, the corresponding data
section contains all data of the specified class instance, each datum with an offset as
specified in the previously registered attributes structure. Summary, status and return
values are significant.

DCI_OP_CONFIGURE
The DCIReturn structure as it is received by the provider contains fully specified metric
identifiers with offsets to the actual data. The instance identifier may be of zero length,
which means "all instances, including future ones". Each data section corresponding to a
metric identifier contains DCIConfig data structure(s). Summary and status values are
unused.

The DCIReturn structure returned by the provider repeats or expands all metric identifiers
appropriately with offsets to the actual data. Each data section corresponding to a metric

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 59

DCI Name Space Attribute Structures Overview of the DCI Specification

identifier contains DCIConfig data structure(s). Summary, status and return values are
significant.

The dciConfigure() manual page further defines the DCIConfig structure for both the request
and reply directions of any configure operation.

DCI_OP_LISTINSTANCES
The DCIReturn structure as it is received by the provider contains metric identifiers of
which the datum identifier is ignored. No data is provided and summary and status values
are unused.

The DCIReturn structure returned by the provider repeats or expands all metric identifiers
appropriately. The datum identifiers are ignored. No data is provided. Summary, status
and return values are significant.

DCI_OP_GETINSTATTR
The DCIReturn structure as it is received by the provider contains metric identifiers of
which the datum identifier is ignored. No data is provided and summary and status values
are unused.

The DCIReturn structure returned by the provider repeats or expands all metric identifiers
appropriately, and contains offsets to the actual data. The datum identifiers are ignored.
Each data section corresponding to a metric identifier contains DCIInstAttr structure(s).
Summary, status and return values are significant.

DCI_OP_SETDATA and DCI_OP_RESERVEDATA
The DCIReturn structure as it is received by the provider contains fully specified metric
identifiers with offsets to the actual data, which conforms to the previously registered
attributes structure. In the case of a datum identifier wildcard, the corresponding data
section contains all data of the specified class instance(s), each datum with an offset as
specified in the previously registered attributes structure. Summary and status values are
unused.

The DCIReturn structure returned by the provider repeats or expands all metric identifiers
appropriately. No data is returned. Summary, status and return values are significant.

DCI_OP_RELEASEDATA
The DCIReturn structure as it is received by the provider contains fully specified metric
identifiers. Summary and status values are unused.

The DCIReturn structure returned by the provider repeats or expands all metric identifiers
appropriately. No data is returned. Summary, status and return values are significant.

3.4.7.2 Provider Methods for Polled Metrics

DCI_WAIT
The DCI_WAIT method indicates that the provider is planning to register its metrics and
then use the dciWaitRequest() routine to wait for consumer requests for its registered
metrics. For a provider to register it, the type field of the DCIMethod structure is set to
DCI_WAIT. There is no method data required when registering a DCI_WAIT method. All
operations are supported by this method.

For a provider to use the DCI_WAIT method, it first makes a call to dciWaitRequest() that
will block until the DCI Server requests an operation on one or more of the indicated
metrics. When the call returns the operation is filled in, and the DCIReturn structure
contains the requested metric identifiers. If data is associated with the request in the case of
a DCI_OP_SETDATA, DCI_OP_RESERVEDATA or DCI_OP_CONFIGURE, it is contained
in the DCIReturn structure. The provider must answer to the request by submitting results

60 CAE Specification

Overview of the DCI Specification DCI Name Space Attribute Structures

with dciPostData().

DCI_STORE
The DCI_STORE method indicates that the provider wants to spontaneously generate
polled metric data and send it to the DCI Server using dciPostData() without waiting for the
DCI Server to make an explicit request. The DCI Server should independently handle
requests from consumers, without interaction with the provider. The DCI Server is thus
responsible for allocating storage to retain the values of these metrics and for returning
appropriate errors to consumers or providers if it is unable to allocate this memory (or disk
space). This method may not be used to support the DCI_OP_LISTINSTANCES,
DCI_OP_GETINSTATTR, or DCI_OP_CONFIGURE operations.

When this method is used, each dciAddInstance() call, for which this method is in effect,
must specify the initial values of all metrics in the class instance, by filling out the
DCIReturn buffer.

If the DCI_OP_GETDATA operation on a metric is supported by the DCI_STORE method, a
consumer may retrieve the current value of the metric using dciGetData(), and the provider
may change it using dciPostData(). If the DCI_OP_SETDATA operation on a metric is
supported by the DCI_STORE method, a consumer with proper access rights may also set
the value of the polled metric using dciSetData().

DCI_ADDRESS
The DCI_ADDRESS method may be used when the provider is able to specify the location
of the values of metrics in terms of a single address per metric. It may be supported by
implementations on operating systems that allow the DCI Server to reach into the address
space of a provider and read memory. It is an error to specify this method type to support
the DCI_OP_LISTINSTANCES, DCI_OP_GETINSTATTR or DCI_OP_CONFIGURE method
type.

In order to use this method type, all polled metric values for the class must exist in a single
block of address space that can be copied directly into the data area of a DCIReturn
structure. Each datum in the class must exist at the offset into the block that is specified in
the offset field of the corresponding DCIDataAttr structure.

When the method is registered for an instance method using dciAddInstance() or a class
method using dciRegister(), the data area of the DCIMethod struct contains the following
struct.

struct DCIAddressMethodData {
void *address;
UMAUint4 size;
void *sync;

};

The usage of the structure elements is as follows:

address Address of the block of memory in the provider’s address space where values
for the polled metrics in this class start.

size The size of the memory block in bytes.

sync Pointer to an implementation dependent synchronisation structure used to
synchronise access to the entire block of memory pointed to by address. If this
is zero, no synchronisation is performed.

When a consumer requests an operation supported by the DCI_ADDRESS method, the DCI
Server goes out and directly reads or sets the current value of this metric using the sync

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 61

DCI Name Space Attribute Structures Overview of the DCI Specification

object to synchronise access to that location.

If the address space of a provider that has registered a DCI_ADDRESS instance method
becomes inaccessible to the DCI Server, for example, if the provider terminates, all instances
added by that provider are implicitly removed. If a DCI_CLASS method was registered,
then the class is implicitly removed.

DCI_CALLBACK
The DCI_CALLBACK method allows a provider to specify a function in its address space
that the DCI Server will call to perform an operation. It may be supported by
implementations on operating systems that allow the DCI Server to reach into the address
space of a provider and execute code. All operations are supported by this method.

When a provider specifies this method, it supplies the DCI Server with a function that it
may call to perform an operation. When the DCI Server wants to execute an operation, it
calls this function with the following prototype:

DCIStatus callback(
UMAUint4 operation, /* in */
DCIReturn *request /* in */

);

The usage of the structure elements is as follows:

operation
The operation being requested. Must be one of the values possible in the operation
field of the DCIMethod struct.

request
Pointer to the DCIReturn structure containing all metric identifier information, and
data in the case of DCI_OP_SETDATA, DCI_OP_RESERVEDATA or
DCI_OP_CONFIGURE. The metric identifiers may contain wildcards for the datumId,
for the instanceId in the case of a class method, but not for the classId.

When a consumer requests an operation implemented by this method, the DCI Server
makes the appropriate callback. The provider must use dciPostData() to post the data
requested by the operation, as it cannot be returned using the callback.

If the address space of the provider that has registered a DCI_CALLBACK method becomes
inaccessible to the DCI Server, for example if the provider terminates, all instances added by
that provider are implicitly removed. If a class method was registered, the class is implicitly
removed.

Note that the callback routine is not a part of the DCI specification. It is provided by the
provider. The routine must follow certain conventions. These are outlined below:

Description of callback behaviour
The callback routine is a prototype routine for the callback routine used in the
DCI_CALLBACK method. This routine is defined by the provider using a local name
and registered together with the DCI_CALLBACK method with the DCI Server, using
dciRegister() or dciAddInstance(). The DCI Server will call this routine when a consumer
requests the provider’s metrics using dciGetData(), alters metrics using dciSetData(),
lists instances with dciListInstanceId(), requests instance attributes with
dciGetInstAttributes(), or configures metrics using dciConfigure().

When the DCI Server executes this callback function, it passes in the operation and the
requested metrics. If data is passed it is encoded in the DCIReturn structure using
offsets from the beginning of the DCIReturn buffer.

62 CAE Specification

Overview of the DCI Specification DCI Name Space Attribute Structures

If the operation is DCI_OP_GETDATA or DCI_OP_RELEASEDATA, only metric
identifiers are supplied in the DCIReturn structure. Only datum identifier wildcards
are allowed, unless the class is a DCI_PROVIDER_INSTANCE class in which case
instance identifier wildcards are allowed.

If the operation is DCI_OP_LISTINSTANCES, only metric identifiers are supplied in
the DCIReturn structure, of which the datum identifier should be ignored. The instance
identifiers can be wildcarded.

If the operation is DCI_OP_GETINSTATTR, only metric identifiers are supplied in the
DCIReturn structure, of which the datum identifier should be ignored. The instance
identifiers can be wildcarded.

If the operation is DCI_OP_CONFIGURE, data is supplied in the DCIReturn structure
in addition to the metric identifiers. Each data section contains one or more DCIConfig
structures, depending on the number of instance identifiers encoded in the
corresponding metric identifier. The instance identifier can be zero length which
indicated ‘‘all current and future instances’’. Only datum identifier wildcards are
allowed, unless the class is a DCI_PROVIDER_INSTANCES class in which case
instance identifier wildcards are allowed.

If the operation is DCI_OP_SETDATA or DCI_OP_RESERVEDATA, data is supplied in
the DCIReturn structure in addition to the metric identifiers. This data conforms to the
previously registered attributes structure. Only datum identifier wildcards are
allowed, unless the class is a DCI_PROVIDER_INSTANCES class in which case
instance identifier wildcards are allowed.

Return Values from callback
The callback prototype routine returns DCI_SUCCESS to the DCI Server if it
successfully serviced the request. Otherwise, this routine returns one of the DCI error
values to indicate the failure type.

[DCI_NOTPRESENT]
The DCI service is not available.

[DCI_NOIMPLEMENTATION]
In a DCI subset implementation, the specified routine has not been implemented.

[DCI_NOTINITIALIZED]
The DCI subsystem is not currently initialised.

[DCI_SYSERROR]
An internal error has occurred (such as a shortage of resources) that may be
beyond the control of the application. A vendor-specific error code is placed in the
variable errno.

[DCI_ALLOCATIONFAILURE]
The provider could not allocate memory for the return buffer which would be
submitted with dciPostData().

[DCI_INVALIDARG]
One of the input arguments is invalid: a negative value was used for numIds,
bufferSize is smaller than the size of a DCIReturn structure, MetricIdList was
malformed, or the MethodList was malformed.

[DCI_INTERRUPTED]
The callback prototype call was interrupted by a signal and did not complete.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 63

DCI Routine Return Status and Structures Overview of the DCI Specification

3.5 DCI Routine Return Status and Structures
The DCI routines have a consistent interface. An application, either a metrics provider or
consumer, calls a routine with a list of metric identifiers as an argument. The DCI routine
performs the request and then writes status and data into a user provided buffer or, if requested,
into a buffer allocated on behalf of the user by the DCI. If the DCI allocated the status buffer,
then the user is responsible for subsequently freeing the allocated memory. The return structure
used for this buffer, pictured in the accompanying diagram, is the same for the different DCI
routines. The diagram shows a successful return structure for a request with a list, after
wildcard expansion, of ‘‘n’’ metrics.

A DCI routine always returns the DCIStatus type. These routines use the DCIStatus type
definition to return success when the request succeeds for every metric in the expanded input
metric list. In the success case, the routine DCIStatus return value is DCI_SUCCESS. A
DCIStatus error or warning value is returned if the request cannot be satisfied for any metric in
the list. The error status value is a summary error and may not be the same for every metric in
the expanded input list. The application must traverse the DCIReturn structure to discover the
status value for each metric in the expanded input list.

size
count
sumstatus
startTime
endTime

status
metricOffset
dataOffset
dataSize

status
metricOffset
dataOffset
dataSize

. . .

DCIRetval[n-1]

DCIRetval[0]

DCIReturn

. . .

. . .Output
Data

Expanded
input
metricids

metricId [0]

metricId[n-1]

data [0]

data[n-1]

Figure 3-9 DCIReturn Structure Example

64 CAE Specification

Overview of the DCI Specification DCI Routine Return Status and Structures

The return structure begins with a four byte integer that contains the total number of bytes
written. The purpose of this size is to allow range checking and for quick traversal of multiple
DCIReturn structures. The total size is followed by a count of the total number of expanded
input list identifiers. The next field consists of a summary status word. Two timestamps follow;
the first indicates the time of the start of the DCI operation; the second indicates the time of the
completion. Both timestamps are (optionally) filled in by the DCI Server/server library, and
only have significance for the dciGetData api call. The two timestamps may be used by a
consumer to gauge the currency of the collected data; if the two timestamps are not "close
enough", the DCI operation may have taken too long to complete. (If the timestamps are not
"close enough", the consumer may choose to discard the data and retry the request.) Each
timestamp is optional. A value of zero (0) for either timestamp indicates that the
implementation does not support timestamping at the server. [Note that if the provider also
chooses to provide a timestamp, it may do so by including a specific datumId in the class for
that purpose.]

This header, the total size, count, status and timestamps, is followed by three arrays. The first is
an array of count DCIRetval structures, one for each expanded input metric identifier. The
DCIRetval structure gives the return status, an offset to a copy of the metric identifier, an offset
to the output data for this request, and the size of the data returned by this request. All offsets
are from the beginning of the DCIReturn structure. Note that the DCIRetval structure is a fixed
size, allowing for quick traversal of the DCIRetval array.

Following the array of DCIRetval structures is a copy of the expanded input metric identifier list
and the returned data buffer. The expanded metric identifier list may be either a list of
DCIClassId’s or DCIMetricID’s. Some DCI routines, such as dciListClassId(), take metric class
identifier lists as input. Others, such as dciListInstanceId(), take full metric identifiers, class plus
instance, as input. Applications acquire offsets into these buffers by traversing the DCIRetval
array.

The DCIReturn, DCIRetval, and DCIStatus structures and type definitions are defined as
follows:

typedef struct DCIRetval {
DCIStatus status; /* status for input argument */
UMAUint4 metricOffset; /* offset to input id value */
UMAUint4 dataOffset; /* offset to data value */
UMAUint4 dataSize; /* size of data returned in bytes */

} DCIRetval;

typedef struct DCIReturn {
UMAUint4 size; /* total bytes in DCIReturn */
UMAUint4 count; /* number of returned elements */
DCIStatus sumstatus; /* summary status */
UMATimeSpec startTime; /* Start time of operation */
UMATimeSpec endTime; /* End time of operation */
DCIRetval retval[1]; /* status,input id, and output */

} DCIReturn;

typedef UMAUint4 DCIStatus;
typedef struct DCIRetval DCIRetval;
typedef struct DCIReturn DCIReturn;

Some routines may not return data. In this case there is no returned data area in the DCIReturn
structure and the dataOffset and dataSize fields of the DCIRetval structure are unused and their
values are set to zero. Clearing these fields prevents applications which inadvertently ignore

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 65

DCI Routine Return Status and Structures Overview of the DCI Specification

status values from accessing memory outside of the input buffer range.

The returned data which follows the array of status structures can be used directly as input to
other DCI routines. For example, dciListClassId() can return a list of expanded metric class
identifiers that can be directly used as input to dciListInstanceId(). This improves application
performance by avoiding additional data manipulation for successful requests.

There is no requirement that the DCIReturn structures are returned in the same order as the
input metric list nor is there a requirement that any additional return data be in the same order
as the DCIReturn structures. It is expected that many implementations will retain the same
ordering but there may be an implementation specific performance advantage to writing
portions of the return structure out of order.

An application can choose to supply its own buffer for the DCI return structure or have the DCI
library allocate a buffer on its behalf. This is done by passing in the address of the return buffer
address. If the buffer address is zero then the DCI routine allocates memory and writes the
return buffer address. If the buffer address is not zero then the DCI routine writes the return
buffer to the given address, limiting the write to the size of the supplied buffer.

In the event that the return buffer supplied is too small to contain the data, the following
conditions apply:

• A buffer ≥ sizeof(DCIReturn) but smaller than the required size truncates the data on an even
record boundary and alter the count appropriately. The DCI implementation is not under
any obligation to provide the partial data (that is, the count could be set to 0), but it must fill
in the ‘‘size’’ and ‘‘count’’ fields.

• A buffer ≤ sizeof(DCIReturn) causes the library call to return either DCI_INVALIDARG if the
buffer was provided by the caller or DCI_SYSERROR if the library could not allocate the full
buffer.

The reason for allowing the choice of a DCI allocated buffer or an application allocated buffer is
that in most cases applications would want the DCI service to size and allocate the return
structure, especially since the DCI service would know in advance the buffer size, but there are
cases where the application needs to manage its own memory. An example would be a metrics
archival application which wants to have the results of dciGetData() calls be written directly to a
memory mapped file. If the If DCI routines did their own memory allocation for the return
values then the application would have to copy the results to the proper address in the mapped
region. By having the interface write the return structure into an application provided address
only one write is performed. Thus allowing this choice provides convenience for the typical
application while retaining the DCI interface’s flexibility.

Note that is implementation defined whether a DCI call using both wildcards and application
allocated buffers performs partial work in the event the buffer is too small. For example, a
dciRemoveInstance() call with wildcarded instance identifiers may require a very large output
buffer to hold the dciRetval structures. If the buffer is allocated by the consuming application, it
may be too small. It is implementation defined in this situation whether the DCI removes no
instances, or only as many instances for which there is room in the buffer to indicate success.

The two data capture routines, dciGetData() and dciWaitEvent(), allow the consumer to request
separate return status and data buffers. This enables metric consumer applications in a data
acquisition loop to discard successful, repetitive status returns while archiving the returned data
to a sequential buffer. The DCI service allocates buffer space on behalf of the consumer if either
the status or the data buffer address is set to zero. If the address of the data buffer address is
zero, the DCI service defaults to writing both status and data to the status buffer address. This
behaviour is described in the following tables.

66 CAE Specification

Overview of the DCI Specification DCI Routine Return Status and Structures

If the address of the data buffer address is not zero, then the consumer application has selected
split buffers. In this case, the values of the return status address, the data buffer address and the
data buffer size are interpreted as follows:

Input Value of Zero Input Value of Non-zero
return status address of address of
address server-allocated consumer-allocated

return buffer return buffer

caller must use
dciFreei() to free

data buffer address of address of
address server-allocated consumer-allocated

data buffer data buffer

caller must use
dciFree() to free

data buffer size of returned size of consumer-
size data buffer allocated data

buffer

If the address of the data buffer address is zero, the consumer application has elected to have a
single return buffer. In this case, the values of the return status address is interpreted as follows:

Input Value of Zero Input Value of Non-zero
return status address of address of
address server-allocated consumer-allocated

return buffer return buffer

(with data buffer
caller must use in it).
dciFree() to free

If a consumer decides to split the status and data buffers then the size field in the DCIReturn
structure in the status buffer refers to only the size of the status structure, it does not include the
size of the data area. Also, the dataOffset fields in the DCIReturn structure reflect the offset from
the beginning of the data buffer. The consumer can examine the returned dataSize argument
provided with the dciGetData() and dciWaitEvent() routines to discover the data buffer size.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 67

Overview of the DCI Specification

68 CAE Specification

Chapter 4

DCI Routines Overview

4.1 Routine Summary and Subset Implementations
Two groupings of the DCI routines are next presented. The first divides the routines into four
categories:

• polled metrics consumer routines
• polled metrics provider routines
• event handling routines.
• other routines.

Polled metric consumer routines are those used by metrics consumers to interrogate the name
space, and obtain metric values. Polled metrics provider routines are those used by the metrics
providers to populate and manage the name space, and make metric values available to the DCI
Server. The event handling routines are used by both event providers and consumers to manage
the registration and delivery of events. The remaining routines include utilities and
administrative functions used by both providers and consumers to: manage memory, manage
secure access, manage metric enablement and control event buffering policy. These categories
are shown in Table 4-1. Subsequent chapters in this specification cover each category separately.

Consumer Provider
dciInitialize dciRegister
dciTerminate dciUnregister
dciListClassId dciAddInstance
dciListInstanceId dciRemoveInstance
dciOpen dciWaitRequest
dciClose dciPostData
dciGetClassAttributes
dciGetInstAttributes
dciGetData
dciAddHandleMetric
dciRemoveHandleMetric

Event Handling Routines
dciWaitEvent
dciPostEvent
Other Routines

dciSetClassAccess
dciSetInstAccess
dciAlloc
dciFree
dciConfigure
dciSetData
dciPerror

Table 4-1 DCI Routines, Grouped by Use

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 69

Routine Summary and Subset Implementations DCI Routines Overview

The reason for partitioning the routines into provider and consumer groups is that this enables
anyone writing provider or consumer code to focus quickly on the relevant routines. It also
enables the design of a consistent set of interfaces within the grouping.

The second grouping of DCI routines, by function type, is presented in Table 4-2. This grouping
provides guidelines for a staged implementation of the DCI routines.

With this grouping, the Data Capture Interface can be divided into five subsets:

• basic support

• multiple provider support

• access control support

• event support

• set capability support.

Again, it is intended that, as DCI implementations become widespread and more mature, there
will be no subset implementations. If one chooses to do a subset implementation, then the
unimplemented library routines should be stubbed and should return the error
DCI_NOIMPLEMENTATION in the event they are accessed.

Grouping of the DCI routines by implementation subset is given in the following table:

Basic Support Multiple Providers
dciOpen dciRegister
dciClose dciAddInstance
dciListClassId dciUnregister
dciListInstanceId dciWaitRequest
dciInitialize dciPostData
dciTerminate dciRemoveInstance
dciGetData
dciGetClassAttributes
dciGetInstAttributes
dciAddHandleMetric
dciRemoveHandleMetric
dciConfigure
dciFree
dciAlloc
dciPerror

Access Control Event Support
dciSetClassAccess dciWaitEvent
dciSetInstAccess dciPostEvent

Set Capability Support
dciSetData

Table 4-2 DCI Routines, Grouped by Implementation Subset

There are a number of reasons why the DCI specification currently describes subset
implementations:

1. It lowers the initial implementation cost. One can ship a DCI compliant system quickly
and then choose to add functions in the future.

70 CAE Specification

DCI Routines Overview Routine Summary and Subset Implementations

2. It increases portability of the DCI to operating systems which cannot easily implement
certain functions. For example, some systems have no notion of access control or could not
support event delivery.

3. It allows for implementations which have no underlying operating system support. Tool
vendors may want to implement a DCI interface in advance of their system vendors to
increase the portability of their tool set.

The following sections provide additional information on how the routines are partitioned and
the implications of each subset for the implementor.

4.1.1 Basic Support

Basic support would be the most limited level. It would support the interrogation of a fixed
metrics name space and the acquisition of polled data. This level of service is similar to that
available on many current systems. There is no provision for the run time modification of the
metrics name space or user space providers. The routines that must be present in a basic
implementation are:

dciOpen If the indicated metrics are present in the namespace, a handle is
returned. This handle can then be used in subsequent DCI calls (for
example, dciGetData() to refer to the same metrics. The handle
provides a guarantee to consumers that any DCI operation using this
same handle produce informational return status if a wildcarded
class or instance has been newly registered or instantiated.

dciClose This routine invalidates the handle provided by the dciOpen() call.

dciListClassId Allow consumers to look up a list of metric class identifiers in the
metrics name space.

dciListInstanceId Allow consumers to look up a list of instance identifiers in the
metrics name space.

dciInitialize Allow both consumers and providers to tell the DCI implementation
that they are initiating a sequence of DCI operations.

dciTerminate Allow both consumers and providers to tell the DCI implementation
that they are terminating a sequence of DCI operations.

dciGetData Allow consumers to get polled metric data.

dciGetClassAttributes Allow consumers to acquire the metric class attributes.

dciGetInstAttributes Allow consumers to acquire the metric instance attributes.

dciAddHandleMetric Allow consumers to add metrics (polled or event) to an already open
handle.

dciRemoveHandleMetric Allow consumers to remove metrics (polled or event) from an
already open handle.

dciConfigure Allow consumers to transmit configuration requests to providers.

dciFree Allow consumers to release return buffer and data buffer memory
that had been allocated by the server.

dciAlloc Allow consumers to allocate buffer space for use by the server. Space
must be freed with the dciFree call.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 71

Routine Summary and Subset Implementations DCI Routines Overview

dciPerror Translate a dciStatus value into a corresponding text string.

Implementation of the Basic Support subset is required. The #define symbol
_DCI_SUBSET_BASIC must be defined to have value:

DCI_SUBSET_BASIC (0x01)

(see the <dci.h> header file in Appendix A on page 153.

4.1.2 Multiple Providers

The first optional subset allows for multiple providers. For this level, one must implement those
routines which allow the providers to modify the name space and register their ability to
provide metrics:

dciRegister Allow providers to register a list of metrics.

dciAddInstance Allow providers to add an instance to a class.

dciUnregister Allow providers to unregister a list of metrics.

dciWaitRequest Allow providers to wait for service requests.

dciPostData Allow providers to actively transmit polled metrics.

dciRemoveInstance Allow providers to remove a list of instances from the name space.

Implementation of Multiple Providers is optional. If implemented, the #define symbol
_DCI_SUBSET_MULTIPLE_PROVIDERS must be defined to have value:

DCI_SUBSET_MULTIPLE_PROVIDERS (0x02)

If not implemented, the #define symbol _DCI_SUBSET_MULTIPLE_PROVIDERS must be
defined as 0 (see <dci.h> header file in Appendix A on page 153).

4.1.3 Access Control

Another optional API subset enables the access control mechanism. Even if the access control
routines are in place the implementor can choose to specify how much access control is
supported, just as implementations can choose the appropriate security levels. One can imagine
implementations that want to streamline access checking in favour of performance. These
implementations could check access control only at the group level and either return the
[DCI_NOIMPLEMENTATION] reply for attempts to set or get access control information at the
other levels or simply silently accept the request. To implement access control one must add the
routines:

dciSetClassAccess Allow the provider to set the default or explicit access control
information for a set of metric classes.

dciSetInstAccess Allow the provider to set the default or explicit access control
information for a set of metric instances.

In addition, all consumer routines would be modified to perform access control checks (using
the provider-set access control information).

Implementation of Access Control is optional. If implemented, the #define symbol
_DCI_SUBSET_ACCESS_CONTROL must be defined to value:

DCI_SUBSET_ACCESS_CONTROL (0x04)

If not implemented, the #define symbol _DCI_SUBSET_ACCESS_CONTROL must be defined as
0 (see the <dci.h> header file in Appendix A on page 153).

72 CAE Specification

DCI Routines Overview Routine Summary and Subset Implementations

4.1.4 Event Delivery Support

Event delivery support extends the DCI to include event metrics (Basic Support provides only
for polled metric support). Event delivery requires buffering, as specified in the dciOpen() call.
It facilitates asynchronous delivery of information, for example, the removal or addition of
certain instances, as well as tracing: high bandwidth delivery of system performance related
events. Event delivery adds the following two calls to the DCI service.

dciWaitEvent A consumer routine to retrieve one or multiple events.

dciPostEvent A provider routine to post an event.

Implementation of Event Support is optional. If implemented, the #define symbol
_DCI_SUBSET_EVENT_SUPPORT must be defined to have value:

DCI_SUBSET_EVENT_SUPPORT (0x08)

If not implemented, the #define symbol _DCI_SUBSET_EVENT_SUPPORT must be defined as 0
(see the <dci.h> header file in Appendix A on page 153).

4.1.5 Set Capability

A separate DCI subset, enabling the implementation of other protocols, is the set capability.
Although not required for pure measurement oriented systems as defined by UMA, it enables
other protocols such as SNMP to make use of the DCI functions. The following call is added to
the DCI service.

dciSetData A consumer routine to alter information in one or multiple providers.

Implementation of Set Capability is optional. If implemented, the #define symbol
_DCI_SUBSET_SET_CAPABILITY must be defined to have value:

DCI_SUBSET_SET_CAPABILITY (0x10)

If not implemented, the #define symbol _DCI_SUBSET_SET_CAPABILITY must be defined as 0
(see the <dci.h> header file in Appendix A on page 153).

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 73

Routine Status Values DCI Routines Overview

4.2 Routine Status Values
The following is a list of the return values for the Data Capture Interface routines. A return
value, of the type DCIStatus, is presented in 3 separate locations for each DCI routine that is
issued: in each element of the DCIRetval array (if the particular DCI routine is specified to
return such an array), in the DCIReturn structure and as the direct return value of the DCI
routine itself. The ‘‘status’’ member of each DCIRetval structure returned indicates the status of
the result for the particular MetricId or ClassId referenced by the MetricOffset member. The
status DCIReturn is a ‘‘summary’’ status which reflects the status for all DCIRetval structures
returned. The return value of the DCI routine represents whether that call succeeded or the
specific reason for its failure.

In the latter case, the DCIStatus value returned must be carefully examined before the
DCIReturn and DCIRetval structures are referenced. The DCI routine may return ‘‘fatal’’ errors,
indicating that the call could not be made and that the DCIReturn structure is not valid and
should not be dereferenced. Such ‘‘fatal’’ errors may arise because:

• the call failed because it was not implemented by the host

• the DCI is not currently activated

• the call failed due to some internal system error

• the call failed because the input arguments were malformed

• the call was interrupt or prematurely timed out with no data returned.

In such a case, the caller can expect no DCIReturn data and is obliged to deallocate any memory
the DCI Server had allocated for the caller. For example, many of the DCI routines accept a
bufferAddress which may be set to zero if the DCI Server should allocate a properly sized
memory object. If the contents of bufferAddress were set to NULL before the call and achieved a
non-NULL value after the DCI routine which returned the ‘‘fatal’’ DCIStatus, the caller must
then deallocate this memory with dciFree().

In the case of [DCI_SYSERROR], the underlying system had some failure that caused the routine
to fail. Such errors might be due to lack of system resources, address faults or other conditions
which might be uncontrollable by the application. In this case the DCI routine may succeed if
issued a second time (if the error was a transient one), or may continue to return
[DCI_SYSERROR]. The underlying error is placed in errno; it is implementation-defined how the
application may attempt recovery from the error.

There is one exception to the description of ‘‘fatal’’ errors above. If the caller had preallocated a
buffer for the return value and it proved too small for the data requested, the DCIStatus returned
by the routine is [DCI_NOSPACE]. In this case, the first word of the buffer contains the buffer
size that would have held this request. This size could be used to preallocate a larger buffer and
retry the call.

It is implementation defined whether or not partial data is available in the buffer in the case of a
DCI_NOSPACE error (for example, on a dciGetData() call). It is also implementation defined
whether or not the state of the DCI changes given that a DCI_NOSPACE error has occurred (for
example, on a wildcarded dciRemoveInstances() call). In each of the above cases, individual
DCIRetval status values must be examined to determine whether or not the data is valid, and
whether or not the requested change actually occurred.

Although the DCI routine may have executed properly, the DCIStatus value stored in the status
member of the DCIReturn structure represents the summary of any individual DCIRetval status.
If all individual DCIRetval status values are DCI_SUCCESS, then the summary value is
[DCI_SUCCESS]. However, if 1 or more of the DCIRetval structures show an error, warning or

74 CAE Specification

DCI Routines Overview Routine Status Values

informational status member, then the summary status will not be [DCI_SUCCESS], but rather
represent the most serious severity status among the DCIRetval structures. The summary status
then, may contain [DCI_SUCCESS], [DCI_INFORMATIONAL], [DCI_WARNING] or
[DCI_FAILURE]. To determine the severity class of any returned status value, the application
need only bitwise logically ‘‘and’’ the status with [DCI_SUCCESS], [DCI_INFORMATIONAL],
[DCI_WARNING], [DCI_FAILURE] or [DCI_FATAL].

Each DCIRetval structure presents its own status. That status may be classified as success,
failure, warning or informational. A failure means that the operation requested of the associated
MetricId or ClassId could not be completed. A warning indicates that the operation was well-
formed, but could not be completed for some reason. An informational status is one for which
the data requested is returned successfully, but with some possible change in state since the last
request, or possibly with additional information useful to the application.

Every call that has been passed a valid handle can return an informational status of
[DCI_CLASSADDED] or [DCI_INSTANCEADDED]. The [DCI_CLASSADDED] status is
generated each time that a wildcarded class id expands into a new class. A new class is one that
has been registered after the metric id had been added to the handle, by dciOpen() or
dciAddHandleMetric(), and has not since returned a [DCI_CLASSADDED] status for this handle.
The [DCI_CLASSADDED] status message is returned, in the DCIRetval structure, with and only
with the first piece of returned information associated with the new class. Similarly,
[DCI_INSTANCEADDED] status is generated each time a wildcarded instance id expands into a
new instance. A new instance is one that was added to a class after the metric id had been added
to the handle, using dciOpen() or dciAddHandleMetric().

The following fatal errors are returned from the DCI routine itself.

[DCI_ALLOCATIONFAILURE]
[DCI_BADFLAGS]
[DCI_BADHANDLE]
[DCI_INITIALIZED]
[DCI_INTERRUPTED]
[DCI_INVALIDARG]
[DCI_NOIMPLEMENTATION]
[DCI_NOSPACE]
[DCI_NOTINITIALIZED]
[DCI_NOTPRESENT]
[DCI_SYSERROR]

The following status success value is returned from the DCI routine itself:

[DCI_SUCCESS]

The following summary status values are stored in the DCIReturn structure:

[DCI_FAILURE]
[DCI_WARNING]
[DCI_INFORMATIONAL]
[DCI_SUCCESS]

The following errors are returned as individual status:

[DCI_BADCONFIRM]
[DCI_CLASSEXISTS]
[DCI_CLASSNOTEMPTY]
[DCI_CLASSNOTPERSISTENT]
[DCI_DCIMAJORUNSUPPORTED]

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 75

Routine Status Values DCI Routines Overview

[DCI_DCIMINORUNSUPPORTED]
[DCI_DERIVEDDATA]
[DCI_EVENTSUPPORT]
[DCI_INSTANCEEXISTS]
[DCI_INSTANCENOTPERSISTENT]
[DCI_INVALIDDATA]
[DCI_INVALIDFIELD]
[DCI_INVALIDMETHODOP]
[DCI_METHODERROR]
[DCI_METHODOPNOTSUPPORTED]
[DCI_METHODTYPEUNAVAILABLE]
[DCI_NOACCESS]
[DCI_NOCLASS]
[DCI_NODATUMID]
[DCI_NOINSTANCE]
[DCI_NOMETRIC]
[DCI_NOTENABLED]
[DCI_NOTEVENTMETRIC]
[DCI_NOTEXT]
[DCI_NOTPOLLEDMETRIC]
[DCI_NOTQUERYABLE]
[DCI_NOTRESERVABLE]
[DCI_NOTRESERVED]
[DCI_NOTSETTABLE]
[DCI_NOWILDCARD]
[DCI_RESERVED]
[DCI_SUBSETUNSUPPORTED]
[DCI_TIMEOUT]

The following warnings are returned as individual status:

<none defined at this time>

The following informational values are returned as individual status:

[DCI_CLASSADDED]
[DCI_INSTANCEADDED]
[DCI_INVALIDDATAPRESENT]
[DCI_NOSUCHTRANSACTION]

The following success values are returned as individual status:

[DCI_SUCCESS]

The DCIStatus values are defined as follows:

[DCI_ALLOCATIONFAILURE]
The DCI library was requested to provide memory for the return values and could not.
The application could attempt to allocate its own memory and try the request again.

[DCI_BADCONFIRM]
The reservation confirmation is either invalid or has expired.

[DCI_BADFLAGS]
The flags argument was malformed, perhaps with conflicting flags specified.

[DCI_BADHANDLE]
The handle provided is not currently valid. The handle must be that returned from a
dciOpen() call.

76 CAE Specification

DCI Routines Overview Routine Status Values

[DCI_CLASSADDED]
The specified class has been added to the wildcarded set of classes previously opened
since the last time this set of classes was expanded. This status is transient and is not
returned the next time the expanded set is expanded into this class.

[DCI_CLASSEXISTS]
This class could not be registered because it already exists.

[DCI_CLASSNOTEMPTY]
Class could not be removed because either there are subclasses still registered, or
instances still defined.

[DCI_CLASSNOTPERSISTENT]
The parent class is not persistent and the associated DCIClassAttr specifies persistence.

[DCI_DCIMAJORUNSUPPORTED]
The specified DCI Version major number is not supported by the DCI Server.

[DCI_DCIMINORUNSUPPORTED]
The specified DCI Version major number is supported by the DCI Server, but the
specified minor version number is not.

[DCI_DERIVEDDATA]
An attempt was made to retrieve (or set) a metric that has type DCI_DERIVED.
Derived data cannot be retrieved; instead, the metric’s DCIDatumId should be
examined to determine which related metrics should be obtained, and what kind of
computation should be performed to actually obtain the desired value.

[DCI_EVENTSUPPORT]
The consumer has attempted to open an event metric with format and content
requirements beyond those supported by the registering provider. The provider will
form the conjunction ("and") of the provided bit map with the registered bit map to
determine the format and content of event data for this event metric.

[DCI_FAILURE]
Summary status for the case where at least 1 returned individual status was an error.

[DCI_FATAL]
The called DCI routine could not complete due to input argument or system errors and
any associated DCIReturn may be incomplete and should not be referenced.

[DCI_INFORMATIONAL]
Summary status for the case where at least 1 returned individual status was
informational and there were no individual error or warning status values returned.

[DCI_INITIALIZED]
The DCI subsystem is already initialised.

[DCI_INSTANCEEXISTS]
This instance could not be added because it already exists.

[DCI_INSTANCEADDED]
The specified instance has been added to the wildcarded set of instances previously
opened since the last time this set of instances was expanded. This status is transient
and is not returned the next time the expanded set is expanded into this instance.

[DCI_INSTANCENOTPERSISTENT]
The parent class is not persistent and the associated DCIInstAttr specifies persistence.

[DCI_INTERRUPTED]
This call was interrupted by a signal and did not complete. It is implementation
defined whether partial results are provided. If partial results are provided, the
application may need to amend the request list to avoid duplicating completed
requests.

[DCI_INVALIDARG]
One or more of the input arguments to the DCI routine were malformed.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 77

Routine Status Values DCI Routines Overview

[DCI_INVALIDDATA]
An attempt was made to retrieve (or set) a metric that is invalid for this particular class
instance.

[DCI_INVALIDDATAPRESENT]
The associated class of data referenced contains at least one invalid metric. Each metric
must be examined before use.

[DCI_INVALIDFIELD]
One or more of the associated argument structures contained an invalid field
specification.

[DCI_INVALIDMETHODOP]
The method operation specified is not a valid operation.

[DCI_METHODERROR]
An error has occurred in the method invoked to retrieve or set the requested metric.

[DCI_METHODOPNOTSUPPORTED]
The method operation may not be specified in conjunction with this method type.

[DCI_METHODTYPEUNAVAILABLE]
The specified method ‘‘type’’ member is one of those documented in this specification,
but which is not available on this platform. Only DCI_WAIT is guaranteed to be
available on all implementations.

[DCI_NOACCESS]
The calling process does not have permission to retrieve information about the
requested metric or to initialise a connection to the DCI server.

[DCI_NOCLASS]
The requested metric class identifier is not present in the name space.

[DCI_NODATUMID]
The specified datumIddoes not exist.

[DCI_NOIMPLEMENTATION]
In a DCI subset implementation, the specified routine has not been implemented.

[DCI_NOINSTANCE]
There is no such instance identifier in the name space.

[DCI_NOMETRIC]
There is no such metric identifier in the name space.

[DCI_NOSPACE]
The provided buffer is too small for the return structure.

[DCI_NOSUCHTRANSACTION]
The specified transactionId is either invalid or the associated transaction was cancelled.

[DCI_NOTENABLED]
The requested metric is currently not enabled by its provider.

[DCI_NOTEXT]
No label has been specified with metric.

[DCI_NOTEVENTMETRIC]
An event metric was required and the requested metric identifier was not for such a
metric type.

[DCI_NOTINITIALIZED]
The DCI subsystem is not currently initialised.

[DCI_NOTPOLLEDMETRIC]
A polled metric was required and the requested metric identifier was not for such a
metric type.

[DCI_NOTPRESENT]
The DCI service is not available.

[DCI_NOTQUERYABLE]
The associated metric does not support being queried.

78 CAE Specification

DCI Routines Overview Routine Status Values

[DCI_NOTRESERVABLE]
The associated metric does not support being reserved.

[DCI_NOTRESERVED]
The associated metric could not be released because it was not already reserved.

[DCI_NOTSETTABLE]
The associated metric does not support being set.

[DCI_NOWILDCARD]
A wildcard cannot be used in this context.

[DCI_RESERVED]
The associated metric is already reserved by another consumer.

[DCI_SUBSETUNSUPPORTED]
One or more of the specified DCI API subsets are not supported by the DCI Server.

[DCI_SUCCESS]
The specified request was free of errors, warnings or informational return status.

[DCI_SYSERROR]
An internal error has occurred (such as a shortage of resources) that may be beyond the
control of the application. A vendor-specific error code is placed in the variable errno.

[DCI_TIMEOUT]
The associated metric could not be expanded or referenced during the specified
timeout period. This may be because the affiliated provider could not be contacted, or
because the reference was never attempted due to an existing timeout condition in the
input request list.

[DCI_WARNING]
Summary status for the case where at least 1 returned individual status was a warning
and there were no individual error status values returned.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 79

DCI Routines Overview

80 CAE Specification

Chapter 5

Metrics Consumer Routines

This Chapter describes the interfaces used by metrics consumers.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 81

dciAddHandleMetric() Metrics Consumer Routines

NAME
dciAddHandleMetric - adds metrics to an open handle

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciAddHandleMetric(
DCIHandle handle, /* in */
DCIMetricId *metricIdList, /* in */
UMAUint4 numIds, /* in */
DCIReturn **bufferAddress, /* in/out */
UMAUint4 bufferSize, /* in */
UMATimeVal *timeout /* in */

);

ARGUMENTS

handle A handle returned from dciOpen() that has not been subsequently closed.

metricIdList Address of a list of metric identifiers.

numIds The number of input metric identifiers.

bufferAddress Points to the address of a return status buffer.

bufferSize The size of the return status buffer.

timeout Pointer to a UMATimeVal structure that specifies the maximum time to wait
for this request to complete. When timeout is NULL, dciAddHandleMetric()
blocks indefinitely.

DESCRIPTION
The dciAddHandleMetric() adds additional metrics to an open handle. Added metrics will be
subject to the same buffering policies that are currently in use in the open handle.

The timeout parameter points to a type UMATimeVal structure that specifies the maximum time
to wait for the completion of the dciAddHandleMetric() call. If the timeout has expired before the
call completes, then one or more of the DCIRetval structures associated with the expanded
metrics will show a DCI_TIMEOUT status. If the timeout parameter is NULL, then this call is not
subject to a timeout. This call can be interrupted by a delivered signal; in this case, the
DCIStatus returned for the call is DCI_INTERRUPTED and it is implementation defined
whether any partial results are delivered.

If the return buffer address, bufferAddress, is zero when dciAddHandleMetric() is called, then
dciAddHandleMetric() allocates the return buffer on behalf of the caller and returns the buffer
address in bufferAddress. The caller is then responsible for subsequently freeing the allocated
memory using dciFree().

RETURN VALUES
The dciAddHandleMetric() routine returns [DCI_SUCCESS] if the DCIReturn structure was
written into the output buffer. Otherwise, dciAddHandleMetric() returns one of the following
fatal errors:

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_NOTINITIALIZED] The DCI subsystem is not currently initialised.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

82 CAE Specification

Metrics Consumer Routines dciAddHandleMetric()

[DCI_NOSPACE] The provided buffer is too small for the return structure. The
size field of the DCIReturn structure indicates the buffer size
which would have held all the associated return values. If the
count field of the DCIReturn structure is nonzero, then partial
data was written to the buffer.

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error
(for example, on a dciGetData() call). It is also implementation
defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined
to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

[DCI_ALLOCATIONFAILURE] The DCI library could not allocate the memory for the return
buffer. The application could attempt to allocate its own
memory and try the request again.

[DCI_BADHANDLE] The handle provided is not currently open.

[DCI_INVALIDARG] One of the input arguments is invalid: a negative value was
used for numIds, bufferSize is smaller than the size of a
DCIReturn structure, or metricIdList was malformed.

[DCI_INTERRUPTED] This call was interrupted by a signal and did not complete. It
is implementation defined whether partial results are
provided. If partial results are provided, the application may
need to amend the request list to avoid duplicating completed
requests.

The summary status of all individual DCIRetval structure status members is stored in the
DCIReturn structure status member. This summary status represents the highest severity of
status returned among all DCIRetval structures.

[DCI_FAILURE] There was at least one failure status.

[DCI_WARNING] There was at least one warning status and no failure status.

[DCI_INFORMATIONAL] There was at least one information status and no failure or
warning status.

[DCI_SUCCESS] All status returned was successful.

For each DCIRetval structure returned, the status member may contain the following:

[DCI_SUCCESS] The request succeeded and there may be associated data.

[DCI_NOCLASS] The requested metric class identifier is not present in the name
space.

[DCI_NODATUMID] The associated metricId specified a nonexistent datumId for
the specified class.

[DCI_NOINSTANCE] One or more requested instance identifiers are not present in
the name space.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 83

dciAddHandleMetric() Metrics Consumer Routines

[DCI_NOACCESS] The caller does not have permission to find out if a requested
instance identifier exists or does not have access to a metric
identifier.

[DCI_NOTQUERYABLE] The specified metric identifier could not be accessed.

[DCI_TIMEOUT] The associated metric could not be expanded or referenced
during the specified timeout period. This may be because the
affiliated provider could not be contacted, or because the
reference was never attempted due to an existing timeout
condition in the input request list.

84 CAE Specification

Metrics Consumer Routines dciAlloc()

NAME
dciAlloc - allocate memory which can be destroyed with dciFree

SYNOPSIS
#include <sys/dci.h>

void *dciAlloc(
UMAUint4 size /* in */

);

ARGUMENTS

size size in bytes of memory to be allocated.

DESCRIPTION
dciAlloc() will create a memory object of at least the size specified. The memory returned by this
call must be deallocated using dciFree(), and is indistinguishable from memory allocated by the
DCI server on behalf of the caller.

If dciAlloc() is issued with a size of 0 bytes, of if the data could not be returned, a (void *)0 is
returned.

RETURN VALUES
dciAlloc() will either return the address of a memory object of the proper size, or a (void *)0 to
indicate failure. No other error returns are specified.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 85

dciClose() Metrics Consumer Routines

NAME
dciClose - close a metrics list

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciClose(
DCIHandle handle /* in */

);

ARGUMENTS

handle Handle that was returned from a prior dciOpen() call.

DESCRIPTION
The dciClose() routine is the counterpart of dciOpen(). It closes the handle that is associated with
a list of metrics. Subsequent attempts to use the closed handle in any DCI call will fail.

dciClose() will flush any events pending on the handle. If the consumer wishes to capture these
events, then a dciWaitEvent() should be issued prior to the call to dciClose().

RETURN VALUES
The dciClose() routine returns [DCI_SUCCESS] if the handle was open. Otherwise, this routine
returns one of the following error values:

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_NOTINITIALIZED] The DCI subsystem is not currently initialised.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

[DCI_BADHANDLE] The handle provided is not currently open.

86 CAE Specification

Metrics Consumer Routines dciConfigure()

NAME
dciConfigure - send configuration information to provider

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciConfigure(
DCIHandle handle, /* in */
DCIMetricId *metricIdList, /* in */
DCIConfig *configList, /* in */
UMAUint4 numIds, /* in */
DCIReturn **bufferAddress, /* in/out */
UMAUint4 bufferSize, /* in */
UMATimeVal *timeout /* in */

);

ARGUMENTS

handle Handle that was returned from a prior dciOpen() of metricIdList or a superset
of metricIdlist.

metricIdList Address of a list of DCIMetricId structures.

configList List of DCIConfig structures, one per input DCIMetricId.

numIds The number of DCIMetricId structures in metricIdList. It is also the number of
DCIConfig structures in configList.

bufferAddress Points to the address of a return value buffer.

bufferSize The size of the return buffer.

timeout Pointer to a UMATimeVal structure that specifies the maximum time to wait
for this request to complete. When timeout is NULL, dciConfigure() blocks
indefinitely.

DESCRIPTION
The dciConfigure() routine provides a communication channel between the consumer and its
metrics providers. A metrics consumer can send a DCIConfig structure to the providers that
deliver the metrics in metricIdList. Each DCIConfig structure in the configList corresponds to a
DCIMetricId structure in the metricIdList. A handle for the metricIdList must be provided.

The metricIdList supports two special identifiers in the dciConfigure() call. A zero length instance
identifier means ‘‘all current and future instances’’ of the given class(es). A datum identifier with
the value DCI_ALL means "all current data" of the given class(es). By combining these two
special identifiers, the requested operation is effectively performed on the given class(es).

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 87

dciConfigure() Metrics Consumer Routines

The DCIConfig structure allows consumers to ask providers to enable or disable metrics, to set
buffer policies in the DCI Server, and to transmit provider specific information in an opaque
wrapper provided by the DCIConfig structure. This wrapper is given by the following structure:

typedef struct DCIConfig {
UMAUint4 size; /* total structure size, in bytes */
UMAUint4 flags; /* configuration request */
UMAElementDescr configData; /* descriptor for the */

/* auxiliary config info */
UMAVarLenData data; /* auxiliary config data start here */

} DCIConfig;

The bits in the lower half of the flags field are reserved for the DCI interface and those in the
upper half can be locally defined. The following flags are defined:

DCI_ENABLE
DCI_DISABLE
DCI_BUFFER_EVENTS_DISCARD
DCI_BUFFER_EVENTS_OVERWRITE
DCI_BUFFER_EVENTS_SETSIZE
DCI_BUFFER_EVENTS_GETSIZE
DCI_BUFFER_EVENTS_GETPOLICY
DCI_CONFIGURATION

DCI_ENABLE and DCI_DISABLE are administrative commands that instruct the DCI Server to
force an entire class (and its corresponding metrics) to be turned on or off. No reference counts
are implied; a DCI_ENABLE, or DCI_DISABLE request is performed without regard to any other
ongoing consumer activity relating to the specified metrics. If a class is disabled, the DCI Server
refuses requests for any metric in that class. This operation is typically restricted to
administrators (however that may be enforced). These two flags are mutually exclusive.

DCI_BUFFER_EVENTS_DISCARD and DCI_BUFFER_EVENTS_OVERWRITE instruct the DCI
Server of the type of buffering policy to use for its internal event buffer.
DCI_BUFFER_EVENTS_DISCARD instructs the DCI Server to drop new events when the
internal event buffer is full. DCI_BUFFER_EVENTS_OVERWRITE instructs the DCI Server to
overwrite the oldest event(s) in the buffer when a new event arrives and the buffer is full. The
internal buffer is only of importance when a consumer does not have any outstanding
dciWaitEvent() requests for a particular handle. The corresponding metric identifier is ignored
for this request. These two flags are mutually exclusive.

DCI_BUFFER_EVENTS_SETSIZE and DCI_BUFFER_EVENTS_GETSIZE set and retrieve the size
of the DCI Server internal event buffer, respectively. The size is encoded as a UMAUint4 in the
data field of the DCIConfig structure, with the UMAElementDescr filled out accordingly. The
corresponding metric identifier is ignored for this request. These two flags are mutually
exclusive.

DCI_BUFFER_EVENTS_GETPOLICY retrieves the current buffering policy from the DCI Server
for this handle. The corresponding metric identifier is ignored for this request. The actual policy
is returned as the corresponding bitflag in the flags field of the DCIConfig structure.

DCI_CONFIGURATION requests the current configuration of the class or class instances
indicated in the metricIdList. Datum identifiers are ignored by this request. The actual
configuration information is returned in the DCIConfig structure. Currently, the following flags
are supported:

DCI_ENABLE DCI Server allows requests

88 CAE Specification

Metrics Consumer Routines dciConfigure()

DCI_DISABLE DCI Server disallows requests

Any other configuration information can be encoded in the upper two words of the flags field
and the opaque data section of the DCIConfig structure. This information is provider specific
and is not part of the DCI specification.

For all the above requests the dciConfigure() routine returns a per-metric status, if appropriate, in
the return buffer using the standard DCIReturn structure.

If the return buffer address, bufferAddress, is zero when dciConfigure() is called, then
dciConfigure() allocates the return buffer on behalf of the caller and returns the buffer address in
bufferAddress. The caller is then responsible for subsequently freeing the allocated memory using
dciFree().

The timeout parameter points to a type UMATimeVal structure that specifies the maximum time
to wait for the completion of the dciConfigure() call. If the timeout has expired before the call
completes, then one or more of the DCIRetval structures associated with the expanded metrics
will show a DCI_TIMEOUT status. If the timeout parameter is NULL, then this call is not subject
to a timeout. This call can be interrupted by a delivered signal; in this case, the DCIStatus
returned for the call is DCI_INTERRUPTED and it is implementation defined whether any
partial results are delivered.

RETURN VALUES
The dciConfigure() routine returns [DCI_SUCCESS] if the DCIReturn structure was written into
the output buffer. Otherwise, dciConfigure() returns one of the following fatal errors:

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_NOTINITIALIZED] The DCI subsystem is not currently initialised.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

[DCI_NOSPACE] The provided buffer is too small for the return structure. The
size field of the DCIReturn structure indicates the buffer size
which would have held all the associated return values. If the
count field of the DCIReturn structure is nonzero, then partial
data was written to the buffer.

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error
(for example, on a dciGetData() call). It is also implementation
defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined
to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

[DCI_ALLOCATIONFAILURE] The DCI library could not allocate the memory for the return
buffer. The application could attempt to allocate its own
memory and try the request again.

[DCI_BADHANDLE] The handle provided is not currently open.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 89

dciConfigure() Metrics Consumer Routines

[DCI_INVALIDARG] One of the input arguments is invalid: a negative value was
used for numIds, bufferSize is smaller than the size of a
DCIReturn structure, the metricIdList was malformed,
metricIdList and classIdList are NULL, metricIdList and
classIdlist are both non-NULL.

[DCI_INTERRUPTED] This call was interrupted by a signal and did not complete. It
is implementation defined whether partial results are
provided. If partial results are provided, the application may
need to amend the request list to avoid duplicating completed
requests.

The summary status of all individual DCIRetval structure status members is stored in the
DCIReturn structure status member. This summary status represents the highest severity of
status returned among all DCIRetval structures.

[DCI_FAILURE] There was at least one failure status.

[DCI_WARNING] There was at least one warning status and no failure status.

[DCI_INFORMATIONAL] There was at least one information status and no failure or
warning status.

[DCI_SUCCESS] All status returned was successful.

For each DCIRetval structure returned, the status member may contain the following:

[DCI_SUCCESS] The request succeeded and there may be associated data.

[DCI_NOACCESS] The caller does not have permission to find out if a requested
instance identifier exists or does not have access to a metric
identifier.

[DCI_NOCLASS] The requested metric class identifier is not present in the name
space.

[DCI_NOINSTANCE] The requested instance identifier is not in the name space.

[DCI_CLASSES_CHANGED] This new class has been added within the scope of a
wildcarded class request.

[DCI_INSTANCES_CHANGED] This new instance has been added within the scope of a
wildcarded instance request.

[DCI_TIMEOUT] The associated metric could not be expanded or referenced
during the specified timeout period. This may be because the
affiliated provider could not be contacted, or because the
reference was never attempted due to an existing timeout
condition in the input request list.

[DCI_INTERRUPTED] The dciConfigure() call was interrupted by a signal and did not
complete.

[DCI_NOTENABLED] The associated metric is currently not enabled by its provider.

90 CAE Specification

Metrics Consumer Routines dciFree()

NAME
dciFree - release memory allocated by the DCI

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciFree(
void *ptr /* in */

);

ARGUMENTS

ptr The address of memory allocated by the DCI on behalf of the caller.

DESCRIPTION
Several DCI routines have a calling sequence which allows the DCI application to provide a
memory buffer or ask that the DCI itself allocated a suitably sized memory buffer. In either case,
it is the obligation of the program to eventually return the memory to the appropriate allocation
pool. If the DCI has successfully allocated the memory for the caller, then the caller must call
dciFree() in order for that memory to be released. Note that even if a DCI call has failed, any
memory allocated by the DCI must be freed by the caller using dciFree().

If the argument to dciFree() is NULL, then dciFree() immediately returns.

dciFree() should not be called following a dciTerminate() call.

RETURN VALUES
dciFree() may not check its input arguments for consistency and may return no error based on its
argument.

The following errors may be returned:

[DCI_NOTINITIALIZED] The DCI subsystem is not currently initialised.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 91

dciGetClassAttributes() Metrics Consumer Routines

NAME
dciGetClassAttributes - acquire metric class attributes

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciGetClassAttributes(
DCIHandle handle, /* in */
DCIClassId *classIdList, /* in */
UMAUint4 numIds, /* in */
DCIReturn **bufferAddress, /* in/out */
UMAUint4 bufferSize /* in */

);

ARGUMENTS

handle Handle that was returned from a prior dciOpen() of classIdList or a superset of
classIdlist.

classIdList Address of a list of DCIClassId structures.

numIds The number of DCIClassId structures in classIdList.

bufferAddress Points to the address of a return value buffer.

bufferSize The size of the return buffer.

DESCRIPTION
The dciGetClassAttributes() routine is used to retrieve the attribute structures for a list of metric
classes. The metric class identifiers can be optionally wildcarded. An optional handle may be
provided for the classIdList: if the handle is valid and if classIdList contains wildcarded classes,
then all metric classes of classIdList are confirmed to be a subset of the opened metric classes
represented by handle and any newly registered classes is marked with a special informational
status, DCI_CLASSES_CHANGED, in the associated DCIRetval structure. The classIdList is a
subset of the opened metrics associated with handle. If the handle provided is 0 then no such
confirmation or informational status is provided.

The dciGetClassAttributes() routine expands any metric class wildcards appearing in classIdList
and determines if each expanded metric class is currently registered in the metrics name space.
For each expanded metric class, a DCIRetval reply is created in the DCIReturn structure. The
metricOffset member of each DCIRetval references the expanded DCIClassId structure and, if
available, the dataOffset member references a DCIClassAttribute for the associated, registered
metric class.

If the return buffer address, bufferAddress, is zero when dciGetClassAttributes() is called, then
dciGetClassAttributes() allocates the return buffer on behalf of the caller and returns the buffer
address in bufferAddress. The caller is then responsible for subsequently freeing the allocated
memory using dciFree().

RETURN VALUES
The dciGetClassAttributes() routine returns [DCI_SUCCESS] if the DCIReturn structure could be
written. Otherwise, dciGetClassAttributes() returns one of the following fatal errors:

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_NOTINITIALIZED] The DCI subsystem is not currently initialised.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.

92 CAE Specification

Metrics Consumer Routines dciGetClassAttributes()

A vendor-specific error code is placed in the variable errno.

[DCI_NOSPACE] The provided buffer is too small for the return structure. The
size field of the DCIReturn structure indicates the buffer size
which would have held all the associated return values. If the
count field of the DCIReturn structure is nonzero, then partial
data was written to the buffer.

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error
(for example, on a dciGetData() call). It is also implementation
defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined
to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

[DCI_ALLOCATIONFAILURE] The DCI library could not allocate the memory for the return
buffer. The application could attempt to allocate its own
memory and try the request again.

[DCI_BADHANDLE] The handle provided is not currently open.

[DCI_INVALIDARG] One of the input arguments is invalid: a negative value was
used for numIds, bufferSize is smaller than the size of a
DCIReturn structure, or classIdList was malformed.

The summary status of all individual DCIRetval structure status members is stored in the
DCIReturn structure status member. This summary status represents the highest severity of
status returned among all DCIRetval structures.

[DCI_FAILURE] There was at least one failure status.

[DCI_WARNING] There was at least one warning status and no failure status.

[DCI_INFORMATIONAL] There was at least one information status and no failure or
warning status.

[DCI_SUCCESS] All status returned was successful.

For each DCIRetval structure returned, the status member may contain the following:

[DCI_SUCCESS] The request succeeded and there may be associated data.

[DCI_NOACCESS] The caller does not have permission to find out if a requested
instance identifier exists or does not have access to a metric
identifier.

[DCI_NOCLASS] The requested metric class identifier is not present in the name
space.

[DCI_CLASSES_CHANGED] This new class has been added within the scope of a
wildcarded class request.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 93

dciGetData() Metrics Consumer Routines

NAME
dciGetData - get polled metric data

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciGetData(
DCIHandle handle, /* in */
DCIMetricId *metricIdList, /* in */
UMAUint4 numIds, /* in */
DCIReturn **bufferAddress, /* in/out */
UMAUint4 bufferSize, /* in */
void **dataAddress, /* in/out */
UMAUint4 *dataSize, /* in/out */
UMATimeVal *timeout /* in */

);

ARGUMENTS

handle Handle that was returned from a prior dciOpen() of metricIdList or a superset
of metricIdlist.

metricIdList Address of a list of DCIMetricId structures.

numIds The number of DCIMetricId structures in metricIdList.

bufferAddress Points to the address of a return status buffer.

bufferSize The size of the return status buffer.

dataAddress Points to the address of an optional return data buffer.

dataSize Address of the size of the optional return data buffer.

timeout Pointer to a UMATimeVal structure that specifies the maximum time to wait
for this request to complete. When timeout is NULL, dciGetData() blocks
indefinitely.

DESCRIPTION
The dciGetData() routine is used to acquire polled metrics data. dciGetData() expands any metric
class and metric instance wildcards appearing in metricIdList and determines if each expanded
metric class is currently registered in the metrics name space (and represents a subset of the
metrics represented by the handle) and if each expanded instance is also registered. For each
expanded metric identifier, a DCIRetval reply is created in the DCIReturn structure stored in the
return buffer pointed to by *bufferAddress. The metricOffset member of each DCIRetval specifies a
location relative to *bufferAddress and references the expanded DCIMetricId structure. The
dataOffset member of each DCIRetval specifies a location relative the dataAddress argument (if
the contents of dataAddress is 0, then the library allocates a buffer on behalf of the application) if
split data and return information is specified. If split data and return information is not
specified, then dataOffset is considered relative to bufferAddress. In either case, dataOffset refers to
the requested data returned.

Note that the dciGetData() routine can optionally separate the data and status return buffers.
This allows applications in a polled data acquisition loop to archive successfully acquired data
and discard the status structure. To indicate that this separation is desired, the application must
provide a non-NULL dataAddress argument. If applications separate the buffers, then the size of
the data buffer is returned at the dataSize address and the size field of the DCIReturn structure is
the size of the structure written to bufferAddress.

94 CAE Specification

Metrics Consumer Routines dciGetData()

If the return buffer address, bufferAddress, is zero when dciGetData() is called, then dciGetData()
allocates the return buffer on behalf of the caller and returns the buffer address in bufferAddress.
The caller is then responsible for subsequently freeing the allocated memory using dciFree().

dciGetData() accepts both class and instance level wildcards. If wildcards are provided, then
informational status indicates whether a new class or instance has been added since the last such
DCI routine was issued. The datumId may specify a single data item to be retrieved or, if the
value of datumId is DCI_ALL then an entire class worth of data is returned. The application
references the appropriate DCIClassAttr structures to determine that size and type of each piece
of data, and in the case of the wildcarded datumId, the offset of each piece of data within the
whole class of data returned. When the whole class of data is returned, variable length data
values (such as those with UMADataType of UMA_TEXTSTRING) are handled specially; in this
case, the data retrieved from the specified offset is itself an offset to the actual data. This is
necessary to ensure that all data can be obtained from fixed offsets when the whole class is
returned. The indirection for variable length data is not needed when datumId in not wildcarded.

The timeout parameter points to a type UMATimeVal structure that specifies the maximum time
to wait for the completion of the dciGetData() call. If the timeout has expired before the call
completes, then one or more of the DCIRetval structures associated with the expanded metrics
will show a DCI_TIMEOUT status. If the timeout parameter is NULL, then this call is not subject
to a timeout. This call can be interrupted by a delivered signal; in this case, the DCIStatus
returned for the call is DCI_INTERRUPTED and it is implementation defined whether any
partial results are delivered.

RETURN VALUES
The dciGetData() routine returns [DCI_SUCCESS] if the DCIReturn structure was written into
the output buffer and the data was written to the data buffer. Otherwise, dciGetData() returns
one of the following fatal errors:

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_NOTINITIALIZED] The DCI subsystem is not currently initialised.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

[DCI_NOSPACE] The provided buffer is too small for the return structure. The
size field of the DCIReturn structure indicates the buffer size
which would have held all the associated return values. If the
count field of the DCIReturn structure is nonzero, then partial
data was written to the buffer.

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error
(for example, on a dciGetData() call). It is also implementation
defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined
to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

[DCI_ALLOCATIONFAILURE] The DCI library could not allocate the memory for the return
buffer. The application could attempt to allocate its own
memory and try the request again.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 95

dciGetData() Metrics Consumer Routines

[DCI_BADHANDLE] The handle provided is not currently open.

[DCI_INVALIDARG] One of the input arguments is invalid: a negative value was
used for numIds, bufferSize is smaller than the size of a
DCIReturn structure, metricIdList was malformed, timeout was
malformed or the address of dataSize was not provided and
dataAddress was specified and set to a NULL.

[DCI_INTERRUPTED] This call was interrupted by a signal and did not complete. It
is implementation defined whether partial results are
provided. If partial results are provided, the application may
need to amend the request list to avoid duplicating completed
requests.

The summary status of all individual DCIRetval structure status members is stored in the
DCIReturn structure status member. This summary status represents the highest severity of
status returned among all DCIRetval structures.

[DCI_FAILURE] There was at least one failure status.

[DCI_WARNING] There was at least one warning status and no failure status.

[DCI_INFORMATIONAL] There was at least one information status and no failure or
warning status.

[DCI_SUCCESS] All status returned was successful.

For each DCIRetval structure returned, the status member may contain the following:

[DCI_SUCCESS] The request succeeded and there may be associated data.

[DCI_NOACCESS] The caller does not have permission to find out if a requested
instance identifier exists or does not have access to a metric
identifier.

[DCI_NOCLASS] The requested metric class identifier is not present in the name
space.

[DCI_NOINSTANCE] The requested instance identifier is not in the name space.

[DCI_NODATUMID] The associated metricId specified a nonexistent datumId for
the specified class.

[DCI_CLASSES_CHANGED] This new class has been added within the scope of a
wildcarded class request.

[DCI_INSTANCES_CHANGED] This new instance has been added within the scope of a
wildcarded instance request.

[DCI_NOT_POLLEDMETRIC] The associated metricId specified a datumId which does not
correspond with a polled metric.

[DCI_TIMEOUT] The associated metric could not be expanded or referenced
during the specified timeout period. This may be because the
affiliated provider could not be contacted, or because the
reference was never attempted due to an existing timeout
condition in the input request list.

[DCI_NOTENABLED] The associated metric is currently not enabled by its provider.

[DCI_INVALIDDATA] The specified metric for the associated instance could not be
returned because it is not valid.

96 CAE Specification

Metrics Consumer Routines dciGetData()

[DCI_INVALIDDATAPRESENT] The associated class of data referenced contains at least one
invalid metric. Each metric must be examined before use.

[DCI_DERIVEDDATA] An attempt was made to retrieve the value for a metric whose
type is DCI_DERIVED.

[DCI_NOTQUERYABLE] The specified metric identifier could not be accessed.

[DCI_METHODERROR] The DCI Server has encountered an error in the method
invoked to satisfy the request for the selected metric.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 97

dciGetInstAttributes() Metrics Consumer Routines

NAME
dciGetInstAttributes - acquire metric instance attributes

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciGetInstAttributes(
DCIHandle handle, /* in */
DCIMetricId *metricIdList, /* in */
UMAUint4 numIds, /* in */
DCIReturn **bufferAddress, /* in/out */
UMAUint4 bufferSize, /* in */
UMATimeVal *timeout /* in */

);

ARGUMENTS

handle Handle that was returned from a prior dciOpen() of metricIdList or a superset
of metricIdlist.

metricIdList Address of a list of DCIMetricId structures.

numIds The number of DCIMetricId structures in metricIdList.

bufferAddress Points to the address of a return value buffer.

bufferSize The size of the return buffer.

timeout Pointer to a UMATimeVal structure that specifies the maximum time to wait
for this request to complete. When timeout is NULL, dciGetInstAttributes()
blocks indefinitely.

DESCRIPTION
The dciGetInstAttributes() routine is used to retrieve the attribute structures for a list of instances.
The metric identifiers can be optionally wildcarded for both class or instance. The datumId field
of the DCIMetricId is ignored. An optional handle may be provided for the metricIdList: if the
handle is valid and if metricIdList contains wildcarded classes, then all metric classes of
metricIdList are confirmed to be a subset of the opened metric classes represented by handle and
any newly registered classes is marked with a special informational status,
DCI_CLASSES_CHANGED, in the associated DCIRetval structure. Similarly, if there are instance
wildcards and a valid handle, then each expanded instance is confirmed to be within a subset of
metric identifiers represented by the handle and any newly added instances is marked with a
special informational status, DCI_INSTANCES_CHANGES. If the handle provided is 0 then no
such confirmation or informational status is provided.

dciGetInstAttributes() expands any metric class and metric instance wildcards appearing in
metricIdList and determines if each expanded metric class is currently registered in the metrics
name space and if each expanded instance is also registered. For each expanded metric identifier
a DCIRetval reply is created in the DCIReturn structure stored in the return buffer. The
metricOffset member of each DCIRetval references the fully expanded DCIMetricId structure.
The dataOffset member of each DCIRetval is set to an array of DCIInstAttr structures. The number
of elements in this returned DCIInstAttr array is stored in the count member of the DCIRetval
structure.

The timeout parameter points to a type UMATimeVal structure that specifies the maximum time
to wait for the completion of the dciGetInstAttributes() call. If the timeout has expired before the
call completes, then one or more of the DCIRetval structures associated with the expanded
metrics will show a DCI_TIMEOUT status. If the timeout parameter is NULL, then this call is not

98 CAE Specification

Metrics Consumer Routines dciGetInstAttributes()

subject to a timeout. This call can be interrupted by a delivered signal; in this case, the
DCIStatus returned for the call is DCI_INTERRUPTED and it is implementation defined
whether any partial results are delivered.

If the return buffer address, bufferAddress, is zero when dciGetInstAttributes() is called, then
dciGetInstAttributes() allocates the return buffer on behalf of the caller and returns the buffer
address in bufferAddress. The caller is then responsible for subsequently freeing the allocated
memory using dciFree().

RETURN VALUES
The dciGetInstAttributes() routine returns [DCI_SUCCESS] if the DCIReturn structure was
written into the output buffer. Otherwise, dciGetInstAttributes() returns one of the following fatal
errors:

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_NOTINITIALIZED] The DCI subsystem is not currently initialised.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

[DCI_NOSPACE] The provided buffer is too small for the return structure. The
size field of the DCIReturn structure indicates the buffer size
which would have held all the associated return values. If the
count field of the DCIReturn structure is nonzero, then partial
data was written to the buffer.

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error
(for example, on a dciGetData() call). It is also implementation
defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined
to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

[DCI_ALLOCATIONFAILURE] The DCI library could not allocate the memory for the return
buffer. The application could attempt to allocate its own
memory and try the request again.

[DCI_BADHANDLE] The handle provided is not currently open.

[DCI_INVALIDARG] One of the input arguments is invalid: a negative value was
used for numIds, bufferSize is smaller than the size of a
DCIReturn structure, or metricIdList was malformed.

[DCI_INTERRUPTED] This call was interrupted by a signal and did not complete. It
is implementation defined whether partial results are
provided. If partial results are provided, the application may
need to amend the request list to avoid duplicating completed
requests.

The summary status of all individual DCIRetval structure status members is stored in the
DCIReturn structure status member. This summary status represents the highest severity of
status returned among all DCIRetval structures.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 99

dciGetInstAttributes() Metrics Consumer Routines

[DCI_FAILURE] There was at least one failure status.

[DCI_WARNING] There was at least one warning status and no failure status.

[DCI_INFORMATIONAL] There was at least one information status and no failure or
warning status.

[DCI_SUCCESS] All status returned was successful.

For each DCIRetval structure returned, the status member may contain the following:

[DCI_SUCCESS] The request succeeded and there may be associated data.

[DCI_NOACCESS] The caller does not have permission to find out if a requested
instance identifier exists or does not have access to a metric
identifier.

[DCI_NOCLASS] The requested metric class identifier is not present in the name
space.

[DCI_NOINSTANCE] The requested instance identifier is not in the name space.

[DCI_CLASSES_CHANGED] This new class has been added within the scope of a
wildcarded class request.

[DCI_INSTANCES_CHANGED] This new instance has been added within the scope of a
wildcarded instance request.

[DCI_TIMEOUT] The associated metric could not be expanded or referenced
during the specified timeout period. This may be because the
affiliated provider could not be contacted, or because the
reference was never attempted due to an existing timeout
condition in the input request list.

100 CAE Specification

Metrics Consumer Routines dciInitialize()

NAME
dciInitialize - establish a connection to the Data Capture Interface

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciInitialize(
DCIVersion *request, /* in */
DCIVersion *response /* out */

);

ARGUMENTS

request The structure holding the requested version.

response The structure holding the actual version structure returned by the DCI Server.

DESCRIPTION
dciInitialize() is required for all DCI applications; it establishes a connection with the DCI Server,
performing any implementation specific initialization needed. No other DCI API call may be
successfully issued unless dciInitialize() returns DCI_SUCCESS. Use dciTerminate() to later
disconnect from the DCI Server.

The application can request that the DCI Server provide a connection to the appropriate DCI
API Version number, thus ensuring that all data structures and API semantics for the expected
DCI Version are observed. Unless a fatal error occurs, the current version of the DCI Server and
other information is returned in the response structure. The request argument is optional and may
be replaced with a NULL pointer; in this case, the DCI library will provide a description of the
current API version. The response argument is optional and may be replaced with a NULL
pointer.

The DCIVersion structure is defined as follows:

/*
* DCI version structure.
* This is passed into the dciInitialize() call as a request
* structure. As such, it specifies a request to connect to
* a specific DCI API version. A DCI version structure is
* also passed as an output parameter indicating the level
* of support that this particular DCI implementation
* is actually making available.
*/

typedef struct DCIVersion {
UMAUint4 DCIMajorVersion;
UMAUint4 DCIMinorVersion;
UMAUint4 DCISubsetMask;
UMAUint4 DCIVendorExtensions;

} DCIVersion;

The DCIMajorVersion and DCIMinorVersion fields indicate the specification level of the DCI to
which this implementation corresponds. The DCISubsetMask field is a bitmask indicating which
DCI subsets are implemented; it is formed by "OR"ing the appropriate DCI_SUBSET_* constants
together (see below). The DCIVendorExtensions field is implementation defined, and may be
used to indicate refinements on the implementation level (for example, if a vendor produces
multiple implementations of the DCI, this field can be used to distinguish those
implementations).

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 101

dciInitialize() Metrics Consumer Routines

The DCISubsets structure is a bitmask describing which of the DCI API subsets are present in a
particular implementation. Chapter 4 describes the possible subsets. The corresponding values
for the bitmask are defined as follows:

DCI_SUBSET_BASIC = 0x01
DCI_SUBSET_MULTIPLE_PROVIDERS = 0x02
DCI_SUBSET_ACCESS_CONTROL = 0x04
DCI_SUBSET_EVENT_SUPPORT = 0x08
DCI_SUBSET_SET_CAPABILITY = 0x10

For example, if a consumer MAP is created using DCI API Version 1.0, it can call dciInitialize() as
follows:

DCIVersion_1 wantedDCIversion, receivedDCIversion;
DCIStatus status;

bzero(&wantedDCIversion, sizeof(wantedDCIversion));
wantedDCIversion.DCIMajorVersion = DCI_MAJORVERSION;
wantedDCIversion.DCIMinorVersion = DCI_MINORVERSION;
wantedDCIversion.DCISubsetMask = DCI_SUBSET_BASIC;

status = dciInitialize(&wantedDCIversion, &receivedDCIversion);

if (status & DCI_FATAL) {
/* could not make the call */

}
if (status & DCI_FAILURE) {

/* these could be due to version # */
}
if (status == DCI_SUBSETUNSUPPORTED) {

/* the specified subset was not fully supported */
}
if (status & DCI_SUCCESS) {

/*
* check which subsets are enabled or examine the
* vendor specific flags. Cast the response structure
* to the appropriate data structure based on the
* major number returned.
*/

}

RETURN VALUES
The dciInitialize () routine returns [DCI_SUCCESS] if it was able to establish a connection to the
metric provider or consumer. Otherwise, this routine returns one of the following error values:

[DCI_INITIALIZED] The DCI subsystem is already initialised.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

[DCI_NOACCESS] The calling process does not have permission to initialise a
connection to the DCI Server.

[DCI_MAJORUNSUPPORTED] The specified DCI Version major number cannot be provided
by the DCI Server. The DCIMajorVersion field of response

102 CAE Specification

Metrics Consumer Routines dciInitialize()

represents the supported DCI version.

[DCI_MINORUNSUPPORTED] The specified DCI Version major number can be provided, but
the specified minor number could not. The DCIMinorVersion
field of response represents the supported DCI version.

[DCI_SUBSETUNSUPPORTED] One or more of the specified DCI subsets are not available.
The DCISubsetMask in the response represents the fully
supported DCI subsets. A subset can be partially supported,
but dciInitialize() only reports complete support.

[DCI_NOTPRESENT] The DCI service is not available.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 103

dciListClassId() Metrics Consumer Routines

NAME
dciListClassId - look up a list of metric class identifiers in the metrics name space

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciListClassId(
DCIHandle handle, /* in */
DCIClassId *classIdList, /* in */
UMAUint4 numIds, /* in */
DCIReturn **bufferAddress, /* in/out */
UMAUint4 bufferSize /* in */

);

ARGUMENTS

handle The handle returned from dciOpen(). It is optional and if 0, this argument is
ignored.

classIdList Address of a list of DCIClassId structures.

numIds The number of DCIClassId structures in classIdList.

bufferAddress Points to the address of a return value buffer.

bufferSize The size of the return buffer.

DESCRIPTION
The dciListClassId() routine provides a list of registered classes contained in classIdList. The
metric class identifiers can be optionally wildcarded. dciListClassId() expands any metric class
wildcards appearing in classIdList and determines if each expanded metric class is currently
registered in the metrics name space. For each expanded metric class, a DCIRetval reply is
created in the DCIReturn structure. The metricOffset member of each DCIRetval references the
expanded DCIClassId structure. The dataOffset member of each DCIRetval is set to 0.

If the return buffer address, bufferAddress, is zero when dciListClassId() is called, then
dciListClassId() allocates the return buffer on behalf of the caller and returns the buffer address in
bufferAddress. The caller is then responsible for subsequently freeing the allocated memory using
dciFree().

RETURN VALUES
The dciListClassId() routine returns [DCI_SUCCESS] if the DCIReturn structure was written into
the output buffer. Otherwise, dciListClassId() returns one of the following fatal errors:

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_NOTINITIALIZED] The DCI subsystem is not currently initialised.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

[DCI_NOSPACE] The provided buffer is too small for the return structure. The
size field of the DCIReturn structure indicates the buffer size
which would have held all the associated return values. If the
count field of the DCIReturn structure is nonzero, then partial
data was written to the buffer.

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error

104 CAE Specification

Metrics Consumer Routines dciListClassId()

(for example, on a dciGetData() call). It is also implementation
defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined
to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

[DCI_ALLOCATIONFAILURE] The DCI library could not allocate the memory for the return
buffer. The application could attempt to allocate its own
memory and try the request again.

[DCI_BADHANDLE] The handle provided is not currently open.

[DCI_INVALIDARG] One of the input arguments is invalid: a negative value was
used for numIds, bufferSize is smaller than the size of a
DCIReturn structure, or classIdList was malformed.

The summary status of all individual DCIRetval structure status members is stored in the
DCIReturn structure status member. This summary status represents the highest severity of
status returned among all DCIRetval structures.

[DCI_FAILURE] There was at least one failure status.

[DCI_WARNING] There was at least one warning status and no failure status.

[DCI_INFORMATIONAL] There was at least one information status and no failure or
warning status.

[DCI_SUCCESS] All status returned was successful.

For each DCIRetval structure returned, the status member may contain the following:

[DCI_SUCCESS] The request succeeded and there may be associated data.

[DCI_NOACCESS] The caller does not have permission to find out if a requested
instance identifier exists or does not have access to a metric
identifier.

[DCI_NOCLASS] The requested metric class identifier is not present in the name
space.

[DCI_CLASSES_CHANGED] This new class has been added within the scope of a
wildcarded class request.

[DCI_INSTANCES_CHANGED] This new instance has been added within the scope of a
wildcarded instance request.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 105

dciListInstanceId() Metrics Consumer Routines

NAME
dciListInstanceId - look up a list of instance identifiers in the metrics name space

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciListInstanceId(
DCIHandle handle, /* in */
DCIMetricId *metricIdList, /* in */
UMAUint4 numIds, /* in */
DCIReturn **bufferAddress, /* in/out */
UMAUint4 bufferSize, /* in */
UMATimeVal *timeout /* in */

);

ARGUMENTS

handle The handle returned from dciOpen(). It is optional and if 0 this argument is
ignored.

metricIdList Address of a list of DCIMetricId structures.

numIds The number of DCIMetricId structures in metricIdList.

bufferAddress Points to the address of a return value buffer.

bufferSize The size of the return buffer.

timeout Pointer to a UMATimeVal structure that specifies the maximum time to wait
for this request to complete. When timeout is NULL, dciListInstanceId() blocks
indefinitely.

DESCRIPTION
The dciListInstanceId() routine provides a list of valid instances contained in metricIdList. The
metric class identifiers can be optionally wildcarded for both class or instance. The datumId field
of the DCIMetricId is ignored. dciListInstanceId() expands any metric class and metric instance
wildcards appearing in metricIdList and determines if each expanded metric class is currently
registered in the metrics name space and if each expanded instance is also registered. For each
expanded metric identifier, a DCIRetval reply is created in the DCIReturn structure stored in the
return buffer. The metricOffset member of each DCIRetval references the fully expanded
DCIMetricId structure. The dataOffset member of each DCIRetval is set to an array of
DCIMetricId structures for each explicit instance. The number of elements in this returned
DCIMetricId array is stored in the count member of the DCIRetval structure.

The timeout parameter points to a type UMATimeVal structure that specifies the maximum time
to wait for the completion of the dciListInstanceId() call. If the timeout has expired before the call
completes, then one or more of the DCIRetval structures associated with the expanded metrics
will show a DCI_TIMEOUT status. If the timeout parameter is NULL, then this call is not subject
to a timeout. This call can be interrupted by a delivered signal; in this case, the DCIStatus
returned for the call is DCI_INTERRUPTED and it is implementation defined whether any
partial results are delivered.

If the return buffer address, bufferAddress, is zero when dciListInstanceId() is called, then
dciListInstanceId() allocates the return buffer on behalf of the caller and returns the buffer address
in bufferAddress. The caller is then responsible for subsequently freeing the allocated memory
using dciFree().

106 CAE Specification

Metrics Consumer Routines dciListInstanceId()

RETURN VALUES
The dciListInstanceId() routine returns [DCI_SUCCESS] if the DCIReturn structure was written
into the output buffer. Otherwise, dciListInstanceId() returns one of the following fatal errors:

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_NOTINITIALIZED] The DCI subsystem is not currently initialised.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

[DCI_NOSPACE] The provided buffer is too small for the return structure. The
size field of the DCIReturn structure indicates the buffer size
which would have held all the associated return values. If the
count field of the DCIReturn structure is nonzero, then partial
data was written to the buffer.

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error
(for example, on a dciGetData() call). It is also implementation
defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined
to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

[DCI_ALLOCATIONFAILURE] The DCI library could not allocate the memory for the return
buffer. The application could attempt to allocate its own
memory and try the request again.

[DCI_BADHANDLE] The handle provided is not currently open.

[DCI_INVALIDARG] One of the input arguments is invalid: a negative value was
used for numIds, bufferSize is smaller than the size of a
DCIReturn structure, or metricIdList was malformed.

[DCI_INTERRUPTED] This call was interrupted by a signal and did not complete. It
is implementation defined whether partial results are
provided. If partial results are provided, the application may
need to amend the request list to avoid duplicating completed
requests.

The summary status of all individual DCIRetval structure status members is stored in the
DCIReturn structure status member. This summary status represents the highest severity of
status returned among all DCIRetval structures.

[DCI_FAILURE] There was at least one failure status.

[DCI_WARNING] There was at least one warning status and no failure status.

[DCI_INFORMATIONAL] There was at least one information status and no failure or
warning status.

[DCI_SUCCESS] All status returned was successful.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 107

dciListInstanceId() Metrics Consumer Routines

For each DCIRetval structure returned, the status member may contain the following:

[DCI_SUCCESS] The request succeeded and there may be associated data.

[DCI_NOACCESS] The caller does not have permission to find out if a requested
instance identifier exists or does not have access to a metric
identifier.

[DCI_NOCLASS] The requested metric class identifier is not present in the name
space.

[DCI_NOINSTANCE] The requested instance identifier is not in the name space.

[DCI_TIMEOUT] The associated metric could not be expanded or referenced
during the specified timeout period. This may be because the
affiliated provider could not be contacted, or because the
reference was never attempted due to an existing timeout
condition in the input request list.

[DCI_CLASSES_CHANGED] This new class has been added within the scope of a
wildcarded class request.

[DCI_INSTANCES_CHANGED] This new instance has been added within the scope of a
wildcarded instance request.

108 CAE Specification

Metrics Consumer Routines dciOpen()

NAME
dciOpen - open a list of metrics and obtain a handle

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciOpen(
DCIHandle *handle, /* out */
DCIMetricId *metricIdList, /* in */
UMAUint4 numIds, /* in */
DCIReturn **bufferAddress, /* in/out */
UMAUint4 bufferSize, /* in */
UMAUint4 handleFlags, /* in */
UMATimeVal *timeout /* in */

);

ARGUMENTS

handle A pointer to a location to return the handle.

metricIdList Address of a list of metric class identifiers.

numIds The number of input metric identifiers.

bufferAddress Points to the address of a return status buffer.

bufferSize The size of the return status buffer.

handleFlags Bitmapped flags as described below.

timeout Pointer to a UMATimeVal structure that specifies the maximum time to wait
for this request to complete. When timeout is NULL, dciOpen() blocks
indefinitely.

DESCRIPTION
The dciOpen() routine instructs the Data Capture service to perform an access check for every
metric in metricIdList. If successful, a handle is returned which can be used in subsequent
operations to access all or some of the metrics in metricIdList.

Metrics can be dynamically added to or deleted from a handle using dciAddHandleMetric() and
dciRemoveHandleMetric().

The dciOpen() routine also allows the specification of a handle specific buffering scheme for
provider generated events. Event buffering may be desired when a consumer wants to minimise
loss of events that may be generated while it is off doing other work and not blocked in a
dciWaitEvent() call.

handleFlags contains one or more bitmapped flags which may be set to specify a buffering
scheme for event metrics. If no flags are specified, no buffering is performed. The buffering
scheme is on a per handle basis. The initial buffer size is system dependent but is queryable and
settable using dciConfigure().

The following values may be set in handleFlags:

DCI_BUFFER_EVENTS_DISCARD
DCI_BUFFER_EVENTS_OVERWRITE

DCI_BUFFER_EVENTS_DISCARD and DCI_BUFFER_EVENTS_OVERWRITE instruct the DCI
Server of the type of buffering policy to use for its internal event buffer.
DCI_BUFFER_EVENTS_DISCARD instructs the DCI Server to drop new events when the

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 109

dciOpen() Metrics Consumer Routines

internal event buffer is full. DCI_BUFFER_EVENT_OVERWRITE instructs the DCI Server to
overwrite the oldest event(s) in the buffer when a new event arrives and the buffer is full. The
internal buffer is only of importance when a consumer does not have any outstanding
dciWaitEvent() requests for a particular handle. The corresponding metric identifier is ignored
for this request. These two flags are mutually exclusive.

The timeout parameter points to a type UMATimeVal structure that specifies the maximum time
to wait for the completion of the dciOpen() call. If the timeout has expired before the call
completes, then one or more of the DCIRetval structures associated with the expanded metrics
will show a DCI_TIMEOUT status. If the timeout parameter is NULL, then this call is not subject
to a timeout. This call can be interrupted by a delivered signal; in this case, the DCIStatus
returned for the call is DCI_INTERRUPTED and it is implementation defined whether any
partial results are delivered.

If the return buffer address, bufferAddress, is zero when dciOpen() is called, then dciOpen()
allocates the return buffer on behalf of the caller and returns the buffer address in bufferAddress.
The caller is then responsible for subsequently freeing the allocated memory using dciFree().

RETURN VALUES
The dciOpen() routine returns [DCI_SUCCESS] if the DCIReturn structure was written into the
output buffer. Otherwise, dciOpen() returns one of the following fatal errors:

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_NOTINITIALIZED] The DCI subsystem is not currently initialised.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

[DCI_NOSPACE] The provided buffer is too small for the return structure. The
size field of the DCIReturn structure indicates the buffer size
which would have held all the associated return values. If the
count field of the DCIReturn structure is nonzero, then partial
data was written to the buffer.

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error
(for example, on a dciGetData() call). It is also implementation
defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined
to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

[DCI_ALLOCATIONFAILURE] The DCI library could not allocate the memory for the return
buffer. The application could attempt to allocate its own
memory and try the request again.

[DCI_BADHANDLE] The handle provided is not currently open.

[DCI_INVALIDARG] One of the input arguments is invalid: a negative value was
used for numIds, bufferSize is smaller than the size of a
DCIReturn structure, or metricIdList was malformed.

[DCI_BADFLAGS] Two or more mutually exclusive flags were used together.

110 CAE Specification

Metrics Consumer Routines dciOpen()

[DCI_INTERRUPTED] This call was interrupted by a signal and did not complete. It
is implementation defined whether partial results are
provided. If partial results are provided, the application may
need to amend the request list to avoid duplicating completed
requests.

The summary status of all individual DCIRetval structure status members is stored in the
DCIReturn structure status member. This summary status represents the highest severity of
status returned among all DCIRetval structures.

[DCI_FAILURE] There was at least one failure status.

[DCI_WARNING] There was at least one warning status and no failure status.

[DCI_INFORMATIONAL] There was at least one information status and no failure or
warning status.

[DCI_SUCCESS] All status returned was successful.

For each DCIRetval structure returned, the status member may contain the following:

[DCI_SUCCESS] The request succeeded and there may be associated data.

[DCI_EVENTSUPPORT] The consumer has attempted to open an event metric with
format and content requirements beyond those supported by
the registering provider. The provider will form the
conjunction ("and") of the provided bit map with the
registered bit map to determine the format and content of
event data for this event metric.

[DCI_NOCLASS] No requested metric class identifier is present in the name
space.

[DCI_NODATUMID] The associated metricId specified a nonexistent datumId for
the specified class.

[DCI_NOINSTANCE] No requested instance identifier is present in the name space.

[DCI_NOACCESS] There was an access permission failure for at least one
request.

[DCI_TIMEOUT] The associated metric could not be expanded or referenced
during the specified timeout period. This may be because the
affiliated provider could not be contacted, or because the
reference was never attempted due to an existing timeout
condition in the input request list.

[DCI_NOTQUERYABLE] The specified metric identifier could not be accessed.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 111

dciPerror() Metrics Consumer Routines

NAME
dciPerror - produce an error message based on DCIStatus or errno

SYNOPSIS
#include <sys/dci.h>

void dciPerror(
DCIStatus status, /* in */
int theerrno, /* in (optional) */
char *membuf, /* in (optional) */
int bufsize, /* in */
char *fmt, ... /* in */

);

ARGUMENTS

status A valid DCIStatus return value.

theerrno The standard "_errno" (optional).

membuf If present, the returned string is copied to this buffer.

bufsize Maximum size in bytes of the membuf buffer.

fmt, A printf format string with a variable length parameter list.

DESCRIPTION
dciPerror() will accept a DCIStatus value and lookup the corresponding text string describing the
status. If the status is DCI_SYSERROR, then the argument "theerrno" is examined and the
corresponding text string for that error is produced.

If membuf is supplied, then the output produced is copied to the buffer as a null terminated
string up to bufsize bytes in length. If membuf is not present, the produced string is sent to
stderr output.

fmt is a character string such as that used in printf(). It may include format specifiers as a
variable number of arguments (up to some fixed limit). The output produced includes the
formatted output for fmt and then a ‘‘:’’ (colon) and the text string representing the error in
question.

For example, if myclassname() existed and would produce a class expressed as the symbolic
character string, "datapool.mem.bufcache":

dciPerror(DCI_CLASSEXISTS, 0, (char *)0, 0, "Opening class %s",
myclassname(theclass))

would produce the following on stderr:

Opening class datapool.mem.bufcache:
The DCI class is already registered.

112 CAE Specification

Metrics Consumer Routines dciPerror()

LIMITATIONS
If membuf is not present, the string produced may be truncated to a fixed size, no smaller than
1024 bytes.

The number of arguments available to "fmt" may be limited, but that limit must be no less than
8.

RETURN VALUES
There are no return values for this routine.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 113

dciRemoveHandleMetric() Metrics Consumer Routines

NAME
dciRemoveHandleMetric - removes metrics from an open handle

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciRemoveHandleMetric(
DCIHandle handle, /* in */
DCIMetricId *metricIdList, /* in */
UMAUint4 numIds, /* in */
DCIReturn **bufferAddress, /* in/out */
UMAUint4 bufferSize, /* in */
UMATimeVal *timeout /* in */

);

ARGUMENTS

handle A handle returned from dciOpen() that has not been subsequently closed.

metricIdList Address of a list of metric identifiers.

numIds The number of input metric identifiers.

bufferAddress Points to the address of a return status buffer.

bufferSize The size of the return status buffer.

timeout Pointer to a UMATimeVal structure that specifies the maximum time to wait
for this request to complete. When timeout is NULL, dciRemoveHandleMetric()
blocks indefinitely.

DESCRIPTION
The dciRemoveHandleMetric() routine performs the inverse of dciAddHandleMetric(). It
disassociates and closes a list of metrics from an open handle. Note that a metric must be deleted
from a handle using the exact same metricId with which it was opened or added. For example, it
is not possible to open or add a group of metrics using a wildcarded datumId and then use
dciRemoveHandleMetric() to delete only a single datumId from that group. The individual datum
ids should be added first, then the wildcarded datum id should be removed. Doing otherwise
may result in the metric being reset when it is closed.

If the return buffer address, bufferAddress, is zero when dciRemoveHandleMetric() is called, then
dciRemoveHandleMetric() allocates the return buffer on behalf of the caller and returns the buffer
address in bufferAddress. The caller is then responsible for subsequently freeing the allocated
memory using dciFree().

The timeout parameter points to a type UMATimeVal structure that specifies the maximum time
to wait for the completion of the dciRemoveHandleMetric() call. If the timeout has expired before
the call completes, then one or more of the DCIRetval structures associated with the expanded
metrics will show a DCI_TIMEOUT status. If the timeout parameter is NULL, then this call is not
subject to a timeout. This call can be interrupted by a delivered signal; in this case, the
DCIStatus returned for the call is DCI_INTERRUPTED and it is implementation defined
whether any partial results are delivered.

RETURN VALUES
The dciRemoveHandleMetric() routine returns [DCI_SUCCESS] if the DCIReturn structure was
written into the output buffer and the data was written to the data buffer. Otherwise,
dciRemoveHandleMetric() returns one of the following fatal errors:

114 CAE Specification

Metrics Consumer Routines dciRemoveHandleMetric()

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_NOTINITIALIZED] The DCI subsystem is not currently initialised.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

[DCI_NOSPACE] The provided buffer is too small for the return structure. The
size field of the DCIReturn structure indicates the buffer size
which would have held all the associated return values. If the
count field of the DCIReturn structure is nonzero, then partial
data was written to the buffer.

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error
(for example, on a dciGetData() call). It is also implementation
defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined
to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

[DCI_ALLOCATIONFAILURE] The DCI library could not allocate the memory for the return
buffer. The application could attempt to allocate its own
memory and try the request again.

[DCI_BADHANDLE] The handle provided is not currently open.

[DCI_INVALIDARG] One of the input arguments is invalid: a negative value was
used for numIds, bufferSize is smaller than the size of a
DCIReturn structure, or metricIdList was malformed.

[DCI_BADHANDLE] The given handle is not valid.

[DCI_INTERRUPTED] This call was interrupted by a signal and did not complete. It
is implementation defined whether partial results are
provided. If partial results are provided, the application may
need to amend the request list to avoid duplicating completed
requests.

The summary status of all individual DCIRetval structure status members is stored in the
DCIReturn structure status member. This summary status represents the highest severity of
status returned among all DCIRetval structures.

[DCI_FAILURE] There was at least one failure status.

[DCI_WARNING] There was at least one warning status and no failure status.

[DCI_INFORMATIONAL] There was at least one information status and no failure or
warning status.

[DCI_SUCCESS] All status returned was successful.

For each DCIRetval structure returned, the status member may contain the following:

[DCI_SUCCESS] The request succeeded and there may be associated data.

[DCI_NOCLASS] The requested metric class identifier is not present in the
handle.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 115

dciRemoveHandleMetric() Metrics Consumer Routines

[DCI_NODATUMID] The associated metricId specified a nonexistent datumId for
the specified class.

[DCI_NOINSTANCE] One or more requested instance identifiers are not present in
the handle.

[DCI_NOACCESS] The caller does not have permission to find out if a requested
instance identifier exists or does not have access to a metric
identifier.

[DCI_CLASSESADDED] This new class has been added within the scope of a
wildcarded class request.

[DCI_INSTANCESADDED] This new instance has been added within the scope of a
wildcarded instance request.

[DCI_TIMEOUT] The associated metric could not be expanded or referenced
during the specified timeout period. This may be because the
affiliated provider could not be contacted, or because the
reference was never attempted due to an existing timeout
condition in the input request list.

116 CAE Specification

Metrics Consumer Routines dciSetData()

NAME
dciSetData - request a provider to set a metric.

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciSetData(
DCIHandle handle, /* in */
DCIMetricId *metricIdList, /* in */
UMAUint4 numIds, /* in */
UMAUint4 operation, /* in */
UMAUint4 *pConfirm, /* in/out */
DCIReturn **bufferAddress, /* in/out */
UMAUint4 *bufferSize, /* in */
void *dataAddress, /* in */
UMAUint4 dataSize, /* in */
UMATimeVal *timeout /* in */

);

ARGUMENTS

handle An open handle containing the metrics to be set.

metricIdList Address of a list of polled metric identifiers, each of which must have been
opened in the handle argument. This list specifies the subset of the handle
metrics on which the set operation is to be performed. An empty list (numIds
equal to zero) means that dciSetData() returns without setting any metrics.

numIds The number of input metric identifiers in the metricIdList.

operation This tells which operation to perform and must be one of
DCI_OP_RESERVEDATA, DCI_OP_SETDATA, or DCI_OP_RELEASEDATA.

pConfirm If operation is DCI_OP_RESERVEDATA, *pConfirm was zero, and the
reservation is successful for any metric in the metricIdList, *pConfirm is set to
a reservation confirmation that can be used on a successive call to
dciSetData(). If *pConfirm is a valid reservation confirmation and the current
reservation request is successful for any metric in the metricIdList, those
metrics are added to the list of metrics covered by this confirmation. If the
operation is DCI_OP_RELEASEDATA, this must contain a valid confirmation
from a previous DCI_OP_RESERVEDATA operation. If the operation is
DCI_OP_SETDATA and any of the metrics in the list have been reserved,
*pConfirm must contain the corresponding confirmation. If none were
reserved, *pConfirm must be zero.

This reservation confirmation may only be used by the process that requested
it.

bufferAddress Points to the address of a return status buffer.

bufferSize The size of the return status buffer.

dataAddress If operation is DCI_OP_SETDATA or DCI_OP_RESERVEDATA, this points to a
buffer containing data to set.

dataSize Size of the dataAddress buffer.

timeout If the operation is DCI_OP_RESERVEDATA, *timeout specifies the maximum
time to allow a reservation to remain valid. If the operation is

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 117

dciSetData() Metrics Consumer Routines

DCI_OP_SETDATA, it specifies the maximum amount of time to try to set the
metric. This is ignored when the operation is DCI_OP_RELEASEDATA. If
metrics are added to an existing reservation confirmation, the timeout on that
confirmation is reset to the timeout value from the latest call that adds
metrics.

DESCRIPTION
The dciSetData() routine is used by an consumer to request that a provider set a metric to a
certain value. This may be used to set configuration values for a component being managed by
a specific provider.

The dciSetdata() routine facilitates setting multiple metrics in the same call and use by multiple
consumers by supporting a two phase set operation using two calls to dciSetData(). The first
call, with the operation set to DCI_OP_RESERVEDATA, is made to see if a set operation on a
given component could occur. This asks the DCI Server to validate that setting the indicated
metrics could occur with the data provided and to reserve any resources that would be required
if the set command were issued. For each metric specified in this call, if the specified settings
could have been made, resources are reserved, and *pConfirm is set to a special value. This
special value can be used on a second call in order to validate a DCI_OP_SETDATA or
DCI_OP_RELEASEDATA operation on the metrics that were just reserved. A metric that has
been reserved in this manner can not be set, reserved, or released without using the respective
reservation confirmation until that metric is released (using the reservation confirmation), the
reservation confirmation times out, or the respective handle is closed. Also, a
DCI_OP_SETDATA operation on reserved data is not guaranteed to succeed if the data is
different from what was used on the previous call with DCI_OP_RESERVEDATA.

If the DCI_OP_RESERVEDATA operation is not used and multiple consumers try to set a metric,
the result is indeterminate. Also, if multiple metrics are specified in a single metricIdList, some
may be successfully set and others may not be. Using DCI_OP_RESERVEDATA to validate
arguments and allocate resources for all metrics in a single call, before actually using
DCI_OP_SETDATA, minimises the chances that when dciSetData() returns, some metrics will
have been set while others will not have been set.

Resources reserved with DCI_OP_RELEASEDATA are held until a DCI_OP_SETDATA or
DCI_OP_RELEASEDATA operation completes or until the timeout specified in the
DCI_OP_RESERVEDATA call is exceeded. In order minimise chances for permanent deadlock,
there is also an implementation specific maximum value for the reservation timeout. If a
consumer makes a reservation and decides it no longer wants to set the metric, the consumer
should make a dciSetData() call using the DCI_OP_RELEASEDATA operation rather than
waiting for the reservation to timeout.

If dciSetData() is used to modify data for a class which supports invalid data (the DCIClassAttr
flag has DCI_POSSIBLEINVALIDDATA set), the provider may reject the request with a return
status of DCI_NOTSETTABLE.

If the return buffer address, bufferAddress, is zero when dciSetData() is called or if the return data
buffer address, dataAddress, is zero when dciSetData() is called, then dciSetData() allocates a
buffer of the correct size and places the address in bufferAddress or dataAddress respectively. If
dataAddress is allocated by the library, then the size is also stored into the address provided for
dataSize. The caller is then responsible for subsequently freeing the allocated memory using
dciFree().

RETURN VALUES
The dciSetData() routine returns [DCI_SUCCESS] if the DCIReturn structure was written into
the output buffer. Otherwise, dciSetData() returns one of the following fatal errors:

118 CAE Specification

Metrics Consumer Routines dciSetData()

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_NOIMPLEMENTATION] In a DCI subset implementation, the specified routine has not
been implemented.

[DCI_NOTINITIALIZED] The DCI subsystem is not currently initialised.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

[DCI_NOSPACE] The provided buffer is too small for the return structure. The
size field of the DCIReturn structure indicates the buffer size
which would have held all the associated return values. If the
count field of the DCIReturn structure is nonzero, then partial
data was written to the buffer.

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error
(for example, on a dciGetData() call). It is also implementation
defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined
to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

[DCI_ALLOCATIONFAILURE] The DCI library could not allocate the memory for the return
buffer. The application could attempt to allocate its own
memory and try the request again.

[DCI_BADHANDLE] The handle provided is not currently open.

[DCI_BADCONFIRM] The reservation confirmation is either invalid or has expired.

[DCI_INVALIDARG] One of the input arguments is invalid: a negative value was
used for numIds, bufferSize is smaller than the size of a
DCIReturn structure, MetricIdList was malformed, or the
operation was not recognised.

The summary status of all individual DCIRetval structure status members is stored in the
DCIReturn structure status member. This summary status represents the highest severity of
status returned among all DCIRetval structures.

[DCI_FAILURE] There was at least one failure status.

[DCI_WARNING] There was at least one warning status and no failure status.

[DCI_INFORMATIONAL] There was at least one information status and no failure or
warning status.

[DCI_SUCCESS] All status returned was successful.

For each DCIRetval structure returned, the status member may contain the following:

[DCI_SUCCESS] The request succeeded and there may be associated data.

[DCI_NOTPOLLEDMETRIC] A polled metric was required and the requested metric
identifier was not for such a metric type.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 119

dciSetData() Metrics Consumer Routines

[DCI_NOACCESS] The calling process does not have permission to retrieve
information about the requested metric or to initialise a
connection to the DCI server.

[DCI_NOTSETTABLE] One or more of the associated metrics is not able to be set.
This may be because the provider does not support
modification of these metrics, or that an "invalid" metric was
specified. The provider may choose to disallow modification
of "invalid" metrics for the associated instance.

[DCI_NOTRESERVEABLE] This metric does not support being reserved.

[DCI_RESERVED] This metric is currently reserved by another consumer.

[DCI_NOTRESERVED] This metric is not currently reserved so cannot be released.

[DCI_INVALIDDATA] The associated metric is invalid for this particular class
instance.

[DCI_DERIVEDDATA] An attempt was made to set the value of a metric of type:
DCI_DERIVED.

[DCI_METHODERROR] The DCI Server has encountered an error in the method
invoked to satisfy the request for the selected metric.

[DCI_TIMEOUT] The associated metric could not be expanded or referenced
during the specified timeout period. This may be because the
affiliated provider could not be contacted, or because the
reference was never attempted due to an existing timeout
condition in the input request list.

120 CAE Specification

Metrics Consumer Routines dciTerminate()

NAME
dciTerminate - terminate a connection with the Data Capture Interface

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciTerminate(void);

ARGUMENTS

"none"

DESCRIPTION
This interface is used by both metrics providers and consumers. The dciTerminate() routine
allows DCI implementations to know when an application is ending a series of DCI transactions.
This interface allows a DCI implementation to perform implementation specific termination.
Conversely, dciInitialize() is used to perform implementation specific initialisation.

RETURN VALUES
The dciTerminate() routine returns [DCI_SUCCESS] if it was able to terminate the connection to
the metric provider or consumer. Otherwise, this routine returns one of the following error
values:

[DCI_NOTINITIALIZED] The DCI subsystem is currently not initialised.

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 121

Metrics Consumer Routines

122 CAE Specification

Chapter 6

Metrics Provider Routines

This Chapter describes the interfaces used by metrics providers.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 123

dciAddInstance() Metrics Provider Routines

NAME
dciAddInstance - add an instance to a metric class

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciAddInstance(
DCIClassId *classId, /* in */
DCIInstanceId *instanceId, /* in */
DCIInstAttr *instAttr, /* in */
DCIMethod *method, /* in */
DCIReturn **bufferAddress, /* in/out */
UMAUint4 bufferSize /* in */

);

ARGUMENTS

classId Address of a single classId to add instance to. This may not contain any
wildcards.

instanceId Address of an instance identifier to be added to the class. This may not contain
any wildcards.

instAttr Address of an instance attribute corresponding to the instance identifier being
added. If this is zero, an attribute with a zero length label and zero sized
extended attributes is created for the instance.

method Address of an instance method corresponding to the instance identifier being
added. If this is zero, no instance method is added and there must be a class
method already registered for the given class.

bufferAddress Points to the address of a return value buffer. If the address pointed to is zero,
the system allocates a buffer.

bufferSize The size of the return buffer.

DESCRIPTION
The dciAddInstance() routine adds an instance to a class. This routine takes as input an instance
identifier (instanceId), and optionally, an attribute structure (instAttr) or method structure
(method) that correspond with the instance identifiers.

The instance attribute specified in instanceAttr can be retrieved by a consumer using
dciGetInstAttributes(). The method allows a provider to specify a method to be used instead of a
class method registered with the class. (Instances with and without methods can be mixed in a
class.)

The DCI_ADDRESS and DCI_CALLBACK instance method types are dependent on the address
space of the provider who issues the dciAddInstance() being available to the DCI Server. If the
address space of such a provider with instances that have not been removed becomes
unavailable, such as when the provider terminates, any instances registered with
dciAddInstance() is implicitly removed. On a related note, if the address space of a class which
has a class method of type DCI_ADDRESS or DCI_CALLBACK becomes unavailable to the DCI
Server, the entire class is implicitly unregistered.

Class instances for which the DCI_STORE instance method is in effect must submit initial data
in the DCIReturn structure bufferAddress. The data in the structure must conform to the
previously registered attributes structure. All datum identifiers of the metric identifiers in the
DCIReturn structure should be wildcarded and the corresponding data section should contain

124 CAE Specification

Metrics Provider Routines dciAddInstance()

all class data of the specified class instance(s), with an offset as specified in the previously
registered attributes structure. None of the other identifiers can be wildcarded.

If the return buffer address, bufferAddress, is zero when dciAddInstance() is called, then
dciAddInstance() allocates the return buffer on behalf of the caller and returns the buffer address
in bufferAddress. The caller is then responsible for subsequently freeing the allocated memory
using dciFree().

RETURN VALUES
The dciAddInstance() routine returns [DCI_SUCCESS] if all requested metric instances can be
registered in the name space and the standard DCI return structure can be written into the
output buffer. Otherwise, this routine returns one of the DCI error values to summarise the
failure type.

A failure causes one of the following to be returned. These are summary errors. If the request
consisted of multiple metrics then the return buffer status field should be examined to determine
which metrics failed.

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_NOIMPLEMENTATION] In a DCI subset implementation, the specified routine has not
been implemented.

[DCI_NOTINITIALIZED] The DCI subsystem is not currently initialised.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

[DCI_NOSPACE] The provided buffer is too small for the return structure. The
size field of the DCIReturn structure indicates the buffer size
which would have held all the associated return values. If the
count field of the DCIReturn structure is nonzero, then partial
data was written to the buffer.

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error
(for example, on a dciGetData() call). It is also implementation
defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined
to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

[DCI_ALLOCATIONFAILURE] The DCI library could not allocate the memory for the return
buffer. The application could attempt to allocate its own
memory and try the request again.

[DCI_INVALIDARG] One of the input arguments is invalid: a negative value was
used for numIds, bufferSize is smaller than the size of a
DCIReturn structure, MetricIdList was malformed, or the
MethodList was malformed.

The summary status of all individual DCIRetval structure status members is stored in the
DCIReturn structure status member. This summary status represents the highest severity of
status returned among all DCIRetval structures.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 125

dciAddInstance() Metrics Provider Routines

[DCI_FAILURE] There was at least one failure status.

[DCI_WARNING] There was at least one warning status and no failure status.

[DCI_INFORMATIONAL] There was at least one information status and no failure or
warning status.

[DCI_SUCCESS] All status returned was successful.

For each DCIRetval structure returned, the status member may contain the following:

[DCI_SUCCESS] The request succeeded and there may be associated data.

[DCI_INSTANCEEXISTS] This instance could not be added because it already exists.

[DCI_NOWILDCARD] A class or instance wildcard cannot be used in this context.

[DCI_METHODTYPEUNAVAILABLE]
The specified method type member is one of those
documented in this specification, but which is not available on
this platform. Only DCI_WAIT is guaranteed to be available
on all implementations.

[DCI_METHOPOPNOTSUPPORTED]
The requested operation may not be specified in conjunction
with this method type.

[DCI_INVALIDMETHODOP] The operation specified is not a valid operation.

[DCI_INVALIDFIELD] The associated DCIMethod attributes structure was
malformed.

[DCI_NOTEXT] No label has been specified with DCIInstanceAttr field of the
DCIMethod.

[DCI_INSTANCENOTPERSISTENT]
If the parent class is not persistent and the new DCIInstAttr
specifies persistence.

[DCI_BADFLAGS] If persistence is defined for the DCIInstAttr, but the method
type is DCI_ADDRESS or DCI_CALLBACK.

[DCI_NOCLASS] The specified metric class identifier is not present in the name
space.

[DCI_NOACCESS] The caller does not have permission to add an instance to this
class.

126 CAE Specification

Metrics Provider Routines dciPostData()

NAME
dciPostData - post polled data, instance data, or configuration data

SYNOPSIS

#include <sys/dci.h>
DCIStatus dciPostData(

UMAUint4 operation, /* in */
UMAUint4 transactionId, /* in */
DCIReturn *status, /* in */
void *data, /* in */
UMAUint4 dataSize, /* in */
DCIReturn **bufferAddress, /* in/out */
UMAUint4 bufferSize /* in */

);

ARGUMENTS

operation The type of operation. Must be one of the values possible in the operation
field of the DCIMethod struct.

transactionId The identifier of the transaction associated with this data post.

status Address of a DCIReturn structure listing the metric identifiers and data
offsets.

data Address of the data buffer.

dataSize Size of the data buffer in bytes.

bufferAddress Points to the address of a return value buffer. If the address pointed to is zero,
the system allocates a buffer.

bufferSize The size of the return buffer.

DESCRIPTION
The dciPostData() routine is used by a provider for transmitting a list of polled data, instance
data, configuration data or status values in response to a consumer request. The provider
supplies the type of operation, which determines the type of data returned in the DCIReturn
structure status and data buffer. The provider writes a DCIReturn structure to the status
parameter which lists the metric identifiers and related data offsets. The data buffer may be
filled with data corresponding to the operation. The status DCIReturn structure combined with
the data buffer is used to fulfill a consumer’s request.

If the operation is DCI_OP_GETDATA the supplied data must conform to the previously
registered attributes structure. Although the DCI Server cannot verify the content of the data, it
verifies that the size matches the registered attributes. Only datum identifier wildcards are
allowed, in which case all instantiated class data is returned within a single data section.

If the operation is DCI_OP_CONFIGURE the supplied data must contain DCIConfig structures,
one or more per metric identifier depending on the number of encoded instance identifiers.

If the operation is DCI_OP_LISTINSTANCES the supplied metric identifiers must have expanded
instance identifiers. The data buffer is unused. The datum identifiers are ignored.

If the operation is DCI_OP_GETINSTATTR the supplied metric identifiers may have expanded
instance identifiers and the supplied data must contain DCIInstAttr structures, one or more per
metric identifier, identifying each instantiated metric class. The datum identifiers are ignored.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 127

dciPostData() Metrics Provider Routines

If the operation is DCI_OP_SETDATA, DCI_OP_RESERVEDATA or DCI_OP_RELEASEDATA
only the status information is used; the data buffer is unused.

The transactionId is used to alert the DCI Server as to the ultimate DCI consumer for this data.
For DCI_WAIT method classes, the transactionId was returned from the associated
dciWaitRequest(). For classes not using DCI_WAIT, the transactionId is not relevant and must be
set to 0.

When the dciPostData() returns, the DCIReturn structure bufferAddress contains return status’ for
all submitted metric identifiers.

If the return buffer address, bufferAddress, is zero when dciPostData() is called, then dciPostData()
allocates the return buffer on behalf of the caller and returns the buffer address in bufferAddress.
The caller is then responsible for subsequently freeing the allocated memory using dciFree().

RETURN VALUES
The dciPostData() routine returns [DCI_SUCCESS] if all requested metric instances can be
submitted to the DCI Server. Otherwise, this routine returns one of the DCI error values to
summarise the failure type.

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_NOIMPLEMENTATION] In a DCI subset implementation, the specified routine has not
been implemented.

[DCI_NOTINITIALIZED] The DCI subsystem is not currently initialised.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

[DCI_NOSPACE] The provided buffer is too small for the return structure. The
size field of the DCIReturn structure indicates the buffer size
which would have held all the associated return values. If the
count field of the DCIReturn structure is nonzero, then partial
data was written to the buffer.

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error
(for example, on a dciGetData() call). It is also implementation
defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined
to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

[DCI_ALLOCATIONFAILURE] The DCI library could not allocate the memory for the return
buffer. The application could attempt to allocate its own
memory and try the request again.

[DCI_INVALIDARG] One of the input arguments is invalid: a negative value was
used for numIds, bufferSize is smaller than the size of a
DCIReturn structure, metricIdList was malformed, or the
methodList was malformed.

The summary status of all individual DCIRetval structure status members is stored in the
DCIReturn structure status member. This summary status represents the highest severity of
status returned among all DCIRetval structures.

128 CAE Specification

Metrics Provider Routines dciPostData()

[DCI_FAILURE] There was at least one failure status.

[DCI_WARNING] There was at least one warning status and no failure status.

[DCI_INFORMATIONAL] There was at least one information status and no failure or
warning status.

[DCI_SUCCESS] All status returned was successful.

For each DCIRetval structure returned, the status member may contain the following:

[DCI_SUCCESS] The request succeeded and there may be associated data.

[DCI_NOACCESS] The caller does not have permission to find out if a requested
instance identifier exists or does not have access to a metric
identifier.

[DCI_NOCLASS] The requested metric class identifier is not present in the name
space.

[DCI_NOINSTANCE] The requested instance identifier is not in the name space.

[DCI_NODATUMID] The associated metricId specified a nonexistent datumId for
the specified class.

[DCI_NOMETRIC] There is no such metric identifier in the name space.

[DCI_NOSUCHTRANSACTION] The transactionId was either invalid or the associated
transaction was no longer active.

[DCI_NOWILDCARD] A class or instance wildcard cannot be used in this context.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 129

dciRegister() Metrics Provider Routines

NAME
dciRegister - register a metric class

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciRegister(
DCIClassId *classId, /* in */
DCIClassAttr *classAttr, /* in */
DCIReturn **bufferAddress, /* in/out */
UMAUint4 bufferSize /* in */

);

ARGUMENTS

classId Address of a DCIClassId structure.

classAttr Address of a DCIClassAttr structure.

bufferAddress Points to the address of a return value buffer.

bufferSize The size of the return buffer.

DESCRIPTION
The dciRegister() routine allows providers to create a new class in the name space. For the
specified DCIClassId element in classIdList, there must be a corresponding DCIClassAttr
structure which establishes the definition of the new class; information such as the number of
instance levels and their types and well as the label and type of all datum metrics which are
provided. The DCIClassId must be fully specified without the use of class wildcards.

If the return buffer address, bufferAddress, is zero when dciRegister() is called, then dciRegister()
allocates the return buffer on behalf of the caller and returns the buffer address in bufferAddress.
The caller is then responsible for subsequently freeing the allocated memory using dciFree().

Upon return dciRegister() fills the return buffer specified by bufferAddress with a DCIReturn
structure. For the input DCIClassId, there is a corresponding DCIRetval structure produced in
the return buffer. The metricOffset field of the DCIRetval specifies an offset from the buffer
specified by bufferAddress and contains the DCIClassId associated with the status field of the
DCIRetval structure. The dataOffset field is set to 0.

RETURN VALUES
The dciRegister() routine returns [DCI_SUCCESS] if the DCIReturn structure could be written.
Otherwise, dciRegister() returns one of the following fatal errors:

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_NOIMPLEMENTATION] In a DCI subset implementation, the specified routine has not
been implemented.

[DCI_NOTINITIALIZED] The DCI subsystem is not currently initialised.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

[DCI_NOSPACE] The provided buffer is too small for the return structure. The
size field of the DCIReturn structure indicates the buffer size
which would have held all the associated return values. If the
count field of the DCIReturn structure is nonzero, then partial
data was written to the buffer.

130 CAE Specification

Metrics Provider Routines dciRegister()

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error
(for example, on a dciGetData() call). It is also implementation
defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined
to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

[DCI_ALLOCATIONFAILURE] The DCI library could not allocate the memory for the return
buffer. The application could attempt to allocate its own
memory and try the request again.

[DCI_INVALIDARG] One of the input arguments is invalid: numIds was 0, bufferSize
is smaller than the size of a DCIReturn structure, classIdList
was malformed or classAttrList was malformed.

[DCI_INVALIDFIELD] One of the argument structure fields was not acceptable. This
result will occur if a UMA_DERIVED DCIDataAttr is
presented with a nonzero method flags argument.

The summary status of all individual DCIRetval structure status members is stored in the
DCIReturn structure status member. This summary status represents the highest severity of
status returned among all DCIRetval structures.

[DCI_FAILURE] There was at least one failure status.

[DCI_WARNING] There was at least one warning status and no failure status.

[DCI_INFORMATIONAL] There was at least one information status and no failure or
warning status.

[DCI_SUCCESS] All status returned was successful.

For each DCIRetval structure returned, the status member may contain the following:

[DCI_SUCCESS The request succeeded and there may be associated data.

[DCI_NOCLASS] The requested metric class identifier is not present in the name
space. This is only returned if any class other than the deepest
specified class is not in the namespace.

[DCI_NOWILDCARD] A wildcard cannot be used in this context.

[DCI_INVALIDFIELD] The associated DCIClassAttr structure has an invalid field.

[DCI_CLASSEXISTS] This class could not be registered because it already exists.

[DCI_CLASSNOTPERSISTENT] If the parent class is not persistent, and the new DCIClassAttr
specifies persistence.

[DCI_BADFLAGS] If persistence is defined for a DCIClassAttr, but the method
type is DCI_ADDRESS or DCI_CALLBACK.

[DCI_NOACCESS] The caller does not have permission to register this class.

[DCI_NOTEXT] No label has been specified in the DCIClassAttr field of this
class.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 131

dciRemoveInstance() Metrics Provider Routines

NAME
dciRemoveInstance - removes instances from a metric class

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciRemoveInstance(
DCIMetricId *metricId, /* in */
DCIReturn **bufferAddress, /* in/out */
UMAUint4 bufferSize /* in */

);

ARGUMENTS

metricId Address of a DCIMetricId structure.

bufferAddress Points to the address of a return value buffer.

bufferSize The size of the return buffer.

DESCRIPTION
The dciRemoveInstance() routine removes the specified instances from the metrics name space.
This routine takes as input an address of a DCIMetricId structure. The associated instances are
removed from the name space. If so configured, this leads to a "final data" notification to all
interested DCI consumers which have any removed instance open. The datumId field of the
DCIMetricId is ignored. Upon return, dciRemoveInstance() produces DCIReturn structure at the
address pointed to by bufferAddress. Each DCIRetval structure within the DCIReturn structure
reflects the status of each instance removed. The metricOffset member of each DCIRetval
specifies a location relative to bufferAddress and references the DCIMetricId structure. The
dataOffset member is zero.

If the return buffer address, bufferAddress, is zero when dciRemoveInstance() is called, then
dciRemoveInstance() allocates the return buffer on behalf of the caller and returns the buffer
address in bufferAddress. The caller is then responsible for subsequently freeing the allocated
memory using dciFree().

RETURN VALUES
The dciRemoveInstance() routine returns [DCI_SUCCESS] if the DCIReturn structure was written
into the output buffer. Otherwise, dciRemoveInstance() returns one of the following fatal errors:

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_NOIMPLEMENTATION] In a DCI subset implementation, the specified routine has not
been implemented.

[DCI_NOTINITIALIZED] The DCI subsystem is not currently initialised.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

[DCI_NOSPACE] The provided buffer is too small for the return structure. The
size field of the DCIReturn structure indicates the buffer size
which would have held all the associated return values. If the
count field of the DCIReturn structure is nonzero, then partial
data was written to the buffer.

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error

132 CAE Specification

Metrics Provider Routines dciRemoveInstance()

(for example, on a dciGetData() call). It is also implementation
defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined
to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

[DCI_ALLOCATIONFAILURE] The DCI library was requested to provide memory for the
specified buffer and could not. The application could attempt
to allocate its own memory and try the request again.

[DCI_INVALIDARG] One of the input arguments is invalid: a negative value was
used for numIds, bufferSize is smaller than the size of a
DCIReturn structure, or metricIdList was malformed.

The summary status of all individual DCIRetval structure status members is stored in the
DCIReturn structure status member. This summary status represents the highest severity of
status returned among all DCIRetval structures.

[DCI_FAILURE] There was at least one failure status.

[DCI_WARNING] There was at least one warning status and no failure status.

[DCI_INFORMATIONAL] There was at least one information status and no failure or
warning status.

[DCI_SUCCESS] All status returned was successful.

For each DCIRetval structure returned, the status member may contain the following:

[DCI_SUCCESS] The request succeeded and there may be associated data.

[DCI_NOCLASS] The requested metric class identifier is not present in the name
space.

[DCI_NOINSTANCE] The requested instance identifier is not in the name space.

[DCI_NOACCESS] The caller does not have permission to remove an instance
from this class.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 133

dciSetClassAccess() Metrics Provider Routines

NAME
dciSetClassAccess - sets access control for metric classes

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciSetClassAccess(
DCIClassId *classIdList, /* in */
DCIAccess *accessList, /* in */
UMAUint4 numIds, /* in */
DCIReturn **bufferAddress, /* in/out */
UMAUint4 bufferSize /* in */

);

ARGUMENTS

classIdList Address of a list of metric class identifiers.

accessList A list of access control structures, one for each input metric class identifier.

numIds The number of input metric class identifiers.

bufferAddress Points to the address of a return value buffer.

bufferSize The size of the return buffer.

DESCRIPTION
The dciSetClassAccess() routine allows a provider to set the access control for a list of class
identifiers. The access control information is initially set when classes are registered. This
routine allows subsequent modification of the access control structure. There is no requirement
that restricting access disables those consumers which have previously opened the metrics class
but some secure implementations may enforce this behaviour.

If the return buffer address, bufferAddress, is zero then dciSetClassAccess() allocates the return
buffer on behalf of the caller and return its address in bufferAddress. The caller is then responsible
for subsequently freeing the allocated memory. Upon return dciSetClassAccess() writes the
standard DCIReturn structure into the status buffer.

RETURN VALUES
The dciSetClassAccess() routine returns [DCI_SUCCESS] if all requested metric identifiers are in
the name space, the caller has permission to set their access, and the standard DCI return
structure can be written into the output buffer. Otherwise, this routine returns one of the DCI
error values to summarise the failure type.

A failure causes one of the following to be returned. These are summary errors. If the request
consisted of multiple classes then the return buffer status field should be examined to determine
which classes failed.

[DCI_NOTINITIALIZED] The DCI subsystem is currently not initialised.

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

[DCI_INVALIDARG] One or more of the input arguments to the DCI routine were
malformed.

134 CAE Specification

Metrics Provider Routines dciSetClassAccess()

[DCI_FAILURE] There were multiple but different failure types for the
requested metric identifiers.

[DCI_NOCLASS] Any requested metric class identifier is not present in the
name space.

[DCI_NOACCESS] There was an access permission failure for at least one
request.

[DCI_NOSPACE] The size of the given return buffer is smaller than needed. A
partial write of the results may have been performed.

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error
(for example, on a dciGetData() call). It is also implementation
defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined
to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

[DCI_NOSUPPORT] The implementation does not support this interface.

The possible status values written into the DCIReturn status field are:

[DCI_NOCLASS] The requested metric class identifier is not present in the name
space.

[DCI_NOACCESS] The caller does not have permission to modify access control.

[DCI_NOSPACE] There was not enough room in the return buffer to write the
expanded metric values for the requested instance identifier.

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error
(for example, on a dciGetData() call). It is also implementation
defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined
to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 135

dciSetInstAccess() Metrics Provider Routines

NAME
dciSetInstAccess - sets access control for metric instances

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciSetInstAccess(
DCIMetricId *metricIdList, /* in */
DCIAccess *accessList, /* in */
UMAUint4 numIds, /* in */
DCIReturn **bufferAddress, /* in/out */
UMAUint4 bufferSize, /* in */
UMATimeVal *timeout /* in */

);

ARGUMENTS

metricIdList Address of a list of metric class and instance identifiers.

accessList A list of access control structures, one for each input instance identifier.

numIds The number of input instance identifiers.

bufferAddress Points to the address of a return value buffer.

bufferSize The size of the return buffer.

timeout Pointer to a UMATimeVal structure that specifies the maximum time to wait
for this request to complete. When timeout is NULL, dciSetInstAccess() blocks
indefinitely.

DESCRIPTION
The dciSetInstAccess() routine allows a provider to set the access control for a list of instance
identifiers. The access control information is initially set when instances are added to the name
space. This routine allows subsequent modification of the access control structure. There is no
requirement that restricting access disables those consumers which have previously opened an
instance but some secure implementations may enforce this behaviour.

The access control value of intermediate instance levels in a multiple level instance structure can
be set by limiting the input instance value to the desired level. For example, if one wanted to set
the access control field on the first instance level in a two level structure then only use the first
level as the instance argument in metricIdList.

The timeout parameter points to a type UMATimeVal structure that specifies the maximum time
to wait for the completion of the dciSetInstAccess() call. If the timeout has expired before the call
completes, then one or more of the DCIRetval structures associated with the expanded metrics
will show a DCI_TIMEOUT status. If the timeout parameter is NULL, then this call is not subject
to a timeout. This call can be interrupted by a delivered signal; in this case, the DCIStatus
returned for the call is DCI_INTERRUPTED and it is implementation defined whether any
partial results are delivered.

If the return buffer address, bufferAddress, is zero then dciSetInstAccess() allocates the return
buffer on behalf of the caller and return its address in bufferAddress. The caller is then responsible
for subsequently freeing the allocated memory. Upon return dciSetInstAccess() writes the
standard DCIReturn structure into the status buffer.

RETURN VALUES
The dciSetInstAccess() routine returns [DCI_SUCCESS] if all requested metric identifiers are in
the name space, the caller has permission to set their access, and the standard DCI return

136 CAE Specification

Metrics Provider Routines dciSetInstAccess()

structure can be written into the output buffer. Otherwise, this routine returns one of the DCI
error values to summarise the failure type.

A failure causes one of the following to be returned. These are summary errors. If the request
consisted of multiple classes then the return buffer status field should be examined to determine
which classes failed.

[DCI_NOTINITIALIZED] The DCI subsystem is is currently not initialised.

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

[DCI_INVALIDARG] One of the input arguments is invalid.

[DCI_FAILURE] There were multiple but different failure types for the
requested metric identifiers.

[DCI_NOCLASS] Any requested metric class identifier is not present in the
name space.

[DCI_NOINSTANCE] Any requested instance identifier is not present in the name
space.

[DCI_NOACCESS] There was an access permission failure for at least one
request.

[DCI_NOSPACE] The size of the given return buffer is smaller than needed. A
partial write of the results may have been performed.

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error
(for example, on a dciGetData() call). It is also implementation
defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined
to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

[DCI_NOSUPPORT] The implementation does not support this interface.

[DCI_INTERRUPTED] This call was interrupted by a signal and did not complete. It
is implementation defined whether partial results are
provided. If partial results are provided, the application may
need to amend the request list to avoid duplicating completed
requests.

The possible status values written into the DCIReturn status field are:

[DCI_NOCLASS] The requested metric class identifier is not present in the name
space.

[DCI_NOINSTANCE] Any requested instance identifier is not present in the name
space.

[DCI_NOACCESS] The caller does not have permission to modify access control.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 137

dciSetInstAccess() Metrics Provider Routines

[DCI_NOSPACE] There was not enough room in the return buffer to write the
expanded metric values for the requested instance identifier.

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error
(for example, on a dciGetData() call). It is also implementation
defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined
to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

[DCI_TIMEOUT] The associated metric could not be expanded or referenced
during the specified timeout period. This may be because the
affiliated provider could not be contacted, or because the
reference was never attempted due to an existing timeout
condition in the input request list.

138 CAE Specification

Metrics Provider Routines dciUnregister()

NAME
dciUnregister - unregister a metric class.

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciUnregister(
DCIClassId *classId, /* in */
DCIReturn **bufferAddress, /* in/out */
UMAUint4 bufferSize /* in */

);

ARGUMENTS

classId Address of a DCIClassId structure.

bufferAddress Points to the address of a return value buffer.

bufferSize The size of the return buffer.

DESCRIPTION
The dciUnregister() routine allows providers to remove one of their registered classes from the
namespace. This routine takes as input the address of a DCIClassId structure. The DCIClassId
may include the class identifier wildcard value, DCI_ALL. For each DCIClassId in the array, the
class is unregistered and removed from the namespace.

If the return buffer address, bufferAddress, is zero when dciUnregister() is called, then
dciUnregister() allocates the return buffer on behalf of the caller and returns the buffer address in
bufferAddress. The caller is then responsible for subsequently freeing the allocated memory using
dciFree().

RETURN VALUES
The dciUnregister() routine returns [DCI_SUCCESS] if the DCIReturn structure could be written.
Otherwise, dciUnregister() returns one of the following fatal errors:

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_NOIMPLEMENTATION] In a DCI subset implementation, the specified routine has not
been implemented.

[DCI_NOTINITIALIZED] The DCI subsystem is not currently initialised.

[DCI_SYSERROR An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

[DCI_NOSPACE] The provided buffer is too small for the return structure. The
size field of the DCIReturn structure indicates the buffer size
which would have held all the associated return values. If the
count field of the DCIReturn structure is nonzero, then partial
data was written to the buffer.

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error
(for example, on a dciGetData() call). It is also implementation
defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 139

dciUnregister() Metrics Provider Routines

to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

[DCI_ALLOCATIONFAILURE] The DCI library was requested to provide memory for the
specified buffer and could not. The application could attempt
to allocate its own memory and try the request again.

[DCI_INVALIDARG] One of the input arguments is invalid: numIds was 0, bufferSize
is smaller than the size of a DCIReturn structure, or classIdList
was malformed.

The summary status of all individual DCIRetval structure status members is stored in the
DCIReturn structure status member. This summary status represents the highest severity of
status returned among all DCIRetval structures.

[DCI_FAILURE] There was at least one failure status.

[DCI_WARNING] There was at least one warning status and no failure status.

[DCI_INFORMATIONAL] There was at least one information status and no failure or
warning status.

[DCI_SUCCESS] All status returned was successful.

For each DCIRetval structure returned, the status member may contain the following:

[DCI_SUCCESS] The request succeeded and there may be associated data.

[DCI_NOCLASS] The requested metric class identifier is not present in the name
space.

[DCI_CLASSNOTEMPTY] The class could not be removed because either there are
subclasses still registered, or instances still defined for this
class.

[DCI_NOACCESS] The caller does not have permission to unregister this class.

140 CAE Specification

Metrics Provider Routines dciWaitRequest()

NAME
dciWaitRequest - wait for service request

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciWaitRequest(
DCIMetricId *metricIdList, /* in */
UMAUint4 numIds, /* in */
UMAUint4 *operation, /* out */
UMAUint4 *transactionId, /* out */
DCIReturn **bufferAddress, /* in/out */
UMAUint4 bufferSize, /* in */
UMATimeVal *timeout /* in */

);

ARGUMENTS

metricIdList Address of a list of DCIMetricId structures.

numIds The number of DCIMetricId structures in metricIdList.

operation The type of operation. Must be one of the values possible in the operation
field of the DCIMethod struct.

transactionId Address of a memory location into which the associated transactionId is stored
on a successful return from dciWaitRequest().

bufferAddress Points to the address of a return value buffer. If the address pointed to is zero,
the system allocates a buffer.

bufferSize The size of the return buffer.

timeout Pointer to a UMATimeVal structure that specifies the maximum time to wait
for this request to complete. When timeout is NULL, dciWaitRequest() blocks
indefinitely.

DESCRIPTION
The dciWaitRequest() routine allows a metrics provider to synchronously wait for a metrics
service request. The dciWaitRequest() returns when a consumer requests the provider’s metrics
using dciGetData(), alters metrics using dciSetData(), lists instances with dciListInstanceId(),
requests instance attributes with dciGetInstAttributes(), or configures metrics using
dciConfigure().

The dciWaitRequest() announces the metrics it can serve by providing the metricIdList. The metric
identifiers in this list should correspond to the way the provider registered itself. If the provider
registered DCI_WAIT as a class method, it can use a wildcard at the instance level, otherwise it
can only use wildcards at the datum level

When dciWaitRequest() returns, the operation contains the operation requested by the DCI Server,
and the bufferAddress contains a DCIReturn structure with the requested metricIds. The
transactionId returned is to be used as an input argument for all associated dciPostData()
responses to ensure that the data sent will be properly directed to a waiting consumer. If data is
supplied it is encoded in the DCIReturn structure with data offsets from the beginning of the
DCIReturn structure.

If the operation is DCI_OP_GETDATA or DCI_OP_RELEASEDATA, only metric identifiers are
supplied in the DCIReturn structure. Datum wildcarding may be used. If the class is not
DCI_PROVIDER_INSTANCE, instance identifier can not be wildcarded.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 141

dciWaitRequest() Metrics Provider Routines

If the operation is DCI_OP_LISTINSTANCES, only metric identifiers are supplied in the
DCIReturn structure, of which the datum identifier should be ignored. The instance identifiers
can be wildcarded.

If the operation is DCI_OP_GETINSTATTR, only metric identifiers are supplied in the DCIReturn
structure, of which the datum identifier should be ignored. The instance identifiers can be
wildcarded.

If the operation is DCI_OP_CONFIGURE, data is supplied in the DCIReturn structure in addition
to the metric identifiers. Each data section contains one or more DCIConfig structures,
depending on the number of instance identifiers encoded in the corresponding metric identifier.
The instance identifier can be zero length which indicates "all current and future instances".
Only datum identifier wildcards are allowed, unless the class is a DCI_PROVIDER_INSTANCES
class in which case instance identifier wildcards are allowed.

If the operation is DCI_OP_SETDATA or DCI_OP_RESERVEDATA, data is supplied in the
DCIReturn structure in addition to the metric identifiers. This data conforms to the previously
registered attributes structure. Only datum identifier wildcards are allowed, unless the class is a
DCI_PROVIDER_INSTANCES class in which case instance identifier wildcards are allowed.

The timeout parameter points to a type UMATimeVal structure that specifies the maximum time
to wait for the completion of the dciWaitRequest() call. If the timeout has expired before the call
completes, then one or more of the DCIRetval structures associated with the expanded metrics
will show a DCI_TIMEOUT status. If the timeout parameter is NULL, then this call is not subject
to a timeout. This call can be interrupted by a delivered signal; in this case, the DCIStatus
returned for the call is DCI_INTERRUPTED and it is implementation defined whether any
partial results are delivered.

If the return buffer address, bufferAddress, is zero when dciWaitRequest() is called, then
dciWaitRequest() allocates the return buffer on behalf of the caller and returns the buffer address
in bufferAddress. The caller is then responsible for subsequently freeing the allocated memory
using dciFree().

RETURN VALUES
The dciWaitRequest() routine returns [DCI_SUCCESS] if the DCI Server successfully placed a
request. Otherwise, this routine returns one of the DCI error values to summarise the failure
type.

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_NOIMPLEMENTATION] In a DCI subset implementation, the specified routine has not
been implemented.

[DCI_NOTINITIALIZED] The DCI subsystem is not currently initialised.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

[DCI_NOSPACE] The provided buffer is too small for the return structure. The
size field of the DCIReturn structure indicates the buffer size
which would have held all the associated return values. If the
count field of the DCIReturn structure is nonzero, then partial
data was written to the buffer.

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error
(for example, on a dciGetData() call). It is also implementation

142 CAE Specification

Metrics Provider Routines dciWaitRequest()

defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined
to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

[DCI_ALLOCATIONFAILURE] The DCI library was requested to provide memory for the
specified buffer and could not. The application could attempt
to allocate its own memory and try the request again.

[DCI_INVALIDARG] One of the input arguments is invalid: a negative value was
used for numIds, bufferSize is smaller than the size of a
DCIReturn structure, metricIdList was malformed, or the
methodList was malformed.

[DCI_INTERRUPTED] This call was interrupted by a signal and did not complete. It
is implementation defined whether partial results are
provided. If partial results are provided, the application may
need to amend the request list to avoid duplicating completed
requests.

The summary status of all individual DCIRetval structure status members is stored in the
DCIReturn structure status member. This summary status represents the highest severity of
status returned among all DCIRetval structures.

[DCI_FAILURE] There was at least one failure status.

[DCI_WARNING] There was at least one warning status and no failure status.

[DCI_INFORMATIONAL] There was at least one information status and no failure or
warning status.

[DCI_SUCCESS] All status returned was successful.

For each DCIRetval structure returned, the status member may contain the following:

[DCI_SUCCESS] The request succeeded and there may be associated data.

[DCI_NOACCESS] The caller does not have permission to find out if a requested
instance identifier exists or does not have access to a metric
identifier.

[DCI_NOCLASS] The requested metric class identifier is not present in the name
space.

[DCI_NOINSTANCE] The requested instance identifier is not in the name space.

[DCI_NODATUMID] The associated metricId specified a nonexistent datumId for
the specified class.

[DCI_NOMETRIC] There is no such metric identifier in the name space.

[DCI_NOWILDCARD] A class or instance wildcard cannot be used in this context.

[DCI_TIMEOUT] The associated metric could not be expanded or referenced
during the specified timeout period. This may be because the
affiliated provider could not be contacted, or because the
reference was never attempted due to an existing timeout
condition in the input request list.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 143

Metrics Provider Routines

144 CAE Specification

Chapter 7

Event Routines

This Chapter describes the interfaces which handle events.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 145

dciPostEvent() Event Routines

NAME
dciPostEvent - provider routine to post an event

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciPostEvent(
DCIMetricId *metricId, /* in */
UMAUint4 eventDataSize, /* in */
UMAUint4 eventDataCount, /* in */
UMAVarLenData *eventData /* in */

);

ARGUMENTS

metricId Address of an event metric identifier for the event to be posted.

eventDataSize Size of the event data in bytes. This must agree with the total of all size fields
in the DCIEventDataAttr structures from the DCIEventAttr structure for this
event registered in the DCIClassAttr structure.

eventDataCount Number of entries in the eventData variable length array. Note that the array
contains variable length entries; the size is passed by the provider to the
server to enable the server to place it directly in the DCIEvent (see Figure 3-6
on page 50) structure it creates for this event.)

eventData The data that should be passed on in the eventData field of the DCIEvent
structure for this event.

DESCRIPTION
The dciPostEvent() routine is used by a provider for event notification. The inputs to this routine
are the metric identifier for the event and the associated event data. If there is no associated
event data, meaning that the only information of interest for this event is simply that the event
occurred, then eventDataSize must be zero. Otherwise the data given by the event pointer must
conform to the event attributes structure this provider previously registered for this event.
Although the DCI Server cannot verify the content of the event data it does verify that the size
matches the registered attributes. Once the input arguments have been verified, then the DCI
Server packages it into a DCIEvent structure along with a timestamp and forward the event to
the consumer.

RETURN VALUES
The dciPostEvent() routine returns [DCI_SUCCESS] if the event was posted successfully.
Otherwise, dciPostEvent() returns one of the following fatal errors:

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_NOIMPLEMENTATION] In a DCI subset implementation, the specified routine has not
been implemented.

[DCI_NOTINITIALIZED] The DCI subsystem is not currently initialised.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

[DCI_INVALIDARG] One of the input arguments is invalid: a negative value was
used for numIds, bufferSize is smaller than the size of a
DCIReturn structure, metricIdList was malformed, timeout was
malformed or the address of dataSize was not provided and

146 CAE Specification

Event Routines dciPostEvent()

dataAddress was specified and set to a NULL.

[DCI_NOCLASS] The requested metric class identifier is not present in the name
space.

[DCI_NOINSTANCE] The requested instance identifier is not in the name space.

DCI_NODATUMID] The [associated metricId specified a nonexistent datumId for
the specified class.

[DCI_NOMETRIC] There is no such metric identifier in the name space.

[DCI_NOTEVENTMETRIC] The associated metricId specified a datumId which is not an
event metric.

[DCI_NOACCESS] The caller does not have permission to find out if a requested
instance identifier exists or does not have access to a metric
identifier.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 147

dciWaitEvent() Event Routines

NAME
dciWaitEvent - wait for one or more events

SYNOPSIS
#include <sys/dci.h>

DCIStatus dciWaitEvent(
DCIHandle handle, /* in */
DCIMetricId *metricIdList, /* in */
UMAUint4 numIds, /* in */
DCIEventReturn **bufferAddress, /* in/out */
UMAUint4 bufferSize, /* in */
void **dataAddress, /* in/out */
UMAUint4 *dataSize, /* in/out */
UMATimeval *timeout, /* in */
UMAUint4 eventFlags /* in */

);

ARGUMENTS

handle A handle opened on events to be waited for. This must contain at least one
valid event.

metricIdList Address of a list of metric identifiers, each of which must be an open event in
the handle argument. These events specify a subset of the handle on which to
base this function call. If metricIdList is zero, then the function call is based
on all event metrics in the handle.

numIds The number of input metric identifiers.

bufferAddress Points to the address of a return status buffer.

bufferSize The size of the return status buffer.

dataAddress Points to an address of a buffer to use to store event data. If dataAddress is
NULL, then the system allocates a buffer, setting the value of dataSize to the
size of the allocated buffer.

dataSize Address of the size of the return data buffer.

timeout Pointer to a UMATimeVal structure that specifies the maximum time to wait
for this request to complete. When timeout is NULL, dciWaitEvent() blocks
indefinitely.

eventFlags Bitmapped flags as described below.

DESCRIPTION
The dciWaitEvent() routine waits for any event in both the handle and the metricIdList to occur. If
this metricIdList subset of the handle specifies a wildcard that when expanded would contain any
polled metrics, that is, non events, they are ignored without producing any errors. An error
results if any individual, that is, non-wildcarded, polled metric is specified by the handle and
metricIdList combination.

dciWaitEvent() always separates the event data it is returning and the status return buffers in
order to allow consumers in an event data acquisition loop to archive successfully acquired data
and discard the status structure. dciWaitEvent() uses bufferAddress to write summary
information about all events that have occurred and uses dataAddress to write the associated
event data. If the return status buffer address is zero, then dciWaitEvent() allocates the return
status on behalf of the caller and return its address in bufferAddress. If the return data buffer

148 CAE Specification

Event Routines dciWaitEvent()

address is zero, then dciWaitEvent() allocates a data buffer of size *dataSize on behalf of the caller
and return its address in dataAddress. The caller is responsible for subsequently freeing the
allocated memory using dciFree().

The following flags may be specified in eventFlags:

DCI_EVENT_NOBLOCK
Do not block. Return immediately. This flag is mutually exclusive with the
DCI_EVENT_FILLBUFFER flag.

DCI_EVENT_FILLBUFFER
This call should block until the buffer specified by dataAddress or the system allocated buffer
if dataAddress was zero, is full. Any event that could not be fully written to dataAddress
without overflowing the dataAddress buffer is buffered (or lost) using the policy for the
respective handle and is not be reported in the return structure for this call. This flag is
mutually exclusive with the DCI_EVENT_NOBLOCK flag.

This routine can be used with the class identifier wildcard value, DCI_ALL, and instance level
wildcarding. Any attribute structure changes to the subsetted name space since the handle was
created, or the addition of classes and instances to wildcarded collections are indicated by an
appropriate status return value. The timeout parameter allows consumers to set a maximum
event wait period.

If event buffering was not specified when the handle was opened, it is highly likely that events
that a consumer is interested in can be lost. If an event occurs when no consumer is blocked in
dciWaitEvent() and buffering of events has not been enabled, then the event may be lost. Lost
events are reported in the DCIEventReturn struct of the next dciWaitEvent() call using that
handle. If buffering is enabled and the buffer is not full, the event is saved in the per handle
buffer until the next dciWaitEvent() call on that handle. If the buffer space is full when the event
occurs, either one or more previous events are discarded, or the current event is discarded
depending on the buffering policy set in dciOpen(). If a consumer is using the metricIdList to
specify only a subset of the events in the handle, then the behaviour of the system event
buffering mechanisms is implementation dependent.

With no flags set, the default behaviour of dciWaitEvent() is to return after collecting only the
events that are currently buffered or that occur during the call, or if none, block until at least one
event has occurred. This behaviour can be modified by DCI_EVENT_NOBLOCK to allow it to
return without any events occurring or by DCI_EVENT_FILLBUFFER to allow it to continue to
wait for further events. Generation of status information of informational severity alone does
not cause dciWaitEvent() to return prematurely.

If event data is returned from a class which could contain invalid data (the associated
DCIClassAttr attribute flag has DCI_POSSIBLEINVALIDDATA set), and a the entire class of
data is returned, the application is required to check each metric for validity before extracting its
associated data.

The timeout parameter points to a type UMATimeVal structure that specifies the maximum time
to wait for the completion of the dciWaitEvent() call. If the timeout has expired before the call
completes, then one or more of the DCIRetval structures associated with the expanded metrics
will show a DCI_TIMEOUT status. If the timeout parameter is NULL, then this call is not subject
to a timeout. This call can be interrupted by a delivered signal; in this case, the DCIStatus
returned for the call is DCI_INTERRUPTED and it is implementation defined whether any
partial results are delivered.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 149

dciWaitEvent() Event Routines

RETURN VALUES
The dciWaitEvent() routine returns [DCI_SUCCESS] if the following DCIEventReturn structure
was written into the return status buffer, bufferAddress.

typedef struct DCIEventReturn {
UMAUint4 size;
UMAUint4 numEvents;
UMAUint4 numLostEvents;
UMAVarLenDescr eventStatus;
UMAUint4 buffer_offset;
UMAVarLenData data;

} DCIEventReturn;

where the structure elements are as follows:

size Total number of bytes being returned. Must be a multiple of 4.

numEvents Number of events being reported.

numLostEvents Number of events in this handle lost or unrecorded for any reason since the
last time a DCIEventReturn structure was returned for this handle.

eventStatus Descriptor for the variable sized data comprising the event status information.
The event status information is a sequence of numEvents and consequent
DCIStatus values, one for each event recorded in the dataAddress buffer, and
in the same order.

buffer_offset This contains the offset from the beginning of the buffer to the event data.

data This is a place holder that conceptually contains all the data pointed to by the
eventStatus.offset fields.

On return, dataAddress contains numEvents and consequent DCIEvent structures, one for each
event that occurred.

If DCI_EVENT_NOBLOCK was set and no events were returned, the numEvents field of the
DCIEventReturn is zero and the data area contains no DCIStatus. The numLostEvents field may
be non zero in this case if events were lost since the last dciWaitEvent() call using this handle.

Note that [DCI_SUCCESS] could be returned and no events collected if the handle contained no
events or if all events in the handle were disabled.

If [DCI_SUCCESS] was not returned, dciWaitEvent() returns one of the following fatal errors:

[DCI_NOTPRESENT] The DCI service is not available.

[DCI_NOIMPLEMENTATION] In a DCI subset implementation, the specified routine has not
been implemented.

[DCI_NOTINITIALIZED] The DCI subsystem is not currently initialised.

[DCI_SYSERROR] An internal error has occurred (such as a shortage of
resources) that may be beyond the control of the application.
A vendor-specific error code is placed in the variable errno.

[DCI_NOSPACE] The provided buffer is too small for the return structure. The
size field of the DCIReturn structure indicates the buffer size
which would have held all the associated return values. If the
count field of the DCIReturn structure is nonzero, then partial
data was written to the buffer.

150 CAE Specification

Event Routines dciWaitEvent()

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error
(for example, on a dciGetData() call). It is also implementation
defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined
to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

[DCI_ALLOCATIONFAILURE] The DCI library could not allocate the memory for the return
buffer.The application could attempt to allocate its own
memory and try the request again.

[DCI_BADHANDLE] The handle provided is not currently open.

[DCI_INVALIDARG] One of the input arguments is invalid: a negative value was
used for numIds, bufferSize is smaller than the size of a
DCIEventReturn structure, or metricIdList was malformed.

[DCI_BADFLAGS] One or more mutually exclusive flags were used together.

[DCI_TIMEOUT] A timeout occurred during data collection. Some events may
have been reported.

[DCI_INTERRUPTED] This call was interrupted by a signal and did not complete. It
is implementation defined whether partial results are
provided. If partial results are provided, the application may
need to amend the request list to avoid duplicating completed
requests.

The summary status of all individual DCIRetval structure status members is stored in the
DCIReturn structure status member. This summary status represents the highest severity of
status returned among all DCIRetval structures.

[DCI_FAILURE] There was at least one failure status.

[DCI_WARNING] There was at least one warning status and no failure status.

[DCI_INFORMATIONAL] There was at least one information status and no failure or
warning status.

[DCI_SUCCESS] All status returned was successful.

For each DCIRetval structure returned, the status member may contain the following:

[DCI_SUCCESS] The request succeeded and there may be associated data.

[DCI_NOCLASS] The requested metric class identifier is not present in the name
space.

[DCI_NOINSTANCE] There is no such instance identifier in the handle.

[DCI_NOMETRIC] There is no such metric identifier in the name space.

[DCI_NOTEVENTMETRIC] The associated metricId specified a datumId which is not an
event metric.

[DCI_NOACCESS] The caller does not have permission to find out if a requested
instance identifier exists or does not have access to a metric
identifier.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 151

dciWaitEvent() Event Routines

[DCI_NOSPACE] There was not enough room in the return buffer to write the
event data for the fired event.

It is implementation defined whether or not partial data is
available in the buffer in the case of a DCI_NOSPACE error
(for example, on a dciGetData() call). It is also implementation
defined whether or not the state of the DCI changes given that
a DCI_NOSPACE error has occurred (for example, on a
wildcarded dciRemoveInstances() call). In each of the above
cases, individual DCIRetval status values must be examined
to determine whether or not the data is valid, and whether or
not the requested change actually occurred.

[DCI_CLASSESADDED] This new class has been added within the scope of a
wildcarded class request.

[DCI_INSTANCESADDED] This new instance has been added within the scope of a
wildcarded instance request.

[DCI_NOTENABLED] The requested metric is currently not enabled by its provider.

[DCI_TIMEOUT] The associated metric could not be expanded or referenced
during the specified timeout period. This may be because the
affiliated provider could not be contacted, or because the
reference was never attempted due to an existing timeout
condition in the input request list.

152 CAE Specification

Appendix A

C Language Header Files

The include files <dci.h> and <uma.h> are used with the C language to define the DCI data
types and structures. They also include the function prototypes for all exported DCI interfaces.

A.1 <uma.h>
The <uma.h> header file is given in the MLI Specification, which is in Part 2 Appendix A of this
publication.

A.2 <dci.h>
The <dci.h> header file is given below.

#ifndef _SYS_DCI_H_
#define _SYS_DCI_H_

/* dci.h - exported interfaces and structures for the Data Capture Interface
*
* Description:
*
* ****************** NOTICE ***********************************
* The <dci.h>, <mli.h> and <uma.h> header files
* introduce UMA symbols which may conflict with other
* symbols defined in an application. Symbols with the
* following prefixes are therefore reserved to UMA:
* DCI
* dci
* UMA
* UMR
* UMS
*
* Note that the header files are provided as advisory
* reference examples.
* ****************** END OF NOTICE ****************************
*/

#include <sys/uma.h>

#define DCI_ALL 0xffffffff /* Wildcard value classes and datums */
#define DCI_ALL_INSTANCES 0x00000000 /* Wildcard value for instances */

/* The return status values for DCI API calls */

/* the summary values are bitmasks used to determine severity of result */
#define DCI_FAILURE 0x80000000
#define DCI_WARNING 0x40000000
#define DCI_INFORMATIONAL 0x20000000
#define DCI_SUCCESS 0x10000000

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 153

<dci.h> C Language Header Files

#define DCI_FATAL 0x08000000

/* fatal errors returned from the dci routine itself */
#define DCI_INITIALIZED (DCI_FATAL | 0x01)
#define DCI_NOTINITIALIZED (DCI_FATAL | 0x02)
#define DCI_NOTPRESENT (DCI_FATAL | 0x03)
#define DCI_SYSERROR (DCI_FATAL | 0x04)
#define DCI_INVALIDARG (DCI_FATAL | 0x05)
#define DCI_NOSPACE (DCI_FATAL | 0x06)
#define DCI_INTERRUPTED (DCI_FATAL | 0x07)
#define DCI_BADHANDLE (DCI_FATAL | 0x08)
#define DCI_ALLOCATIONFAILURE (DCI_FATAL | 0x09)
#define DCI_BADFLAGS (DCI_FATAL | 0x0a)
#define DCI_NOIMPLEMENTATION (DCI_FATAL | 0x0b)

/* errors returned as individual or summary status */
#define DCI_NOTEVENTMETRIC (DCI_FAILURE | 0x01)
#define DCI_NOCLASS (DCI_FAILURE | 0x02)
#define DCI_NOINSTANCE (DCI_FAILURE | 0x03)
#define DCI_NOMETRIC (DCI_FAILURE | 0x04)
#define DCI_NOTEXT (DCI_FAILURE | 0x06)
#define DCI_NOWILDCARD (DCI_FAILURE | 0x07)
#define DCI_CLASSEXISTS (DCI_FAILURE | 0x08)
#define DCI_INSTANCEEXISTS (DCI_FAILURE | 0x09)
#define DCI_NODATUMID (DCI_FAILURE | 0x0a)
#define DCI_METHODTYPEUNAVAILABLE (DCI_FAILURE | 0x0b)
#define DCI_NOTPOLLEDMETRIC (DCI_FAILURE | 0x0c)
#define DCI_BADCONFIRM (DCI_FAILURE | 0x0d)
#define DCI_NOTSETTABLE (DCI_FAILURE | 0x0e)
#define DCI_NOTRESERVABLE (DCI_FAILURE | 0x0f)
#define DCI_RESERVED (DCI_FAILURE | 0x10)
#define DCI_NOTRESERVED (DCI_FAILURE | 0x11)
#define DCI_NOTQUERYABLE (DCI_FAILURE | 0x12)
#define DCI_METHODOPNOTSUPPORTED (DCI_FAILURE| 0x13)
#define DCI_INVALIDMETHODOP (DCI_FAILURE | 0x14)
#define DCI_NOTENABLED (DCI_FAILURE | 0x15)
#define DCI_CLASSNOTPERSISTENT (DCI_FAILURE | 0x16)
#define DCI_INSTANCENOTPERSISTENT (DCI_FAILURE | 0x17)
#define DCI_CLASSNOTEMPTY (DCI_FAILURE | 0x18)
#define DCI_INVALIDDATA (DCI_FAILURE | 0x19)
#define DCI_DERIVEDDATA (DCI_FAILURE | 0x1a)
#define DCI_METHODERROR (DCI_FAILURE | 0x1b)
#define DCI_SUBSETUNSUPPORTED (DCI_FAILURE | 0x1c)
#define DCI_DCIMAJORUNSUPPORTED (DCI_FAILURE | 0x1d)
#define DCI_DCIMINORUNSUPPORTED (DCI_FAILURE | 0x1e)
#define DCI_INVALIDFIELD (DCI_FAILURE | 0x1f)
#define DCI_TIMEOUT (DCI_FAILURE | 0x20)
#define DCI_NOACCESS (DCI_FAILURE | 0x21)
#define DCI_EVENTSUPPORT (DCI_FAILURE | 0x22)

/* informational individual or summary status */
#define DCI_CLASSADDED (DCI_INFORMATIONAL | 0x01)
#define DCI_INSTANCEADDED (DCI_INFORMATIONAL | 0x02)
#define DCI_NOSUCHTRANSACTION (DCI_INFORMATIONAL | 0x03)
#define DCI_INVALIDDATAPRESENT (DCI_INFORMATIONAL | 0x04)

typedef UMAUint4 DCIStatus; /* returned by all DCI routines */
typedef UMAUint4 DCIHandle; /* returned by dciOpen() */
typedef UMAUint4 DCIDatumId; /* the datumId */

154 CAE Specification

C Language Header Files <dci.h>

/* macros to access the datumId byte by byte. The address of
* the DCIDatumId is presented, and the address of the specified
* byte is produced.

*/
#define dcidatumidarg1(datumidp) ((char *)((*datumidp> >24)&0xff))
#define dcidatumidarg2(datumidp) ((char *)((*datumidp> >16)&0xff))
#define dcidatumidarg3(datumidp) ((char *)((*datumidp> >8)&0xff))
#define dcidatumidself(datumidp) ((char *)((*datumidp> >0)&0xff))

/* Reserved DCIDatumId values */
#define DCI_INVALIDDATUMID 0x000000ff
#define DCI_FINALDATA_EVENT 0x000000f8
#define DCI_INSTANCEADDED 0x000000f7
#define DCI_INSTANCEREMOVED 0x000000f6
#define DCI_DATACHANGED 0x000000f5

/*===
* DCI Versioning structure
*/

/* bitmapped flags to indicate the level of implementation support.
* These are used as part of the structure passed from dciInitialize
* to indicate the specific level of support available in an
* implementation.
*/

#define DCI_SUBSET_BASIC 0x01
#define DCI_SUBSET_MULTIPLE_PROVIDERS 0x02
#define DCI_SUBSET_ACCESS_CONTROL 0x04
#define DCI_SUBSET_EVENT_SUPPORT 0x08
#define DCI_SUBSET_SET_CAPABILITY 0x10

/* DCI version structure.
* This is passed into the dciInitialize() call as a request structure.
* As such, it specifies a request to connect to a specific DCI API
* version. A DCI version structure is also passed as an output parameter
* indicating the level of support that this particular DCI implementation
* is actually making available.
*/

typedef struct DCIVersion {
UMAUint4 DCIMajorVersion;
UMAUint4 DCIMinorVersion;
UMAUint4 DCISubsetMask;
UMAUint4 DCIVendorExtensions;

} DCIVersion;

typedef DCIVersion DCIVersion_1;

/* the major and minor version numbers of this dci.h */
#define DCI_MAJORVERSION 1
#define DCI_MINORVERSION 0

/* Compile time constants that indicate which DCI subsets are implemented
* Implementers should change the value of the appropriate constant
* if the corresponding subset is present in an implementation.
* If a subset is not implemented the constant should have value 0.
* For illustrative purposes below we show the assignments assuming only
* Basic support is implemented.
*/

#define _DCI_SUBSET_BASIC DCI_SUBSET_BASIC

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 155

<dci.h> C Language Header Files

#define _DCI_SUBSET_MULTIPLE_PROVIDERS 0x00 /*DCI_SUBSET_MULTIPLE_PROVIDERS*/
#define _DCI_SUBSET_ACCESS_CONTROL 0x00 /*DCI_SUBSET_ACCESS_CONTROL */
#define _DCI_SUBSET_EVENT_SUPPORT 0x00 /*DCI_SUBSET_EVENT_SUPPORT */
#define _DCI_SUBSET_SET_CAPABILITY 0x00 /*DCI_SUBSET_SET_CAPABILITY */
#define _DCI_SUBSET_MASK _DCI_SUBSET_BASIC | \

_DCI_SUBSET_MULTIPLE_PROVIDERS | \
_DCI_SUBSET_ACCESS_CONTROL | \
_DCI_SUBSET_EVENT_SUPPORT | \
_DCI_SUBSET_SET_CAPABILITY

/*===
* DCI Namespace identifier structures
*/

/*
* The DCIClassId structure.
*
* The class identifier is a variable length array of 4 byte
* unsigned integers, where each integer is referred to as a
* "level". Use the following macros to access this structure:
* dciclassidlen - returns the number of levels specified
* dciclassidlevel - returns the address of the integer
* for that level of the class identifier.
*/

typedef struct DCIClassId {
UMAUint4 size; /* size of the fixed and variable */

/* length portions */
UMAVarLenData data; /* variable length data */

/* (the identifier) */
} DCIClassId;

/* The DCIInstanceId structure
* An instance can have multiple levels, where each level name
* is stored in a variable length data structure.
* The ’size’ field represents the combined size of the
* complete structure (i.e., all level names).
* The ’inputMask’ field is a bitmask and indicates which
* instance levels have entries in the variable length
* ’data’ structure. If an instance level’s inputMask
* bit is not set, the level is wildcarded.
* The ’outputMask’ is used to reduce the size of the
* returned instance id from a dci call. It indicates
* to the provider/DCI Server which levels should be
* included in the returned instance ids.
*/

typedef struct DCIInstanceId {
UMAUint4 size; /* size of the fixed and */

/* variable length portions */
UMAUint4 inputMask; /* input mask, 32 levels */
UMAUint4 outputMask; /* output mask, 32 levels */
UMAVarLenData data; /* variable length data */

/* (the instance level */
/* identifiers) */

} DCIInstanceId;

/* Definitions for the instance header size, everything but the
* instLevels, and the maximum number of levels. The latter is
* dictated by the number of bits in the inputMask field. A

156 CAE Specification

C Language Header Files <dci.h>

* value of 0x00000000 for inputMask is reserved for a
* completely wildcarded instance (see DCI_ALL_INSTANCES).
*/

#define DCI_MAXINSTLEVELS 32
#define DCI_MAXCLASSLEVELS 256

typedef struct DCIInstLevel {
UMADataType type; /* type of the instance */

/* level value */
UMAInstTagType itype; /* instance type */
UMAUint4 size; /* size of instance level */

/* value in bytes */
} DCIInstLevel;

/* The DCIMetricId structure
* A metric identifier consists of a Class & Instance identifier
* Both of these are variable length records with a size as their
* first field.
*/

typedef struct DCIMetricId {
UMAUint4 size; /* size of whole structure */
UMAVarLenDescr classId; /* descriptor for the */

/* variable length DCIClassId */
UMAVarLenDescr instanceId; /* descriptor for the */

/* variable length DCIInstanceId */
DCIDatumId datumId; /* the datum identifier */
UMAVarLenData data; /* data of DCIClassId */

/* and DCIInstanceId */
} DCIMetricId;

/* The DCILabel structure
* A DCI label can be used to create a human
* readable name of a metric class, instance or datum. A label
* has two parts, a part to support internationalised text and a
* default ascii label should the I18N mechanism fail. The
* former might not be the I18N text itself but a system
* dependent structure used to generate text. The ascii
* data is a null terminated character string padded to a four
* byte boundary. The i18n data is an octet string (which is
* not necessarily null-terminated).
*/

typedef struct DCILabel {
UMAUint4 size; /* size of entire structure */
UMAVarLenDescr ascii; /* descriptor for the variable */

/* length DCITextString for ascii */
UMAElementDescr i18n; /* descriptor for the variable */

/* length data for I18N */
UMAVarLenData data; /* data of DCILabel for ascii and i18n */

} DCILabel;

/* Data Attribute Structure */
typedef struct DCIDataAttr {

UMAUint4 size; /* size of whole structure */
DCIDatumId datumId; /* datum identifier for this metric */
UMADataType type; /* datum type */
UMAUnit units; /* units of this statistic */
UMAUint4 flags; /* method operations flags */

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 157

<dci.h> C Language Header Files

UMAUint4 offset; /* offset of this data when a */
/* whole class is returned */

UMAVarLenDescr label; /* descriptor for the variable */
/* length DCILabel */

UMAVarLenData data; /* the DCILabel */
} DCIDataAttr;

typedef struct DCIClassAttr {
UMAUint4 size; /* size of whole structure */
UMAUint4 flags; /* special class state */
UMAVarLenDescr access; /* descriptor for DCIAccess */

/* structure */
UMAVarLenDescr method; /* descriptor for optional */

/* DCIMethod structure */
UMAVarLenDescr label; /* label data */
UMAArrayDescr instLevel; /* descriptor for DCIInstLevel array */
UMAVarArrayDescr dataAttr; /* descriptor for DCIDataAttr array */
UMAVarArrayDescr eventAttr; /* descriptor for DCIEventAttr array */
UMAElementDescr extensions; /* extension data */
UMAVarLenData data; /* dataattr, eventattr, label */

/* DCIMethod,instance level, ext, */
/* and DCIAccess */

} DCIClassAttr;

/* bitmapped flags for DCIClassAttr */
#define DCI_ENABLED 0x01 /* (!enabled = disabled) */
#define DCI_NOTIMPLEMENTED 0x02 /* unimplemented class */
#define DCI_NOTAPPLICABLE 0x04 /* not applicable to the system */
#define DCI_OBSOLETE 0x08 /* class is being phased out */
#define DCI_PROVIDER_INSTANCE 0x10 /* provider */
#define DCI_PERSISTENT_CLASS 0x20 /* keep class on exit/exec */
#define DCI_POSSIBLEINVALIDDATA 0x40 /* class may contain metrics */

/* that are invalid for certain */
/* instances of the class */

typedef struct DCIEventDataAttr {
UMAUint4 size; /* size of the whole structure */
UMADataType type; /* format of data returned */
UMAUnit units; /* units of data returned */
UMAUint4 offset; /* offset of data in return area */
UMAVarLenDescr label; /* descriptor for the variable */

/* length DCILabel */
UMAVarLenData data; /* the DCILabel */

} DCIEventDataAttr;

typedef struct DCIEventAttr {
UMAUint4 size; /* size of whole structure */
DCIDatumId datumId; /* datum identifier for this metric */
UMAVarLenDescr label; /* descriptor for the variable */

/* length DCILabel */
UMAVarArrayDescr eventDataAttr; /* descriptor for the array */

/* of DCIEventDataAttrs */
UMAVarLenData data; /* the DCILabel and */

/* DCIEventDataAttr array */
} DCIEventAttr;

typedef struct DCIEvent {
UMAUint4 eventHeader; /* the event header */
UMAVarLenData data; /* data for the event */

158 CAE Specification

C Language Header Files <dci.h>

} DCIEvent;

/* Bitmapped flags used in the first 12 bits of the event header */
/* The flags indicate which items are include in the posted event */
/* If included, items appear in the same order as their corresponding */
/* bit in the bitmap (e.g., header first, classid next ...) */
#define DCI_EVENTHDR 0x001 /*include event header */
#define DCI_EVENTHDRCLASSID 0x002 /*include a class id */
#define DCI_EVENTHDRINSTANCEID 0x004 /*include an instance id */
#define DCI_EVENTHDRTIMESTAMP 0x008 /*include a 64-bit time stamp */
#define DCI_EVENTHDRVENDORTIMESTAMP 0x010 /*include an implementation */

/*defined timestamp */
#define DCI_EVENTHDRCOMPTIMESTAMP 0x020 /*include a compressed timestamp*/
#define DCI_EVENTHDRSTREAMID 0x040 /*include an event stream id */
#define DCI_EVENTHDRDATA 0x080 /*include the event data */

/* DCIEventRetval is returned upon a dciWaitEvent() call */
typedef struct DCIEventRetval {

UMAUint4 size; /* size of the whole structure */
UMAUint4 numEvents; /* number of events reported */
UMAUint4 numLostEvents; /* number of events lost */

/* and unrecorded */
UMAVarLenDescr eventStatus; /* descriptor for array of */

/* DCIStatus values */
UMAUint4 bufferhead; /* may contain the offset */

/* for oldest event */
UMAVarLenData data; /* variable length data */

/* (DCIStatus,implstatus) */
} DCIEventRetval;

/*==
* The DCIReturn structure
* All DCI routines return the same type of structure. The
* structure consists of size and count fields followed by
* a variable sized array of DCIRetval structures. There
* is one array element for every input metric. Each array
* element contains status values, and offsets to the
* input argument and returned data.

typedef struct DCIRetval {
DCIStatus status; /* status for input argument */
UMAUint4 metricOffset; /* offset to input id value */
UMAUint4 dataOffset; /* offset to data value */
UMAUint4 dataSize; /* size of data returned in bytes */

} DCIRetval;

typedef struct DCIReturn {
UMAUint4 size; /* total bytes in DCIReturn */
UMAUint4 count; /* number of returned elements */
DCIStatus sumstatus; /* summary status */
UMATimeSpec startTime; /* Start time of operation */
UMATimeSpec endTime; /* End time of operation */
DCIRetval retval[1]; /* status, input id,i and output */

} DCIReturn;

typedef struct DCIAccess {
UMAUint4 size; /* size of the whole DCIAccess structure */
UMAVarLenData access; /* byte array containing the access */

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 159

<dci.h> C Language Header Files

/* information */
} DCIAccess;

/*
* DCIInstAttr -
* variable length array holding the attributes of an instance.
*/

typedef struct DCIInstAttr {
UMAUint4 size; /* size of the whole structure */
UMAUint4 flags; /* special instance state */
UMAVarLenDescr access; /* descriptor for the DCIAccess structure */
UMAElementDescr extension; /* descriptor for variable length extns */
UMAVarLenDescr label; /* descriptor for variable length DCILabel*/
UMAVarLenData data; /* data for DCIAccess, DCILabel */

/* and extensions */
} DCIInstAttr;

/* bitmapped flags for DCIInstAttr */
#define DCI_PERSISTENT_INSTANCE 0x01 /* keep instance on exit/exec */

/* structure to indicate invalid data in a class.
* This structure is returned for dciGetData requests on the
* DCI_INVALIDDATUMID metric in the class (if the class is enabled
* for invalid data, as indicated with the DCI_POSSIBLEINVALIDDATA
* flag).
* The structure consists of a size indicating total size of the
* structure, and an array of datumids. Each entry in the ids[]
* array indicates a datum that is invalid for this particular
* instance of the class.
*/

struct DCIInvalidData {
UMAUint4 size;
DCIDatumId ids[1]; /* variable length component */

}
#define dciinvaliddatacount(invdatap) ((invdatap->size)/sizeof(DCIDatumId))
#define dciinvaliddatumid(invdatap,index) (invdatap[index+1])

/* The DCIMethod structure
* This is a variable sized structure that describes the method
* metric providers use to deliver metrics. This structure is
* only used by the provider routines and is not exported to
* consumers. The method includes the method type, a variable
* sized method field which is padded to a four byte boundary,
* and an instance attribute structure.
*/

enum DCIMethodType {
DCI_WAIT = 0, /* provider will block in dciWaitRequest */
DCI_ADDRESS = 1, /* data retrieved from provider address */
DCI_CALLBACK = 2, /* a provider function call is issued */
DCI_STORE = 3 /* data is periodically stored by provider */

};
typedef enum DCIMethodType DCIMethodType;

typedef struct DCIMethod{
UMAUint4 size; /* size of this structure */
DCIMethodType type; /* how data will be retrieved */
UMAElementDescr method; /* descriptor for variable */

160 CAE Specification

C Language Header Files <dci.h>

/* length method data */
UMAVarLenData data; /* data for method */

} DCIMethod;

/* methods operations */
#define DCI_OP_GETDATA 0x01
#define DCI_OP_SETDATA 0x02
#define DCI_OP_RESERVEDATA 0x04
#define DCI_OP_RELEASEDATA 0x08
#define DCI_OP_LISTINSTANCES 0x10
#define DCI_OP_GETINSTATTR 0x20
#define DCI_OP_CONFIGURE 0x40

typedef struct DCIInstanceData {
UMAUint4 size; /* size of the whole structure */
UMAUint4 count; /* number of elements in each array */
UMAVarLenDescr instanceIdList; /* descriptor for DCIInstanceId array */
UMAVarLenDescr instAttrList; /* descriptor for DCIInstAttr array */
UMAVarLenData data; /* DCIInstanceId and DCIInstAttr arrays*/

} DCIInstanceData;

typedef struct DCIAddressMethodData {
void *address; /* the base address of a memory region */
UMAUint4 size; /* the size of the region in bytes */
void *sync; /* opaque memory synchronisation token */

} DCIAddressMethodData;

typedef struct DCIConfig {
UMAUint4 size; /* total structure size, in bytes */
UMAUint4 flags; /* configuration request */
UMAElementDescr configdata; /* descriptor for the auxiliary */

/* config info */
UMAVarLenData data; /* auxiliary config data starts here */

} DCIConfig;

/* These flags must exist in the lower half of the word */
#define DCI_ENABLE 0x01 /* enable the metrics */
#define DCI_DISABLE 0x02 /* disable the metrics */
#define DCI_CONFIGURATION 0x04 /* configuration data is passed to provider */
#define DCI_EVENT_ENABLE 0x0008
#define DCI_EVENT_DISABLE 0x0010
#define DCI_BUFFER_EVENTS_DISCARD 0x0020
#define DCI_BUFFER_EVENTS_OVERWRITE 0x0040
#define DCI_BUFFER_EVENTS_GETSIZE 0x0080
#define DCI_BUFFER_EVENTS_SETSIZE 0x0100
#define DCI_BUFFER_EVENTS_POLICY 0x0200

#define DCI_QUERYABLE 0x10000 /* polled metric is gettable */
#define DCI_SETTABLE 0x20000 /* polled metric is settable */
#define DCI_RESERVABLE 0x40000 /* polled metric is reservable */

/* dciWaitEvent() eventflags */
#define DCI_EVENT_NOBLOCK 0x01 /* return with any pending events */

/* immediately */
#define DCI_EVENT_FILLBUFFER 0x02 /* return when the fillbuffer is */

/* almost full */

/* DCI function prototypes. The function prototypes are always enabled

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 161

<dci.h> C Language Header Files

* except _NO_PROTO is #define’d.
*
*/

#ifndef _NO_PROTO
/* Basic support */
DCIStatus dciInitialize(DCIVersion *request, DCIVersion *response);
DCIStatus dciRegister(DCIClassId *classId, DCIClassAttr *classAttr,

DCIReturn **bufferAddress, UMAUint4 bufferSize);
DCIStatus dciTerminate(void);
DCIStatus dciListClassId(DCIHandle handle,

DCIClassId *classIdList,UMAUint4 numIds,
DCIReturn **bufferAddress, UMAUint4 bufferSize);

DCIStatus dciListInstanceId(DCIHandle handle,
DCIMetricId *metricIdList,UMAUint4 numIds,
DCIReturn **bufferAddress, UMAUint4 bufferSize,
UMATimeVal *timeout);

DCIStatus dciOpen(DCIHandle *handle, DCIMetricId *metricIdList,
UMAUint4 numIds, DCIReturn **bufferAddress, UMAUint4 bufferSize,
UMAUint4 handleflags, UMATimeVal *timeout);

DCIStatus dciClose(DCIHandle handle);
DCIStatus dciGetClassAttributes(DCIHandle handle, DCIClassId *classIdList,

UMAUint4 numIds, DCIReturn **bufferAddress, UMAUint4 bufferSize);
DCIStatus dciGetInstAttributes(DCIHandle handle,DCIMetricId *metricIdList,

UMAUint4 numIds, DCIReturn **bufferAddress, UMAUint4 bufferSize,
UMATimeVal *timeout);

DCIStatus dciConfigure(DCIHandle handle, DCIMetricId *metricIdList,
DCIConfig *configlist, UMAUint4 numIds, DCIReturn **bufferAddress,
UMAUint4 bufferSize, UMATimeVal *timeout);

DCIStatus dciGetData(DCIHandle handle, DCIMetricId *metricIdList,
UMAUint4 numIds, DCIReturn **bufferAddress, UMAUint4 bufferSize,
void **dataAddress, UMAUint4 *datasize, UMATimeVal *timeout);

DCIStatus dciSetData(DCIHandle handle, DCIMetricId *metricIdList,
UMAUint4 numIds, UMAUint4 operation, UMAUint4 *pConfirm,
DCIReturn **bufferAddress, UMAUint4 *bufferSize,
void *dataAddress, UMAUint4 dataSize, UMATimeVal *timeout);

DCIStatus dciFree(void *ptr);
void *dciAlloc(UMAUint4 size);
void dciPerror(DCIStatus status, int theerrno, char *membuf,

int bufsize, char *fmt, ...);
DCIStatus dciAddHandleMetric(DCIHandle handle, DCIMetricId *metricIdList,

UMAUint4 numIds, DCIReturn **bufferAddress, UMAUint4 bufferSize,
UMATimeVal *timeout);

DCIStatus dciRemoveHandleMetric(DCIHandle handle, DCIMetricId *metricIdList,
UMAUint4 numIds, DCIReturn **bufferAddress,
UMAUint4 bufferSize, UMATimeVal *timeout);

/* Multiple Providers */
DCIStatus dciAddInstance(DCIClassId *classId,

DCIInstanceId *instanceId, DCIInstAttr *instAttr,
DCIMethod *method,
DCIReturn **bufferAddress, UMAUint4 bufferSize);

DCIStatus dciRemoveInstance(DCIMetricId *metricId,
DCIReturn **bufferAddress, UMAUint4 bufferSize);

DCIStatus dciWaitRequest(DCIMetricId *metricIdList, UMAUint4 numIds,
UMAUint4 *operation, UMAUint4 *transactionID,
DCIReturn **bufferAddress,
UMAUint4 bufferSize, UMATimeVal *timeout);

DCIStatus dciPostData(UMAUint4 operation, UMAUint4 transactionID,
DCIReturn *status, void *data, UMAUint4 dataSize,

162 CAE Specification

C Language Header Files <dci.h>

DCIReturn **bufferAddress, UMAUint4 bufferSize);
DCIStatus dciUnregister(DCIClassId *classId,

DCIReturn **bufferAddress, UMAUint4 bufferSize);
DCIStatus dciSetClassAccess(DCIClassId *classIdList,DCIAccess *accessList,

UMAUint4 numIds,DCIReturn **bufferAddress, UMAUint4 bufferSize);
DCIStatus dciSetInstAccess(DCIMetricId *metricIdList,DCIAccess *accessList,

UMAUint4 numIds,DCIReturn **bufferAddress, UMAUint4 bufferSize,
UMATimeVal *timeout);

/* Event Delivery */
DCIStatus dciWaitEvent(DCIHandle handle, DCIMetricId *metricIdList,

UMAUint4 numIds, DCIEventReturn **bufferAddress,
UMAUint4 bufferSize, void **dataAddress, UMAUint4 *dataSize,
UMATimeVal *timeout , UMAUint4 eventFlags);

DCIStatus dciPostEvent(DCIMetricId *metricId,
UMAUint4 eventDataCount, UMAUint4 eventDataSize,
UMAVarLenData *eventData);

#endif /* _NO_PROTO */

#endif /* _SYS_DCI_H_ */

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 163

C Language Header Files

164 CAE Specification

Glossary

API
Application Programming Interface. A standard interface for program access to a set of services.
The DCI API is defined in this document.

Data Capture Interface
The API for the Data Capture Layer.

Data Capture Layer
The lowest layer in the UMA metrics architecture. It is concerned with the collection of raw data
from the system.

DCI
Data Capture Interface

DCI server
An abstraction provided by the DCI. The DCI server provides a set of services to metrics
providers and consumers.

DCL
Data Capture Layer

event, event metric
An event is a metric. An occurrence of some activity of interest to a metrics consumer (for
example, thread termination).

i18n
abbreviation used in this specification for the term internationalization (which has 18 letters
between its first and last letters).

metric
A single measurement. Metrics have unique identifiers defined through the metrics name space.
A metric is either a polled metric (indicating some statistic or other data) or it is an event. Polled
metrics have metric values that can be obtained by querying the DCI. Events may have
associated data returned with the event when it occurs. (See Section 3.4.3 on page 47).

metric class
Metrics are grouped into metric classes. Classes are organised in a hierarchy. A metric class
holds no metric values. It is simply a placeholder in the namespace. It should be viewed as a
template.

metric class instance
Metric values are associated with instantiations of metric classes. For example, there could be a
class for per-thread statistics; associated with this class could be many instances, each one
identified by its thread id. A particular thread’s statistics would be available by querying the
DCI for that specific metric class instance.

metrics consumer
Any application which needs to import metrics.

metrics provider
Any subsystem which has metrics to export. The subsystem can either be the operating system
or applications.

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 165

Glossary

metric value
The value of a polled metric is referred to as a metric value. Note that metrics that are events do
not have metric values.

MLI
The Measurement Layer Interface. An upper level service, one of the possible DCI consumers,
that provides a measurement control and data delivery mechanism.

multiprocessor system
Any machine which contains more than one processor but appears to the user to be running a
single operating system.

octet
An eight bit unit of storage.

operating system
Privileged software which controls hardware resources.

PMWG
Performance Management Working Group. The group which has specified the Universal
Measurement Architecture.

polled metric
A polled metric is a metric. It typically corresponds to a numerical count of some system
activity, some statistic, or possibly some configuration information (for example, the number of
processors).

security
That part of an operating system concerned with controlling access to information.

system space
An address space in which privileged programs, such as the operating system, are run.

user space
An address space in which unprivileged programs are run. Examples of such programs are
applications or system services which do not require direct access to hardware resources.

UMA
Universal Measurement Architecture. The collection of the DCI, Data Pool and MLI that
provides a complete performance measurement architecture.

166 CAE Specification

Index

Access Control ..36, 72
API...165
callback routine behaviour62
callback routine return values63
callback structure..62
Consumer functions...17
consumer role ..8
Data Capture Interface ..165
Data Capture Layer..165
Data Structures

DCIAccess ..36
DCIAddressMethodData....................................61
DCIClassAttr ...39
DCIClassId...30
DCIDataAttr ..45
DCIEvent..50
DCIEventAttr ..46
DCIEventDataAttr ...48
DCIInstanceId...30, 34
DCIInstAttr..47
DCIInstLevel ...43
DCIMethod..58
DCIMetricId...31
DCIReturn..65
DCIRetval...65
UMAOctetString...52
UMATextString...52

Data Type Conventions...26
Data Types..52
DCI...165
DCI server ..165
DCI Services...9

metrics name space server....................................9
metrics transport mechanism9

dciAddHandleMetric()71, 82
dciAddInstance()58, 72, 124

and callback routine behaviour.........................62
and DCI_ADDRESS...61
and DCI_STORE...61
and server/provider communication57

dciAlloc() ...71, 85
DCIClassAttr..38-39
DCIClassId...30

code sample ...33
dciClose()...71, 86

and security ...14

DCIConfig ..88
dciConfigure() ..60, 71, 87

and callback routine behaviour.........................62
and server/provider communication57

DCIDataAttr ..45
DCIEvent ..48
DCIEventAttr ..46
DCIEventDataAttr..48
dciFree() ...71, 91
dciGetClassAttributes()39, 48, 71, 92
dciGetData()..71, 94

and callback routine behaviour.........................62
and DCI_STORE...61
and return structures ...66
and server/provider communication57

dciGetInstAttributes()39, 71, 98
and callback routine behaviour.........................62
and server/provider communication57

dciGetWaitEvent()
and return structures ...66

dciInitialize()...71, 101
DCIInstanceId ...30, 34
DCIInstanceType ..44
DCIInstAttr..38, 47
DCIInstLevel..43
DCILabel...41
dciListClassId() ..71, 104

and DCIReturn..65
dciListInstanceId()...71, 106

and callback routine behaviour.........................62
and DCIReturn..65
and server/provider communication57

DCIMethod ..58
DCIMetricId...31

code sample ...33
dciOpen()...71, 109

and security ...14
dciPerror() ...72, 112
dciPostData() ..58, 72, 127

and DCI_STORE..61
and DCI_CALLBACK ...62
and DCI_STORE...61
and DCI_WAIT ...61

dciPostEvent() ..48, 73, 146
dciRegister()..39, 72, 130

and callback routine behaviour.........................62

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 167

Index

and DCI_ADDRESS...61
dciRemoveHandleMetric()71, 114
dciRemoveInstance()72, 132

and server/provider communication57
DCIReturn..64, 74
DCIRetval...74
dciSetClassAccess()...72, 134
dciSetData() ..73, 117

and callback routine behaviour.........................62
and DCI_STORE...61
and server/provider communication57

dciSetInstAccess()..72, 136
DCIStatus ...74
dciTerminate() ..71, 121
dciUnregister() ...39, 72, 139
dciWaitEvent() ...48, 73, 148
dciWaitRequest()60, 72, 141
DCI_ADDRESS ...61
DCI_ALLOCATIONFAILURE...............................76
DCI_BADCONFIRM ...76
DCI_BADFLAGS ..76
DCI_BAD_HANDLE...76
DCI_BUFFER_EVENTS_DISCARD88
DCI_BUFFER_EVENTS_GETPOLICY.................88
DCI_BUFFER_EVENTS_GETSIZE88
DCI_BUFFER_EVENTS_OVERWRITE88
DCI_BUFFER_EVENTS_SETSIZE88
DCI_CALLBACK..62
DCI_CLASSADDED..75, 77
DCI_CLASSEXISTS..77
DCI_CLASSNOTEMPTY..77
DCI_CLASSNOTPERSISTENT77
DCI_CONFIGURATION ..88
DCI_DCIMAJORUNSUPPORTED.......................77
DCI_DCIMINORUNSUPPORTED.......................77
DCI_DERIVEDDATA ..77
DCI_DISABLE...88
DCI_ENABLE..88
DCI_EVENTSUPPORT ...77
DCI_FAILURE...75, 77
DCI_FATAL..77
DCI_INFORMATIONAL..................................75, 77
DCI_INITIALIZED...77
DCI_INSTANCEADDED..77
DCI_INSTANCEEXISTS ...77
DCI_INSTANCENOTPERSISTENT.....................77
DCI_INTERRUPTED...77
DCI_INVALIDARG ...77
DCI_INVALIDDATA ...78
DCI_INVALIDFIELD...78
DCI_INVALIDMETHODOP..................................78

DCI_METHODERROR ...78
DCI_METHODOPNOTSUPPORTED..................78
DCI_METHODTYPEUNAVAILABLE.................78
DCI_NOACCESS..78
DCI_NOCLASS...78
DCI_NODATUMID ...78
DCI_NOIMPLEMENTATION78
DCI_NOINSTANCE ..78
DCI_NOMETRIC..78
DCI_NOSPACE ..74, 78
DCI_NOSUCHTRANSACTION...........................78
DCI_NOTENABLED ...78
DCI_NOTEVENTMETRIC.....................................78
DCI_NOTEXT ...78
DCI_NOTINITIALIZED ...78
DCI_NOTPOLLEDMETRIC78
DCI_NOTPRESENT...78
DCI_NOTQUERYABLE..78
DCI_NOTRESERVABLE...79
DCI_NOTRESERVED..79
DCI_NOTSETTABLE...79
DCI_NOWILDCARD ..79
DCI_OP_CONFIGURE ...59

and callback routine behaviour.........................63
and DCI_ADDRESS...61
and DCI_CALLBACK ...62
and DCI_STORE...61

DCI_OP_GETDATA...59
and callback routine behaviour.........................63
and DCI_STORE...61

DCI_OP_GETINSTATTR ..60
and callback routine behaviour.........................63
and DCI_ADDRESS...61
and DCI_STORE...61

DCI_OP_LISTINSTANCES60
and callback routine behaviour.........................63
and DCI_ADDRESS...61
and DCI_STORE...61

DCI_OP_RELEASEDATA.......................................60
and callback routine behaviour.........................63

DCI_OP_RESERVEDATA.......................................60
and callback routine behaviour.........................63
and DCI_CALLBACK ...62

DCI_OP_SETDATA..60
and callback routine behaviour.........................63
and DCI_CALLBACK ...62
and DCI_STORE...61

DCI_RESERVED...79
DCI_SINGLEINST..44
DCI_STORE ...61
DCI_SUBSETUNSUPPORTED..............................79

168 CAE Specification

Index

DCI_SUCCESS ..74
DCI_SYSERROR...74, 79
DCI_TIMEOUT...79
DCI_WAIT ...60

and DCI_OP_CONFIGURE60
and DCI_OP_RESERVEDATA...........................60
and DCI_OP_SETDATA......................................60

DCI_WARNING...75, 79
DCL ...165
Error Codes ..74-75

DCI_BADCONFIRM ...76
DCI_CLASSEXISTS..77
DCI_CLASSNOTEMPTY....................................77
DCI_CLASSNOTPERSISTENT77
DCI_DCIMAJORUNSUPPORTED...................77
DCI_DCIMINORUNSUPPORTED77
DCI_DERIVEDDATA ..77
DCI_EVENTSUPPORT77
DCI_INSTANCEEXISTS77
DCI_INSTANCENOTPERSISTENT.................77
DCI_INVALIDDATA...78
DCI_INVALIDFIELD...78
DCI_INVALIDMETHODOP..............................78
DCI_METHODERROR78
DCI_METHODOPNOTSUPPORTED78
DCI_METHODTYPEUNAVAILABLE.............78
DCI_NOACCESS ...78
DCI_NOCLASS ..78
DCI_NODATUMID ...78
DCI_NOINSTANCE..78
DCI_NOMETRIC ...78
DCI_NOSUCHTRANSACTION78
DCI_NOTENABLED...78
DCI_NOTEVENTMETRIC.................................78
DCI_NOTEXT ...78
DCI_NOTPOLLEDMETRIC78
DCI_NOTQUERYABLE......................................78
DCI_NOTRESERVABLE.....................................79
DCI_NOTRESERVED ...79
DCI_NOTSETTABLE...79
DCI_NOWILDCARD ..79
DCI_RESERVED...79
DCI_SUBSETUNSUPPORTED..........................79
DCI_TIMEOUT...79

Event functions ...17
event, event metric ...165
Events..47
exec ..16
exit ...16
fatal errors ..74
Fatal Errors...75

DCI_ALLOCATIONFAILURE76
DCI_BADFLAGS..76
DCI_BADHANDLE...76
DCI_FAILURE...77
DCI_FATAL ...77
DCI_INITIALIZED ..77
DCI_INTERRUPTED...77
DCI_INVALIDARG ...77
DCI_NOIMPLEMENTATION...........................78
DCI_NOSPACE ..78
DCI_NOTINITIALIZED78
DCI_NOTPRESENT ..78
DCI_SYSERROR...79

fork() ...16
i18n ..165
Individual status errors...75
Informational status values....................................76

DCI_CLASSADDED..77
DCI_INSTANCEADDED77
DCI_INVALIDDATAPRESENT78

instance types ..44
Measurement Units..53

Derived Data Units ..56
Hardware Activity Count Units........................55
Metrics with no units...56
Size Units..53
System Abstraction Count Units54
Time Units..54

Method Types..57
metric ..165
metric class...165
metric class identifier...12, 29
metric class instance ..165
metric datum identifier12, 29
metric instance identifier12, 29
metric value ...166
metrics consumer ...165
Metrics Name Space ..12, 29

Example..31
metrics name space server..9
metrics provider ...165
metrics transport mechanism9
MLI ..166
multiprocessor system ..166
Naming Conventions ..26
octet ...166
operating system ..166
Operation Types..58
Other functions ...17
PMWG ..166
polled metric..166

Systems Management: UMA Specification, Part 3 - Data Capture Interface (DCI) 169

Index

Provider functions ..17
Provider Methods for Polled Metrics60

DCI_ADDRESS...61
DCI_CALLBACK ...62
DCI_STORE...61
DCI_WAIT ...60

Provider Operations for Polled Metrics59
DCI_OP_CONFIGURE59
DCI_OP_GETDATA...59
DCI_OP_GETINSTATTR....................................60
DCI_OP_LISTINSTANCES................................60
DCI_OP_RELEASEDATA...................................60
DCI_OP_RESERVEDATA...................................60
DCI_OP_SETDATA..60

provider role ..8
return buffers...66
Return Codes ...74
roles ...8
Security ...14
security ...166
Security

Access Control ..36, 72
Status Values..74-76
Subsets ..69

Access Control ..72
Basic Support...71
Event Delivery ..73
Multiple Providers ...72
Set Capability ..73

Summary success status values75
system space..166
UMA..166
user space ...166
variable length data..27
wildcards..34, 36

170 CAE Specification

CAE Specification

Part 4:

UMA Data Pool Definitions (DPD)

The Open Group

ii CAE Specification

Contents

Chapter 1 Introduction... 1
 1.1 Purpose ... 1
 1.2 Audience... 1
 1.3 Scope.. 2
 1.4 Conformance ... 3

Chapter 2 About the Datapool .. 5
 2.1 Data Organisation... 5
 2.2 Data Standards .. 6
 2.2.1 Level 0 Metrics (UMA DP95)... 6
 2.2.2 Level 1 Metrics (UMA DP97)... 6
 2.2.3 Optional Metrics .. 7
 2.2.4 Platform or Vendor Specific Metrics .. 7
 2.2.5 Management Application Assumptions... 7
 2.3 Uniqueness of Identifiers .. 8
 2.4 Default UMA WorkInfo Types... 9

Chapter 3 Data Capture Overview ... 11
 3.1 Data Capture Modes .. 11
 3.2 Metrics... 11
 3.3 From Raw Data to End Metric ... 12
 3.4 From Raw Data to Statistics ... 14
 3.4.1 Variable Metrics and Sum of Squares.. 14
 3.4.2 Statistics Across Multiple Intervals ... 14
 3.4.3 Kernel Level Sampling versus Data Services Level.......................... 15
 3.5 Resource versus Workload Analysis .. 16

Chapter 4 Datapool Metrics.. 17
 4.1 Introduction ... 17
 4.2 Definitions for MLI Attributes ... 17
 4.3 Configuration Information Class .. 18
 4.3.1 Subclass — System Configuration ... 23
 4.3.2 Subclass — per-CPU Configuration .. 24
 4.3.3 Subclass — Backplane, I/O or Device Bus Instance......................... 25
 4.3.4 Subclass — Device Controller Instance .. 26
 4.3.5 Subclass — Local Area Network Controller Instance...................... 26
 4.3.6 Subclass — Disk Instance Configuration.. 27
 4.3.7 Subclass — Other Device Instance Configuration............................ 28
 4.3.8 Subclass — Disk Partition Instance Configuration........................... 29
 4.3.9 Subclass — Volume Group Instance Configuration......................... 29
 4.3.10 Subclass — Volume/Metadisk Instance Configuration.................. 30
 4.3.11 Subclass — Plex/Metapartition Instance Configuration 31

Part 4: UMA Data Pool Definitions (DPD) iii

Contents

 4.3.12 Subclass — File System Instance Configuration............................... 32
 4.3.13 Subclass — Dynamic Kernel Table Counter Configuration 33
 4.3.14 Subclass — per-IP Configuration ... 34
 4.3.15 Subclass — System Call Configuration... 34
 4.3.16 Subclass — Scheduling Class Configuration..................................... 35
 4.4 Processor Classes .. 35
 4.4.1 Measured Per-processor Times... 35
 4.4.2 Sampled Per-processor Times... 36
 4.4.3 Per-processor Counters .. 37
 4.4.4 Per-processor Per-system Call Counters .. 37
 4.4.5 Per-work Unit Processor Times .. 38
 4.4.6 Per-work Unit Per-system Call Counters ... 38
 4.4.7 Wait Times... 39
 4.5 Memory Class.. 40
 4.5.1 Global Physical Memory Usage.. 40
 4.5.2 Global Virtual Memory Usage .. 40
 4.5.3 Per-processor Demand Paging Counters.. 41
 4.5.4 Per-processor Swapping Counters... 41
 4.5.5 Per-work Unit Memory Usage .. 42
 4.5.6 Per-work Unit Demand Paging Counters... 42
 4.5.7 Per-work Unit Swapping Counters.. 42
 4.5.8 Dynamic Kernel Table Counters... 43
 4.5.9 Memory Object Subclass .. 43
 4.6 IPC Class... 44
 4.6.1 IPC subclass .. 44
 4.7 Scheduling Class ... 45
 4.7.1 Global Runqueue Counters ... 45
 4.7.2 Per-work Unit Scheduling Counters.. 45
 4.8 Disk Device Data Class.. 46
 4.8.1 Global Physical I/O Counters... 46
 4.8.2 Per-disk Device Data... 47
 4.8.3 Per-work Unit I/O... 48
 4.9 Global File Systems Class ... 49
 4.9.1 Global File Service Counters ... 49
 4.9.2 ONC RPC Client Counters .. 49
 4.9.3 ONC NFS Version 2 Client Counters .. 50
 4.9.4 ONC RPC Server Counters.. 50
 4.9.5 ONC NFS Version 2 Server Counters.. 51
 4.9.6 ONC NFS Version 3 Client Counters .. 52
 4.9.7 ONC NFS Version 3 Server Counters.. 53
 4.10 Network Protocol Class... 54
 4.10.1 Per-network Interface Statistics .. 54
 4.10.2 IP Counters.. 54
 4.10.3 TCP Counters ... 55
 4.10.4 UDP Subclass.. 56
 4.10.5 ICMP Counters... 56
 4.10.6 ICMP Histogram Counters.. 57
 4.10.7 IGMP Counters... 57

iv CAE Specification

Contents

 4.11 Accounting... 58
 4.11.1 Per-work Unit Termination Record.. 58

 Glossary ... 61

 Index... 65

List of Figures

3-1 The Layers and Interfaces for the UMA.. 13
4-1 Simple Configuration Example - Intel PC Running Solaris.................. 19
4-2 Complex Configuration - MP Server with Mirrored Disk Arrays....... 21
4-3 Volume Config for Striped Filesystem Mirrored Across Controllers . 22

List of Tables

4-1 System Configuration ... 24
4-2 CPU Configuration.. 24
4-3 Backplane, I/O or Device Bus Instance... 25
4-4 Device Controller Instance .. 26
4-5 Local Area Network Controller Instance Label....................................... 26
4-6 Disk Instance Configuration.. 27
4-7 Other Device Instance Configuration.. 28
4-8 Disk Partition Instance Configuration... 29
4-9 Volume Group Instance Configuration... 29
4-10 Volume/Metadisk Instance Configuration.. 30
4-11 Plex/Metapartition Instance Configuration Label 31
4-12 File System Types Label String ... 32
4-13 File System Instance Configuration... 33
4-14 Kernel Table Types... 33
4-15 Dynamic Kernel Table Counter Configuration 33
4-16 Subclass — per-IP Configuration ... 34
4-17 System Call Names.. 34
4-18 System Call Configuration... 34
4-19 Scheduling Class Configuration... 35
4-20 Measured Per-processor Times... 35
4-21 Sampled Per-processor Times... 36
4-22 Per-processor Counters .. 37
4-23 Per-processor Per-system Call Counters .. 37
4-24 Per Work Unit Processor Times .. 38
4-25 Per-work Unit Per-system Call Counters ... 38
4-26 Wait Times Subclass.. 39
4-27 Global Physical Memory Usage.. 40
4-28 Global Virtual Memory Usage .. 40
4-29 Per-processor Demand Paging Counters.. 41
4-30 Per-processor Swapping Counters... 41
4-31 Per-work Unit Memory Usage .. 42
4-32 Per-work Unit Demand Paging Counters... 42

Part 4: UMA Data Pool Definitions (DPD) v

Contents

4-33 Per-work Unit Swapping Counters.. 42
4-34 Dynamic Kernel Table Counters... 43
4-35 Memory Object Subclass .. 43
4-36 Global IPC Counters subclass ... 44
4-37 Global Runqueue Counters ... 45
4-38 Per-work Unit Scheduling Counters.. 45
4-39 Global Physical I/O Counters... 46
4-40 Per-disk Device Data... 47
4-41 Per-work Unit I/O... 48
4-42 Global File Service Counters ... 49
4-43 ONC RPC Client Counters .. 49
4-44 ONC NFS Version 2 Client Counters .. 50
4-45 ONC RPC Server Counters.. 50
4-46 ONC NFS Version 2 Server Counters.. 51
4-47 ONC NFS Version 3 Client Counters .. 52
4-48 ONC NFS Version 3 Server Counters.. 53
4-49 Per-network Interface Statistics .. 54
4-50 IP Counters.. 54
4-51 TCP Counters ... 55
4-52 UDP Subclass.. 56
4-53 ICMP Counters... 56
4-54 ICMP Histogram Counters.. 57
4-55 IGMP Counters... 57
4-56 Per-work Unit Termination Record.. 58

vi CAE Specification

Preface

This Document

This document is a CAE specification. It defines a performance data pool for the analysis and
management of computer systems, and an organisation to facilitate the collection and use of
such data. This set of performance metrics may be accessed by the two UMA interfaces:

• Measurement Layer Interface (MLI) which is described in Part 2 of this specification.

The MLI provides the interface between measurement applications and a UMA data services
layer, which interacts with the UMA measurement control layer to provide required
performance data.

• Data Capture Interface (DCI) which is described in Part 3 of this specification.

The DCI is the interface between the data capture layer and the measurement control layer of
the UMA architecture.

The UMA Guide (see Part 1 of this specification). reviews the issues surrounding performance
measurement in Open Systems, describes the general UMA architecture, and discusses user
considerations in adopting the UMA.

Audience

The audience for the metrics defined in this document ranges from the end-user to the system
developer. End-users (customers) will find them useful in measuring productivity. Performance
analysts/engineers can use them for modelling, tuning and measuring/predicting capacity in
systems/applications. Data centres and MIS organisations can use them to assess the quantity
and quality of the computing services provided under Service Level Agreements with their
customers. Hardware and software vendors can use them to assure the performance of their
products during development and after release. Performance management application vendors
can use them as standard metrics with the open application interface UMA provides, to develop
their products.

Structure

• Chapter 1, Introduction — provides an overview of the datapool.

• Chapter 2, About the Datapool — explains key terminology, and how data is grouped into
‘‘messages’’, and the different classes/subclasses and ‘‘levels’’ within this organization.

• Chapter 3, Data Capture Overview — describes the assumptions about the data capture
process, from obtaining the raw data to producing a finished metric for use by a
Measurement Application Program (MAP).

• Chapter 4, Datapool Metrics — establishes the Level 0 metrics and a proposed set of Level 1
metrics, including relevant MLI and DCI information.

Part 4: UMA Data Pool Definitions (DPD) vii

Acknowledgements

This specification was developed by the Performance Management Working Group. The PMWG
was originally part of UNIX International, and is now part of the Computer Measurement
Group.

X/Open gratefully acknowledges the work of the PMWG in the development of this
specification and in the review process for this publication.
Major contributors to the Data Pool Definitions specification include:

Sara Abraham Amdahl Corporation Robert Berry IBM Corporation
Adrian Cockcroft SUN Microsystems Lewis T. Flynn‡ Amdahl Corporation
Anthony J. Gaseor‡ AT&T Bell Laboratories Javad Habibi Amdahl Corporation
Marge Momberger IBM Corporation Henry Newman‡ Instrumental, Inc.
David Potter Open Systems Performance Jim Richard Amdahl Corporation
Jim Van Sciver Open Software Foundation Yefim Somin BGS Systems
Leon Traister Amdahl Corporation Manda Sury‡ IBM Corporation
Steve Whitney Boeing Computer Services Elizabeth Williams Super Computer Research

Participants who have made contributions to the process of developing these specifications are
listed below along with their corporate affiliation at the time of their contribution. Our sincere
apologies to anyone whom we may have missed.

Subhash Agrawal BGS Systems Barrie Archer ICL
Peter Benoit Digital Equipment Corp. Tom Beretvas IBM Corporation
Wolfgang Blau Tandem Computers, Inc. Jim Busse NCR Corporation
David Butchart Digital Equipment Corp. David Chadwick Performance Awareness Corp.
Ram Chelluri AT&T Global Information Solutions Danny Chen AT&T Bell Laboratories
Niels Christiansen IBM Corporation Paul Curtis Hitachi computer Products (America), Inc.
Paul Douglas Digital Equipment Corp. Janice Dumont AT&T Bell Laboratories
Ansgar Erlenkoetter Tandem Computers, Inc. Paul Farr Aim Technology
Jerome Feder UNIX System Laboratories Mark Feldman Sequent Computer Systems, Inc.
Thierry Fevrier Hewlett-Packard Ken Gartner Hitachi Computer Products (America), Inc.
Joseph Glenski Cray Research, Inc. Dave Glover Hewlett-Packard
Jay Goldberg UNIX System Laboratories William Hidden Open Software Foundation
Liz Hookway NCR Corporation John Howell Amdahl Corporation
Ken Huffman Hewlett-Packard Mario Jauvin Bell Northern Research
Chester John IBM Corporation Sue John IBM Corporation
Rebecca Koskela Cray Research, Inc. Bill Laurune Digital Equipment Corp.
Ted Lehr IBM Corporation Greg Mansfield Instrumental

Shane McCarron UNIX International Michael Meissner
Bernice Moy Open Software Foundation Jee-Fung Pang Digital Equipment Corp.
James Pitcairn-Hill Open Software Foundation Melur K. Raghuraman Digital Equipment Corp.
O. T. Satyanarayanan Amdahl Corporation Steve Sonnenberg Landmark Systems
Douglas R. Souders UNIX System Laboratories Jaap Vermeulen Sequent Computer Systems, Inc.
Michael Wallulis Digital Equipment Corp. Ping Wang Open Software Foundation
Willie Williams Open Software Foundation Neal Wyse Sequent Computer Systems, Inc.
Seung Yoo Amdahl Corporation

† Editor
†† Past Editor

viii CAE Specification

Chapter 1

Introduction

1.1 Purpose
This document is one of a family of documents that comprise the Universal Measurement
Architecture (UMA), and which define interfaces and data formats for Performance
Measurement. UMA was originally defined by the Performance Management Working Group
(PMWG) and subsequently adopted by The Open Group.

This document defines a performance data pool for the analysis and management of computer
systems, and an organisation to facilitate the collection and use of such data.

The UMA is defined in the following documents:

• Guide to the Universal Measurement Architecture (see reference UMA). This document
provides an overview of the UMA.

• UMA Measurement Layer Interface Specification (see reference MLI). This document defines
functional characteristics for a high-level open Application Program Interface (API) to be
used by Measurement Application Programs (MAPs) to request and receive data. It also
defines header formats to be appended to the data captured by a low-level Data Capture
Interface (DCI).

• UMA Data Capture Interface Specification (see reference DCI). This document defines a
standard programming interface for capturing data provided by systems and applications.

• UMA Datapool Specification (this document).

1.2 Audience
The metrics defined in this document span a wide range of uses. The audience for these metrics
ranges from the end-user to the system developer:

• End-users (customers) are concerned about adequate response time for their particular
application (that is, productivity).

• The performance analyst/engineer uses these metrics for modelling the performance of new
systems/applications or changes to existing ones, tuning the overall performance of a system
or an application to a particular customer environment, and measuring the current and
predicting future capacity needs.

• Data centres and MIS organisations, being service oriented, are concerned about the quantity
and quality of the computing services provided under Service Level Agreements with their
customers. In this case, the metrics are used for accounting, real-time monitoring to detect
and correct poor service, tracking service quality with control charts of the key metrics
specified in Service Level Agreements with customers, and workload characterisation and
balancing.

• Hardware and software vendors like to assure the performance of their products during
development and after release to the market.

• Performance management application vendors need standard metrics with an open
application interface to make it economically feasible to develop such products.

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 1

Audience Introduction

1.3 Scope
The metrics defined in this document attempt to meet the data use needs for the various
audiences mentioned above. Although the metrics are heavily influenced by the currently
available measurements, an attempt is made to recommend new metrics to correct the
deficiencies experienced with existing technology. Metrics are grouped into "Classes" amd
"Subclasses" based on their functionality and content. Furthermore, to reflect the current
technology and to accommodate for future growth, each metric is assigned a "Level" of maturity.
Specifically, each metric belongs to one of the following four categories:

• Level 0

• Level 1

• Optional

• Platform/Vendor Specific.

The first three categories are part of the Datapool Standard. The level 0 specification is an
attempt to formalize existing common practice, and should be implementable on the bulk of the
UNIX installed base, using OS releases that were available in 1995. The Level 1 specification is
to provide direction for OS vendors, and defines a common set of metrics that are needed to
implement performance management tools. Additional details on the levels are found in
Chapter 2.

This document defines no interfaces or other architecture, only data and a data organisation.

Performance and capacity management of operating systems have been considered ‘‘internal’’ to
the operating system and as such differ from one operating system to another and from one
implementation to another. Most operating systems have, as a matter of necessity, performance
analysis modules, narrowly targeted at the type of hardware, software and networking facilities
implemented within the system.

Most operating systems provide ad-hoc developed or tailored performance metrics. Some of
these tools are developed as internal support tools for benchmarking or on demand from
performance analysts and capacity planners. These tools are generally also confined to one
machine only and can not be interrogated remotely.

The new era of networking and interoperability views performance management and capacity
planning from user’s perspective. Multiple machines and operating systems can be involved in
the interaction with the user. This approach requires capture and presentation of performance
metrics to be clearly defined and portable between platforms and operating systems.

In addition, the data used in this specification is presented as vendor and implementation
independent as possible, however, a mechanism is provided for vendor data extensions.

2 CAE Specification

Introduction Conformance

1.4 Conformance
Support for Datapool level 0 is mandatory, while support for higher levels is optional.

Conformance to levels higher than zero means that metrics defined as mandatory in such levels
must all be provided.

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 3

Introduction

4 CAE Specification

Chapter 2

About the Datapool

2.1 Data Organisation
In this data organization, data is grouped into ‘‘messages’’. These messages contain a standard
header followed by one or more data items. A message class and subclass uniquely identify the
contents of these messages.

The rationale behind this organization is the need to provide a well defined format suitable for
postprocessing either locally or at another system. This format facilitates the writing of data
reduction and display programs and would not require any program modification or
recompilation merely because new data is made available. Current operating technologies do
not lend themselves to this function and a different type of structure was perceived to be
necessary.

The fact that the data uses a message format does not imply that the underlying implementation
uses message passing. Any implementation is allowed so long as the data presented by the
UMA Measurement Layer Interface (see reference MLI) is in the correct format.

The actual layout of the structures allows for both forward and backward compatibility. In
particular, the arrangement of data items in these structures is done in such a fashion that new
items may be added without requiring recompilation of existing applications. Items that
become obsolete will be zero-filled, whereas new items are added at the end.

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 5

Data Standards About the Datapool

2.2 Data Standards
Data items have been categorized, in part, by the degree of standardization deemed necessary.
This process included the division of the data items of each subclass into groups:

• basic

• optional

• extension .

The basic data items are those that should be given first priority to be made available in every
implementation.

To distinguish technology currently available form future products, this group is further
subdivided into Level 0 and Level 1.

The optional data items are those that may be implemented in every implementation (that is,
they are standard but optional).

There are also extension data items, which are those that may be implemented by at least one
vendor (that is, vendor specific). No data items of this type are defined in this document.

Therefore, each metric belongs to one of the following four categories:

• Level 0

• Level 1

• Optional

• Platform/Vendor Specific.

The first three categories are part of the Datapool Standard. The prefix in the DatumID of each
metric reflects its level — with a ‘‘0’’ for Level 0, a ‘‘1’’ for Level 1 and the string ‘‘opt’’ for
Optional.

2.2.1 Level 0 Metrics (UMA DP95)

The level 0 specification is an attempt to formalize existing common practice, and should be
implementable on the bulk of the UNIX installed base, using OS releases that were available in
1995. To comply with the UMA Datapool standard, an implementation must provide all
applicable level 0 subclasses, and all of the level 0 metrics in those subclasses must be provided.

2.2.2 Level 1 Metrics (UMA DP97)

To provide direction for OS vendors, a common set of metrics that are needed to implement
performance management tools is defined. These should be implementable in a reasonable
timeframe, such that a future (1997 or later) release of the OS could be expected to provide the
additional metrics. It is expected that many OS vendors will provide some of the level 1 metrics
on their intermediate releases. Individual level 1 metrics should be provided where available in
advance of the full set. To be compliant with the level 1 standard, all applicable level 1
subclasses must be provided.

6 CAE Specification

About the Datapool Data Standards

2.2.3 Optional Metrics

Optional metrics are defined to be implementation specific. They will never be required on all
OS platforms, but they are expected to be available on platforms that share common
implementations. To ensure consistency they are defined as optional rather than as platform
specific. Optional metric identification numbers start at 85.

2.2.4 Platform or Vendor Specific Metrics

Metrics that are only expected to exist on one platform will not be considered for inclusion in the
UMA Datapool standard. They can be specified and provided as vendor extensions in vendor
specific classes.

2.2.5 Management Application Assumptions

A management application can assume that all level 0 metrics will exist in a class. When
interfacing with UMA DP95 compliant systems, existence of additional level 1 and optional
metrics will need to be determined at run time. When interfacing with a UMA DP97 compliant
system, the management application can assume that all level 1 metrics will exist, and only need
test for optional metrics.

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 7

Uniqueness of Identifiers About the Datapool

2.3 Uniqueness of Identifiers
In order to provide a mechanism for the assignment of unique identifiers to metrics, a naming
convention based on object identifiers has been adopted. The following prefix has been
allocated:

ISO(1); National Member Body(2); UK(826); DISC(0); X/Open(1050); UMA(7)

The resultant naming structure is shown below:

UMA (1.2.826.0.1050.7)
|
datapool (1)
|
+-----------+----------+- ---|
| | |
processor memory
(2) (3)

The use of object identifiers allows for standard metrics to be allocated identifiers within the
UMA naming tree. It provides for extensibility by allowing implementors to define identifiers
within their own parts of the naming tree. Thus vendor-specific metrics can be easily
incorporated into the UMA without the need to have an identifier allocated by an external
registration authority.

It is anticipated that, in the future, further standard metrics will be defined, and mechanisms will
be established for the administration of the namespace.

8 CAE Specification

About the Datapool Default UMA WorkInfo Types

2.4 Default UMA WorkInfo Types
The default UMAWorkinfo enumeration has the following fields:

UMA_WORKINFO_PROJECT

UMA_WORKINFO_GROUP_ID

UMA_WORKINFO_EFFECTIVE_GROUP_ID

UMA_WORKINFO_USER_ID

UMA_WORKINFO_EFFECTIVE_USER_ID

UMA_WORKINFO_SESSION_ID

UMA_WORKINFO_TTY

UMA_WORKINFO_NQS

UMA_WORKINFO_SCHEDULING_CLASS

UMA_WORKINFO_SCHED_GRP

UMA_WORKINFO_TRANSACTION_ID

UMA_WORKINFO_PROCESS_GRP

UMA_WORKINFO_PARENT_PROCESS_ID

UMA_WORKINFO_COMMAND_NAME

UMA_WORKINFO_PROCESS_ID

UMA_WORKINFO_THREAD_ID

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 9

About the Datapool

10 CAE Specification

Chapter 3

Data Capture Overview

The following is a brief overview of the data capture process from obtaining the raw data to
producing a finished metric for use by a Measurement Application Program (MAP).

3.1 Data Capture Modes
The modes of capturing data for either presentation as reports or subsequent use by other tools
includes:

• Sampled Data
Data which is measured by repetitive capture (at a sampling rate) and presumably
accumulated in a counter

• Interval Data
Data which represents the incremental activity within a certain time interval

• Event Data
Data which provides notification of the occurrence of a particular state within a subsystem

• Trace Data
Data which captures a succession of subsystem states, usually in substantial detail.

Traces in UMA are implemented as high frequency events and are normally directed to a file.

Note: Event and interval extension headers meet the needs of all four data capture modes.
Interval messages represent both sampled and interval data, and event messages
represent both event and trace data.

3.2 Metrics
The end metrics that the MAPs see are usually formed from raw counters that are kept by the
system, subsystem or application. For interval data, the metric is formed by taking the
difference of two samples of a counter which is continually incremented since the last restart.
For sampled data, two metrics are formed for an interval: a count of events and the number of
samples.

Note: Data items in this document are the end metrics that the MAPs see and not the raw
counter data.

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 11

From Raw Data to End Metric Data Capture Overview

3.3 From Raw Data to End Metric
The process of providing, collecting, transforming and delivering the data to the MAPs is one of
the main concerns for the UMA. Figure 3-1 depicts the basic architecture. The following is a
very simplistic overview of the process under discussion. The MAPs request a class/subclass of
metrics through the Measurement Level Interface (MLI) to the data services/measurement
control layer. Measurement control merges the requests, synchronizes the capture, provides
headers and timestamps and requests the current raw counter data through the Data Capture
Interface (DCI). Once it has the data, measurement control/data services can difference interval
data, transform the machine dependent data to a standard form and provide other services. The
Data Capture Layer is basically responsible for gathering the counter data from the kernel,
subsystem or application and passing it through the DCI. The DCI document explains the
different approaches for gathering the data and the necessary programming interfaces for the
kernel, subsystems and applications to provide the data.

To address the problem of generating too much data at the per process/thread level, a MAP can
request granularity levels higher than a process. This higher granularity is based on the user,
session, transaction, fair share group, etc, identifiers in the UMAWorkInfo structure.
Messages/records would only be cut for the level(s) of granularity requested, with the lowest
levels requested only during emergencies or testing. Another control on the volume of data
produced is the selection of event or interval data. Event data may be fine for rudimentary
accounting (that is, end of process, job, session, login) whereas interval data would provide near
real-time knowledge of long or never ending processes for accounting, resource management,
problem resolution, etc.

12 CAE Specification

Data Capture Overview From Raw Data to End Metric

MAP MAP MAP
Measurement
Application
Programs

MLI (Measurement Level Interface)

DATA SERVICES
distribute data

format data to standards
maintain archive
access network

MEASUREMENT CONTROL
merge requests

synchronize capture
timestamp

collection orders
status requests

DCI (Data Capture Interface)

DATA CAPTURE
Measurement Data

Events
Status Messages

Figure 3-1 The Layers and Interfaces for the UMA

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 13

From Raw Data to Statistics Data Capture Overview

3.4 From Raw Data to Statistics
Most of the end metrics in the data pool are interval data which are easily calculated by taking
two samples of the raw counters (usually from the kernel, which have been incremented since
the last boot) and taking the difference (while watching for overflow conditions). This sampling
and differencing according to the UMA is done at the data services layer and not inside the
kernel. These interval values then could be used by the MAPs to calculate metrics such as rates
(for example, blocks/sec), service times (for example, sec/block) and utilization (for example,
50% busy) for the interval. The MAPs could also take a set of these interval samples for a given
period (for example, 1st, 2nd and 3rd shifts, peak hours during prime shift, a benchmark run)
and produce statistics about the distribution of the values such as the following: mean,
maximum, variance, standard deviation, 95th percentile, and distribution histograms. Such
statistics can provide valuable information about the distribution of a set of data. But, except for
the mean, these statistics based on interval values are incorrect and misleading unless the
underlying raw counters are ‘‘well behaved’’ so that the distribution of the interval values reflect
the distribution of the raw data.

3.4.1 Variable Metrics and Sum of Squares

As indicated above, when a kernel counter can change by widely different values during an
interval (for example, one logical read could request a gigabyte while the next might be for a
single byte), the statistics based on a set of interval values based on this counter will almost
always be false. But, since information about the distribution is needed to understand a variable
metric, it will be necessary for metric providers (the kernel in the case of logical read requests) to
provide additional counters to support distributional statistics. The simplest such addition is to
add a counter that accumulates a ‘‘sum of squares’’ of the changes to the primary counter. This
can be done with very small overhead to the provider of a multiply, an add, and some memory
references. For the logical read request example, the kernel will already have two counters, the
number of requests and the sum of number of bytes per request; the additional counter would be
the sum of the square of the number of bytes per request. The addition of such counters will
allow the true calculation of variance and standard deviation for a metric like the number of
bytes per request. So far the sum of squares counter is the only one included in the UMA data
pool. The inclusion of additional counters to support other distributional statistics is still an
open issue.

In the following sections that describe metrics in UMA subclasses, sum of squares metrics have
been defined for certain metrics that are based on counters that can change by a variable amount
during an interval. They are are listed in the optional data segment for a message subclass in
which they occur.

3.4.2 Statistics Across Multiple Intervals

To calculate the mean over multiple intervals, two counters must be incremented by the kernel.
One is the count of occurrences of the value being measured and the other is the sum of the
values. For example, if read statistics are required, one counter is the number of reads during the
interval; the second counter is the sum of the number of bytes read with each read during the
interval. For a single interval, the mean is the sum of the number of bytes read divided by the
number of reads for that interval. The maximum of a metric over multiple intervals is easily
calculated as the maximum of the set of maximums for each interval. The mean for multiple
intervals, however, cannot be computed as the mean of the set of means for each interval. It is
calculated as the total over multiple intervals of the sum of the number of bytes read with each
read divided by the total over multiple intervals of the number of reads.

14 CAE Specification

Data Capture Overview From Raw Data to Statistics

To compute the variance and standard deviation over a single interval as well as multiple
intervals, a third counter, which is the sum of the squares of the value, must be incremented by
the kernel. Using the example of read statistics, this counter is the sum of squares of the number
of bytes read with each read during the interval. The variance then is calculated as the mean of
the sum of squares minus the square of the mean, that is, the sum of squares of the number of
bytes read divided by the number of reads minus the square of the sum of the number of bytes
read divided by the number of reads. As in the case above for the mean, the variance over
multiple intervals requires all three counters described above, each summed over the multiple
intervals.

3.4.3 Kernel Level Sampling versus Data Services Level

Some sampling data can be broken down into basic kernel counters and gathered as interval
data. Two such metrics are the average run-queue length and occupancy. At every clock tick, a
sample count is incremented, the number of runnable but unloaded processes added to a
running counter, and a count incremented for the samples when the runnable but unloaded
process count was not zero. The average run-queue length is the sampled sum of runnable but
unloaded processes divided by the non-zero sample count. The run-queue occupancy is the
non-zero sample count divided by the sample count. This kernel-level sampling technique
should only be used when the overhead is justified by the frequency of change of the metric and
the metric importance.

Some sampling data should not be collected by the kernel. One example is the current number
of logins in a fair share group, on a system or on a particular front-end-processor. Here the
sample data that does not change frequently enough to justify kernel level tracking. Several
metrics have been proposed which request the peak values for a given interval. If the kernel
kept this value, it could only keep one measure and would need to reset the value at the
beginning of the interval (the smallest of several intervals requested). (Note that peak value
since last boot would not be useful.) Instead an adequate number of samples (30 minimally) of
instantaneous values should be collected (possibly at the end of the interval) for the period in
question (for example, a shift, test period, peak period). Then the 95th percentile or maximum of
these samples could be determined by the MAP for that period.

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 15

Resource versus Workload Analysis Data Capture Overview

3.5 Resource versus Workload Analysis
It is likely that in the future there will be a shift of focus from system oriented resource analysis
to an end-user oriented workload analysis. The typical analysis focuses on the resources (CPU,
memory, disk, networks, etc.) being consumed but nothing about the applications consuming
them. These resources can be tuned against some rules of thumb but one will never know what
positive or negative impact this has on the end-user transaction response time. A more effective
approach would be to monitor for worsening application transaction response and then tune the
resources that are causing the problem. This requires collection of the transaction response time
components (that is, delays at the CPU, disks, memory, networks, etc.).

The importance of end-user workload analysis has and will continue to have a profound
influence on the selection of metrics and the formation of classes and subclasses. Note that some
classes center around key system resources (for example, processor, memory, disks, streams,
IPC, networks). The global or device subclasses attempt to tell whether a particular resource
may be in trouble. The per process subclasses attempt to tell what resources may be causing an
application trouble. In many cases, the connection from the process to the resource passes
through several buffers where direct tracking for the individual process is lost. For example, one
cannot track the I/O for a process through a memory buffer cache to a disk or through streams
to other I/O devices. Where this connection is lost, one must rely on some statistical correlation
between the individual process response and the global resource response. To form this
correlation, the per process data must be collected on the same interval as the global resource
data. Although this is a pragmatic answer, one should demand (long term) real measurements
even if they are hard to develop. Tracing response to resource is necessary for true capacity
planning. The end goal is a transaction model at the application level.

16 CAE Specification

Chapter 4

Datapool Metrics

4.1 Introduction
This chapter establishes the Level 0 metrics and a proposed set of Level 1 metrics. The data is
organized by classes in the following order:

• Configuration Information

• Processor

• Memory

• IPC

• Scheduling

• Disk Device data

• Global File System

• Network Protocol

• Accounting.

4.2 Definitions for MLI Attributes
This section defines the headings used in the ‘‘MLI Attributes’’ columns of the tables that define
the contents of metric and configuration classes.

Instance Array
Instance identifiers are typically mapped level-by-level to a sequential list of instance tags.
Alternatively, the instance identifiers may be mapped as a data array. If this is the case,
this will be so indicated in this column.

Offset
Applies to the built-in, or ‘‘Canonical C’’, form of data mapping in MLI data UDUs. This
offset is the distance in bytes from the start of data entries in the subclass segment to the
current data object or descriptor.

VLDS Object (Metric Enumeration)
Variable length data objects such as arrays and certain text strings are mapped into a
section of an MLI data UDU message segment called the VLDS (Variable Length Data
Section). The data objects are pointed to by descriptors in the fixed section of the segment.

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 17

Configuration Information Class Datapool Metrics

4.3 Configuration Information Class
This class must provide enough information to determine a performance rating for the system. It
is also intended to allow the topology of a system to be determined. For example the infomation
that several disk instances share a common SCSI bus or are striped together into a logical
volume may allow diagnosis of a problem.

Configuration data is expected to change infrequently, and an event signals that a change has
occurred. All configuration classes generate an event to indicate when they need to be reread. To
flag this in this document each subclass has a pseudo-metric event indicator.

To allow data in one subclass to refer to instances in other subclasses a new DCI type is required
called a cross reference. It contains the last four digits of an OID and an instance identifier. UMA
defines the root of the OID (1.2.826.0.1050.7) + datapool. The additional parameters define:

• UNIX_datapool(1) / vendor_datapool(x)

• class

• subclass

• metric

• instance.

The implementation of this type is not yet defined. The current suggestion is that it be coded as
an ASCII variable length string, which would be parsed by a management application. The
suggested format of the string is to have the ‘‘.’’ separated OID followed by an optional ‘‘:’’ and
the metric instance. If in the future it would be useful to refer to OID’s outside the datapool (for
example, SNMP MIB), a full OID could be prefixed by a ‘‘/’’, analogous with the UNIX root
filesystem. In practice all the initial UNIX datapool definitions will start with ‘‘1.’’. For example,
‘‘1.4.3.7:22’’ indicates the UNIX datapool, the 4th class, the 3rd subclass, the 7th metric and the
22nd instance.

The I/O configuration Subclasses, and the logical volumes are organized using the xref concept
to tie them together. Where possible the xref is optional, so that the system could be represented
as a collection of disconnected buses, controllers and disks if there is no way to determine the
hierarchy. For logical volumes the xref is needed to tie the disks together into volumes.

The full device hierarchy is representable. It is not simple but neither are large systems. The
information is available in all systems so it is part of the level 0 datapool. It can be cross-
referenced by other metrics as needed and can be displayed by a management application. It is
flexible enough to handle arbitrary I/O bus types, and storage controllers (channel, SCSI,
fibrechannel) including targets that contain sub devices such as disk arrays, tape silos and
optical jukeboxes. It maps to the c0t0d0s0 format used by several UNIXes, but allows c0t0s0 and
sd0 formats to be used by skipping levels in the hierarchy.

Specific per-device configuration data cross-references a position in the hierarchy. Network and
other io devices are included. Vendor specific utilization data can reference this hierarchy to
indicate situations where too many devices are causing contention on a bus.

One simple example (Intel PC) and one complex (Multiprocessor Server) example are provided
to show how the I/O configuration is intended to be used in practice.

The hierarchy is ordered in a top down manner, with upwards pointing references so that many
lower level entries can reference one higher level entry. For example many I/O cards could be
plugged into one I/O bus.

18 CAE Specification

Datapool Metrics Configuration Information Class

In the diagrams below (see Figure 4-1 and Figure 4-2), a few key metrics are shown for each
class. Most classes have additional metrics that provide more detail.

cross reference

Key

Class name
metric, metric
name: metric

System Config
SunOS 5.5 generic, i86pc, hostname, domainname
pagesize: 4kB, tick: 100Hz, CPUs: 1, disks: 2, tapes: 1, nets:1, RAM: 32MB

CPU Config
Intel Pentium
90 MHz

Bus Config
type: I/O
label: PCI

Device Control
SCSI HBA
c0

LAN Conrol
Ethernet
smc0

IP Config
192.9.124.7
255.255.255.0

Other device
tape
t4d0

Kernel table
process
limit: 2000

Kernel table
inode
limit: 4000

Kernel table
file locks
limit: 500

Scheduling
Class Config
TS

Scheduling
Class Config
SYS

Scheduling
Class Config
RT

Disk Config
hard_disk
t0d0

Disk Config
cdrom
t6d0

Disk partition
s0
30MB

Disk partition
s1
100MB

Disk partition
s6
300MB

Disk partition
s7
600MB

File system
ufs
/

File system
swap
swap

File system
ufs
/usr

File system
ufs
/export

Figure 4-1 Simple Configuration Example - Intel PC Running Solaris

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 19

Configuration Information Class Datapool Metrics

The system configuration class outlines the system and the single CPU is described. The PCI bus
has two devices, a SCSI host bus adapter (HBA) and an ethernet controller. The SCSI HBA
controls three devices, a hard disk, a tape and a cdrom. The disk is divided into four partitions,
each holding a filesystem or swap space. The ethernet is configured with an IP address. Three
kernel tables have defined limits. Three possible scheduling classes are described.

20 CAE Specification

Datapool Metrics Configuration Information Class

cross reference

Key

Class name
metric, metric
name: metric

System Config
SunOS 5.5.1 generic, SUNW-Ultra-Enterprise, sparc, hostname, domainname
pagesize: 8kB, tick: 100Hz, CPUs: 4, disks: 9, tapes: 1, nets:1, RAM: 1024MB

CPU Config
UltraSPARC
167 MHz

CPU Config
UltraSPARC
167 MHz

CPU Config
UltraSPARC
167 MHz

CPU Config
UltraSPARC
167 MHz

Bus Config
type: system
label: Gigaplane

Bus Config
type: I/O
label: SBus1

Bus Config
type: device
fiberchannel

Bus Config
type: device
fiberchannel

Bus Config
type: device
label: SCSI

Bus Config
type: I/O
label: SBus0

Device Control
SCSI HBA
c0

Device Control
SCSI HBA
c1t0

Device Control
SCSI HBA
c2t0

Device Control
SCSI HBA
c1t1

Device Control
SCSI HBA
c2t1

Device Control
Fiber interface
soc0

LAN Conrol
FastEthernet
hme0

IP Config
192.9.124.9
255.255.255.0

Other device
tape
c0t4d0 (rmt/0)

Other Device
Array
c1

Other Device
Array
c2

Disk Config
hard_disk
c0t0d0

Disk partition
c0t0d0s0
800MB

Disk partition
c0t0d0s1
1200MB

File system
ufs
/

File system
swap
swap

A

B

C

D

Figure 4-2 Complex Configuration - MP Server with Mirrored Disk Arrays

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 21

Configuration Information Class Datapool Metrics

cross reference

Key

Class name
metric, metric
name: metric

Volume
/dev/md/dsk/d1
8000MB

File system
ufs
/export

Plex
submirror
8000MB

Plex
submirror
8000MB

Disk partition
c1t0d0s1
2000MB

Disk partition
c2t0d0s1
2000MB

Disk Config
hard_disk
c1t0d0

Disk Config
hard_disk
c2t0d0

Disk partition
c1t0d1s1
2000MB

Disk partition
c2t0d1s1
2000MB

Disk Config
hard_disk
c1t0d1

Disk Config
hard_disk
c2t0d1

Disk partition
c1t1d0s1
2000MB

Disk partition
c2t1d0s1
2000MB

Disk Config
hard_disk
c1t1d0

Disk Config
hard_disk
c2t1d0

Disk partition
c1t1d1s1
2000MB

Disk partition
c2t1d1s1
2000MB

Disk Config
hard_disk
c1t1d1

Disk Config
hard_disk
c2t1d1

Plex
stripe
interlace: 128k

Plex
stripe
interlace: 128k

Plex
stripe
interlace: 128k

Plex
stripe
interlace: 128k

Plex
stripe
interlace: 128k

Plex
stripe
interlace: 128k

Plex
stripe
interlace: 128k

Plex
stripe
interlace: 128k

A

B

C

D

Figure 4-3 Volume Config for Striped Filesystem Mirrored Across Controllers

The system configuration again gives the basic parameters and the four CPUs are described. The
system backplane contains two independent I/O buses. The first SBus contains a SCSI HBA and
Fast Ethernet controllers. The SCSI bus itself is described explicitly this time, its speed and width
can be reported. A disk containing the OS and swap space, and a tape drive are connected to it.
The Fast Ethernet has an IP address configured (multiple IP addresses and other protocols could
be configured on the same interface). The second Sbus contains a Fiberchannel serial optical
controller (soc) that has dual fiber interfaces. Two independent fiberchannel "buses" are
described, each is connected to an intelligent storage array controller. Each array controller has
multiple SCSI HBAs. In the diagram two per-array are shown, with off-page markers A,B, C and
D.

The second diagram shows that two disks are connected to each SCSI HBA. In this case the SCSI
bus configuration itself has been omitted for simplicity. A single large partition is configured on

22 CAE Specification

Datapool Metrics Configuration Information Class

each of the eight disks. A set of four plexes are used to produce a stripe with a 128KB interlace.
The plex configuration has two cross references, as it has to refer to a disk partition and a place
in the volume hierarchy. In this case a pair of second level plexes configured as submirrors. They
in turn refer to the volume device, which refers to the mounted file system configuration.

The kernel table and scheduler configuration classes have been omitted from the diagram
through lack of space. They would be the same as the first example, but with different limit
values.

4.3.1 Subclass — System Configuration

This class provides the basic configuration parameters for a system. The system description
includes OS and machine vendor and compatability information, the identity of the machine
(node name and optional domain name), and configuration counts for the primary system
components. To see how many components are online or enabled their respective class instances
have a status indicator that needs to be checked.

Some systems have the ability to dynamically increase these counts online, or may not recognise
the presence of a device until it is first accessed. A config_change_event is generated if these
values change.

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 23

Configuration Information Class Datapool Metrics

The metric OID and description is shown along with a sample source for the metric and example
value.

Data Attributes MLI Attributes

Label Level Data Type Units Example Offset VLDS Instance
/DatumId Object Array

OS_name 0/1.1.1 TEXTSTRING NOUNITS uname -s (sunOS) 0 Yes No
OS_release 0/1.1.2 TEXTSTRING NOUNITS uname -r (5.5) 8 Yes No
OS_version 0/1.1.3 TEXTSTRING NOUNITS uname -v (Generic) 16 Yes No
vendor_model_name 0/1.1.4 TEXTSTRING NOUNITS uname -i 24 Yes No

(SUNW,SPARCstation-10)
hardware_class 0/1.1.5 TEXTSTRING NOUNITS uname -m (sun4m) 32 Yes No
Processor_type 0/1.1.6 TEXTSTRING NOUNITS uname -p (sparc) 40 Yes No
nodename 0/1.1.7 TEXTSTRING NOUNITS uname -n (fred) 48 Yes No
page_size 0/1.1.8 UINT4 BYTES sysconf(_SC_PAGESIZE) 56 No No
clock_tick_freq 0/1.1.9 UINT4 HZ sysconf(_SC_CLK_TCK) 60 No No
cpu_timestamp_unit 0/1.1.10 UINT8 HZ hertz time unit of measurement 64 No No
cpus_configured 0/1.1.11 UINT4 COUNT sysconf 72 No No

(_SC_NPROCESSORS_CONF)
disks_configured 0/1.1.12 UINT4 COUNT 76 No No
tapes_configured 0/1.1.13 UINT4 COUNT 80 No No
networks_configured 0/1.1.14 UINT4 COUNT 84 No No
physical_memory_size 0/1.1.15 UINT4 MBYTES 88 No No
boot_timestamp 0/1.1.16 UINT8 TIMESTAMP 92 No No
domainname 0/1.1.17 TEXTSTRING NOUNITS (smcc.eng.sun.com) 100 Yes No
defaultrouter 0/1.1.18 TEXTSTRING NOUNITS blank if no default 108 Yes No
config_change_event 0/1.1.19 UINT4 NOUNITS - - - -

Table 4-1 System Configuration

4.3.2 Subclass — per-CPU Configuration

There is one instance of this subclass for each configured CPU. The status indicates whether the
CPU is online, offline or failed. In some cases a CPU that has been taken offline may still be the
target for device interrupts, but it will not have jobs scheduled onto it. Processor id is a system
dependent value that should be used to label per-CPU data instead of the instance number. It is
often non-contiguous on systems that do not have every CPU configured. Clock frequency of the
CPU is vendor dependent. The cpu_clock_resolution is the unit for CPU usage metrics. It is often
the same as the system clock tick frequency, but a high resolution CPU timer can be used to give
more precise metrics. It is normally the same for every CPU, but some systems allow mixed CPU
types and mixed clock rates, so it is replicated on a per-CPU basis.

Data Attributes MLI Attributes

Label Level Data Type Units Example Offset VLDS Instance
/DatumId Object Array

vendor_name 0/1.2.1 TEXTSTRING NOUNITS e.g. Intel 0 Yes No
vendor_cpu_designation 0/1.2.2 TEXTSTRING NOUNITS e.g. Pentium 8 Yes No
processor_id 0/1.2.3 UINT4 NOUNITS 16 No No
cpu_status 1/1.2.4 ENUMERATION NOUNITS 20 No No

offline = 0 not in use at all
not scheduled, but
takes interrupts

onforintr = 1

online = 2 normal operation
failed = 3 failed implies offline

cpu_clock_frequency 1/1.2.5 UINT8 HZ e.g. 90,000,000 Hz 24 No No
for CPU time
measurement

cpu_timestamp_resolution 1/1.2.6 UINT8 HZ 32 No No

config_change_event 0/1.2.7 UINT4 NOUNITS - - - -

Table 4-2 CPU Configuration

24 CAE Specification

Datapool Metrics Configuration Information Class

4.3.3 Subclass — Backplane, I/O or Device Bus Instance

This subclass identifies the buses in the system. There may be a backplane or system bus and a
number of I/O buses containing controllers. Strings of devices may use a common bus to
connect to a controller. Cross references between the instances create the hierarchy. The
controllers on each I/O bus xref the instance they belong to. Bus performance metrics belong in
a vendor specific subclass that should xref this configuration subclass and instance.

The defined optional configuration data includes an xref to another bus instance that is typically
the backplane that a number of I/O buses share. The bus_version is dependent on the
iobus_type. The bus_clock_frequency and bus_width can be used to calculate a peak bandwidth.
The bus_data_packet_max indicates the maximum number of bytes sent in a single transfer. The
bus_status needs to be defined for each type of bus, as each bus implements a protocol with
different failure states.

Data Attributes MLI Attributes

Label Level Data Type Units Example Offset VLDS Instance
/DatumId Object Array

bus_type 0/1.3.1 ENUMERATION NOUNITS 0 No No
= 0 (generic I/O
bus)

generic_io

= 1 (generic
system
backplane)

generic_sys

= 2 (device bus
like SCSI)

generic_device

bus_id 0/1.3.2 UINT4 NOUNITS 4 No No

string naming this bus,
e.g. "SBus"

bus_label 0/1.3.3 TEXTSTRING NOUNITS 8 Yes No

parent_inst_xref opt/1.3.85 TEXTSTRING XREF xref to extend hierarchy 0 Yes No

bus_version opt/1.3.86 TEXTSTRING NOUNITS 8 Yes No

bus_clock_frequency opt/1.3.87 UINT4 HZ 16 No No

bus_width in bytes opt/1.3.88 UINT4 BYTES 20 No No

bus_data_packet_max opt/1.3.89 UINT4 BYTES 24 No No
in bytes

type-specific status, for
generic types

bus_status opt/1.3.90 ENUMERATION NOUNITS 28 No No

offline = 0
online = 1
failed = 2

config_change_event 0/1.3.91 UINT4 NOUNITS - - - -

Table 4-3 Backplane, I/O or Device Bus Instance

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 25

Configuration Information Class Datapool Metrics

4.3.4 Subclass — Device Controller Instance

Controllers are typically I/O cards of many different types that plug into an I/O bus, and control
a string of devices. The type and label must be specified. The cross reference normally indicates
which I/O bus the controller is attached to.

Optional metrics are defined that map onto mainframe channel controllers.

Data Attributes MLI Attributes

Label Level Data Type Units Example Offset VLDS Instance
/DatumId Object Array

controller_type 0/1.4.1 TEXTSTRING NOUNITS 0 Yes No
string naming
this controller
(c0)

controller_label 0/1.4.2 TEXTSTRING NOUNITS 8 Yes No

iobus_inst_xref opt/1.4.85 TEXTSTRING XREF 0 Yes No
controller_vendor opt/1.4.86 TEXTSTRING NOUNITS 8 Yes No
controller_model opt/1.4.87 TEXTSTRING NOUNITS 16 Yes No
num_channels opt/1.4.88 UINT4 COUNT 24 No No
max_devices opt/1.4.89 UINT4 COUNT 28 No No
min_buf_mem opt/1.4.90 UINT4 KBYTES 32 No No
max_buf_mem opt/1.4.91 UINT4 KBYTES 36 No No
total_buf_mem opt/1.4.92 UINT4 KBYTES 40 No No
num_channel_paths opt/1.4.93 UINT4 COUNT 44 No No
status opt/1.4.94 ENUMERATION NOUNITS 48 No No

offline = 0
online = 1
failed = 2

path_address opt/1.4.95 TEXTSTRING NOUNITS 52 Yes No
config_change_event 0/1.4.96 UINT4 NOUNITS - - - -

Table 4-4 Device Controller Instance

4.3.5 Subclass — Local Area Network Controller Instance

Data Attributes MLI Attributes

Label Level Data Type Units Example Offset VLDS Instance
/DatumId Object Array

lan_type 0/1.5.1 TEXTSTRING NOUNITS e.g. Ethernet 0 Yes No
lan_label 0/1.5.2 TEXTSTRING NOUNITS e.g. le0, nf0 8 Yes No
MAC address 0/1.5.3 TEXTSTRING NOUNITS e.g. 8:0:20:1f:ab:cd 16 Yes No
MTU 0/1.5.4 UINT4 BYTES 24 No No
iobus_inst_xref opt/1.5.85 TEXTSTRING XREF reference to iobus 28 Yes No
lan_vendor opt/1.5.86 TEXTSTRING NOUNITS 36 Yes No
lan_model opt/1.5.87 TEXTSTRING NOUNITS 44 Yes No
status opt/1.5.88 ENUMERATION NOUNITS 52 No No

offline = 0
online = 1
failed = 2

config_change_event 0/1.5.89 UINT4 NOUNITS - - - -

Table 4-5 Local Area Network Controller Instance Label

Notes

WAN interfaces are not part of the datapool. Wide area point-to-point interfaces should have
their own class. ATM is contentious but when used as a LAN substitute it belongs here. They are
really the domain of Network Management, rather than System Performance Management.

26 CAE Specification

Datapool Metrics Configuration Information Class

4.3.6 Subclass — Disk Instance Configuration

A disk is a partitionable block device. Anything else is an "other". A hardware RAID disk
subsystem that appears to the system as a single large disk belongs in this subclass. If the
individual disks are apparent then each disk gets its own instance, and the RAID unit is dealt
with as an "Other Device" and a volume description.

Data Attributes MLI Attributes

Label Level Data Type Units Example Offset VLDS Instance
/DatumId Object Array

one instance
per-disk, coded
as

disk_type 0/1.6.1 ENUMERATION NOUNITS 0 No No

Unknown = 0
harddisk = 1
cdrom = 2
floppy = 3
worm = 4
Hard_raid = 5

e.g. sd0 or c0t0
or c0d0 or
c0t0d0

disk_label 0/1.6.2 TEXTSTRING NOUNITS 4 Yes No

capacity 0/1.6.3 UINT4 KYTES 12 No No

sector size 0/1.6.4 UINT4 BYTES 16 No No

major 0/1.6.5 UINT4 COUNT 20 No No

minor 0/1.6.6 UINT4 COUNT 24 No No

status 1/1.6.7 ENUMERATION NOUNITS 28 No No
offline = 0
online = 1
failed = 2

vendor 1/1.6.8 TEXTSTRING NOUNITS 32 Yes No

vendor_designation 1/1.6.9 TEXTSTRING NOUNITS 40 Yes No

reference to a
controller

controller_inst_xref opt/1.6.85 TEXTSTRING XREF 0 Yes No

optional 2nd
controller for
dual port (e.g.
SCSIdisk)

controller2_inst_xref opt/1.6.86 TEXTSTRING XREF 8 Yes No

device_cache_size opt/1.6.87 UINT4 KBYTES onboard cache 16 No No

e.g. SCSI tagged
command
queue size

device_queue_size opt/1.6.88 UINT4 COUNT 20 No No

volume_label TEXTSTRING NOUNITS 24 Yes No

config_change_event 0/1.6.89 UINT4 NOUNITS - - - -

Table 4-6 Disk Instance Configuration

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 27

Configuration Information Class Datapool Metrics

4.3.7 Subclass — Other Device Instance Configuration

This subclas includes tapes, juke boxes and RAID units. The storage configuration of a RAID
unit is not provided here as it is implicit in the way volumes are described. Tape config
information is provided, but no performance stats are available on most systems so the stats are
level 1.

Data Attributes MLI Attributes

Label Level Data Type Units Example Offset VLDS Instance
/DatumId Object Array

target-type: one
instance per-
target, coded as

type 0/1.7.1 ENUMERATION NOUNITS 0 No No

unknown = 0
tape = 1

= 3 (optical or
tape changer)

jukebox

= 4 (disk array /
RAID controller)

array

= 5 (mainframe
front end)

fep

target size, zero
if not applicable

size 0/1.7.2 UINT4 KBYTES 4 No No

target label
(c0t0, sd0, st0
etc)

label 0/1.7.3 TEXTSTRING NOUNITS 8 Yes No

major 0/1.7.4 UINT4 COUNT 16 No No
minor 0/1.7.5 UINT4 COUNT 20 No No
status 1/1.7.6 ENUMERATION NOUNITS 24 No No

offline = 0
online = 1
failed = 2

vendor 1/1.7.7 TEXTSTRING NOUNITS 28 Yes No
vendor_designation 1/1.7.8 TEXTSTRING NOUNITS 36 Yes No

reference to a
controller

controller_inst_xref opt/1.7.85 TEXTSTRING XREF 0 Yes No

optional 2nd
controller

controller2_inst_xref opt/1.7.86 TEXTSTRING XREF 8 Yes No

device_cache_size opt/1.7.87 UINT4 KBYTES e.g. RAID cache 16 No No
SCSI tagged
command
queue size

device_queue_size opt/1.7.88 UINT4 COUNT 20 No No

config_change_event 0/1.7.89 UINT4 NOUNITS - - - -

Table 4-7 Other Device Instance Configuration

28 CAE Specification

Datapool Metrics Configuration Information Class

4.3.8 Subclass — Disk Partition Instance Configuration

Also called slices, and subdisks. Each partition xrefs the disk it comes from, and is in turn xref’d
by the volume hierarchy. Filesystem info is not provided here, as filesystems may span multiple
disk partitions and partitions may be used raw.

Data Attributes MLI Attributes

Label Level Data Type Units Example Offset VLDS Instance
/DatumId Object Array

slice/partition/subdisk
label (s0, a,
disk01-1)

partition_label 1/1.8.1 TEXTSTRING NOUNITS 0 Yes No

target size, zero
if not applicable

partition_size 1/1.8.2 UINT4 KBYTES 8 No No

offset into disk
of start

partition_start 1/1.8.3 UINT4 KBYTES 12 No No

major 1/1.8.4 UINT4 COUNT 16 No No
minor 1/1.8.5 UINT4 COUNT 20 No No

xref into a disk
instance

disk_inst_xref opt/1.8.85 TEXTSTRING XREF 0 Yes No

config_change_event 0/1.8.86 UINT4 NOUNITS - - - -

Table 4-8 Disk Partition Instance Configuration

4.3.9 Subclass — Volume Group Instance Configuration

The following classes are architected to refer to the I/O hierarchy, and to allow for Veritas LVM,
HP, AIX and SunSoft DiskSuite based software implementations, and hardware RAID
configurations.

Volume groups, disk groups and disk sets are names for a collection of related volumes, they are
used both for administrative convenience, and to provide for HA failover, and disk sharing
between systems in parallel database applications. In the absence of an explicit group, volumes
not in any group omit the cross-reference and there will be no volume group instances.

Data Attributes MLI Attributes

Label Level Data Type Units Example Offset VLDS Instance
/DatumId Object Array

volume_group_label 1/1.9.1 TEXTSTRING NOUNITS group name 0 Yes No
e.g. rootdg

status 1/1.9.2 ENUMERATION NOUNITS 8 No No
offline = 0
online = 1
failed = 2

config_change_event 0/1.9.3 UINT4 NOUNITS - - - -

Table 4-9 Volume Group Instance Configuration

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 29

Configuration Information Class Datapool Metrics

4.3.10 Subclass — Volume/Metadisk Instance Configuration

Volumes are the entities that have data stored in them. They can be used raw, to provide swap
space or for raw database tables. They can have a filesystem built on them so the filesystem can
be mounted. A volume can contain an xref to a disk group, and is xref’d by plexes. In DiskSuite
terminology a volume is a metadisk.

Data Attributes MLI Attributes

Label Level Data Type Units Example Offset VLDS Instance
/DatumId Object Array

size of volume
in Kbytes

volume_size 1/1.10.1 UINT4 KBYTES 0 No No

volume label
e.g. vol3, md23,
lv01

volume_label 1/1.10.2 TEXTSTRING NOUNITS 4 Yes No

status 1/1.10.3 ENUMERATION NOUNITS 12 No No
offline = 0
online = 1
failed = 2

vg_inst_xref opt/1.10.85 TEXTSTRING XREF reference to 0 Yes No
disk_group

config_change_event 1/1.10.86 UINT4 NOUNITS - - - -

Table 4-10 Volume/Metadisk Instance Configuration

30 CAE Specification

Datapool Metrics Configuration Information Class

4.3.11 Subclass — Plex/Metapartition Instance Configuration

Plexes are the components used to tie disk partitions to volumes. Plex instances are strongly
ordered, so that a volume is made up of plexes concatenated or mirrored in the order in which
they appear in the plex instances. This info can be used by an application to build a doubly
linked tree to find the plexes given a volume. A common configuration change is to add another
plex at the end of a volume to increase its size, adding another plex at the end of the list of
instances satisfies this requirement. Plexes can reference other plexes in order to allow constructs
such as mirrored striped volumes. Plexes are also known as metapartitions.

For example, to encode a simple mirror of two pieces of disk, two type 0 plexes would xref the
same volume, and would each xref a disk partition.

Sizes are not redundant, as mirroring or striping two plexes results in the minimum of the two
as the size.

Data Attributes MLI Attributes

Label Level Data Type Units Example Offset VLDS Instance
/DatumId Object Array

plex_label 1/1.11.1 TEXTSTRING NOUNITS 0 Yes No
plex_type 1/1.11.2 ENUMERATION NOUNITS plex type, coded as 8 No No

raid0/submirror = 0
raid1/stripe = 1
raid2 = 2
raid3 = 3
raid4 = 4
raid5 = 5
raid4parity = 14

journal filesystem
log

parity disk log = 15

hotspare = 16
interlace used for
stripe and raid

plex_interlace 1/1.11.3 UINT4 KBYTES 12 No No

plex_size 1/1.11.4 UINT4 KBYTES size of plex 16 No No
status 1/1.11.5 ENUMERATION NOUNITS 20 No No
offline = 0
online = 1
failed = 2

xref to a volume or
a higher level plex

vol_pl_inst_xref opt/1.11.85 TEXTSTRING XREF 0 Yes No

xref to a partition
or a lower level
plex

part_pl_inst_xref opt/1.11.86 TEXTSTRING XREF 8 Yes No

config_change_event 1/1.11.87 UINT4 NOUNITS - - - -

Table 4-11 Plex/Metapartition Instance Configuration Label

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 31

Configuration Information Class Datapool Metrics

4.3.12 Subclass — File System Instance Configuration

A filesystem can cross-reference a (logical) volume or a simple disk partition only. Filesystems
that store data are represented here. Special filesystem types like procfs are not.

The data reported by the BSD form of df is the basis of this class

% df
Filesystem kbytes used avail capacity Mounted on
/edev/edsk/ec0t3d0s0 189858 169406 1472 99% /re

The event is generated when the filesystem is mounted, unmounted or a hard error state is
entered. File system full is not an event condition. Applications can poll this subclass to monitor
filesystem free space.

The filesystem type is a string, since there are more filesystem types than can be enumerated in
the standard. Since there are many common types, these exact strings should be used if the
filesystem matches one of the entries.

Label String Type
raw raw disk (raw database tablespace)
swap swap space
ufs BSD4 based UNIX file system
hsfs cdrom High Sierra file system
pcfs MSDOS pc
sys5 system V
jfs journal fs
xfs extent fs
tmpfs RAM based temporary fs
cachefs ONC+ caching fs
nfs_v2 NFS version 2
nfs_v3 NFS version 3
afs Andrew FS
dfs DCE
rfs Sys V Remote FS

Table 4-12 File System Types Label String

32 CAE Specification

Datapool Metrics Configuration Information Class

Data Attributes MLI Attributes

Label Level Data Type Units Example Offset VLDS Instance
/DatumId Object Array

filesystem_type 0/1.12.1 TEXTSTRING NOUNITS 0 Yes No
device_string 0/1.12.2 TEXTSTRING NOUNITS mounted device 8 Yes No
size 0/1.12.3 UINT4 KBYTES size in KBytes 16 No No

mount point path name stringmount_point 0/1.12.4 TEXTSTRING NOUNITS 20 Yes No

status 1/1.12.5 ENUMERATION NOUNITS 24 No No
unmounted = 0
mounted = 1
failed = 2

options 1/1.12.6 TEXTSTRING NOUNITS mount options string 28 Yes No
filesystem block size
(e.g. stat.st_blksize)

block_size 1/1.12.7 UINT4 BYTES 36 No No

xref to a disk partition
or volume

part_vol_inst_xref opt/1.12.85 ID_INST XREF 0 No No

config_change_event 0/1.12.86 UINT4 NOUNITS - - - -

Table 4-13 File System Instance Configuration

4.3.13 Subclass — Dynamic Kernel Table Counter Configuration

The number and definition of fixed size kernel tables varies even from one release of an OS to
the next. In general many systems are removing fixed size limits. This class specifies the names
of the tables that are reported on by the Dynamic Kernel Table Counter class. Each instance of
this class defines the name of the corresponding instance in that class.

There are four values that are commonly reported by the SVR4 sar -v option. If these tables are
provided then standard strings must be used to indicate the names. Process, inode, file and lock
tables are often reported by sar.

% sar -v 1
23:45:06 proc-sz ov inod-sz ov file-sz ov lock-sz
23:45:07 49/506 0 1874/1874 0 297/297 0 0/0

Level Table name string Type
0 process process table
0 inode ufs inode table
0 file systemwide open file table
0 lock systemwide file lock table

Table 4-14 Kernel Table Types

Data Attributes MLI Attributes

Label Level Data Type Units Example Offset VLDS Instance
/DatumId Object Array

table_name 0/1.13.1 TEXTSTRING NOUNITS 0 Yes No
table_limit 0/1.13.2 UINT8 NOUNITS 8 No No

Table 4-15 Dynamic Kernel Table Counter Configuration

Some tables may not have a limit in certain implementations, so return 0 as the limit.

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 33

Configuration Information Class Datapool Metrics

4.3.14 Subclass — per-IP Configuration

Some systems support multiple protocols, or multiple IP addresses on one interface, so this is
separated from the network interface itself. Table 16:

Data Attributes MLI Attributes

Label Level Data Type Units Example Offset VLDS Instance
/DatumId Object Array

ip_address 0/1.14.1 TEXTSTRING NOUNITS 0 Yes No
subnet mask 0/1.14.2 TEXTSTRING NOUNITS 8 Yes No
broadcast 0/1.14.3 TEXTSTRING NOUNITS 16 Yes No

xref to a
network
interface

network_interface_xref opt/1.14.85 TEXTSTRING XREF 0 Yes No

config_change_event 0/1.14.86 UINT4 NOUNITS - - - -

Table 4-16 Subclass — per-IP Configuration

4.3.15 Subclass — System Call Configuration

This class was designated as level 1 at one point. In fact it can be level 0, and if no data is
available no instances need be defined. Each implementation is free to define its own set of
system calls and to decide which calls are instrumented and reported.

Based on the data normally displayed by sar -c , certain system calls may be counted globally.
The name of each instance is provided by this class. The counters are read by the System Call
Counter class. Some sample sar -c output is shown below.

% sar -c 1

SunOS crun 5.5 Generic sun4u 07/08/96

15:50:02 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
15:50:03 234 19 16 0.00 0.00 3801 2614

The first five values are considered to have predefined name strings as shown. The last two
values shown in the sar example are not call counts.

Table name string Type
syscalls total number of system calls
read read syscall
write write syscall
fork fork syscall
exec exec syscall

Table 4-17 System Call Names

Data Attributes MLI Attributes

Label Level Data Type Units Example Offset VLDS Instance
/DatumId Object Array

syscall_name 0/1.15.1 TEXTSTRING NOUNITS 0 Yes No

Table 4-18 System Call Configuration

34 CAE Specification

Datapool Metrics Configuration Information Class

4.3.16 Subclass — Scheduling Class Configuration

One instance per-scheduling class. Secondary ranges exist in some System V implementations.
This class is needed so that it is clear whether high numerical values refer to high or low
priorities, and to indicate the relative ordering and overlap of different scheduler classes.

Data Attributes MLI Attributes

Label Level Data Type Units Example Offset VLDS Instance
/DatumId Object Array

sched_class_name 0/1.16.1 TEXTSTRING NOUNITS e.g. TS 0 Yes No
low_end_priority 0/1.16.2 UINT4 COUNT 8 No No
high_end_priority 0/1.16.3 UINT4 COUNT 12 No No
default_start_priority 0/1.16.4 UINT4 COUNT 16 No No
low_end_priority_secondary opt/1.16.85 UINT4 COUNT 0 No No
high_end_priority_secondary opt/1.16.86 UINT4 COUNT 4 No No
config_change_event 0/1.16.87 UINT4 NOUNITS - - - -

Table 4-19 Scheduling Class Configuration

4.4 Processor Classes

4.4.1 Measured Per-processor Times

One instance per-processor. Measured times are accumulated at the state transitions, and are
more accurate, but higher overhead than the sampled per-processor times.

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

user_time 0/2.1.1 UINT8 TIMEVAL 0 No No
system_time 0/2.1.2 UINT8 TIMEVAL 8 No No
idle_time 0/2.1.3 UINT8 TIMEVAL 16 No No

Table 4-20 Measured Per-processor Times

Constraints

user_time + system_time + idle_time = 100% of the elaspsed time.

Definitions

idle_time includes all wait time. Idle time is broken down further in the per-processor wait
times subclass.

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 35

Processor Classes Datapool Metrics

4.4.2 Sampled Per-processor Times

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

user_time 0/2.2.1 UINT8 TIMEVAL 0 No No
system_time 0/2.2.2 UINT8 TIMEVAL 8 No No
idle_time 0/2.2.3 UINT8 TIMEVAL 16 No No
idle_disk_wait_time 1/2.2.4 UINT8 TIMEVAL 24 No No

Table 4-21 Sampled Per-processor Times

Constraints

user_time + system_time + idle_time = 100% of the elapsed time

idle_disk_wait_time <= idle_time

Definitions

idle_time includes all wait time.

idle_disk_wait_time is accumulated when the sample occurs while the system is waiting for a
disk I/O.

The idle_disk_wait_time is inflated on multiprocessor systems, as
multiple idle CPUs are all sampled as waiting for a single I/O. When
reporting a composite system wide wait time, it is recommended that the
total idle_disk_wait_time is divided by the number of CPUs and the
excess is allocated as idle time.

36 CAE Specification

Datapool Metrics Processor Classes

4.4.3 Per-processor Counters

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

system_calls 0/2.3.1 UINT8 COUNT 0 No No
hardware_interrupts 0/2.3.2 UINT8 COUNT 8 No No
total_switches 0/2.3.3 UINT8 COUNT 16 No No
voluntary_switches 1/2.3.4 UINT8 COUNT 24 No No
traps 1/2.3.5 UINT8 COUNT 32 No No
program_interrupts 1/2.3.6 UINT8 COUNT 40 No No
mutex_stalls opt/2.3.85 UINT8 COUNT 0 No No

Table 4-22 Per-processor Counters

Constraints

involuntary_switches = total_switches - voluntary_switches

Definitions

hardware_interrupts include external I/O device interrupts.

program_interrupts include cross calls between processors.

mutex_stalls are the number of times a processor is stalled because it could not obtain
a mutual exclusion lock held by another processor.

4.4.4 Per-processor Per-system Call Counters

The system call configuration subclass defines and names each system call instance. There are
two levels of instances here, per-processor and per-system call.

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

syscall_count 0/2.4.1 UINT8 COUNT 0 No No
syscall_cpu_time opt/2.4.85 UINT8 TIMEVAL 0 No No

Table 4-23 Per-processor Per-system Call Counters

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 37

Processor Classes Datapool Metrics

4.4.5 Per-work Unit Processor Times

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

user_time 0/2.5.1 UINT8 TIMEVAL 0 No No
system_time 0/2.5.2 UINT8 TIMEVAL 8 No No
user_child_time 0/2.5.3 UINT8 TIMEVAL 16 No No
system_child_time 0/2.5.4 UINT8 TIMEVAL 24 No No
rt_priority_time opt/2.5.85 UINT8 TIMEVAL 0 No No
interrupt_time opt/2.5.86 UINT8 TIMEVAL 8 No No

Table 4-24 Per Work Unit Processor Times

Definitions

rt_priority_time is time spent by this work unit running in the realtime priority class.

interrupt_time is time stolen from this work unit while processing interrupts. The
interrupt time is a subset of the user_time and system_time.

user_child_time and system_child_time
only accumulate the time for child processes that have exited. They are
updated when the parent process reaps the child.

4.4.6 Per-work Unit Per-system Call Counters

The system call configuration subclass defines and names each system call instance. There are
two levels of instances here, per-work unit (process) and per-system call.

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

syscall_count 1/2.6.1 UINT8 COUNT 0 Yes Yes
syscall_cpu_time opt/2.6.85 UINT8 TIMEVAL 0 Yes Yes

Table 4-25 Per-work Unit Per-system Call Counters

38 CAE Specification

Datapool Metrics Processor Classes

4.4.7 Wait Times

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

idle_disk_wait_time 1/2.7.1 UINT8 TIMEVAL 0 No No
idle_page_swap_time 1/2.7.2 UINT8 TIMEVAL 8 No No

Table 4-26 Wait Times Subclass

Constraints

user_time + system_time + idle_time = 100% of the accumulated processor time

idle_page_swap_time <= idle_disk_wait_time <= idle_time

Definitions

idle_time includes all wait time.

idle_disk_wait_time is accumulated when the CPU sleeps waiting for a disk I/O.

idle_page_swap_time is accumulated when the CPU sleeps waiting for a disk I/O that is paging
or swapping to the swap space. Unlike sampled per-processor times, the
idle_disk_wait_time will not be inflated on multiprocessor systems, as
only the CPU that initiated the I/O will be measured. The wait time ends
when the I/O ends, even if a different CPU processes the completion.

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 39

Processor Classes Datapool Metrics

4.5 Memory Class

4.5.1 Global Physical Memory Usage

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

free_memory 0/3.1.1 UINT4 KBYTES 0 No No
file_cache_memory 0/3.1.2 UINT4 KBYTES 4 No No
kernel_memory 0/3.1.3 UINT4 KBYTES 8 No No
other_memory 0/3.1.4 UINT4 KBYTES 12 No No
wired_memory 1/3.1.5 UINT4 KBYTES 16 No No
shared memory 1/3.1.6 UINT4 KBYTES 20 No No
dirty_memory opt/3.1.85 UINT4 KBYTES 0 No No

Table 4-27 Global Physical Memory Usage

Constraints

total physical memory = free_memory + file_cache_memory + kernel_memory + other_memory

Definitions

total physical memory (physmem)
is in the system configuration class

wired_memory is memory that cannot be paged out.

shared memory is all memory that is multiply referenced.

dirty_memory is memory that is modified with respect to its backing store.

4.5.2 Global Virtual Memory Usage

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

total_swap 0/3.2.1 UINT4 PAGES 0 No No
swap_available 0/3.2.2 UINT4 PAGES 4 No No
swap_allocated 0/3.2.3 UINT4 PAGES 8 No No

Table 4-28 Global Virtual Memory Usage

The intention is to know how much virtual memory is in use, and how much is left, such that
when there is no swap available it is not possible to grow or start processes. These are the four
underlying measures provided by SVR4 and Solaris 2 (for example):

swap_reserved reserved swap in pages — space reserved but not written to.

swap_allocated allocated swap in pages — space that has been written to.

swap_available unreserved swap in pages — space available to be reserved.

swap_free unallocated swap in pages — space that has yet to be written to.

The metrics are derived from these measures as follows:

total_swap = swap_allocated + swap_reserved + swap_available

40 CAE Specification

Datapool Metrics Memory Class

Note that swap_free is not used in this calculation, although it is the value reported by sar on
some systems. swap_available is the value reported by vmstat.

4.5.3 Per-processor Demand Paging Counters

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

major_faults 0/3.3.1 UINT8 COUNT 0 No No
minor_faults 0/3.3.2 UINT8 COUNT 8 No No
pages_in 0/3.3.3 UINT8 PAGES 16 No No
pages_out 0/3.3.4 UINT8 PAGES 24 No No
page_reclaims 0/3.3.5 UINT8 COUNT 32 No No
page_in_ops 1/3.3.6 UINT8 COUNT 40 No No
page_out_ops 1/3.3.7 UINT8 COUNT 48 No No
zero_fill_pages 1/3.3.8 UINT8 PAGES 56 No No
copy_on_write_faults 1/3.3.9 UINT8 COUNT 64 No No
copy_on_write_pages 1/3.3.10 UINT8 PAGES 72 No No
pages_scanned 1/3.3.11 UINT8 PAGES 80 No No
pager_run 1/3.3.12 UINT8 COUNT 88 No No
pages_freed 1/3.3.13 UINT8 PAGES 96 No No
pages_attached 1/3.3.14 UINT8 PAGES 104 No No
ssq_pages_in opt/3.3.85 UINT8 PAGES 0 No No
ssq_pages_out opt/3.3.86 UINT8 PAGES 8 No No

Table 4-29 Per-processor Demand Paging Counters

4.5.4 Per-processor Swapping Counters

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

pages_swapped_in 0/3.4.1 UINT8 PAGES 0 No No
pages_swapped_out 0/3.4.2 UINT8 PAGES 8 No No
processes_swapped_in 0/3.4.3 UINT8 PROCESSES 16 No No
processes_swapped_out 0/3.4.4 UINT8 PROCESSES 24 No No

Table 4-30 Per-processor Swapping Counters

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 41

Memory Class Datapool Metrics

4.5.5 Per-work Unit Memory Usage

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

total_virtual_memory_size 0/3.5.1 UINT8 PAGES 0 No No
total_resident_set_size 0/3.5.2 UINT8 PAGES 8 No No
private_resident_memory 1/3.5.3 UINT8 PAGES 16 No No
shared_resident_memory 1/3.5.4 UINT8 PAGES 24 No No
wired_memory 1/3.5.5 UINT8 PAGES 32 No No
sys5_shared_memory 1/3.5.6 UINT8 PAGES 40 No No

Table 4-31 Per-work Unit Memory Usage

The level 0 metrics are basically the SIZE and RSS fields reported by the UNIX ps command for
each process.

4.5.6 Per-work Unit Demand Paging Counters

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

minor_faults 0/3.6.1 UINT8 COUNT 0 No No
major_faults 0/3.6.2 UINT8 COUNT 8 No No
child_minor_faults 1/3.6.3 UINT8 COUNT 16 No No
child_major_faults 1/3.6.4 UINT8 COUNT 24 No No

Table 4-32 Per-work Unit Demand Paging Counters

Definitions

Minor faults are resolved within the memory system, typically without sleeping.

Major faults require a disk I/O to resolve, causing the work unit to sleep until the I/O
completes.

Child fault counts are accumulated for children that have exited at the time the children are
reaped.

4.5.7 Per-work Unit Swapping Counters

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

swap_outs 0/3.7.1 UINT8 COUNT 0 No No

Table 4-33 Per-work Unit Swapping Counters

42 CAE Specification

Datapool Metrics Memory Class

4.5.8 Dynamic Kernel Table Counters

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

current_inuse 0/3.8.1 UINT8 COUNT 0 No No
allocated_size 0/3.8.2 UINT8 COUNT 8 No No
maximum_reached 1/3.8.3 UINT8 COUNT 16 No No

Table 4-34 Dynamic Kernel Table Counters

Notes

Process, inode, file and lock tables and limits are listed in the configuration section for level 0.

Allocated size may be the same as the limit if the whole table is preallocated, may be the same as
current_inuse if the table is allocated one item at a time, or may be a little larger than
current_inuse if allocations are made in slabs. Some implementations that use a dynamically
allocated linked list of structures do not have a hard limit, but when exceeded the system will
reclaim inactive entries immediately. Each instance of this subclass reports on a different kernel
table.

4.5.9 Memory Object Subclass

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

memory_object_type opt/3.9.85 ENUMERATION NOUNITS 0 No No
sys5_shared_memory = 0
mmap_shared_memory = 1
file = 2

mount_point opt/3.9.86 TEXTSTRING NOUNITS 8 Yes No
inode opt/3.9.87 UINT8 NOUNITS 16 No No
resident_memory_size opt/3.9.88 UINT8 PAGES 24 No No
virtual_memory_size opt/3.9.89 UINT8 PAGES 32 No No
locked_memory_size opt/3.9.90 UINT8 PAGES 40 No No

Table 4-35 Memory Object Subclass

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 43

Memory Class Datapool Metrics

4.6 IPC Class

4.6.1 IPC subclass

These counters are intended to map onto the common ‘‘System V’’ IPC message queue and
semaphore implementation data (returned by sar -m on some platforms).

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

ipc_message_sent 0/4.1.1 UINT8 COUNT 0 No No
ipc_message_received 0/4.1.2 UINT8 COUNT 8 No No
semaphore_operations 0/4.1.3 UINT8 COUNT 16 No No

Table 4-36 Global IPC Counters subclass

44 CAE Specification

Datapool Metrics IPC Class

4.7 Scheduling Class

4.7.1 Global Runqueue Counters

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

runq_samples 0/5.1.1 UINT8 COUNT 0 No No
runload_sum 0/5.1.2 UINT8 PROCESSES 8 No No
runnonload_sum 0/5.1.3 UINT8 PROCESSES 16 No No

Table 4-37 Global Runqueue Counters

4.7.2 Per-work Unit Scheduling Counters

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

sched_class_id 0/5.2.1 UINT4 NOUNITS 0 No No
global_priority 0/5.2.2 INT4 COUNT 4 No No
nice_value 0/5.2.3 INT4 COUNT 8 No No

Table 4-38 Per-work Unit Scheduling Counters

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 45

Scheduling Class Datapool Metrics

4.8 Disk Device Data Class

4.8.1 Global Physical I/O Counters

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

buffer_reads 0/6.1.1 UINT8 COUNT 0 No No
logical_reads 0/6.1.2 UINT8 COUNT 8 No No
buffer_writes 0/6.1.3 UINT8 COUNT 16 No No
logical_writes 0/6.1.4 UINT8 COUNT 24 No No
physical_reads 0/6.1.5 UINT8 COUNT 32 No No
physical_writes 0/6.1.6 UINT8 COUNT 40 No No
buffer_reads_KB 1/6.1.7 UINT8 KBYTES 48 No No
logical_reads_KB 1/6.1.8 UINT8 KBYTES 56 No No
buffer_writes_KB 1/6.1.9 UINT8 KBYTES 64 No No
logical_writes_KB 1/6.1.10 UINT8 KBYTES 72 No No
physical_read_KB 1/6.1.11 UINT8 KBYTES 80 No No
physical_write_KB 1/6.1.12 UINT8 KBYTES 88 No No

Table 4-39 Global Physical I/O Counters

This class is based on the data commonly provided by sar − b:

% sar -b
10:44:11 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s

Notes

The filesystem buffer cache measures are commonlly provided but there are widely different
implementations so the measures are not always useful. Some (traditional UNIX)
implementations use the buffer cache for all filesystem I/O. Others (e.g. UNIX SVR4, Solaris 1,
and Solaris 2) do not, and only use it to store filesystem metadata such as inodes, indirect blocks
and cylinder group blocks.

The physical I/O counters are the counts of raw device accesses rather than block device
(filesystem) accesses. These are commonly reported by sar as pread and pwrite .

46 CAE Specification

Datapool Metrics Disk Device Data Class

4.8.2 Per-disk Device Data

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

read_bytes 0/6.2.1 UINT8 BYTES 0 No No
write_bytes 0/6.2.2 UINT8 BYTES 8 No No
reads 0/6.2.3 UINT8 COUNT 16 No No
writes 0/6.2.4 UINT8 COUNT 24 No No
wait_time 0/6.2.5 UINT8 TIMEVAL 32 No No
wait_length_time 0/6.2.6 UINT8 TIMEVAL 40 No No
active_time 0/6.2.7 UINT8 TIMEVAL 48 No No
active_length_time 0/6.2.8 UINT8 TIMEVAL 56 No No

Table 4-40 Per-disk Device Data

A disk device requires two queues to be instrumented. The wait queue consists of commands
that have not yet been issued to the disk. The active queue consists of commands that have been
issued to the disk but have not yet completed. Modern SCSI disks can accept a large active
queue.

Definitions

wait_time is a running sum of the time that the queue is non-empty.

wait_length_time is a running sum of the product of queue length and elapsed time at that
length.

The active queue is instrumented the same way.

active_length_time is a running sum of the product of queue length and elapsed time at that
length.

Notes

At each entry or exit from the queue, the elapsed time since the previous state change is added
to the wait_time if the queue length is non-zero, and the product of the time and the queue
length is added to wait_length_time.

In the following example, assume that two measurements (new and old) were separated by
some elapsed_time. The higher level disk statistics are obtained by the following calculations:

• read_KB_per_sec = (new.read_bytes - old.read_bytes) / (1024 * elapsed_time)

• writes_per_sec = (new.writes - old.writes) / elapsed_time

• utilisation = busy_percent = 100 * (new.active_time - old.active_time) / elapsed_time

• wait_queue_length = (new.wait_length_time - old.wait_length_time) / elapsed_time

• active_queue_length = (new.active_length_time - old.active_length_time) / elapsed_time

• wait_time_milliseconds = 1000 * wait_queue_length / (reads_per_sec + writes_per_sec)

• service_time_milliseconds = 1000 * active_queue_length / (reads_per_sec + writes_per_sec)

• response_time_milliseconds = wait_time_milliseconds + service_time_milliseconds.

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 47

Disk Device Data Class Datapool Metrics

4.8.3 Per-work Unit I/O

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

inblock 0/6.3.1 UINT8 BYTES 0 No No
outblock 0/6.3.2 UINT8 BYTES 8 No No

Table 4-41 Per-work Unit I/O

Notes

These measures count the filesystem block I/O made by the work unit. Care must be taken to
convert the values into bytes from whatever the operating system reports them in (may be 512
byte blocks).

48 CAE Specification

Datapool Metrics Disk Device Data Class

4.9 Global File Systems Class

4.9.1 Global File Service Counters

This subclass accumulates all activity related to NFSV2, NFSV3, DFS, AFS, etc.

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

inbound_reqs 1/7.1.1 UINT8 COUNT 0 No No
read_reqs 1/7.1.2 UINT8 COUNT 8 No No
send_bytes 1/7.1.3 UINT8 BYTES 16 No No
write_reqs 1/7.1.4 UINT8 COUNT 24 No No
recv_bytes 1/7.1.5 UINT8 BYTES 32 No No
duplicate_requests 1/7.1.6 UINT8 COUNT 40 No No

Table 4-42 Global File Service Counters

4.9.2 ONC RPC Client Counters

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

client_rpc_calls 0/7.2.1 UINT4 COUNT 0 No No
client_rpc_badcalls 0/7.2.2 UINT4 COUNT 4 No No
client_rpc_retransmits 0/7.2.3 UINT4 COUNT 8 No No
client_rpc_badxids 0/7.2.4 UINT4 COUNT 12 No No
client_rpc_waits 0/7.2.5 UINT4 COUNT 16 No No
client_rpc_newcreds 0/7.2.6 UINT4 COUNT 20 No No

Table 4-43 ONC RPC Client Counters

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 49

Global File Systems Class Datapool Metrics

4.9.3 ONC NFS Version 2 Client Counters

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

client_nfs_sleepcalls 0/7.3.1 UINT4 COUNT 0 No No
client_nfs_calls 0/7.3.2 UINT4 COUNT 4 No No
client_nfs_gets 0/7.3.3 UINT4 COUNT 8 No No
client_nfs_badcalls 0/7.3.4 UINT4 COUNT 12 No No
client_nfs_nullrcvs 0/7.3.5 UINT4 COUNT 16 No No
client_nfs_getattrs 0/7.3.6 UINT4 COUNT 20 No No
client_nfs_setattrs 0/7.3.7 UINT4 COUNT 24 No No
client_nfs_root 0/7.3.8 UINT4 COUNT 28 No No
client_nfs_lookup 0/7.3.9 UINT4 COUNT 32 No No
client_nfs_readlink 0/7.3.10 UINT4 COUNT 36 No No
client_nfs_read 0/7.3.11 UINT4 COUNT 40 No No
client_nfs_writecache 0/7.3.12 UINT4 COUNT 44 No No
client_nfs_write 0/7.3.13 UINT4 COUNT 48 No No
client_nfs_create 0/7.3.14 UINT4 COUNT 52 No No
client_nfs_remove 0/7.3.15 UINT4 COUNT 56 No No
client_nfs_rename 0/7.3.16 UINT4 COUNT 60 No No
client_nfs_link 0/7.3.17 UINT4 COUNT 64 No No
client_nfs_symlink 0/7.3.18 UINT4 COUNT 68 No No
client_nfs_mkdir 0/7.3.19 UINT4 COUNT 72 No No
client_nfs_rmdir 0/7.3.20 UINT4 COUNT 76 No No
client_nfs_readdir 0/7.3.21 UINT4 COUNT 80 No No
client_nfs_filesysstat 0/7.3.22 UINT4 COUNT 84 No No

Table 4-44 ONC NFS Version 2 Client Counters

4.9.4 ONC RPC Server Counters

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

server_rpc_calls 0/7.4.1 UINT4 COUNT 0 No No
server_rpc_badcalls 0/7.4.2 UINT4 COUNT 4 No No
server_rpc_nullrcvs 0/7.4.3 UINT4 COUNT 8 No No
server_rpc_badlens 0/7.4.4 UINT4 COUNT 12 No No
server_rpc_xdrcalls 0/7.4.5 UINT4 COUNT 16 No No

Table 4-45 ONC RPC Server Counters

50 CAE Specification

Datapool Metrics Global File Systems Class

4.9.5 ONC NFS Version 2 Server Counters

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

server_nfs_calls 0/7.5.1 UINT4 COUNT 0 No No
server_nfs_badcalls 0/7.5.2 UINT4 COUNT 4 No No
server_nfs_null 0/7.5.3 UINT4 COUNT 8 No No
server_nfs_getattr 0/7.5.4 UINT4 COUNT 12 No No
server_nfs_setattr 0/7.5.5 UINT4 COUNT 16 No No
server_nfs_root 0/7.5.6 UINT4 COUNT 20 No No
server_nfs_lookups 0/7.5.7 UINT4 COUNT 24 No No
server_nfs_readlink 0/7.5.8 UINT4 COUNT 28 No No
server_nfs_reads 0/7.5.9 UINT4 COUNT 32 No No
server_nfs_writecache 0/7.5.10 UINT4 COUNT 36 No No
server_nfs_writes 0/7.5.11 UINT4 COUNT 40 No No
server_nfs_creates 0/7.5.12 UINT4 COUNT 44 No No
server_nfs_removes 0/7.5.13 UINT4 COUNT 48 No No
server_nfs_renames 0/7.5.14 UINT4 COUNT 52 No No
server_nfs_links 0/7.5.15 UINT4 COUNT 56 No No
server_nfs_symlinks 0/7.5.16 UINT4 COUNT 60 No No
server_nfs_mkdir 0/7.5.17 UINT4 COUNT 64 No No
server_nfs_rmdir 0/7.5.18 UINT4 COUNT 68 No No
server_nfs_readdir 0/7.5.19 UINT4 COUNT 72 No No
server_nfs_filesysstat 0/7.5.20 UINT4 COUNT 76 No No

Table 4-46 ONC NFS Version 2 Server Counters

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 51

Global File Systems Class Datapool Metrics

4.9.6 ONC NFS Version 3 Client Counters

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

client_nfs_sleepcalls 0/7.6.1 UINT4 COUNT 0 No No
client_nfs_calls 0/7.6.2 UINT4 COUNT 4 No No
client_nfs_gets 0/7.6.3 UINT4 COUNT 8 No No
client_nfs_badcalls 0/7.6.4 UINT4 COUNT 12 No No
client_nfs3_nullrcvs 0/7.6.5 UINT4 COUNT 16 No No
client_nfs3_getattrs 0/7.6.6 UINT4 COUNT 20 No No
client_nfs3_setattrs 0/7.6.7 UINT4 COUNT 24 No No
client_nfs3_lookup 0/7.6.8 UINT4 COUNT 28 No No
client_nfs3_access 0/7.6.9 UINT4 COUNT 32 No No
client_nfs3_readlink 0/7.6.10 UINT4 COUNT 36 No No
client_nfs3_read 0/7.6.11 UINT4 COUNT 40 No No
client_nfs3_write 0/7.6.12 UINT4 COUNT 44 No No
client_nfs3_create 0/7.6.13 UINT4 COUNT 48 No No
client_nfs3_mkdir 0/7.6.14 UINT4 COUNT 52 No No
client_nfs3_symlink 0/7.6.15 UINT4 COUNT 56 No No
client_nfs3_mknod 0/7.6.16 UINT4 COUNT 60 No No
client_nfs3_remove 0/7.6.17 UINT4 COUNT 64 No No
client_nfs3_rmdir 0/7.6.18 UINT4 COUNT 68 No No
client_nfs3_rename 0/7.6.19 UINT4 COUNT 72 No No
client_nfs3_link 0/7.6.20 UINT4 COUNT 76 No No
client_nfs3_readdir 0/7.6.21 UINT4 COUNT 80 No No
client_nfs3_readdirplus 0/7.6.22 UINT4 COUNT 84 No No
client_nfs3_filesysstat 0/7.6.23 UINT4 COUNT 88 No No
client_nfs3_filesysinfo 0/7.6.24 UINT4 COUNT 92 No No
client_nfs3_pathconf 0/7.6.25 UINT4 COUNT 96 No No
client_nfs3_commit 0/7.6.26 UINT4 COUNT 100 No No

Table 4-47 ONC NFS Version 3 Client Counters

52 CAE Specification

Datapool Metrics Global File Systems Class

4.9.7 ONC NFS Version 3 Server Counters

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

server_nfs_sleepcalls 0/7.7.1 UINT4 COUNT 0 No No
server_nfs_calls 0/7.7.2 UINT4 COUNT 4 No No
server_nfs_gets 0/7.7.3 UINT4 COUNT 8 No No
server_nfs_badcalls 0/7.7.4 UINT4 COUNT 12 No No
server_nfs3_nullrcvs 0/7.7.5 UINT4 COUNT 16 No No
server_nfs3_getattrs 0/7.7.6 UINT4 COUNT 20 No No
server_nfs3_setattrs 0/7.7.7 UINT4 COUNT 24 No No
server_nfs3_lookup 0/7.7.8 UINT4 COUNT 28 No No
server_nfs3_access 0/7.7.9 UINT4 COUNT 32 No No
server_nfs3_readlink 0/7.7.10 UINT4 COUNT 36 No No
server_nfs3_read 0/7.7.11 UINT4 COUNT 40 No No
server_nfs3_write 0/7.7.12 UINT4 COUNT 44 No No
server_nfs3_create 0/7.7.13 UINT4 COUNT 48 No No
server_nfs3_mkdir 0/7.7.14 UINT4 COUNT 52 No No
server_nfs3_symlink 0/7.7.15 UINT4 COUNT 56 No No
server_nfs3_mknod 0/7.7.16 UINT4 COUNT 60 No No
server_nfs3_remove 0/7.7.17 UINT4 COUNT 64 No No
server_nfs3_rmdir 0/7.7.18 UINT4 COUNT 68 No No
server_nfs3_rename 0/7.7.19 UINT4 COUNT 72 No No
server_nfs3_link 0/7.7.20 UINT4 COUNT 76 No No
server_nfs3_readdir 0/7.7.21 UINT4 COUNT 80 No No
server_nfs3_readdirplus 0/7.7.22 UINT4 COUNT 84 No No
server_nfs3_filesysstat 0/7.7.23 UINT4 COUNT 88 No No
server_nfs3_filesysinfo 0/7.7.24 UINT4 COUNT 92 No No
server_nfs3_pathconf 0/7.7.25 UINT4 COUNT 96 No No
server_nfs3_commit 0/7.7.26 UINT4 COUNT 100 No No

Table 4-48 ONC NFS Version 3 Server Counters

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 53

Global File Systems Class Datapool Metrics

4.10 Network Protocol Class
These subclasses are based entirely on the pre-existing standard SNMP MIB classes for network
protocol monitoring. They are provided as part of the UMA datapool definition to allow the data
to be stored alongside other data in a synchronized and standardized format. The metrics
defined here are exactly those defined by the SNMP MIBs.

4.10.1 Per-network Interface Statistics

The per-interface data instances match the network device configuration instances.

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

per_interface_packets_in 0/8.1.1 UINT8 COUNT 0 No No
per_interface_packets_out 0/8.1.2 UINT8 COUNT 8 No No
per_interface_collisions 0/8.1.3 UINT8 COUNT 16 No No
per_interface_kbytes_in 1/8.1.4 UINT8 COUNT 24 No No
per_interface_kbytes_out 1/8.1.5 UINT8 COUNT 32 No No

Table 4-49 Per-network Interface Statistics

4.10.2 IP Counters

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

ip_total 1/8.2.1 UINT4 COUNT 0 No No
ip_checksums 1/8.2.2 UINT4 COUNT 4 No No
ip_tooshort 1/8.2.3 UINT4 COUNT 8 No No
ip_toosmall 1/8.2.4 UINT4 COUNT 12 No No
ip_badhlen 1/8.2.5 UINT4 COUNT 16 No No
ip_badlen 1/8.2.6 UINT4 COUNT 20 No No
ip_fragment 1/8.2.7 UINT4 COUNT 24 No No
ip_fragdropped 1/8.2.8 UINT4 COUNT 28 No No
ip_fragtimeout 1/8.2.9 UINT4 COUNT 32 No No
ip_forward 1/8.2.10 UINT4 COUNT 36 No No
ip_cantforward 1/8.2.11 UINT4 COUNT 40 No No
ip_redirectsent 1/8.2.12 UINT4 COUNT 44 No No
ip_unsupprot 1/8.2.13 UINT4 COUNT 48 No No
ip_delivered 1/8.2.14 UINT4 COUNT 52 No No
ip_localoutput 1/8.2.15 UINT4 COUNT 56 No No
ip_odropped 1/8.2.16 UINT4 COUNT 60 No No
ip_reassembled 1/8.2.17 UINT4 COUNT 64 No No
ip_fragmented 1/8.2.18 UINT4 COUNT 68 No No
ip_ofragments 1/8.2.19 UINT4 COUNT 72 No No
ip_cantfrag 1/8.2.20 UINT4 COUNT 76 No No
ip_badoptions 1/8.2.21 UINT4 COUNT 80 No No
ip_noroute 1/8.2.22 UINT4 COUNT 84 No No

Table 4-50 IP Counters

54 CAE Specification

Datapool Metrics Network Protocol Class

4.10.3 TCP Counters

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

tcp_sndtotal 1/8.3.1 UINT4 COUNT 0 No No
tcp_totaldata 1/8.3.2 UINT4 COUNT 4 No No
tcp_datsbytesent 1/8.3.3 UINT4 COUNT 8 No No
tcp_sendrecdatapks_retransmitted 1/8.3.4 UINT4 COUNT 12 No No
tcp_sendrecbytes_retransmitted 1/8.3.5 UINT4 COUNT 16 No No
tcp_total_rec_packets 1/8.3.6 UINT4 COUNT 20 No No
tcp_total_rec_packets_inseq 1/8.3.7 UINT4 COUNT 24 No No
tcp_total_rec_bytes_inseq 1/8.3.8 UINT4 COUNT 28 No No
tcp_checksumerrors 1/8.3.9 UINT4 COUNT 32 No No
tcp_num_packet_bado ffsets 1/8.3.10 UINT4 COUNT 36 No No
tcptcp_tooshort 1/8.3.11 UINT4 COUNT 40 No No
tcp_dup_packets_received 1/8.3.12 UINT4 COUNT 44 No No
tcp_dup_bytes_received 1/8.3.13 UINT4 COUNT 48 No No
tcp_connection_initiated 1/8.3.14 UINT4 COUNT 52 No No
tcp_connection_accepts 1/8.3.15 UINT4 COUNT 56 No No
tcp_connections_dropped 1/8.3.16 UINT4 COUNT 60 No No
tcp_connection_closed 1/8.3.17 UINT4 COUNT 64 No No
tcp_connections_estabilish_and_dropped 1/8.3.18 UINT4 COUNT 68 No No
tcp_closed 1/8.3.19 UINT4 COUNT 72 No No
tcp_segstimed 1/8.3.20 UINT4 COUNT 76 No No
tcp_rttupdated 1/8.3.21 UINT4 COUNT 80 No No
tcp_timeoutdropped 1/8.3.22 UINT4 COUNT 84 No No
tcp_retrans_timeout 1/8.3.23 UINT4 COUNT 88 No No
tcp_keepalive_timeout 1/8.3.24 UINT4 COUNT 92 No No
tcp_presisit_timeout 1/8.3.25 UINT4 COUNT 96 No No
tcp_send_ack 1/8.3.26 UINT4 COUNT 100 No No
tcp_send_probe 1/8.3.27 UINT4 COUNT 104 No No
tcp_send_update_packet 1/8.3.28 UINT4 COUNT 108 No No
tcp_send_window_update 1/8.3.29 UINT4 COUNT 112 No No
tcp_send_control 1/8.3.30 UINT4 COUNT 116 No No
tcp_rec_partial_dup_packet 1/8.3.31 UINT4 COUNT 120 No No
tcp_rec_partial_dup_bytes 1/8.3.32 UINT4 COUNT 124 No No
tcp_rec_out_order_packet 1/8.3.33 UINT4 COUNT 128 No No
tcp_rec_out_order_bytes 1/8.3.34 UINT4 COUNT 132 No No
tcp_rec_packet_closed_window 1/8.3.35 UINT4 COUNT 136 No No
tcp_rec_bytes_closed_window 1/8.3.36 UINT4 COUNT 140 No No
tcp_rec_after_closed 1/8.3.37 UINT4 COUNT 144 No No
tcp_rec_windown_probe 1/8.3.38 UINT4 COUNT 148 No No
tcp_rec_dupilicate_packet 1/8.3.39 UINT4 COUNT 152 No No
tcp_rec_dupilicate_packet 1/8.3.40 UINT4 COUNT 156 No No
tcp_rec_ack_unsent 1/8.3.41 UINT4 COUNT 160 No No
tcp_rec_ack_packets 1/8.3.42 UINT4 COUNT 164 No No
tcp_rec_ack_bytes 1/8.3.43 UINT4 COUNT 168 No No
tcp_rec_window_updates 1/8.3.44 UINT4 COUNT 172 No No
tcp_pcbcachemiss 1/8.3.45 UINT4 COUNT 176 No No
tcp_predict_header_date 1/8.3.46 UINT4 COUNT 180 No No
tcp_predict_header_ack 1/8.3.47 UINT4 COUNT 184 No No
tcp_rec_dupilicate_packet 1/8.3.48 UINT4 COUNT 188 No No
tcp_segments_dropped_paws 1/8.3.49 UINT4 COUNT 192 No No

Table 4-51 TCP Counters

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 55

Network Protocol Class Datapool Metrics

4.10.4 UDP Subclass

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

udp_ipacket 1/8.4.1 UINT4 COUNT 0 No No
udp_hdrops 1/8.4.2 UINT4 COUNT 4 No No
udp_badlength 1/8.4.3 UINT4 COUNT 8 No No
udp_checksum 1/8.4.4 UINT4 COUNT 12 No No
udp_noport 1/8.4.5 UINT4 COUNT 16 No No
udp_noport_broadcast 1/8.4.6 UINT4 COUNT 20 No No
udp_fullsocket 1/8.4.7 UINT4 COUNT 24 No No
udp_opackets 1/8.4.8 UINT4 COUNT 28 No No
udp_pcbcachemiss 1/8.4.9 UINT4 COUNT 32 No No

Table 4-52 UDP Subclass

4.10.5 ICMP Counters

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

icmp_errors opt/8.5.1 UINT4 COUNT 0 No No
icmp_badcode opt/8.5.2 UINT4 COUNT 4 No No
icmp_tooshort opt/8.5.3 UINT4 COUNT 8 No No
icmp_checksum opt/8.5.4 UINT4 COUNT 12 No No
icmp_badlen opt/8.5.5 UINT4 COUNT 16 No No
icmp_reflect opt/8.5.6 UINT4 COUNT 20 No No

Table 4-53 ICMP Counters

56 CAE Specification

Datapool Metrics Network Protocol Class

4.10.6 ICMP Histogram Counters

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

icmphist_output_echoreply opt/8.6.1 UINT4 COUNT 0 No No
icmphist_output_destunreach opt/8.6.2 UINT4 COUNT 4 No No
icmphist_output_outofseq opt/8.6.3 UINT4 COUNT 8 No No
icmphist_output_redirect opt/8.6.4 UINT4 COUNT 12 No No
icmphist_output_echorequest opt/8.6.5 UINT4 COUNT 16 No No
icmphist_output_timelimite opt/8.6.6 UINT4 COUNT 20 No No
icmphist_output_parameterprob opt/8.6.7 UINT4 COUNT 24 No No
icmphist_output_timesrequest opt/8.6.8 UINT4 COUNT 28 No No
icmphist_output_timesrequest opt/8.6.9 UINT4 COUNT 32 No No
icmphist_output_addressmaskreq opt/8.6.10 UINT4 COUNT 36 No No
icmphist_output_addressmaskreply opt/8.6.11 UINT4 COUNT 40 No No
icmphist_input_echoreply opt/8.6.12 UINT4 COUNT 44 No No
icmphist_input_destunreach opt/8.6.13 UINT4 COUNT 48 No No
icmphist_input_outofseq opt/8.6.14 UINT4 COUNT 52 No No
icmphist_input_redirect opt/8.6.15 UINT4 COUNT 56 No No
icmphist_input_echorequest opt/8.6.16 UINT4 COUNT 60 No No
icmphist_input_timelimite opt/8.6.17 UINT4 COUNT 64 No No
icmphist_input_parameterprob opt/8.6.18 UINT4 COUNT 68 No No
icmphist_input_timesrequest opt/8.6.19 UINT4 COUNT 72 No No
icmphist_input_timesreply opt/8.6.20 UINT4 COUNT 76 No No
icmphist_input_addressmaskreq opt/8.6.21 UINT4 COUNT 80 No No
icmphist_input_addressmaskreply opt/8.6.22 UINT4 COUNT 84 No No

Table 4-54 ICMP Histogram Counters

4.10.7 IGMP Counters

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

igmp_rcv_total opt/8.7.1 UINT4 COUNT 0 No No
igmp_rcv_tooshort opt/8.7.2 UINT4 COUNT 4 No No
igmp_rcv_checksum opt/8.7.3 UINT4 COUNT 8 No No
igmp_rcv_queries opt/8.7.4 UINT4 COUNT 12 No No
igmp_rcv_badqueries opt/8.7.5 UINT4 COUNT 16 No No
igmp_rcv_reports opt/8.7.6 UINT4 COUNT 20 No No
igmp_rcv_badreports opt/8.7.7 UINT4 COUNT 24 No No
igmp_rcv_ourreports opt/8.7.8 UINT4 COUNT 28 No No
igmp_snd_reports opt/8.7.9 UINT4 COUNT 32 No No

Table 4-55 IGMP Counters

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 57

Network Protocol Class Datapool Metrics

4.11 Accounting

4.11.1 Per-work Unit Termination Record

Data Attributes MLI Attributes

Label Level Data Type Units Offset VLDS Instance
/DatumId Object Array

accounting_flag 0/9.1.1 UINT4 NOUNITS 0 No No
exit_status 0/9.1.2 UINT4 NOUNITS 4 No No
user_id 0/9.1.3 UINT4 NOUNITS 8 No No
group_id 0/9.1.4 UNIT4 NOUNITS 12 No No
tty_name 0/9.1.5 TEXTSTRING NOUNITS 16 Yes No
beginning_time 0/9.1.6 UINT8 TIMESTAMP 24 No No
usr_time 0/9.1.7 UINT8 TIMEVAL 32 No No
system_time 0/9.1.8 UINT8 TIMEVAL 40 No No
elapsed_time 0/9.1.9 UINT8 TIMEVAL 48 No No
memory 0/9.1.10 UINT8 BYTESECS 56 No No
character_rw 0/9.1.11 UINT8 BYTES 64 No No
block_rw 0/9.1.12 UINT8 BYTES 72 No No
command 0/9.1.13 TEXTSTRING NOUNITS 80 Yes No

Table 4-56 Per-work Unit Termination Record

This maps directly to the common System V accounting structure. That structure uses a special
compact datatype that must be expanded before reporting these values.

Definitions

accounting_flags

Flag Value Comment

AFORK 0001 has executed fork, but no exec
ASU 0002 used super-user privileges
ACOMPAT 0004 used compatibility mode
ACORE 0010 dumped core
AXSIG 0020 killed by a signal
AEXPND 0040 expanded acct structure
ACCTF 0300 record type: 00 = acct

exit_status returned by the work unit.

user_id for accounting purposes.

group_id for accounting purposes.

tty_name control typewriter name.

beginning_time when the work unit started.

user_time user time charged.

system_time system time charged.

elapsed_time elapsed time duration for the work unit.

memory memory usage in bytes*seconds units. The RSS value in pages is accumulated
on each clock tick that the work unit was running. This should be converted
from page*tick units to byte*seconds units.

58 CAE Specification

Datapool Metrics Accounting

character_rw data transferred by read and write calls via character devices.

block_rw data read or written via block devices, that is, local filesystem.

command name.

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 59

Datapool Metrics

60 CAE Specification

Glossary

adjusted
In the context of this DPD specification, this term means that any shared resource size is divided
by the number of processes sharing it.

API
Application Program Interface. A standard interface for program access to set of services. The
API for UMA is the Measurement Level Interface (or MLI).

ASN.1/BER
Abstract Syntax Notation One / Basic Encoding Rules. The ASN.1 language describes all
abstract syntaxes in the OSI architecture. An abstract syntax is a named group of types. BER,
the Basic Encoding Rules, is a transfer syntax used to communicate data between open systems.
It includes those aspects of the rules used in the formal specification of data which embody a
specific representation of that data. BER is capable of encoding any abstract syntax that can be
described using ASN.1.

Collection Interval
The time between successive captures of a specific set of data items. Sometimes the term
‘‘interval’’ is used to mean the data for a collection interval having a certain time stamp and
duration.

CONS
Connection Oriented Network Service.

cpu
‘‘central processor unit’’: a set of one or more computational engines on which a system runs to
provide computing services to applications. A cpu can be a single processor or a multiprocessor
device.

DASD
Direct Access Storage Device (for example, disk).

DCI
Data Capture Interface. A standard UMA interface to access data sources such as kernel and
subsystem data structures, hardware dependent data, and data which is event-generated.

DCL
Data Capture Layer. A UMA entity concerned with the collection of raw data from the UNIX
kernel and other sources. Data is considered collected when it exists assembled into data
structures of predefined class and subclass in storage controlled by services contained in the
measurement model.

Data Class
The general system measurement entity to be collected. For example, the data classes for UMA
include system configuration information, processor and memory usage information, and other
like categories. The UMA classes and subclasses are defined in this document.

Data Services Layer
A UMA entity responsible for data distribution to measurement applications using the MLI, for
archival data storage, for management of services and resources required for distributed
measurement access and control, for measurement requesting, and for data format
transformations required for recording and transmission.

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 61

Glossary

Data Subclass
A specific grouping of data within a data class. Each data class may have several data
subclasses. For instance, the class ‘‘processor’’ contains subclasses such as ‘‘Global Measured
Processor Times’’ and ‘‘Global System Call Counters’’, etc.

Disk Partition
A portion of a disk. A disk partition can contain a file system or a raw data structure such as
swap space or raw database management space. To optimise disk performance, a file system is
often comprised of several partitions spread across several disks. This includes a file system
mounted on a logical volume, in which case the whole physical space allocated to a logical
volume on a particular disk can be thought of as a partition.

Event Data
In the context of UMA, this represents the reporting of one or more system events (for example,
process termination, creation, signal delivery, logon, etc.).

FEP
Front End Processor.

GID
Group Identifier of a process.

IOP
Input/Output Processor.

IPC
Interprocess communication.

KCORE
The amount of physical memory used in kilobytes * the time occupying physical memory (user
time + system time).

Logical
The Logical Volume Manager supports logical volumes by managing the disks in small chunks,
usually 4 MB. A logical volume may span several disks, and its size may be increased without
disturbing the file systems.

Measurement Application Layer
In the context of UMA, this functional layer contains the application primitives and tools used to
report currently captured and archival performance data to the end-user (or to an automated
stand-in). These application implementations are called Measurement Application Programs
(MAPs).

Measurement Control Layer
A UMA entity responsible for managing the capture of data, including its synchronisation, and
for providing any necessary buffer or queue management for data assembled by the data capture
mechanism.

Measurement Interval
A continuous time interval during which measurement activity and reporting is requested by a
measurement application program (MAP).

Message
In UMA, a basic unit of control or data information. Each UMA message contains a header
portion which identifies the class and subclass of the information contained in the rest of the
message.

62 CAE Specification

Glossary

MAP
Measurement Application Program. A UMA-based application program providing end-user
services.

MIB
Management Information Base.

MLI
Measurement Level Interface. The MLI comprises the Application Programming Interface (API),
and the management of UMA message transport.

NQS
New Queue Service.

OSI
Open Systems Interconnect.

PID
Process Identifier.

PPID
Parent Process Identifier.

PMWG
Performance Management Working Group. The working group, originally within UNIX
International, now within the Computer Measurement Group, that developed the base
document for this specification.

processor
One of several computational engines that comprise a multiprocessor cpu. A single processor
(uniprocessor) cpu has one processor.

Reporting Interval
The union of one or more contiguous collection intervals to be seen by a MAP. Thus the
reporting interval may be identical to a collection interval, or it may have a duration that is
(nominally) a multiple of the collection interval duration.

Sampling Interval
The time between successive samples during data capture.

SNMP
Simple Network Management Protocol

SVID
UNIX System V Interface Definition.

system
The hardware and software associated with a single running image of the operating system.

Trace Data
In the context of UMA, reported trace data is data for a set of selected, related events.

UID
User Identifier of a process.

UDU
UMA Data Unit. The contents of a UMA API Message. The UDU consists of a header portion,
and either a control segment or one or more data segments.

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 63

Glossary

UMA
Universal Measurement Architecture. A common, flexible measurement control and data
delivery mechanism.

VM
Virtual Memory.

64 CAE Specification

Index

adjusted ..61
API ...61
ASN.1/BER..61
capacity planning ...2
class ...12, 16
Collection Interval..61
compatibility..5
CONS ..61
cpu ...61
DASD ..61
data capture interface ..1
data capture overview...11
Data Class...61
data item

basic...6
extension ..6
optional...6

data organisation ..2
data pool ...1
Data Services Layer..61
Data Subclass...62
DCI ..1, 12, 61
DCL..61
default UMA WorkInfo types9
Disk Partition...62
end-user ..1
event data...11
Event Data..62
FEP...62
GID ..62
granularity..12
header format ..1
identifier..8
Intended Use..1
interval data...11
IOP...62
IPC ...62
KCORE..62
layout...5
leasurement layer interface1
Logical...62
MAP...1, 11-12, 63
Measurement Application Layer62
measurement application program1
Measurement Control Layer62
Measurement Interval ...62

Message ..62
message class...5
messages...5
metric ..11
metrics data useage..2
MIB ..63
MLI..1, 5, 12, 63
naming tree ..8
NQS ...63
OSI ...63
overview of data capture ..11
overview of UMA...1
performance...1
performance management..2
performance measurement.......................................1
PID ...63
PMWG ..1, 63
PPID...63
processor ..63
productivity ...1
raw data..11
registration authority...8
Reporting Interval ..63
resources...16
response time...16
sampled data ...11
sampling ...15
Sampling Interval ...63
service quality ...1
SNMP ..63
standard header ..5
statistics ..14
structure layout...5
subclass...12, 16
sum of squares ..14
SVID ..63
system ...63
trace data ..11
Trace Data...63
UDU...63
UID ..63
UMA..1, 64
UMA Guide..1
UMA interfaces ...13
UMA layers..13
UMAWorkInfo ..9, 12

Systems Management: UMA Specification, Part 4 - Data Pool Definitions (DPD) 65

Index

universal measurement architecture1
VM ...64
WorkInfo...9
workload analysis...16

66 CAE Specification

