
X/Open CAE Specification

Distributed Transaction Processing:

CPI-C Specification, Version 2

X/Open Company Ltd.

 November 1995, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

Distributed Transaction Processing: CPI-C Specification, Version 2

ISBN: 1-85912-135-7
X/Open Document Number: C419

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.org

ii X/Open CAE Specification

Contents

Chapter 1 Introduction... 1
 1.1 X/Open DTP Model... 1
 1.2 X/Open Communication Resource Manager Interfaces.................... 2
 1.3 Naming Conventions: Calls, Characteristics, Variables
 and Values .. 3
 1.4 History of CPI Communications ... 5
 1.5 Functional Levels of CPI Communications... 6
 1.5.1 CPI-C 1.0 .. 6
 1.5.2 CPI-C 1.1 .. 6
 1.5.3 X/Open Extensions to CPI-C .. 6
 1.5.4 CPI-C 1.2 .. 6
 1.5.5 CPI-C 2.0 .. 7
 1.5.6 Call Table ... 7

Chapter 2 Model and Definitions.. 11
 2.1 X/Open DTP Model... 11
 2.1.1 Functional Components ... 12
 2.1.2 Interfaces between Functional Components...................................... 13
 2.2 Definitions .. 15
 2.2.1 Transaction .. 15
 2.2.2 Transaction Properties .. 15
 2.2.3 Distributed Transaction Processing ... 15
 2.2.4 Global Transactions ... 16
 2.2.5 Transaction Branches .. 16

Chapter 3 Interface Overview.. 17
 3.1 Communication across a Network ... 18
 3.2 Conversation Types.. 19
 3.3 Send-Receive Modes .. 19
 3.4 Program Partners .. 20
 3.4.1 Identifying the Partner Program... 20
 3.5 Operating Environment .. 21
 3.5.1 Node Services ... 22
 3.5.2 Side Information .. 22
 3.6 Program Calls .. 24
 3.7 Establishing a Conversation ... 26
 3.7.1 Multiple Conversations .. 26
 3.7.1.1 Naming of Partner Programs ... 26
 3.7.1.2 Multiple Outbound Conversations... 27
 3.7.1.3 Multiple Inbound Conversations .. 27
 3.8 Conversation Characteristics ... 29
 3.8.1 Modifying and Viewing Characteristics ... 29

Distributed Transaction Processing: CPI-C Specification, Version 2 iii

Contents

 3.8.2 Characteristic Values and CRMs .. 36
 3.8.3 Characteristic Values and Send-Receive Modes 37
 3.8.4 Characteristic Values and Resource Recovery Interfaces 38
 3.8.5 Automatic Conversion of Characteristics .. 38
 3.9 Concurrent Operations.. 40
 3.9.1 Use of Multiple Program Threads.. 40
 3.10 Non-blocking Operations ... 43
 3.10.1 Conversation-level Non-blocking.. 44
 3.10.2 Queue-level Non-blocking... 44
 3.10.2.1 Working with Wait Facility... 45
 3.10.2.2 Using Callback Function ... 45
 3.10.3 Cancel Outstanding Operations ... 46
 3.11 Conversation Security.. 47
 3.12 Data Conversion ... 48
 3.13 Program Flow: States and Transitions.. 49
 3.14 Support for Resource Recovery Interfaces .. 51
 3.14.1 Coordination with Resource Recovery Interfaces 51
 3.14.2 Take-commit and Take-backout Notifications 52
 3.14.3 The Backout-Required Condition... 55
 3.14.4 Responses to Take-commit and Take-backout Notifications 57
 3.14.5 Chained and Unchained Transactions... 58
 3.14.6 Joining a Transaction... 59
 3.14.7 Superior and Subordinate Programs ... 60
 3.14.8 Additional CPI Communications States ... 61
 3.14.9 Valid States for Resource Recovery Calls ... 62
 3.14.10 TX Extensions for CPI Communications .. 62

Chapter 4 Program-to-Program Communication Tutorial.................... 63
 4.1 Interpreting the Flow Diagrams .. 63
 4.2 Starter-set Flows.. 64
 4.2.1 Data Flow in One Direction... 65
 4.2.2 Data Flow in Both Directions .. 68
 4.3 Advanced-function Flows... 70
 4.3.1 Data Buffering and Transmission ... 71
 4.3.2 The Sending Program Changes the Data Flow Direction 72
 4.3.3 Validation and Confirmation of Data Reception............................... 74
 4.3.4 The Receiving Program Changes the Data Flow Direction 76
 4.3.5 Reporting Errors... 78
 4.3.6 Error Direction and Send-Pending State ... 80
 4.3.7 Multiple Conversations Using Blocking Calls................................... 82
 4.3.8 Multiple Conversations Using Conversation-level
 Non-blocking Calls.. 84
 4.3.9 Establishing a Full-duplex Conversation.. 86
 4.3.10 Using a Full-duplex Conversation ... 88
 4.3.11 Terminating a Full-duplex Conversation.. 90
 4.3.12 Using Queue-level Non-blocking... 92
 4.3.13 Sending Program Issues a Commit .. 94
 4.3.14 Two Chained Transactions... 100

iv X/Open CAE Specification

Contents

 4.3.15 Unchained Transactions ... 106
 4.3.16 Successful Commit with Conversation State Change 112

Chapter 5 Call Reference Section.. 115
 5.1 Call Syntax ... 116
 5.2 Programming Language Considerations... 117
 5.2.1 C... 117
 5.2.2 COBOL... 117
 5.3 How to Use the Call References .. 118
 5.4 Locations of Key Topics... 119
 Accept_Conversation (CMACCP) ... 125
 Accept_Incoming (CMACCI) ... 127
 Allocate (CMALLC) .. 130
 Cancel_Conversation (CMCANC) ... 135
 Confirm (CMCFM) .. 137
 Confirmed (CMCFMD) ... 141
 Convert_Incoming (CMCNVI) .. 143
 Convert_Outgoing (CMCNVO) .. 145
 Deallocate (CMDEAL) .. 147
 Deferred_Deallocate (CMDFDE) ... 158
 Extract_AE_Qualifier (CMEAEQ) .. 160
 Extract_AP_Title (CMEAPT) .. 162
 Extract_Application_Context_Name (CMEACN) 164
 Extract_Conversation_State (CMECS) ... 166
 Extract_Conversation_Type (CMECT).. 168
 Extract_Initialization_Data (CMEID) .. 170
 Extract_Maximum_Buffer_Size (CMEMBS).. 172
 Extract_Mode_Name (CMEMN) ... 173
 Extract_Partner_LU_Name (CMEPLN) ... 175
 Extract_Secondary_Information (CMESI) .. 177
 Extract_Security_User_ID (CMESUI) .. 180
 Extract_Send_Receive_Mode (CMESRM) .. 182
 Extract_Sync_Level (CMESL) .. 184
 Extract_TP_Name (CMETPN) .. 186
 Extract_Transaction_Control (CMETC) ... 188
 Flush (CMFLUS) ... 190
 Include_Partner_In_Transaction (CMINCL) .. 193
 Initialize_Conversation (CMINIT) .. 195
 Initialize_For_Incoming (CMINIC) ... 197
 Prepare (CMPREP).. 199
 Prepare_To_Receive (CMPTR) ... 202
 Receive (CMRCV) .. 208
 Receive_Expedited_Data (CMRCVX) ... 223
 Release_Local_TP_Name (CMRLTP) .. 226
 Request_To_Send (CMRTS) ... 227
 Send_Data (CMSEND) ... 230
 Send_Error (CMSERR) ... 240
 Send_Expedited_Data (CMSNDX) ... 250

Distributed Transaction Processing: CPI-C Specification, Version 2 v

Contents

 Set_AE_Qualifier (CMSAEQ).. 253
 Set_Allocate_Confirm (CMSAC) ... 255
 Set_AP_Title (CMSAPT).. 257
 Set_Application_Context_Name (CMSACN) .. 259
 Set_Begin_Transaction (CMSBT) .. 261
 Set_Confirmation_Urgency (CMSCU) .. 263
 Set_Conversation_Security_Password (CMSCSP) 265
 Set_Conversation_Security_Type (CMSCST) .. 267
 Set_Conversation_Security_User_ID (CMSCSU) 269
 Set_Conversation_Type (CMSCT) ... 271
 Set_Deallocate_Type (CMSDT).. 273
 Set_Error_Direction (CMSED) .. 277
 Set_Fill (CMSF) ... 279
 Set_Initialization_Data (CMSID).. 281
 Set_Join_Transaction (CMSJT) .. 283
 Set_Log_Data (CMSLD) ... 285
 Set_Mode_Name (CMSMN) .. 287
 Set_Partner_LU_Name (CMSPLN)... 289
 Set_Prepare_Data_Permitted (CMSPDP) ... 291
 Set_Prepare_To_Receive_Type (CMSPTR) ... 293
 Set_Processing_Mode (CMSPM) ... 295
 Set_Queue_Callback_Function (CMSQCF) .. 297
 Set_Queue_Processing_Mode (CMSQPM) ... 300
 Set_Receive_Type (CMSRT) ... 304
 Set_Return_Control (CMSRC) .. 305
 Set_Send_Receive_Mode (CMSSRM) ... 307
 Set_Send_Type (CMSST) .. 309
 Set_Sync_Level (CMSSL) ... 311
 Set_TP_Name (CMSTPN) .. 313
 Set_Transaction_Control (CMSTC)... 315
 Specify_Local_TP_Name (CMSLTP) ... 317
 Test_Request_To_Send_Received (CMTRTS) ... 319
 Wait_For_Completion (CMWCMP) .. 322
 Wait_For_Conversation (CMWAIT) ... 325

Appendix A Variables and Characteristics ... 329
 A.1 Pseudonyms and Integer Values ... 330
 A.2 Character Sets .. 337
 A.3 Variable Types ... 340
 A.3.1 Integers... 340
 A.3.2 Character Strings.. 340

Appendix B Return Codes and Secondary Information............................. 345
 B.1 Return Codes ... 346
 B.2 Secondary Information .. 362
 B.2.1 Application-oriented Information.. 364
 B.2.2 CPI Communications-defined Information 364
 B.2.3 CRM-specific Information ... 377

vi X/Open CAE Specification

Contents

 B.2.4 Implementation-related Information .. 378

Appendix C State Tables.. 379
 C.1 How to Use the State Tables ... 380
 C.1.1 Example ... 381
 C.2 Explanation of Half-duplex State Table Abbreviations...................... 382
 C.2.1 Conversation Characteristics ().. 383
 C.2.2 Conversation Queues () ... 385
 C.2.3 Return Code Values [] .. 386
 C.2.4 data_received and status_received { , } ... 389
 C.2.5 Table Symbols for the Half-duplex State Table 390
 C.3 Half-duplex State Table ... 391
 C.4 Effects of Calls on Half-duplex Conversations to
 X/Open TX Interface ... 398
 C.5 Effects of Calls to the SAA RRI on Half-duplex Conversations 400
 C.6 Explanation of Full-duplex State Table Abbreviations....................... 401
 C.6.1 Conversation Characteristics ().. 402
 C.6.2 Conversation Queues () ... 403
 C.6.3 Return Code Values [] .. 404
 C.6.4 data_received and status_received { , } ... 407
 C.6.5 Table Symbols for the Full-duplex State Table 408
 C.7 Full-duplex State Table .. 409
 C.8 Effects of Calls on Full-duplex Conversations to
 X/Open TX Interface ... 414
 C.9 Effects of Calls to the SAA RRI on Full-duplex Conversations 416

Appendix D Mapping to OSI TP and LU 6.2 CRMs 417
 D.1 OSI TP CRMs (Half-duplex)... 418
 D.1.1 Summary of CPI-C ASE Services ... 418
 D.1.2 Mapping CPI-C to OSI TP Services.. 418
 D.1.3 Mapping OSI TP Services to CPI-C for Half-duplex
 Conversations... 442
 D.1.4 Sequencing Rules and State Tables .. 452
 D.1.5 CPI-C ASE Protocol Definition ... 452
 D.1.6 CPI-C ASE Structure and Encoding of APDUs................................. 452
 D.2 OSI TP CRMs (Full-duplex).. 453
 D.2.1 Mapping OSI TP Services to CPI-C for Full-duplex
 Conversations... 468
 D.2.2 Sequencing Rules and State Tables .. 479
 D.2.3 CPI-C ASE Protocol Definition ... 479
 D.2.4 CPI-C ASE Structure and Encoding of APDUs................................. 479
 D.3 LU 6.2 CRMs .. 480
 D.3.1 Send-Pending State and the error_direction Characteristic............ 481
 D.3.2 Can CPI-C Programs Communicate with APPC Programs? 481
 D.3.3 SNA Service Transaction Programs... 481
 D.3.4 Relationship between LU 6.2 Verbs and CPI
 Communications Calls ... 482

Distributed Transaction Processing: CPI-C Specification, Version 2 vii

Contents

Appendix E Pseudonym Files... 489
 E.1 C Pseudonym File (CMC or CPIC.H) ... 490
 E.2 COBOL Pseudonym File (CMCOBOL) .. 505

Appendix F Sample Programs.. 513
 F.1 SALESRPT (Initiator of the Conversation) .. 514
 F.2 CREDRPT (Acceptor of the Conversation) ... 518
 F.3 Results of Successful Program Execution.. 523

Appendix G Application Migration from CPI-C to
CPI-C, Version 2.. 525

 Glossary ... 527

 Index... 531

List of Figures

2-1 Functional Components and Interfaces .. 11
3-1 The CPI-C Interface ... 17
3-2 Programs Using CPI Communications to Converse through

a Network.. 18
3-3 Operating Environment of CPI Communications Program................. 21
3-4 Program Using Multiple Outbound CPI Communications

Conversations ... 27
3-5 Program Using Multiple Inbound CPI Communications

Conversations ... 28
3-6 Commit Tree with Program 1 as Root and Superior 60
4-1 Data Flow in One Direction... 67
4-2 Data Flow in Both Directions .. 69
4-3 Sending Program Changes the Data Flow Direction 73
4-4 Validation and Confirmation of Data Reception..................................... 75
4-5 Confirmation of Data .. 77
4-6 Reporting Errors... 79
4-7 Error Direction and Send-Pending State ... 81
4-8 Accepting Multiple Conversations Using Blocking Calls..................... 83
4-9 Accepting Multiple Conversations Using Non-blocking Calls 85
4-10 Establishing a Full-duplex Conversation.. 87
4-11 Using a Full-duplex Conversation ... 89
4-12 Terminating a Full-duplex Conversation.. 91
4-13 Using Queue-level Non-blocking... 93
4-14 Establishing a Protected Conversation and Issuing a

Successful Commit .. 95
4-15 Two Chained Transactions... 101
4-16 Unchained Transactions ... 107
4-17 Successful Commit with Conversation State Change 113

viii X/Open CAE Specification

Contents

List of Tables

1-1 Versions of CPI Communications .. 7
3-1 Breakdown of Calls between Starter Set and Advanced

Function ... 25
3-2 Characteristics and their Default Values .. 30
3-3 Conversation Characteristic Values that Cannot be Set for

Full-duplex .. 37
3-4 Conversation Characteristic Values that Cannot be Set for

Half-duplex ... 37
3-5 Conversation Queues: Associated Calls and Send-Receive

Modes ... 40
3-6 Calls Returning CM_OPERATION_INCOMPLETE 43
3-7 Possible Take-commit Notifications for Half-duplex

Conversations ... 53
3-8 Possible Take-commit Notifications for Full-duplex

Conversations ... 54
3-9 Responses to Take-commit and Take-backout Notifications 57
5-1 Summary List of Calls and their Descriptions... 120
5-2 Full-duplex and Half-duplex Conversation Queues.............................. 302
A-1 Variables/Characteristics and their Possible Values.............................. 330
A-2 Character Sets T61String, 01134 and 00640 .. 337
A-3 Variable Types and Lengths... 341
B-1 Secondary Information Types and Associated Return Codes.............. 362
B-2 Range of Condition Codes for Different Secondary

Information Types ... 363
B-3 CPI Communications-defined Secondary Information......................... 364
B-4 Examples of Secondary Information from an OSI TP CRM 377
B-5 Examples of Secondary Information from an LU 6.2 CRM 377
B-6 Examples of Implementation-related Secondary Information 378
C-1 States and Transitions for CPI Communications Calls:

Half-duplex ... 391
C-2 States and Transitions for Protected Half-duplex (X/Open TX) 398
C-3 States and Transitions for Half-duplex Protected (CPIRR)................... 400
C-4 States and Transitions for CPI Communications Calls:

Full-duplex .. 409
C-5 States and Transitions for Protected Full-duplex (X/Open TX) 414
C-6 States and Transitions for Protected Full-duplex (CPIRR).................... 416
D-1 Mapping CPI-C Calls to OSI TP Services ... 419
D-2 CMALLC — Allocate Mapping.. 421
D-3 CMCANC — Cancel_Conversation Mapping .. 424
D-4 CMCFM — Confirm Mapping.. 425
D-5 CMCFMD — Confirmed Mapping .. 426
D-6 CMDEAL — Deallocate Mapping.. 427
D-7 CMDFDE — Deferred_Deallocate Mapping.. 429
D-8 CMFLUS — Flush Mapping .. 430
D-9 CMINCL — Include_Partner_In_Transaction Mapping 431
D-10 CMPREP — Prepare Mapping.. 432

Distributed Transaction Processing: CPI-C Specification, Version 2 ix

Contents

D-11 CMPTR — Prepare_To_Receive Mapping ... 433
D-12 CMRTS — Request_To_Send Mapping .. 435
D-13 CMRCV — Receive ... 436
D-14 CMSEND — Send_Data Mapping ... 437
D-15 CMSERR — Send_Error Mapping ... 441
D-16 Mapping OSI TP to CPI-C Calls, Parameters and Characteristics 443
D-17 TP-BEGIN-DIALOGUE indication Mapping... 445
D-18 TP-BEGIN-DIALOGUE confirm Mapping... 446
D-19 TP-END-DIALOGUE indication Mapping .. 448
D-20 TP-U-ABORT indication Mapping... 449
D-21 TP-P-ABORT indication Mapping ... 450
D-22 TP-DEFERRED-* and TP-PREPARE indication Mapping..................... 451
D-23 Mapping CPI-C Calls on Full-duplex Conversations to OSI TP.......... 454
D-24 CMALLC — Allocate Mapping.. 455
D-25 CMCANC — Cancel_Conversation Mapping .. 457
D-26 CMCFMD — Confirmed Mapping .. 458
D-27 CMDEAL — Deallocate Mapping.. 459
D-28 CMDFDE — Deferred_Deallocate Mapping.. 461
D-29 CMINCL — Include_Partner_In_Transaction Mapping 462
D-30 CMPREP — Prepare Mapping.. 463
D-31 CMRCV — Receive ... 464
D-32 CMSEND — Send_Data Mapping ... 465
D-33 CMSERR — Send_Error Mapping ... 468
D-34 Mapping OSI TP to CPI-C Calls, Parameters and Characteristics 469
D-35 TP-BEGIN-DIALOGUE indication Mapping... 471
D-36 TP-BEGIN-DIALOGUE confirm Mapping... 472
D-37 TP-END-DIALOGUE indication Mapping .. 475
D-38 TP-U-ABORT indication Mapping... 476
D-39 TP-P-ABORT indication Mapping ... 477
D-40 TP-DEFERRED-END-DIALOGUE and TP-PREPARE indication

Mapping... 478
D-41 Relationship of LU 6.2 Verbs to CPI Communications Calls 483
G-1 Comparison of Parameters between X/Open CPI-C Versions 526

x X/Open CAE Specification

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

Distributed Transaction Processing: CPI-C Specification, Version 2 xi

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

xii X/Open CAE Specification

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:

request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.

This Document

This document is a CAE Specification (see above). It defines the Common Programming
Interface for Communications (CPI-C), which is an application programming interface to a
Communication Resource Manager (CRM).

This specification is structured as follows:

• Chapter 1 gives a brief overview and history of the Common Programming Interface (CPI)
for Communications.

• Chapter 2 discusses the CPI Communications interface in general terms and shows its
relationship to the X/Open Distributed Transaction Processing (DTP) model.

• Chapter 3 provides an overview of the CPI Communications interface and describes the basic
terms and concepts used in this specification.

• Chapter 4 provides a number of sample flows that show how a program can use CPI
Communications calls for program-to-program communication.

• Chapter 5 describes the format and function of each of the CPI Communications calls.

• Appendix A describes the CPI Communications variables and conversation characteristics.

• Appendix B describes the return codes that may be returned when CPI Communications
calls are executed.

• Appendix C explains when the CPI Communications calls can be issued.

• Appendix D provides a mapping of CPI Communications to the services provided by the OSI
TP and LU 6.2 communication resource managers.

• Appendix E contains sample CPI Communications pseudonym files for the C and COBOL
programming languages.

• Appendix F contains two sample COBOL programs using CPI Communications.

• Appendix G describes application migration from the former X/Open CPI-C (X/Open CAE
Specification: CPI-C 1992) to X/Open CPI-C, Version 2 (this document).

Distributed Transaction Processing: CPI-C Specification, Version 2 xiii

Preface

There is a glossary and an index at the end.

This specification contains both tutorial and reference information. Use the following path to
achieve the most benefit:

• Read Chapter 2 for an overview of the terms and concepts used in CPI Communications. It
is required to understand the sample program flows shown in Chapter 4.

• Read Chapter 4 for an explanation and examples of how to use the CPI Communications
calls. When reading this chapter, use Chapter 5 to obtain additional information about the
function of and required parameters for the CPI Communications calls.

• Use Chapter 5 and the appendixes for specific functional information on how to code
applications.

Intended Audience

CPI Communications (CPI-C) provides a cross-system-consistent and easy-to-use programming
interface for applications that require program-to-program communication. This specification
defines CPI Communications. It is intended for programmers who want to write applications
that adhere to this definition, as well as for developers interested in implementing CPI
Communications.

Although this document is an architecture specification, Chapter 4 provides a tutorial on
designing application programs using CPI Communications concepts and calls.

Typographical Conventions

The following typographical conventions are used throughout this specification:

• Italic strings are used for emphasis and to identify the first instance of a word or phrase
requiring definition.

• Italic strings are also used for C-language functions, for example tx_begin().

• Syntax and code examples are shown in fixed width font.

• Variables within syntax statements are shown in italic fixed width font.

• Any phrase that contains an underscore {_} is a pseudonym. To enhance readability,
pseudonymns are used throughout this specification in place of actual call names,
characteristics, variables, states, and characteristic values.

• Normal font is used for actual call names, for example CMACCP, and their pseudonyms, for
example Accept_Conversation.

• Italic strings are used for characteristics and variables, for example conversation_type .

• Normal font is used for the values of characteristics and variables, for example CM_OK.

• Bold font is used for states, for example the Reset state. Bold font is also used to denote the
Backout-Required condition.

See Section 1.3 on page 3 for further details of the typographical conventions used in this
specification.

In contrast with normal X/Open style, this document uses American English spelling for
consistency with the software.

xiv X/Open CAE Specification

Preface

Superseded Documents

Note: This specification supersedes the X/Open Peer-to-Peer Snapshot published in 1992.

Distributed Transaction Processing: CPI-C Specification, Version 2 xv

Trade Marks

The following terms are trade marks or service marks of the IBM Corporation in the United
States and other countries:

IBM
SAA
Systems Application Architecture.

Microsoft is a registered trade mark and WindowsTM is a trade mark of Microsoft Corporation.

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Limited.

xvi X/Open CAE Specification

Acknowledgements

X/Open gratefully acknowledges the collaboration with and contributions from the CPI-C
Implementers’ Workshop (CIW).

Distributed Transaction Processing: CPI-C Specification, Version 2 xvii

Referenced Documents

The following standards are referenced in this specification:

ISO 7498
ISO 7498, Information Processing Systems — Open Systems Interconnection, Parts 1 and 3:

Part 1: 1994, The Basic Model
Part 3: 1989, Naming and Addressing.

ISO/IEC 9545
ISO/IEC 9545: 1989, Information Technology — Open Systems Interconnection —
Application Layer Structure.

ISO/IEC 9594
ISO/IEC 9594: 1990, Information Technology — Open Systems Interconnection — The
Directory, Parts 1 to 8:

Part 1: Overview of Concepts, Models and Services (CCITT X.500)
Part 2: Models (CCITT X.501)
Part 3: Abstract Service Definition (CCITT X.511)
Part 4: Procedures for Distributed Operation (CCITT X.518)
Part 5: Protocol Specifications (CCITT X.519)
Part 6: Selected Attribute Types (CCITT X.520)
Part 7: Selected Object Classes (CCITT X.521)
Part 8: Authentication Framework (CCITT X.509).

OSI TP
ISO/IEC 10026, Information Technology — Open Systems Interconnection — Distributed
Transaction Processing, Parts 1 to 6:

Part 1: 1992, OSI TP Model
Part 2: 1992, OSI TP Service
Part 3: 1992, Protocol Specification
Part 4: 1995, Protocol Implementation Conformance Statement (PICS) proforma
Part 5: DIS 1993, Application context proforma and guidelines when using OSI TP
Part 6: 1994, Unstructured Data Transfer.

OSI TP Profiles
ISO/IEC ISP 12061: 1995, Information Technology — Open Systems Interconnection —
International Standardized Profiles: OSI Distributed Transaction Processing, Parts 1 to 10:

Part 1: Introduction to the Transaction Processing Profiles
Part 2: Support of OSI TP APDUs
Part 3: Support of the CCR APDUs
Part 4: Support of Session, Presentation and ACSE PDUs
Part 5: Application supported transactions — Polarized control (ATP11)
Part 6: Application supported transactions — Shared control (ATP12)
Part 7: Provider supported unchained transactions — Polarized control (ATP21)
Part 8: Provider supported unchained transactions — Shared control (ATP22)
Part 9: Provider supported chained transactions — Polarized control (ATP31)
Part 10: Provider supported chained transactions — Shared control (ATP32).

xviii X/Open CAE Specification

Referenced Documents

T.61
CCITT Recommendation T.61: 1984, Character Repertoire and Coded Character Sets for the
International Teletex Service.

The following IBM and CPI-C Implementers’ Workshop (CIW) specifications are referenced in
this specification:

APPC
Advanced Peer to Peer Communications: Resource Reference, Order Number G325-0055),
IBM Corporation.

CPI-C 1.0
Systems Application Architecture Common Programming Interface Communications
Reference, First Edition (May 1988), Order Number SC26-4399-00, IBM Corporation.

CPI-C 1.1
Systems Application Architecture Common Programming Interface Communications
Reference, Third Edition (August 1990), Order Number SC26-4399-02, IBM Corporation.

CPI-C 1.2
Common Programming Interface Communications Specification, First Edition (March 1993),
Order Number SC31-6180-00, IBM Corporation.

CPI-C 2.0
Common Program Interface Communications Specification, Second Edition (June 1994),
Order Number SC31-6180-01, IBM Corporation.

SAA
System Application Architecture: Common Programming Interface: Communications
Reference (Seventh Edition), Order Number SC26-4399-06, IBM Corporation.

System Application Architecture: Common Programming Interface: Resource Recovery
Reference, Order Number (SC31-6821), IBM Corporation.

SNA
System Network Architecture: LU 6.2 Reference: Peer Protocols, Order Number SC31-6808,
IBM Corporation.

System Network Architecture: Transaction Programmer’s Reference Manual for LU Type
6.2, Order Number GC30-3084, IBM Corporation.

System Network Architecture: Formats manual, Order Number GA27-3136, IBM
Corporation.

The following X/Open documents are referenced in this specification:

CPI-C
X/Open CAE Specification, February 1992, CPI-C (ISBN: 1-872630-35-9, C210).

DTP
X/Open Guide, November 1993, Distributed Transaction Processing: Reference Model,
Version 2 (ISBN: 1-85912-019-9, G307).

Peer-to-Peer
X/Open Snapshot, December 1992, Distributed Transaction Processing: The Peer-to-Peer
Specification (ISBN: 1-872630-79-0, S214).

Distributed Transaction Processing: CPI-C Specification, Version 2 xix

Referenced Documents

TX
X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX
(Transaction Demarcation) Specification (ISBN: 1-85912-094-6, C504).

TxRPC
X/Open CAE Specification, October 1995, Distributed Transaction Processing: The TxRPC
Specification (ISBN: 1-85912-115-2, C505).

XA
X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN: 1-872630-24-3, C193 or XO/CAE/91/300).

XA+
X/Open Snapshot, July 1994, Distributed Transaction Processing: The XA+ Specification,
Version 2 (ISBN: 1-85912-046-6, S423).

XAP-TP
X/Open CAE Specification, April 1995, ACSE/Presentation: Transaction Processing API
(XAP-TP) (ISBN: 1-85912-091-1, C409).

XATMI
X/Open CAE Specification, October 1995, Distributed Transaction Processing: The XATMI
Specification (ISBN: 1-85912-130-6, C506).

XDCS
X/Open Guide, November 1992, Distributed Computing Services (XDCS) Framework
(ISBN: 1-872630-64-2, G212).

xx X/Open CAE Specification

Chapter 1

Introduction

This chapter provides an outline of the X/Open Distributed Transaction Processing Model and
explains the position of this specification as one of the Communication Resource Manager
(CRM) interfaces. This chapter also gives a brief history of the development of the CPI-C
interface, and provides guidance on the stylistic conventions used to represent call names, call
pseudonyms, characteristics, variables, values, states and queues.

1.1 X/Open DTP Model
The X/Open Distributed Transaction Processing (DTP) model is a software architecture that
allows multiple application programs to share resources provided by multiple resource
managers, and allows their work to be coordinated into global transactions.

The X/Open DTP model comprises five basic functional components:

• an Application Program (AP), which defines transaction boundaries and specifies actions
that constitute a transaction

• Resource Managers (RMs) such as databases or file access systems, which provide access to
resources

• a Transaction Manager (TM), which assigns identifiers to transactions, monitors their
progress, and takes responsibility for transaction completion and for coordinating failure
recovery

• Communication Resource Managers (CRMs), which control communication between
distributed applications within or across TM domains

• a communication protocol, which provides the underlying communication services used by
distributed applications and supported by CRMs.

X/Open DTP publications based on this model specify portable Application Programming
Interfaces (APIs) and system-level interfaces that facilitate:

• portability of application program source code to any X/Open environment that offers those
APIs

• interchangeability of TMs, RMs and CRMs from various sources

• interoperability of diverse TMs, RMs and CRMs in the same global transaction.

Chapter 2 defines each component in more detail and illustrates the flow of control.

Distributed Transaction Processing: CPI-C Specification, Version 2 1

X/Open Communication Resource Manager Interfaces Introduction

1.2 X/Open Communication Resource Manager Interfaces
An important aspect of distributed transaction processing applications is communication.
Within the product domain for DTP tools, there are several popular communication paradigms
in common use today or expected to be in common use in the future. The communication
paradigm chosen can significantly influence the architecture of the application. The unique
strengths of each paradigm make it attractive for specific applications.

The referenced DTP guide defines a functional component known as a Communication
Resource Manager (CRM), which provides access to a communication medium between
applications.

Because it is not possible to choose a single communication paradigm applicable to the entire
broad range of DTP applications, X/Open provides application programming interfaces (APIs)
for the most popular paradigms in order to bring the benefits of open systems to the widest
possible range of transaction processing applications. These are the request/response paradigm
and the conversational paradigm.

Many applications already running on open systems use the request/response paradigm.
X/Open specifications for this paradigm are the library-based XATMI CRM interface (see the
referenced XATMI specification) and the IDL-based TxRPC CRM interface (see the referenced
TxRPC specification). TxRPC fits within the context of the X/Open Distributed Computing
Services Framework (XDCS) and allows application writers to invoke remote procedure calls
(RPCs) in the same form as local procedures, but with transaction semantics.

For applications choosing to use the conversational paradigm, where communication takes place
through an application-defined exchange of messages, X/Open offers the library-based
interfaces XATMI (see the referenced XATMI specification) and CPI-C (see this document).

The conversational model of program-to-program communication is commonly used in the
industry today, and a wide variety of applications are based on this model. The model is
historically thought of in terms of two applications speaking and listening , hence the term
conversation . A conversation is simply a logical connection between two programs that allows
the programs to communicate with each other. From an application’s perspective, CPI-C
provides the function necessary to enable this communication.

The CPI-C conversational model is implemented in two major communication protocols: Open
Systems Interconnection Distributed Transaction Processing (OSI TP)1 and Advanced Program-
to-Program Communications (APPC). The APPC model is also referred to as logical unit type
6.2 (LU 6.2). CPI-C Version 2 provides access to both communication protocols.

A primary benefit of this design is that CPI Communications defines a single programming
interface to the underlying network protocols across many different programming languages
and environments. The interface’s rich set of programming services shields the program from
details of system connectivity and eases the integration and porting of the application programs
across the supported environments.

1. See the referenced OSI TP standards.

2 X/Open CAE Specification

Introduction Naming Conventions: Calls, Characteristics, Variables and Values

1.3 Naming Conventions: Calls, Characteristics, Variables and Values
Pseudonyms for the actual calls, characteristics, variables, states, and characteristic values that
make up CPI Communications are used throughout this specification to enhance understanding
and readability. Where possible, underscores (_) and complete names are used in the
pseudonyms. Any phrase in the specification that contains an underscore is a pseudonym.

For example, Send_Data is the pseudonym for the program call CMSEND, which is used by a
program to send information to its conversation partner.

This specification uses the following conventions to aid in distinguishing between the four types
of pseudonyms:

• Calls are shown in all capital letters. Each underscore-separated portion of a call’s
pseudonym begins with a capital letter. For example, Accept_Conversation is the
pseudonym for the actual call name CMACCP.

• Characteristics and variables used to hold the values of characteristics are in italics (for
example, conversation_type) and contain no capital letters except those used for abbreviations
(for example, TP_name).

In most cases, the parameter used on a call, which corresponds to a program variable, has the
same name as the conversation characteristic. Whether a name refers to a parameter, a
program variable, or a characteristic is determined by context. In all cases, the value used for
the three remains the same.

• Values used for characteristics and variables appear in all upper-case letters (such as CM_OK)
and represent actual integer values that are to be placed into the variable. For a list of the
integer values that are placed in the variables, see Table A-1 on page 330.

• States are used to determine the next set of actions that can be taken in a conversation. States
begin with capital letters and appear in bold type, such as Reset state. Bold is also used to
denote the Backout-Required condition.

• Queues are used to group related CPI Communications calls. Queue names begin with
capital letters. The parts of a queue name are connected with a hyphen.

As a complete example of how pseudonyms are used in this specification, suppose a program
uses the Set_Return_Control call to set the conversation characteristic of return_control to a value
of CM_IMMEDIATE.

• Chapter 5 contains the syntax and semantics of the variables used for the call. It explains
that the real name of the program call for Set_Return_Control is CMSRC and that CMSRC
has a parameter list of conversation_ID, return_control, and return_code.

• Appendix A provides a complete description of all variables used in the specification and
shows that the return_control variable, which goes into the Set_Return_Control call as a
parameter, is a 32-bit integer. This information is provided in Table A-3 on page 341.

• Table A-1 on page 330 shows that CM_IMMEDIATE is defined as having an integer value of
1. CM_IMMEDIATE is placed into the return_control parameter on the call to CMSRC.

• Finally, the return_code value CM_OK, which is returned to the program on the CMSRC call,
is defined in Appendix B. CM_OK means that the call completed successfully.

Distributed Transaction Processing: CPI-C Specification, Version 2 3

Naming Conventions: Calls, Characteristics, Variables and Values Introduction

Notes:

1. Pseudonym value names are not actually passed to CPI Communications as a
string of characters. Instead, the pseudonyms represent integer values that are
passed on the program calls. The pseudonym value names are used to aid
readability of the text. Similarly, programs should use translates and equates
(depending on the language) to aid the readability of the code. In the above
example, for instance, a program equate could be used to define
CM_IMMEDIATE as meaning an integer value of 1. The actual program code
would then read as described above — namely, that return_control is replaced
with CM_IMMEDIATE. The end result, however, is that an integer value of 1 is
placed into the variable.

2. Section 5.2 on page 117 provides information on system files that can be used to
establish pseudonyms for a program.

4 X/Open CAE Specification

Introduction History of CPI Communications

1.4 History of CPI Communications
CPI Communications is an evolving interface, embracing functions to meet the growing
demands from different application environments and to achieve openness as an industry
standard for communication programming. To date, there have been five versions of the
interface:

• CPI Communications as it was first introduced in 1987, referred to in this specification as
CPI-C 1.0

• extensions made to CPI-C 1.0 by IBM, CPI-C 1.1

• extensions made by X/Open (see the referenced CPI-C CAE specification)

• CPI Communications extensions to support X/Open, CPI-C 1.2

• CPI Communications extensions made by the CPI-C Implementers’ Workshop (CIW), CPI-C
2.0.

This specification documents X/Open CPI-C Version 2, which derives from the above CPI-C 2.0
but with the following major differences:

• X/Open CPI-C, Version 2 only supports the C and COBOL programming languages.

• X/Open CPI-C, Version 2 does not support the concept of a distributed directory.

Note: This specification supersedes the X/Open Peer-to-Peer Snapshot published in 1992.

Distributed Transaction Processing: CPI-C Specification, Version 2 5

Functional Levels of CPI Communications Introduction

1.5 Functional Levels of CPI Communications
The following sections list the major features of each level of the CPI Communications
architecture.

1.5.1 CPI-C 1.0

The initial specification of CPI Communications provided a standard base for conversational
communication:

• ability to start and end conversations

• support for program synchronization through confirmation flows

• error processing

• ability to optimize conversation flow (using Flush and Prepare_To_Receive calls).

1.5.2 CPI-C 1.1

CPI-C 1.0 was extended in 1990 to include four areas of new function:

• support for resource recovery

• automatic parameter conversion

• support for communication with non-CPI-C programs

• local/remote transparency.

Note: For more information about the CPI-C 1.1 architecture, see the referenced SAA CPI-C
specification.

1.5.3 X/Open Extensions to CPI-C

X/Open adopted CPI-C at the 1.1 level (with the exception of support for resource recovery) to
allow X/Open-compliant systems to communicate with systems implementing LU 6.2. The
developers specification included several new functions not found in CPI-C 1.1:

• support for non-blocking calls

• ability to accept multiple conversations

• support for data conversion (beyond parameters)

• support for security parameters.

For further details, see the referenced CPI-C CAE specification.

1.5.4 CPI-C 1.2

CPI-C 1.0 was designed to provide a consistent programming interface for communication
programming. Unfortunately, each of its derivatives, namely CPI-C 1.1 and X/Open CPI-C,
provided different levels of function. CPI-C 1.2 consolidated CPI-C 1.1 and the X/Open
extensions, providing function in four areas:

• support for non-blocking calls — incorporation of X/Open calls

• support for data conversion — incorporation of X/Open calls

• support for specification of security parameters — incorporation of X/Open calls

6 X/Open CAE Specification

Introduction Functional Levels of CPI Communications

• ability to accept multiple conversations — new calls to accommodate both the X/Open and
CPI-C 1.1 approaches.

1.5.5 CPI-C 2.0

CPI-C 2.0 provides enhancements to some CPI-C 1.2 functions as well as offering several new
functions:

• support for full-duplex conversations and expedited data

• enhanced support for non-blocking processing with the addition of queue-level processing
and a callback function

• support for OSI TP applications

• support for secondary information to determine the cause of a return code.

1.5.6 Call Table

Table 1-1 lists the calls defined for the different versions of CPI Communications. For CPI-C
versions 1.0, 1.1, 1.2 and 2.0, an X indicates that the call was part of that specific version. The
column marked CPI-C X/Open refers to the original version of X/Open CPI-C. In this column,
the actual names of the calls from that version are given in place of each X.

Table 1-1 Versions of CPI Communications

CPI-C CPI-C CPI-C CPI-C CPI-C
Call Name 1.0 1.1 X/Open 1.2 2.0

Starter Set
Accept_Conversation X X CMACCP X X
Allocate X X CMALLC X X
Deallocate X X CMDEAL X X
Initialize_Conversation X X CMINIT X X
Receive X X CMRCV X X
Send_Data X X CMSEND X X

Advanced Function

for synchronization and control:
Confirm X X CMCFM X X
Confirmed X X CMCFMD X X
Deferred_Deallocate X
Flush X X CMFLUS X X
Include_Partner_In_Transaction X
Prepare X
Prepare_To_Receive X X CMPTR X X
Receive_Expedited_Data X
Request_To_Send X X CMRTS X X
Send_Error X X CMSERR X X
Send_Expedited_Data X
Test_Request_To_Send_Received X X CMTRTS X X

Distributed Transaction Processing: CPI-C Specification, Version 2 7

Functional Levels of CPI Communications Introduction

CPI-C CPI-C CPI-C CPI-C CPI-C
Call Name 1.0 1.1 X/Open 1.2 2.0

for modifying conversation
characteristics:
Set_AE_Qualifier X
Set_Allocate_Confirm X
Set_AP_Title X
Set_Application_Context_Name X
Set_Begin_Transaction X
Set_Confirmation_Urgency X
Set_Conversation_Security_Password CMSCSP X X
Set_Conversation_Security_Type CMSCST X X
Set_Conversation_Security_User_ID CMSCSU X X
Set_Conversation_Type X X CMSCT X X
Set_Deallocate_Type X X CMSDT X X
Set_Error_Direction X X CMSED X X
Set_Fill X X CMSF X X
Set_Initialization_Data X
Set_Join_Transaction X
Set_Log_Data X X CMSLD X X
Set_Mode_Name X X CMSMN X X
Set_Partner_LU_Name X X CMSPLN X X
Set_Prepare_Data_Permitted X
Set_Prepare_To_Receive_Type X X CMSPTR X X
Set_Receive_Type X X CMSRT X X
Set_Return_Control X X CMSRC X X
Set_Send_Receive_Mode X
Set_Send_Type X X CMSST X X
Set_Sync_Level

CM_NONE X X CMSSL X X
CM_CONFIRM X X CMSSL X X
CM_SYNC_POINT X X X
CM_SYNC_POINT_NO_CONFIRM X

Set_TP_Name X X CMSTPN X X
Set_Transaction_Control X

8 X/Open CAE Specification

Introduction Functional Levels of CPI Communications

CPI-C CPI-C CPI-C CPI-C CPI-C
Call Name 1.0 1.1 X/Open 1.2 2.0

for examining information about
the conversation and CRM:
Extract_AE_Qualifier X
Extract_AP_Title X
Extract_Application_Context_Name X
Extract_Conversation_State X X X
Extract_Conversation_Type X X CMECT X X
Extract_Initialization_Data X
Extract_Maximum_Buffer_Size X X
Extract_Mode_Name X X CMEMN X X
Extract_Partner_LU_Name X X CMEPLN X X
Extract_Secondary_Information X
Extract_Security_User_ID X X
Extract_Send_Receive_Mode X
Extract_Sync_Level X X CMESL X X
Extract_TP_Name CMETPN X X
Extract_Transaction_Control X

for non-blocking operations:
Cancel_Conversation CMCANC X X
Set_Processing_Mode CMSPM X X
Set_Queue_Callback_Function X
Set_Queue_Processing_Mode X
Wait_For_Completion X
Wait_For_Conversation CMWAIT X X

for accepting multiple
conversations:
Accept_Incoming X X
Initialize_For_Incoming X X
Release_Local_TP_Name X X
Specify_Local_TP_Name CMSLTP X X

for data conversion:
Convert_Incoming CMCNVI X X
Convert_Outgoing CMCNVO X X

Distributed Transaction Processing: CPI-C Specification, Version 2 9

Introduction

10 X/Open CAE Specification

Chapter 2

Model and Definitions

This chapter discusses the CPI-C interface in general terms and provides necessary background
material for the rest of the specification. The chapter shows the relationship of the interface to
the X/Open DTP model. The chapter also states the design assumptions that the interface uses
and shows how the interface addresses common DTP concepts.

2.1 X/Open DTP Model
The boxes in the figure below are the functional components and the connecting lines are the
interfaces between them. The arrows indicate the directions in which control may flow.

Application Program (AP)

(RMs) (TM)

Resource
Managers

Transaction
Manager

(5)(1)

(3)

(2)

SUPERIOR NODE

OSI TP

SUBORDINATE NODE

(CRMs)

Communication

Managers
Resource

(4)

AP

RMs TM

OSI TP

CRMs

(6)

Figure 2-1 Functional Components and Interfaces

Descriptions of the functional components shown can be found in Section 2.1.1 on page 12. The
numbers in brackets in the above figure represent the different X/Open interfaces that are used
in the model. They are described in Section 2.1.2 on page 13.

For more details of this model and diagram, including detailed definitions of each component,
see the referenced DTP guide.

Distributed Transaction Processing: CPI-C Specification, Version 2 11

X/Open DTP Model Model and Definitions

2.1.1 Functional Components

Application Program (AP)

The application program (AP) implements the desired function of the end-user enterprise. Each
AP specifies a sequence of operations that involves resources such as databases. An AP defines
the start and end of global transactions, accesses resources within transaction boundaries, and
normally makes the decision whether to commit or roll back each transaction.

Where two or more APs cooperate within a global transaction, the X/Open DTP model supports
three paradigms for AP to AP communication. These are the TxRPC, XATMI and CPI-C
interfaces.

Transaction Manager (TM)

The transaction manager (TM) manages global transactions and coordinates the decision to start
them, and commit them or roll them back. This ensures atomic transaction completion. The TM
also coordinates recovery activities of the resource managers when necessary, such as after a
component fails.

Resource Manager (RM)

The resource manager (RM) manages a defined part of the computer’s shared resources. These
may be accessed using services that the RM provides. Examples for RMs are database
management systems (DBMSs), a file access method such as X/Open ISAM, and a print server.

In the X/Open DTP model, RMs structure all changes to the resources they manage as
recoverable and atomic transactions. They let the TM coordinate completion of these
transactions atomically with work done by other RMs.

Communication Resource Manager (CRM)

A CRM allows an instance of the model to access another instance either inside or outside the
current TM Domain. Within the X/Open DTP model, CRMs use OSI TP services to provide a
communication layer across TM Domains. CRMs aid global transactions by supporting the
following interfaces:

• the communication paradigm (TxRPC, XATMI or CPI-C) used between an AP and CRM

• XA+ communication between a TM and CRM

• XAP-TP communication between a CRM and OSI TP.

A CRM may support more than one type of communication paradigm, or a TM Domain may use
different CRMs to support different paradigms. The XA+ interface provides global transaction
information across different instances and TM Domains. The CRM allows a global transaction to
extend to another TM Domain, and allows TMs to coordinate global transaction commit and
abort requests from (usually) the superior AP. Using the above interfaces, information flows
from superior to subordinate and vice versa.

12 X/Open CAE Specification

Model and Definitions X/Open DTP Model

2.1.2 Interfaces between Functional Components

There are six interfaces between software components in the X/Open DTP model. The numbers
correspond to the numbers in Figure 2-1 on page 11.

(1) AP-RM. The AP-RM interfaces give the AP access to resources. X/Open interfaces, such as
SQL and ISAM, provide AP portability. The X/Open DTP model imposes few constraints
on native RM APIs. The constraints involve only those native RM interfaces that define
transactions. (See the referenced XA specification.)

(2) AP-TM. The AP-TM interface (the TX interface) provides the AP with an Application
Programming Interface (API) by which the AP coordinates global transaction management
with the TM. For example, when the AP calls tx_begin() the TM informs the participating
RMs of the start of a global transaction. After each request is completed, the TM provides a
return value to the AP reporting back the success or otherwise of the TX call.

For details of the AP-TM interface, see the referenced TX (Transaction Demarcation)
specification.

(3) TM-RM. The TM-RM interface (the XA interface) lets the TM structure the work of RMs
into global transactions and coordinate completion or recovery. The XA interface is the
bidirectional interface between the TM and RM.

The functions that each RM provides for the TM are called the xa_*() functions. For
example the TM calls xa_start () in each participating RM to start an RM-internal transaction
as part of a new global transaction. Later, the TM may call in sequence xa_end()
xa_prepare() and xa_commit() to coordinate a (successful in this case) two-phase commit
protocol. The functions that the TM provides for each RM are called the ax_*() functions.
For example an RM calls ax_reg() to register dynamically with the TM.

For details of the TM-RM interface, see the referenced XA specification.

(4) TM-CRM. The TM-CRM interface (the XA+ interface) supports global transaction
information flow across TM Domains. In particular TMs can instruct CRMs by use of xa_*()
function calls to suspend or complete transaction branches, and to propagate global
transaction commitment protocols to other transaction branches. CRMs pass information to
TMs in subordinate branches by use of ax_*() function calls. CRMs also use ax_*() function
calls to request the TM to create subordinate transaction branches, to save and retrieve
recovery information, and to inform the TM of the start and end of blocking conditions.

For details of the TM-CRM interface, see the referenced XA+ specification.

The XA+ interface is a superset of the XA interface and supersedes its purpose. Since the
XA+ interface is invisible to the AP, the TM and CRM may use other methods to
interconnect without affecting application portability.

(5) AP-CRM. X/Open provides portable APIs for DTP communication between APs within a
global transaction. The API chosen can significantly influence (and may indeed be
fundamental to) the whole architecture of the application. For this reason, these APIs are
frequently referred to in this specification and elsewhere as communication paradigms . In
practice, each paradigm has unique strengths, so X/Open offers the following popular
paradigms:

— the TxRPC interface (see the TxRPC specification)

— the XATMI interface (see the XATMI specification)

— the CPI-C interface (see this document).

Distributed Transaction Processing: CPI-C Specification, Version 2 13

X/Open DTP Model Model and Definitions

X/Open interfaces, such as the three CRM APIs listed above, provide application portability
across products offering the same CRM API. The X/Open DTP model imposes few
constraints on native CRM APIs.

(6) CRM-OSI TP. This interface (the XAP-TP interface) provides a programming interface
between a CRM and Open Systems Interconnection Distributed Transaction Processing (OSI
TP) services. XAP-TP interfaces with the OSI TP Service and the Presentation Layer of the
seven-layer OSI model. X/Open has defined this interface to support portable
implementations of application-specific OSI services. The use of OSI TP is mandatory for
communication between heterogeneous TM domains. For details of this interface, see the
referenced XAP-TP specification and OSI TP standards.

14 X/Open CAE Specification

Model and Definitions Definitions

2.2 Definitions
For additional definitions see the referenced DTP guide.

2.2.1 Transaction

A transaction is a complete unit of work. It may comprise many computational tasks, which
may include user interface, data retrieval, and communication. A typical transaction modifies
shared resources. (The OSI TP standards (model) define transactions more precisely.)

Transactions must be able to be rolled back . A human user may roll back the transaction in
response to a real-world event, such as a customer decision. A program can elect to roll back a
transaction. For example, account number verification may fail or the account may fail a test of
its balance. Transactions also roll back if a component of the system fails, keeping it from
retrieving, communicating, or storing data. Every DTP software component subject to
transaction control must be able to undo its work in a transaction that is rolled back at any time.

When the system determines that a transaction can complete without failure of any kind, it
commits the transaction. This means that changes to shared resources take permanent effect.
Either commitment or rollback results in a consistent state. Completion means either
commitment or rollback.

2.2.2 Transaction Properties

Transactions typically exhibit the following properties:

Atomicity This means that the results of the transaction’s execution are either all
committed or all rolled back.

Consistency This means that a completed transaction transforms a shared resource from
one valid state to another valid state.

Isolation This means that changes to shared resources that a transaction effects do not
become visible outside the transaction until the transaction commits.

Durability This means the changes that result from transaction commitment survive
subsequent system or media failures.

These properties are known by their initials as the ACID properties. In the X/Open DTP model,
the TM coordinates Atomicity at global level whilst each RM is responsible for the Atomicity,
Consistency, Isolation and Durability of its resources.

2.2.3 Distributed Transaction Processing

Within the scope of this document, DTP systems are those where work in support of a single
transaction may occur across RMs. This has several implications:

• The system must have a way to refer to a transaction that encompasses all work done
anywhere in the system.

• The decision to commit or roll back a transaction must consider the status of work done
anywhere on behalf of the transaction. The decision must have uniform effect throughout
the DTP system.

Even though an RM may have an X/Open-compliant interface such as Structured Query
Language (SQL), it must also address these two items to be useful in the DTP environment.

Distributed Transaction Processing: CPI-C Specification, Version 2 15

Definitions Model and Definitions

2.2.4 Global Transactions

Every RM in the DTP environment must support transactions as described in Section 2.2.1 on
page 15. Many RMs already structure their work into recoverable units.

In the DTP environment, many RMs may operate in support of the same unit of work. This unit
of work is a global transaction . For example, an AP might request updates to several different
databases. Work occurring anywhere in the system must be committed atomically. Each RM
must let the TM coordinate the RM’s recoverable units of work that are part of a global
transaction.

Commitment of an RM’s internal work depends not only on whether its own operations can
succeed, but also on operations occurring at other RMs, perhaps remotely. If any operation fails
anywhere, every participating RM must roll back all operations it did on behalf of the global
transaction. A given RM is typically unaware of the work that other RMs are doing. A TM
informs each RM of the existence, and directs the completion, of global transactions. An RM is
responsible for mapping its recoverable units of work to the global transaction.

2.2.5 Transaction Branches

A global transaction has one or more transaction branches (or branches). A branch is a part of the
work in support of a global transaction for which the TM and the RM engage in a separate but
coordinated transaction commitment protocol. Each of the RM’s internal units of work in
support of a global transaction is part of exactly one branch.

A global transaction might have more than one branch when, for example, the AP uses a CRM to
communicate with remote applications. The CRM asks the TM to create a new transaction
branch prior to accessing a remote AP for the first time. Subsequent accesses to the same remote
AP are typically done within the same transaction branch. Accesses to different remote APs are
typically done in separate transaction branches.

After the TM begins the transaction commitment protocol, the RM receives no additional work
to do on that transaction branch. The RM may receive additional work on behalf of the same
transaction, from different branches. The different branches are related in that they must be
completed atomically. However, the TM directs the commitment protocol for each branch
separately. That is, an RM receives a separate commitment request for each branch.

16 X/Open CAE Specification

Chapter 3

Interface Overview

This chapter gives an overview of the CPI-C interface. In an X/Open DTP system, CPI-C is the
interface between an AP and a CRM.

AP

RM TM CRM

OSI TP

CPI-C

Figure 3-1 The CPI-C Interface

CPI Communications provides a consistent application programming interface for applications
that require program-to-program communication. The interface provides access to a rich set of
inter-program services, including:

• sending and receiving data

• synchronizing processing between programs

• notifying a partner of errors in the communication.

This chapter describes the major terms and concepts used in CPI Communications.

Distributed Transaction Processing: CPI-C Specification, Version 2 17

Communication across a Network Interface Overview

3.1 Communication across a Network
Figure 3-2 illustrates the logical view of a sample network. It consists of three communication
resource managers2 (CRMs): CRM X, CRM Y, and CRM Z. Each CRM has two logical connections
with two other CRMs; the logical connections are shown as the gray portions of Figure 3-2 and
enable communication between the CRMs. The network shown in Figure 3-2 is a simple one. In
a real network, the number of CRMs and logical connections between the CRMs can be in the
thousands.

Conversation
with Program C

Conversation
with Program D

CPI
Communications

CPI
Communications

Conversation
with Program A

Conversation
with Program B

Program A Program B

Program C Program D

CRM X

Logical ConnectionLogical Connection

Logical Connection

CRM Y CRM Z

Product-Specific
Interface

Network

Figure 3-2 Programs Using CPI Communications to Converse through a Network

The CRMs and the logical connections shown in Figure 3-2 are generic representations of real
networks. In an OSI network, CRMs are called application entities and the logical connections are
associations. If this were an SNA network, the CRMs would be referred to as logical units of type
6.2 and the logical connections would be sessions. The physical network, which consists of nodes
(processors) and data links between nodes, is not shown in Figure 3-2 because a program using
CPI Communications does not see these resources. A program uses the logical network of
CRMs, which in turn communicates with and uses the physical network. The CRMs discussed
in this specification are of type OSI TP or type LU 6.2.

2. Communication resource managers can provide many functions in a network. In this specification, the term communication
resource manager refers only to resource managers that provide conversation services to CPI Communications programs. Other
CRMs might, for example, provide services for remote procedure calls or message-queuing interfaces.

18 X/Open CAE Specification

Interface Overview Conversation Types

3.2 Conversation Types
Just as two CRMs communicate using a logical connection, two programs exchange data using a
conversation. For example, the conversation between Program A and Program C is shown in
Figure 3-2 on page 18 as a single bold line between the two programs. The line indicating the
conversation is shown on top of the logical connection because a conversation allows programs
to communicate over the logical connection between the CRMs.

CPI Communications supports two types of conversations:

• Mapped conversations allow programs to exchange arbitrary data records in data formats
agreed upon by the application programmers.

• Basic conversations allow programs to exchange data in a standardized format. This format
is a stream of data containing 2-byte logical length fields (referred to as LLs) that specify the
amount of data to follow before the next length field. The typical data pattern is ‘‘LL, data,
LL, data’’. Each grouping of ‘‘LL, data’’ is referred to as a logical record.

Notes:

1. Because of the detailed manipulation of data and resulting complexity of error
conditions, the use of basic conversations is intended for programmers using
advanced functions. A more complete discussion of basic and mapped
conversations is provided in the APPLICATION USAGE section of Send_Data
(CMSEND) on page 230.

2. Because OSI TP CRMs do not exchange the conversation characteristic that
determines whether a conversation is to be mapped or basic, the remote
application must also issue a Set_Conversation_Type call when basic
conversations are being used, to override the default value of
CM_MAPPED_CONVERSATION for the conversation_type conversation
characteristic.

3.3 Send-Receive Modes
CPI Communications supports two modes for sending and receiving data on a conversation:

Half-duplex
Only one of the programs has send control, the right to send data, at any time. Send control
must be transferred to the other program before that program can send data.

Full-duplex
Both programs can send and receive data at the same time. Thus, both programs have send
control.

The send-receive mode on a conversation is determined at the time the conversation is established.

For further information, see Section 3.8.2 on page 36.

Distributed Transaction Processing: CPI-C Specification, Version 2 19

Program Partners Interface Overview

3.4 Program Partners
Two programs involved in a conversation are called partners in the conversation. If a CRM-CRM
logical connection exists, or can be made to exist, between the nodes containing the partner
programs, two programs can communicate through the network with a conversation.

The terms local and remote are used to differentiate between different ends of a conversation. If a
program is being discussed as local, its partner program is said to be the remote program for that
conversation. For example, if Program A is being discussed, Program A is the local program and
Program C is the remote program. Similarly, if Program C is being discussed as the local
program, Program A is the remote program. Thus, a program can be both local and remote for a
given conversation, depending on the circumstances.

Although program partners are generally thought of as residing in different nodes in a network,
the local and remote programs may, in fact, reside in the same node. Two programs
communicate with each other the same way, whether they are in the same or different nodes.

Note: A CPI Communications program may establish a conversation with a program that is
using a product-specific programming interface for a particular environment and not
CPI Communications. The conversation between Program B and Program D in Figure
3-2 on page 18 is an example of such a situation. Some restrictions may apply in this
situation, since CPI Communications does not support all available network functions.
See Appendix D for a more complete discussion.

3.4.1 Identifying the Partner Program

CPI Communications requires a certain amount of destination information, such as the name of
the partner program and the name of the CRM at the partner’s node, before it can establish a
conversation. Sources for this information include:

Program-supplied
The program can supply the destination information directly.

Side information
The program can use data contained in local side information. The side information is
accessed using an 8-byte symbolic destination name or sym_dest_name, which identifies the
partner program.

There are some considerations to keep in mind when using the different techniques:

• Program-supplied information may require recompilation if the address of the partner
program changes.

• Use of sym_dest_name allows only a small name space of locally-defined names.

• Side information requires local administration on each system.

• Movement of a program may result in update of side information on multiple systems.

20 X/Open CAE Specification

Interface Overview Operating Environment

3.5 Operating Environment
Figure 3-3 gives a more detailed view of Program A’s operating environment. As in Figure 3-2
on page 18, the bold black line shows the conversation Program A has established with its
partner program. The new line between the program and CPI Communications represents
Program A’s use of program calls to communicate with CPI Communications. The different
types of CPI Communications calls are discussed in Section 3.6 on page 24.

CPU Cycles
DASD
Memory

Operating
SystemProgram A

Side
Information

Node
Services

Distributed
Services

Conversation
with Program C

calls

CPI
Communications

Communications
Resource Manager

Resource
Recovery
Interface
Sync
Point
Manager

Node Environment

Figure 3-3 Operating Environment of CPI Communications Program

In addition to the new line with CPI Communications, Figure 3-3 also shows Program A using
several other generic elements:

• node services

• side information

• distributed services

• resource recovery interface

• operating system.

These elements are discussed in the following sections.

Distributed Transaction Processing: CPI-C Specification, Version 2 21

Operating Environment Interface Overview

3.5.1 Node Services

Node services represents a number of utility functions within the local system environment that
are available for CPI Communications and other programming interfaces. These functions are
not related to the actual sending and receiving of CPI Communications data, and specific
implementations differ from product to product. Node services includes the following general
functions:

• Setting and accessing of side information

This function is required to set up the initial values of the side information and allow
subsequent modification. It does not refer to individual program modification of the
program’s copy of the side information using Set_* calls, as described in Section 3.8 on page
29. (Refer to specific product information for details.)

• Program-startup processing

A program is started either by receipt of notification that the remote program has issued an
Allocate call for the conversation (discussed in greater detail in Section 4.2 on page 64) or by
local (operator) action. In either case, node services sets up the data paths and operating
environment required by the program, validates and establishes security parameters under
which the program executes, and then allows the program to begin execution. In the former
case, node services receives the notification, retrieves the name of the program to be started
and any access security information included in the conversation startup request, and then
proceeds as if starting a program by local action.

• Program-termination processing (both normal and abnormal)

The program should terminate all conversations before the end of the program. However, if
the program does not terminate all conversations, node services abnormally deallocates any
dangling conversations.

• Acquiring and validating access security information

Node services provides interfaces for CRMs both to acquire and to validate access security
information on behalf of a user. See Section 3.11 on page 47 for more information.

3.5.2 Side Information

As discussed in Section 3.4.1 on page 20, CPI Communications allows a program to identify its
partner program with a sym_dest_name. The sym_dest_name is provided on the
Initialize_Conversation call and corresponds to a side-information entry containing destination
information for the partner program. The information that needs to be specified in the side-
information entry depends on the type of CRM (OSI TP or LU 6.2) required to contact the
program. Each piece of information may have associated attributes such as length and format
for AP_title and AE_qualifier.

Here is the possible information if the CRM type is OSI TP:

• AP_title

When combined with the AE_qualifier, the application-process-title indicates the name of the
application-entity where the partner program is located. The AP_title combined with an
AE_qualifier is equivalent to a fully qualified partner_LU_name in SNA.

22 X/Open CAE Specification

Interface Overview Operating Environment

• AE_qualifier

Indicates the application-entity-qualifier, which is used to distinguish between application-
entities having the same AP_title, if required.

• application_context_name

Specifies the name of the application context being used on the conversation. An application
context is a set of operating rules that two programs have agreed to follow.

Here is the possible information if the CRM type is LU 6.2:

• partner_LU_name

Indicates the name of the LU where the partner program is located. This LU name is any
name for the remote LU recognized by the local LU for the purpose of allocating a
conversation.

In addition, the entry may contain the following information, which are not CRM-type
dependent.

• TP_name

Specifies the name of the remote program. TP_name stands for transaction program name. In
this specification, transaction program, application program, and program are synonymous, all
denoting a program using CPI Communications. See Appendix D for details of how a CPI
Communications program can interact with non-CPI Communications programs.

• mode_name

Used to designate the properties of the logical connection to be established for the
conversation. The properties include, for example, the class of service to be used on the
conversation. The system administrator defines a set of mode names used by the local CRM
to establish logical connections with its partners.

• conversation_security_type

Specifies the type of access security information to be included in the conversation startup
request. See Section 3.11 on page 47 for more information.

• security_user_ID

Specifies the user ID to be used for validation of access to the remote program by the partner
system.

• security_password

Specifies the password to be used with the user ID for validation of access to the remote
program by the partner system.

Programs not wanting to use side information can specify a sym_dest_name of blanks on the
Initialize_Conversation call. For more information, see Initialize_Conversation (CMINIT) on page
195.

Distributed Transaction Processing: CPI-C Specification, Version 2 23

Program Calls Interface Overview

3.6 Program Calls
CPI Communications programs communicate with each other by making program calls. These
calls are used to establish the characteristics of the conversation and to exchange data and control
information between the programs. An example of a conversation characteristic is the
conversation_type characteristic, which indicates whether the conversation is basic or mapped.
Conversation characteristics are discussed in greater detail in Section 3.8 on page 29.

When a program makes a CPI Communications call, the program passes characteristics and data
to CPI Communications using input parameters. When the call completes, CPI Communications
passes data and status information back to the program using output parameters.

The return_code output parameter is returned for all CPI Communications calls. It indicates
whether a call completed successfully or if an error was detected that caused the call to fail. CPI
Communications uses additional output parameters on some calls to pass status information to
the program. These parameters include the control_information_received, data_received, and
status_received parameters. Additionally, the return code may be associated with secondary
information, which can be used to determine the cause of the return code.

The function provided by CPI Communications calls can be categorized into two groups:

Starter-set Calls
The starter-set calls allow for simple communication of data between two programs and
assume the program uses the initial values for the CPI Communications conversation
characteristics. Example flows for use of these calls are provided in Section 4.2 on page 64.

Advanced-function Calls
The advanced-function calls are used to do more specialized processing than that provided
by the default set of characteristic values. The advanced-function calls provide more careful
synchronization and monitoring of data. For example, the Set_* calls allow a program to
modify conversation characteristics, and the Extract_* calls allow a program to examine the
conversation characteristics that have been assigned to a given conversation. Example
flows for use of these calls are provided in Section 4.3 on page 70.

Note: The breakdown of function between starter-set and advanced-function calls is not
intended to imply a restriction on how the calls may be combined or used. Starter-set
calls, for example, are often used together with advanced-function calls. The
distinction between the two types of calls is intended to aid the CPI Communications
programmer and to indicate the relative degree of complexity.

Table 3-1 on page 25 lists the two groups of CPI Communications calls.

24 X/Open CAE Specification

Interface Overview Program Calls

Starter Set
Initialize_Conversation
Accept_Conversation
Allocate
Send_Data
Receive
Deallocate

Advanced Function
Accept_Incoming Set_AE_Qualifier
Cancel_Conversation Set_Allocate_Confirm
Confirm Set_AP_Title
Confirmed Set_Application_Context_Name
Convert_Incoming Set_Begin_Transaction
Convert_Outgoing Set_Confirmation_Urgency
Deferred_Deallocate Set_Conversation_Security_P assword
Flush Set_Conversation_Security_Type
Include_Partner_In_Transaction Set_Conversation_Security_User_ID
Initialize_For_Incoming Set_Conversation_Type
Prepare Set_Deallocate_Type
Prepare_To_Receive Set_Error_Direction
Receive_Expedited_Data Set_Fill
Release_Local_TP_Name Set_Initialization_Data
Request_To_Send Set_Join_Transaction
Send_Error Set_Log_Data
Send_Expedited_Data Set_Mode_Name
Specify_Local_TP_Name Set_Partner_LU_Name
Test_Request_To_Send_Received Set_Prepare_Data_Permitted
Wait_For_Completion Set_Prepare_To_Receive_Type
Wait_For_Conversation Set_Processing_Mode

Set_Queue_Callback_Function
Extract_AE_Qualifier Set_Queue_Processing_Mode
Extract_AP_Title Set_Receive_Type
Extract_Application_Context_Name Set_Return_Control
Extract_Conversation_State Set_Send_Receive_Mode
Extract_Conversation_Type Set_Send_Type
Extract_Initialization_Data Set_Sync_Level
Extract_Maximum_Buffer_Size Set_TP_Name
Extract_Mode_Name Set_Transaction_Control
Extract_Partner_LU_Name
Extract_Secondary_Information
Extract_Security_User_ID
Extract_Send_Receive_Mode
Extract_Sync_Level
Extract_TP_Name
Extract_Transaction_Control

Table 3-1 Breakdown of Calls between Starter Set and Advanced Function

A list of the calls and a brief description of each call’s function is provided in Table 5-1 on page
120.

Distributed Transaction Processing: CPI-C Specification, Version 2 25

Establishing a Conversation Interface Overview

3.7 Establishing a Conversation
Here is a simple example of how Program A starts a conversation with Program C:

1. Program A issues the Initialize_Conversation call to prepare to start the conversation. It
uses a sym_dest_name to designate Program C as its partner program and receives back a
unique conversation identifier, the conversation_ID. Program A uses this conversation_ID in
all future calls intended for that conversation.

2. Program A issues an Allocate call to start the conversation.

3. CPI Communications tells the node containing Program C that Program C needs to be
started by sending a conversation startup request to the partner CRM. The conversation
startup request contains information necessary to start the partner program and establish
the conversation.

4. Program C is started and issues the Accept_Conversation call. It receives back a unique
conversation_ID (not necessarily the same as the one provided to Program A). Program C
uses its conversation_ID in all future calls intended for that conversation.

After issuing their respective Initialize_Conversation and Accept_Conversation calls, both
Program A and Program C have a set of default conversation characteristics set up for the
conversation. The default values established by CPI Communications are discussed in Section
3.8 on page 29.

3.7.1 Multiple Conversations

In the previous example, Program A established a single conversation with a single partner, but
CPI Communications allows a program to communicate with multiple partners using multiple,
concurrent, conversations:

Outbound Conversations
A program initiates more than one conversation.

Inbound Conversations
A program accepts more than one conversation.

Specific combinations of outbound and inbound conversations are determined by application
design. The sections that follow discuss in greater detail the concepts required for multiple
conversations.

3.7.1.1 Naming of Partner Programs

After a program issues Initialize_Conversation to establish its conversation characteristics, a
name for its partner program (the TP_name) is established. This name is transmitted to the
remote system in the conversation startup request after the program issues the Allocate call.

At the remote system, the partner program can be started in one of two ways:

• receipt of a conversation startup request

• local action.

In the first case, node services starts the program named in the conversation startup request.
However, if a program is started locally, the program must notify node services of its ability to
accept conversations for a given name. The program associates a name with itself by issuing the
Specify_Local_TP_Name call. The program can release a name from association with itself by
issuing the Release_Local_TP_Name call.

26 X/Open CAE Specification

Interface Overview Establishing a Conversation

To accept multiple conversations for different names, the program issues multiple
Specify_Local_TP_Name calls, thus associating multiple names with itself.

Note: A locally-started program cannot accept conversations until a name has been
associated with the program.

3.7.1.2 Multiple Outbound Conversations

Figure 3-4 shows Program A establishing conversations with two partners. For example, a
program may need to request data from multiple data bases on different nodes to answer a
particular query. The conversation with Program B is initialized with an Initialize_Conversation
(CMINIT) call that returns a conversation_ID parameter of X. The conversation with Program C
is initialized with an Initialize_Conversation call that returns a conversation_ID parameter of Y.
When Program A issues subsequent calls with a conversation_ID of X, CPI Communications
knows that these calls apply to the conversation with Program B. Similarly, when Program A
issues subsequent calls with a conversation_ID of Y, CPI Communications knows that these calls
apply to the conversation with Program C.

Program A

Program B Program C

Conversation 1 Conversation 2

(conversation_ID = X) (conversation_ID = Y)

Figure 3-4 Program Using Multiple Outbound CPI Communications Conversations

Note: In some implementing environments, Program A can share the conversation_ID with
another task, allowing that task to issue calls on the conversation with Program C.

3.7.1.3 Multiple Inbound Conversations

Some programs, often referred to as server programs, may need to accept more than one inbound
conversation. For example, a server could accept conversations from multiple partners in order
to work on the request from one partner while waiting for a second partner’s request or work to
complete.

Distributed Transaction Processing: CPI-C Specification, Version 2 27

Establishing a Conversation Interface Overview

This type of application is shown in Figure 3-5, where Programs D and E have both chosen to
initiate conversations with the same partner, Program S.

Program S

Work for
Program D

Work for
Program E

Program D Program E

Figure 3-5 Program Using Multiple Inbound CPI Communications Conversations

In the simplest case, Program S can accept the two conversations by issuing
Accept_Conversation twice. Alternatively, Program S may make use of two advanced calls,
Initialize_For_Incoming and Accept_Incoming.

Note: A program would use the advanced calls to achieve greater programming flexibility.
See Section 3.10 on page 43 for a more detailed discussion. See Section 4.3.7 on page 82
and Section 4.3.8 on page 84 for examples using these calls.

28 X/Open CAE Specification

Interface Overview Conversation Characteristics

3.8 Conversation Characteristics
As discussed previously, CPI Communications maintains a set of characteristics for each
conversation used by a program. These characteristics are established for each program on a
per-conversation basis, and the initial values assigned to the characteristics depend on the
program’s role in starting the conversation. Table 3-2 on page 30 provides a comparison of the
conversation characteristics and initial values as set by the Initialize_Conversation,
Accept_Conversation, Initialize_For_Incoming, and Accept_Incoming calls. The upper-case
values shown in the table are pseudonyms that represent integer values.

The CPI Communications naming conventions for these characteristics, as well as for calls,
variables, and characteristic values, are discussed in Section 1.3 on page 3.

3.8.1 Modifying and Viewing Characteristics

In the example in Section 3.7 on page 26, the programs used the initial set of program
characteristics provided by CPI Communications as defaults. However, CPI Communications
provides calls that allow a program to modify and view the conversation characteristics for a
particular conversation. Restrictions on when a program can issue these calls are discussed in
the individual call descriptions in Chapter 5.

Note: As already stated, CPI Communications maintains conversation characteristics on a
per-conversation basis. Changes to a characteristic affect only the conversation
indicated by the conversation_ID. Changes made to a characteristic do not affect future
default values assigned, nor do the changes affect the initial system values (in the case
of values derived from the side information).

For example, consider the conversation characteristic that defines what type of conversation the
initiating program will have, the conversation_type characteristic. CPI Communications initially
sets this characteristic to CM_MAPPED_CONVERSATION and stores this characteristic value
for use in maintaining the conversation. A program can issue the Extract_Conversation_Type
call to view this value.

A program can issue the Set_Conversation_Type call (after issuing Initialize_Conversation but
before issuing Allocate) to change this value. The change remains in effect until the conversation
ends or until the program issues another Set_Conversation_Type call.

The Set_* calls are also used to prevent programs from attempting incorrect syntactic or
semantic changes to conversation characteristics. For example, if a program attempts to change
the conversation_type after the conversation has already been established (an illegal change), CPI
Communications informs the program of its error and disallows the change. Details on this type
of checking are provided in the individual call descriptions in Chapter 5.

Distributed Transaction Processing: CPI-C Specification, Version 2 29

Conversation Characteristics Interface Overview

Table 3-2 Characteristics and their Default Values

Name of Characteristic Initialize_Conversation sets it to: Accept_Conversation sets it to:
The application-entity-quali fier
from side information referenced
by sym_dest_name. If a blank
sym_dest_name was specified,
AE_qualifier is the null string.

For an OSI TP CRM, the initiating
AE_qualifier received on the
conversation startup request. For
an LU 6.2 CRM, the null string.

AE_qualifier

The length of AE_qualifier. If a
blank sym_dest_name was specified,
AE_qualifier_length is 0.

The length of AE_qualifier.AE_qualifier_length

The format of AE_qualifier. If a
blank sym_dest_name was specified,
AE_qualifier_format will not be
meaningful.

For an OSI TP CRM, the format of
AE_qualifier. For an LU 6.2 CRM,
AE_qualifier_format is not set.

AE_qualifier_format

allocate_confirm CM_ALLOCATE_NO_CONFIRM Not applicable.
The application-process-title from
side information referenced by
sym_dest_name. If a blank
sym_dest_name was specified,
AP_title is the null string.

For an OSI TP CRM, the initiating
AP_title received on the
conversation startup request. For
an LU 6.2 CRM, the null string.

AP_title

The length of AP_title. If a blank
sym_dest_name was specified,
AP_title_length is 0.

The length of AP_title.AP_title_length

The format of AP_title. If a blank
sym_dest_name was specified,
AP_title_format will not be
meaningful.

For an OSI TP CRM, the format of
AP_title. For an LU 6.2 CRM,
AP_title_format is not set.

AP_title_format

The application context name for
UDT as defined by ISO/IEC
10026-6 for OSI TP (unstructured
data transfer). This application
context name is represented as
1.0.10026.6.2. If a different
application context name is
specified in the side information
referenced by sym_dest_name, it will
be the initial value.

For an OSI TP CRM, the initiating
application_context_name received
on the conversation startup
request. For an LU 6.2 CRM, the
null string.

application_context_name

The length of
application_context_name. If a blank
sym_dest_name was specified,
application_context_name is 0.

The length of
application_context_name.

application_context_name_length

begin_transaction CM_BEGIN_IMPLICIT Not applicable.
confirmation_urgency CM_CONFIRMATION_URGENT CM_CONFIRMATION_URGENT

30 X/Open CAE Specification

Interface Overview Conversation Characteristics

Name of Characteristic Initialize_For_Incoming sets it to: Accept_Incoming sets it to:
For an OSI TP CRM, the initiating
AE_qualifier received on the
conversation startup request. For
an LU 6.2 CRM, the null string.

AE_qualifier Not set.

The length of AE_qualifier.AE_qualifier_length Not set.

For an OSI TP CRM, the format of
AE_qualifier. For an LU 6.2 CRM,
AE_qualifier_format is not set.

AE_qualifier_format Not set.

allocate_confirm Not applicable. Not applicable.
For an OSI TP CRM, the initiating
AP_title received on the
conversation startup request. For
an LU 6.2 CRM, the null string.

AP_title Not set.

The length of AP_title.AP_title_length Not set.

For an OSI TP CRM, the format of
AP_title. For an LU 6.2 CRM,
AP_title_format_ is not set.

AP_title_format Not set.

For an OSI TP CRM, the initiating
application_context_name received
on the conversation startup
request. For an LU 6.2 CRM, the
null string.

application_context_name Not set.

The length of
application_context_name.

application_context_name_length Not set.

begin_transaction Not applicable. Not applicable.
Not changed by Accept_Incoming.confirmation_urgency CM_CONFIRMATION_URGENT

Distributed Transaction Processing: CPI-C Specification, Version 2 31

Conversation Characteristics Interface Overview

Name of Characteristic Initialize_Conversation sets it to: Accept_Conversation sets it to:
The security type from side
information referenced by
sym_dest_name. If a blank
sym_dest_name was specified,
conversation_security_type is
CM_SECURITY_SAME.

conversation_security_type Not applicable.

For half-duplex conversations,
CM_RECEIVE_STATE. For full-
duplex conversations,
CM_SEND_RECEIVE_STATE.

conversation_state CM_INITIALIZE_STATE

CM_MAPPED_CONVERSATION
if the CRM type is OSI TP, or the
value received on the conversation
startup request if the CRM type is
LU 6.2.

conversation_type CM_MAPPED_CONVERSATION

deallocate_type CM_DEALLOCATE_SYNC_LEVEL CM_DEALLOCATE_SYNC_LEVEL
error_direction CM_RECEIVE_ERROR CM_RECEIVE_ERROR
fill CM_FILL_LL CM_FILL_LL

The value received on the
conversation startup request.

initialization_data Null

The length of the initialization data
received on the conversation
startup request.

initialization_data_length 0

join_transaction Not set. CM_JOIN_IMPLICIT
log_data Null Null
log_data_length 0 0

The mode name from side
information referenced by
sym_dest_name. If a blank
sym_dest_name was specified,
mode_name is the null string.

The mode name for the logical
connection on which the
conversation startup request
arrived.

mode_name

The length of mode_name. If a blank
sym_dest_name was specified,
mode_name_length is 0.

The length of mode_name.mode_name_length

The partner LU name from side
information referenced by
sym_dest_name. If a blank
sym_dest_name was specified,
partner_LU_name is a single blank.

For an LU 6.2 CRM, the partner LU
name for the logical connection on
which the conversation startup
request arrived. For an OSI TP
CRM, partner_LU_name is a single
blank.

partner_LU_name

The length of partner_LU_name. If a
blank sym_dest_name was specified,
partner_LU_name_length is 1.

The length of partner_LU_name.partner_LU_name_length

32 X/Open CAE Specification

Interface Overview Conversation Characteristics

Name of Characteristic Initialize_For_Incoming sets it to: Accept_Incoming sets it to:
conversation_security_type Not applicable. Not applicable.

For half-duplex conversations,
CM_RECEIVE_STATE. For full-
duplex conversations,
CM_SEND_RECEIVE_STATE.

conversation_state CM_INITIALIZE_INCOMING_STATE

The value received on the
conversation startup request if the
CRM type is LU 6.2. Not changed
if the CRM type is OSI TP.

conversation_type CM_MAPPED_CONVERSATION

deallocate_type CM_DEALLOCATE_SYNC_LEVEL Not changed by Accept_Incoming.
error_direction CM_RECEIVE_ERROR Not changed by Accept_Incoming.
fill CM_FILL_LL Not changed by Accept_Incoming.

The value received on the
conversation startup request.

initialization_data Null

The length of the initialization data
received on the conversation
startup request.

initialization_data_length 0

join_transaction CM_JOIN_IMPLICIT Not changed by Accept_Incoming.
log_data Null Not changed by Accept_Incoming.
log_data_length 0 Not changed by Accept_Incoming.

The mode name for the logical
connection on which the
conversation startup request
arrived.

mode_name Not set.

The length of mode_name.mode_name_length Not set.

For an LU 6.2 CRM, the partner LU
name for the logical connection on
which the conversation startup
request arrived. For an OSI TP
CRM, partner_LU_name is a single
blank.

partner_LU_name Not set.

The length of partner_LU_name.partner_LU_name_length Not set.

Distributed Transaction Processing: CPI-C Specification, Version 2 33

Conversation Characteristics Interface Overview

Name of Characteristic Initialize_Conversation sets it to: Accept_Conversation sets it to:
prepare_data_permitted CM_PREPARE_DATA_NOT_PERMITTED Not applicable.
prepare_to_receive_type CM_PREP_TO_RECEIVE_SYNC_LEVEL CM_PREP_TO_RECEIVE_SYNC_LEVEL
processing_mode CM_BLOCKING CM_BLOCKING
receive_type CM_RECEIVE_AND_WAIT CM_RECEIVE_AND_WAIT
return_control CM_WHEN_SESSION_ALLOCATED Not applicable.

The security password from side
information referenced by sym_dest_name.
If a blank sym_dest_name was specified,
security_password is the null string.

security_password Not applicable.

The length of security_password. If a blank
sym_dest_name was specified,
security_password_length will be 0.

security_password_length Not applicable.

The security user ID from side information
referenced by sym_dest_name. If a blank
sym_dest_name was specified,
security_user_ID is the null string.

The value received on the conversation
startup request.

security_user_ID

The length of security_user_ID. If a blank
sym_dest_name was specified,
security_user_ID_length is 0.

The length of security_user_ID.security_user_ID_length

CM_HALF_DUPLEX The value received in the conversation
startup request.

send_receive_mode

send_type CM_BUFFER_DATA CM_BUFFER_DATA
The value received on the conversation
startup request.

sync_level CM_NONE

The program name from side information
referenced by sym_dest_name. If a blank
sym_dest_name was specified, TP_name is a
single blank.

The value received on the conversation
startup request.

TP_name

The length of TP_name. If a blank
sym_dest_name was specified,
TP_name_length is 1.

The length of TP_name.TP_name_length

For an OSI TP CRM, the value received
on the conversation startup request. For
an LU 6.2 CRM,
CM_CHAINED_TRANSACTIONS.

transaction_control CM_CHAINED_TRANSACTIONS

34 X/Open CAE Specification

Interface Overview Conversation Characteristics

Name of Characteristic Initialize_For_Incoming sets it to: Accept_Incoming sets it to:
prepare_data_permitted Not applicable. Not applicable.
prepare_to_receive_type CM_PREP_TO_RECEIVE_SYNC_LEVEL Not changed by Accept_Incoming.
processing_mode CM_BLOCKING Not changed by Accept_Incoming.
receive_type CM_RECEIVE_AND_WAIT Not changed by Accept_Incoming.
return_control Not applicable. Not applicable.
security_password Not applicable. Not applicable.

security_password_length Not applicable. Not applicable.

The value received on the
conversation startup request.

security_user_ID Not set.

The length of security_user_ID.security_user_ID_length Not set.

The value received in the
conversation startup request.

send_receive_mode Not set.

send_type CM_BUFFER_DATA Not changed by Accept_Incoming.
The value received on the
conversation startup request.

sync_level Not set.

The value received on the
conversation startup request.

TP_name Not set.

The length of TP_name.TP_name_length Not set.

For an OSI TP CRM, the value
received on the conversation
startup request. For an LU 6.2
CRM,
CM_CHAINED_TRANSACTIONS.

transaction_control Not set.

Distributed Transaction Processing: CPI-C Specification, Version 2 35

Conversation Characteristics Interface Overview

3.8.2 Characteristic Values and CRMs

Some conversation characteristic values are meaningful only for a particular CRM type. For
example, a sync_level value of CM_NONE paired with a deallocate_type value of
CM_DEALLOCATE_CONFIRM has meaning only for an OSI TP CRM. On the other hand, an
error_direction value of CM_SEND_ERROR has meaning only for an LU 6.2 CRM. These CRM-
type-sensitive characteristic values and value pairs are listed below:

• For an OSI TP CRM:

— allocate_confirm (CM_ALLOCATE_CONFIRM)

— prepared_data_permitted (CM_PREPARE_DATA_PERMITTED)

— transaction_control (CM_UNCHAINED_TRANSACTIONS)

— sync_level (CM_NONE) paired with
deallocate_type (CM_DEALLOCATE_CONFIRM)

— sync_level (CM_SYNC_POINT) paired with
deallocate_type (CM_DEALLOCATE_CONFIRM)

— sync_level (CM_SYNC_POINT) paired with
deallocate_type (CM_DEALLOCATE_FLUSH)

— sync_level (CM_SYNC_POINT_NO_CONFIRM) paired with
deallocate_type (CM_DEALLOCATE_CONFIRM)

— sync_level (CM_SYNC_POINT_NO_CONFIRM) paired with
deallocate_type (CM_DEALLOCATE_FLUSH)

— sync_level (CM_SYNC_POINT_NO_CONFIRM) paired with
send_receive_mode (CM_HALF_DUPLEX)

• For an LU 6.2 CRM:

— error_direction (CM_SEND_ERROR).

CPI Communications considers a conversation to be using a particular CRM type if one of the
following events occurs:

• The program has successfully set a characteristic value or value pair for the conversation that
is meaningful only for that CRM type.

• The conversation has been allocated on that CRM type.

When the conversation is using a particular CRM type, the implications are:

• The program receives a CM_PROGRAM_PARAMETER_CHECK return code if it attempts to
set any characteristic value that is meaningful only for a different CRM type.

For example, suppose a program has successfully set the allocate_confirm characteristic on a
conversation to CM_ALLOCATE_CONFIRM, using the Set_Allocate_Confirm call. CPI
Communications now considers this conversation to be using an OSI TP CRM. If the
program then issues a Set_Error_Direction call on the conversation with error_direction set to
CM_SEND_ERROR, the program receives a CM_PROGRAM_PARAMETER_CHECK return
code.

Details on this type of checking are provided in the individual call descriptions in Chapter 5.

36 X/Open CAE Specification

Interface Overview Conversation Characteristics

• The conversation is only allocated on that CRM type.

If a conversation is using one CRM type and complete destination information is available
for both CRM types, the Allocate call tries to establish a logical connection using only the
destination information for the CRM type being used.

3.8.3 Characteristic Values and Send-Receive Modes

Table 3-3 lists the values of conversation characteristics that are not applicable to full-duplex
conversations. Table 3-4 lists the values of conversation characteristics that are not applicable to
half-duplex conversations.

Characteristic Name Inapplicable Values
confirmation_urgency all values

CM_DEALLOCATE_CONFIRM
(for conversations using an LU 6.2 CRM only)

deallocate_type

error_direction all values
prepare_to_receive_type all values
processing_mode all values
send_type CM_SEND_AND_CONFIRM

CM_SEND_AND_PREP_TO_RECEIVE
sync_level CM_CONFIRM

CM_SYNC_POINT

Table 3-3 Conversation Characteristic Values that Cannot be Set for Full-duplex

Characteristic Name Inapplicable Values
CM_SYNC_POINT_NO_CONFIRM
(for conversations using an LU 6.2 CRM only)

sync_level

Table 3-4 Conversation Characteristic Values that Cannot be Set for Half-duplex

On a conversation with a particular send-receive mode:

• The program receives a CM_PROGRAM_PARAMETER_CHECK if it attempts to set any
characteristic value that is not applicable to that send-receive mode.

• The Set_Send_Receive_Mode call returns with CM_PROGRAM_PARAMETER_CHECK if a
previously set deallocate_type, send_type or sync_level characteristic value is not applicable to
the send-receive mode specified on the call.

Distributed Transaction Processing: CPI-C Specification, Version 2 37

Conversation Characteristics Interface Overview

The following calls cannot be issued on full-duplex conversations and will receive a
CM_PROGRAM_PARAMETER_CHECK return code on a full-duplex conversation:

• Confirm

• Confirmed (for conversations using an LU 6.2 CRM only)

• Prepare_To_Receive

• Request_To_Send

• Test_Request_To_Send_Received

• Set_Prepare_To_Receive_Type

• Set_Error_Direction

• Set_Confirmation_Urgency

• Set_Processing_Mode.

3.8.4 Characteristic Values and Resource Recovery Interfaces

As described in Section 3.14 on page 51, CPI Communications can be used in conjunction with
different resource recovery interfaces; namely the TX (Transaction Demarcation) and the SAA
resource recovery interfaces. The conversation characteristic join_transaction is meaningful only
when used with the TX (Transaction Demarcation) interface.

3.8.5 Automatic Conversion of Characteristics

Some conversation characteristics affect only the function of the local program; the remote
program is not aware of their settings. An example of this kind of conversation characteristic is
receive_type. Other conversation characteristics, however, are transmitted to the remote program
or CRM and, thus, affect both ends of the conversation. For example, the local CRM transmits
the TP_name characteristic to the remote CRM as part of the conversation startup process.

When an LU 6.2 CRM is used, CPI Communications requires that these transmitted
characteristics be encoded as EBCDIC characters. For this reason, CPI Communications
automatically converts these characteristics to EBCDIC when they are used as parameters on
CPI Communications calls on non-EBCDIC systems. When an OSI TP CRM is used, the transfer
syntax is negotiated by the underlying support. CPI Communications automatically converts
these characteristics to the transfer syntax when they are used as parameters on CPI
Communications calls.

This means programmers can use the native encoding of the local system when specifying these
characteristics on Set_* calls. Likewise, when these characteristics are returned by Extract_*
calls, they are represented in the local system’s native encoding.

The following conversation characteristics may be automatically converted by CPI
Communications:

AE_qualifier
Specified on the Extract_AE_Qualifier and Set_AE_Qualifier calls.

AP_title
Specified on the Extract_AP_Title and Set_AP_Title calls.

application_context_name
Specified on the Extract_Application_Context_Name and Set_Application_Context_Name
calls.

38 X/Open CAE Specification

Interface Overview Conversation Characteristics

initialization_data
Specified on the Extract_Initialization_Data and Set_Initialization_Data calls.

log_data
Specified on the Set_Log_Data call.

mode_name
Specified on the Extract_Mode_Name and Set_Mode_Name calls.

partner_LU_name
Specified on the Extract_Partner_LU_Name and Set_Partner_LU_Name calls.

security_password
Specified on the Set_Conversation_Security_Password call.

security_user_ID
Specified on the Extract_Security_User_ID and Set_Conversation_Security_User_ID calls.

TP_name
Specified on the Set_TP_Name and Extract_TP_Name calls.

Distributed Transaction Processing: CPI-C Specification, Version 2 39

Concurrent Operations Interface Overview

3.9 Concurrent Operations
CPI Communications provides for concurrent call operations (multiple call operations in
progress simultaneously) on a conversation by grouping calls in logical associations or
conversation queues. Calls associated with one queue are processed independently of calls
associated with other queues or with no queue. Table 3-5 shows the different conversation
queues and calls associated with them.

The send-receive mode of the conversation determines what queues are available for the
conversation. Table 3-5 shows the send-receive modes for which the conversation queues are
available.

A program may initiate concurrent operations by using multiple program threads on systems
with multi-threading support. (See Section 3.9.1.) Alternatively, a program may use queue-level
non-blocking support to regain control when a call operation on a queue cannot complete
immediately. The call operation remains in progress. The program may issue a call associated
with another queue or perform other processing. Queue-level non-blocking is described in
Section 3.10.2 on page 44.

Only one call operation is allowed to be in progress on a given conversation queue at a time. If a
program issues a call associated with a queue that has a previous call operation still in progress,
the later call returns with the CM_OPERATION_NOT_ACCEPTED return code.

3.9.1 Use of Multiple Program Threads

While CPI Communications itself does not provide multi-threading support, some
implementations are designed to work with multi-threading support in the base operating
system and to allow multi-threaded programs to use CPI Communications. On such a system, a
program may create separate threads to initiate concurrent operations on a conversation. For
example, a program may create separate threads to handle the send and receive operations on a
full-duplex conversation, where the Send-Data and Receive calls are associated with the Send
and Receive queues, respectively. Each thread’s operations proceed independently; in
particular, the sending thread may continue to send data to the partner program while the
receiving thread is waiting for a Receive call to complete.

It is the responsibility of the program to ensure that action taken by one thread does not interfere
with action taken by another thread. For example, unexpected results may occur if two threads
issue calls associated with the same queue, or if one thread modifies the value of a conversation
characteristic that affects the processing of a call issued by another thread.

Table 3-5 Conversation Queues: Associated Calls and Send-Receive Modes

Conversation Queue CPI Communications Calls Send-Receive Mode
Accept_Incoming
Allocate
Set_AE_Qualifier
Set_Allocate_Confirm
Set_AP_Title
Set_Application_Context_Name
Set_Conversation_Security_P assword
Set_Conversation_Security_Type
Set_Conversation_Security_User_ID
Set_Conversation_Type
Set_Initialization_Data

Half-duplex and full-duplexInitialization

40 X/Open CAE Specification

Interface Overview Concurrent Operations

Conversation Queue CPI Communications Calls Send-Receive Mode
Set_Join_Transaction
Set_Mode_Name
Set_Partner_LU_Name
Set_Return_Control
Set_Send_Receive_Mode
Set_Sync_Level
Set_Transaction_Control
Set_TP_Name

Confirmed
Deallocate
Deferred_Deallocate
Flush
Include_Partner_In_Transaction
Prepare
Send_Data
Send_Error
Set_Deallocate_Type
Set_Log_Data
Set_Prepare_Data_Permitted
Set_Send_Type

Send Full-duplex

Receive
Set_Fill
Set_Receive_Type

Receive Full-duplex

Confirm
Confirmed
Deallocate
Deferred_Deallocate
Flush
Include_Partner_In_Transaction
Prepare
Prepare_To_Receive
Receive
Send_Data
Send_Error
Set_Confirmation_Urgency
Set_Deallocate_Type
Set_Error_Direction
Set_Fill
Set_Log_Data
Set_Prepare_Data_Permitted
Set_Prepare_To_Receive_Type
Set_Receive_Type
Set_Send_Type

Send-Receive Half-duplex

Request_To_Send
(Half-duplex only)
Send_Expedited_Data

Half-duplex and full-duplexExpedited-Send

Receive_Expedited_Data Half-duplex and full-duplexExpedited-Receive

Determined by the queue
named on the call

Set_Queue_Callback_Function
Set_Queue_Processing_Mode

Half-duplex and full-duplex

Distributed Transaction Processing: CPI-C Specification, Version 2 41

Concurrent Operations Interface Overview

Note: The following calls are not associated with any queue.

Accept_Conversation
Cancel_Conversation
Convert_Incoming
Convert_Outgoing
Extract_*
Initialize_Conversation
Initialize_For_Incoming
Release_Local_TP_Name
Set_Begin_Transaction
Set_Join_Transaction
Set_Processing_Mode
Specify_Local_TP_Name
Test_Request_To_Send_Received
Wait_For_Conversation
Wait_For_Completion.

42 X/Open CAE Specification

Interface Overview Non-blocking Operations

3.10 Non-blocking Operations
CPI Communications supports two processing modes for its calls:

Blocking
The call operation completes before control is returned to the program. If the call operation
is unable to complete immediately, it blocks, and the program is forced to wait until the call
operation finishes. While waiting, the program is unable to perform other processing or to
communicate with any of its other partners.

Non-blocking
If possible, the call operation completes immediately and control is returned to the program.
However, if while processing the call CPI Communications determines that the call
operation cannot complete immediately, control is returned to the program even though the
call operation has not completed. The call operation remains in progress, and completion of
the call operation occurs at a later time.

Note: This section describes non-blocking operations for a single-threaded program, but
similar considerations apply to a program issuing CPI Communications calls on
multiple threads. Specifically, only the thread that issues a call is blocked if the call is
processed in blocking mode and cannot complete immediately. When the program
uses non-blocking support, control is returned to the calling thread if the call operation
cannot complete immediately. That thread may then perform other processing,
including issuing calls on the same conversation.

When the non-blocking processing mode applies to a call and the call operation cannot complete
immediately, CPI Communications returns control to the program with a return code of
CM_OPERATION_INCOMPLETE. The call operation remains in progress as an outstanding
operation, and the program is allowed to perform other processing. The following calls can
return the CM_OPERATION_INCOMPLETE return code:

Accept_Incoming
Allocate
Confirm
Confirmed
Deallocate
Deferred_Deallocate
Flush
Include_Partner_In_Transaction
Prepare
Prepare_To_Receive
Receive
Receive_Expedited_Data
Request_To_Send
Send_Data
Send_Error
Send_Expedited_Data

Table 3-6 Calls Returning CM_OPERATION_INCOMPLETE

CPI Communications provides two levels of support for programs using the non-blocking
processing mode: conversation level and queue level. These are discussed in the sections below.
Until a program chooses a non-blocking level for a conversation, all calls on the conversation are
processed in blocking mode.

Distributed Transaction Processing: CPI-C Specification, Version 2 43

Non-blocking Operations Interface Overview

Note: A program may choose to use conversation-level non-blocking or queue-level non-
blocking, but not both, on a given conversation. Once set, the level of non-blocking
used on a conversation cannot be changed. Additionally, the level of non-blocking
used depends on the send_receive_mode characteristic. The program can choose to use
either level of non-blocking support on a half-duplex conversation. However, the
program can use only queue-level non-blocking on a full-duplex conversation.

3.10.1 Conversation-level Non-blocking

Conversation-level non-blocking allows only one outstanding operation on a conversation at a
time. The program chooses conversation-level non-blocking by issuing the
Set_Processing_Mode (CMSPM) call to set the processing_mode conversation characteristic. The
processing_mode characteristic indicates whether subsequent calls on the conversation are to be
processed in blocking or non-blocking mode.

If processing_mode is set to CM_NON_BLOCKING and a call receives the
CM_OPERATION_INCOMPLETE return code, the call operation becomes an outstanding
operation on the conversation. The program must issue the Wait_For_Conversation (CMWAIT)
call to determine when the outstanding operation is completed and to retrieve the return code
for that operation. CPI Communications keeps track of all conversations using conversation-
level non-blocking and having an outstanding operation, and responds to a subsequent
Wait_For_Conversation call with the conversation identifier of one of those conversations when
the operation on it completes.

With conversation-level non-blocking, only one call operation is allowed to be in progress on the
conversation at a time. Any call (except Cancel_Conversation) issued on the conversation while
the previous call operation is still in progress gets the CM_OPERATION_NOT_ACCEPTED
return code.

A conversation does not change conversation state when a call on that conversation gets the
CM_OPERATION_INCOMPLETE return code. Instead, the state transition occurs when a
subsequent Wait_For_Conversation call completes and indicates that the conversation has a
completed operation. The conversation enters the state called for by a combination of the
operation that completed, the return code for that operation (the conversation_return_code value
returned on the Wait_For_Conversation call), and the other factors that determine state
transitions.

3.10.2 Queue-level Non-blocking

In contrast to conversation-level non-blocking, queue-level non-blocking allows more than one
outstanding operation per conversation. CPI Communications allows programs using queue-
level non-blocking to have one outstanding operation per queue simultaneously.

With queue-level non-blocking, the processing mode is set on a queue basis. The program
chooses queue-level non-blocking by issuing the Set_Queue_Processing_Mode (CMSQPM) or
Set_Queue_Callback_Function (CMSQCF) call to set the queue processing mode for a specified
queue. Until the program sets the processing mode for a queue, all calls associated with that
queue are processed in blocking mode. Calls not associated with any queue are processed in
blocking mode and are always completed before control is returned to the program.

44 X/Open CAE Specification

Interface Overview Non-blocking Operations

3.10.2.1 Working with Wait Facility

When using the Set_Queue_Processing_Mode call, the program manages multiple outstanding
operations with outstanding-operation identifiers, or OOIDs. CPI Communications creates and
maintains a unique OOID for each queue. Additionally, a program may choose to associate a
user field with an outstanding operation. The user field is provided as an aid to programming,
and might be used to contain, for example, the address of a data structure with return
parameters for an outstanding operation.

When a call receives the CM_OPERATION_INCOMPLETE return code, the call operation
becomes an outstanding operation on the conversation queue with which the call is associated.
The program must issue the Wait_For_Completion call to wait for the operation to complete and
to obtain the corresponding OOID and user field.

Here is a scenario of how a program might use queue-level non-blocking on a full-duplex
conversation:

1. The program uses the Set_Queue_Processing_Mode call to set the processing mode for the
Send queue to non-blocking. It also supplies a user field that contains the address of a
parameter list for the Send_Data call and receives back an OOID from CPI
Communications that is unique to the Send queue.

2. The program next uses the Set_Queue_Processing_Mode call to set the processing mode
for the Receive queue to non-blocking. This time it supplies a user field that contains the
address of a parameter list for the Receive call. It receives back an OOID from CPI
Communications that is unique to the Receive queue.

3. The program issues a Send_Data call, which returns CM_OPERATION_INCOMPLETE,
followed by a Receive call, which also returns CM_OPERATION_INCOMPLETE. If the
program attempted to issue another call associated with either queue, it would receive a
CM_OPERATION_NOT_ACCEPTED return code because there can be only one
outstanding operation at a time per queue. Note that when a call on a conversation
receives a CM_OPERATION_INCOMPLETE return code, the conversation does not
change state.

4. The program can now issue a Wait_For_Completion call to wait for both outstanding
operations at the same time. It does this by specifying a list of OOIDs for the outstanding
operations it wants to wait on. When the Wait_For_Completion call returns, it indicates
which operations have completed (if any), along with a list of user fields. The state
transition triggered by the completed operation occurs when the Wait_For_Completion
call completes.

5. The program uses the parameter-list address in the user field to determine the results of a
given completed operation.

3.10.2.2 Using Callback Function

An alternative use of queue-level non-blocking is to establish a callback function and a user field
for the conversation queue using the Set_Queue_Callback_Function (CMSQCF) call. When an
outstanding operation completes, the program is interrupted and the callback function is called
(passing the user field and call ID as input data). See Set_Queue_Callback_Function (CMSQCF) on
page 297 for details. When the callback function returns, the program continues from where it
was interrupted.

Distributed Transaction Processing: CPI-C Specification, Version 2 45

Non-blocking Operations Interface Overview

3.10.3 Cancel Outstanding Operations

The program may use the Cancel_Conversation (CMCANC) call to end a conversation. The call
terminates all the call operations in progress on the conversation. The terminated call operations
do not return a return code.

46 X/Open CAE Specification

Interface Overview Conversation Security

3.11 Conversation Security
Many systems control access to system resources through security parameters associated with a
request for access to those resources. In particular, a CRM working in conjunction with node
services can control access to its programs and conversation resources using access security
information carried in the conversation startup request.

The conversation startup request contains one of the following forms of access security
information:

• no access security information

• the user ID of the user on whose behalf access to the remote program is requested

• the user ID and a password for the user on whose behalf access to the remote program is
requested

• authentication tokens for the user on whose behalf access to the remote program is
requested.

The access security information in the conversation startup request depends on the values of the
security conversation characteristics and comes from the following sources:

• The system administrator can provide security parameters in the side information. These are
used to establish security characteristics when the program issues the
Initialize_Conversation call.

• The program can override the values from side information and set the security
characteristics directly using the Set_Conversation_Security_Type,
Set_Conversation_Security_User_ID, and Set_Conversation_Security_Password calls.

• When the program allocates a conversation with conversation_security set to
CM_SECURITY_SAME, the security parameters for the program are used to generate the
access security information.

Note: An OSI TP CRM cannot support conversation security because conversation security is
not supported by existing OSI TP standards.

When a program is started as a result of an incoming conversation startup request or when an
already started program accepts an incoming conversation, node services uses the access
security information to validate the user’s access to the program

The program that accepts an incoming conversation may examine the security_user_ID for that
conversation by issuing the Extract_Security_User_ID call.

Distributed Transaction Processing: CPI-C Specification, Version 2 47

Data Conversion Interface Overview

3.12 Data Conversion
Program-to-program communication typically involves a variety of computer systems and
languages. Because each system or language has its own way of representing equivalent data,
data conversion support is needed for the application program to overcome the differences in
data representations from different environments.

With the Convert_Incoming and Convert_Outgoing calls, CPI Communications provides data
conversion for character data in the user buffer. These calls may be used to write a program that
is independent of the encoding of the partner program:

• Before issuing a Send_Data call, the program may issue the Convert_Outgoing call to convert
the application data in the local encoding to the corresponding EBCDIC hexadecimal codes.

• After receiving data from a Receive call, the program may issue the Convert_Incoming call to
convert the EBCDIC hexadecimal codes to the corresponding local representation of the data.

These two calls provide limited data conversion support for character data that belongs to
character set 00640, as specified in Appendix A. See the APPLICATION USAGE sections of
Convert_Incoming (CMCNVI) on page 143 and Convert_Outgoing (CMCNVO) on page 145.

48 X/Open CAE Specification

Interface Overview Program Flow: States and Transitions

3.13 Program Flow: States and Transitions
As implied throughout the discussion so far, a program written to make use of CPI
Communications is written with the remote program in mind. The local program issues a CPI
Communications call for a particular conversation with the knowledge that, in response, the
remote program will issue another CPI Communications call (or its equivalent) for that same
conversation. To explain this two-sided programming scenario, CPI Communications uses the
concept of a conversation state. The state that a conversation is in determines what the next set
of actions may be. When a conversation leaves a state, it makes a transition from that state to
another.

A CPI Communications conversation can be in one of the following states:

Reset There is no conversation for this conversation_ID.

Initialize Initialize_Conversation has completed successfully and a conversation_ID
has been assigned for this conversation.

Send The program is able to send data on this conversation. This state is
applicable only for half-duplex conversations.

Receive The program is able to receive data on this conversation. This state is
applicable only for half-duplex conversations.

Send-Pending The program has received both data and send control on the same
Receive call. See Section 4.3.6 on page 80 for a discussion of the Send-
Pending state. This state is applicable only for half-duplex conversations.

Confirm A confirmation request has been received on this conversation; that is, the
remote program issued either a Confirm call or a Send_Data call with
Send_Type set to CM_SEND_AND_CONFIRM, and is waiting for the local
program to issue Confirmed. After responding with Confirmed, the local
program’s end of the conversation enters Receive state. This state is
applicable only for half-duplex conversations.

Confirm-Send A confirmation request and send control have both been received on this
conversation; that is, the remote program issued a Prepare_To_Receive
call with the prepare_to_receive_type set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL and either the sync_level is
CM_CONFIRM, or the sync_level is CM_SYNC_POINT and the
conversation is not currently included in a transaction. After responding
with Confirmed, the local program’s end of the conversation enters Send
state. This state is applicable only for half-duplex conversations.

Confirm-Deallocate A confirmation request and deallocation notification have both been
received on this conversation. For a half-duplex conversation, the remote
program issued a Deallocate call in one of the following situations:

— deallocate_type is set to CM_DEALLOCATE_CONFIRM.

— deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and
sync_level is set to CM_CONFIRM.

— deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL, sync_level
is set to CM_SYNC_POINT, and the conversation is not currently
included in a transaction.

For a full-duplex conversation, the remote program issued a Deallocate
call with the deallocate_type set to CM_DEALLOCATE_CONFIRM.

Distributed Transaction Processing: CPI-C Specification, Version 2 49

Program Flow: States and Transitions Interface Overview

Initialize-Incoming Initialize_For_Incoming has completed successfully and a conversation_ID
has been assigned for this conversation. The program may accept an
incoming conversation by issuing Accept_Incoming on this conversation.

Send-Receive The program can send and receive data on this conversation. This state is
applicable only for full-duplex conversations.

Send-Only The program can only send data on this conversation. This state is
applicable only for full-duplex conversations.

Receive-Only The program can only receive data on this conversation. This state is
applicable only for full-duplex conversations.

A conversation starts out in Reset state and moves into other states, depending on the calls
made by the program for that conversation and the information received from the remote
program. The current state of a conversation determines what calls the program can or cannot
make.

Since there are two programs for each conversation (one at each end), the state of the
conversation as seen by each program may be different. The state of the conversation depends on
which end of the conversation is being discussed. Consider a half-duplex conversation where
Program A is sending data to Program C. Program A’s end of the conversation is in Send state,
but Program C’s end is in Receive state.

Note: CPI Communications keeps track of a conversation’s current state, as should the
program. If a program issues a CPI Communications call for a conversation that is not
in a valid state for the call, CPI Communications will detect this error and return a
return_code value of CM_PROGRAM_STATE_CHECK.

The following additional states are required for programs using a sync_level of
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM:

Defer-Receive (for half-duplex conversations only)
Defer-Deallocate
Prepared
Sync-Point
Sync-Point-Send (for half-duplex conversations only)
Sync-Point-Deallocate.

Section 3.14 on page 51 discusses synchronization point processing and describes these
additional states.

For a complete listing of program calls, possible states and state transitions, see Appendix C.

50 X/Open CAE Specification

Interface Overview Support for Resource Recovery Interfaces

3.14 Support for Resource Recovery Interfaces
This section describes how application programs can use CPI Communications in conjunction
with a resource recovery interface. A resource recovery interface provides access to services and
facilities that use two-phase commit protocols to coordinate changes to distributed resources.

While CPI Communications’ sync point functions can be used with other resource recovery
interfaces, this specification uses the TX (Transaction Demarcation) interface in its examples that
illustrate how CPI Communications works with resource recovery interfaces.

For information on using the TX (Transaction Demarcation) interface, see the referenced TX
(Transaction Demarcation) specification.

For information about performing synchronization point processing with the SAA resource
recovery interface, see the referenced SAA CPI Resource Recovery specification and read the
documentation for the appropriate operating environment.

Note: The following discussion is intended for programmers using CPI Communications
advanced functions. Readers not interested in a high degree of synchronization need
not read this section.

A CPI Communications conversation can be used with a resource recovery interface only if its
sync_level characteristic is set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM.
This kind of conversation is called a protected conversation. In this specification the terms
protected conversation and conversation included in a transaction are synonymous. Note that with
unchained transactions, a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM can be protected or non-protected. (See Section 3.14.5 on
page 58.)

3.14.1 Coordination with Resource Recovery Interfaces

A program communicates with a resource recovery interface by establishing synchronization
points, or sync points, in the program logic. A sync point is a reference point during transaction
processing to which resources can be restored if a failure occurs. When using the TX
(Transaction Demarcation) interface, the program must demarcate the first sync point by issuing
a tx_begin() call. When using the SAA resource recovery interface, the first sync point is
automatically set for a program when it successfully accesses its first protected resource. When
the first sync point is set, the program is placed in transaction mode. The program uses a
resource recovery interface’s commit call such as tx_commit() to establish a new sync point or a
resource recovery interface’s backout call such as tx_rollback () to return to a previous sync point.
The processing and the changes to resources that occur between one sync point and the next are
collectively referred to as a transaction or a logical unit of work.

In turn, the resource recovery interface invokes a component of the operating environment
called a transaction manager (TM) or a sync point manager. The TM coordinates the commit or
backout processing among all the protected resources involved in the sync point transaction.

CPI Communications does not provide any means to manage different transactions in one
program. Therefore server programs accepting multiple protected conversations can be realised
only on systems with multi-threading support.

Distributed Transaction Processing: CPI-C Specification, Version 2 51

Support for Resource Recovery Interfaces Interface Overview

3.14.2 Take-commit and Take-backout Notifications

When a program issues a commit or backout call, CPI Communications cooperates with the
resource recovery interface by passing synchronization information to its conversation partner.
This sync point information consists of take-commit and take-backout notifications.

When the program issues a commit call, CPI Communications returns a take-commit notification
to the partner program in the status_received parameter for a Receive call issued by the partner.
The sequence of CPI Communications calls issued before the resource recovery commit call
determines the value of the take-commit notification returned to the partner program. In
addition to requesting that the partner program establish a sync point, the take-commit
notification also contains conversation state transition information.

The following tables show the status_received values that CPI Communications uses as take-
commit notifications, the conditions under which each of the values may be received, and the
state changes resulting from their receipt.

52 X/Open CAE Specification

Interface Overview Support for Resource Recovery Interfaces

status_received Value Conditions for Receipt
The partner program issued a commit call, or a Prepare
call with the prepare_data_permitted conversation
characteristic set to
CM_PREPARE_DATA_NOT_PERMITTED, while its end
of the conversation was in Send or Send-Pending state.
The local program’s end of the conversation is in Sync-
Point state and is placed back in Receive state once the
local program issues a successful commit call.

CM_TAKE_COMMIT

The partner program issued a commit call, or a Prepare
call with the prepare_data_permitted conversation
characteristic set to
CM_PREPARE_DATA_NOT_PERMITTED, while its end
of the conversation was in Defer-Receive state. The local
program’s end of the conversation is in Sync-Point-Send
state and is placed in Send state once the local program
issues a successful commit call.

CM_TAKE_COMMIT_SEND

The partner program issued a commit call, or a Prepare
call with the prepare_data_permitted conversation
characteristic set to
CM_PREPARE_DATA_NOT_PERMITTED, either while
its end of the conversation was in Defer-Deallocate state
or after issuing a Deferred_Deallocate call. The local
program’s end of the conversation is in Sync-Point-
Deallocate state and is placed in Reset state once the
local program issues a successful commit call.

CM_TAKE_COMMIT_DEALLOCATE

The partner program issued a Prepare call with the
prepare_data_permitted conversation characteristic set to
CM_PREPARE_DATA_PERMITTED while its end of the
conversation was in Send or Send-Pending state. The
local program’s end of the conversation is in Sync-Point
state and is placed back in Receive state once the local
program issues a successful commit call.

CM_TAKE_COMMIT_DATA_OK

The partner program issued a Prepare call with the
prepare_data_permitted conversation characteristic set to
CM_PREPARE_DATA_PERMITTED while its end of the
conversation was in Defer-Receive state. The local
program’s end of the conversation is in Sync-Point-Send
state and is placed in Send state once the local program
issues a successful commit call.

CM_TAKE_COMMIT_SEND_DATA_OK

The partner program issued a Prepare call with the
prepare_data_permitted conversation characteristic set to
CM_PREPARE_DATA_PERMITTED, either while its end
of the conversation was in Defer-Deallocate state or
after issuing a Deferred_Deallocate call. The local
program’s end of the conversation is in Sync-Point-
Deallocate state and is placed in Reset state once the
local program issues a successful commit call.

CM_TAKE_COMMIT_DEALLOC_DATA_OK

Table 3-7 Possible Take-commit Notifications for Half-duplex Conversations

Distributed Transaction Processing: CPI-C Specification, Version 2 53

Support for Resource Recovery Interfaces Interface Overview

status_received Value Conditions for Receipt
The partner program issued a commit call, or the
conversation is using an LU 6.2 CRM and the partner
program issued a Prepare call, while its end of the
conversation was in Send-Receive state. The local
program’s end of the conversation is in Sync-Point state
and is placed back in Send-Receive state once the local
program issues a successful commit call.

CM_TAKE_COMMIT

The partner program issued a commit call, or the
conversation is using an LU 6.2 CRM and the partner
program issued a Prepare call, either while its end of the
conversation was in Defer-Deallocate state or after
issuing a Deferred_Deallocate call. The local program’s
end of the conversation is in Sync-Point-Deallocate state
and is placed in Reset state once the local program issues
a successful commit call.

CM_TAKE_COMMIT_DEALLOCATE

The conversation is using an OSI TP CRM, and the
partner program issued a Prepare call while its end of the
conversation was in Send-Receive state. The local
program’s end of the conversation is in Sync-Point state
and is placed back in Send-Receive state once the local
program issues a successful commit call.

CM_TAKE_COMMIT_DATA_OK

The conversation is using an OSI TP CRM, and the
partner program issued a Prepare call, either while its
end of the conversation was in Defer-Deallocate state or
after issuing a Deferred_Deallocate call. The local
program’s end of the conversation is in Sync-Point-
Deallocate state and is placed in Reset state once the
local program issues a successful commit call.

CM_TAKE_COMMIT_DEALLOC_DATA_OK

Table 3-8 Possible Take-commit Notifications for Full-duplex Conversations

54 X/Open CAE Specification

Interface Overview Support for Resource Recovery Interfaces

When the program issues a backout call, or when a system failure or a problem with a protected
resource causes the TM to initiate a backout operation, CPI Communications returns a take-
backout notification to the partner program. CPI Communications returns this notification as one
of the following values in the return_code parameter:

CM_TAKE_BACKOUT
CM_DEALLOCATED_ABEND_BO
CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)
CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)
CM_RESOURCE_FAIL_NO_RETRY_BO
CM_RESOURCE_FAILURE_RETRY_BO
CM_DEALLOCATED_NORMAL_BO.

CPI Communications can return a take-backout notification on any of the following calls issued
by the partner program:

Confirm
Deallocate(S)3

Extract_Conversation_State
Flush
Prepare
Prepare_To_Receive
Receive
Send_Data
Send_Error.

3.14.3 The Backout-Required Condition

Upon receipt of a take-backout notification on a protected conversation, the program is placed in
the Backout-Required condition. This condition is not a conversation state, because it applies to
all of the program’s protected resources, possibly including multiple conversations.

A program may be placed in the Backout-Required condition in one of the following ways:

• when CPI Communications returns a take-backout notification

• when the program issues a Cancel_Conversation call or a Deallocate call with deallocate_type
set to CM_DEALLOCATE_ABEND, or when it issues a Send_Data call with send_type set to
CM_SEND_AND_DEALLOCATE and deallocate_type set to CM_DEALLOCATE_ABEND.
When one of these calls is successfully issued on a protected conversation, CPI
Communications places the program in the Backout-Required condition.

When a program is placed in the Backout-Required condition, the program should issue a
resource recovery backout call. Until it has issued a backout call, the program is unable to
successfully issue any of the following CPI Communications calls for any of its protected
conversations. If the program issues any of these calls, the CM_PROGRAM_STATE_CHECK
return code is returned:

3. Deallocate(S) refers to a Deallocate call issued with the deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL and the
sync_level set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM.

Distributed Transaction Processing: CPI-C Specification, Version 2 55

Support for Resource Recovery Interfaces Interface Overview

Allocate
Confirm
Confirmed
Deallocate (unless deallocate_type is set to CM_DEALLOCATE_ABEND)
Flush
Prepare
Prepare_To_Receive
Receive
Request_To_Send
Send_Data
Send_Error
Test_Request_To_Send_Received.

Until it has issued a backout call, the program is also unable to successfully issue any of the
following CPI Communications calls for any of its non-protected conversations with
transaction_control set to CM_UNCHAINED_TRANSACTIONS and begin_transaction set to
CM_BEGIN_IMPLICIT (see Section 3.14.5 on page 58 and Section 3.14.6 on page 59). If the
program issues any of these calls, the CM_PROGRAM_STATE_CHECK return code is returned:

Allocate
Confirm
Prepare
Prepare_To_Receive
Receive
Send_Data
Send_Error.

56 X/Open CAE Specification

Interface Overview Support for Resource Recovery Interfaces

3.14.4 Responses to Take-commit and Take-backout Notifications

A program usually issues a commit or backout call in response to a take-commit notification,
and a backout call in response to a take-backout notification. In some cases, however, the
program may respond to one of these notifications with a CPI Communications call instead of a
commit or backout call. Table 3-9 shows the calls a program can use to respond to take-commit
and take-backout notifications, the result of issuing each call, and any further action required by
the program.

Table 3-9 Responses to Take-commit and Take-backout Notifications

Notification Possible Reason for Result of Response Further Action
Received Response Response Response Required

The program agrees
that it can commit
(or has committed)
all protected
resources.

The commit request
is spread to other
programs in the
transaction.

Take-commit† Commit None.

The program
disagrees with the
commit request.

A backout request is
spread to other
programs in the
transaction,
including the
program that issued
the original commit
call.

Backout None.

Deallocate
(Abend)‡

or
Cancel_Conversation

The program has
detected an error
condition that
prevents it from
continuing normal
processing.

The program is
placed in the
Backout-Required
condition.

The program should
issue a resource
recovery backout
call.

The program has
detected an error in
received data or
some other error that
may be correctable.

The TM backs out
the transaction, and
both programs are
informed of the
backout.

Depends on the
response from the
partner program.

Send_Error§

This is an error in
program logic.

The commit call is
treated as though it
were a backout call,
and the backout
request is spread to
other programs in
the transaction.

Take-backout Commit None.

The program agrees
to the backout
request.

The backout request
is spread to other
programs in the
transaction.

Backout None.

Deallocate
(Abend)‡

or
Cancel_Conversation

The program has
detected an error
condition that
prevents it from
continuing normal
processing.

The program is
placed in the
Backout-Required
condition.

The program should
issue a resource
recovery backout
call.

Distributed Transaction Processing: CPI-C Specification, Version 2 57

Support for Resource Recovery Interfaces Interface Overview

Notes:
† If the take-commit indicator ended in *_DATA_OK, the partner may also send data

before making any of the other possible responses.
‡ ‘‘Deallocate (Abend)’’ refers to the CPI Communications Deallocate call with a

deallocate_type of CM_DEALLOCATE_ABEND.
§ The program can respond with a Send_Error call only when using a half-duplex

conversation.

3.14.5 Chained and Unchained Transactions

When a program is using the TX (Transaction Demarcation) interface, it may choose when the
next transaction is started after the current transaction ends. Specifically, if the TX
transaction_control characteristic is set to:

• TX_CHAINED, a commit or rollback call ends the current transaction and immediately
begins the next transaction and establishes a new sync point.

• TX_UNCHAINED, a commit or rollback call ends the current transaction but does not begin
the next transaction. The program that issued the commit call to end the current transaction
must issue the tx_begin() call to the TX (Transaction Demarcation) interface to start the next
transaction and to establish a new sync point.

For a conversation using an OSI TP CRM, the program that initialises a conversation may use
the Set_Transaction_Control call to specify whether it wants to use chained or unchained
transactions for the conversation. The remote program may determine whether chained or
unchained transactions are being used for the conversation by issuing the
Extract_Transaction_Control call. A conversation using an LU 6.2 CRM must use chained
transactions.

For a conversation using chained transactions, if a commit or rollback call ends the current
transaction and immediately begins the next transaction, the conversation is automatically
included in that next transaction, so it is always a protected conversation. If the commit or
rollback call does not immediately start the next transaction, the conversation is deallocated by
the system, and the program is notified of the deallocation by a
CM_RESOURCE_FAILURE_RETRY return code.

For a conversation using unchained transactions, when a commit or rollback call ends the
current transaction, the conversation is not automatically included in the next transaction. Until
the next transaction is started and the conversation is included in that transaction, the
conversation is not a protected conversation, and any commit or rollback processing does not
apply to that conversation. When the next transaction is started and the program requests that
the partner program join the transaction, the conversation becomes protected again and
therefore is included in that transaction.

The TX transaction_control characteristic and the CPI Communications transaction_control
conversation characteristic are independent. There are four possible combinations:

• TX_CHAINED and CM_CHAINED_TRANSACTIONS

• TX_CHAINED and CM_UNCHAINED_TRANSACTIONS

• TX_UNCHAINED and CM_CHAINED_TRANSACTIONS

• TX_UNCHAINED and CM_UNCHAINED_TRANSACTIONS.

58 X/Open CAE Specification

Interface Overview Support for Resource Recovery Interfaces

3.14.6 Joining a Transaction

For a conversation using chained transactions, when the local program issues an Allocate call
after setting the sync_level to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and the
remote program issues an Accept_Conversation or Accept_Incoming call, the remote program
normally joins the transaction automatically.

For a conversation using unchained transactions, when a new transaction is started, the local
program has two ways of requesting that the partner join the transaction:

1. By making an implicit request, the local program can issue a Set_Begin_Transaction call
with a begin_transaction value of CM_BEGIN_IMPLICIT, followed by any of the following
CPI Communications calls from Initialize, Send, Send-Pending or Send-Receive states:

Allocate
Confirm
Include_Partner_In_Transaction
Prepare
Prepare_To_Receive
Receive
Send_Data
Send_Error.

In this case, when the local program issues the second CPI Communications call, the
remote program receives a status_received value of CM_JOIN_TRANSACTION and
normally joins the transaction automatically.

Note: If the local program is not in transaction when one of the above calls is made, the
begin_transaction characteristic is ignored, and the partner program is not
requested to join a transaction.

2. By making an explicit request, the local program can issue a Set_Begin_Transaction call
with a begin_transaction value of CM_BEGIN_EXPLICIT. At this point, no indication is sent
to the remote program. The remote program does not receive the
CM_JOIN_TRANSACTION value until the local program issues an
Include_Partner_In_Transaction call.

If the remote program receives a status_received value of CM_JOIN_TRANSACTION, it normally
joins automatically. When using the TX (Transaction Demarcation) interface, the program can
issue a tx_info () call to see whether it is in transaction mode or not.

When using the TX (Transaction Demarcation) interface in either a chained or an unchained
transaction, the program can choose not to join automatically. In this case the program must
issue a Set_Join_Transaction call with join_transaction set to CM_JOIN_EXPLICIT. This call
should be issued in the Initialize_Incoming state, so that it has an effect at the following
Accept_Incoming call. If a program wants to use CM_JOIN_EXPLICIT, it should extract the
transaction_control characteristic after a successful Accept_Incoming call. If the value is
CM_CHAINED_TRANSACTIONS, the program should join the transaction by issuing a
tx_begin() call. If the value is CM_UNCHAINED_TRANSACTIONS, the program is informed
with a CM_JOIN_TRANSACTION status_received value, if it is to join the transaction. In any
case, the program may first do any local work that is not for inclusion in the remote program’s
transaction before joining the transaction. Instead of issuing a tx_begin() call, the program may
also reject the request to join the transaction by issuing a Deallocate call with a deallocate_type of
CM_DEALLOCATE_ABEND or a Cancel_Conversation call.

Distributed Transaction Processing: CPI-C Specification, Version 2 59

Support for Resource Recovery Interfaces Interface Overview

3.14.7 Superior and Subordinate Programs

The concept of superior and subordinate programs applies only for conversations with sync_level
set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM that are are using an OSI TP
CRM.

The superior program is the program that initiates the conversation (using the
Initialize_Conversation call). A program that issues the Accept_Conversation or
Accept_Incoming call is a subordinate of the superior program. Figure 3-6 shows a commit tree
with seven programs participating in the transaction.

Program 1 Program 5

Program 2

Program 3

Program 4

Program 6 Program 7

Figure 3-6 Commit Tree with Program 1 as Root and Superior

In this example, Program 1 is the superior program in its conversations with Programs 2, 5, and
6, which are all its subordinates. Similarly, Program 2 is the superior in its conversations with
Programs 3 and 4, and Program 6 is the superior in its conversation with Program 7.

Only the superior program that initiated the transaction (Program 1 in this case) can issue the
initial commit call to end the transaction. However, any of the superior programs in the
transaction (in this example, Programs 1, 2, and 6) can issue the Deferred_Deallocate call to their
subordinates (but not to their superiors).

In addition, the Include_Partner_In_Transaction, Prepare, Set_Begin_Transaction, and
Set_Prepare_Data_Permitted calls may be issued only by the superior program. These calls
return a CM_PROGRAM_PARAMETER_CHECK return code when they are issued by the
subordinate. The Set_Join_Transaction call may be issued only by the subordinate program.
This call returns a CM_PROGRAM_PARAMETER_CHECK return code when it is issued by the
superior.

60 X/Open CAE Specification

Interface Overview Support for Resource Recovery Interfaces

3.14.8 Additional CPI Communications States

In addition to the conversation states described in Section 3.13 on page 49, the following states
are required when a program uses a protected CPI Communications conversation:

Defer-Receive The local program’s end of the conversation enters Receive state after a
synchronization call completes successfully. The synchronization call
may be a resource recovery commit call or a CPI Communications Flush
or Confirm call.

A conversation enters Defer-Receive state when the local program issues
a Prepare_To_Receive call with prepare_to_receive_type set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, or when it
issues a Send_Data call with send_type set to
CM_SEND_AND_PREP_TO_RECEIVE, prepare_to_receive_type set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL, and sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM.

Defer-Receive state is applicable for half-duplex conversations only.

Defer-Deallocate The local program has requested that the conversation be deallocated
after a commit operation has completed; that is, the conversation is
included in a transaction, and the program has issued a Deallocate call
with deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL and
sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, or it has issued a Send_Data call
with send_type set to CM_SEND_AND_DEALLOCATE, deallocate_type set
to CM_DEALLOCATE_SYNC_LEVEL, and sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM. The
conversation is not deallocated until a successful commit operation takes
place.

Prepared The local program has issued a Prepare call to request that the remote
program prepare its resources for commitment.

Sync-Point The local program issued a Receive call and was given a return_code of
CM_OK and a status_received of CM_TAKE_COMMIT or
CM_TAKE_COMMIT_DATA_OK. After a successful commit operation, a
half-duplex conversation returns to Receive state, while a full-duplex
conversation returns to Send-Receive state.

Sync-Point-Send The local program issued a Receive call and was given a return_code of
CM_OK and a status_received of CM_TAKE_COMMIT_SEND or
CM_TAKE_COMMIT_SEND_DATA_OK. After a successful commit
operation, the conversation is placed in Send state.

Sync-Point-Send state is applicable for half-duplex conversations only.

Sync-Point-Deallocate
The local program issued a Receive call and was given a return_code of
CM_OK and a status_received of CM_TAKE_COMMIT_DEALLOCATE or
CM_TAKE_COMMIT_DEALLOC_DATA_OK. After a successful commit
operation, the conversation is deallocated and placed in Reset state.

Distributed Transaction Processing: CPI-C Specification, Version 2 61

Support for Resource Recovery Interfaces Interface Overview

3.14.9 Valid States for Resource Recovery Calls

A program must ensure that there are no outstanding operations on its protected conversations
before issuing a resource recovery call. If a resource recovery call is issued while there is an
outstanding operation on a protected conversation, the program receives from the resource
recovery interface a return code indicating an error. All protected conversations must be in one
of the following states for the program to issue a commit call:

Reset Defer-Deallocate
Initialize Prepared
Initialize-Incoming Send-Receive
Send Sync-Point
Send-Pending Sync-Point-Send
Defer-Receive Sync-Point-Deallocate.

If a commit call is issued from any other conversation state, the program receives from the
resource recovery interface a return code indicating an error. The program can also receive an
error return code if the conversation was in Send or Send-Receive state when the commit call
was issued, and the program had started but had not finished sending a basic conversation
logical record.

A backout call can be issued in any state.

3.14.10 TX Extensions for CPI Communications

If the subordinate program uses the TX (Transaction Demarcation) interface and the
join_transaction characteristic has the value CM_JOIN_IMPLICIT, the state table in Chapter 7 of
the referenced TX (Transaction Demarcation) specification changes in the following way:

• An incoming conversation request causes an implicit tx_set_transaction-control () call in the
following way:

— If the incoming conversation request sets the CPI-C transaction_control characteristic to
CM_CHAINED_TRANSACTIONS, the TX transaction_control characteristic changes to
TX_CHAINED.

— If the incoming conversation request sets the CPI-C transaction_control characteristic to
CM_UNCHAINED_TRANSACTIONS, the TX transaction_control characteristic changes
to TX_UNCHAINED.

• An incoming conversation request which sets the CPI-C transaction_control characteristic to
CM_CHAINED_TRANSACTIONS causes an implicit tx_begin() call. This causes implicit TX
state changes.

• A status_received value of CM_JOIN_TRANSACTION causes an implicit tx_begin() call. This
causes implicit TX state changes.

The program can use the tx_info () call to determine whether it is in transaction mode and to
determine the value of the TX transaction_control characteristic.

62 X/Open CAE Specification

Chapter 4

Program-to-Program Communication Tutorial

This chapter provides example flows of how two programs using CPI Communications can
exchange information and data in a controlled manner.

The examples are divided into two sections:

• starter-set flows; see Section 4.2 on page 64

• advanced-function flows; see Section 4.3 on page 70.

In addition to these sample flows, a simple COBOL application using CPI Communications calls
is provided in Appendix F.

4.1 Interpreting the Flow Diagrams
In the flow diagrams shown in this chapter (for example, Figure 4-1 on page 67), vertical dotted
lines indicate the components involved in the exchange of information between systems. The
horizontal arrows indicate the direction of the flow for that step. The numbers lined up on the
left side of the flow are reference points to the flow and indicate the progression of the calls
made on the conversation. These same numbers correspond to the numbers under the Step
heading of the text description for each example.

The call parameter lists shown in the flows are not complete; only the parameters of particular
interest to the flows being discussed are shown. A complete description of each CPI
Communications call and the required parameters can be found in Chapter 5.

A complete discussion of all possible timing scenarios is beyond the scope of the chapter. Where
appropriate, such discussion is provided in the individual call descriptions in Chapter 5.

Distributed Transaction Processing: CPI-C Specification, Version 2 63

Starter-set Flows Program-to-Program Communication Tutorial

4.2 Starter-set Flows
This section provides examples of programs using the CPI Communications starter-set calls:

• Section 4.2.1 on page 65 demonstrates a flow of data in only one direction (only the initiating
program sends data).

• Section 4.2.2 on page 68 describes a bidirectional flow of data (the initiating program sends
data and then allows the partner program to send data).

64 X/Open CAE Specification

Program-to-Program Communication Tutorial Starter-set Flows

4.2.1 Data Flow in One Direction

Figure 4-1 on page 67 shows an example of a conversation where the flow of data is in only one
direction.

The steps shown in Figure 4-1 on page 67 are:

Step Description
To communicate with its partner program, Program A must first establish a conversation.
Program A uses the Initialize_Conversation call to tell CPI Communications that it wants to:

• initialize a conversation

• identify the conversation partner (using sym_dest_name)

• ask CPI Communications to establish the identifier that the program will use when
referring to the conversation (the conversation_ID).

Upon successful completion of the Initialize_Conversation call, CPI Communications assigns
a conversation_ID and returns it to Program A. The program must store the conversation_ID
and use it on all subsequent calls intended for that conversation.

1

No errors were found on the Initialize_Conversation call, and the return_code is set to
CM_OK.

Two major tasks are now accomplished:

• CPI Communications has established a set of conversation characteristics for the
conversation, based on the sym_dest_name, and uniquely associated them with the
conversation_ID.

• The default values for the conversation characteristics, as listed in Initialize_Conversation
(CMINIT) on page 195, have been assigned. (For example, the conversation now has
conversation_type set to CM_MAPPED_CONVERSATION.)

2

Program A asks that a conversation be started with an Allocate call (see Allocate (CMALLC)
on page 130) using the conversation_ID previously assigned by the Initialize_Conversation
call.

3

If a logical connection between the systems is not already available, one is activated.
Program A and Program C can now have a conversation.

4

A return_code of CM_OK indicates that the Allocate call was successful and the system has
allocated the necessary resources to the program for its conversation. Program A’s
conversation is now in Send state and Program A can begin to send data.

Note: In this example, the error conditions that can arise (such as no logical connections
available) are not discussed. See Allocate (CMALLC) on page 130 for more
information about the error conditions that can result.

5

Program A sends data with the Send_Data call (described in Send_Data (CMSEND) on page
230) and receives a return_code of CM_OK. Until now, the conversation may not have been
established because the conversation startup request may not be sent until the first flow of
data. In fact, any number of Send_Data calls can be issued before CPI Communications
actually has a full buffer, which causes it to send the startup request and data. Step 6 shows a
case where the amount of data sent by the first Send_Data is greater than the size of the local
system’s send buffer (a system-dependent property), which is one of the conditions that
triggers the sending of data. The request for a conversation is sent at this time.

6 and 7

Distributed Transaction Processing: CPI-C Specification, Version 2 65

Starter-set Flows Program-to-Program Communication Tutorial

Step Description

Notes:

1. Some implementations may choose to transmit the conversation startup
request as part of the Allocate processing.

2. The local program can ensure that the remote program is connected as soon as
possible by issuing Flush (CMFLUS) immediately after Allocate (CMALLC).

For a complete discussion of transmission conditions and how to ensure the immediate
establishment of a conversation and transmission of data, see Section 4.3.1 on page 71.

Once the conversation is established, the remote program’s system takes care of starting
Program C. The conversation on Program C’s side is in Reset state and Program C issues a
call to Accept_Conversation, which places the conversation into Receive state. The
Accept_Conversation call is similar to the Initialize_Conversation call in that it equates a
conversation_ID with a set of conversation characteristics (see Accept_Conversation (CMACCP)
on page 125 for details). Program C, like Program A in Step 2, receives a unique
conversation_ID that it uses in all future CPI Communications calls for that particular
conversation. As discussed in Section 3.8 on page 29, some of Program C’s defaults are based
on information contained in the conversation startup request.

8 and 9

Once its end of the conversation is in Receive state, Program C begins whatever processing
role it and Program A have agreed upon. In this case, Program C accepts data with a Receive
call (as described in Receive (CMRCV) on page 208).

Program A could continue to make Send_Data calls (and Program C could continue to make
Receive calls), but, for the purposes of this example, assume that Program A only wanted to
send the data contained in its initial Send_Data call.

10 and 11

Program A issues a Deallocate call (see Deallocate (CMDEAL) on page 147) to send any data
buffered in the local system and release the conversation. Program C issues a final Receive,
shown here in the same step as the Deallocate, to check that it has all the received data.

12

The return_code of CM_DEALLOCATED_NORMAL tells Program C that the conversation is
deallocated. Both Program C and Program A finish normally.

Note: Only one program should issue Deallocate; in this case it was Program A. If
Program C had issued Deallocate after receiving CM_DEALLOCATED_NORMAL,
an error would have resulted.

13 and 14

66 X/Open CAE Specification

Program-to-Program Communication Tutorial Starter-set Flows

Figure 4-1 Data Flow in One Direction

System X System Y

Program

A

CPI

Communications

CPI

Communications

Program

C

1

2

3

4

5

6

7

8

9

10

11

12

13

14

conversation_ID, return_code=CM_OK

Allocate (conversation_ID)

return_code =CM_OK

Send_Data
data)

(conversation_ID,

return_code=CM_OK

Logical connection setup,
if logical connection
not already available

conversation startup request,
data

Deallocate (conversation_ID)
remainder of data,
conversation end

return_code=CM_OK

(Program A completes
normally)

(Program C completes
normally)

data,
return_code =CM_DEALLOCATED_NORMAL

Receive (conversation_ID)

data, =CM_OKreturn_code

Receive (conversation_ID)

conversation_ID, return_code=CM_OK

Accept_Conversation

(Program C is started by
node services)

Initialize_Conversation(sym_dest_name)

Distributed Transaction Processing: CPI-C Specification, Version 2 67

Starter-set Flows Program-to-Program Communication Tutorial

4.2.2 Data Flow in Both Directions

Figure 4-2 on page 69 shows a conversation in which the flow of data is in both directions. It
describes how two programs using starter-set calls can initiate a change of control over who is
sending the data.

The steps shown in Figure 4-2 on page 69 are:

Step Description
1 to 4
inclusive

Program A is sending data and Program C is receiving data.

Note: The conversation in this example is already established with the default
characteristics. Program A’s end of the conversation is in Send state, and Program
C’s is in Receive state.

After sending some amount of data (an indeterminate number of Send_Data calls), Program
A issues the Receive call while its end of the conversation is in Send state. As described in
Receive (CMRCV) on page 208, this call causes the remaining data buffered at System X to be
sent and permission to send to be given to Program C. Program A’s end of the conversation
is placed in Receive state, and Program A waits for a response from Program C.

Note: See Section 4.3.2 on page 72 for alternate methods that allow Program A to continue
processing.

Program C issues a Receive call in the same way it issued the two prior Receive calls.

5

Program C receives not only the last of the data from Program A, but also a status_received
parameter set to CM_SEND_RECEIVED. The value of CM_SEND_RECEIVED notifies
Program C that its end of the conversation is now in Send state.

6

As a result of the status_received value, Program C issues a Send_Data call. The data from this
call, on arrival at System X, is returned to Program A as a response to the Receive it issued in
Step 5.

At this point, the flow of data has been completely reversed and the two programs can
continue whatever processing their logic dictates.

To give control of the conversation back to Program A, Program C would simply follow the
same procedure that Program A executed in Step 5.

7

8 to 10
inclusive

Programs A and C continue processing. Program C sends data and Program A receives the
data.

68 X/Open CAE Specification

Program-to-Program Communication Tutorial Starter-set Flows

Figure 4-2 Data Flow in Both Directions

System X System Y

Program

A

CPI

Communications

CPI

Communications

Program

C

1

2

3

4

5

6

7

8

9

10

Programs A and C are in
conversation

Send_Data
data)

(conversation_ID,

return_code =CM_OK

Send_Data
data)

(conversation_ID,

return_code =CM_OK

(Program A waits for
data from C)

return_code=CM_OKdata,

Receive (conversation_ID)

Receive (conversation_ID)

return_code=CM_OKdata,

(further processing by both programs)

permission to send,
remainder of data, if any

data

data

data

data

Receive (conversation_ID)

return_code=CM_OKdata,

Receive (conversation_ID)

return_code=CM_OKdata,

Receive (conversation_ID)

data,
status_received=CM_SEND_RECEIVED

return_code =CM_OK

Send_Data
data)

(conversation_ID,

Send_Data
data)

(conversation_ID,

return_code =CM_OK

Distributed Transaction Processing: CPI-C Specification, Version 2 69

Advanced-function Flows Program-to-Program Communication Tutorial

4.3 Advanced-function Flows
This section provides examples of programs using the advanced-function calls:

• Section 4.3.2 on page 72 shows how to use the Prepare_To_Receive call to change the
direction of the data flow on a half-duplex conversation.

• Section 4.3.3 on page 74 shows how to use the Confirm and Confirmed calls to validate data
reception on a half-duplex conversation. The Flush call is also shown.

• Section 4.3.4 on page 76 shows how to use the Request_To_Send call to request a change in
the direction of the data flow on a half-duplex conversation.

• Section 4.3.5 on page 78 shows how to use the Send_Error call to report errors in the data
flow on a half-duplex conversation.

• Section 4.3.6 on page 80 shows how to use the Send-Pending state and the error_direction
characteristic to resolve an ambiguous error condition that can occur when a program
receives both a change-of-direction indication and data for a Receive call on a half-duplex
conversation.

• Section 4.3.7 on page 82 shows a program that uses blocking calls to accept multiple
incoming half-duplex conversations.

• Section 4.3.8 on page 84 shows a program that uses non-blocking calls to accept multiple
incoming half-duplex conversations.

• Section 4.3.9 on page 86 describes how a full-duplex conversation is established.

• Section 4.3.10 on page 88 describes how a full-duplex conversation is used to send and
receive data.

• Section 4.3.11 on page 90 describes how a full-duplex conversation can be terminated.

• Section 4.3.12 on page 92 describes how a program uses queue-level non-blocking.

• Section 4.3.13 on page 94 shows a program sending data on a protected half-duplex
conversation and using the TX (Transaction Demarcation) interface to issue a commit
instruction.

• Section 4.3.14 on page 100 shows a conversation between two programs with two chained
transactions on a half-duplex conversation.

• Section 4.3.15 on page 106 shows a conversation between two programs with unchained
transactions on a half-duplex conversation.

• Section 4.3.16 on page 112 shows a successful commit with a conversation state change on a
half-duplex conversation.

This section begins with a discussion of how a program can exercise control over when the
system actually transmits the data.

70 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

4.3.1 Data Buffering and Transmission

If a program uses the initial set of conversation characteristics, data is not automatically sent to
the remote program after a Send_Data has been issued, except when the send buffer at the local
system overflows. As shown in the starter-set flows, the startup of the conversation and
subsequent data flow can occur any time after the program call to Allocate. This is because the
system stores the data in internal buffers and groups transmissions together for efficiency.

A program can exercise explicit control over the transmission of data by using one of the
following calls to cause the buffered data’s immediate transmission:

• Confirm

• Deallocate

• Flush

• Prepare_To_Receive

• Receive (in Send state) with receive_type set to CM_RECEIVE_AND_WAIT (receive_type’s
default setting)

• Send_Error.

The use of Receive in Send state and the use of Deallocate have already been shown in Section
4.2 on page 64. The other calls are discussed in the following examples.

Distributed Transaction Processing: CPI-C Specification, Version 2 71

Advanced-function Flows Program-to-Program Communication Tutorial

4.3.2 The Sending Program Changes the Data Flow Direction

Figure 4-3 on page 73 is a variation on the function provided by the flow shown in Section 4.2.2
on page 68. When the data flow direction changes, Program A can continue processing instead
of waiting for data to arrive on this half-duplex conversation.

The steps shown in Figure 4-3 on page 73 are:

Step Description
1 to 6
inclusive

The program begins the same as Section 4.2.1 on page 65. Program A establishes the
conversation and makes the initial transmission of data.

7 to 10
inclusive

Program A makes use of an advanced-function call, Prepare_To_Receive, (described in
Prepare_To_Receive (CMPTR) on page 202), which sends an indication to Program C that
Program A is ready to receive data. This call also flushes the data buffer and places Program
A’s end of the conversation into Receive state. It does not, as did the Receive call when used
with the initial conversation characteristics in effect, force Program A to pause and wait for
data from Program C to arrive. Program A continues processing while data is sent to
Program C.

11 to 13
inclusive

Program C, started by System Y’s reception of the conversation startup request and buffered
data, makes the Accept_Conversation and Receive calls.

Program A finishes its processing and issues its own Receive call. It now waits until data is
received (Step 15).

14 to 16
inclusive

The status_received on the Receive call made by Program C, which is set to
CM_SEND_RECEIVED, tells Program C that the conversation is in Send state. Program C
can now issue the Send_Data call.

Program A receives the data.

Note: There is a way for Program A to check periodically to see if the data has arrived,
without waiting. After issuing the Prepare_To_Receive call, Program A can use the
Set_Receive_Type call to set the receive_type conversation characteristic equal to
CM_RECEIVE_IMMEDIATE. This call changes the nature of all subsequent Receive
calls issued by Program A (until a further call to Set_Receive_Type is made). If a
Receive is issued with the receive_type set to CM_RECEIVE_IMMEDIATE, the
program retains control of processing without waiting. It receives data back if data
is present, and a return_code of CM_UNSUCCESSFUL if no data has arrived.

This method of receiving data is not shown in Figure 4-3 on page 73. For further discussion
of this alternate flow, see Set_Receive_Type (CMSRT) on page 304 and Receive (CMRCV) on
page 208.

72 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

Figure 4-3 Sending Program Changes the Data Flow Direction

System X System Y

Program

A

CPI

Communications

CPI

Communications

Program

C

1

2

3

4

5

6

7

8

9

10

return_code =CM_OK

(further processing by both programs)

conversation_ID, return_code=CM_OK

return_code =CM_OK

(Program C is started by
node services)

logical connection setup,

not already available
if logical connection

Allocate (conversation_ID)

Send_Data
data)

(conversation_ID,

return_code =CM_OK

Prepare_To_Receive (conversation_ID)

Receive (conversation_ID)

Program A continues
to process while

data is sent to
Program C)

11

12

13

14

15

16

return_code=CM_OKdata, data

permission to send,

all buffered data
conversation startup request,

conversation_ID, return_code=CM_OK

Accept_Conversation

data,
status_received=CM_SEND_RECEIVED

Receive (conversation_ID)

Send_Data data)(conversation_ID,

return_code =CM_OK

Initialize_Conversation(sym_dest_name)

Distributed Transaction Processing: CPI-C Specification, Version 2 73

Advanced-function Flows Program-to-Program Communication Tutorial

4.3.3 Validation and Confirmation of Data Reception

Figure 4-4 on page 75 shows how a program can use the Confirm and Confirmed calls on a half-
duplex conversation to verify receipt of its sent data. The Flush call is also shown.

The steps shown in Figure 4-4 on page 75 are:

Step Description
As before, Program A issues the Initialize_Conversation call to initialize the conversation.1 and 2

Program A issues a new call, Set_Sync_Level, to set the sync_level characteristic to
CM_CONFIRM.

Note: Program A must set the sync_level characteristic before issuing the Allocate call (Step
5) for the value to take effect. Attempting to change the sync_level after the
conversation is allocated results in an error condition. See Set_Sync_Level (CMSSL)
on page 311 for a detailed discussion of the sync_level characteristic and the meaning
of CM_CONFIRM.

3 and 4

Program A issues the Allocate call to start the conversation.5 and 6

Program A uses the Flush call (see Flush (CMFLUS) on page 190) to make sure that the
conversation is immediately established. If data is present, the local system buffer is emptied
and the contents are sent to the remote system. Since no data is present, only the
conversation startup request is sent to establish the conversation.

At System Y, the conversation startup request is received. Program C is started and begins
processing.

7 and 8

Program A issues a Send_Data call. Program C issues an Accept_Conversation call.9 and 10

Program A issues a Confirm call to make sure that Program C has received the data and
performed any data validation that Programs A and C have agreed upon. Program A is
forced to wait for a reply.

11

Program C issues a Receive call and receives the data with status_received set to
CM_CONFIRM_RECEIVED.

12 and 13

Because status_received is set to CM_CONFIRM_RECEIVED, indicating a confirmation
request, the conversation has been placed into Confirm state. Program C must now issue a
Confirmed call. After Program C makes the Confirmed call (see Confirmed (CMCFMD) on
page 141), the conversation returns to Receive state. Meanwhile, at System X, the
confirmation reply arrives and the CM_OK return_code is sent back to Program A.

14 and 15

Program A continues with further processing.

Note: Unlike the previous examples in which a program could bypass waiting, this
example demonstrates that use of the Confirm call forces the program to wait for a
reply.

16

74 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

Figure 4-4 Validation and Confirmation of Data Reception

System X System Y

Program

A

CPI

Communications

CPI

Communications

Program

C

1

2

3

4

5

6

7

8

9

10

return_code =CM_OK

(further processing by both programs)

conversation_ID, return_code=CM_OK

(Program C is started by
node services)

logical connection setup,

not already available
if logical connection

Allocate (conversation_ID)

return_code =CM_OK

11

12

13

14

15

16

Accept_Conversation

Receive (conversation_ID)

Set_Sync_Level(CM_CONFIRM)

return_code =CM_OK

return_code =CM_OK

Program A waits for
a reply from
Program C)

Flush (conversation_ID)

Send_Data (conversation_ID, data)
return_code =CM_OK

Confirm(conversation_ID)

Send_Data (conversation_ID, data)

confirmation reply

conversation request, data

data,
status_received=CM_CONFIRM_RECEIVED

Confirmed (conversation_ID)

return_code =CM_OK

Initialize_Conversation(sym_dest_name)

conversation startup request,

conversation_ID, return_code=CM_OK

Distributed Transaction Processing: CPI-C Specification, Version 2 75

Advanced-function Flows Program-to-Program Communication Tutorial

4.3.4 The Receiving Program Changes the Data Flow Direction

Figure 4-5 on page 77 shows how a program on the receiving side of a half-duplex conversation
can request a change in the direction of data flow with the Request_To_Send call. (See
Request_To_Send (CMRTS) on page 227 for more information.) In this example, Programs A and
C have already established a conversation using the default conversation characteristics.

The steps shown in Figure 4-5 on page 77 are:

Step Description
Program A is sending data and Program C is receiving the data.1 and 2

Program C issues a Request_To_Send call in order to begin sending data. Program A is
notified of this request on the return value of the next call issued by Program A (Send_Data
in this case, Step 6).

3 and 4

Program A issues a Send_Data request, and the call returns with control_information_received
set equal to CM_REQ_TO_SEND_RECEIVED.

5 and 6

In reply to the Request_To_Send, Program A issues a Prepare_To_Receive call, which allows
Program A to continue its own processing and passes permission to send to Program C. The
call also forces the buffer at System X to be flushed. It leaves the conversation in Receive
state for Program A.

Note: Program A does not have to reply to the Request_To_Send call immediately (as it
does in this example). See Section 4.3.2 on page 72 for other possible responses.

Program C continues with normal processing by issuing a Receive call and receives Program
A’s acceptance of the Request_To_Send on the status_received parameter, which is set to
CM_SEND_RECEIVED. The conversation is now in Send state for Program C.

7 and 8

Program C can now transmit data. Because Program C has only one instance of data to
transmit, it first changes the send_type conversation characteristic by issuing Set_Send_Type.
Setting send_type to a value of CM_SEND_AND_PREP_TO_RECEIVE means that Program
C’s end of the conversation returns to Receive state after Program C issues a Send_Data call.
It also forces a flushing of the system’s data buffer.

9 and 10

Program C issues the Send_Data call and its end of the conversation is placed in Receive
state. The data and permission-to-send indication are transmitted from System Y to System
X.

Program A, meanwhile, has finished its own processing and issued a Receive call (which is
perfectly timed, in this diagram).

11

Program A receives the data requested and, because of the value of the status_received
parameter (which is set to CM_SEND_RECEIVED), knows that the conversation has been
returned to Send state.

12

The original processing flow continues: Program A issues a Send_Data call and Program C
issues a Receive call.

13 and 14

76 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

Figure 4-5 Confirmation of Data

System X System Y

Program

A

CPI

Communications

CPI

Communications

Program

C

1

2

3

4

5

6

7

8

9

10

(further processing by both programs)

return_code =CM_OK

11

12

13

14

return_code =CM_OK

Send_Data (conversation_ID, data)

return_code =CM_OK

Send_Data (conversation_ID, data)

return_code =CM_OK

Send_Data (conversation_ID, data)

data

to send
request for permission

Receive (conversation_ID)

Request_To_Send (conversation_ID)

return_code =CM_OK

data Receive (conversation_ID)

data, return_code =CM_OK

data
permission to send,

(Program A continues
local processing)

data

Prepare_To_Receive(conversation_ID)

Receive (conversation_ID) Send_Data (conversation_ID, data)

return_code =CM_OK
status_received=CM_SEND_RECEIVED
data,

return_code =CM_OK

return_code =CM_OKdata,

send_type=CM_SEND_AND_PREP_TO_RECEIVE)
Set_Send_Type (conversation_ID)

Receive (conversation_ID)

return_code =CM_OKdata,

Programs A and C are in
conversation

Receive (conversation_ID)
return_code =CM_OKdata,

status_received=CM_SEND_RECEIVED

return_code =CM_OK
control_information_received

=CM_REQUEST_TO_SEND_RECEIVED

data
permission to send,

Distributed Transaction Processing: CPI-C Specification, Version 2 77

Advanced-function Flows Program-to-Program Communication Tutorial

4.3.5 Reporting Errors

All the previous examples assumed that no errors were found in the data, and that the receiving
program was able to continue receiving data. However, in some cases the local program may
detect an error in the data or may find that it is unable to receive more data (for example, its
buffers are full) and cannot wait for the remote program to honour a request-to-send request.
Figure 4-6 on page 79 shows how to use the Send_Error call in these situations.

The programs are using a half-duplex conversation in this example.

Note: This example describes the simplest type of error reporting, an error found while
receiving data. Section 4.3.6 on page 80 describes a more complicated use of
Send_Error.

The steps shown in Figure 4-6 on page 79 are:

Step Description
Program A is sending data and Program C is receiving data. The initial characteristic values
set by Initialize_Conversation and Accept_Conversation are in effect.

1 and 2

Program C encounters an error on the received data and issues the Send_Error call. The local
system sends control information to System X indicating that the Send_Error has been issued
and purges all data contained in its buffer.

3 and 4

Meanwhile, Program A has sent more data. This data is purged because System X knows
that a Send_Error has been issued at System Y (the control information sent in Step 3). After
System X sends control information to System Y, a return_code of CM_OK is returned to
Program C and the conversation is left in Send state.

Program A learns of the error (and possibly lost data) when it receives back the return_code,
which is set to CM_PROGRAM_ERROR_PURGING. Program A’s end of the conversation is
also placed into Receive state, in a parallel action to the now-new Send state of the
conversation for Program C.

5 and 6

Program C issues a Send_Data call, and Program A receives the data using the Receive call.

Programs A and C continue processing normally.

7 and 8

78 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

Figure 4-6 Reporting Errors

System X System Y

Program

A

CPI

Communications

CPI

Communications

Program

C

1

2

3

4

5

6

7

8

(further processing by both programs)

Send_Data (conversation_ID, data)

return_code =CM_OK

return_code =CM_OK

Send_Data (conversation_ID, data)

data Receive (conversation_ID)

control information

data, return_code =CM_OK

Receive (conversation_ID)

control information

(data purged
by CRM)

return_code=
CM_PROGRAM_ERROR_PURGING error notification

return_code =CM_OKdata,

Send_Error (conversation_ID)

(data purged
by CRM)

return_code =CM_OK

Programs A and C are in
conversation

data Send_Data (conversation_ID, data)

Distributed Transaction Processing: CPI-C Specification, Version 2 79

Advanced-function Flows Program-to-Program Communication Tutorial

4.3.6 Error Direction and Send-Pending State

Figure 4-7 on page 81 shows how to use the Send-Pending state and the error_direction
characteristic to resolve an ambiguous error condition that can occur when a program receives
both a change of direction indication and data on a Receive call.

This example applies only to a half-duplex conversation using an LU 6.2 CRM.

The steps shown in Figure 4-7 on page 81 are:

Step Description
The conversation has already been established using the default conversation characteristics.
Program A is sending data in Send state and Program C is receiving data in Receive state.

1 and 2

Program A issues the Receive call to begin receiving data and its end of the conversation
enters Receive state.

3

Program C issues a Receive and is notified of the change in the conversation’s state by the
status_received parameter, which is set to CM_SEND_RECEIVED. The reception of both data
and CM_SEND_RECEIVED on the same Receive call places Program C’s end of the
conversation into Send-Pending state. Two possible error conditions can now occur:

• Program C, while processing the data just received, discovers something wrong with the
data (as was discussed in Section 4.3.5 on page 78). This is an error in the receive direction
of the data.

• Program C finishes processing the data and begins its send processing. However, it
discovers that it cannot send a reply. For example, the received data might contain a
query for a particular database. Program C successfully processes the query but finds that
the database is not available when it attempts to access that database. This is an error in
the send direction of the data.

The error_direction characteristic is used to indicate which of these two conditions has
occurred. A program sets error_direction to CM_RECEIVE_ERROR for the first case and sets
error_direction to CM_SEND_ERROR for the second.

4 and 5

In this example, Program C encounters a send error and issues Set_Error_Direction to set the
error_direction characteristic to CM_SEND_ERROR.

Note: The error_direction characteristic was not set in the previous example because
Program C did not receive send control with the data and, consequently, the
conversation did not enter Send-Pending state. The error_direction characteristic is
relevant only when the conversation is in Send-Pending state.

6 and 7

Program C issues Send_Error. Because CPI Communications knows the conversation is in
Send-Pending state, it checks the error_direction characteristic and notifies the CPI
Communications component at System X which type of error has occurred.

Program A receives the error information in the return_code. The return_code is set to
CM_PROGRAM_ERROR_NO_TRUNC because Program C set error_direction to
CM_SEND_ERROR. If error_direction had been set to CM_RECEIVE_ERROR, Program A
would have received a return_code of CM_PROGRAM_ERROR_PURGING (as in the
previous example).

8

9 to 11
inclusive

Program C notifies Program A of the exact nature of the problem and both programs
continue processing.

80 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

Figure 4-7 Error Direction and Send-Pending State

System X System Y

Program

A

CPI

Communications

CPI

Communications

Program

C

1

2

3

4

5

6

7

8

(further processing by both programs)

Send_Data (conversation_ID, data)

return_code =CM_OK

return_code =CM_OK

data Receive (conversation_ID)

data, return_code =CM_OK

return_code =CM_OKdata,

9

10

11

Receive (conversation_ID)

Receive (conversation_ID)

error notification
return_code=

CM_PROGRAM_ERROR_NO_TRUNC

Receive (conversation_ID)

return_code =CM_OK

(program processes data,
acts on request, finds

an error)

data, return_code=CM_OK,
status_received=CM_SEND_RECEIVED

Set_Error_Direction(conversation_ID,
error_direction=CM_SEND_ERROR)

Send_Error (conversation_ID)

return_code =CM_OK

data Send_Data (conversation_ID, data)

Programs A and C are in
conversation

rest of data

Distributed Transaction Processing: CPI-C Specification, Version 2 81

Advanced-function Flows Program-to-Program Communication Tutorial

4.3.7 Multiple Conversations Using Blocking Calls

Figure 4-8 on page 83 shows an example of a program that uses blocking calls to accept multiple
incoming half-duplex conversations.

The steps shown in Figure 4-8 on page 83 are:

Step Description
Program C is started as the result of a local operation and informs node services that it is
ready to accept conversation startup requests for a program named ‘‘PAYROLL’’ by issuing
the Specify_Local_TP_Name (CMSLTP) call.

1

Program C initializes the conversation on the accepting side by issuing the
Initialize_For_Incoming call. Upon successful completion of this call, the conversation is in
Initialize-Incoming state.

2

Program C accepts the incoming conversation with the Accept_Incoming call. The
conversation_ID returned on the Initialize_For_Incoming call is supplied on the
Accept_Incoming call. This call blocks until the conversation startup request arrives. The
processing_mode characteristic is initialized to the default value of CM_BLOCKING by the
Initialize_For_Incoming call.

3

Program A uses the Initialize_Conversation call to initialize conversation characteristics for
an outgoing conversation to Program C. In this example, the TP name characteristic is set to
‘‘PAYROLL’’.

4

Program A allocates the conversation, supplying the conversation_ID returned by the
Initialize_Conversation call. In this example, the conversation startup request is sent as part
of the Allocate processing.

When System Y receives the conversation startup request, the Accept_Incoming call
completes.

5

Program C is ready to accept a second conversation, and it issues the Initialize_For_Incoming
and Accept_Incoming calls. Again, the Accept_Incoming call blocks until a conversation
startup request arrives at System Y.

6 and 7

Program B on System Z initializes and allocates a conversation to ‘‘PAYROLL’’.

When System Y receives the conversation startup request, the Accept_Incoming call
completes with a return code of CM_OK.

8 and 9

82 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

Figure 4-8 Accepting Multiple Conversations Using Blocking Calls

System X System Y

Program

A

CPI

Communications

CPI

Communications

Program

C

1

2

3

4

5

6

7

8

return_code =CM_OK

conversation_ID, return_code=CM_OK

Allocate (conversation_ID)

9

conversation_ID_1, return_code =CM_OK

Specify_Local_TP_Name ("PAYROLL")

Accept_Incoming(conversation_ID_1)

Initialize_Conversation (sym_dest_name)

conversation startup request

return_code =CM_OK

Initialize_For_Incoming

Program A continues
conversation with

Program C)

Program C continues
conversation with

Program A)

Initialize_For_Incoming

conversation_ID_2, return_code =CM_OK

Accept_Incoming(conversation_ID_2)System Z

Program

B

CPI

Communications

return_code =CM_OK

conversation_ID, return_code=CM_OK

Allocate (conversation_ID)

Initialize_Conversation (sym_dest_name)

conversation startup request

return_code =CM_OK

return_code =CM_OK

Program C continues
conversation with
Programs A & B)

Program B continues
conversation with

Program C)

Distributed Transaction Processing: CPI-C Specification, Version 2 83

Advanced-function Flows Program-to-Program Communication Tutorial

4.3.8 Multiple Conversations Using Conversation-level Non-blocking Calls

Figure 4-9 on page 85 shows an example of a program that uses conversation-level non-blocking
calls to accept multiple incoming half-duplex conversations.

The steps shown in Figure 4-9 on page 85 are:

Step Description
Program C is started as the result of a local operation and informs node services that it is
ready to accept conversation startup requests for a program named ‘‘PAYROLL’’ by issuing
the Specify_Local_TP_Name call.

1

Program C prepares for an incoming conversation by issuing the Initialize_For_Incoming
call. Upon successful completion of this call, the conversation is in Initialize-Incoming state.

Note: The Initialize_For_Incoming call is required in this case since the conversation is
accepted in a non-blocking processing mode. The Accept_Conversation call cannot
be used because it is a blocking call. A conversation_ID is needed to set the
processing mode and none is available prior to issuing the Accept_Conversation
call.

2

Program C sets the processing mode for the conversation to non-blocking and issues the
Accept_Incoming call. Since no conversation is currently available,
CM_OPERATION_INCOMPLETE is returned.

3 and 4

Program C waits for an incoming conversation with the Wait_For_Conversation call.5

Program A prepares to allocate a conversation by issuing Initialize_Conversation to initialize
the conversation characteristics. In this example, the TP name characteristic is set to
‘‘PAYROLL’’.

6

Program A allocates a conversation. In this example, the conversation startup request is sent
as part of the Allocate processing.

When System Y receives the conversation startup request, the Wait_For_Conversation call
completes, returning conversation_ID_1.

7

Program C issues another Initialize_For_Incoming call to prepare to accept a second
incoming conversation.

8

The Set_Processing_Mode call is used to set the processing mode for the conversation to
non-blocking prior to issuing the Accept_Incoming call. Since there is no conversation
startup request to receive, the call completes with CM_OPERATION_INCOMPLETE.

9 and 10

Program C again issues a Wait_For_Conversation call to wait for activity on either
conversation_ID_1 or conversation_ID_2.

11

Program B on System Z initializes conversation characteristics in preparation for allocating a
conversation. In this example, the TP name characteristic is set to ‘‘PAYROLL’’.

12

Program B allocates a conversation to Program C. In this example, the conversation startup
request is sent as part of the Allocate processing. When System Y receives the conversation
startup request, the outstanding Wait_For_Conversation call completes, returning
conversation_ID_2.

13

84 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

Figure 4-9 Accepting Multiple Conversations Using Non-blocking Calls

System X System Y

Program

A

CPI

Communications

CPI

Communications

Program

C

1

2

3

4

5

6

7

12

return_code =CM_OK

Allocate (conversation_ID)

13

conversation_ID_1, return_code =CM_OK

Specify_Local_TP_Name ("PAYROLL")

Accept_Incoming (conversation_ID_1)

Initialize_Conversation (sym_dest_name)

startup request

return_code =CM_OK
Initialize_For_Incoming

Program A continues
conversation with

Program C)

System Z

Program

B

CPI

Communications

return_code =CM_OK

conversation_ID, return_code=CM_OK

Allocate (conversation_ID)

Initialize_Conversation (sym_dest_name)

return_code =CM_OK

Program B continues
conversation with

Program C)

return_code=CM_OPERATION_INCOMPLETE
Wait_For_Conversation

return_code =CM_OK

8

9

10
11

conversation

Initialize_For_Incoming

return_code =CM_OK

return_code=CM_OPERATION_INCOMPLETE
Wait_For_Conversation

Program C continues
conversation with

Program A)

conversation_ID_2, return_code =CM_OK

Accept_Incoming (conversation_ID_2)

return_code=CM_OKconversation_ID_1,
=CM_OKconversation_return_code

Program C continues
conversation with
Programs A & B)

startup request
conversation

conversation_ID_2,
Set_Processing_Mode

CM_NON_BLOCKING)

Set_Processing_Mode
conversation_ID_1,CM_NON_BLOCKING)

return_code=CM_OK,conversation_ID_2,
=CM_OKconversation_return_code

Distributed Transaction Processing: CPI-C Specification, Version 2 85

Advanced-function Flows Program-to-Program Communication Tutorial

4.3.9 Establishing a Full-duplex Conversation

Figure 4-10 on page 87 is an example of how a full-duplex conversation is set up.

The steps shown in Figure 4-10 on page 87 are:

Step Description
Program A initializes a conversation using the Initialize_Conversation call.1 and 2

The default value of the send_receive_mode characteristic is set to CM_HALF_DUPLEX. Since
the program wants to have a full-duplex conversation, it issues the Set_Send_Receive_Mode
call to set the send_receive_mode characteristic to CM_FULL_DUPLEX.

3 and 4

5 to 7
inclusive

Program A allocates the full-duplex conversation. Program A’s conversation state changes
from Initialize state to Send_Receive state, and Program A can begin to send and receive
data.

Program A sends data with the Send_Data call and receives a return_code of CM_OK. The
request for a conversation is sent at this time, and it carries the send_receive_mode.

8 and 9

The remote system starts Program C. The conversation on Program C’s side is in Reset state.
Program C accepts the conversation, and the conversation state changes to Send-Receive
state.

Some of Program C’s conversation characteristics are based on information contained in the
conversation startup request. In particular, the send_receive_mode is set to
CM_FULL_DUPLEX.

10 and 11

Program C issues Extract_Send_Receive_Mode to determine whether the conversation is
half-duplex or full-duplex; the returned send_receive_mode value indicates that it is a full-
duplex conversation.

12 and 13

Once its end of the conversation is in Send-Receive state, Program C begins whatever
processing role it and Program A have agreed upon. In this case, Program C receives data
with a Receive call.

14 and 15

86 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

Figure 4-10 Establishing a Full-duplex Conversation

System X System Y

Program

A

CPI

Communications

CPI

Communications

Program

C

1

2

3

4

5

6

7

8

9

10

return_code =CM_OK

conversation_ID, return_code=CM_OK

(Program C is started by
node services)

logical connection setup,

not already available
if logical connectionAllocate (conversation_ID)

11

12

13

14

15

Accept_Conversation

Receive (conversation_ID)

return_code =CM_OK

Send_Data (conversation_ID,
data)

return_code =CM_OK

Initialize_Conversation (sym_dest_name)

(CM_FULL_DUPLEX)
Set_Send_Receive_Mode

(Program A continues) (Program C continues)

data
conversation startup request,

return_code =CM_OKdata,

CM_FULL_DUPLEX
send_receive_mode=

conversation_ID, return_code=CM_OK

Extract_Send_Receive_Mode
(conversation_ID)

Distributed Transaction Processing: CPI-C Specification, Version 2 87

Advanced-function Flows Program-to-Program Communication Tutorial

4.3.10 Using a Full-duplex Conversation

Figure 4-11 on page 89 shows an example of how a full-duplex conversation is used to send and
receive data.

The steps shown in Figure 4-11 on page 89 are:

Step Description
Programs A and C are in a full-duplex conversation. Both Program A’s and Program C’s ends of
the conversation are in Send-Receive state. Both programs can issue a Send_Data call or a
Receive call. In this example, Program A wants to receive a response to some previous request it
sent to Program C, and so it issues the Receive call.

1

Program C issues a Send_Data call to send data to Program A. In this example, the data is sent to
Program A right away.

2

Program A receives data from program C.3

Both programs issue Send_Data calls, and the calls complete successfully.4 and 5

Both programs issue Receive calls, and the Receive calls complete successfully. The state of the
conversation at Program A and Program C continues to be Send-Receive state.

6 and 7

88 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

Figure 4-11 Using a Full-duplex Conversation

System X System Y

Program

A

CPI

Communications

CPI

Communications

Program

C

1

2

3

4

5

6

7

return_code =CM_OK

(Program C continues)

return_code =CM_OKdata,

Receive (conversation_ID)

data

return_code =CM_OKdata,

Receive (conversation_ID)

return_code =CM_OKdata,

(Program A continues)

Send_Data (conversation_ID, data)

Send_Data (conversation_ID, data)

return_code =CM_OK

Send_Data (conversation_ID, data)

return_code =CM_OK

Receive (conversation_ID)

data

data

Programs A and C are in
full-duplex conversation

Distributed Transaction Processing: CPI-C Specification, Version 2 89

Advanced-function Flows Program-to-Program Communication Tutorial

4.3.11 Terminating a Full-duplex Conversation

Figure 4-12 on page 91 shows an example of how a full-duplex conversation can be terminated.

The steps shown in Figure 4-12 on page 91 are:

Step Description
The state of the conversation at Program A and Program C is Send-Receive state. Program A
issues a Send_Data call, which completes successfully. Note that the data is not actually sent
to the partner program but is buffered.

1 and 2

Program A has finished sending all data, and issues a Deallocate call.

When the call completes successfully, the data in the CRM’s buffers is flushed to the partner
along with a deallocation notification. The conversation state at Program A’s end now makes
a transition to Receive-Only state. Program A can no longer send any data on this
conversation.

3 and 4

Program C’s end is in Send-Receive state, and Program C issues a Receive call. Program C
gets back data and a return code of CM_DEALLOCATED_NORMAL. Program C’s end of
the conversation now enters Send_Only state. Program C can no longer receive any data on
this conversation.

5 and 6

Program C issues a Send_Data call, and the data gets sent to Program A.7

Program A issues a Receive call and gets data.8 and 9

Program C’s end of the conversation is in Send-Only state, and Program C has finished
sending data. It issues a Deallocate call for the conversation_ID.

Program A issues a Receive call to receive data.

10

Program A gets a return code of CM_DEALLOCATED_NORMAL, and its end of the
conversation goes from Receive-Only state to Reset state.

Program C gets a return code of CM_OK for the Deallocate call it issued earlier. Its end of the
conversation goes from Send-Only state to Reset state.

11

90 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

Figure 4-12 Terminating a Full-duplex Conversation

System X System Y

Program

A

CPI

Communications

CPI

Communications

Program

C

1

2

3

4

5

6

7

return_code =CM_OK

return_code =CM_DEALLOCATED_NORMAL
data,

Receive (conversation_ID)

return_code =CM_OKdata,

(conversation ends)

Send_Data (conversation_ID, data)

Send_Data (conversation_ID, data)

return_code =CM_OK

return_code =CM_OK

Receive (conversation_ID)

Programs A and C are in
full-duplex conversation

return_code =CM_OK

Deallocate(conversation_ID)

8

9

10

11

Receive (conversation_ID)

return_code=CM_DEALLOCATED_NORMAL

(conversation ends)

data

Deallocate(conversation_ID)

deallocation notification
remaining data,

deallocation notification

Distributed Transaction Processing: CPI-C Specification, Version 2 91

Advanced-function Flows Program-to-Program Communication Tutorial

4.3.12 Using Queue-level Non-blocking

Figure 4-13 on page 93 shows an example of a program that uses queue-level non-blocking.

The steps shown in Figure 4-13 on page 93 are:

Step Description
In a full-duplex conversation, the state of the conversation at Program A and Program C is
Send-Receive state. Program A issues Set_Queue_Processing_Mode to set the processing mode
for its Send queue to CM_NON_BLOCKING. It also specifies a user field, uf_send, as a pointer
to the parameters on the Send_Data call. When the Set_Queue_Processing_Mode call completes
successfully, Program A receives an OOID, OOID1, that is unique to the Send queue.

1

Program A also issues Set_Queue_Processing_Mode to set the processing mode for its Receive
queue to CM_NON_BLOCKING. This time it specifies a user field, uf_rcv, as a pointer to the
parameters on the Receive call. When the Set_Queue_Processing_Mode call completes
successfully, Program A receives an OOID, OOID2, that is unique to the Receive queue.

2

Program A issues a Receive call. Because no incoming data is ready to be received, the call is
suspended and returns CM_OPERATION_INCOMPLETE.

3

Program A issues a Send_Data call, which also returns CM_OPERATION_INCOMPLETE
because of transmission buffer shortage.

4

Program C sends data to Program A, which will satisfy the outstanding Receive call.5

Program A issues Wait_For_Completion to wait for both outstanding operations. It does so by
specifying OOID1 and OOID2 in the OOID_list. To indicate that the Receive call has completed,
the Wait_For_Completion call returns an index value 2 and uf_rcv, which are associated with the
Receive call. Program A can now use the returned user field, uf_rcv, to examine the return code
of the Receive call.

6

92 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

Figure 4-13 Using Queue-level Non-blocking

System X System Y

Program

A

CPI

Communications

CPI

Communications

Program

C

1

2

3

4

5

6

Receive (conversation_ID)

Programs A and C are in
full-duplex conversation

data

OOID1, return_code =CM_OK

return_code =CM_OPERATION_INCOMPLETE

=CM_OKOOID2, return_code

return_code=CM_OPERATION_INCOMPLETE

Set_Queue_Processing_Mode
(Conversation_ID,CM_SEND_QUEUE,

CM_NON_BLOCKING, uf_send)

Set_Queue_Processing_Mode
(Conversation_ID,CM_RECEIVE_QUEUE,

CM_NON_BLOCKING, uf_rcv)

Send_Data (conversation_ID, data)

Wait_For_Completion(
[OOID1,OOID2], 2, timeout)

[2]. 1, [uf_rcv],
return_code =CM_OK

Send_Data (conversation_ID, data)

Distributed Transaction Processing: CPI-C Specification, Version 2 93

Advanced-function Flows Program-to-Program Communication Tutorial

4.3.13 Sending Program Issues a Commit

Figure 4-14 on page 95 shows a program sending data on a protected half-duplex conversation
and invoking the TX (Transaction Demarcation) interface to issue a commit instruction. A
protected conversation is one in which the sync_level has been set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM. This synchronization level tells CPI Communications that
the program will use the calls of a resource recovery interface to manage the changes made to
protected resources.

The steps shown in Figure 4-14 on page 95 are:

Step Description
Program A opens all resource managers linked with the program. These are the CPI-C
communication resource manager and possibly some resource managers of database systems.

1

The TX function tx_open () returns [TX_OK], indicating that all the resource managers have
been opened.

2

Program A issues a tx_begin () call in order to start a transaction.3

The function tx_begin () returns [TX_OK], indicating that Program A is now in transaction
mode and that all local resource managers have been included in the transaction.

4

To communicate with its partner program, Program A must first establish a conversation.5 and 6

Program A uses the Set_Sync_Level call to request that the conversation be part of the
transaction.

7 and 8

9 to 11
inclusive

Program A issues the Allocate call to start the conversation.

Program A sends data.12 and 13

Program A issues a Receive call indicating that it is now ready to receive data from Program
C.

14

The CPI-C communication resource manager sends the conversation startup request, data
and the permission to send. When using the OSI TP protocol, these are TP-BEGIN-
DIALOGUE-RI, C-BEGIN-RI, UASE-RI and TP-GRANT-CONTROL-RI. Program C is now
started by node services.

15

Program C opens all resource managers linked with the program. These are the CPI-C
communication resource manager and possibly some resource managers of database systems.
The function tx_open () must be issued before the first CPI-C call.

16

The function tx_open () returns [TX_OK], indicating that all the resource managers have been
opened.

17

94 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

Figure 4-14 Establishing a Protected Conversation and Issuing a Successful Commit

System X System Y

Program

A

Transaction

Manager

Communication

tx_open()

[TX_OK]

Resource
Manager

Program

C

Transaction

Manager

Communication
Resource
Manager

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

tx_begin()

[TX_OK]

Initialize_Conversation (sym_dest_name)

Set_Sync_Level (CM_SYNC_POINT)

Allocate
logical connection setup,
if logical connection

Send_Data (data)

= CM_OKreturn_code

= CM_OKreturn_code

= CM_OKreturn_code

= CM_OKreturn_code

Receive
conversation start up request,

data, permission to send
(Program C started by node services)

16

17

tx_open()

[TX_OK]

not already available

Distributed Transaction Processing: CPI-C Specification, Version 2 95

Advanced-function Flows Program-to-Program Communication Tutorial

Step Description
Program C issues an Accept_Conversation call. While processing this call, CPI
Communications implicitly issues a tx_begin () call and a tx_set_transaction_control () call with
control set to TX_CHAINED. After this call the program may extract some CPI-C and TX
characteristics to obtain the following information:

Extract_Sync_Level sync_level=CM_SYNC_POINT
Extract_Transaction_Control transaction_control=CM_CHAINED_TRANSACTIONS
tx_info() return code = 1 (caller is in transaction mode)

transaction_control=TX_CHAINED

18 and 19

Program C receives the data sent by Program A. With the same call (or in the next Receive
call) CPI-C indicates that Program C is now in Send state. Program C may now issue any
database calls to the local database.

20 and 21

Program C sends data.22 and 23

Program C issues a Receive call to flush the send buffer and wait for the take-commit
notification.

24

The CPI-C communication resource manager sends the data and the permission to send.
When using the OSI TP protocol, these are TP-BEGIN-DIALOGUE-RC, C-BEGIN-RC,
UASE-RI and TP-GRANT-CONTROL-RI.

25

Because of incoming data, Program A’s Receive call executes successfully and it receives the
data sent by Program C. With the same call (or in the next Receive call), CPI-C indicates that
Program A is now in Send state. Program A may now issue any database calls to update the
local database.

26

Program A issues a Deallocate call to end the conversation. The deallocate_type characteristic
has its initial value set to CM_DEALLOCATE_SYNC_LEVEL. Since the sync_level
characteristic is set to CM_SYNC_POINT, Program A’s end of the conversation is now in
Defer-Deallocate state.

27 and 28

Program A issues a tx_commit () call to make all of the updates permanent and to advance all
of the protected resources to a synchronization point.

29

The transaction manager informs the CPI-C communication resource manager. The CPI-C
communication resource manager sends the Deallocate and the Prepare request. When using
the OSI TP protocol, these are TP-DEFER-RI(end-dialogue) and C-PREPARE-RI.

30

Program C’s Receive call executes successfully and it receives the take-commit notification as
a CM_TAKE_COMMIT_DEALLOCATE value in the status_received parameter of its Receive
call. Program C’s end of the conversation is now in Sync-Point-Deallocate state.

31

96 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

Figure 4-14 on page 95 continued.

System X System Y

Program

A

Transaction

Manager

Communication
Resource
Manager

Program

C

Transaction

Manager

Communication
Resource
Manager

tx_commit()

Deallocate

Send_Data (data)

= CM_OKreturn_code

Receive

data, permission to send

data,
data_received
= CM_COMPLETE_DATA_RECEIVED
status_received = CM_SEND_RECEIVED

= CM_OKreturn_code

22

23

24

25

26

27

28

29

30

31

21

data,
data_received
= CM_COMPLETE_DATA_RECEIVED
status_received = CM_SEND_RECEIVED

= CM_OKreturn_code

= CM_OKreturn_code

deallocate request,
prepare request

data_received
= CM_NO_DATA_RECEIVED

status_received

= CM_OKreturn_code
= CM_TAKE_COMMIT_DEALLOCATE

18

19

20

Accept_Conversation

= CM_OKreturn_code

Receive

Distributed Transaction Processing: CPI-C Specification, Version 2 97

Advanced-function Flows Program-to-Program Communication Tutorial

Step Description
Because the status_received value is CM_TAKE_COMMIT_DEALLOCATE, Program C knows
that it should issue a tx_commit () call to confirm the sync point. This tx_commit () call ends
the conversation. As a consequence, Program C sets the TX transaction_control characteristic
to TX_UNCHAINED. If this call is omitted, the following tx_commit () call starts a new
transaction. This transaction is only local and may only be used to co-ordinate updates on
different local databases.

32 and 33

Program C responds to the take-commit notification by issuing the tx_commit () call. The
CM_TAKE_COMMIT_DEALLOCATE value means that, if this commit is successful, Program
C’s end of the conversation is deallocated (put in Reset state).

34

35 to 37
inclusive

Two phase commit protocols are exchanged between the two transaction managers. When
using the OSI TP protocol, these are C-READY-RI, C-COMMIT-RI, C-COMMIT-RC.

Both Program A and Program C receive return codes that indicate successful completion of
the commit operation. Note that both Programs A and C may have issued any database calls
between step 4 and step 34. The return code [TX_OK] from tx_commit () indicates that all
these database updates on both systems have been successful. The conversation between
Program A and Program C is now deallocated. Both ends of the conversations are in Reset
state.

Note: If the tx_commit () is unsuccessful and responses indicating backout are received by
Programs A and C, for example the return code is [TX_ROLLBACK], the
conversation is not deallocated. The conversation states for Program A and C are
reset to their values at the time of the last sync point. Because in this example there
was no prior sync point, Program A’s end of the conversation goes to Send state,
and Program C’s end of the conversation goes to Receive state. The program can
retrieve the current conversation state by using the CPI Communications
Extract_Conversation_State call.

38 and 39

40 to 43
inclusive

Both Program A and Program C issue a tx_close() call to close all resource managers linked
with the program.

98 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

Figure 4-14 on page 95 continued.

System X System Y

Program

A

Transaction

Manager

Communication
Resource
Manager

Program

C

Transaction

Manager

Communication
Resource
Manager

[TX_OK]

two-phase commit protocols

tx_set_transaction_control()

[TX_OK]

36
37

38

39

40

41

42

43

32

33

34

35

(TX_UNCHAINED)

tx_commit()

[TX_OK]

tx_close()

[TX_OK]

tx_close()

[TX_OK]

Distributed Transaction Processing: CPI-C Specification, Version 2 99

Advanced-function Flows Program-to-Program Communication Tutorial

4.3.14 Two Chained Transactions

Figure 4-15 on page 101 shows a conversation between two programs with two chained
transactions on a half-duplex conversation. This means that there are two sync points in one
conversation; the second transaction starts immediately after the commit of the first transaction.

The steps shown in Figure 4-15 on page 101 are:

Step Description
Program A opens all resource managers linked with the program.1 and 2

Program A sets the TX transaction control characteristic to TX_CHAINED. This means that a
tx_commit () call should start a new transaction before returning to the caller. If this call is
omitted, the conversation would be deallocated by a CM_RESOURCE_FAILURE_RETRY
return code after step 29.

3 and 4

Program A issues a tx_begin () call in order to start a transaction.5 and 6

7 to 13
inclusive

To communicate with its partner program, Program A must first establish a conversation. It
uses the Set_Sync_Level call in step 9 to request that the conversation be protected. Note
that the CPI-C transaction_control characteristic has its standard value
CM_CHAINED_TRANSACTIONS.

Program A sends data. Before or after this call, Program A may issue any database calls
updating the local database.

14 and 15

Program A issues a tx_commit () call to make all of the updates permanent and to advance all
of the protected resources to a synchronization point.

16

The CPI-C communication resource manager sends the conversation start up request, the
data and the prepare request. When using the OSI TP protocol, these are TP-BEGIN-
DIALOGUE-RI, C-BEGIN-RI, UASE-RI and C-PREPARE-RI. Program C is now started by
node services.

17

Program C opens all resource managers linked with the program.18 and 19

Program C issues an Accept_Conversation call. While processing this call, CPI
Communications implicitly issues a tx_begin () call and a tx_set_transaction_control () call with
control set to TX_CHAINED.

20 and 21

100 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

Figure 4-15 Two Chained Transactions

System X System Y

Program

A

Transaction

Manager

Communication

tx_open()

[TX_OK]

Resource
Manager

Program

C

Transaction

Manager

Communication
Resource
Manager

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

tx_set_transaction_control()

[TX_OK]

Initialize_Conversation (sym_dest_name)

Set_Sync_Level (CM_SYNC_POINT)

Allocate
logical connection setup,

not already available

Send_Data (data)

= CM_OKreturn_code

= CM_OKreturn_code

= CM_OKreturn_code

= CM_OKreturn_code

tx_commit()
conversation start up request,

data, prepare request
(Program C started by node services)

16

17

18

19

20

tx_open()

[TX_OK]

Accept_Conversation

= CM_OKreturn_code

tx_begin()

[TX_OK]

(TX_CHAINED)

21

if logical connection

Distributed Transaction Processing: CPI-C Specification, Version 2 101

Advanced-function Flows Program-to-Program Communication Tutorial

Step Description
Program C receives the data sent by Program A. With the same call or in the next Receive
call) CPI-C indicates the take-commit notification in the status_received parameter. Program
C’s end of the conversation is now in Syncpoint state. Program C may now issue any
database calls updating the local database.

22 and 23

Program C responds to the take-commit notification by issuing the tx_commit () call.24

25 to 27
inclusive

Two phase commit protocols are exchanged between the two transaction managers. When
using the OSI TP protocol, these are C-READY-RI, C-COMMIT+C-BEGIN-RI and C-
COMMIT-RC.

Both Program A and Program C receive return codes that indicate successful completion of
the commit operation. Program A’s end of the conversation is now in Send state, and
Program C’s end of the conversation is now in Receive state. Because the TX
transaction_control characteristic is set to TX_CHAINED on both sides, both programs are
again in transaction mode. Because the CPI-C transaction_control characteristic is set to
CM_CHAINED_TRANSACTIONS, the conversation is automatically included in the new
transaction.

28 and 29

Program C issues a Receive call.30

Program A sends data. Before or after this call, Program A may issue any database calls
updating the local database.

31 and 32

Program A issues a Deallocate call to end the conversation.33 and 34

Program A sets the TX transaction_control characteristic to TX_UNCHAINED. This call is
needed because the following tx_commit () call must not start a new transaction. If this call is
omitted, the transaction started by the following tx_commit () call is only local and may be
used only to co-ordinate updates on different local data bases.

35 and 36

Program A issues a tx_commit () call to make all of the updates permanent and to advance all
of the protected resources to a second synchronization point.

37

The CPI-C communication resource manager sends the data, deallocate request and prepare
request.

38

Program C’s Receive call executes successfully and it receives the data sent by program A.
With the same call (or in the next Receive call), CPI-C indicates the take-commit notification
as a CM_TAKE_COMMIT_DEALLOCATE.

39

102 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

Figure 4-15 on page 101 continued.

System X System Y

Program

A

Transaction

Manager

Communication
Resource
Manager

Program

C

Transaction

Manager

Communication
Resource
Manager

tx_set_transaction_control()

Deallocate

tx_commit()

Receive

two_phase commit protocols

data,
data_received
= CM_COMPLETE_DATA_RECEIVED
status_received = CM_TAKE_COMMIT

= CM_OKreturn_code

= CM_OKreturn_code

deallocate request,
prepare request

data_received
= CM_COMPLETE_DATA_RECEIVED
status_received

= CM_OKreturn_code
= CM_TAKE_COMMIT_DEALLOCATE

23

24

25
26
27

28

29

30

31

[TX_OK]

[TX_OK]

Send_Data (data)

32

33

34

35

= CM_OKreturn_code

(TX_UNCHAINED)

36
[TX_OK]

37
tx_commit()

data,

38

39

Receive
22

Distributed Transaction Processing: CPI-C Specification, Version 2 103

Advanced-function Flows Program-to-Program Communication Tutorial

Step Description
Program C sets the TX transaction_control characteristic to TX_UNCHAINED. If this call is
omitted, the following tx_commit () starts a new transaction. This transaction is only local
and may be used only to co-ordinate updates on different local data bases.

40 and 41

Program C responds to the take-commit notification by issuing the tx_commit () call.42

43 to 45
inclusive

Two phase commit protocols are exchanged between the two transaction managers.

Both Program A and Program C receive the return code [TX_OK] indicating the successful
completion of the commit operation.

Note: If the tx_commit () is unsuccessful the database updates are reset to the last sync
point. This means that all the updates between steps 29 and 42 are reset.

46 and 47

48 to 51
inclusive

Both Program A and Program C issue a tx_close() call to close all resource managers linked
with the program.

104 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

Figure 4-15 on page 101 continued.

System X System Y

Program

A

Transaction

Manager

Communication
Resource
Manager

Program

C

Transaction

Manager

Communication
Resource
Manager

[TX_OK]

two-phase commit protocols

tx_set_transaction_control()

[TX_OK]

44
45

46

47

48

49

50

51

40

41

42

43

(TX_UNCHAINED)

tx_commit()

[TX_OK]

tx_close()

[TX_OK]

tx_close()

[TX_OK]

Distributed Transaction Processing: CPI-C Specification, Version 2 105

Advanced-function Flows Program-to-Program Communication Tutorial

4.3.15 Unchained Transactions

Figure 4-16 on page 107 shows a conversation between two programs with unchained
transactions on a half-duplex conversation. This means that parts of the conversation are
protected while other parts are not.

The steps shown in Figure 4-16 on page 107 are:

Step Description
Program A opens all resource managers linked with the program. The TX transaction_control
characteristic has its initial value set to TX_UNCHAINED.

1 and 2

To communicate with its partner program, Program A must first establish a conversation.3 and 4

Program A sets the sync_level characteristic to CM_SYNC_POINT_NO_CONFIRM. This
means that the programs can perform sync point processing on this conversation, but they
cannot perform confirmation processing.

5 and 6

Program A sets the CPI-C transaction_control characteristic to
CM_UNCHAINED_TRANSACTIONS.

7 and 8

9 to 11
inclusive

Program A issues an Allocate call. Because of CM_UNCHAINED_TRANSACTIONS and the
missing tx_begin (), this call does not ask the partner to join the transaction. The actual
conversation is not included in a transaction.

Program A sends data.12 and 13

Program A issues a Receive call indicating that it is now ready to receive data from Program
C.

14

The CPI-C communication resource manager sends the conversation startup request, data
and the permission to send. When using the OSI TP protocol, these are TP-BEGIN-
DIALOGUE-RI, UASE-RI and TP-GRANT-CONTROL-RI. Program C is now started by node
services.

15

Program C opens all resource managers linked with the program.16 and 17

Program C issues an Accept_Conversation call. After this call the program may extract some
CPI-C and TX characteristics to obtain the following information:

Extract_Sync_Level sync_level=CM_SYNC_POINT_NO_CONFIRM
Extract_Transaction_Control transaction_control=CM_UNCHAINED_TRANSACTIONS
tx_info() return code = 0 (caller is not in transaction mode).

18 and 19

106 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

Figure 4-16 Unchained Transactions

System X System Y

Program

A

Transaction

Manager

Communication

tx_open()

[TX_OK]

Resource
Manager

Program

C

Transaction

Manager

Communication
Resource
Manager

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Initialize_Conversation (sym_dest_name)

Set_Sync_Level (CM_SYNC_POINT_NO_CONFIRM)

Allocate
logical connection setup,
if logical connection

Send_Data (data)

= CM_OKreturn_code

= CM_OKreturn_code

= CM_OKreturn_code

= CM_OKreturn_code

Receive
conversation start up request,

data, permission to send
(Program C started by node services)

16

17

18

19

tx_open()

[TX_OK]

Accept_Conversation

= CM_OKreturn_code

not already available

= CM_OKreturn_code

Set_Transaction_Control
(CM_UNCHAINED_TRANSACTIONS)

Distributed Transaction Processing: CPI-C Specification, Version 2 107

Advanced-function Flows Program-to-Program Communication Tutorial

Step Description
Program C receives the data sent by Program A. With the same call (or in the next Receive
call), CPI-C indicates in the status_received parameter that the conversation is now in Send
state.

20 and 21

Program C sends data.22 and 23

Program C issues a Receive call.24

The CPI-C communication resource manager sends the data and the permission to send.
When using the OSI TP protocol, these are TP-BEGIN-DIALOGUE-RC, UASE-RI and TP-
GRANT-CONTROL-RI.

25

Because of incoming data Program A’s Receive call executes successfully and it receives the
data sent by Program C. With the same call (or in the next Receive call) CPI-C indicates that
the conversation is now in Send state.

26

Program A issues a tx_begin () call in order to start a transaction. Neither program should
issue any co-ordinated database updates before this call. In case of a failure between step 1
and step 21, databases may become inconsistent.

27 and 28

Program A sends data. Because of the preceding tx_begin () call and because the
begin_transaction characteristic has its initial value CM_BEGIN_IMPLICIT, this call asks
Program C to join the transaction. So the actual conversation is included in the current
transaction.

29 and 30

Program A issues a tx_commit () call to make all of the updates permanent and to advance all
of the protected resources to a synchronization point.

31

The CPI-C communication resource manager sends the begin transaction request, data and
prepare request. When using the OSI TP protocol these are C-BEGIN-RI, UASE-RI and C-
PREPARE-RI.

32

Because of the incoming begin transaction request, CPI Communications implicitly issues a
tx_begin () call to join the transaction. Program C’s Receive call executes successfully and it
receives a status_received value of CM_JOIN_TRANSACTION. A tx_info () call issued after
the Receive call would return the following values:

tx_info() return_code = 1 (caller is in transaction)
transaction_control=TX_UNCHAINED

33

Program C issues a Receive call to receive the data sent by Program A. With the same call (or
in the next Receive call), CPI-C indicates the take-commit notification in the status_received
parameter.

34 and 35

108 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

Figure 4-16 on page 107 continued.

System X System Y

Program

A

Transaction

Manager

Communication
Resource
Manager

Program

C

Transaction

Manager

Communication
Resource
Manager

tx_commit()

Send_Data

Send_Data (data)

= CM_OKreturn_code

Receive

data, permission to send

data,
data_received
= CM_COMPLETE_DATA_RECEIVED
status_received = CM_SEND_RECEIVED

= CM_OKreturn_code

22

23

24

25

26

29

30

31

32

33

21

data,
data_received
= CM_COMPLETE_DATA_RECEIVED
status_received = CM_SEND_RECEIVED

= CM_OKreturn_code

= CM_OKreturn_code

begin transaction request,
data, prepare request

data_received
= CM_COMPLETE_DATA_RECEIVED

status_received

= CM_OKreturn_code

= CM_TAKE_COMMIT

tx_begin()27

[TX_OK]
28

(data)

status_received
= CM_JOIN_TRANSACTION

Receive
34

35

20
Receive

Distributed Transaction Processing: CPI-C Specification, Version 2 109

Advanced-function Flows Program-to-Program Communication Tutorial

Step Description
Program C responds to the take-commit notification by issuing the tx_commit () call.36

37 to 39
inclusive

Two phase commit protocols are exchanged between the two transaction managers. When
using the OSI TP protocol these are C-BEGIN-RC+C-READY-RI, C-COMMIT-RI and C-
COMMIT-RC.

Both programs receive the return code [TX_OK] indicating the successful completion of the
commit operation. Program A’s end of the conversation is now in Send state, and Program
C’s end of the conversation is now in Receive state. Because the TX transaction_control
characteristic is set to TX_UNCHAINED on both sides, neither program is in transaction
mode. Because the CPI-C transaction_control characteristic is set to
CM_UNCHAINED_TRANSACTIONS, the conversation is not included in a transaction.

Note: If the tx_commit () call is unsuccessful, all the database updates between steps 21
and 36 are reset to the last sync point. Database updates before step 21 are not reset.

40 and 41

Program C issues a Receive call.42

Program A issues a Deallocate call to end the conversation. Because Program A is not in
transaction mode and the sync_level characteristic is set to
CM_SYNC_POINT_NO_CONFIRM, the conversation deallocates without a new sync point
and without confirmation. In case of sync_level CM_SYNC_POINT, it would be a deallocate
with confirmation.

43 and 44

The CPI-C communication resource manager sends the conversation end. When using the
OSI TP protocol this is a TP-END-DIALOGUE-RI.

45

Program A issues a tx_close() call.46 and 47

Program C’s Receive call executes successfully and it receives the return_code
CM_DEALLOCATED_NORMAL.

48

Program C issues a tx_close() call.49 and 50

110 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

Figure 4-16 on page 107 continued.

System X System Y

Program

A

Transaction

Manager

Communication
Resource
Manager

Program

C

Transaction

Manager

Communication
Resource
Manager

[TX_OK]

two-phase commit protocols

38
39

40

41

46

47

49

50

36

37

tx_commit()

[TX_OK]

tx_close()

[TX_OK]

tx_close()

[TX_OK]

42

43

44

45

Receive

return_code

Deallocate

= CM_OK

conversation end

48

return_code
= CM_DEALLOCATED_NORMAL

Distributed Transaction Processing: CPI-C Specification, Version 2 111

Advanced-function Flows Program-to-Program Communication Tutorial

4.3.16 Successful Commit with Conversation State Change

Figure 4-17 on page 113 shows a successful commit with a conversation state change on a half-
duplex conversation.

The steps shown in Figure 4-17 on page 113 are:

Step Description
Programs A and C are in a protected conversation with sync_level CM_SYNC_POINT.
Program C’s end of the conversation is in Receive state. It issues a Receive call.

1

Program A’s end of the conversation is in Send state. It sends data.2 and 3

Program A wants its side of the conversation to be changed from Send to Receive state after
it issues its next commit call. To do this, Program A uses the Prepare_To_Receive call. It is
assumed that the prepare_to_receive_type characteristic is on its initial value
CM_PREPARE_TO_RECEIVE_SYNC_LEVEL. After the call, Program A’s side of the
conversation is in Defer-Receive state until Program A issues a commit call.

4 and 5

Program A issues a tx_commit () call in Defer-Receive state. If the call completes
successfully, Program A’s end of the conversation is placed in Receive state.

6

The CPI-C communication resource manager sends the data, the permission to send and the
prepare request. When using the OSI TP protocol, these are UASE-RI, TP-DEFER-RI(grant-
control) and C-PREPARE-RI.

7

Because Program A was in Defer-Receive state when it issued the commit call, the CPI-C
communication resource manager returns the take-commit notification to Program C as a
CM_TAKE_COMMIT_SEND value in the status_received parameter. This value means that
Program C’s end of the conversation is now in Syncpoint-Send state. It is placed in Send
state if Program C completes a commit call successfully.

8

Program C responds to the take-commit notification with a tx_commit () call.9

10 to 12
inclusive

Two phase commit protocols are exchanged between the two transaction managers.

Both tx_commit () calls end successfully.

Note: If the tx_commit () is unsuccessful. and Programs A and C receive responses
indicating backout, for example the return code [TX_ROLLBACK], the conversation
states for Programs A and C are reset to their values at the time of the last sync
point. The program can retrieve the current conversation state by using the CPI
Communications Extract_Conversation_State call.

13 and 14

Program A’s end of the conversation is now in Receive state and it issues a Receive call.15

Program C’s end of the conversation is now in Send state and it issues a Send_Data call.16

112 X/Open CAE Specification

Program-to-Program Communication Tutorial Advanced-function Flows

Figure 4-17 Successful Commit with Conversation State Change

System X System Y

Program

A

Transaction

Manager

Communication
Resource
Manager

Program

C

Transaction

Manager

Communication
Resource
Manager

1

2

3

4

5

6

7

Send_Data (data)

Prepare_To_Receive

data,

prepare request

= CM_OKreturn_code

= CM_OKreturn_code

tx_commit()

permission to send,

Programs A and C are in a

protected conversation with

sync_level CM_SYNC_POINT
Receive

tx_commit()

two-phase commit protocols

data,
data_received

status_received
= CM_TAKE_COMMIT_SEND

= CM_OKreturn_code

[TX_OK]

= CM_COMPLETE_DATA_RECEIVED

8

9

10
11
12

13

14

15

16

[TX_OK]

Receive

Send_Data

(further processing by both programs)

Distributed Transaction Processing: CPI-C Specification, Version 2 113

Program-to-Program Communication Tutorial

114 X/Open CAE Specification

Chapter 5

Call Reference Section

This chapter describes the CPI Communications calls. For each call, this chapter provides the
function of the call and any optional setup calls, which can be issued before the call being
described. In addition, the following information is provided if it applies:

SYNOPSIS
The format used to program the call.

Note: The actual syntax used to program the calls in this chapter depends on the
programming language used. See Section 5.1 on page 116 for specifics.

DESCRIPTION
A description of the call and the parameters that are required. Parameters are identified as
input parameters (that is, set by the calling program and used as input to CPI
Communications) or output parameters (that is, set by CPI Communications before
returning control to the calling program).

STATE CHANGES
The changes in the conversation state that can result from this call. See Section 3.13 on page
49 for more information on conversation states.

APPLICATION USAGE
Additional information that applies to the call.

SEE ALSO
Where to find additional information related to the call.

Distributed Transaction Processing: CPI-C Specification, Version 2 115

Call Syntax Call Reference Section

5.1 Call Syntax
CPI Communications calls can be made from application programs written in the following
programming languages:

• C

• COBOL.

In addition to the above programming languages, other languages may support CPI
Communications calls in certain environments.

This specification uses a general call format to show the name of the CPI Communications call
and the parameters used. An example of that format is provided below:

CALL CMPROG (parm0 ,
parm1 ,
parm2 ,

.

.
parmN)

where CMPROGis the name of the call, and parm0 , parm1 , parm2 and parmN represent the
parameter list described in the individual call description.

This format would be translated into the following syntax for each of the supported languages:

C

CMPROG (parm0 , parm1 , parm2 ,... parmN)

COBOL

CALL ‘‘CMPROG’’ USING parm0 , parm1 , parm2 ,... parmN

116 X/Open CAE Specification

Call Reference Section Programming Language Considerations

5.2 Programming Language Considerations
This section describes the programming language considerations a programmer should keep in
mind when writing and running a program that uses CPI Communications. Sample pseudonym
files are provided in Appendix E for the C and COBOL programming languages. Customised
pseudonym files or datasets for supported programming languages may be available on systems
that implement CPI Communications.

Note: Some programming language processors (compilers and interpreters) may not support
the asynchronous modification of a program’s variables by another process. Use of
non-blocking operations is not possible by programs using these language processors.

5.2.1 C

The following notes apply to C programs using CPI Communications calls:

• When passing an integer value as a parameter, prefix the parameter name with an
ampersand (&) so that the value is passed by reference.

• To pass a parameter as a string literal, surround it with double quotes rather than single
quotes.

• To enable asynchronous updates of program variables, the return parameters on a non-
blocking call must be declared using the volatile qualifier as defined in ANSI C.

5.2.2 COBOL

The following notes apply to COBOL programs using CPI Communications calls:

• Because COBOL does not support the underscore character (_), the underscores in COBOL
pseudonyms are replaced with dashes (-). For example, COBOL programmers use CM-
IMMEDIATE as a pseudonym value name in their programs instead of CM_IMMEDIATE.

• Each argument in the parameter list must be called (listed) by name.

• Each variable in the parameter list must be level 01.

• Number variables must be full words (at least five but less than ten ‘‘9’’s) and they must be
COMP-5, not zoned decimal.

Distributed Transaction Processing: CPI-C Specification, Version 2 117

How to Use the Call References Call Reference Section

5.3 How to Use the Call References
Here is an example of how the information in this chapter can be used in connection with the
material in the rest of the specification. The example describes how to use the
Set_Return_Control call to set the conversation characteristic of return_control to a value of
CM_IMMEDIATE.

• Set_Return_Control (CMSRC) on page 305 contains the semantics of the variables used for the
call. It explains that the real name of the program call for Set_Return_Control is CMSRC and
that CMSRC has a parameter list of conversation_ID, return_control and return_code.

• Section 5.1 on page 116 shows the syntax for the programming language being used.

• Appendix A provides a complete description of all variables used in the specification and
shows that the return_control variable, which goes into the call as a parameter, is a 32-bit
integer. This information is provided in Table A-3 on page 341.

• Table A-1 on page 330 in Appendix A shows that CM_IMMEDIATE, which is placed into the
return_control parameter on the call to CMSRC, is defined as having an integer value of 1.

• Finally, the return_code value CM_OK, which is returned to the program on the CMSRC call,
is defined in Appendix B. CM_OK means that the call completed successfully.

118 X/Open CAE Specification

Call Reference Section Locations of Key Topics

5.4 Locations of Key Topics
Table 5-1 on page 120. provides a summary list of program calls, in pseudonym sequence.
Against each pseudonym is shown the actual call name and a brief description.

Key-topic discussions and where they occur are:

• Section 1.3 on page 3 describes the naming conventions used throughout the specification.

• Section 4.3.1 on page 71 discusses program control over data transmission.

• The APPLICATION USAGE section of Request_To_Send (CMRTS) on page 227 discusses how
a conversation enters Receive state.

• The APPLICATION USAGE section of Send_Data (CMSEND) on page 230 describes the use
of logical records and LL fields on basic conversations.

Distributed Transaction Processing: CPI-C Specification, Version 2 119

Locations of Key Topics Call Reference Section

Table 5-1 Summary List of Calls and their Descriptions

Pseudonym Call Description
Used by a program to accept an incoming
conversation.

Accept_Conversation CMACCP

Used by a program to accept an incoming
conversation previously initialized with the
Initialize_For_Incoming call.

Accept_Incoming CMACCI

Used by a program to establish a conversation.Allocate CMALLC

Used by a program to end a conversation
immediately.

Cancel_Conversation CMCANC

Used by a program to send a confirmation
request to its partner.

Confirm CMCFM

Used by a program to send a confirmation reply
to its partner.

Confirmed CMCFMD

Used by a program to change the encoding of a
character string from EBCDIC to the local
encoding used by the program.

Convert_Incoming CMCNVI

Used by a program to change the encoding of a
character string from the local encoding used by
the program to EBCDIC.

Convert_Outgoing CMCNVO

Used by a program to end a conversation.Deallocate CMDEAL

Used by a program to end a conversation
following successful completion of the current
transaction.

Deferred_Deallocate CMDFDE

Used by a program to view the current
AE_qualifier conversation characteristic.

Extract_AE_Qualifier CMEAEQ

Used by a program to view the current AP_title
conversation characteristic.

Extract_AP_Title CMEAPT

Used by a program to view the current
application_context_name conversation
characteristic.

Extract_Application_Context_Name CMEACN

Used by a program to view the current state of a
conversation.

Extract_Conversation_State CMECS

Used by a program to view the current
conversation_type conversation characteristic.

Extract_Conversation_Type CMECT

120 X/Open CAE Specification

Call Reference Section Locations of Key Topics

Pseudonym Call Description

Used by a program to extract the current
initialization_data conversation characteristic.

Extract_Initialization_Data CMEID

Used by a program to extract the maximum
buffer size supported by the system.

Extract_Maximum_Buffer_Size CMEMBS

Used by a program to view the current
mode_name conversation characteristic.

Extract_Mode_Name CMEMN

Used by a program to view the current
partner_LU_name conversation characteristic.

Extract_Partner_LU_Name CMEPLN

Used by a program to extract secondary
information associated with the return code for
a given call.

Extract_Secondary_Information CMESI

Used by a program to view the current
security_user_ID conversation characteristic.

Extract_Security_User_ID CMESUI

Used by a program to view the current
send_receive_mode conversation characteristic.

Extract_Send_Receive_Mode CMESRM

Used by a program to view the current
sync_level conversation characteristic.

Extract_Sync_Level CMESL

Used by a program to determine the TP_name
characteristic’s value for a given conversation.

Extract_TP_Name CMETPN

Used by a program to extract the
transaction_control characteristic’s value for a
given conversation.

Extract_Transaction_Control CMETC

Used by a program to flush the local CRM’s
send buffer.

Flush CMFLUS

Used by a program to include a partner program
in a transaction.

Include_Partner_In_Transaction CMINCL

Used by a program to initialize the conversation
characteristics for an outgoing conversation.

Initialize_Conversation CMINIT

Used by a program to initialize the conversation
characteristics for an incoming conversation.

Initialize_For_Incoming CMINIC

Used by a program to prepare a subordinate for
a commit operation.

Prepare CMPREP

Used by a program to change a conversation
from Send to Receive state in preparation to
receive data.

Prepare_To_Receive CMPTR

Distributed Transaction Processing: CPI-C Specification, Version 2 121

Locations of Key Topics Call Reference Section

Pseudonym Call Description
Used by a program to receive data.Receive CMRCV

Used by a program to receive expedited data
from its partner.

Receive_Expedited_Data CMRCVX

Used by a program to release a name.Release_Local_TP_Name CMRLTP

Used by a program to notify its partner that it
would like to send data.

Request_To_Send CMRTS

Send_Data CMSEND Used by a program to send data.

Used by a program to notify its partner of an
error that occurred during the conversation.

Send_Error CMSERR

Used by a program to send expedited data to its
partner.

Send_Expedited_Data CMSNDX

Used by a program to set the AE_qualifier
conversation characteristic.

Set_AE_Qualifier CMSAEQ

Used by a program to set the allocate_confirm
conversation characteristic.

Set_Allocate_Confirm CMSAC

Used by a program to set the AP_title
conversation characteristic.

Set_AP_Title CMSAPT

Used by a program to set the
application_context_name conversation
characteristic.

Set_Application_Context_Name CMSACN

Used by a program to set the begin_transaction
conversation characteristic.

Set_Begin_Transaction CMSBT

Used by a program to set the
confirmation_urgency conversation characteristic.

Set_Confirmation_Urgency CMSCU

Used by a program to set the security_password
conversation characteristic.

Set_Conversation_Security_P assword CMSCSP

Used by a program to set the
conversation_security_type conversation
characteristic.

Set_Conversation_Security_Type CMSCST

Used by a program to set the security_user_ID
conversation characteristic.

Set_Conversation_Security_User_ID CMSCSU

Used by a program to set the conversation_type
conversation characteristic.

Set _Conversation_Type CMSCT

122 X/Open CAE Specification

Call Reference Section Locations of Key Topics

Pseudonym Call Description
Used by a program to set the deallocate_type
conversation characteristic.

Set_Deallocate_Type CMSDT

Used by a program to set the error_direction
conversation characteristic.

Set_Error_Direction CMSED

Used by a program to set the fill conversation
characteristic.

Set_Fill CMSF

Used by a program to set the initialization_data
conversation characteristic.

Set_Initialization_Data CMSID

Used by a program to set the join_transaction
conversation characteristic.

Set_Join_Transaction CMSJT

Used by a program to set the log_data
conversation characteristic.

Set_Log_Data CMSLD

Used by a program to set the mode_name
conversation characteristic.

Set_Mode_Name CMSMN

Used by a program to set the partner_LU_name
conversation characteristic.

Set_Partner_LU_Name CMSPLN

Used by a program to set the
prepare_data_permitted conversation
characteristic.

Set_Prepare_Data_Permitted CMSPDP

Used by a program to set the
prepare_to_receive_type conversation
characteristic.

Set_Prepare_To_Receive_Type CMSPTR

Used by a program to set the processing_mode
conversation characteristic.

Set_Processing_Mode CMSPM

Used by a program to set a callback function,
and a user field for a given conversation queue
and to set the queue’s processing mode to
CM_NON_BLOCKING.

Set_Queue_Callback_Function CMSQCF

Used by a program to set the processing mode
for a given conversation queue and to associate
an outstanding-operation identifier (OOID) and
a user field with the queue.

Set_Queue_Processing_Mode CMSQPM

Used by a program to set the receive_type
conversation characteristic.

Set_Receive_Type CMSRT

Used by a program to set the return_control
conversation characteristic.

Set_Return_Control CMSRC

Distributed Transaction Processing: CPI-C Specification, Version 2 123

Locations of Key Topics Call Reference Section

Pseudonym Call Description
Used by a program to set the send_receive_mode
conversation characteristic.

Set_Send_Receive_Mode CMSSRM

Used by a program to set the send_type
conversation characteristic.

Set_Send_Type CMSST

Used by a program to set the sync_level
conversation characteristic.

Set_Sync_Level CMSSL

Used by a program to set the TP_name
conversation characteristic.

Set_TP_Name CMSTPN

Used by a program to set the transaction_control
conversation characteristic.

Set_Transaction_Control CMSTC

Used by a program to associate a name with
itself.

Specify_Local_TP_Name CMSLTP

Used by a program to determine whether or not
the remote program is requesting to send data.

Test_Request_To_Send_Received CMTRTS

Used by a program to wait for completion of
one or more outstanding operations represented
in a specified outstanding-operation-ID (OOID)
list.

Wait_For_Completion CMWCMP

Used by a program to wait for the completion of
any conversation-level outstanding operation.

Wait_For_Conversation CMWAIT

124 X/Open CAE Specification

Call Reference Section Accept_Conversation (CMACCP)

NAME
Accept_Conversation (CMACCP) — accept an incoming conversation.

SYNOPSIS
CALL CMACCP(conversation_ID , return_code)

DESCRIPTION
The Accept_Conversation (CMACCP) call accepts an incoming conversation. Like
Initialize_Conversation, this call initializes values for various conversation characteristics. The
difference between the two calls is that the program that later allocates the conversation issues
the Initialize_Conversation call, and the partner program that accepts the conversation after it is
allocated issues the Accept_Conversation call.

The Accept_Conversation (CMACCP) call uses the following output parameters:

• conversation_ID (output)

Specifies the conversation identifier assigned to the conversation. CPI Communications
supplies and maintains the conversation_ID. When the return_code is set equal to CM_OK, the
value returned in this parameter is used by the program on all subsequent calls issued for
this conversation.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_DEALLOCATED_ABEND
This value indicates that CPI Communications deallocated the incoming conversation
because an implicit call of tx_set_transaction_control () or tx_begin() failed.

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— No incoming conversation exists.

— No name is associated with the program. A program associates a name with itself by
issuing the Specify_Local_TP_Name call.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
For half-duplex conversations, when return_code is set equal to CM_OK, the conversation enters
Receive state.

For full-duplex conversations, when return_code is set equal to CM_OK, the conversation enters
Send-Receive state.

APPLICATION USAGE

1. For each conversation, CPI Communications assigns a unique identifier (the
conversation_ID) that the program uses in all future calls intended for that conversation.
Therefore, the program must issue the Accept_Conversation call before any other calls can
refer to the conversation.

2. There may be a system-defined limit on the number of conversations that a program can
accept or allocate, but CPI Communications imposes no limit.

3. For a list of the conversation characteristics that are initialized when the
Accept_Conversation call completes successfully, see Table 3-2 on page 30.

Distributed Transaction Processing: CPI-C Specification, Version 2 125

Accept_Conversation (CMACCP) Call Reference Section

4. CPI Communications makes incoming conversations available to programs based upon
names that are associated with the program. Specifically, those names associated with the
program at the time the Accept_Conversation call is issued are used to satisfy that
Accept_Conversation call. These names come either from locally defined information or
from execution of the Specify_Local_TP_Name call. An implementation may place
restrictions on the actions that a program may take before issuing Accept_Conversation in
order to properly identify programs with associated names.

5. An implementation may choose to specify a minimum time before returning
CM_PROGRAM_STATE_CHECK when no incoming conversation has arrived for the
program.

6. Accept_Conversation always functions as if the processing_mode were set to
CM_BLOCKING. A program that must be able to accept incoming conversations in a
non-blocking mode should use the Initialize_For_Incoming and Accept_Incoming calls.
The processing mode for the conversation can be set to CM_NON_BLOCKING prior to
issuing Accept_Incoming.

SEE ALSO
Section 3.8 on page 29 provides a comparison of the conversation characteristics set by
Initialize_For_Incoming, Initialize_Conversation and Accept_Conversation.

Section 4.2.1 on page 65 shows an example program flow using the Accept_Conversation call to
accept a half-duplex conversation.

Section 4.3.9 on page 86 shows an example program flow using an Accept_Conversation call to
accept a full-duplex conversation.

Initialize_Conversation (CMINIT) on page 195 describes how the conversation characteristics are
initialized for the program that allocates the conversation.

126 X/Open CAE Specification

Call Reference Section Accept_Incoming (CMACCI)

NAME
Accept_Incoming (CMACCI) — accept an incoming conversation previously initialized with the
Initialize_For_Incoming call.

SYNOPSIS
CALL CMACCI(conversation_ID , return_code)

DESCRIPTION
A program uses the Accept_Incoming (CMACCI) call to accept an incoming conversation that
has previously been initialized with the Initialize_For_Incoming call and to complete the
initialization of the conversation characteristics.

Before issuing the Accept_Incoming call, a program has the option of issuing one of the
following calls:

CALL CMSJT − Set_Join_Transaction
CALL CMSPM − Set_Processing_Mode
CALL CMSQPM − Set_Queue_Processing_Mode
CALL CMSQCF − Set_Queue_Callback_Function.

The Accept_Incoming (CMACCI) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier of a conversation that has been initialized for an
incoming conversation.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_OPERATION_INCOMPLETE

CM_DEALLOCATED_ABEND
This value indicates that CPI Communications deallocated the incoming conversation
because an implicit call of tx_set_transaction_control () or tx_begin() failed.

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned conversation
identifier.

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation is not in Initialize-Incoming state.

— No name is associated with the program. A program associates a name with itself by
issuing the Specify_Local_TP_Name call.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

Distributed Transaction Processing: CPI-C Specification, Version 2 127

Accept_Incoming (CMACCI) Call Reference Section

STATE CHANGES
For half-duplex conversations, when return_code is set to CM_OK, the conversation enters
Receive state.

For full-duplex conversations, when return_code is set to CM_OK, the conversation enters Send-
Receive state.

APPLICATION USAGE

1. The Accept_Incoming call can be used only when an Initialize_For_Incoming call has
already completed.

2. When Accept_Incoming successfully completes, CPI Communications initializes those
conversation characteristics that use values from the conversation startup request. See
Table 3-2 on page 30 for a list of the conversation characteristics and how they are set by
Initialize_For_Incoming and Accept_Incoming.

3. If Accept_Incoming is issued as a blocking call and no incoming conversation is available
for the program, the call blocks until a conversation startup request arrives. The program
can ensure that it is not placed in a wait state by taking one of the following actions before
issuing the Accept_Incoming call:

— For conversation-level non-blocking — set the processing_mode characteristic to
CM_NON_BLOCKING by using the Set_Processing_Mode call

— For queue-level non-blocking — set the processing mode for the Initialization queue to
CM_NON_BLOCKING by using the Set_Queue_Callback_Function call or the
Set_Queue_Processing_Mode call.

4. If the program has successfully issued a Set_Processing_Mode call, the subsequent
Accept_Incoming call completes only when the conversation startup request is for a half-
duplex conversation.

5. There may be a system-defined limit on the number of conversations that a program can
accept or allocate, but CPI Communications imposes no limit.

6. CPI Communications makes incoming conversations available to programs based upon
names that are associated with the program. Specifically, those names associated with the
program at the time the Accept_Incoming call is issued are used to satisfy that
Accept_Incoming call. These names come either from locally defined information or from
execution of the Specify_Local_TP_Name call. An implementation may place restrictions
on the actions that a program may take before issuing Accept_Incoming in order to
properly identify programs with associated names.

SEE ALSO
Section 3.8 on page 29 provides a comparison of the conversation characteristics set by
Initialize_For_Incoming and Accept_Incoming.

Section 4.3.7 on page 82 and Section 4.3.8 on page 84 show example program flows using the
Initialize_For_Incoming and Accept_Incoming calls.

Initialize_For_Incoming (CMINIC) on page 197 describes how the conversation_ID supplied on
Accept_Incoming is assigned.

Set_Join_Transaction (CMSJT) on page 283 describes setting the join_transaction conversation
characteristic.

Set_Processing_Mode (CMSPM) on page 295 describes setting the processing_mode conversation
characteristic.

128 X/Open CAE Specification

Call Reference Section Accept_Incoming (CMACCI)

Set_Queue_Callback_Function (CMSQCF) on page 297 describes the how to set a callback function
and related information for a non-blocking conversation queue.

Set_Queue_Processing_Mode (CMSQPM) on page 300 describes how to set the processing mode
for a non-blocking conversation queue.

The calls beginning with ‘‘Extract’’ in this chapter are used to examine conversation
characteristics established by the Accept_Incoming call.

Distributed Transaction Processing: CPI-C Specification, Version 2 129

Allocate (CMALLC) Call Reference Section

NAME
Allocate (CMALLC) — establish a conversation.

SYNOPSIS
CALL CMALLC(conversation_ID , return_code)

DESCRIPTION
A program uses the Allocate (CMALLC) call to establish a basic or mapped conversation
(depending on the conversation_type characteristic) with its partner program. The partner
program is specified in the TP_name characteristic.

Before issuing the Allocate call, a program has the option of issuing one or more of the following
calls:

CALL CMSAEQ − Set_AE_Qualifier
CALL CMSAC − Set_Allocate_Confirm
CALL CMSAPT − Set_AP_Title
CALL CMSACN − Set_Application_Context_Name
CALL CMSBT − Set_Begin_Transaction
CALL CMSCSP − Set_Conversation_Security_Password
CALL CMSCST − Set_Conversation_Security_Type
CALL CMSCSU − Set_Conversation_Security_User_ID
CALL CMSCT − Set_Conversation_Type
CALL CMSID − Set_Initialization_Data
CALL CMSMN − Set_Mode_Name
CALL CMSPLN − Set_Partner_LU_Name
CALL CMSPM − Set_Processing_Mode
CALL CMSQCF − Set_Queue_Callback_Function
CALL CMSQPM − Set_Queue_Processing_Mode
CALL CMSRC − Set_Return_Control
CALL CMSSRM − Set_Send_Receive_Mode
CALL CMSSL − Set_Sync_Level
CALL CMSTPN − Set_TP_Name
CALL CMSTC − Set_Transaction_Control.

The Allocate (CMALLC) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier of an initialized conversation.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have the following
values:

CM_OK

CM_OPERATION_INCOMPLETE

CM_RETRY_LIMIT_EXCEEDED
This value indicates that the system-specified retry limit was exceeded.

CM_SEND_RCV_MODE_NOT_SUPPORTED

CM_SYNC_LVL_NOT_SUPPORTED_SYS

130 X/Open CAE Specification

Call Reference Section Allocate (CMALLC)

CM_PARAMETER_ERROR
This value indicates one of the following:

— The mode_name characteristic (set from side information or by Set_Mode_Name)
specifies a mode name that is not recognized by the LU as being valid.

— The mode_name characteristic (set from side information or by Set_Mode_Name)
specifies a mode name that the local program does not have the authority to specify.
For example, SNASVCMG requires special authority with LU 6.2.

— The TP_name characteristic (set from side information or by Set_TP_Name) specifies
a transaction program name that the local program does not have the appropriate
authority to allocate a conversation to. For example, SNA service programs require
special authority with LU 6.2. (For more information, see Section D.3.3 on page 481.)

— The TP_name characteristic (set from side information or by Set_TP_Name) specifies
an SNA service transaction program and conversation_type is set to
CM_MAPPED_CONVERSATION.

— The partner_LU_name characteristic (set from side information or by
Set_Partner_LU_Name) specifies a partner LU name that is not recognized as being
valid.

— The AP_title characteristic (set from side information or using the Set_AP_Title call)
or the AE_qualifier characteristic (set from side information or using the
Set_AE_Qualifier call) or the application_context_name characteristic (set from side
information or using the Set_Application_Context_Name call) specifies an AP title or
an AE qualifier or an application context name that is not recognized as being valid.

— The conversation_security_type characteristic is CM_SECURITY_PROGRAM or
CM_SECURITY_PROGRAM_STRONG, and the security_password characteristic or
the security_user_ID characteristic (set from side information or by SET calls), or both,
are null.

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation is not in Initialize state.

— For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and transaction_control set to
CM_CHAINED_TRANSACTIONS or begin_transaction set to CM_BEGIN_IMPLICIT,
the program is in the Backout-Required condition. New protected conversations
cannot be allocated when the program is in this condition.

— sync_level is set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM,
transaction_control is set to CM_CHAINED_TRANSACTIONS, and the program is
not in transaction mode.

— The program has issued a successful Accept_Conversation (CMACCP) or
Accept_Incoming (CMACCI) call on a conversation with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and using an OSI TP
CRM, and the program has not issued a Receive (CMRCV) call on this conversation.

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned conversation
identifier.

Distributed Transaction Processing: CPI-C Specification, Version 2 131

Allocate (CMALLC) Call Reference Section

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR

CM_SECURITY_NOT_SUPPORTED
This value indicates that the requested conversation security type could not be
provided. This is either because the remote system does not accept the requested type of
security from the local system or because the requested security does not transport the
type of required user name identified.

In addition, when return_control is set to CM_WHEN_SESSION_ALLOCATED, return_code
can have the following values:

CM_ALLOCATE_FAILURE_NO_RETRY

CM_ALLOCATE_FAILURE_RETRY.

If return_control is set to CM_IMMEDIATE, return_code can have the following value:

CM_UNSUCCESSFUL
This value indicates that the logical connection is not immediately available.

STATE CHANGES
For half-duplex conversations, when return_code is set to CM_OK, the conversation enters Send
state.

For full-duplex conversations, when return_code is set to CM_OK, the conversation enters Send-
Receive state.

APPLICATION USAGE

1. An allocation error resulting from the local system’s failure to obtain a logical connection
for the conversation is reported on the Allocate call. An allocation error resulting from the
remote system’s rejection of the conversation startup request is reported on a subsequent
conversation call.

2. For CPI Communications to establish the conversation, CPI Communications must first
establish a logical connection between the local system and the remote system, if such a
connection does not already exist.

3. Depending on the circumstances, the local system can send the conversation startup
request to the remote system as soon as it allocates a logical connection for the
conversation. The local system can also buffer the conversation startup request until it
accumulates enough information for transmission (from one or more subsequent
Send_Data calls), or until the local program issues a subsequent call other than Send_Data
that explicitly causes the system to flush its send buffer. The amount of information
sufficient for transmission depends on the characteristics of the logical connection
allocated for the conversation and can vary from one logical connection to another.

4. The local program can ensure that the remote program is connected as soon as possible by
issuing Flush (CMFLUS) immediately after Allocate (CMALLC).

5. A set of security parameters is established for the conversation, based on the values of the
security characteristics. See Section 3.11 on page 47 for more information on conversation
security.

6. When return_control is set to CM_IMMEDIATE, the call completes immediately, regardless
of the processing mode in effect for the Allocate call. If a logical connection is not
available, return_code is set to CM_UNSUCCESSFUL.

132 X/Open CAE Specification

Call Reference Section Allocate (CMALLC)

7. Initialization data specified by use of the Set_Initialization_Data (CMSID) call is sent to the
remote program along with the conversation startup request. The remote program may
extract the initialization data with the Extract_Initialization_Data (CMEID) call.

8. By using the Set_Allocate_Confirm call, the program allocating the conversation may
request notification that the remote program has confirmed its acceptance of the
conversation.

9. If a conversation is using a particular CRM type, the Allocate call tries to establish a
conversation using only the destination information for that CRM type.

10. If a program specifies destination information for both an OSI TP CRM and an LU 6.2 CRM
but only one set of information is complete, the Allocate call tries only the destination for
which CPI Communications has complete information. If complete destination
information exists for use of both an OSI TP CRM and an LU 6.2 CRM, the Allocate call
tries to establish a logical connection using one and then the other destination. Only if
both attempts fail does the Allocate call return either CM_ALLOCATE_FAILURE_* or
CM_UNSUCCESSFUL.

SEE ALSO
Section 4.2.1 on page 65 shows an example program flow using the Allocate call to establish a
half-duplex conversation.

Section 4.3.1 on page 71 discusses control methods for data transmission.

Section 4.3.9 on page 86 shows an example program flow using an Allocate call to establish a
full-duplex conversation.

Set_AE_Qualifier (CMSAEQ) on page 253 discusses the AE_qualifier conversation characteristic.

Set_Allocate_Confirm (CMSAC) on page 255 discusses the allocate_confirm conversation
characteristic and explains an option for confirming acceptance of the conversation.

Set_AP_Title (CMSAPT) on page 257 discusses the AP_title conversation characteristic.

Set_Application_Context_Name (CMSACN) on page 259 discusses the application_context_name
conversation characteristic.

Set_Begin_Transaction (CMSBT) on page 261 discusses the begin_transaction conversation
characteristic.

Set_Conversation_Security_Password (CMSCSP) on page 265 discusses the security_password
conversation characteristic.

Set_Conversation_Security_Type (CMSCST) on page 267 discusses the conversation_security_type
conversation characteristic.

Set_Conversation_Security_User_ID (CMSCSU) on page 269 discusses the security_user_ID
conversation characteristic.

Set_Conversation_Type (CMSCT) on page 271 discusses the conversation_type characteristic.

Set_Initialization_Data (CMSID) on page 281 and Extract_Initialization_Data (CMEID) on page
170 discuss the initialization_data conversation characteristic.

Set_Mode_Name (CMSMN) on page 287 discusses the mode_name conversation characteristic.

Set_Partner_LU_Name (CMSPLN) on page 289 discusses the partner_LU_name conversation
characteristic.

Set_Processing_Mode (CMSPM) on page 295 describes setting the processing_mode conversation
characteristic.

Distributed Transaction Processing: CPI-C Specification, Version 2 133

Allocate (CMALLC) Call Reference Section

Set_Queue_Callback_Function (CMSQCF) on page 297 discusses how to set a callback function
and related information for a conversation queue.

Set_Queue_Processing_Mode (CMSQPM) on page 300 discusses how to set the processing mode
for a conversation queue.

Set_Return_Control (CMSRC) on page 305 discusses the return_control characteristic.

Set_Send_Receive_Mode (CMSSRM) on page 307 discusses how to set the send-receive mode for a
conversation.

Set_Sync_Level (CMSSL) on page 311 discusses the sync_level conversation characteristic.

Set_TP_Name (CMSTPN) on page 313 discusses the TP_name conversation characteristic.

Set_Transaction_Control (CMSTC) on page 315 discusses the transaction_control conversation
characteristic.

Section D.3.3 on page 481 discusses SNA service transaction programs.

134 X/Open CAE Specification

Call Reference Section Cancel_Conversation (CMCANC)

NAME
Cancel_Conversation (CMCANC) — end a conversation immediately.

SYNOPSIS
CALL CMCANC(conversation_ID , return_code)

DESCRIPTION
A program uses Cancel_Conversation (CMCANC) to end a conversation immediately.
Cancel_Conversation can be issued at any time, regardless of whether a previous operation is
still in progress on the conversation.

Cancel_Conversation results in the immediate termination of any operations in progress on the
specified conversation. No guarantees are given on the results of the terminated operations. For
example, when a Cancel_Conversation call has been issued while a non-blocking Send_Data call
is outstanding, the program cannot determine how much data was actually moved from the
application buffer, nor can the program rely on the validity of any of the output parameters for
the terminated Send_Data call.

The Cancel_Conversation (CMCANC) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned conversation
identifier.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
When return_code is set to CM_OK, the conversation enters Reset state.

APPLICATION USAGE

1. From the perspective of the local program, the conversation is terminated immediately.
However, CPI Communications may not be able to notify the remote program until a later
time.

2. The remote program is notified of the termination of the conversation with the
CM_DEALLOCATED_ABEND return code or, if the conversation has sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and backout is required, with
the CM_DEALLOCATED_ABEND_BO return code.

Note: For half-duplex conversations, if the conversation is using an LU 6.2 CRM and the
remote program has issued Send_Error with its end of the conversation in
Receive state, the incoming information containing notice of
CM_DEALLOCATED_ABEND is purged, and a CM_DEALLOCATED_NORMAL
or CM_DEALLOCATED_NORMAL_BO return code is reported instead of
CM_DEALLOCATED_ABEND or CM_DEALLOCATED_ABEND_BO,
respectively. See Send_Error (CMSERR) on page 240 for a complete discussion.

Distributed Transaction Processing: CPI-C Specification, Version 2 135

Cancel_Conversation (CMCANC) Call Reference Section

3. Program-supplied log data is not sent to the remote system as a result of a
Cancel_Conversation call.

4. When Cancel_Conversation is issued for a protected conversation, the program may be
placed in the Backout-Required condition.

5. If the Cancel_Conversation call is the first operation on the conversation following an
Accept (CMACCP) or Accept_Incoming (CMACCI) call and an OSI TP CRM is being used,
then any initialization data specified by the use of the Set_Initialization_Data (CMSID) call
is sent to the remote program.

SEE ALSO
Section 3.10 on page 43 discusses the use of non-blocking operations.

Set_Initialization_Data (CMSID) on page 281 and Extract_Initialization_Data (CMEID) on page
170 discuss the initialization_data conversation characteristic.

Wait_For_Conversation (CMWAIT) on page 325 and Wait_For_Completion (CMWCMP) on page
322 describe the normal completion of non-blocking operations.

136 X/Open CAE Specification

Call Reference Section Confirm (CMCFM)

NAME
Confirm (CMCFM) — send a confirmation request to its partner.

SYNOPSIS
CALL CMCFM(conversation_ID , control_information_received , return_code)

DESCRIPTION
The Confirm (CMCFM) call is used by a local program to send a confirmation request to the
remote program and then wait for a reply. The remote program replies with a Confirmed
(CMCFMD) call. The local and remote programs use the Confirm and Confirmed calls to
synchronize their processing of data.

Notes:

1. The sync_level conversation characteristic for the conversation_ID specified must
be set to CM_CONFIRM or CM_SYNC_POINT to use this call. The
Set_Sync_Level (CMSSL) call is used to set a conversation’s synchronization level.

2. The Confirm call can be issued only on a half-duplex conversation.

The Confirm (CMCFM) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• control_information_received (output)

Specifies the variable containing an indication of whether or not control information has been
received.

The control_information_received variable can have one of the following values:

CM_NO_CONTROL_INFO_RECEIVED
Indicates that no control information was received.

CM_REQ_TO_SEND_RECEIVED (half-duplex conversations only)
The local program received a request-to-send notification from the remote program. The
remote program issued Request_To_Send, requesting the local program’s end of the
conversation to enter Receive state, which would place the remote program’s end of the
conversation in Send state. See Request_To_Send (CMRTS) on page 227. See the
description of the Request_To_Send (CMRTS) call for further discussion of the local
program’s possible responses.

CM_ALLOCATE_CONFIRMED (OSI TP CRM only)
The local program received confirmation of the remote program’s acceptance of the
conversation.

CM_ALLOCATE_CONFIRMED_WITH_DATA (OSI TP CRM only)
The local program received confirmation of the remote program’s acceptance of the
conversation. The local program may now issue an Extract_Initialization_Data (CMEID)
call to receive the initialization data.

CM_ALLOCATE_REJECTED_WITH_DATA (OSI TP CRM only)
The remote program rejected the conversation. The local program may now issue an
Extract_Initialization_Data (CMEID) call to receive the initialization data. This value is
returned with a return code of CM_OK. The program receives a
CM_DEALLOCATED_ABEND return code on a later call on the conversation.

CM_EXPEDITED_DATA_AVAILABLE (LU 6.2 CRM only)
Expedited data is available to be received.

Distributed Transaction Processing: CPI-C Specification, Version 2 137

Confirm (CMCFM) Call Reference Section

CM_RTS_RCVD_AND_EXP_DATA_AVAIL (half-duplex and LU 6.2 CRM only)
The local program received a request-to-send notification from the remote program and
expedited data is available to be received.

Notes:

1. If return_code is set to CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, the value contained in
control_information_received has no meaning.

2. When more than one piece of control information is available to be returned to
the program, it is returned in the following order:

— CM_ALLOCATE_CONFIRMED,
CM_ALLOCATE_CONFIRMED_WITH_DATA or
CM_ALLOCATE_REJECTED_WITH_DATA

— CM_RTS_RCVD_AND_EXP_DATA_AVAIL

— CM_REQ_TO_SEND_RECEIVED

— CM_EXPEDITED_DATA_AVAILABLE

— CM_NO_CONTROL_INFO_RECEIVED.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK (remote program replied Confirmed)

CM_OPERATION_INCOMPLETE

CM_CONVERSATION_TYPE_MISMATCH

CM_PIP_NOT_SPECIFIED_CORRECTLY

CM_SECURITY_NOT_VALID

CM_SYNC_LVL_NOT_SUPPORTED_PGM

CM_SYNC_LVL_NOT_SUPPORTED_SYS

CM_SEND_RCV_MODE_NOT_SUPPORTED

CM_TPN_NOT_RECOGNIZED

CM_TP_NOT_AVAILABLE_NO_RETRY

CM_TP_NOT_AVAILABLE_RETRY

CM_DEALLOCATED_ABEND

CM_PROGRAM_ERROR_PURGING

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

CM_DEALLOCATED_ABEND_SVC (basic conversations only)

CM_DEALLOCATED_ABEND_TIMER (basic conversations only)

CM_SVC_ERROR_PURGING (basic conversations only)

138 X/Open CAE Specification

Call Reference Section Confirm (CMCFM)

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation is not in Send, Send-Pending or Defer-Receive state.

— The conversation is basic and in Send state, and the program started but did not
finish sending a logical record.

— For a conversation with sync_level set to CM_SYNC_POINT and transaction_control
set to CM_CHAINED_TRANSACTIONS or begin_transaction set to
CM_BEGIN_IMPLICIT, the program is in the Backout-Required condition. The
Confirm call is not allowed for this conversation while the program is in this
condition.

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The sync_level conversation characteristic is set to CM_NONE or
CM_SYNC_POINT_NO_CONFIRM.

— The conversation_ID specifies an unassigned conversation identifier.

— The send_receive_mode of the conversation is CM_FULL_DUPLEX.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR

The following values are returned only when sync_level is set to CM_SYNC_POINT:

CM_TAKE_BACKOUT

CM_DEALLOCATED_ABEND_BO

CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)

CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

CM_RESOURCE_FAIL_NO_RETRY_BO

CM_RESOURCE_FAILURE_RETRY_BO

CM_INCLUDE_PARTNER_REJECT_BO.

STATE CHANGES
When return_code is set to CM_OK:

• The conversation enters Send state if the program issued the Confirm call with the
conversation in Send-Pending state.

• The conversation enters Receive state if the program issued the Confirm call with the
conversation in Defer-Receive state.

• No state change occurs if the program issued the Confirm call with the conversation in Send
state.

APPLICATION USAGE

1. The program that issues Confirm waits until a reply from the remote partner program is
received. (This reply is made using the Confirmed call.)

2. The program can use this call for various application-level functions. For example:

— The program can issue this call immediately following an Allocate call to determine if
the conversation was allocated before sending any data.

Distributed Transaction Processing: CPI-C Specification, Version 2 139

Confirm (CMCFM) Call Reference Section

— The program can issue this call to determine if the remote program received the data
sent. The remote program can respond by issuing a Confirmed call if it received and
processed the data without error, or by issuing a Send_Error call if it encountered an
error. The only other valid response from the remote program is the issuance of the
Deallocate call with deallocate_type set to CM_DEALLOCATE_ABEND or the
Cancel_Conversation call.

3. The send buffer of the local system is flushed as a result of this call.

4. When control_information_received indicates that expedited data is available, subsequent
calls with this parameter continue to return the notification until the expedited data has
been received.

SEE ALSO
Section 4.3.3 on page 74 shows an example program using the Confirm call.

Confirmed (CMCFMD) on page 141 provides information on the remote program’s reply to the
Confirm call.

Request_To_Send (CMRTS) on page 227 provides a complete discussion of the
control_information_received parameter.

Set_Allocate_Confirm (CMSAC) on page 255 describes how a program can request that the remote
program confirm its acceptance of the conversation.

Set_Sync_Level (CMSSL) on page 311 explains how programs specify the level of synchronization
processing.

140 X/Open CAE Specification

Call Reference Section Confirmed (CMCFMD)

NAME
Confirmed (CMCFMD) — send a confirmation reply to its partner.

SYNOPSIS
CALL CMCFMD(conversation_ID , return_code)

DESCRIPTION
A program uses the Confirmed (CMCFMD) call to send a confirmation reply to the remote
program. The local and remote programs can use the Confirmed and Confirm calls to
synchronize their processing.

A program can issue the Confirmed call on a full-duplex conversation only when deallocating a
conversation that is using an OSI TP CRM.

The Confirmed (CMCFMD) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_OPERATION_INCOMPLETE

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— For a half-duplex conversation, the conversation is not in Confirm, Confirm-Send or
Confirm-Deallocate state.

— For a full-duplex conversation, the conversation is not in Confirm-Deallocate state.

— For a conversation with sync_level set to CM_SYNC_POINT, the program is in the
Backout-Required condition. The Confirmed call is not allowed for this
conversation while the program is in this condition.

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The send_receive_mode is set to CM_FULL_DUPLEX and the conversation is using an
LU 6.2 CRM.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
For a half-duplex conversation, when return_code is set to CM_OK:

• The conversation enters Receive state if the program received the status_received parameter
set to CM_CONFIRM_RECEIVED on the preceding Receive call—that is, if the conversation
was in Confirm state.

• The conversation enters Send state if the program received the status_received parameter set
to CM_CONFIRM_SEND_RECEIVED on the preceding Receive call — that is, if the
conversation was in Confirm-Send state.

Distributed Transaction Processing: CPI-C Specification, Version 2 141

Confirmed (CMCFMD) Call Reference Section

• The conversation enters Reset state if the program received the status_received parameter set
to CM_CONFIRM_DEALLOC_RECEIVED on the preceding Receive call — that is, if the
conversation was in Confirm-Deallocate state.

For a full-duplex conversation, when return_code is set to CM_OK, the conversation enters Reset
state if the program received a status_received value of CM_CONFIRM_DEALLOC_RECEIVED
on the preceding Receive call—that is, if the conversation was in Confirm-Deallocate state.

APPLICATION USAGE

1. For a half-duplex conversation, the local program can issue this call only as a reply to a
confirmation request; the call cannot be issued at any other time. A confirmation request is
generated (by the remote system) when the remote program makes a call to Confirm. The
remote program that has issued Confirm waits until the local program responds with
Confirmed.

2. For a half-duplex conversation, the program can use this call for various application-level
functions. For example, the remote program may send data followed by a confirmation
request (using the Confirm call). When the local program receives the confirmation
request, it can issue a Confirmed call to indicate that it received and processed the data
without error.

SEE ALSO
Section 4.3.3 on page 74 shows an example program using the Confirmed call.

Confirm (CMCFM) on page 137 provides more information on the Confirm call.

Receive (CMRCV) on page 208 provides more information on the status_received parameter.

Set_Sync_Level (CMSSL) on page 311 explains how programs specify the level of synchronization
processing.

142 X/Open CAE Specification

Call Reference Section Convert_Incoming (CMCNVI)

NAME
Convert_Incoming (CMCNVI) — change the encoding of a character string from EBCDIC to the
local encoding used by the program.

SYNOPSIS
CALL CMCNVI(buffer , buffer_length , return_code)

DESCRIPTION
The Convert_Incoming (CMCNVI) call is used to change the encoding of a character string from
EBCDIC to the local encoding used by the program.

The Convert_Incoming (CMCNVI) call uses the following input and output parameters:

• buffer (input) (output)

Specifies the buffer containing the string to be converted. The contents of the string are
replaced by the results of the conversion.

• buffer_length (input)

Specifies the number of characters in the string to be converted.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the buffer_length is invalid for the range permitted by the
implementation.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call causes no state changes.

APPLICATION USAGE

1. When the EBCDIC hexadecimal codes, specified in Table A-2 on page 337, represent the
encoding for the data transmitted across the network, the Convert_Incoming call can be
used to convert the EBCDIC hexadecimal codes to the corresponding local representation
of the data.

2. Convert_Incoming converts data on a character-by-character basis. Since the program
may use character values beyond those defined in Table A-2 on page 337, care must be
taken in the use of Convert_Incoming in that it may generate implementation-dependent
results if applied to a string which contains such values.

3. A program may be written to be independent of the encoding (such as ASCII or EBCDIC)
of the partner program by sending and receiving EBCDIC data records with the help of the
Convert_Outgoing and Convert_Incoming calls. The sending program calls
Convert_Outgoing to convert the data record to EBCDIC before sending it. The receiving
program calls Convert_Incoming to convert the EBCDIC data record to the appropriate
encoding for its environment.

4. The Convert_Incoming call is a null operation if the receiving program uses EBCDIC
encoding.

Distributed Transaction Processing: CPI-C Specification, Version 2 143

Convert_Incoming (CMCNVI) Call Reference Section

SEE ALSO
Section 3.12 on page 48 provides information about data conversion and the Convert_Incoming
call.

Convert_Outgoing (CMCNVO) on page 145 provides information about the Convert_Outgoing
call.

144 X/Open CAE Specification

Call Reference Section Convert_Outgoing (CMCNVO)

NAME
Convert_Outgoing (CMCNVO) — change the encoding of a character string from the local
encoding used by the program to EBCDIC.

SYNOPSIS
CALL CMCNVO(buffer , buffer_length , return_code)

DESCRIPTION
The Convert_Outgoing (CMCNVO) call is used to change the encoding of a character string to
EBCDIC from the local encoding used by the program.

The Convert_Outgoing (CMCNVO) call uses the following input and output parameters:

• buffer (input) (output)

Specifies the buffer containing the string to be converted. The contents of the string are
replaced by the results of the conversion.

• buffer_length (input)

Specifies the number of characters in the string to be converted.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the buffer_length is invalid for the range permitted by the
implementation.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call causes no state changes.

APPLICATION USAGE

1. When the EBCDIC hexadecimal codes, specified in Table A-2 on page 337, represent the
encoding for the data transmitted across the network, the Convert_Outgoing call can be
used to convert the data supplied by the program from the local encoding to the
corresponding EBCDIC hexadecimal codes.

2. Convert_Outgoing converts data on a character-by-character basis. Since the program
may use character values beyond those defined in Table A-2 on page 337, care must be
taken in the use of Convert_Outgoing in that it may generate implementation-dependent
results if applied to a string which contains such values.

3. A program may be written to be independent of the encoding (such as ASCII or EBCDIC)
of the partner program by sending and receiving EBCDIC data records with the help of the
Convert_Outgoing and Convert_Incoming calls. The sending program calls
Convert_Outgoing to convert the data record to EBCDIC before sending it. The receiving
program calls Convert_Incoming to convert the EBCDIC data record to the appropriate
encoding for its environment.

4. The Convert_Outgoing call is a null operation if the sending program uses EBCDIC
encoding.

Distributed Transaction Processing: CPI-C Specification, Version 2 145

Convert_Outgoing (CMCNVO) Call Reference Section

SEE ALSO
Section 3.12 on page 48 provides information about data conversion and the Convert_Outgoing
call.

Convert_Incoming (CMCNVI) on page 143 provides information about the Convert_Incoming
call.

146 X/Open CAE Specification

Call Reference Section Deallocate (CMDEAL)

NAME
Deallocate (CMDEAL) — end a conversation.

SYNOPSIS
CALL CMDEAL(conversation_ID , return_code)

DESCRIPTION
A program uses the Deallocate (CMDEAL) call to end a conversation. The conversation_ID is no
longer assigned when the conversation is deallocated as part of this call.

For a half-duplex conversation, the deallocation can either be completed as part of this call or
deferred until the program issues a resource recovery call. If the Deallocate call includes the
function of the Flush or Confirm call, depending on the deallocate_type characteristic, the
deallocation is completed as part of this call.

For a full-duplex conversation, the deallocation may be deferred until the program issues a
resource recovery commit call. If the Deallocate call includes abnormal deallocation or the
function of the Confirm call, depending on the deallocate_type characteristic, the deallocation is
completed as part of this call. If the Deallocate call includes the function of the Flush call,
depending on the deallocate_type characteristic, then the program can no longer send data to the
partner. The deallocation is completed if the conversation was in Send-Only state before this
call. Otherwise, the conversation goes to Receive-Only state. In this latter case, the deallocation
is completed when a terminating error condition occurs, either this program or the partner
program deallocates the conversation abnormally or cancels it, or the partner program
deallocates the conversation using the function of the Flush call.

Before issuing the Deallocate call, a program has the option of issuing one or both of the
following calls to set deallocation parameters:

CALL CMSDT − Set_Deallocate_Type
CALL CMSLD − Set_Log_Data.

The Deallocate (CMDEAL) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier of the conversation to be ended.

• return_code (output)

Specifies the result of the call execution.

Half-duplex Conversations

The following return codes apply to half-duplex conversations:

For any of the following conditions:

— deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and either sync_level is set to
CM_NONE or the conversation is in Initialize-Incoming state

— deallocate_type is set to CM_DEALLOCATE_FLUSH

— deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL, sync_level is set to
CM_SYNC_POINT_NO_CONFIRM, but the conversation is not currently included in a
transaction

the return_code variable can have one of the following values:

CM_OK (deallocation is completed)

Distributed Transaction Processing: CPI-C Specification, Version 2 147

Deallocate (CMDEAL) Call Reference Section

CM_OPERATION_INCOMPLETE

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation is not in Send, Send-Pending or Initialize-Incoming state.

— The conversation is basic and in Send state; and the program started but did not
finish sending a logical record.

— The deallocate_type is set to CM_DEALLOCATE_FLUSH, and the conversation is
currently included in a transaction.

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned conversation
identifier.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

If the deallocate_type conversation characteristic is set to CM_DEALLOCATE_ABEND, the
return_code variable can have one of the following values:

CM_OK (deallocation is completed)

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned conversation
identifier.

CM_OPERATION_NOT_ACCEPTED

CM_OPERATION_INCOMPLETE

CM_PRODUCT_SPECIFIC_ERROR.

For any of the following conditions:

— deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and the sync_level is set to
CM_CONFIRM

— deallocate_type is set to CM_DEALLOCATE_CONFIRM

— deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL, sync_level is set to
CM_SYNC_POINT, but the conversation is not currently included in a transaction

the return_code variable can have one of the following values:

CM_OK (deallocation is completed)

CM_OPERATION_INCOMPLETE

CM_CONVERSATION_TYPE_MISMATCH

CM_PIP_NOT_SPECIFIED_CORRECTLY

CM_SECURITY_NOT_VALID

CM_SYNC_LVL_NOT_SUPPORTED_PGM

CM_SYNC_LVL_NOT_SUPPORTED_SYS

CM_SEND_RCV_MODE_NOT_SUPPORTED

CM_TPN_NOT_RECOGNIZED

148 X/Open CAE Specification

Call Reference Section Deallocate (CMDEAL)

CM_TP_NOT_AVAILABLE_NO_RETRY

CM_TP_NOT_AVAILABLE_RETRY

CM_DEALLOCATED_ABEND

CM_PROGRAM_ERROR_PURGING

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

CM_DEALLOCATED_ABEND_SVC (basic conversations only)

CM_DEALLOCATED_ABEND_TIMER (basic conversations only)

CM_SVC_ERROR_PURGING

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation is not in Send or Send-Pending state.

— The conversation is basic and in Send state; and the program started but did not
finish sending a logical record.

— The deallocate_type is set to CM_DEALLOCATE_CONFIRM, and the conversation is
currently included in a transaction.

— The deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL,
CM_DEALLOCATE_FLUSH or CM_DEALLOCATE_CONFIRM, the local program is
the superior to the conversation, it has issued the Allocate (CMALLC) call with the
allocate_confirm characteristic set to CM_ALLOCATE_CONFIRM, and it did not yet
receive a control_information_received value of CM_ALLOCATE_CONFIRMED or
CM_ALLOCATE_CONFIRMED_WITH_DATA.

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned conversation
identifier.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

If the deallocate_type conversation characteristic is set to CM_DEALLOCATE_SYNC_LEVEL,
sync_level is set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, and the
conversation is included in a transaction, the return_code variable can have one of the
following values:

CM_OK
Deallocation is deferred until the program issues a resource recovery commit call. If the
commit call is successful, the conversation is deallocated normally. If the commit is not
successful or if the program issues a resource recovery backout call instead of a commit,
the conversation is not deallocated. Instead, the conversation is restored to the state it
was in at the previous synchronization point. Table C-2 on page 398 and Table C-3 on
page 400 show how resource recovery calls affect CPI Communications conversation
states.

Distributed Transaction Processing: CPI-C Specification, Version 2 149

Deallocate (CMDEAL) Call Reference Section

CM_OPERATION_INCOMPLETE

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation is not in Send or Send-Pending state.

— The conversation is basic and in Send state, and the program started but did not
finish sending a logical record.

— The program is in the Backout-Required condition.

— The deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL,
CM_DEALLOCATE_FLUSH or CM_DEALLOCATE_CONFIRM, the local program is
the superior to the conversation, it has issued the Allocate (CMALLC) call with the
allocate_confirm characteristic set to CM_ALLOCATE_CONFIRM, and it did not yet
receive a control_information_received value of CM_ALLOCATE_CONFIRMED or
CM_ALLOCATE_CONFIRMED_WITH_DATA.

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The conversation is using an OSI TP CRM, and the program is not the superior for
the conversation.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

Full-duplex Conversations

The following return codes apply to full-duplex conversations:

For any of the following conditions:

— deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and either sync_level is set to
CM_NONE or the conversation is in Initialize-Incoming state

— deallocate_type is set to CM_DEALLOCATE_FLUSH

— deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL, sync_level is set to
CM_SYNC_POINT_NO_CONFIRM, but the conversation is not currently included in a
transaction

the return_code variable can have one of the following values:

CM_OK
Deallocation is completed if this call was issued in Send-Only state. Otherwise, the call
was issued in Send-Receive state and the conversation goes to Receive-Only state. In
this latter case, the conversation will later get deallocated when a terminating error
condition occurs, either this program or the partner program deallocates the
conversation abnormally or cancels it, or the partner program deallocates the
conversation using the function of the Flush call.

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation is not in Send-Receive or Send-Only or Initialize-Incoming state.

150 X/Open CAE Specification

Call Reference Section Deallocate (CMDEAL)

— The conversation is basic and in Send-Receive or Send-Only state, and the program
started but did not finish sending a logical record.

— The local program has received a status_received value of CM_JOIN_TRANSACTION
and must issue a tx_begin() call to the TX (Transaction Demarcation) interface to join
the transaction.

— The deallocate_type is set to CM_DEALLOCATE_FLUSH, and the conversation is
currently included in a transaction.

— The deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL,
CM_DEALLOCATE_FLUSH or CM_DEALLOCATE_CONFIRM, the local program is
the superior to the conversation, it has issued the Allocate (CMALLC) call with the
allocate_confirm characteristic set to CM_ALLOCATE_CONFIRM, and it did not yet
receive a control_information_received value of CM_ALLOCATE_CONFIRMED or
CM_ALLOCATE_CONFIRMED_WITH_DATA.

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned conversation
identifier.

CM_ALLOCATION_ERROR

CM_DEALLOCATED_ABEND

CM_DEALLOCATED_ABEND_SVC

CM_DEALLOCATED_ABEND_TIMER

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

CM_DEALLOCATED_NORMAL

CM_OPERATION_NOT_ACCEPTED

CM_OPERATION_INCOMPLETE

CM_PRODUCT_SPECIFIC_ERROR.

If the deallocate_type conversation characteristic is set to CM_DEALLOCATE_ABEND, the
return_code variable can have one of the following values:

CM_OK (deallocation is completed)

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned conversation
identifier.

CM_OPERATION_NOT_ACCEPTED

CM_OPERATION_INCOMPLETE

CM_PRODUCT_SPECIFIC_ERROR.

If the deallocate_type conversation characteristic is set to CM_DEALLOCATE_CONFIRM, the
return_code variable can have one of the following values:

CM_OK (deallocation is completed)

CM_DEALLOC_CONFIRM_REJECT
This value indicates that the partner program rejected the confirmation request. The
conversation is not deallocated.

Distributed Transaction Processing: CPI-C Specification, Version 2 151

Deallocate (CMDEAL) Call Reference Section

CM_ALLOCATION_ERROR

CM_DEALLOCATED_ABEND

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

CM_DEALLOCATED_NORMAL

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation is not in Send-Receive state.

— The conversation is basic and in Send-Receive state, and the program started but did
not finish sending a logical record.

— The local program has received a status_received value of CM_JOIN_TRANSACTION
and must issue a tx_begin() call to the TX (Transaction Demarcation) interface to join
the transaction.

— The deallocate_type is set to CM_DEALLOCATE_CONFIRM, and the conversation is
currently included in a transaction.

— The deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL,
CM_DEALLOCATE_FLUSH or CM_DEALLOCATE_CONFIRM, the local program is
the superior to the conversation, it has issued the Allocate (CMALLC) call with the
allocate_confirm characteristic set to CM_ALLOCATE_CONFIRM, and it did not yet
receive a control_information_received value of CM_ALLOCATE_CONFIRMED or
CM_ALLOCATE_CONFIRMED_WITH_DATA.

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned conversation
identifier.

CM_PRODUCT_SPECIFIC_ERROR

CM_OPERATION_INCOMPLETE

CM_OPERATION_NOT_ACCEPTED.

If the deallocate_type conversation characteristic is set to CM_DEALLOCATE_SYNC_LEVEL,
sync_level is set to CM_SYNC_POINT_NO_CONFIRM, and the conversation is included in a
transaction, the return_code variable can have one of the following values:

CM_OK
Deallocation is deferred until the program issues a resource recovery commit call. If the
commit call is successful, the conversation is deallocated normally. If the commit is not
successful or if the program issues a resource recovery backout call instead of a commit,
the conversation is not deallocated. Instead, the conversation is restored to the state it
was in at the previous synchronization point. Table C-2 on page 398 and Table C-3 on
page 400 show how resource recovery calls affect CPI Communications conversation
states.

CM_OPERATION_INCOMPLETE

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation is not in Send-Receive state.

152 X/Open CAE Specification

Call Reference Section Deallocate (CMDEAL)

— The conversation is basic and in Send-Receive state, and the program started but did
not finish sending a logical record.

— The program is in the Backout-Required condition.

— The local program has received a status_received value of CM_JOIN_TRANSACTION
and must issue a tx_begin() call to the TX (Transaction Demarcation) interface to join
the transaction.

— The deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL,
CM_DEALLOCATE_FLUSH or CM_DEALLOCATE_CONFIRM, the local program is
the superior to the conversation, it has issued the Allocate (CMALLC) call with the
allocate_confirm characteristic set to CM_ALLOCATE_CONFIRM, and it did not yet
receive a control_information_received value of CM_ALLOCATE_CONFIRMED or
CM_ALLOCATE_CONFIRMED_WITH_DATA.

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The conversation is using an OSI TP CRM, and the program is not the superior for
the conversation.

CM_DEALLOCATED_ABEND_BO

CM_DEALLOCATED_ABEND_SVC_BO

CM_DEALLOCATED_ABEND_TIMER_BO

CM_RESOURCE_FAILURE_RETRY_BO

CM_RESOURCE_FAIL_NO_RETRY_BO

CM_INCLUDE_PARTNER_REJECT_BO

CM_CONV_DEALLOC_AFTER_SYNCPT

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
For half-duplex conversations, when return_code indicates CM_OK:

• The conversation enters Reset state if deallocate_type is set to
CM_DEALLOCATE_SYNC_LEVEL and either sync_level is set to CM_NONE or the
conversation is in Initialize-Incoming state, or if deallocate_type is set to one of the following:

CM_DEALLOCATE_FLUSH

CM_DEALLOCATE_CONFIRM

CM_DEALLOCATE_ABEND.

• The conversation enters Reset state if deallocate_type is set to
CM_DEALLOCATE_SYNC_LEVEL, sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, but the conversation is not currently included in a
transaction.

• The conversation enters Defer-Deallocate state if deallocate_type is set to
CM_DEALLOCATE_SYNC_LEVEL, sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, and the conversation is included in a transaction.

Distributed Transaction Processing: CPI-C Specification, Version 2 153

Deallocate (CMDEAL) Call Reference Section

For full-duplex conversations, when return_code indicates CM_OK:

• The conversation enters Reset state if deallocate_type is set to
CM_DEALLOCATE_SYNC_LEVEL and either sync_level is set to CM_NONE or the
conversation is in Initialize-Incoming state, or if deallocate_type is set to
CM_DEALLOCATE_CONFIRM or CM_DEALLOCATE_ABEND.

• The conversation enters Reset state if deallocate_type is set to CM_DEALLOCATE_FLUSH, or
if deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and sync_level is set to
CM_SYNC_POINT_NO_CONFIRM but the conversation is not currently included in a
transaction, and the current state is Send-Only state.

• The conversation enters Receive-Only state if deallocate_type is set to
CM_DEALLOCATE_FLUSH, or if deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL
and sync_level is set to CM_SYNC_POINT_NO_CONFIRM but the conversation is not
currently included in a transaction, and the current state is Send-Receive state.

• The conversation enters Defer-Deallocate state if deallocate_type is set to
CM_DEALLOCATE_SYNC_LEVEL, sync_level is set to CM_SYNC_POINT_NO_CONFIRM,
and the conversation is included in a transaction.

APPLICATION USAGE

1. The execution of Deallocate includes the flushing of the local system’s send buffer if any of
the following conditions is true:

— deallocate_type is set to CM_DEALLOCATE_FLUSH or CM_DEALLOCATE_CONFIRM

— deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL, sync_level is CM_NONE or
CM_CONFIRM

— deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and sync_level is set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, but the conversation is not
currently included in a transaction.

If deallocate_type is CM_DEALLOCATE_SYNC_LEVEL, sync_level is CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, and the conversation is included in a transaction, the
local system’s send buffer is not flushed until a resource recovery commit or backout call is
issued by the program or the transaction manager.

2. If a conversation has sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, CPI Communications does not allow the
conversation to be deallocated with a deallocate_type of CM_DEALLOCATE_CONFIRM or
CM_DEALLOCATE_FLUSH unless transaction_control is set to
CM_UNCHAINED_TRANSACTIONS and the conversation is not currently included in a
transaction.

3. If deallocate_type is set to CM_DEALLOCATE_ABEND and the log_data_length
characteristic is greater than zero, the system formats the supplied log data into the
appropriate format. The data supplied by the program is any data the program wants to
have logged. The data is logged on the local system’s error log and is also sent to the
remote system for logging there.

4. The remote program receives the deallocate notification by means of a return_code or
status_received indication, as follows:

— CM_DEALLOCATED_NORMAL return_code

This return code indicates that the local program issued Deallocate with the
deallocate_type set to CM_DEALLOCATE_FLUSH, or with the deallocate_type set to

154 X/Open CAE Specification

Call Reference Section Deallocate (CMDEAL)

CM_DEALLOCATE_SYNC_LEVEL and sync_level set to CM_NONE, or with
deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL, sync_level set to
CM_SYNC_POINT_NO_CONFIRM, and the conversation not currently included in a
transaction.

For a full-duplex conversation, this return code is returned on the Receive call, and if
the conversation is using an OSI TP CRM, it is also returned on calls associated with
the Send queue.

— CM_DEALLOCATED_ABEND return_code

This indicates that the local program issued Deallocate with deallocate_type set to
CM_DEALLOCATE_ABEND.

For a full-duplex conversation, this return code is returned on the Receive call, and on
some calls associated with the Send queue.

Note: For a half-duplex conversation, if the conversation is using an LU 6.2 CRM
and the remote program has issued Send_Error with its end of the
conversation in Receive state, the incoming information containing notice of
CM_DEALLOCATED_ABEND is purged and a
CM_DEALLOCATED_NORMAL return_code is reported instead of
CM_DEALLOCATED_ABEND. See Send_Error (CMSERR) on page 240 for a
complete discussion.

— CM_DEALLOCATED_ABEND_BO return_code

This indicates that the local program issued Deallocate with the deallocate_type set to
CM_DEALLOCATE_ABEND and with the conversation included in a transaction.

Note: For a half-duplex conversation, if the conversation is using an LU 6.2 CRM
and the remote program has issued Send_Error with its end of the
conversation in Receive state, the incoming information containing notice of
CM_DEALLOCATED_ABEND_BO is purged and a
CM_DEALLOCATED_NORMAL_BO return_code is reported instead of
CM_DEALLOCATED_ABEND_BO. See Send_Error (CMSERR) on page 240
for a complete discussion.

— CM_CONFIRM_DEALLOC_RECEIVED status_received indication

This indicates that the local program issued Deallocate with the deallocate_type set to
CM_DEALLOCATE_CONFIRM, or with deallocate_type set to
CM_DEALLOCATE_SYNC_LEVEL and sync_level set to CM_CONFIRM, or with
deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL and sync_level set to
CM_SYNC_POINT, but with the conversation not currently included in a transaction.

— CM_TAKE_COMMIT_DEALLOCATE status_received indication

This indicates that the local program issued a resource recovery commit call after
issuing a Deallocate call with deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL
and sync_level set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, and
with the conversation included in a transaction.

5. The program should terminate all conversations before the end of the program. However,
if the program does not terminate all conversations, node services will abnormally
deallocate any dangling conversations. The way abnormal deallocation is accomplished is
implementation-specific.

Distributed Transaction Processing: CPI-C Specification, Version 2 155

Deallocate (CMDEAL) Call Reference Section

6. When a Deallocate call is issued with deallocate_type set to CM_DEALLOCATE_ABEND
and the conversation is included in a transaction, the program may be placed in the
Backout-Required condition.

7. If the conversation is using an OSI TP CRM and the Deallocate call with deallocate_type of
CM_DEALLOCATE_ABEND is the first operation on the specified conversation following
an Accept_Conversation (CMACCP) or Accept_Incoming (CMACCI) call, then any
initialization data specified by use of the Set_Initialization_Data call is sent to the remote
program.

8. If the Deallocate call on a full-duplex conversation is issued with the deallocate_type set to
CM_DEALLOCATE_ABEND, the conversation is deallocated.

If the conversation is not currently included in a transaction, outstanding calls associated
with both the local and remote programs get return codes as follows:

— Locally, all outstanding operations are terminated. No guarantees are given on the
results of the terminated operations.

— At the remote program:

— New calls, other than Confirmed and Set_* calls, as well as outstanding calls,
associated with the Send queue, get CM_DEALLOCATED_ABEND, and the
conversation goes to Receive-Only or Reset state if it was in Send-Receive or
Send-Only state, respectively.

— Any data sent by the partner before it issued the Deallocate call can be received,
after which the next Receive call will get CM_DEALLOCATED_ABEND. The
conversation is now in Reset state.

— Calls to the Expedited-Send queue until the conversation goes to Reset state get
CM_CONVERSATION_ENDING. Outstanding calls are terminated when the
conversation goes to Reset state. No guarantees are given on the results of the
terminated operations.

— Calls to the Expedited-Receive queue until the conversation goes to Reset state get
CM_CONVERSATION_ENDING after any available expedited data has been
received. Outstanding calls are terminated when the conversation goes to Reset
state. No guarantees are given on the results of the terminated operations.

If the conversation is currently included in a transaction, calls associated with the local
Receive queue and the remote Receive queue, as well as certain calls associated with the
remote Send queue, get CM_DEALLOCATED_ABEND_BO and the conversation goes to
Reset state. Calls associated with the expedited data queues get the same return codes as
when the conversation is not included in a transaction.

9. For a full-duplex conversation in Send-Receive state, when CM_DEALLOCATED_ABEND
is returned to a call associated with the Send queue, the program can terminate the
conversation by issuing Receive calls until it gets the CM_DEALLOCATED_ABEND return
code that takes it to Reset state, or by issuing a Deallocate call with deallocate_type set to
CM_DEALLOCATED_ABEND.

10. For a full-duplex conversation, if any of the following conditions is true:

— deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and sync_level is set to
CM_NONE

— deallocate_type is set to CM_DEALLOCATE_FLUSH

156 X/Open CAE Specification

Call Reference Section Deallocate (CMDEAL)

— deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and sync_level is set to
CM_SYNC_POINT_NO_CONFIRM, but the conversation is not currently included in a
transaction

then the program can no longer send data on the conversation when a Deallocate call
issued in Send-Receive state completes, and the conversation_ID is no longer assigned
when a Deallocate call issued in Send-Only state completes.

If deallocate_type is set to CM_DEALLOCATE_CONFIRM, or if deallocate_type is set to
CM_DEALLOCATE_SYNC_LEVEL and sync_level is set to CM_SYNC_POINT but the
conversation is not currently included in a transaction, then the conversation_ID is no
longer assigned when the conversation is deallocated after confirmation.

If deallocate_type is CM_DEALLOCATE_ABEND, then the conversation_ID is no longer
assigned when the conversation is deallocated as part of this call.

11. Implementors should note that a Deallocate call with deallocate_type set to
CM_DEALLOCATE_ABEND issued on a basic conversation implies the LU 6.2 protocol
boundary return code of DEALLOCATE_ABEND_PROG. No separate parameter value is
supported since a separate value would not provide any additional function. In LU 6.2, the
sense data 08640000 maps to a return code of DEALLOCATE_ABEND for mapped
conversations and to DEALLOCATE_ABEND_PROG for basic conversations. It does not
appear useful to require the application to check for different return codes that have the
same meaning depending on the conversation type.

SEE ALSO
Section 4.2.1 on page 65 shows an example program flow using the Deallocate call for a half-
duplex conversation.

Section 4.3.11 on page 90 shows how a full-duplex conversation can be deallocated.

Set_Deallocate_Type (CMSDT) on page 273 discusses the deallocate_type characteristic and its
possible values.

Set_Log_Data (CMSLD) on page 285 discusses the log_data characteristic.

Distributed Transaction Processing: CPI-C Specification, Version 2 157

Deferred_Deallocate (CMDFDE) Call Reference Section

NAME
Deferred_Deallocate (CMDFDE) — end a conversation following successful completion of the
current transaction.

SYNOPSIS
CALL CMDFDE(conversation_ID , return_code)

DESCRIPTION
A program uses the Deferred_Deallocate (CMDFDE) call to end a conversation upon successful
completion of the current transaction.

Deferred_Deallocate may be issued at any time during the transaction. Unlike the Deallocate
call, it does not need to be the last call on the conversation. Deferred_Deallocate does not
invalidate the conversation identifier.

Note: The Deferred_Deallocate (CMDFDE) call has meaning only when an OSI TP CRM is
being used for the conversation.

The Deferred_Deallocate (CMDFDE) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_OPERATION_INCOMPLETE

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— This value indicates the conversation_ID specifies an unassigned identifier.

— The conversation is not using an OSI TP CRM.

— The program is not the superior for the conversation.

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation is not in Send or Send-Pending state (for half-duplex
conversations) or Send-Receive state (for full-duplex conversations).

— The conversation is not currently included in a transaction.

CM_TAKE_BACKOUT

CM_DEALLOCATED_ABEND_BO

CM_RESOURCE_FAILURE_RETRY_BO

CM_RESOURCE_FAIL_NO_RETRY_BO

CM_INCLUDE_PARTNER_REJECT_BO

CM_OPERATION_NOT_ACCEPTED

158 X/Open CAE Specification

Call Reference Section Deferred_Deallocate (CMDFDE)

CM_PRODUCT_SPECIFIC_ERROR.

Half-duplex Conversations

The following return codes apply to half-duplex conversations:

CM_SYNC_LVL_NOT_SUPPORTED_SYS

CM_SEND_RCV_MODE_NOT_SUPPORTED

CM_TPN_NOT_RECOGNIZED

CM_TP_NOT_AVAILABLE_NO_RETRY

CM_TP_NOT_AVAILABLE_RETRY

CM_PROGRAM_ERROR_PURGING.

Full-duplex Conversations

The following return code applies to full-duplex conversations:

CM_ALLOCATION_ERROR.

STATE CHANGES
This call does not cause an immediate state change. However, one of the following occurs after
the transaction completes:

• If the transaction completes successfully, the conversation enters Reset state and the
conversation_ID is no longer assigned.

• If the transaction does not complete successfully, the conversation returns to the state it was
in at the beginning of the transaction, and the conversation_ID remains valid. If the
conversation was initialized during the transaction, the conversation returns to the state it
was in following conversation establishment.

APPLICATION USAGE

1. Once a commit call completes successfully for this transaction, a Deferred_Deallocate call
performs the same function as a Deallocate (CMDEAL) call with deallocate_type set to
CM_DEALLOCATE_SYNC_LEVEL and sync_level set to either CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM.

2. If the transaction does not complete successfully and is backed out, a previous
Deferred_Deallocate call on the conversation is no longer in effect.

SEE ALSO
Deallocate (CMDEAL) on page 147 discusses conversation deallocation in more detail.

Distributed Transaction Processing: CPI-C Specification, Version 2 159

Extract_AE_Qualifier (CMEAEQ) Call Reference Section

NAME
Extract_AE_Qualifier (CMEAEQ) — view the current AE_qualifier conversation characteristic.

SYNOPSIS
CALL CMEAEQ(conversation_ID , AE_qualifier , AE_qualifier_length ,

AE_qualifier_format , return_code)

DESCRIPTION
The local program uses the Extract_AE_Qualifier (CMEAEQ) call to extract the AE_qualifier
conversation characteristic for a given conversation. The value is returned to the application in
the AE_qualifier parameter.

The Extract_AE_Qualifier (CMEAEQ) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• AE_qualifier (output)

Specifies the variable containing the application-entity-qualifier for the remote program. The
length of the variable must be at least 1024 bytes.

Note: Unless return_code is set to CM_OK, the value of AE_qualifier is not meaningful.

• AE_qualifier_length (output)

Specifies the variable containing the length of the returned AE_qualifier parameter.

Note: Unless return_code is set to CM_OK, the value of AE_qualifier_length is not
meaningful.

• AE_qualifier_format (output)

Specifies the variable containing the format of the returned AE_qualifier parameter. The
AE_qualifier_format variable can have one of the following values:

CM_DN
Specifies that the AE_qualifier is a distinguished name.

CM_INT_DIGITS
Specifies that the AE_qualifier is an integer represented as a sequence of decimal digits.

Note: Unless return_code is set to CM_OK, the value of AE_qualifier_format is not
meaningful.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned identifier.

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation_ID specifies a conversation in Initialize-
Incoming state.

160 X/Open CAE Specification

Call Reference Section Extract_AE_Qualifier (CMEAEQ)

CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level non-blocking for
the conversation and a previous call operation is still in progress.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

APPLICATION USAGE

1. This call does not change the AE_qualifier, AE_qualifier_length or AE_qualifier_format for the
specified conversation.

2. The AE_qualifier may be either a distinguished name or an integer. Distinguished names
may have any format and syntax that can be recognized by the local system. Integers are
represented as a series of digits.

3. The call is not associated with any conversation queue. When a conversation uses queue-
level non-blocking, the call does not return CM_OPERATION_NOT_ACCEPTED.

SEE ALSO
Set_AE_Qualifier (CMSAEQ) on page 253 and Section 3.5.2 on page 22 provide more information
on the AE_qualifier conversation characteristic.

Distributed Transaction Processing: CPI-C Specification, Version 2 161

Extract_AP_Title (CMEAPT) Call Reference Section

NAME
Extract_AP_Title (CMEAPT) — view the current AP_title conversation characteristic.

SYNOPSIS
CALL CMEAPT(conversation_ID , AP_title , AP_title_length ,

AP_title_format , return_code)

DESCRIPTION
A program uses the Extract_AP_Title (CMEAPT) call to extract the AP_title characteristic for a
given conversation. The value is returned to the application in the AP_title parameter.

The Extract_AP_Title (CMEAPT) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• AP_title (output)

Specifies the variable containing the title of the application-process where the remote
program is located. The length of the variable must be at least 1024 bytes.

Note: Unless return_code is set to CM_OK, the value of AP_title is not meaningful.

• AP_title_length (output)

Specifies the variable containing the length of the returned AP_title parameter.

Note: Unless return_code is set to CM_OK, the value of AP_title_length is not meaningful.

• AP_title_format (output)

Specifies the variable containing the format of the returned AP_title parameter. The
AP_title_format variable can have one of the following values:

CM_DN
Specifies that the AP_title is a distinguished name.

CM_OID
Specifies that the AP_title is an object identifier.

Note: Unless return_code is set to CM_OK, the value of AP_title_format is not meaningful.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned identifier.

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation_ID specifies a conversation in Initialize-
Incoming state.

CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level non-blocking for
the conversation and a previous call operation is still in progress.

162 X/Open CAE Specification

Call Reference Section Extract_AP_Title (CMEAPT)

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

APPLICATION USAGE

1. This call does not change the AP_title, AP_title_length or AP_title_format for the specified
conversation.

2. The AP_title may be either a distinguished name or an object identifier. Distinguished
names may have any format and syntax that can be recognized by the local system. Object
identifiers are represented as a series of digits by periods (for example, n.nn.n.nnn).

3. The call is not associated with any conversation queue. When a conversation uses queue-
level non-blocking, the call does not return CM_OPERATION_NOT_ACCEPTED on the
conversation.

SEE ALSO
Set_AP_Title (CMSAPT) on page 257 and Section 3.5.2 on page 22 provide more information on
the AP_title conversation characteristic.

Distributed Transaction Processing: CPI-C Specification, Version 2 163

Extract_Application_Context_Name (CMEACN) Call Reference Section

NAME
Extract_Application_Context_Name (CMEACN) — view the current application_context_name
conversation characteristic.

SYNOPSIS
CALL CMEACN(conversation_ID , application_context_name ,

application_context_name_length , return_code)

DESCRIPTION
Extract_Application_Context_Name (CMEACN) is used by a program to extract the
application_context_name characteristic for a given conversation. The value is returned to the
application in the application_context_name parameter.

The Extract_Application_Context_Name (CMEACN) call uses the following input and output
parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• application_context_name (output)

Specifies the application context name that is to be used on the conversation. The length of
the variable must be at least 256 bytes.

Note: Unless return_code is set to CM_OK, the value of application_context_name is not
meaningful.

• application_context_name_length (output)

Specifies the length of the application context name that is to be used on the conversation.

Note: Unless return_code is set to CM_OK, the value of application_context_name_length is
not meaningful.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned identifier.

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation_ID specifies a conversation in Initialize-
Incoming state.

CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level non-blocking for
the conversation and a previous call operation is still in progress.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

164 X/Open CAE Specification

Call Reference Section Extract_Application_Context_Name (CMEACN)

APPLICATION USAGE

1. This call does not change the application_context_name or the
application_context_name_length conversation characteristic for the specified conversation.

2. The application context name is an object identifier and is represented as a series of digits
separated by periods. For example, the default application context name defined by ISO
for OSI TP with UDT is represented as 1.0.10026.6.2.

3. The call is not associated with any conversation queue. When a conversation uses queue-
level non-blocking, the call does not return CM_OPERATION_NOT_ACCEPTED on the
conversation.

SEE ALSO
Set_Application_Context_Name (CMSACN) on page 259 and Section 3.5.2 on page 22 provide
more information on the application_context_name conversation characteristic.

Distributed Transaction Processing: CPI-C Specification, Version 2 165

Extract_Conversation_State (CMECS) Call Reference Section

NAME
Extract_Conversation_State (CMECS) — view the current state of a conversation.

SYNOPSIS
CALL CMECS(conversation_ID , conversation_state , return_code)

DESCRIPTION
A program uses the Extract_Conversation_State (CMECS) call to extract the conversation state
for a given conversation. The value is returned in the conversation_state parameter.

The Extract_Conversation_State (CMECS) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• conversation_state (output)

Specifies the conversation state that is returned to the local program.

Half-duplex Conversations

For half-duplex conversations, the conversation_state can be one of the following:

CM_INITIALIZE_STATE

CM_SEND_STATE

CM_RECEIVE_STATE

CM_SEND_PENDING_STATE

CM_CONFIRM_STATE

CM_CONFIRM_SEND_STATE

CM_CONFIRM_DEALLOCATE_STATE

CM_DEFER_RECEIVE_STATE

CM_DEFER_DEALLOCATE_STATE

CM_SYNC_POINT_STATE

CM_SYNC_POINT_SEND_STATE

CM_SYNC_POINT_DEALLOCATE_STATE

CM_INITIALIZE_INCOMING_STATE

CM_PREPARED_STATE.

Full-duplex Conversations

For full-duplex conversations, the conversation_state can be one of the following:

CM_INITIALIZE_STATE

CM_CONFIRM_DEALLOCATE_STATE

CM_DEFER_DEALLOCATE_STATE

CM_SYNC_POINT_STATE

CM_SYNC_POINT_DEALLOCATE_STATE

166 X/Open CAE Specification

Call Reference Section Extract_Conversation_State (CMECS)

CM_INITIALIZE_INCOMING_STATE

CM_SEND_ONLY_STATE

CM_RECEIVE_ONLY_STATE

CM_SEND_RECEIVE_STATE

CM_PREPARED_STATE.

Note: Unless return_code is set to CM_OK, the value of conversation_state is not
meaningful.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_PROGRAM_PARAMETER_CHECK
This return code indicates that the conversation_ID specifies an unassigned conversation
identifier.

CM_TAKE_BACKOUT
This value is returned only when all of the following conditions are true:

— The sync_level is set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM,
and the conversation is included in a transaction.

— The conversation is not in Initialize, Initialize-Incoming, Confirm-Deallocate,
Send-Only or Receive-Only state.

— The program is in the Backout-Required condition.

— The program is using protected resources that must be backed out.

CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level non-blocking for
the conversation and a previous call operation is still in progress.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE

1. This call can be used to discover the state of a conversation after it has been backed out
during a resource recovery backout operation.

2. The call is not associated with any conversation queue. When a conversation uses queue-
level non-blocking, the call does not return CM_OPERATION_NOT_ACCEPTED on the
conversation.

SEE ALSO
Section 3.14 on page 51 provides more information on using resource recovery interfaces.

Distributed Transaction Processing: CPI-C Specification, Version 2 167

Extract_Conversation_Type (CMECT) Call Reference Section

NAME
Extract_Conversation_Type (CMECT) — view the current conversation_type conversation
characteristic.

SYNOPSIS
CALL CMECT(conversation_ID , conversation_type , return_code)

DESCRIPTION
A program uses the Extract_Conversation_Type (CMECT) call to extract the conversation_type
characteristic’s value for a given conversation. The value is returned in the conversation_type
parameter.

The Extract_Conversation_Type (CMECT) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• conversation_type (output)

Specifies the conversation type that is returned to the local program. The conversation_type
can be one of the following:

CM_BASIC_CONVERSATION
Indicates that the conversation is allocated as a basic conversation.

CM_MAPPED_CONVERSATION
Indicates that the conversation is allocated as a mapped conversation.

Note: Unless return_code is set to CM_OK, the value of conversation_type is not meaningful.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_PROGRAM_PARAMETER_CHECK
This return code indicates that the conversation_ID specifies an unassigned conversation
identifier.

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation_ID specifies a conversation in Initialize-
Incoming state.

CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level non-blocking for
the conversation and a previous call operation is still in progress.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE

1. This call does not change the conversation_type for the specified conversation.

2. The call is not associated with any conversation queue. When a conversation uses queue-
level non-blocking, the call does not return CM_OPERATION_NOT_ACCEPTED on the
conversation.

168 X/Open CAE Specification

Call Reference Section Extract_Conversation_Type (CMECT)

SEE ALSO
Set_Conversation_Type (CMSCT) on page 271 provides more information on the conversation_type
characteristic.

Distributed Transaction Processing: CPI-C Specification, Version 2 169

Extract_Initialization_Data (CMEID) Call Reference Section

NAME
Extract_Initialization_Data (CMEID) — extract the current initialization_data conversation
characteristic.

SYNOPSIS
CALL CMEID(conversation_ID , initialization_data , requested_length ,

initialization_data_length , return_code)

DESCRIPTION
A program uses the Extract_Initialization_Data (CMEID) call to extract the initialization_data and
initialization_data_length conversation characteristics received from the remote program for a
given conversation. The values are returned to the program in the initialization_data and
initialization_data_length parameters.

The Extract_Initialization_Data call is used by the recipient of the conversation to extract the
incoming initialization data received from the initiator of the conversation. It may be issued
following the Accept_Conversation or Accept_Incoming call.

When the conversation is using an OSI TP CRM, the Extract_Initialization_Data call may also be
used by the initiator of the conversation to extract the incoming initialization data from the
recipient of the conversation. In this case, the call may be issued following receipt of a
control_information_received value of CM_ALLOCATE_CONFIRMED_WITH_DATA or
CM_ALLOCATE_REJECTED_WITH_DATA

The Extract_Initialization_Data (CMEID) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• initialization_data (output)

Specifies the variable containing the initialization data. Initialization data may be from 0 to
10000 bytes.

Note: Unless return_code is set to CM_OK, the value of initialization_data is not
meaningful.

• requested_length (input)

Specifies the length of the initialization_data variable to contain the initialization data.

• initialization_data_length (output)

If return_code is CM_OK, the output value of this parameter specifies the size of the
initialization_data variable in bytes. If return_code is CM_BUFFER_TOO_SMALL, this
parameter indicates the size of the initialization_data to be extracted.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

170 X/Open CAE Specification

Call Reference Section Extract_Initialization_Data (CMEID)

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned identifier.

— The requested_length specifies a value less than 0.

CM_BUFFER_TOO_SMALL
The requested_length specifies a value that is less than the size of the initialization_data
characteristic to be extracted. The initialization_data characteristic is not returned, but
the initialization_data_length parameter is set to indicate the size required.

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation_ID specifies a conversation in Initialize-
Incoming state.

CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level non-blocking for
the conversation and a previous call operation is still in progress.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

APPLICATION USAGE

1. This call does not change the value of the initialization_data or the initialization_data_length
characteristic for the specified conversation.

2. The program that initiates the conversation (issues Initialize_Conversation) must set
allocate_confirm to CM_ALLOCATE_CONFIRM if it is expecting initialization data to be
returned from the remote program following its confirmation of acceptance of the
conversation.

3. The call is not associated with any conversation queue. When a conversation uses queue-
level non-blocking, the call does not return CM_OPERATION_NOT_ACCEPTED on the
conversation.

SEE ALSO
Set_Initialization_Data (CMSID) on page 281 describes how the initialization data is set by the
remote program.

Distributed Transaction Processing: CPI-C Specification, Version 2 171

Extract_Maximum_Buffer_Size (CMEMBS) Call Reference Section

NAME
Extract_Maximum_Buffer_Size (CMEMBS) — extract the maximum buffer size supported by the
system.

SYNOPSIS
CALL CMEMBS(maximum_buffer_size , return_code)

DESCRIPTION
A program uses the Extract_Maximum_Buffer_Size (CMEMBS) call to extract the maximum
buffer size supported by the system.

The Extract_Maximum_Buffer_Size (CMEMBS) call uses the following output parameters:

• maximum_buffer_size (output)

Specifies the variable containing the maximum buffer size supported by the system.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call causes no state changes.

APPLICATION USAGE
This call can be used to find out the maximum buffer size supported by the system, when the
maximum value is not known during program development. The value in maximum_buffer_size
determines the largest amount of data the program can send in a Send_Data call or extract in an
Extract_Secondary_Information call. The largest amount of data that can be received by the
program in a Receive call is:

• For a basic conversation:

— 32767, if the fill characteristic is set to CM_FILL_LL

— the value of maximum_buffer_size, if the fill characteristic is set to CM_FILL_BUFFER.

• For a mapped conversation:

— the value of maximum_buffer_size; the program should be aware that the
CM_INCOMPLETE_DATA_RECEIVED value of the data_received parameter on the
Receive call may be returned when the local maximum buffer size is less than the
program partner’s maximum buffer size.

172 X/Open CAE Specification

Call Reference Section Extract_Mode_Name (CMEMN)

NAME
Extract_Mode_Name (CMEMN) — view the current mode_name conversation characteristic.

SYNOPSIS
CALL CMEMN(conversation_ID , mode_name, mode_name_length , return_code)

DESCRIPTION
A program uses the Extract_Mode_Name (CMEMN) call to extract the mode_name
characteristic’s value for a given conversation. The value is returned to the program in the
mode_name parameter.

The Extract_Mode_Name (CMEMN) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• mode_name (output)

Specifies the variable containing the mode name. The mode name designates the network
properties for the logical connection allocated, or to be allocated, which will carry the
conversation specified by the conversation_ID. The length of the variable must be at least 8
bytes.

Note: Unless return_code is set to CM_OK, the value of mode_name is not meaningful.

• mode_name_length (output)

Specifies the variable containing the length of the returned mode_name parameter.

Note: Unless return_code is set to CM_OK, the value of mode_name_length is not
meaningful.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned conversation
identifier.

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation_ID specifies a conversation in Initialize-
Incoming state.

CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level non-blocking for
the conversation and a previous call operation is still in progress.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE

1. This call does not change the mode_name for the specified conversation.

2. CPI Communications returns the mode_name using the native encoding of the local system.

Distributed Transaction Processing: CPI-C Specification, Version 2 173

Extract_Mode_Name (CMEMN) Call Reference Section

3. The call is not associated with any conversation queue. When a conversation uses queue-
level non-blocking, the call does not return CM_OPERATION_NOT_ACCEPTED on the
conversation.

SEE ALSO
Section 3.8.5 on page 38 provides further information on the automatic conversion of the
mode_name parameter.

Set_Mode_Name (CMSMN) on page 287 and Section 3.5.2 on page 22 provide further information
on the mode_name characteristic.

174 X/Open CAE Specification

Call Reference Section Extract_Partner_LU_Name (CMEPLN)

NAME
Extract_Partner_LU_Name (CMEPLN) — view the current partner_LU_name conversation
characteristic.

SYNOPSIS
CALL CMEPLN(conversation_ID , partner_LU_name , partner_LU_name_length ,

return_code)

DESCRIPTION
A program uses the Extract_Partner_LU_Name (CMEPLN) call to extract the partner_LU_name
characteristic’s value for a given conversation. The value is returned in the partner_LU_name
parameter.

The Extract_Partner_LU_Name (CMEPLN) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• partner_LU_name (output)

Specifies the variable containing the name of the LU where the remote program is located.
The length of the variable must be at least 17 bytes.

Note: Unless return_code is set to CM_OK, the value of partner_LU_name is not
meaningful.

• partner_LU_name_length (output)

Specifies the variable containing the length of the returned partner_LU_name parameter.

Note: Unless return_code is set to CM_OK, the value of partner_LU_name_length is not
meaningful.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned conversation
identifier.

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation_ID specifies a conversation in Initialize-
Incoming state.

CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level non-blocking for
the conversation and a previous call operation is still in progress.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

Distributed Transaction Processing: CPI-C Specification, Version 2 175

Extract_Partner_LU_Name (CMEPLN) Call Reference Section

APPLICATION USAGE

1. This call does not change the partner_LU_name for the specified conversation.

2. CPI Communications returns the partner_LU_name using the native encoding of the local
system.

3. The call is not associated with any conversation queue. When a conversation uses queue-
level non-blocking, the call does not return CM_OPERATION_NOT_ACCEPTED on the
conversation.

SEE ALSO
Section 3.8.5 on page 38 provides further information on the automatic conversion of the
partner_LU_name parameter.

Set_Partner_LU_Name (CMSPLN) on page 289 and Section 3.5.2 on page 22 provide more
information on the partner_LU_name characteristic.

176 X/Open CAE Specification

Call Reference Section Extract_Secondary_Information (CMESI)

NAME
Extract_Secondary_Information (CMESI) — extract secondary information associated with the
return code for a given call.

SYNOPSIS
CALL CMESI(conversation_ID , call_ID , buffer , requested_length ,

data_received , received_length , return_code)

DESCRIPTION
Extract_Secondary_Information (CMESI) is used to extract secondary information associated
with the return code for a given call.

The Extract_Secondary_Information (CMESI) call uses the following input and output
parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• call_ID (input)

Specifies the call identifier (see Table A-1 on page 330).

• buffer (output)

Specifies the variable in which the program is to receive the secondary information.

Note: buffer contains information only if the return_code is set to CM_OK.

• requested_length (input)

Specifies the maximum amount of secondary information the program is to receive. Valid
requested_length values range from 1 to the maximum buffer size supported by the system.
The maximum buffer size is at least 32767 bytes. See the APPLICATION USAGE section of
Receive (CMRCV) on page 208 for additional information about determining the maximum
buffer size.

• data_received (output)

Specifies whether or not the program received complete secondary information.

Note: Unless return_code is set to CM_OK, the value contained in data_received has no
meaning.

The data_received variable can have one of the following values:

CM_COMPLETE_DATA_RECEIVED
This value indicates that complete secondary information is received.

CM_INCOMPLETE_DATA_RECEIVED
This value indicates that more secondary information is available to be received.

• received_length (output)

Specifies the variable containing the amount of secondary information the program received,
up to the maximum.

Note: Unless return_code is set to CM_OK, the value contained in received_length has no
meaning.

Distributed Transaction Processing: CPI-C Specification, Version 2 177

Extract_Secondary_Information (CMESI) Call Reference Section

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_NO_SECONDARY_INFORMATION
This value indicates that no secondary information is available for the specified call on
the specified conversation.

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The call_ID specifies CM_CMESI or an undefined value.

— The requested_length specifies a value that exceeds the range permitted by the
implementation.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE

1. The program should issue the call immediately after it receives a return code at the
completion of a call. In particular, when a conversation is deallocated and enters Reset
state, the associated secondary information and conversation identifier are available for a
system-dependent time.

2. If an Accept_Conversation, Initialize_Conversation, or Initialize_For_Incoming call fails, a
conversation identifier is assigned and returned to the program for use only on the
Extract_Secondary_Information call.

3. When the Extract_Secondary_Information call completes successfully, CPI
Communications no longer keeps the returned secondary information for the specified call
on the specified conversation. The same information is not available for a subsequent
Extract_Secondary_Information call.

4. The program cannot use the call to retrieve secondary information for the previous
Extract_Secondary_Information call.

5. When the call_ID specifies one of the non-conversation calls (i.e., Convert_Incoming,
Convert_Outgoing, Extract_Maximum_Buffer_Size, Release_Local_TP_Name,
Specify_Local_TP_Name, Wait_For_Conversation and Wait_For_Completion), the
conversation_ID is ignored.

6. Implementors should note that because of different non-blocking levels, an
implementation should maintain secondary information as follows:

— For conversations using conversation-level non-blocking, secondary information is
kept:

— on a per-conversation basis for conversation calls

— on a per-thread basis for non-conversation calls.

178 X/Open CAE Specification

Call Reference Section Extract_Secondary_Information (CMESI)

— For conversations not using conversation-level non-blocking, secondary information is
kept:

— on a per-queue basis for calls that are associated with a conversation queue

— on a per-thread basis for calls that are not associated with any conversation queue.

SEE ALSO
Extract_Maximum_Buffer_Size (CMEMBS) on page 172 further discusses determining the
maximum buffer size supported by the system.

Section B.2 on page 362 provides a complete discussion of secondary information.

Distributed Transaction Processing: CPI-C Specification, Version 2 179

Extract_Security_User_ID (CMESUI) Call Reference Section

NAME
Extract_Security_User_ID (CMESUI) — view the current security_user_ID conversation
characteristic.

SYNOPSIS
CALL CMESUI(conversation_ID , security_user_ID , security_user_ID_length ,

return_code)

DESCRIPTION
A program uses Extract_Security_User_ID (CMESUI) to extract the value of the security_user_ID
characteristic for a given conversation.

The Extract_Security_User_ID (CMESUI) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• security_user_ID (output)

Specifies the variable containing the user ID. The length of the variable must be at least 10
bytes.

Note: If return_code is not set to CM_OK, security_user_ID is undefined.

• security_user_ID_length (output)

Specifies the variable containing the length of the user ID.

Note: If return_code is not set to CM_OK, security_user_ID_length is undefined.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned conversation
identifier.

CM_PROGRAM_STATE_CHECK
This value indicates that the program is in Initialize-Incoming state.

CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level non-blocking for
the conversation and a previous call operation is still in progress.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

APPLICATION USAGE

1. This call does not change the security_user_ID for the specified conversation.

2. CPI Communications returns the security_user_ID using the native encoding of the local
system.

180 X/Open CAE Specification

Call Reference Section Extract_Security_User_ID (CMESUI)

3. The call is not associated with any conversation queue. When a conversation uses queue-
level non-blocking, the call does not return CM_OPERATION_NOT_ACCEPTED on the
conversation.

SEE ALSO
Section 3.8.5 on page 38 provides further information on the automatic conversion of the
security_user_ID parameter.

Set_Conversation_Security_User_ID (CMSCSU) on page 269 discusses the setting of the
security_user_ID characteristic.

Distributed Transaction Processing: CPI-C Specification, Version 2 181

Extract_Send_Receive_Mode (CMESRM) Call Reference Section

NAME
Extract_Send_Receive_Mode (CMESRM) — view the current send_receive_mode conversation
characteristic.

SYNOPSIS
CALL CMESRM(conversation_ID , send_receive_mode , return_code)

DESCRIPTION
The Extract_Send_Receive_Mode (CMESRM) call is used by a program to extract the value of
the send_receive_mode characteristic for a conversation. The value is returned in the
send_receive_mode parameter.

The Extract_Send_Receive_Mode (CMESRM) call uses the following input and output
parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• send_receive_mode (output)

Specifies the send-receive mode for the conversation.

The send_receive_mode variable can have one of the following values:

CM_HALF_DUPLEX
Indicates that the conversation is a half-duplex conversation.

CM_FULL_DUPLEX
Indicates that the conversation is a full-duplex conversation.

Note: Unless return_code is set to CM_OK, the value of send_receive_mode is not
meaningful.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned conversation
identifier.

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation_ID specifies a conversation in Initialize-
Incoming state.

CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level non-blocking for
the conversation and a previous call operation is still in progress.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

182 X/Open CAE Specification

Call Reference Section Extract_Send_Receive_Mode (CMESRM)

APPLICATION USAGE

1. This call does not change the send_receive_mode for the specified conversation.

2. This call is not associated with any conversation queue. When a conversation uses queue-
level non-blocking, the call does not return CM_OPERATION_NOT_ACCEPTED on the
conversation.

SEE ALSO
Section 3.3 on page 19 provides more information on the differences between half-duplex and
full-duplex conversations.

Section 4.3.9 on page 86 shows an example of how a full-duplex conversation is set up.

Set_Send_Receive_Mode (CMSSRM) on page 307 describes how to set the send_receive_mode
characteristic for a conversation.

Distributed Transaction Processing: CPI-C Specification, Version 2 183

Extract_Sync_Level (CMESL) Call Reference Section

NAME
Extract_Sync_Level (CMESL) — view the current sync_level conversation characteristic.

SYNOPSIS
CALL CMESL(conversation_ID , sync_level , return_code)

DESCRIPTION
A program uses the Extract_Sync_Level (CMESL) call to extract the sync_level characteristic’s
value for a given conversation. The value is returned to the program in the sync_level parameter.

The Extract_Sync_Level (CMESL) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• sync_level (output)

Specifies the variable containing the sync_level characteristic of this conversation. The
sync_level variable can have one of the following values:

CM_NONE
Specifies that the programs will not perform confirmation processing on this
conversation. The programs will not issue calls or recognize returned parameters
relating to synchronization.

CM_CONFIRM (half-duplex conversations only)
Specifies that the programs can perform confirmation processing on this conversation.
The programs can issue calls and will recognize returned parameters relating to
confirmation.

CM_SYNC_POINT (half-duplex conversations only)
For systems that support resource recovery processing, this value specifies that this
conversation is a protected resource. The programs can issue resource recovery calls
and will recognize returned parameters relating to resource recovery operations. The
programs can also perform confirmation processing.

CM_SYNC_POINT_NO_CONFIRM
For systems that support resource recovery processing, this value specifies that the
conversation is a protected resource. The programs can issue resource recovery
interface calls and will recognize returned parameters relating to resource recovery
processing. The programs cannot perform confirmation processing.

Notes:

1. Unless return_code is set to CM_OK, the value of sync_level is not meaningful.

2. If the conversation is using an OSI TP CRM, confirmation of the deallocation
of the conversation can be performed with any sync_level value.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned conversation
identifier.

184 X/Open CAE Specification

Call Reference Section Extract_Sync_Level (CMESL)

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation_ID specifies a conversation in Initialize-
Incoming state.

CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level non-blocking for
the conversation and a previous call operation is still in progress.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE

1. This call does not change the sync_level for the specified conversation.

2. The call is not associated with any conversation queue. When a conversation uses queue-
level non-blocking, the call does not return CM_OPERATION_NOT_ACCEPTED on the
conversation.

SEE ALSO
Set_Sync_Level (CMSSL) on page 311 provides more information on the sync_level characteristic.

Distributed Transaction Processing: CPI-C Specification, Version 2 185

Extract_TP_Name (CMETPN) Call Reference Section

NAME
Extract_TP_Name (CMETPN) — determine the TP_name characteristic’s value for a given
conversation.

SYNOPSIS
CALL CMETPN(conversation_ID , TP_name, TP_name_length , return_code)

DESCRIPTION
A program uses the Extract_TP_Name (CMETPN) call to extract the TP_name characteristic’s
value for a given conversation. The value is returned to the program in the TP_name parameter.

For a conversation established using Initialize_Conversation, TP_name is the value set from the
side information referenced by sym_dest_name or set by the Set_TP_Name call.

For a conversation established by Accept_Conversation or Accept_Incoming, TP_name is the
value included in the conversation startup request. Since this value comes from the TP_name
characteristic of the remote program, the values are the same at both ends of a conversation.

The Extract_TP_Name (CMETPN) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• TP_name (output)

Specifies the variable containing the TP_name for the specified conversation. The length of
the variable must be at least 64 bytes.

Note: Unless return_code is set to CM_OK, the value in TP_name is not meaningful.

• TP_name_length (output)

Specifies the variable containing the length of the returned TP_name.

Note: Unless return_code is set to CM_OK, the value in TP_name_length is not meaningful.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned conversation
identifier.

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is in Initialize-Incoming state.

CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level non-blocking for
the conversation and a previous call operation is still in progress.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

186 X/Open CAE Specification

Call Reference Section Extract_TP_Name (CMETPN)

APPLICATION USAGE

1. This call is used by programs that accept multiple conversations. Extract_TP_Name
allows the program to determine which local name was specified in the incoming
conversation startup request.

2. The call is not associated with any conversation queue. When a conversation uses queue-
level non-blocking, the call does not return CM_OPERATION_NOT_ACCEPTED on the
conversation.

SEE ALSO
Specify_Local_TP_Name (CMSLTP) on page 317 provides more information on handling multiple
names within a single program.

Distributed Transaction Processing: CPI-C Specification, Version 2 187

Extract_Transaction_Control (CMETC) Call Reference Section

NAME
Extract_Transaction_Control (CMETC) — extract the transaction_control characteristic’s value for
a given conversation.

SYNOPSIS
CALL CMETC(conversation_ID , transaction_control , return_code)

DESCRIPTION
Extract_Transaction_Control (CMETC) is used by a program to extract the transaction_control
characteristic for a given conversation. The value is returned to the application program in the
transaction_control parameter.

The transaction_control characteristic is used only by an OSI TP CRM and is not significant unless
the sync_level characteristic is set to either CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM.

The Extract_Transaction_Control (CMETC) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• transaction_control (output)

Specifies the variable containing the transaction_control characteristic for the specified
conversation. The transaction_control variable can have one of the following values:

CM_CHAINED_TRANSACTIONS
Specifies that the conversation uses chained transactions.

CM_UNCHAINED_TRANSACTIONS
Specifies that the conversation uses unchained transactions.

Note: Unless return_code is set to CM_OK, the value of transaction_control is not
meaningful.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned identifier.

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation_ID specifies a conversation in Initialize-
Incoming state.

CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level non-blocking for
the conversation and a previous call operation is still in progress.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

188 X/Open CAE Specification

Call Reference Section Extract_Transaction_Control (CMETC)

APPLICATION USAGE

1. This call does not change the transaction_control for the specified conversation.

2. This call is not associated with any conversation queue. When a conversation uses queue-
level non-blocking, the call does not return CM_OPERATION_NOT_ACCEPTED.

3. This call can be used by the recipient to determine the transaction_control characteristic for
the conversation.

If the value is CM_CHAINED_TRANSACTIONS and join_transaction is set to
CM_JOIN_IMPLICIT, the conversation is already included in a transaction. If the value is
CM_CHAINED_TRANSACTIONS and join_transaction is set to CM_JOIN_EXPLICIT, the
program must issue a tx_begin() call to join the transaction.

If the value is CM_UNCHAINED_TRANSACTIONS, the program is informed with a
CM_JOIN_TRANSACTION status_received value if it is to join the transaction. If the
join_transaction characteristic is set to CM_JOIN_IMPLICIT, the conversation is already
included in the transaction. If the join_transaction characteristic is set to
CM_JOIN_EXPLICIT, the program must issue a tx_begin() call to join the transaction.

SEE ALSO
Set_Transaction_Control (CMSTC) on page 315 provides more information on the
transaction_control characteristic.

Distributed Transaction Processing: CPI-C Specification, Version 2 189

Flush (CMFLUS) Call Reference Section

NAME
Flush (CMFLUS) — flush the local CRM’s send buffer.

SYNOPSIS
CALL CMFLUS(conversation_ID , return_code)

DESCRIPTION
A program uses the Flush (CMFLUS) call to empty the local system’s send buffer for a given
conversation. When notified by CPI Communications that a Flush has been issued, the system
sends any information it has buffered to the remote system. The information that can be
buffered comes from the Allocate, Send_Data or Send_Error call. Refer to the descriptions of
these calls for more details of when and how buffering occurs.

The Flush (CMFLUS) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• return_code (output)

Specifies the result of the call execution. The return_code can be one of the following:

CM_OK

CM_OPERATION_INCOMPLETE

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the conversation_ID specifies an unassigned conversation ID.

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— For a half-duplex conversation, the conversation is not in Send, Send-Pending, or
Defer-Receive state.

— For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the program is in the Backout-Required
condition. The Flush call is not allowed for this conversation while the program is in
this condition.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

Full-duplex Conversations

The following return codes apply to full-duplex conversations.

If the conversation is not currently included in a transaction, the return_code can have one of
the following values:

CM_ALLOCATION_ERROR

CM_DEALLOCATED_ABEND

CM_DEALLOCATED_ABEND_SVC

CM_DEALLOCATED_ABEND_TIMER

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

190 X/Open CAE Specification

Call Reference Section Flush (CMFLUS)

CM_DEALLOCATED_NORMAL

CM_PROGRAM_STATE_CHECK
This value indicates that the program has received a status_received value of
CM_JOIN_TRANSACTION and must issue a tx_begin() call to the TX (Transaction
Demarcation) interface to join the transaction.

If the sync_level is set to CM_SYNC_POINT_NO_CONFIRM and the conversation is
included in a transaction, the return_code can have one of the following values:

CM_TAKE_BACKOUT

CM_DEALLOCATED_ABEND_BO

CM_DEALLOCATED_ABEND_SVC_BO

CM_DEALLOCATED_ABEND_TIMER_BO

CM_RESOURCE_FAILURE_RETRY_BO

CM_RESOURCE_FAIL_NO_RETRY_BO

CM_INCLUDE_PARTNER_REJECT_BO

CM_CONV_DEALLOC_AFTER_SYNCPT.

STATE CHANGES
For half-duplex conversations, when return_code indicates CM_OK:

• The conversation enters Send state if the program issues the Flush call with the conversation
in Send-Pending state.

• The conversation enters Receive state if the program issues the Flush call with the
conversation in Defer-Receive state.

• No state change occurs if the program issues the Flush call with the conversation in Send
state.

For full-duplex conversations, this call does not cause any state changes.

APPLICATION USAGE

1. This call optimizes processing between the local and remote programs. The local system
normally buffers the data from consecutive Send_Data calls until it has a sufficient amount
for transmission. Only then does the local system transmit the buffered data.

The local program can issue a Flush call to cause the system to transmit the data
immediately. This helps minimize any delay in the remote program’s processing of the
data.

2. The Flush call causes the local system to flush its send buffer only when the system has
some information to transmit. If the system has no information in its send buffer, nothing
is transmitted to the remote system.

3. The use of Send_Data followed by a call to Flush is equivalent to the use of Send_Data
after setting send_type to CM_SEND_AND_FLUSH.

4. For full-duplex conversations, when CM_ALLOCATION_ERROR, CM_DEALLOCATE_*,
CM_RESOURCE_FAILURE_* or CM_DEALLOCATE_NORMAL is returned and the
conversation is in Send-Receive state, the program can terminate the conversation by
issuing Receive calls until it gets a return code that takes it to Reset state, or by issuing a
Deallocate call with deallocate_type set to CM_DEALLOCATE_ABEND.

Distributed Transaction Processing: CPI-C Specification, Version 2 191

Flush (CMFLUS) Call Reference Section

SEE ALSO
Section 4.3.1 on page 71 discusses the conditions for data transmission.

Section 4.3.3 on page 74 shows an example of how a program can use the Flush call to establish a
conversation immediately.

Allocate (CMALLC) on page 130 provides more information on how information is buffered from
the Allocate call.

Send_Data (CMSEND) on page 230 provides more information on how information is buffered
from the Send_Data call.

Send_Error (CMSERR) on page 240 provides more information on how information is buffered
from the Send_Error call.

Set_Send_Type (CMSST) on page 309 discusses alternative methods of achieving the Flush
function.

192 X/Open CAE Specification

Call Reference Section Include_Partner_In_Transaction (CMINCL)

NAME
Include_Partner_In_Transaction (CMINCL) — include a partner program in a transaction.

SYNOPSIS
CALL CMINCL(conversation_ID , return_code)

DESCRIPTION
A program uses the Include_Partner_In_Transaction (CMINCL) call to explicitly request that the
subordinate join the transaction. The caller must be in a transaction, and the subordinate must
be on a branch supporting unchained transactions.

Note: The Include_Partner_In_Transaction call has meaning only when an OSI TP CRM is
being used for the conversation.

The Include_Partner_In_Transaction (CMINCL) call uses the following input and output
parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_OPERATION_INCOMPLETE

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The conversation is not using an OSI TP CRM.

— The transaction_control is CM_CHAINED_TRANSACTIONS.

— The program is not the superior for the conversation.

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— For a half-duplex conversation, the conversation is not in Send or Send-Pending
state.

— For a full-duplex conversation, the conversation is not in Send-Receive state.

— The conversation is basic and in Send state (for a half-duplex conversation) or Send-
Receive state (for a full-duplex conversation), and the program started but did not
finish sending a logical record.

— The program is not in transaction mode. The program must issue a tx_begin() call to
the TX (Transaction Demarcation) interface to start a transaction.

— The conversation is already included in the current transaction.

CM_DEALLOCATED_ABEND

CM_RESOURCE_FAILURE_NO_RETRY

Distributed Transaction Processing: CPI-C Specification, Version 2 193

Include_Partner_In_Transaction (CMINCL) Call Reference Section

CM_RESOURCE_FAILURE_RETRY

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

Half-duplex Conversations

The following return codes apply to half-duplex conversations:

CM_SEND_RCV_MODE_NOT_SUPPORTED

CM_SYNC_LVL_NOT_SUPPORTED_SYS

CM_TPN_NOT_RECOGNIZED

CM_TP_NOT_AVAILABLE_NO_RETRY

CM_TP_NOT_AVAILABLE_RETRY

CM_PROGRAM_ERROR_PURGING.

Full-duplex Conversations

The following return codes apply to full-duplex conversations:

CM_ALLOCATION_ERROR

CM_DEALLOCATED_NORMAL.

STATE CHANGES
This call does not cause any state changes.

APPLICATION USAGE

1. The call is used by a program to request that the subordinate join the transaction when the
begin_transaction conversation characteristic is set to CM_BEGIN_EXPLICIT.

2. The remote program receives the request to join the transaction as a status_received
indicator of CM_JOIN_TRANSACTION on a Receive call.

SEE ALSO
Section 3.14.5 on page 58 discusses chained and unchained transactions.

Section 3.14.6 on page 59 discusses how a program requests the partner program to join a
transaction.

Set_Begin_Transaction (CMSBT) on page 261 discusses the begin_transaction characteristic.

Set_Join_Transaction (CMSJT) on page 283 discusses how the remote program receives the
request to join the transaction.

194 X/Open CAE Specification

Call Reference Section Initialize_Conversation (CMINIT)

NAME
Initialize_Conversation (CMINIT) — initialize the conversation characteristics for an outgoing
conversation.

SYNOPSIS
CALL CMINIT(conversation_ID , sym_dest_name , return_code)

DESCRIPTION
A program uses the Initialize_Conversation (CMINIT) call to initialize values for various
conversation characteristics before the conversation is allocated (with a call to Allocate). The
remote partner program uses the Accept_Conversation call or the Initialize_Incoming and
Accept_Incoming calls to initialize values for the conversation characteristics on its end of the
conversation.

Note: A program can override the values that are initialized by this call using the appropriate
Set_* calls, such as Set_Sync_Level. Once the value is changed, it remains changed
until the end of the conversation or until changed again by a Set_* call.

The Initialize_Conversation (CMINIT) call uses the following input and output parameters:

• conversation_ID (output)

Specifies the variable containing the conversation identifier assigned to the conversation.
CPI Communications supplies and maintains the conversation_ID. If the
Initialize_Conversation call is successful (return_code is set to CM_OK), the local program
uses the identifier returned in this variable for the rest of the conversation.

• sym_dest_name (input)

Specifies the symbolic destination name. The symbolic destination name is provided by the
program and points to an entry in the side information. The appropriate entry in the side
information is retrieved and used to initialize the characteristics for the conversation.
Alternatively, a blank sym_dest_name (one composed of eight space characters) may be
specified. When this is done, the program is responsible for setting up the appropriate
destination information, using Set_* calls, before issuing the Allocate call for that
conversation.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_PROGRAM_PARAMETER_CHECK
This value indicates that the sym_dest_name specifies an unrecognized value.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
When return_code indicates CM_OK, the conversation enters the Initialize state.

APPLICATION USAGE

1. For a list of the conversation characteristics that are initialized when the
Initialize_Conversation call completes successfully, see Table 3-2 on page 30.

Distributed Transaction Processing: CPI-C Specification, Version 2 195

Initialize_Conversation (CMINIT) Call Reference Section

2. For each conversation, CPI Communications assigns a unique identifier, the
conversation_ID. The program then uses the conversation_ID in all future calls intended for
that conversation. Initialize_Conversation (or Accept_Conversation or
Initialize_For_Incoming, on the opposite side of the conversation) must be issued by the
program before any other calls may be made for that conversation.

3. A program can call Initialize_Conversation more than once and establish multiple,
concurrently active conversations. When a program with an existing initialized
conversation issues an Initialize_Conversation call, CPI Communications initializes a new
conversation and assigns a new conversation_ID. CPI Communications is designed so that
Initialize_Conversation is always issued from the Reset state. For more information about
managing concurrent conversations, see Section 3.7.1 on page 26.

4. If the side information supplies invalid allocation information on the
Initialize_Conversation (CMINIT) call, or if the program supplies invalid allocation
information on any subsequent Set_* calls, the error is detected when the information is
processed by Allocate (CMALLC).

5. A program may obtain information about its partner program (for example,
partner_LU_name, TP_name, and mode_name) from a source other than the side information.
The local program can, for example, read this information from a file or receive it from
another partner over a separate conversation. The information might even be hard-coded
in the program. In cases where a program wishes to specify destination information about
its partner program without making use of side information, the local program may
supply a blank sym_dest_name on the Initialize_Conversation call. CPI Communications
will initialize the conversation characteristics and return a conversation_ID for the new
conversation. The program is then responsible for specifying valid destination
information (using Set_Partner_LU_Name, Set_TP_Name, and Set_Mode_Name calls)
before issuing the Allocate call.

SEE ALSO
Section 3.5.2 on page 22 provides more information on sym_dest_name.

Section 3.8 on page 29 provides a general overview of conversation characteristics and how they
are used by the program and CPI Communications.

Section 4.2.1 on page 65 shows an example program flow where Initialize_Conversation is used.

The calls beginning with ‘‘Set’’ and ‘‘Extract’’ in this chapter are used to modify or examine
conversation characteristics established by the Initialize_Conversation program call; see the
individual call descriptions for details.

196 X/Open CAE Specification

Call Reference Section Initialize_For_Incoming (CMINIC)

NAME
Initialize_For_Incoming (CMINIC) — initialize the conversation characteristics for an incoming
conversation.

SYNOPSIS
CALL CMINIC(conversation_ID , return_code)

DESCRIPTION
Initialize_For_Incoming (CMINIC) is used by a program to initialize values for various
conversation characteristics before the conversation is accepted with an Accept_Incoming call.

Note: A program can override the values that are initialized by this call using the appropriate
Set_* calls, such as Set_Receive_Type. Once the value is changed, it remains changed
until the end of the conversation or until changed again by a Set_* call.

The Initialize_For_Incoming (CMINIC) call uses the following output parameters:

• conversation_ID (output)

Specifies the variable containing the conversation identifier assigned to the conversation.
CPI Communications supplies and maintains the conversation_ID. If the
Initialize_For_Incoming call is successful (return_code is set to CM_OK), the local program
uses the identifier returned in this variable for the rest of the conversation.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
When return_code indicates CM_OK, the conversation enters the Initialize-Incoming state.

APPLICATION USAGE

1. For a list of the conversation characteristics initialized when the Initialize_For_Incoming
call completes successfully, see Table 3-2 on page 30.

2. For each conversation, CPI Communications assigns a unique identifier, the
conversation_ID. The program then uses the conversation_ID in all future calls intended for
that conversation.

3. The call is designed for use with Accept_Incoming. As shown in Table 3-2 on page 30,
when Initialize_For_Incoming completes, certain conversation characteristics are
initialized. When the Accept_Incoming call completes, the remaining applicable
conversation characteristics are initialized.

4. The Initialize_For_Incoming and Accept_Incoming calls can be used by a program to
accept multiple conversations.

SEE ALSO
Section 3.8 on page 29 describes how the conversation characteristics are initialized by the
Initialize_For_Incoming and Accept_Incoming calls.

Section 4.3.7 on page 82 and Section 4.3.8 on page 84 show example program flows where
Initialize_For_Incoming is used.

Distributed Transaction Processing: CPI-C Specification, Version 2 197

Initialize_For_Incoming (CMINIC) Call Reference Section

The calls beginning with ‘‘Set’’ and ‘‘Extract’’ in this chapter are used to modify or examine
conversation characteristics established by the Initialize_For_Incoming program call. See the
individual call descriptions for details.

Accept_Incoming (CMACCI) on page 127 describes how the conversation_ID is used when an
incoming conversation is accepted by a program.

198 X/Open CAE Specification

Call Reference Section Prepare (CMPREP)

NAME
Prepare (CMPREP) — prepare a subordinate for a commit operation.

SYNOPSIS
CALL CMPREP(conversation_ID , return_code)

DESCRIPTION
A program uses the Prepare (CMPREP) call to explicitly request that a branch of the transaction
prepare its resources to commit changes made during the transaction.

When the conversation is using an OSI TP CRM and the caller is not the root of the transaction,
the caller must have received a take-commit notification from its superior. The subordinate
program on the conversation cannot issue a Prepare (CMPREP) call.

The Prepare (CMPREP) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_OPERATION_INCOMPLETE

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The sync_level is not CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM.

— The conversation is using an OSI TP CRM, and the program is not the superior for
the conversation.

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— For a half-duplex conversation, the conversation is not in Send, Send-Pending,
Defer-Receive or Defer-Deallocate state.

— For a full-duplex conversation, the conversation is not in Send-Receive state.

— The conversation is basic, and the program started but did not finish sending a
logical record.

— The program is not in transaction mode. The program must issue a tx_begin() call to
the TX (Transaction Demarcation) interface to start a transaction.

— For a conversation with transaction_control set to CM_CHAINED_TRANSACTIONS
or begin_transaction set to CM_BEGIN_IMPLICIT, the program is in the Backout-
Required condition.

— The conversation is using an OSI TP CRM, begin_transaction is set to
CM_BEGIN_EXPLICIT, and the conversation is not currently included in a
transaction.

Distributed Transaction Processing: CPI-C Specification, Version 2 199

Prepare (CMPREP) Call Reference Section

— The conversation is using an OSI TP CRM, and the program is not the root of the
transaction and has not received a take-commit notification from its superior.

CM_RESOURCE_FAILURE_RETRY

CM_OPERATION_NOT_ACCEPTED

CM_TAKE_BACKOUT

CM_DEALLOCATED_ABEND_BO

CM_DEALLOCATED_ABEND_SVC_BO

CM_DEALLOCATED_ABEND_TIMER_BO

CM_RESOURCE_FAILURE_RETRY_BO

CM_RESOURCE_FAIL_NO_RETRY_BO

CM_INCLUDE_PARTNER_REJECT_BO

CM_PRODUCT_SPECIFIC_ERROR.

Half-duplex Conversations

The following return codes apply to half-duplex conversations:

CM_CONVERSATION_TYPE_MISMATCH

CM_PIP_NOT_SPECIFIED_CORRECTLY

CM_SECURITY_NOT_VALID

CM_SYNC_LVL_NOT_SUPPORTED_PGM

CM_SYNC_LVL_NOT_SUPPORTED_SYS

CM_SEND_RCV_MODE_NOT_SUPPORTED

CM_TPN_NOT_RECOGNIZED

CM_TP_NOT_AVAILABLE_NO_RETRY

CM_TP_NOT_AVAILABLE_RETRY

CM_PROGRAM_ERROR_PURGING.

Full-duplex Conversations

The following return code applies to full-duplex conversations:

CM_ALLOCATION_ERROR

CM_CONV_DEALLOC_AFTER_SYNCPT.

STATE CHANGES
When return_code indicates CM_OK, the conversation enters the Prepared state.

APPLICATION USAGE

1. The Prepare (CMPREP) functions without waiting for a response from the remote
program. A program can detect that its partner has prepared its transaction resources by
issuing a Receive (CMRCV) call and checking the result in status_received, or the caller can
complete the transaction without waiting for the partner to respond.

200 X/Open CAE Specification

Call Reference Section Prepare (CMPREP)

2. A program cannot send data to the remote program after issuing a Prepare call.

3. A program that issues the Prepare call may receive data from the remote program if the
conversation is using an OSI TP CRM and either prepare_data_permitted is set to
CM_PREPARE_DATA_PERMITTED or the conversation is full-duplex.

4. The partner finds out about the Prepare call by receiving one of the take-commit
notifications described in Table 3-7 on page 53 (half-duplex) or Table 3-8 on page 54 (full-
duplex).

SEE ALSO
Receive (CMRCV) on page 208 discusses the status_received parameter.

Set_Prepare_Data_Permitted (CMSPDP) on page 291 discusses the prepare_data_permitted
characteristic.

Distributed Transaction Processing: CPI-C Specification, Version 2 201

Prepare_To_Receive (CMPTR) Call Reference Section

NAME
Prepare_To_Receive (CMPTR) — change a conversation from Send to Receive state in
preparation to receive data.

SYNOPSIS
CALL CMPTR(conversation_ID , return_code)

DESCRIPTION
A program uses the Prepare_To_Receive (CMPTR) call to change a conversation from Send to
Receive state in preparation to receive data. The change to Receive state can be either
completed as part of this call or deferred until the program issues a Flush, Confirm, or resource
recovery commit call. When the change to Receive state is completed as part of this call, it may
include the function of the Flush or Confirm call. This call’s function is determined by the value
of the prepare_to_receive_type conversation characteristic.

Before issuing the Prepare_To_Receive call, a program has the option of issuing the following
call which affects the function of the Prepare_To_Receive call:

Call CMSPTR − Set_Prepare_To_Receive_Type.

Note: The Prepare_To_Receive_Type call can be issued only on a half-duplex conversation.

The Prepare_To_Receive (CMPTR) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• return_code (output)

Specifies the result of the call execution. The prepare_to_receive_type currently in effect
determines which return codes can be returned to the local program.

For any of the following conditions:

— prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_FLUSH

— prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level is
set to CM_NONE

— prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level is
set to CM_SYNC_POINT_NO_CONFIRM, but the conversation is not currently included
in a transaction

the return_code variable can have one of the following values:

CM_OK

CM_OPERATION_INCOMPLETE

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation is not in Send or Send-Pending state.

— The conversation is basic and in Send state, and the program started but did not
finish sending a logical record.

— For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and transaction_control set to
CM_CHAINED_TRANSACTIONS or begin_transaction set to CM_BEGIN_IMPLICIT,
the program is in the Backout-Required condition. The Prepare_To_Receive call is
not allowed for this conversation while the program is in this condition.

202 X/Open CAE Specification

Call Reference Section Prepare_To_Receive (CMPTR)

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The send_receive_mode of the conversation is CM_FULL_DUPLEX.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

For any of the following conditions:

— prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_CONFIRM

— prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level is
set to CM_CONFIRM

— prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level is
set to CM_SYNC_POINT, but the conversation is not currently included in a transaction

the return_code variable can have one of the following values:

CM_OK

CM_OPERATION_INCOMPLETE

CM_CONVERSATION_TYPE_MISMATCH

CM_PIP_NOT_SPECIFIED_CORRECTLY

CM_SECURITY_NOT_VALID

CM_SYNC_LVL_NOT_SUPPORTED_PGM

CM_SYNC_LVL_NOT_SUPPORTED_SYS

CM_SEND_RCV_MODE_NOT_SUPPORTED

CM_TPN_NOT_RECOGNIZED

CM_TP_NOT_AVAILABLE_NO_RETRY

CM_TP_NOT_AVAILABLE_RETRY

CM_DEALLOCATED_ABEND

CM_PROGRAM_ERROR_PURGING

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

CM_DEALLOCATED_ABEND_SVC (basic conversations only)

CM_DEALLOCATED_ABEND_TIMER (basic conversations only)

CM_SVC_ERROR_PURGING (basic conversations only)

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation is not in Send or Send-Pending state.

— The conversation is basic and in Send state, and the program started but did not
finish sending a logical record.

Distributed Transaction Processing: CPI-C Specification, Version 2 203

Prepare_To_Receive (CMPTR) Call Reference Section

— For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and transaction_control set to
CM_CHAINED_TRANSACTIONS or begin_transaction set to CM_BEGIN_IMPLICIT,
the program is in the Backout-Required condition.

CM_PROGRAM_PARAMETER_CHECK
This return code indicates that the conversation_ID specifies an unassigned conversation
identifier.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR

The following values are returned only when sync_level is set to CM_SYNC_POINT:

CM_TAKE_BACKOUT

CM_DEALLOCATED_ABEND_BO

CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)

CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

CM_RESOURCE_FAIL_NO_RETRY_BO

CM_RESOURCE_FAILURE_RETRY_BO

CM_INCLUDE_PARTNER_REJECT_BO.

If prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL, sync_level is set to
is CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, and the conversation is
included in a transaction, the return_code variable can have one of the following values:

CM_OK

CM_OPERATION_INCOMPLETE

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation is not in Send or Send-Pending state.

— The conversation is basic and in Send state, and the program started but did not
finish sending a logical record.

— The program is in the Backout-Required condition.

— A prior call to Deferred_Deallocate is still in effect for the conversation.

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The send_receive_mode of the conversation is CM_FULL_DUPLEX.

— The conversation is using an OSI TP CRM, and the program is not the superior for
the conversation.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

204 X/Open CAE Specification

Call Reference Section Prepare_To_Receive (CMPTR)

STATE CHANGES
When return_code indicates CM_OK:

• If any of the following conditions is true, the conversation enters the Receive state.

— The prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_FLUSH.

— The prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_CONFIRM.

— The prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and
sync_level is set to CM_NONE or CM_CONFIRM.

— The prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL, sync_level is
set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, but the conversation is
not currently included in a transaction.

• The conversation enters the Defer-Receive state if prepare_to_receive_type is set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL, sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, and the conversation is included in a transaction.

APPLICATION USAGE

1. If prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_CONFIRM, or if
prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level is
CM_CONFIRM, or if prepare_to_receive_type is set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level is CM_SYNC_POINT but the
conversation is not currently included in a transaction, the local program regains control
when a Confirmed reply is received.

2. The program uses the prepare_to_receive_type characteristic set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL to transfer send control to the remote program
based on one of the following synchronization levels allocated to the conversation:

— If sync_level is set to CM_NONE, or if sync_level is set to
CM_SYNC_POINT_NO_CONFIRM but the conversation is not currently included in a
transaction, the system’s send buffer is flushed if it contains information, and send
control is transferred to the remote program without any synchronizing
acknowledgement.

— If sync_level is set to CM_CONFIRM, or if sync_level is set to CM_SYNC_POINT but the
conversation is not currently included in a transaction, the system’s send buffer is
flushed if it contains information, and send control is transferred to the remote program
with confirmation requested.

— If sync_level is set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and the
conversation is included in a transaction, transfer of send control is deferred. When the
local program subsequently issues a Flush, Confirm, or resource recovery commit call,
the system’s send buffer is flushed if it contains information, and send control is
transferred to the remote program. (A synchronization point is also requested when
the call is a commit call.)

3. The program uses the prepare_to_receive_type characteristic set to
CM_PREP_TO_RECEIVE_FLUSH to transfer send control to the remote program without
any synchronizing acknowledgement. The prepare_to_receive_type characteristic set to
CM_PREP_TO_RECEIVE_FLUSH functions the same as the prepare_to_receive_type
characteristic set to CM_PREP_TO_RECEIVE_SYNC_LEVEL combined with a sync_level
set to CM_NONE.

Distributed Transaction Processing: CPI-C Specification, Version 2 205

Prepare_To_Receive (CMPTR) Call Reference Section

4. The program uses the prepare_to_receive_type characteristic set to
CM_PREP_TO_RECEIVE_CONFIRM to transfer send control to the remote program with
confirmation requested. The prepare_to_receive_type characteristic set to
CM_PREP_TO_RECEIVE_CONFIRM functions the same as the prepare_to_receive_type
characteristic set to CM_PREP_TO_RECEIVE_SYNC_LEVEL combined with a sync_level
set to CM_CONFIRM.

5. The remote program receives send control of the conversation by means of the
status_received parameter, which can have the following values:

CM_SEND_RECEIVED
The local program issued this call with one of the following:

— prepare_to_receive_type set to CM_PREP_TO_RECEIVE_FLUSH

— prepare_to_receive_type set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and
sync_level set to CM_NONE

— prepare_to_receive_type set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and
sync_level set to CM_SYNC_POINT_NO_CONFIRM, but with the conversation
not currently included in a transaction.

CM_CONFIRM_SEND_RECEIVED
The local program issued this call with one of the following:

— prepare_to_receive_type set to CM_PREP_TO_RECEIVE_CONFIRM

— prepare_to_receive_type set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and
sync_level set to CM_CONFIRM

— prepare_to_receive_type set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and
sync_level set to CM_SYNC_POINT, but with the conversation not currently
included in a transaction.

CM_TAKE_COMMIT_SEND
The local program issued a resource recovery commit call after issuing the
Prepare_To_Receive call with prepare_to_receive_type set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, and with the conversation included in a
transaction.

6. When the local program’s end of the conversation enters Receive state, the remote
program’s end of the conversation enters Send or Send-Pending state, depending on the
data_received indicator. The remote program can then send data to the local program.

7. When the conversation is using an OSI TP CRM and the Deferred_Deallocate call has been
issued on the conversation, the Prepare_To_Receive call with prepare_to_receive_type set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL is not allowed. The call gets the
CM_PROGRAM_PARAMETER_CHECK return code.

SEE ALSO
Section 4.3.2 on page 72 and Section 4.3.4 on page 76 show example program flows where the
Prepare_To_Receive call is used.

Set_Confirmation_Urgency (CMSCU) on page 263 tells how to request an immediate response to
the Prepare_To_Receive call. Set_Prepare_To_Receive_Type (CMSPTR) on page 293 provides more
information on the prepare_to_receive_type characteristic.

206 X/Open CAE Specification

Call Reference Section Prepare_To_Receive (CMPTR)

Set_Sync_Level (CMSSL) on page 311 discusses the sync_level characteristic and its possible
values.

Distributed Transaction Processing: CPI-C Specification, Version 2 207

Receive (CMRCV) Call Reference Section

NAME
Receive (CMRCV) — receive data.

SYNOPSIS
CALL CMRCV(conversation_ID , buffer , requested_length , data_received ,

received_length , status_received ,
control_information_received , return_code)

DESCRIPTION
A program uses the Receive (CMRCV) call to receive information from a given conversation.
The information received can be a data record (on a mapped conversation), data (on a basic
conversation), conversation status, or a request for confirmation or for resource recovery
services.

Before issuing the Receive call, a program has the option of issuing one or both of the following
calls, which affect the function of the Receive call:

CALL CMSF — Set_Fill
CALL CMSRT — Set_Receive_Type.

The Receive (CMRCV) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• buffer (output)

Specifies the variable in which the program is to receive the data.

Note: Buffer contains data only if return_code is set to CM_OK or
CM_DEALLOCATED_NORMAL and data_received is not set to
CM_NO_DATA_RECEIVED.

• requested_length (input)

Specifies the maximum amount of data the program is to receive. Valid requested_length
values range from 0 to the maximum buffer size supported by the system. The maximum
buffer size is at least 32767 bytes. See the APPLICATION USAGE section below for
additional information about determining the maximum buffer size.

• data_received (output)

Specifies whether or not the program received data.

Note: Unless return_code is set to CM_OK or CM_DEALLOCATED_NORMAL, the value
contained in data_received has no meaning.

The data_received variable can have one of the following values:

CM_NO_DATA_RECEIVED (basic and mapped conversations)
No data is received by the program. Status or control information may be received if the
return_code is set to CM_OK.

CM_DATA_RECEIVED (basic conversations only)
The fill characteristic is set to CM_FILL_BUFFER and data (independent of its logical-
record format) is received by the program.

208 X/Open CAE Specification

Call Reference Section Receive (CMRCV)

CM_COMPLETE_DATA_RECEIVED (basic and mapped conversations)
This value indicates one of the following:

— For mapped conversations, a complete data record or the last remaining portion of
the record is received.

— For basic conversations, fill is set to CM_FILL_LL and a complete logical record, or
the last remaining portion of the record, is received.

CM_INCOMPLETE_DATA_RECEIVED (basic and mapped conversations)
This value indicates one of the following:

— For mapped conversations, less than a complete data record is received.

— For basic conversations, fill is set to CM_FILL_LL, and less than a complete logical
record is received.

Note: For either type of conversation, if data_received is set to
CM_INCOMPLETE_DATA_RECEIVED, the program must issue another
Receive (or possibly multiple Receive calls) to receive the remainder of the
data.

• received_length (output)

Specifies the variable containing the amount of data the program received, up to the
maximum. If the program does not receive data on this call, the value contained in
received_length has no meaning.

Note: Data is received only if return_code is set to CM_OK or
CM_DEALLOCATED_NORMAL, and data_received is not set to
CM_NO_DATA_RECEIVED.

• status_received (output)

Specifies the variable containing an indication of the conversation status.

Note: Unless return_code is set to CM_OK, the value contained in status_received has no
meaning.

The status_received variable can have one of the following values:

CM_NO_STATUS_RECEIVED
No conversation status is received by the program; data or control information may be
received.

CM_SEND_RECEIVED (half-duplex conversations only)
The remote program’s end of the conversation has entered Receive state, placing the
local program’s end of the conversation in Send-Pending state (if the program also
received data on this call) or Send state (if the program did not receive data on this call).
The local program (which issued the Receive call) can now send data.

CM_CONFIRM_RECEIVED (half-duplex conversations only)
The remote program has sent a confirmation request, requesting the local program to
respond by issuing a Confirmed call. The local program must respond by issuing
Confirmed, Send_Error, Deallocate with deallocate_type set to
CM_DEALLOCATE_ABEND, or Cancel_Conversation.

CM_CONFIRM_SEND_RECEIVED (half-duplex conversations only)
The remote program’s end of the conversation has entered Receive state with
confirmation requested. The local program must respond by issuing Confirmed,
Send_Error, Deallocate with deallocate_type set to CM_DEALLOCATE_ABEND, or

Distributed Transaction Processing: CPI-C Specification, Version 2 209

Receive (CMRCV) Call Reference Section

Cancel_Conversation. Upon issuing a successful Confirmed call, the local program
(which issued the Receive call) can now send data.

CM_CONFIRM_DEALLOC_RECEIVED
The remote program has deallocated the conversation with confirmation requested. The
local program must respond by issuing Confirmed, Send_Error, Deallocate with
deallocate_type set to CM_DEALLOCATE_ABEND, or Cancel_Conversation. Upon
issuing a successful Confirmed call, the local program (which issued the Receive call) is
deallocated—that is, placed in Reset state.

For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, and with the conversation included in a transaction, the
status_received variable can also be set to one of the following values:

CM_TAKE_COMMIT
The remote program has issued a resource recovery commit call or a Prepare call. For
the exact conditions for receipt of this status_received value, refer to Table 3-7 on page 53
(half-duplex) or Table 3-8 on page 54 (full-duplex). The local program should issue a
commit call in order to commit all protected resources throughout the transaction.
When appropriate, the local program may respond by issuing a call other than commit,
such as Send_Error (for half-duplex conversations only) or a resource recovery backout
call.

CM_TAKE_COMMIT_SEND (for half-duplex conversations only)
The remote program has issued a Prepare_To_Receive call with prepare_to_receive_type
set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level set to CM_SYNC_POINT
and then issued a resource recovery commit call or a Prepare call. For the exact
conditions for receipt of this status_received value, refer to Table 3-7 on page 53 (half-
duplex) or Table 3-8 on page 54 (full-duplex). The local program should issue a commit
call in order to commit all protected resources throughout the transaction. When
appropriate, the local program may respond by issuing a call other than commit, such as
Send_Error or a resource recovery backout call. If a successful commit call is issued, the
local program can then send data.

CM_TAKE_COMMIT_DEALLOCATE
The remote program has deallocated the conversation with deallocate_type set to
CM_DEALLOCATE_SYNC_LEVEL and sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, or has issued a Deferred_Deallocate call, and then
issued a resource recovery commit call ore a Prepare call. For the exact conditions for
receipt of this status_received value, refer to Table 3-7 on page 53 (half-duplex) or Table
3-8 on page 54 (full-duplex). The local program should issue a commit call in order to
commit all protected resources throughout the transaction. The local program may
respond by issuing a call other than commit when appropriate, such as Send_Error for a
half-duplex conversation, or a resource recovery backout call. If a successful commit
call is issued, the local program is then deallocated—that is, placed in Reset state.

CM_PREPARE_OK
By issuing a Prepare (CMPREP) call, the local program requested that the remote
program prepare its resources for commitment, and the remote program has done so, by
issuing a commit call. The subtree is now ready to commit its resources.

210 X/Open CAE Specification

Call Reference Section Receive (CMRCV)

For a conversation with sync_level set to either CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and allocated using an OSI TP CRM, the status_received
variable can also be set to one of the following values if the conversation is included in a
transaction:

CM_TAKE_COMMIT_DATA_OK
The remote program issued a Prepare call. For the exact conditions for receipt of this
status_received value, refer to Table 3-7 on page 53 (half-duplex) or Table 3-8 on page 54
(full-duplex). The local program should issue a commit call in order to commit all
protected resources throughout the transaction. The program is allowed to send data
before issuing the commit call. When appropriate, the local program may respond by
issuing a call other than commit, such as Send_Error (for half-duplex conversations
only) or a resource recovery backout call.

CM_TAKE_COMMIT_SEND_DATA_OK (half-duplex conversations only)
The remote program issued a Prepare call. For the exact conditions for receipt of this
status_received value, refer to Table 3-7 on page 53 (half-duplex) or Table 3-8 on page 54
(full-duplex). The local program should issue a commit call in order to commit all
protected resources throughout the transaction. The program is allowed to send data
before issuing the commit call. When appropriate, the local program may respond by
issuing a call other than commit, such as Send_Error or a resource recovery backout call.
If a successful commit call is issued, the local program can then send data.

CM_TAKE_COMMIT_DEALLOC_DATA_OK
The remote program issued a Prepare call. For the exact conditions for receipt of this
status_received value, refer to Table 3-7 on page 53 (half-duplex) or Table 3-8 on page 54
(full-duplex). The local program should issue a commit call in order to commit all
protected resources throughout the transaction. The program is allowed to send data
before issuing the commit call. The local program may respond by issuing a call other
than commit when appropriate, such as Send_Error for a half-duplex conversation, or a
resource recovery backout call. If a successful commit call is issued, the local program is
then deallocated — that is, placed in Reset state.

CM_JOIN_TRANSACTION (unchained transactions only)
The remote program has requested that the local program join into its current
transaction. If the local program has called Set_Join_Transaction with
CM_JOIN_EXPLICIT, the local program should issue a tx_begin() call to the TX
(Transaction Demarcation) interface to join the superior’s transaction as soon as any
local work that is not to be included in the remote program’s transaction has been
completed. If the local program has called Set_Join_Transaction with
CM_JOIN_IMPLICIT, the local program has already joined the transaction, and
tx_begin() must not be called.

• control_information_received (output)

Specifies the variable containing an indication of whether or not control information has been
received.

The control_information_received variable can have one of the following values:

CM_NO_CONTROL_INFO_RECEIVED
Indicates that no control information was received.

CM_REQ_TO_SEND_RECEIVED (half-duplex conversations only)
The local program received a request-to-send notification from the remote program. The
remote program issued Request_To_Send, requesting the local program’s end of the
conversation to enter Receive state, which would place the remote program’s end of the

Distributed Transaction Processing: CPI-C Specification, Version 2 211

Receive (CMRCV) Call Reference Section

conversation in Send state. See Request_To_Send (CMRTS) on page 227 for further
discussion of the local program’s possible responses.

CM_ALLOCATE_CONFIRMED (OSI TP CRM only)
The local program received confirmation of the remote program’s acceptance of the
conversation.

CM_ALLOCATE_CONFIRMED_WITH_DATA (OSI TP CRM only)
The local program received confirmation of the remote program’s acceptance of the
conversation. The local program may now issue an Extract_Initialization_Data (CMEID)
call to receive the initialization data.

CM_ALLOCATE_REJECTED_WITH_DATA (OSI TP CRM only)
The remote program rejected the conversation. The local program may now issue an
Extract_Initialization_Data (CMEID) call to receive the initialization data. This value
will be returned with a return code of CM_OK. The program will receive a
CM_DEALLOCATED_ABEND return code on a later call on the conversation.

CM_EXPEDITED_DATA_AVAILABLE (LU 6.2 CRM only)
Expedited data is available to be received.

CM_RTS_RCVD_AND_EXP_DATA_AVAIL (half-duplex and LU 6.2 CRM only)
The local program received a request-to-send notification from the remote program and
expedited data is available to be received.

Notes:

1. If return_code is set to CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, the value contained in
control_information_received has no meaning.

2. When more than one piece of control information is available to be returned to
the program, it will be returned in the following order:

— CM_ALLOCATE_CONFIRMED,
CM_ALLOCATE_CONFIRMED_WITH_DATA or
CM_ALLOCATE_REJECTED_WITH_DATA

— CM_RTS_RCVD_AND_EXP_DATA_AVAIL

— CM_REQ_TO_SEND_RECEIVED

— CM_EXPEDITED_DATA_AVAILABLE

— CM_NO_CONTROL_INFO_RECEIVED.

• return_code (output)

Specifies the result of the call execution. The return codes that can be returned depend on the
state and characteristics of the conversation at the time this call is issued.

Half-duplex Conversations

The following return codes apply to half-duplex conversations:

If receive_type is set to CM_RECEIVE_AND_WAIT and this call is issued in Send state,
return_code can have one of the following values:

CM_OK

CM_OPERATION_INCOMPLETE

212 X/Open CAE Specification

Call Reference Section Receive (CMRCV)

CM_CONVERSATION_TYPE_MISMATCH

CM_PIP_NOT_SPECIFIED_CORRECTLY

CM_SECURITY_NOT_VALID

CM_SYNC_LVL_NOT_SUPPORTED_PGM

CM_SYNC_LVL_NOT_SUPPORTED_SYS

CM_SEND_RCV_MODE_NOT_SUPPORTED

CM_TPN_NOT_RECOGNIZED

CM_TP_NOT_AVAILABLE_NO_RETRY

CM_TP_NOT_AVAILABLE_RETRY

CM_DEALLOCATED_ABEND

CM_DEALLOCATED_NORMAL

CM_PROGRAM_ERROR_NO_TRUNC

CM_PROGRAM_ERROR_PURGING

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

CM_DEALLOCATED_ABEND_SVC (basic conversations only)

CM_DEALLOCATED_ABEND_TIMER (basic conversations only)

CM_SVC_ERROR_NO_TRUNC (basic conversations only)

CM_SVC_ERROR_PURGING (basic conversations only)

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR

The following values are returned only when sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and the conversation is included in a transaction:

CM_TAKE_BACKOUT

CM_DEALLOCATED_ABEND_BO

CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)

CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

CM_RESOURCE_FAIL_NO_RETRY_BO

CM_RESOURCE_FAILURE_RETRY_BO

CM_INCLUDE_PARTNER_REJECT_BO

If receive_type is set to CM_RECEIVE_AND_WAIT and this call is issued in Send-Pending
state, return_code can be one of the following values:

CM_OK

CM_OPERATION_INCOMPLETE

CM_SYNC_LVL_NOT_SUPPORTED_SYS

Distributed Transaction Processing: CPI-C Specification, Version 2 213

Receive (CMRCV) Call Reference Section

CM_SEND_RCV_MODE_NOT_SUPPORTED

CM_DEALLOCATED_ABEND

CM_DEALLOCATED_NORMAL

CM_PROGRAM_ERROR_NO_TRUNC

CM_PROGRAM_ERROR_PURGING

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

CM_DEALLOCATED_ABEND_SVC (basic conversations only)

CM_DEALLOCATED_ABEND_TIMER (basic conversations only)

CM_SVC_ERROR_NO_TRUNC (basic conversations only)

CM_SVC_ERROR_PURGING (basic conversations only)

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR

The following values are returned only when sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and the conversation is included in a transaction:

CM_TAKE_BACKOUT

CM_DEALLOCATED_ABEND_BO

CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)

CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

CM_RESOURCE_FAIL_NO_RETRY_BO

CM_RESOURCE_FAILURE_RETRY_BO

CM_INCLUDE_PARTNER_REJECT_BO

If receive_type is set to CM_RECEIVE_AND_WAIT or CM_RECEIVE_IMMEDIATE and this
call is issued in Receive or Prepared state, return_code can be one of the following:

CM_OK

CM_OPERATION_INCOMPLETE
This value is only received when receive_type is set to CM_RECEIVE_AND_WAIT.

CM_CONVERSATION_TYPE_MISMATCH

CM_PIP_NOT_SPECIFIED_CORRECTLY

CM_SECURITY_NOT_VALID

CM_SYNC_LVL_NOT_SUPPORTED_PGM

CM_SYNC_LVL_NOT_SUPPORTED_SYS

CM_SEND_RCV_MODE_NOT_SUPPORTED

CM_TPN_NOT_RECOGNIZED

CM_TP_NOT_AVAILABLE_NO_RETRY

214 X/Open CAE Specification

Call Reference Section Receive (CMRCV)

CM_TP_NOT_AVAILABLE_RETRY

CM_DEALLOCATED_ABEND

CM_DEALLOCATED_NORMAL

CM_PROGRAM_ERROR_NO_TRUNC

CM_PROGRAM_ERROR_PURGING

CM_PROGRAM_ERROR_TRUNC (basic conversations only)

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

CM_DEALLOCATED_ABEND_SVC (basic conversations only)

CM_DEALLOCATED_ABEND_TIMER (basic conversations only)

CM_SVC_ERROR_NO_TRUNC (basic conversations only)

CM_SVC_ERROR_PURGING (basic conversations only)

CM_SVC_ERROR_TRUNC (basic conversations only)

CM_UNSUCCESSFUL
This value indicates that receive_type is set to CM_RECEIVE_IMMEDIATE, but there is
no data or status to receive.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR

The following values are returned only when sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and the conversation is included in a transaction:

CM_TAKE_BACKOUT

CM_DEALLOCATED_ABEND_BO

CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)

CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

CM_RESOURCE_FAIL_NO_RETRY_BO

CM_RESOURCE_FAILURE_RETRY_BO

CM_INCLUDE_PARTNER_REJECT_BO

If a state or parameter error has occurred, return_code can have one of the following values:

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The receive_type is set to CM_RECEIVE_AND_WAIT and the conversation is not in
Send, Send-Pending, Receive or Prepared state.

— The receive_type is set to CM_RECEIVE_IMMEDIATE and the conversation is not in
Receive or Prepared state.

— The receive_type is set to CM_RECEIVE_AND_WAIT; the conversation is basic and in
Send state; and the program started but did not finish sending a logical record.

— For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and transaction_control set to

Distributed Transaction Processing: CPI-C Specification, Version 2 215

Receive (CMRCV) Call Reference Section

CM_CHAINED_TRANSACTIONS or begin_transaction set to CM_BEGIN_IMPLICIT,
the program is in the Backout-Required condition. The Receive call is not allowed
for this conversation while the program is in this condition.

— The program has received a status_received value of CM_JOIN_TRANSACTION and
must issue a tx_begin() call to the TX (Transaction Demarcation) interface to join the
transaction.

— The Receive call is the first activity on the conversation following
Accept_Conversation or Accept_Incoming, join_transaction is set to
CM_JOIN_EXPLICIT, transaction_control is CM_CHAINED_TRANSACTION and the
program has not issued a tx_begin() call to the TX (Transaction Demarcation)
interface to join the transaction.

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The requested_length specifies a value that exceeds the range permitted by the
implementation. The maximum value of the length in each implementation is at
least 32767. See the APPLICATION USAGE section below for additional
information about determining the maximum buffer size.

Full-duplex Conversations

The following return codes apply to full-duplex conversations:

If the call is issued in Send-Receive or Receive-Only state and either the sync_level is
CM_NONE or the sync_level is CM_SYNC_POINT_NO_CONFIRM and the conversation is
not currently included in a transaction, return_code can be one of the following:

CM_OK

CM_PIP_NOT_SPECIFIED_CORRECTLY

CM_CONVERSATION_TYPE_MISMATCH

CM_SECURITY_NOT_VALID

CM_SYNC_LVL_NOT_SUPPORTED_PGM

CM_SYNC_LVL_NOT_SUPPORTED_SYS

CM_SEND_RCV_MODE_NOT_SUPPORTED

CM_TPN_NOT_RECOGNIZED

CM_TP_NOT_AVAILABLE_NO_RETRY

CM_TP_NOT_AVAILABLE_RETRY

CM_DEALLOCATED_NORMAL

CM_DEALLOCATED_ABEND

CM_DEALLOCATED_ABEND_SVC (basic conversations only)

CM_DEALLOCATED_ABEND_TIMER (basic conversations only)

CM_PROGRAM_ERROR_NO_TRUNC

CM_PROGRAM_ERROR_TRUNC (basic conversations only)

216 X/Open CAE Specification

Call Reference Section Receive (CMRCV)

CM_PROGRAM_ERROR_PURGING (OSI TP CRM only)

CM_RESOURCE_FAILURE_RETRY

CM_RESOURCE_FAILURE_NO_RETRY

CM_SVC_ERROR_NO_TRUNC (basic conversations only)

CM_SVC_ERROR_TRUNC (basic conversations only)

CM_OPERATION_NOT_ACCEPTED

CM_OPERATION_INCOMPLETE

CM_PRODUCT_SPECIFIC_ERROR

CM_UNSUCCESSFUL
This value indicates that receive_type is set to CM_RECEIVE_IMMEDIATE, but there is
nothing to receive.

The following values are returned only if sync_level is
CM_SYNC_POINT_NO_CONFIRM and the state is Send-Receive or Prepared and the
conversation is included in a transaction:

CM_TAKE_BACKOUT

CM_DEALLOCATED_ABEND_BO

CM_DEALLOCATED_ABEND_SCV_BO (basic conversations only)

CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

CM_RESOURCE_FAIL_NO_RETRY_BO

CM_RESOURCE_FAILURE_RETRY_BO

CM_CONV_DEALLOC_AFTER_SYNCPT

CM_INCLUDE_PARTNER_REJECT_BO.

If a state or parameter error has occurred, return_code can have one of the following values:

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation is not in Send-Receive, Prepared or Receive-Only state.

— For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and transaction_control set to
CM_CHAINED_TRANSACTIONS or begin_transaction set to CM_BEGIN_IMPLICIT,
the program is in the Backout-Required condition. The Receive call is not allowed
for this conversation while the program is in this condition.

— The local program has received a status_received value of CM_JOIN_TRANSACTION
and must issue a tx_begin() call to the TX (Transaction Demarcation) interface to join
the transaction.

— The Receive call is the first activity on the conversation following
Accept_Conversation or Accept_Incoming, join_transaction is set to
CM_JOIN_EXPLICIT, transaction_control is CM_CHAINED_TRANSACTION and the
program has not issued a tx_begin() call to the TX (Transaction Demarcation)
interface to join the transaction.

Distributed Transaction Processing: CPI-C Specification, Version 2 217

Receive (CMRCV) Call Reference Section

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The requested_length specifies a value that exceeds the range permitted by the
implementation. The maximum value of the length in each implementation is at
least 32,767. See the APPLICATION USAGE section below for additional
information about determining the maximum buffer size.

STATE CHANGES
For half-duplex conversations, when return_code indicates CM_OK:

• The conversation enters Receive state if a Receive call is issued and all of the following
conditions are true:

— The receive_type is set to CM_RECEIVE_AND_WAIT.

— The conversation is in Send-Pending or Send state.

— The data_received indicates CM_DATA_RECEIVED, CM_COMPLETE_DATA_RECEIVED
or CM_INCOMPLETE_DATA_RECEIVED.

— The status_received indicates CM_NO_STATUS_RECEIVED.

• The conversation enters Send state when data_received is set to CM_NO_DATA_RECEIVED
and status_received is set to CM_SEND_RECEIVED.

• The conversation enters Send-Pending state when data_received is set to
CM_DATA_RECEIVED or CM_COMPLETE_DATA_RECEIVED, and status_received is set to
CM_SEND_RECEIVED.

• The conversation enters Confirm, Confirm-Send or Confirm-Deallocate state when
status_received is set to, respectively, CM_CONFIRM_RECEIVED,
CM_CONFIRM_SEND_RECEIVED or CM_CONFIRM_DEALLOC_RECEIVED.

• For a conversation with sync_level set to either CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the conversation enters Sync-Point, Sync-Point-Send
or Sync-Point-Deallocate state when status_received is set to CM_TAKE_COMMIT,
CM_TAKE_COMMIT_SEND or CM_TAKE_COMMIT_DEALLOCATE, respectively.

• For a conversation with sync_level set to either CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the conversation enters Sync-Point, Sync-Point-Send,
or Sync-Point-Deallocate state when status_received is set to
CM_TAKE_COMMIT_DATA_OK, CM_TAKE_COMMIT_SEND_DATA_OK or
CM_TAKE_COMMIT_DEALLOC_DATA_OK, respectively.

• No state change occurs when the call is issued in Receive state; data_received is set to
CM_DATA_RECEIVED, CM_COMPLETE_DATA_RECEIVED or
CM_INCOMPLETE_DATA_RECEIVED; and status_received indicates
CM_NO_STATUS_RECEIVED.

• No state change occurs when the call is issued in Prepared state, or if status_received indicates
CM_JOIN_TRANSACTION.

For full-duplex conversations, when return_code indicates CM_OK:

• No state change occurs when the call is issued in Prepared or Receive-Only state, or if
status_received indicates CM_JOIN_TRANSACTION.

218 X/Open CAE Specification

Call Reference Section Receive (CMRCV)

• The conversation enters Confirm-Deallocate state when status_received is set to
CM_CONFIRM_DEALLOC_RECEIVED.

• For a conversation with sync_level set to CM_SYNC_POINT_NO_CONFIRM, the
conversation enters Sync-Point state when status_received is set to CM_TAKE_COMMIT or
CM_TAKE_COMMIT_DATA_OK, and it enters Sync-Point-Deallocate state when
status_received is set to CM_TAKE_COMMIT_DEALLOCATE or
CM_TAKE_COMMIT_DEALLOC_DATA_OK.

APPLICATION USAGE

1. If receive_type is set to CM_RECEIVE_AND_WAIT and no information is present when the
call is made, CPI Communications waits for information to arrive on the specified
conversation before allowing the Receive call to return with the information. If
information is already available, the program receives it without waiting.

2. For a half-duplex conversation, if the program issues a Receive call with its end of the
conversation in Send state with receive_type set to CM_RECEIVE_AND_WAIT, the local
system flushes its send buffer and sends all buffered information to the remote program.
The local system also sends a change-of-direction indication. This is a convenient method
to change the direction of the conversation, because it leaves the local program’s end of the
conversation in Receive state and tells the remote program that it may now begin sending
data. The local system waits for information to arrive.

Note: A Receive call in Send or Send-Pending state with a receive_type set to
CM_RECEIVE_AND_WAIT generates an implicit execution of
Prepare_To_Receive with prepare_to_receive_type set to
CM_PREP_TO_RECEIVE_FLUSH, followed by a Receive. Refer to
Prepare_To_Receive (CMPTR) on page 202 for more information.

3. If receive_type is set to CM_RECEIVE_IMMEDIATE, a Receive call receives any available
information, but does not wait for information to arrive. If information is available, it is
returned to the program with an indication of the exact nature of the information received.

Since data may not be available when a given Receive call is issued, a program that is
using concurrent conversations with multiple partners might use a receive_type of
CM_RECEIVE_IMMEDIATE and periodically check each conversation for data. For more
information about multiple, concurrent conversations, see Section 3.7.1 on page 26.

4. If the return_code indicates CM_PROGRAM_STATE_CHECK or
CM_PROGRAM_PARAMETER_CHECK, the values of all other parameters on this call
have no meaning.

5. A Receive call issued against a mapped conversation can receive only as much of the data
record as specified by the requested_length parameter. The data_received parameter indicates
whether the program has received a complete or incomplete data record, as follows:

— When the program receives a complete data record or the last remaining portion of a
data record, the data_received parameter is set to CM_COMPLETE_DATA_RECEIVED.
The length of the record or portion of the record is less than or equal to the length
specified on the requested_length parameter.

— When the program receives a portion of the data record other than the last remaining
portion, the data_received parameter is set to CM_INCOMPLETE_DATA_RECEIVED.
The data record is incomplete for one of the following reasons:

— receive_type is set to CM_RECEIVE_AND_WAIT, and the length of the record is
greater than the length specified on the requested_length parameter.

Distributed Transaction Processing: CPI-C Specification, Version 2 219

Receive (CMRCV) Call Reference Section

— receive_type is set to CM_RECEIVE_IMMEDIATE, and either the length of the record
is greater than the length specified on the requested_length parameter or the last
portion of the data record has not arrived from the partner program.

In either case, the amount of data received is equal to the received_length specified.

6. When fill is set to CM_FILL_LL on a basic conversation, the program intends to receive a
logical record, and there are the following possibilities:

— The program receives a complete logical record or the last remaining portion of a
complete record. The length of the record or portion of the record is less than or equal
to the length specified on the requested_length parameter. The data_received parameter is
set to CM_COMPLETE_DATA_RECEIVED.

— The program receives an incomplete logical record for one of the following reasons:

— The length of the logical record is greater than the length specified on the
requested_length parameter. In this case, the amount received equals the length
specified.

— Only a portion of the logical record is available (possibly because it has been
truncated). The portion is equal to or less than the length specified on the
requested_length parameter.

The data_received parameter is set to CM_INCOMPLETE_DATA_RECEIVED. The
program issues another Receive (or possibly multiple Receive calls) to receive the
remainder of the logical record.

Refer to the Send_Data call for a definition of complete and incomplete logical records.

7. When fill is set to CM_FILL_BUFFER on a basic conversation, the program is to receive
data independently of its logical-record format. The program receives an amount of data
equal to or less than the length specified on the requested_length parameter. The program
can receive less data only under one of the following conditions:

— receive_type is set to CM_RECEIVE_AND_WAIT and the end of the data is received.
The end of data occurs when it is followed by either:

— an indication of a change in the state of the conversation:

— for a half-duplex conversation, a change to Send, Send-Pending, Confirm,
Confirm-Send, Confirm-Deallocate, Sync-Point, Sync-Point-Send, Sync-Point-
Deallocate or Reset state

— for a full-duplex conversation, a change to Send-Only, Confirm-Deallocate,
Sync-Point, Sync-Point-Deallocate or Reset state

— an error indication, such as a CM_PROGRAM_ERROR_NO_TRUNC return code.

— receive_type is set to CM_RECEIVE_IMMEDIATE and an amount of data equal to the
requested_length specified has not arrived from the partner program.

The program is responsible for tracking the logical-record format of the data.

220 X/Open CAE Specification

Call Reference Section Receive (CMRCV)

8. The Receive call made with requested_length set to zero has no special significance. The
type of information available is indicated by the return_code, data_received, and
status_received parameters, as usual. If receive_type is set to CM_RECEIVE_AND_WAIT
and no information is available, this call waits for information to arrive. If receive_type is
set to CM_RECEIVE_IMMEDIATE, it is possible that no information is available.

If data is available, the conversation is basic, and fill is set to CM_FILL_LL, the data_received
parameter indicates CM_INCOMPLETE_DATA_RECEIVED. If data is available, the
conversation is basic, and fill is set to CM_FILL_BUFFER, the data_received parameter
indicates CM_DATA_RECEIVED. If data is available and the conversation is mapped, the
data_received parameter is set to CM_INCOMPLETE_DATA_RECEIVED. In all the above
cases, the program receives no data.

If the conversation is mapped and a null data record is available (resulting from a
Send_Data call with send_length set to 0), the data_received parameter is set to
CM_COMPLETE_DATA_RECEIVED and the received_length parameter is set to 0.

Note: When requested_length is set to zero, receipt of either data or status can be
indicated, but not both. The only exception to this rule is when a null data record
is available for receipt on a mapped conversation. In that case, receipt of the null
data record and status can both be indicated.

9. The program can receive both data and conversation status on the same call. However, if
the remote program truncates a logical record, the local program receives the indication of
the truncation on the Receive call issued by the local program after it receives all of the
truncated record. The return_code, data_received, and status_received parameters indicate to
the program the kind of information the program receives.

10. The program may receive data and conversation status on the same Receive call or on
separate Receive calls. The program should be prepared for either case.

11. For a half-duplex conversation, the request-to-send notification is returned to the program
in addition to (not in place of) the information indicated by the return_code, data_received,
and status_received parameters.

12. A program must not specify a value in the requested_length parameter that is greater than
the maximum the implementation can support. The maximum may vary from system to
system. The program can use the Extract_Maximum_Buffer_Size call to determine the
maximum supported by the local system. The program can achieve portability across
different systems by using one of the following methods:

1. Never using a requested_length value greater than 32767.

2. Using the Extract_Maximum_Buffer_Size call to determine the maximum buffer size
supported by the system and never setting requested_length greater than that
maximum buffer size.

The program should also be aware that the CM_INCOMPLETE_DATA_RECEIVED value
of the data_received parameter may be returned when the maximum buffer size differs
across the systems.

13. When the Receive call is processed in non-blocking mode and receive_type is set to
CM_RECEIVE_IMMEDIATE, the call completes immediately. If information is not
available, return_code is set to CM_UNSUCCESSFUL.

14. When the local program has requested confirmation of the Allocate call and the first call
made by the recipient program is Request_To_Send or the recipient program has issued a
Send_Expedited_Data call, the CM_ALLOCATE_CONFIRMED value of the

Distributed Transaction Processing: CPI-C Specification, Version 2 221

Receive (CMRCV) Call Reference Section

control_information_received parameter is returned first, and one of the following values is
returned at the next opportunity:

CM_RTS_RCVD_AND_EXP_DATA_AVAIL

CM_REQ_TO_SEND_RECEIVED

CM_EXPEDITED_DATA_AVAILABLE.

15. The Receive call may be issued following a successful Prepare call, without a state
transition to Receive state in case of a half-duplex conversation, for either of these reasons:

— to receive data when CM_PREPARE_DATA_PERMITTED is selected and the Prepare
Call is issued

— to receive a new CM_PREPARE_OK value in status_received.

16. For a full-duplex conversation, if receive_type is set to CM_RECEIVE_AND_WAIT and the
conversation startup request has not been sent to the partner, then the Receive call will
flush the conversation startup request to the partner.

17. For a full-duplex conversation, if the return code CM_PROGRAM_ERROR_PURGING is
received, it indicates that the conversation is allocated using an OSI TP CRM and that data
may have been purged. The application has to ensure that the two partners are
coordinated.

18. For a full-duplex conversation, when CM_DEALLOCATED_ABEND or
CM_DEALLOCATED_ABEND_BO is received, further information on the cause of the
deallocation may be obtained by issuing the Extract_Secondary_Information call.

19. When control_information_received indicates that expedited data is available to be received,
subsequent calls with this parameter continue to indicate that expedited data is available
until the expedited data has been received by the program.

SEE ALSO
Section 3.2 on page 19 and Set_Fill (CMSF) on page 279 further discuss the use of basic
conversations.

Most of the example program flows in Chapter 4 show programs using the Receive call.

Extract_Maximum_Buffer_Size (CMEMBS) on page 172 further discusses determining the
maximum buffer size supported by the system.

Request_To_Send (CMRTS) on page 227 discusses how a program can place its end of the
conversation into Receive state.

Send_Data (CMSEND) on page 230 provides more information on complete and incomplete
logical records and data records.

Set_Receive_Type (CMSRT) on page 304 discusses the receive_type characteristic and its various
values.

222 X/Open CAE Specification

Call Reference Section Receive_Expedited_Data (CMRCVX)

NAME
Receive_Expedited_Data (CMRCVX) — receive expedited data from its partner.

SYNOPSIS
CALL CMRCVX(conversation_ID , buffer , requested_length , received_length ,

control_information_received , expedited_receive_type ,
return_code)

DESCRIPTION
A program uses the Receive_Expedited_Data (CMRCVX) call to receive expedited data sent by
its partner.

This call has meaning only when an LU 6.2 CRM is used for the conversation.

The Receive_Expedited_Data (CMRCVX) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• buffer (output)

Specifies the variable in which the program is to receive the data.

• requested_length (input)

Specifies the maximum amount of data the program is to receive. This length can range from
0 to 86 bytes.

• received_length (output)

When CM_OK is returned to the program, this parameter specifies the amount of data
received, which is less than or equal to the buffer size specified in requested_length. When
CM_BUFFER_TOO_SMALL is returned to the program, this parameter indicates the size of
the data that is available to be received but has not been received.

• control_information_received (output)

Specifies the variable containing an indication of whether or not control information has been
received.

The control_information_received variable can have one of the following values:

CM_NO_CONTROL_INFO_RECEIVED
Indicates that no control information was received.

CM_REQ_TO_SEND_RECEIVED (half-duplex conversations only)
The local program received a request-to-send notification from the remote program. The
remote program issued Request_To_Send, requesting the local program’s end of the
conversation to enter Receive state, which would place the remote program’s end of the
conversation in Send state. See Request_To_Send (CMRTS) on page 227 for further
discussion of the local program’s possible responses.

CM_EXPEDITED_DATA_AVAILABLE
Expedited data is available to be received.

CM_RTS_RCVD_AND_EXP_DATA_AVAIL (half-duplex conversations only)
The local program received a request-to-send notification from the remote program and
expedited data is available to be received.

Distributed Transaction Processing: CPI-C Specification, Version 2 223

Receive_Expedited_Data (CMRCVX) Call Reference Section

Notes:

1. If return_code is set to CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, the value contained in
control_information_received has no meaning.

2. When more than one piece of control information is available to be
returned to the program, they are returned in the following order:

CM_RTS_RCVD_AND_EXP_DATA_AVAIL

CM_REQ_TO_SEND_RECEIVED

CM_EXPEDITED_DATA_AVAILABLE

CM_NO_CONTROL_INFO_RECEIVED.

• expedited_receive_type (input)

Specifies whether control should be returned to the program immediately or after there is
expedited data available to receive.

The expedited_receive_type variable can have one of the following values:

CM_RECEIVE_AND_WAIT
The Receive_Expedited_Data call is to wait for expedited data to arrive on the specified
conversation. If expedited data is already available, the program receives it without
waiting.

CM_RECEIVE_IMMEDIATE
The Receive_Expedited_Data call is to receive any expedited data that is available from
the specified conversation, but is not to wait for expedited data to arrive.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_OPERATION_INCOMPLETE

CM_PROGRAM_PARAMETER_CHECK

— The conversation_ID specifies an unassigned conversation identifier.

— The requested_length specifies a value less than 0 or greater than 86.

— The conversation is not using an LU 6.2 CRM.

— The expedited_receive_type specifies an undefined value.

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is in Initialize or Initialize-Incoming state
and is not allowed to send expedited data.

CM_CONVERSATION_ENDING
This value indicates that the conversation is ending due to a normal deallocation, an
allocation error, a Cancel_Conversation call, a Deallocate call with deallocate_type set to
CM_DEALLOCATE_ABEND, or a conversation failure. Hence, no expedited data is
received.

224 X/Open CAE Specification

Call Reference Section Receive_Expedited_Data (CMRCVX)

CM_EXP_DATA_NOT_SUPPORTED
This value indicates that the remote system does not support expedited data.

CM_BUFFER_TOO_SMALL
This value indicates that the value specified for the requested_length parameter is less
than the amount of expedited data to be received. Therefore, no expedited data has been
received.

CM_OPERATION_NOT_ACCEPTED

CM_UNSUCCESSFUL
This value indicates that the expedited_receive_type parameter was set to
CM_RECEIVE_IMMEDIATE and there was no expedited data available to receive.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE

1. When expedited data is received by the CRM from the partner program, it is indicated to
the local program on the next call it issues that returns the control_information_received
parameter. When the program uses multiple threads or queue-level non-blocking, more
than one call with the control_information_received parameter may be executed
simultaneously. The availability of expedited data will continue to be indicated until the
expedited data is received by the program. However, if a request-to-send or an allocate-
confirm notification has been received, this notification is given to the program in only one
call that has the control_information_received parameter.

2. If the program issues Receive_Expedited_Data with requested_length set to 0 and there is
data available to be received, CM_BUFFER_TOO_SMALL is returned.

3. If the program issues Receive_Expedited_Data with requested_length set to 0 and
expedited_receive_type set to CM_RECEIVE_AND_WAIT, and there is no data available to
be received, the call does not complete until expedited data is available to be received.
CM_BUFFER_TOO_SMALL is then returned.

SEE ALSO
Send_Expedited_Data (CMSNDX) on page 250 describes the Send_Expedited_Data call.

Distributed Transaction Processing: CPI-C Specification, Version 2 225

Release_Local_TP_Name (CMRLTP) Call Reference Section

NAME
Release_Local_TP_Name (CMRLTP) — release a name.

SYNOPSIS
CALL CMRLTP(TP_name, TP_name_length , return_code)

DESCRIPTION
Release_Local_TP_Name (CMRLTP) is used by a program to release a name. The name is no
longer associated with the program.

The Release_Local_TP_Name (CMRLTP) call uses the following input and output parameters:

• TP_name (input)

Specifies the name to be released.

• TP_name_length (input)

Specifies the length of TP_name. The length can be from 1 to 64 bytes.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The TP_name specifies a name that is not associated with this program.

— The TP_name_length specifies a value less than 1 or greater than 64.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

APPLICATION USAGE

1. If a return_code other than CM_OK is returned on the call, the names associated with the
current program remain unchanged.

2. The names used to satisfy an outstanding Accept_Incoming or Accept_Conversation call
are not changed by the Release_Local_TP_Name call. The released name is not used to
satisfy future Accept_Incoming or Accept_Conversation calls.

3. A TP can release a name that was taken from the conversation startup request and used to
start the program.

4. If a TP has released all names, no incoming conversations can be accepted. Subsequent
Accept_Incoming and Accept_Conversation calls receive the
CM_PROGRAM_STATE_CHECK return code.

SEE ALSO
Specify_Local_TP_Name (CMSLTP) on page 317 describes how local names are associated with a
program.

226 X/Open CAE Specification

Call Reference Section Request_To_Send (CMRTS)

NAME
Request_To_Send (CMRTS) — notify its partner that it would like to send data.

SYNOPSIS
CALL CMRTS(conversation_ID , return_code)

DESCRIPTION
The local program uses the Request_To_Send (CMRTS) call to notify the remote program that
the local program would like to enter Send state for a given conversation.

Note: The Request_To_Send call has meaning only on a half-duplex conversation.

The Request_To_Send (CMRTS) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_OPERATION_INCOMPLETE

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The send_receive_mode is CM_FULL_DUPLEX.

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation is not in Receive, Send, Send-Pending, Confirm, Confirm-Send,
Confirm-Deallocate, Sync-Point, Sync-Point-Send, Sync-Point-Deallocate or
Prepared state.

— For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the program is in the Backout-Required
condition. The Request_To_Send call is not allowed for this conversation while the
program is in this condition.

— For a conversation using an OSI TP CRM, the Request_To_Send call is not allowed
from Send or Prepared state.

— The program has received a status_received value of CM_JOIN_TRANSACTION and
must issue a tx_begin() call to the TX (Transaction Demarcation) interface to join the
transaction.

CM_CONVERSATION_ENDING
This return code indicates that the local system is ending the conversation or notification
has been received from the remote system that it is ending the conversation.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

Distributed Transaction Processing: CPI-C Specification, Version 2 227

Request_To_Send (CMRTS) Call Reference Section

APPLICATION USAGE

1. The remote program is informed of the arrival of a request-to-send notification by means
of the control_information_received parameter. The control_information_received parameter
set to CM_REQ_TO_SEND_RECEIVED or CM_RTS_RCVD_AND_EXP_DATA_AVAIL is a
request for the remote program’s end of the conversation to enter Receive state in order to
place the partner program’s end of the conversation (the program that issued the
Request_To_Send) in Send state.

The remote program’s end of the conversation enters Receive state when the remote
program successfully issues one of the following calls or sequences of calls:

— the Receive call with receive_type set to CM_RECEIVE_AND_WAIT

— the Prepare_To_Receive call with prepare_to_receive_type set to
CM_PREP_TO_RECEIVE_FLUSH, CM_PREP_TO_RECEIVE_CONFIRM or
CM_PREP_TO_RECEIVE_SYNC_LEVEL, and sync_level set to CM_CONFIRM or
CM_NONE, or CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, but with the conversation
not currently included in a transaction

— the Send_Data call with send_type set to CM_SEND_AND_PREP_TO_RECEIVE and
prepare_to_receive_type set to CM_PREP_TO_RECEIVE_FLUSH,
CM_PREP_TO_RECEIVE_CONFIRM or CM_PREP_TO_RECEIVE_SYNC_LEVEL, and
sync_level set to CM_CONFIRM or CM_NONE, or
CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, but with the conversation not currently included
in a transaction

— the Prepare_To_Receive call with prepare_to_receive_type set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, followed by a successful commit, Confirm or
Flush call

— the Send_Data call with send_type set to CM_SEND_AND_PREP_TO_RECEIVE,
prepare_to_receive_type set to CM_PREP_TO_RECEIVE_SYNC_LEVEL, and sync_level
set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, followed by a
successful commit, Confirm or Flush call.

After a remote program issues one of these calls, the local program’s end of the
conversation is placed into a corresponding Send, Send-Pending, Confirm-Send or Sync-
Point-Send state when the local program issues a Receive call. See the status_received
parameter for the Receive call on Receive (CMRCV) on page 208 for information about why
the state changes from Receive to Send.

2. The CM_REQ_TO_SEND_RECEIVED value is normally returned to the remote program in
the control_information_received parameter when the remote program’s end of the
conversation is in Send state (on a Send_Data, Send_Error, Confirm, or
Test_Request_To_Send_Received call). However, the value can also be returned on a
Receive call.

3. When the remote system receives the request-to-send notification, it retains the notification
until the remote program issues a call with the control_information_received parameter. The
remote system retains only one request-to-send notification at a time (per conversation).
Additional notifications are discarded until the retained notification is indicated to the
remote program. Therefore, a local program may issue the Request_To_Send call more
times than are indicated to the remote program.

228 X/Open CAE Specification

Call Reference Section Request_To_Send (CMRTS)

SEE ALSO
Section 4.3.4 on page 76 shows an example program flow using the Request_To_Send call.

Receive (CMRCV) on page 208 provides additional information on the status_received and
control_information_received parameters.

Distributed Transaction Processing: CPI-C Specification, Version 2 229

Send_Data (CMSEND) Call Reference Section

NAME
Send_Data (CMSEND) — send data.

SYNOPSIS
CALL CMSEND(conversation_ID , buffer , send_length ,

control_information_received , return_code)

DESCRIPTION
A program uses the Send_Data (CMSEND) call to send data to the remote program. When
issued during a mapped conversation, this call sends one data record to the remote program.
The data record consists entirely of data and is not examined by the system for possible logical
records.

When issued during a basic conversation, this call sends data to the remote program. The data
consists of logical records. The amount of data is specified independently of the data format.

Before issuing the Send_Data call, a program has the option of issuing one or more of the
following calls, which affect the function of the Send_Data call:

CALL CMSST − Set_Send_Type

— If send_type = CM_SEND_AND_PREP_TO_RECEIVE, optional set up may include:

CALL CMSPTR − Set_Prepare_To_Receive_Type

— If send_type = CM_SEND_AND_DEALLOCATE, optional set up may include:

CALL CMSDT − Set_Deallocate_Type

The Send_Data (CMSEND) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier of the conversation.

• buffer (input)

When a program issues a Send_Data call during a mapped conversation, buffer specifies the
data record to be sent. The length of the data record is given by the send_length parameter.

When a program issues a Send_Data call during a basic conversation, buffer specifies the data
to be sent. The data consists of logical records, each containing a 2-byte length field (denoted
as LL) followed by a data field. The length of the data field can range from 0 to 32765 bytes.
The 2-byte length field contains the following bits:

— a high-order bit that is not examined by the system; it is used, for example, by the
system’s mapped conversation component in support of the mapped conversation calls

— a 15-bit binary length of the record.

The length of the record equals the length of the data field plus the 2-byte length field.
Therefore, logical record length values of X’0000’, X’0001’, X’8000’, and X’8001’ are not valid.

Note: The logical record length values shown above (such as X’0000’) are in the
hexadecimal (base-16) numbering system.

230 X/Open CAE Specification

Call Reference Section Send_Data (CMSEND)

• send_length (input)

For both basic and mapped conversations, the send_length ranges in value from 0 to the
maximum buffer size supported by the system. The maximum buffer size is at least 32767
bytes. See the APPLICATION USAGE section below for additional information about
determining the maximum buffer size. The send_length parameter specifies the size of the
buffer parameter and the number of bytes to be sent on the conversation.

When a program issues a Send_Data call during a mapped conversation and send_length is
zero, a null data record is sent.

When a program issues a Send_Data call during a basic conversation, send_length specifies
the size of the buffer parameter and is not related to the length of a logical record. If
send_length is zero, no data is sent, and the buffer parameter is not important. However, the
other parameters and set-up characteristics are significant and retain their meaning as
described.

• control_information_received (output)

Specifies the variable containing an indication of whether or not control information has been
received.

The control_information_received variable can have one of the following values:

CM_NO_CONTROL_INFO_RECEIVED
Indicates that no control information was received.

CM_REQ_TO_SEND_RECEIVED (half-duplex conversations only)
The local program received a request-to-send notification from the remote program. The
remote program issued Request_To_Send, requesting the local program’s end of the
conversation to enter Receive state, which would place the remote program’s end of the
conversation in Send state. See Request_To_Send (CMRTS) on page 227 for further
discussion of the local program’s possible responses.

CM_ALLOCATE_CONFIRMED (OSI TP CRM only)
The local program received confirmation of the remote program’s acceptance of the
conversation.

CM_ALLOCATE_CONFIRMED_WITH_DATA (OSI TP CRM only)
The local program received confirmation of the remote program’s acceptance of the
conversation. The local program may now issue an Extract_Initialization_Data (CMEID)
call to receive the initialization data.

CM_ALLOCATE_REJECTED_WITH_DATA (OSI TP CRM only)
The remote program rejected the conversation. The local program may now issue an
Extract_Initialization_Data (CMEID) call to receive the initialization data. This value
will be returned with a return code of CM_OK. The program will receive a
CM_DEALLOCATED_ABEND return code on a later call on the conversation.

CM_EXPEDITED_DATA_AVAILABLE (LU 6.2 CRM only)
Expedited data is available to be received.

CM_RTS_RCVD_AND_EXP_DATA_AVAIL (half-duplex and LU 6.2 CRM only)
The local program received a request-to-send notification from the remote program and
expedited data is available to be received.

Distributed Transaction Processing: CPI-C Specification, Version 2 231

Send_Data (CMSEND) Call Reference Section

Notes:

1. If return_code is set to CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, the value contained in
control_information_received has no meaning.

2. When more than one piece of control information is available to be returned to
the program, they are returned in the following order:

— CM_ALLOCATE_CONFIRMED,
CM_ALLOCATE_CONFIRMED_WITH_DATA or
CM_ALLOCATE_REJECTED_WITH_DATA

— CM_RTS_RCVD_AND_EXP_DATA_AVAIL

— CM_REQ_TO_SEND_RECEIVED

— CM_EXPEDITED_DATA_AVAILABLE

— CM_NO_CONTROL_INFO_RECEIVED.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values.

Half-duplex Conversations

The following return codes apply to half-duplex conversations:

CM_OK

CM_OPERATION_INCOMPLETE

CM_CONVERSATION_TYPE_MISMATCH

CM_PIP_NOT_SPECIFIED_CORRECTLY

CM_SECURITY_NOT_VALID

CM_SYNC_LVL_NOT_SUPPORTED_PGM

CM_SYNC_LVL_NOT_SUPPORTED_SYS

CM_SEND_RCV_MODE_NOT_SUPPORTED

CM_TPN_NOT_RECOGNIZED

CM_TP_NOT_AVAILABLE_NO_RETRY

CM_TP_NOT_AVAILABLE_RETRY

CM_PROGRAM_ERROR_PURGING

CM_DEALLOCATED_ABEND

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

CM_DEALLOCATED_ABEND_SVC (basic conversations only)

CM_DEALLOCATED_ABEND_TIMER (basic conversations only)

CM_SVC_ERROR_PURGING (basic conversations only)

232 X/Open CAE Specification

Call Reference Section Send_Data (CMSEND)

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation is not in Send, Send-Pending, Sync-Point, Sync-Point-Send or
Sync-Point-Deallocate state.

— The conversation is in Sync-Point, Sync-Point-Send or Sync-Point-Deallocate state,
and the program receives a take-commit notification not ending in *_DATA_OK.

— The conversation is basic and in Send state; the send_type is set to
CM_SEND_AND_CONFIRM, CM_SEND_AND_DEALLOCATE or
CM_SEND_AND_PREP_TO_RECEIVE; the deallocate_type is not set to
CM_DEALLOCATE_ABEND (if send_type is set to
CM_SEND_AND_DEALLOCATE); and the data does not end on a logical record
boundary.

— For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and transaction_control set to
CM_CHAINED_TRANSACTIONS or begin_transaction set to CM_BEGIN_IMPLICIT,
the program is in the Backout-Required condition. The Send_Data call is not
allowed for this conversation while the program is in this condition.

— The conversation is in Sync-Point, Sync-Point-Send or Sync-Point-Deallocate state,
and send_type is set to CM_SEND_AND_CONFIRM or
CM_SEND_AND_PREP_TO_RECEIVE.

— The conversation is in Sync-Point, Sync-Point-Send or Sync-Point-Deallocate state,
the send_type is set to CM_SEND_AND_DEALLOCATE, and the deallocate_type is not
set to CM_DEALLOCATE_ABEND.

— The send_type is set to CM_SEND_AND_DEALLOCATE and the following
conditions are also true:

— The deallocate_type is set to CM_DEALLOCATE_FLUSH or
CM_DEALLOCATE_CONFIRM.

— The sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM.

— The conversation is included in a transaction.

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The send_length exceeds the range permitted by the implementation. The maximum
value of the length in each implementation is at least 32767. See the APPLICATION
USAGE section below for additional information about determining the maximum
buffer size.

— The conversation_type is CM_BASIC_CONVERSATION and buffer contains an invalid
logical record length (LL) value of X’0000’, X’0001’, X’8000’ or X’8001’.

— The send_type is set to CM_SEND_AND_PREP_TO_RECEIVE and the following
conditions are also true:

— The prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL.

— The sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM.

Distributed Transaction Processing: CPI-C Specification, Version 2 233

Send_Data (CMSEND) Call Reference Section

— The conversation is included in a transaction.

— The conversation is using an OSI TP CRM, and the program is not the superior
for the conversation.

— The send_type is set to CM_SEND_AND_DEALLOCATE and the following
conditions are also true:

— The deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL.

— The sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM.

— The conversation is included in a transaction.

— The conversation is using an OSI TP CRM, and the program is not the superior
for the conversation.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR

The following values are returned only when sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and the conversation is included in a transaction:

CM_TAKE_BACKOUT

CM_DEALLOCATED_ABEND_BO

CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)

CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

CM_RESOURCE_FAIL_NO_RETRY_BO

CM_RESOURCE_FAILURE_RETRY_BO

CM_INCLUDE_PARTNER_REJECT_BO.

Full-duplex Conversations

The following return codes apply to full-duplex conversations:

The return_code can have one of the following values:

CM_OK

CM_ALLOCATION_ERROR

CM_DEALLOCATED_ABEND

CM_DEALLOCATED_ABEND_SVC

CM_DEALLOCATED_ABEND_TIMER

CM_DEALLOC_CONFIRM_REJECT

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

CM_DEALLOCATED_NORMAL (OSI TP CRM only)

234 X/Open CAE Specification

Call Reference Section Send_Data (CMSEND)

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation is not in Send-Receive, Send-Only, Sync-Point or Sync-Point-
Deallocate state.

— The conversation is basic and in Send-Receive or Send-Only state, the send_type is
set to CM_SEND_AND_DEALLOCATE, the deallocate_type is not set to
CM_DEALLOCATE_ABEND, and the data does not end on a logical record
boundary.

— The conversation is in Sync-Point or Sync-Point Deallocate state and the program
received a take-commit notification not ending in *_DATA_OK.

— The conversation is in Sync-Point or Sync-Point-Deallocate state, the send_type is set
to CM_SEND_AND_DEALLOCATE, and the deallocate_type is not set to
CM_DEALLOCATE_ABEND.

— For a conversation with sync_level set to CM_SYNC_POINT_NO_CONFIRM, this
return code indicates one of the following:

— The transaction_control is set to CM_CHAINED_TRANSACTIONS or the
begin_transaction set to CM_BEGIN_IMPLICIT, and the program is in the
Backout-Required condition. The Send_Data call is not allowed for this
conversation while the program is in this condition.

— The local program has received a status_received value of
CM_JOIN_TRANSACTION and must issue a tx_begin() call to the TX
(Transaction Demarcation) interface to join the transaction.

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The send_length exceeds the range permitted by the implementation. The maximum
value of the length in each implementation is at least 32767.

— The conversation_type is CM_BASIC_CONVERSATION and buffer contains an invalid
logical record length (LL) value of X’0000’, X’0001’, X’8000’ or X’8001’.

— The send_type is set to CM_SEND_AND_DEALLOCATE and the following
conditions are also true:

— The deallocate_type is set to CM_DEALLOCATE_FLUSH or
CM_DEALLOCATE_CONFIRM.

— The sync_level is set to CM_SYNC_POINT_NO_CONFIRM.

— The conversation in included in a transaction.

— The send_type is set to CM_SEND_AND_DEALLOCATE and the following
conditions are also true:

— The deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL.

— The sync_level is set to CM_SYNC_POINT_NO_CONFIRM.

— The conversation is included in a transaction.

— The program is not the superior for the conversation.

Distributed Transaction Processing: CPI-C Specification, Version 2 235

Send_Data (CMSEND) Call Reference Section

CM_OPERATION_NOT_ACCEPTED

CM_OPERATION_INCOMPLETE

CM_PRODUCT_SPECIFIC_ERROR.

The following values are returned only if sync_level is
CM_SYNC_POINT_NO_CONFIRM, the state is Send-Receive and the conversation is
currently included in a transaction:

CM_TAKE_BACKOUT

CM_DEALLOCATED_ABEND_BO

CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)

CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

CM_RESOURCE_FAIL_NO_RETRY_BO

CM_RESOURCE_FAILURE_RETRY_BO

CM_CONV_DEALLOC_AFTER_SYNCPT

CM_INCLUDE_PARTNER_REJECT_BO.

STATE CHANGES
For half-duplex conversations, when return_code indicates CM_OK:

• The conversation enters Receive state when Send_Data is issued with send_type set to
CM_SEND_AND_PREP_TO_RECEIVE and any of the following conditions are true:

— Prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_FLUSH.

— Prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_CONFIRM.

— Prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and sync_level is
set to CM_NONE or CM_CONFIRM.

— Prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL, sync_level is set
to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, but the conversation is not
currently included in a transaction.

• The conversation enters Defer-Receive state when Send_Data is issued with send_type set to
CM_SEND_AND_PREP_TO_RECEIVE, prepare_to_receive_type set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL, sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, and the conversation is included in a transaction.

• The conversation enters Reset state when Send_Data is issued with send_type set to
CM_SEND_AND_DEALLOCATE and any of the following conditions is true:

— Deallocate_type is set to CM_DEALLOCATE_ABEND.

— Deallocate_type is set to CM_DEALLOCATE_FLUSH.

— Deallocate_type is set to CM_DEALLOCATE_CONFIRM.

— Deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and sync_level is set to
CM_NONE or CM_CONFIRM.

— Deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL, sync_level is set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, but the conversation is not
currently included in a transaction.

236 X/Open CAE Specification

Call Reference Section Send_Data (CMSEND)

• The conversation enters Defer-Deallocate state when Send_Data is issued with send_type set
to CM_SEND_AND_DEALLOCATE, deallocate_type set to
CM_DEALLOCATE_SYNC_LEVEL, sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, and the conversation is included in a transaction.

• The conversation enters Send state when Send_Data is issued in Send-Pending state with
send_type set to CM_BUFFER_DATA, CM_SEND_AND_FLUSH, or
CM_SEND_AND_CONFIRM.

• No state change occurs when Send_Data is issued in Send state with send_type set to
CM_BUFFER_DATA, CM_SEND_AND_FLUSH, or CM_SEND_AND_CONFIRM.

For full-duplex conversations, when return_code indicates CM_OK:

• The conversation enters Receive-Only state when the Send_Data call is issued in Send-
Receive state with send_type set to CM_SEND_AND_DEALLOCATE, and one of the
following conditions is true:

— deallocate_type is set to CM_DEALLOCATE_FLUSH.

— deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and sync_level is set to
CM_NONE.

— deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL, sync_level is set to
CM_SYNC_POINT_NO_CONFIRM, and the conversation is not currently included in a
transaction.

• The conversation enters Reset state when the Send_Data call is issued with send_type set to
CM_SEND_AND_DEALLOCATE and one of the following conditions is true:

— The call is issued in Send-Only state.

— The call is issued in Send-Receive, Send-Only, Sync-Point or Sync-Point-Deallocate
state and deallocate_type is set to CM_DEALLOCATE_ABEND.

• The conversation enters Defer-Deallocate state when the Send_Data call is issued with
send_type set to CM_SEND_AND_DEALLOCATE, deallocate_type set to
CM_DEALLOCATE_SYNC_LEVEL, sync_level set to CM_SYNC_POINT_NO_CONFIRM,
and the conversation included in a transaction.

• No state change occurs when Send_Data is issued in Send-Receive or Send-Only state with
send_type set to CM_BUFFER_DATA or CM_SEND_AND_FLUSH.

APPLICATION USAGE

1. The local system buffers the data to be sent to the remote system until it accumulates a
sufficient amount of data for transmission (from one or more Send_Data calls), or until the
local program issues a call that causes the system to flush its send buffer. The amount of
data sufficient for transmission depends on the characteristics of the logical connection
allocated for the conversation, and varies from one logical connection to another.

2. For a half-duplex conversation, when control_information_received indicates
CM_REQ_TO_SEND_RECEIVED, or CM_RTS_RCVD_AND_EXP_DATA_AVAIL, or the
remote program is requesting the local program’s end of the conversation to enter Receive
state, which places the remote program’s end of the conversation in Send state. See
Request_To_Send (CMRTS) on page 227 for a discussion of how a program can place its end
of a conversation in Receive state.

3. When issued during a mapped conversation, the Send_Data call sends one complete data
record. The data record consists entirely of data and CPI Communications does not

Distributed Transaction Processing: CPI-C Specification, Version 2 237

Send_Data (CMSEND) Call Reference Section

examine the data for logical record length fields. It is this specification of a complete data
record, at send time by the local program and what it sends, that is indicated to the remote
program by the data_received parameter of the Receive call.

For example, consider a mapped conversation where the local program issues two
Send_Data calls with send_length set, respectively, to 30 and then 50. (These numbers are
simplistic for explanatory purposes.) The local program then issues Flush and the 80 bytes
of data are sent to the remote system. The remote program now issues Receive with
requested_length set to a sufficiently large value, say 1000. The remote program will receive
back only 30 bytes of data (indicated by the received_length parameter) because this is a
complete data record. The completeness of the data record is indicated by the data_received
variable, which will be set to CM_COMPLETE_DATA_RECEIVED.

The remote program receives the remaining 50 bytes of data (from the second Send_Data)
when it performs a second Receive with requested_length set to a value greater than or
equal to 50.

4. The data sent by the program during a basic conversation consists of logical records. The
logical records are independent of the length of data as specified by the send_length
parameter. The data can contain one or more complete records, the beginning of a record,
the middle of a record, or the end of a record. The following combinations of data are also
possible:

— one or more complete records, followed by the beginning of a record

— the end of a record, followed by one or more complete records

— the end of a record, followed by one or more complete records, followed by the
beginning of a record

— the end of a record, followed by the beginning of a record.

5. The program using a basic conversation must finish sending a logical record before issuing
any of the following calls:

— Confirm

— Deallocate with deallocate_type set to CM_DEALLOCATE_FLUSH,
CM_DEALLOCATE_CONFIRM or CM_DEALLOCATE_SYNC_LEVEL

— Include_Partner_In_Transaction

— Prepare

— Prepare_To_Receive

— Receive

— Resource recovery commit.

A program finishes sending a logical record when it sends a complete record or when it
truncates an incomplete record. The data must end with the end of a logical record (on a
logical record boundary) when Send_Data is issued with send_type set to
CM_SEND_AND_CONFIRM, CM_SEND_AND_DEALLOCATE or
CM_SEND_AND_PREP_TO_RECEIVE.

6. A complete logical record contains the 2-byte LL field and all bytes of the data field, as
determined by the logical-record length. If the data field length is zero, the complete
logical record contains only the 2-byte length field. An incomplete logical record consists
of any amount of data less than a complete record. It can consist of only the first byte of
the LL field, the 2-byte LL field plus all of the data field except the last byte, or any amount

238 X/Open CAE Specification

Call Reference Section Send_Data (CMSEND)

in between. A logical record is incomplete until the last byte of the data field is sent, or
until the second byte of the LL field is sent if the data field is of zero length.

7. During a basic conversation, a program can truncate an incomplete logical record by
issuing the Send_Error call. Send_Error causes the system to flush its send buffer, which
includes sending the truncated record. The system then treats the first two bytes of data
specified in the next Send_Data as the LL field. Issuing Send_Data with send_type set to
CM_SEND_AND_DEALLOCATE and deallocate_type set to CM_DEALLOCATE_ABEND,
or Deallocate with deallocate_type set to CM_DEALLOCATE_ABEND, during a basic
conversation also truncates an incomplete logical record. If the log_data characteristic is
not null and these conditions occur, log data is sent.

8. Send_Data is often used in combination with other calls, such as Flush, Confirm, and
Prepare_To_Receive. Contrast this usage with the equivalent function available from the
use of the Set_Send_Type call prior to issuing a call to Send_Data.

9. When a Send_Data call is issued with send_type set to CM_SEND_AND_DEALLOCATE,
deallocate_type set to CM_DEALLOCATE_ABEND and the conversation is included in a
transaction, the program may be placed in the Backout-Required condition.

10. A program must not specify a value in the send_length parameter that is greater than the
maximum the implementation can support. The maximum may vary from system to
system. The program can use the Extract_Maximum_Buffer_Size call to find out the
maximum buffer size supported by the local system. The program can achieve portability
across different systems by using one of the following methods:

— never using a send_length value greater than 32767

— using the Extract_Maximum_Buffer_Size call to determine the maximum buffer size
supported by the system and never setting send_length greater than that maximum
buffer size.

11. When control_information_received indicates that expedited data is available to be received,
subsequent calls with this parameter will continue to indicate that expedited data is
available until the expedited data has been received by the program.

SEE ALSO
Section 3.2 on page 19 provides more information on mapped and basic conversations.

Section 4.3.1 on page 71 provides a complete discussion of controls over data transmission.

All of the example program flows in Chapter 4 make use of the Send_Data call.

Extract_Maximum_Buffer_Size (CMEMBS) on page 172 further discusses determining the
maximum buffer size supported by the system.

Receive (CMRCV) on page 208 provides more information on the data_received parameter.

Set_Send_Type (CMSST) on page 309 provides more information on the send_type conversation
characteristic and the use of it in combination with calls to Send_Data.

The referenced SNA Programmer’s Reference specification provides further discussion of basic
conversations.

Distributed Transaction Processing: CPI-C Specification, Version 2 239

Send_Error (CMSERR) Call Reference Section

NAME
Send_Error (CMSERR) — notify its partner of an error that occurred during the conversation.

SYNOPSIS
CALL CMSERR(conversation_ID , control_information_received , return_code)

DESCRIPTION
Send_Error (CMSERR) is used by a program to inform the remote program that the local
program detected an error during a conversation. If the conversation is in Send, Send-Receive
or Send-Only state, Send_Error forces the system to flush its send buffer.

For a half-duplex conversation, when this call completes successfully, the local program’s end of
the conversation is in Send state and the remote program’s end of the conversation is in Receive
state. Further action is defined by program logic.

For a full-duplex conversation, no state change occurs. The issuance of Send_Error will be
reported to the partner on a Receive call.

Before issuing the Send_Error call, a program has the option of issuing one or more of the
following calls, which affect the function of the Send_Error call:

CALL CMSED − Set_Error_Direction (for half-duplex conversations only)
CALL CMSLD − Set_Log_Data.

The Send_Error (CMSERR) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• control_information_received (output)

Specifies the variable containing an indication of whether or not control information has been
received.

The control_information_received variable can have one of the following values:

CM_NO_CONTROL_INFO_RECEIVED
Indicates that no control information was received.

CM_REQ_TO_SEND_RECEIVED (half-duplex conversations only)
The local program received a request-to-send notification from the remote program. The
remote program issued Request_To_Send, requesting the local program’s end of the
conversation to enter Receive state, which would place the remote program’s end of the
conversation in Send state. See Request_To_Send (CMRTS) on page 227 for further
discussion of the local program’s possible responses.

CM_ALLOCATE_CONFIRMED (OSI TP CRM only)
The local program received confirmation of the remote program’s acceptance of the
conversation.

CM_ALLOCATE_CONFIRMED_WITH_DATA (OSI TP CRM only)
The local program received confirmation of the remote program’s acceptance of the
conversation. The local program may now issue an Extract_Initialization_Data (CMEID)
call to receive the initialization data.

CM_ALLOCATE_REJECTED_WITH_DATA (OSI TP CRM only)
The remote program rejected the conversation. The local program may now issue an
Extract_Initialization_Data (CMEID) call to receive the initialization data. This value
will be returned with a return code of CM_OK. The program will receive a
CM_DEALLOCATED_ABEND return code on a later call on the conversation.

240 X/Open CAE Specification

Call Reference Section Send_Error (CMSERR)

CM_EXPEDITED_DATA_AVAILABLE (LU 6.2 CRM only)
Expedited data is available to be received.

CM_RTS_RCVD_AND_EXP_DATA_AVAIL (half-duplex and LU 6.2 CRM only)
The local program received a request-to-send notification from the remote program and
expedited data is available to be received.

Notes:

1. If return_code is set to CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, the value contained in
control_information_received has no meaning.

2. When more than one piece of control information is available to be returned to
the program, they are returned in the following order:

— CM_ALLOCATE_CONFIRMED,
CM_ALLOCATE_CONFIRMED_WITH_DATA or
CM_ALLOCATE_REJECTED_WITH_DATA

— CM_RTS_RCVD_AND_EXP_DATA_AVAIL

— CM_REQ_TO_SEND_RECEIVED

— CM_EXPEDITED_DATA_AVAILABLE

— CM_NO_CONTROL_INFO_RECEIVED.

• return_code (output)

Specifies the result of the call execution. The value for return_code depends on the state of the
conversation at the time this call is issued.

Half-duplex Conversations

The following return codes apply to half-duplex conversations:

If the Send_Error is issued in Send state, return_code can have one of the following values:

CM_OK

CM_OPERATION_INCOMPLETE

CM_CONVERSATION_TYPE_MISMATCH

CM_PIP_NOT_SPECIFIED_CORRECTLY

CM_SECURITY_NOT_VALID

CM_SYNC_LVL_NOT_SUPPORTED_PGM

CM_SYNC_LVL_NOT_SUPPORTED_SYS

CM_SEND_RCV_MODE_NOT_SUPPORTED

CM_TPN_NOT_RECOGNIZED

CM_TP_NOT_AVAILABLE_NO_RETRY

CM_TP_NOT_AVAILABLE_RETRY

CM_DEALLOCATED_ABEND

CM_PROGRAM_ERROR_PURGING

Distributed Transaction Processing: CPI-C Specification, Version 2 241

Send_Error (CMSERR) Call Reference Section

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

CM_DEALLOCATED_ABEND_SVC (basic conversations only)

CM_DEALLOCATED_ABEND_TIMER (basic conversations only)

CM_SVC_ERROR_PURGING (basic conversations only)

CM_PROGRAM_PARAMETER_CHECK
The conversation_ID specifies an unassigned conversation identifier.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR

The following values are returned only when sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and the conversation is included in a transaction:

CM_TAKE_BACKOUT

CM_DEALLOCATED_ABEND_BO

CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)

CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

CM_PROGRAM_STATE_CHECK
This return code indicates that for a conversation with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and transaction_control
set to CM_CHAINED_TRANSACTIONS or begin_transaction set to
CM_BEGIN_IMPLICIT, the program is in the Backout-Required condition. The
Send_Error call is not allowed for this conversation while the program is in this
condition.

CM_RESOURCE_FAIL_NO_RETRY_BO

CM_RESOURCE_FAILURE_RETRY_BO

CM_INCLUDE_PARTNER_REJECT_BO.

If the Send_Error is issued in Receive state, return_code can have one of the following values:

CM_OK

CM_OPERATION_INCOMPLETE

CM_SYNC_LVL_NOT_SUPPORTED_SYS

CM_SEND_RCV_MODE_NOT_SUPPORTED

CM_TPN_NOT_RECOGNIZED

CM_TP_NOT_AVAILABLE_NO_RETRY

CM_TP_NOT_AVAILABLE_RETRY

CM_DEALLOCATED_ABEND

CM_PROGRAM_ERROR_PURGING

CM_DEALLOCATED_NORMAL

CM_RESOURCE_FAILURE_NO_RETRY

242 X/Open CAE Specification

Call Reference Section Send_Error (CMSERR)

CM_RESOURCE_FAILURE_RETRY

CM_PROGRAM_PARAMETER_CHECK
The conversation_ID specifies an unassigned conversation identifier.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR

The following values are returned only when sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and the conversation is included in a transaction:

CM_TAKE_BACKOUT

CM_DEALLOCATED_ABEND_BO

CM_DEALLOCATED_NORMAL_BO

CM_PROGRAM_STATE_CHECK
This return code indicates one of the following:

— For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and transaction_control set to
CM_CHAINED_TRANSACTIONS or begin_transaction set to
CM_BEGIN_IMPLICIT, the program is in the Backout-Required condition. The
Send_Error call is not allowed for this conversation while the program is in this
condition.

— The local program has received a status_received value of
CM_JOIN_TRANSACTION and must issue a tx_begin() call to the TX
(Transaction Demarcation) interface to join the transaction.

— The Send_Error call is the first activity on the conversation following
Accept_Conversation or Accept_Incoming, join_transaction is set to
CM_JOIN_EXPLICIT, transaction_control is CM_CHAINED_TRANSACTION
and the program has not issued a tx_begin() call to the TX (Transaction
Demarcation) interface to join the transaction.

CM_RESOURCE_FAIL_NO_RETRY_BO

CM_RESOURCE_FAILURE_RETRY_BO

CM_INCLUDE_PARTNER_REJECT_BO.

If the Send_Error is issued in Send-Pending state, return_code can have one of the following
values:

CM_OK

CM_OPERATION_INCOMPLETE

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

CM_PROGRAM_PARAMETER_CHECK
The conversation_ID specifies an unassigned conversation identifier.

Distributed Transaction Processing: CPI-C Specification, Version 2 243

Send_Error (CMSERR) Call Reference Section

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR

The following values are returned only when sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM:

CM_TAKE_BACKOUT

CM_PROGRAM_STATE_CHECK
This return code indicates that for a conversation with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and transaction_control
set to CM_CHAINED_TRANSACTIONS or begin_transaction set to
CM_BEGIN_IMPLICIT, the program is in the Backout-Required condition. The
Send_Error call is not allowed for this conversation while the program is in this
condition.

CM_RESOURCE_FAIL_NO_RETRY_BO

CM_RESOURCE_FAILURE_RETRY_BO

If the Send_Error call is issued in Confirm, Confirm-Send, Confirm-Deallocate, Sync-Point,
Sync-Point-Send or Sync-Point-Deallocate state, return_code can have one of the following
values:

CM_OK

CM_OPERATION_INCOMPLETE

CM_PROGRAM_PARAMETER_CHECK
The conversation_ID specifies an unassigned conversation identifier.

CM_PROGRAM_STATE_CHECK
This return code indicates that for a conversation with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and transaction_control set to
CM_CHAINED_TRANSACTIONS or begin_transaction set to CM_BEGIN_IMPLICIT,
the program is in the Backout-Required condition. The Send_Error call is not allowed
for this conversation while the program is in this condition.

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

CM_RESOURCE_FAIL_NO_RETRY_BO
This value is returned only when sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM.

CM_RESOURCE_FAILURE_RETRY_BO
This value is returned only when sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM.

CM_TAKE_BACKOUT

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

Otherwise, the conversation is in Reset, Initialize, Defer-Receive, Defer-Deallocate,
Initialize-Incoming or Prepared state and return_code has one of the following values:

CM_PROGRAM_PARAMETER_CHECK
The conversation_ID specifies an unassigned identifier.

244 X/Open CAE Specification

Call Reference Section Send_Error (CMSERR)

CM_OPERATION_NOT_ACCEPTED

CM_PROGRAM_STATE_CHECK.

Full-duplex Conversations

The following return codes apply to full-duplex conversations:

CM_OK

CM_ALLOCATION_ERROR

CM_DEALLOCATED_ABEND

CM_DEALLOCATED_ABEND_SVC

CM_DEALLOCATED_ABEND_TIMER

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

CM_DEALLOCATED_NORMAL (OSI TP CRM only)

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation is not in Send-Receive, Send-Only or Confirm-Deallocate state.

— The local program has received a status_received value of CM_JOIN_TRANSACTION
and must issue a tx_begin() call to the TX (Transaction Demarcation) interface to join
the transaction.

— The Send_Error call is the first activity on the conversation following
Accept_Conversation or Accept_Incoming, join_transaction is set to
CM_JOIN_EXPLICIT, transaction_control is CM_CHAINED_TRANSACTION and the
program has not issued a tx_begin() call to the TX (Transaction Demarcation)
interface to join the transaction.

— For a conversation with sync_level set to CM_SYNC_POINT_NO_CONFIRM and
transaction_control set to CM_CHAINED_TRANSACTIONS or begin_transaction set
to CM_BEGIN_IMPLICIT, the program is in the Backout-Required condition. The
Send_Error call is not allowed for this conversation while the program is in this
condition.

CM_PROGRAM_PARAMETER_CHECK
This value indicates the conversation_ID specifies an unassigned conversation identifier.

CM_OPERATION_NOT_ACCEPTED

CM_OPERATION_INCOMPLETE

CM_PRODUCT_SPECIFIC_ERROR.

The following values are returned only if sync_level is
CM_SYNC_POINT_NO_CONFIRM, the state is Send-Receive, and the conversation is
included in a transaction.

CM_TAKE_BACKOUT

CM_DEALLOCATED_ABEND_BO

CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)

Distributed Transaction Processing: CPI-C Specification, Version 2 245

Send_Error (CMSERR) Call Reference Section

CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only)

CM_RESOURCE_FAIL_NO_RETRY_BO

CM_RESOURCE_FAILURE_RETRY_BO

CM_CONV_DEALLOC_AFTER_SYNCPT

CM_INCLUDE_PARTNER_REJECT_BO.

STATE CHANGES
For half-duplex conversations, when return_code indicates CM_OK:

• The conversation enters Send state when the call is issued in Receive, Confirm, Confirm-
Send, Confirm-Deallocate or Send-Pending state. For a conversation with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and which is included in a
transaction, the conversation also enters Send state when the call is issued in Sync-Point,
Sync-Point-Send or Sync-Point-Deallocate state.

• No state change occurs when the call is issued in Send state.

For full-duplex conversations, when return_code indicates CM_OK, the conversation enters
Send-Receive state when this call is issued in Confirm-Deallocate state.

APPLICATION USAGE

1. The system can send the error notification to the remote system immediately (during the
processing of this call), or the system can delay sending the notification until a later time.
If the system delays sending the notification, it buffers the notification until it has
accumulated a sufficient amount of information for transmission, or until the local
program issues a call that causes the system to flush its send buffer.

2. The amount of information sufficient for transmission depends on the characteristics of the
logical connection allocated for the conversation, and varies from one logical connection to
another. Transmission of the information can begin immediately if the log_data
characteristic has been specified with sufficient log data, or transmission can be delayed
until sufficient data from subsequent Send_Data calls is also buffered.

3. To make sure that the remote program receives the error notification as soon as possible,
the local program can issue Flush immediately after Send_Error.

4. For a half-duplex conversation using an LU 6.2 CRM, the issuance of Send_Error is
reported to the remote program as one of the following return codes:

— CM_PROGRAM_ERROR_TRUNC (basic conversation)

The local program issued Send_Error with its end of the conversation in Send state
after sending an incomplete logical record (see Send_Data (CMSEND) on page 230).
The record has been truncated.

— CM_PROGRAM_ERROR_NO_TRUNC (basic and mapped conversations)

The local program issued Send_Error with its end of the conversation in Send state
after sending a complete logical record (basic) or data record (mapped); or before
sending any record; or the local program issued Send_Error with its end of the
conversation in Send-Pending state with error_direction set to CM_SEND_ERROR. No
truncation has occurred.

— CM_PROGRAM_ERROR_PURGING (basic and mapped conversations)

The local program issued Send_Error with its end of the conversation in Receive state,
and all information sent by the remote program and not yet received by the local

246 X/Open CAE Specification

Call Reference Section Send_Error (CMSERR)

program has been purged. Or the local program issued Send_Error with its end of the
conversation in Send-Pending state and error_direction set to CM_RECEIVE_ERROR or
in Confirm, Confirm-Send or Confirm-Deallocate state, and no purging has occurred.

5. If the conversation is using an OSI TP CRM, the remote program receives
CM_PROGRAM_ERROR_PURGING regardless of the conversation state.

6. When a half-duplex conversation is using an LU 6.2 CRM and Send_Error is issued in
Receive state, incoming information is also purged. Because of this purging, the
return_code of CM_DEALLOCATED_NORMAL is reported instead of:

CM_CONVERSATION_TYPE_MISMATCH

CM_PIP_NOT_SPECIFIED_CORRECTLY

CM_SECURITY_NOT_VALID

CM_SYNC_LVL_NOT_SUPPORTED_PGM

CM_TPN_NOT_RECOGNIZED

CM_TP_NOT_AVAILABLE_NO_RETRY

CM_TP_NOT_AVAILABLE_RETRY

CM_DEALLOCATED_ABEND

CM_DEALLOCATED_ABEND_SVC (basic conversations only)

CM_DEALLOCATED_ABEND_TIMER (basic conversations only).

Likewise, for conversations with sync_level set to CM_SYNC_POINT, a return code of
CM_DEALLOCATED_NORMAL_BO is reported instead of:

CM_DEALLOCATED_ABEND_BO

CM_DEALLOCATED_ABEND_SVC_BO (basic conversations only)

CM_DEALLOCATED_ABEND_TIMER_BO (basic conversations only).

Similarly, a return code of CM_OK is reported instead of:

CM_PROGRAM_ERROR_NO_TRUNC

CM_PROGRAM_ERROR_PURGING

CM_PROGRAM_ERROR_TRUNC (basic conversations only)

CM_SVC_ERROR_NO_TRUNC (basic conversations only)

CM_SVC_ERROR_PURGING (basic conversations only)

CM_SVC_ERROR_TRUNC (basic conversations only)

CM_TAKE_BACKOUT.

When the return code CM_TAKE_BACKOUT is purged, the remote system resends the
backout indication and the local program receives the CM_TAKE_BACKOUT return code
on a subsequent call.

The following types of incoming information are also purged:

— Data sent with the Send_Data call.

— Confirmation request sent with the Send_Data, Confirm, Prepare_To_Receive or
Deallocate call.

Distributed Transaction Processing: CPI-C Specification, Version 2 247

Send_Error (CMSERR) Call Reference Section

If the confirmation request was sent with deallocate_type set to
CM_DEALLOCATE_CONFIRM or CM_DEALLOCATE_SYNC_LEVEL, the
deallocation request will also be purged.

— Resource recovery commit call.

If the commit call was sent in conjunction with a Deallocate call with deallocate_type set
to CM_DEALLOCATE_SYNC_LEVEL, the deallocation request will also be purged.

The request-to-send notification is not purged. This notification is reported to the program
when it issues a call that includes the control_information_received parameter.

7. The program can use this call for various application-level functions. For example, the
program can issue this call to truncate an incomplete logical record it is sending; to inform
the remote program of an error detected in data received; or to reject a confirmation
request.

8. If the log_data_length characteristic is greater than zero, the system formats the supplied
log data into the appropriate format. The data supplied by the program is any data the
program wants to have logged. The data is logged on the local system’s error log and is
also sent to the remote system for logging there.

The log_data is not sent on the Send_Error call when an OSI TP CRM is being used for the
conversation. Instead, it is ignored.

After completion of the Send_Error processing, log_data is reset to null, and log_data_length
is reset to zero.

9. The error_direction characteristic is significant only when a half-duplex conversation is
using an LU 6.2 CRM and Send_Error is issued in Send-Pending state (that is, the
Send_Error is issued immediately following a Receive on which both data and a
status_received parameter set to CM_SEND_RECEIVED is received). In this case,
Send_Error could be reporting one of the following types of errors:

— an error in the received data (in the receive flow)

— an error having nothing to do with the received data, but instead being the result of
processing performed by the program after it had successfully received and processed
the data (in the send flow).

Because the system cannot tell which of the two errors occurred, the program has to
supply the error_direction information.

The default for error_direction is CM_RECEIVE_ERROR. A program can override the
default using the Set_Error_Direction call before issuing Send_Error.

Once changed, the new error_direction value remains in effect until the program changes it
again. Therefore, a program should issue Set_Error_Direction before issuing Send_Error
for a conversation in Send-Pending state.

If the conversation is not in Send-Pending state, the error_direction characteristic is ignored.

10. When control_information_received indicates that expedited data is available, subsequent
calls with this parameter will continue to indicate that expedited data is available until the
expedited data has been received by the program.

11. For full-duplex conversations, the issuance of Send_Error is reported on the remote
program’s Receive call as one of the following return codes:

CM_PROGRAM_ERROR_NO_TRUNC (basic and mapped conversations using an LU 6.2
CRM)

248 X/Open CAE Specification

Call Reference Section Send_Error (CMSERR)

CM_PROGRAM_ERROR_TRUNC (basic conversations using an LU 6.2 CRM)

CM_PROGRAM_ERROR_PURGING (conversations using an OSI TP CRM)

No data is purged, unless the conversation is using an OSI TP CRM, in which case, the
program should expect purging. The partner program may expect the
CM_PROGRAM_ERROR_PURGING return code if the conversation is allocated using an
OSI TP CRM.

12. Send_Error does not complete successfully if an error that causes the conversation to
terminate has occurred or the remote program has issued a Deallocate with deallocate_type
set to CM_DEALLOCATE_ABEND, or CM_DEALLOCATE_FLUSH and the conversation
has been allocated using an OSI TP CRM.

For a conversation which is not included in a transaction, a
CM_DEALLOCATED_ABEND_*, CM_ALLOCATION_ERROR,
CM_RESOURCE_FAILURE_*_RETRY or CM_DEALLOCATED_NORMAL return code is
returned. When one of the above return codes is returned and the conversation is in
Send-Receive state, the program can terminate the conversation by issuing Receives until
it gets one of the above return codes taking it to Reset state, or by issuing
Cancel_Conversation, Deallocate with deallocate_type set to CM_DEALLOCATE_ABEND,
or Cancel_Conversation.

For a conversation which is included in a transaction,
CM_DEALLOCATED_ABEND_*_BO, CM_ALLOCATION_ERROR,
CM_RESOURCE_FAILURE_RETRY_BO or CM_RESOURCE_FAIL_NO_RETRY_BO is
returned. If CM_ALLOCATION_ERROR is returned, the program behaves as though it
were not in transaction, otherwise it is in Backout-Required condition and in Reset state.

SEE ALSO
Section 4.3.5 on page 78 and Section 4.3.6 on page 80 provide example program flows using
Send_Error and the Send-Pending state; Set_Error_Direction (CMSED) on page 277 provides
further information on the error_direction characteristic.

The APPLICATION USAGE section of Request_To_Send (CMRTS) on page 227 provide more
information on how a conversation enters Receive state.

Send_Data (CMSEND) on page 230 discusses basic conversations and logical records.

Set_Log_Data (CMSLD) on page 285 provides a description of the log_data characteristic.

Distributed Transaction Processing: CPI-C Specification, Version 2 249

Send_Expedited_Data (CMSNDX) Call Reference Section

NAME
Send_Expedited_Data (CMSNDX) — send expedited data to its partner.

SYNOPSIS
CALL CMSNDX(conversation_ID , buffer , send_length ,

control_information_received , return_code)

DESCRIPTION
A program uses the Send_Expedited_Data (CMSNDX) call to send expedited data to its partner.

This call has meaning only when an LU 6.2 CRM is used for the conversation.

The Send_Expedited_Data (CMSNDX) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• buffer (input)

Specifies the variable containing the data to be sent.

• send_length (input)

Specifies the length of the data to be sent. The minimum amount of data that can be sent is 1
byte; the maximum is 86 bytes.

• control_information_received (output)

Specifies the variable containing an indication of whether or not control information has been
received.

The control_information_received variable can have one of the following values:

CM_NO_CONTROL_INFO_RECEIVED
Indicates that no control information was received.

CM_REQ_TO_SEND_RECEIVED (half-duplex conversations only)
The local program received a request-to-send notification from the remote program. The
remote program issued Request_To_Send, requesting the local program’s end of the
conversation to enter Receive state, which would place the remote program’s end of the
conversation in Send state. See Request_To_Send (CMRTS) on page 227 for further
discussion of the local program’s possible responses.

CM_EXPEDITED_DATA_AVAILABLE
Expedited data is available to be received.

CM_RTS_RCVD_AND_EXP_DATA_AVAIL (half-duplex conversations only)
The local program received a request-to-send notification from the remote program and
expedited data is available to be received.

Notes:

1. If return_code is set to CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, the value contained in
control_information_received has no meaning.

250 X/Open CAE Specification

Call Reference Section Send_Expedited_Data (CMSNDX)

2. When more than one piece of control information is available to be returned to
the program, it will be returned in the following order:

CM_RTS_RCVD_AND_EXP_DATA_AVAIL
CM_REQ_TO_SEND_RECEIVED
CM_EXPEDITED_DATA_AVAILABLE
CM_NO_CONTROL_INFO_RECEIVED.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_OPERATION_INCOMPLETE

CM_PROGRAM_PARAMETER_CHECK

— The conversation_ID specifies an unassigned conversation identifier.

— The send_length specifies a value less than 1 or greater than 86.

— The conversation is not using an LU 6.2 CRM.

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is in Initialize or Initialize-Incoming state
and is not allowed to send expedited data.

CM_CONVERSATION_ENDING
This value indicates that the conversation is ending due to a normal deallocation, an
allocation error, a Cancel_Conversation call, a Deallocate call with deallocate_type set to
CM_DEALLOCATE_ABEND, or a conversation failure. Hence, no expedited data is
sent.

CM_EXP_DATA_NOT_SUPPORTED
This value indicates that the remote system does not support expedited data.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE

1. A program uses the Send_Expedited_Data call to send data that flows in an expedited
fashion, possibly bypassing data sent using the Send_Data call.

2. The Send_Expedited_Data call should be used sparingly and should not be used for
sending normal data.

3. When the remote system receives the expedited data, it retains the expedited data until it is
received by the partner program using Receive_Expedited_Data.

Distributed Transaction Processing: CPI-C Specification, Version 2 251

Send_Expedited_Data (CMSNDX) Call Reference Section

4. Implementors should note that a control_information_received notification can be reported
on this call (associated with the Expedited-Send queue), on the Receive_Expedited_Data
call (associated with the Expedited-Receive queue), on the Send_Data call (associated with
the Send queue or the Send-Receive queue), on the Receive call (associated with the
Receive queue or the Send-Receive queue), and on the Test_Request_To_Send_Received
call (not associated with any queue). When the program uses multiple threads or queue-
level non-blocking, more than one of these calls may be executed simultaneously. An
implementation should report the CM_EXPEDITED_DATA_AVAILABLE indication to the
program through all available calls, until the expedited data is received. All other values
of control_information_received should be reported only once.

SEE ALSO
Receive_Expedited_Data (CMRCVX) on page 223 describes the Receive_Expedited_Data call.

252 X/Open CAE Specification

Call Reference Section Set_AE_Qualifier (CMSAEQ)

NAME
Set_AE_Qualifier (CMSAEQ) — set the AE_qualifier conversation characteristic.

SYNOPSIS
CALL CMSAEQ(conversation_ID , AE_qualifier , AE_qualifier_length ,

AE_qualifier_format , return_code)

DESCRIPTION
Set_AE_Qualifier (CMSAEQ) is used by a program to set the AE_qualifier, AE_qualifier_length,
and AE_qualifier_format characteristics for a conversation. Set_AE_Qualifier overrides the
current values that were originally acquired from the side information using sym_dest_name.

Issuing this call does not change the information in the side information. It only changes the
AE_qualifier, the AE_qualifier_length, and the AE_qualifier_format characteristics for this
conversation.

Notes:

1. A program cannot issue Set_AE_Qualifier after an Allocate call is issued. Only
the program that initiated the conversation (issued the Initialize_Conversation
call) can issue Set_AE_Qualifier.

2. The AE_qualifier characteristic is used only by an OSI TP CRM.

The Set_AE_Qualifier (CMSAEQ) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• AE_qualifier (input)

Specifies the application-entity-qualifier that distinguishes the application-entity at the
application-process where the remote program is located.

• AE_qualifier_length (input)

Specifies the length of AE_qualifier. The length can be from 1 to 1024 bytes.

• AE_qualifier_format (input)

Specifies the format of AE_qualifier. The AE_qualifier_format variable can have one of the
following values:

CM_DN
Specifies that the AE_qualifier is a distinguished name.

CM_INT_DIGITS
Specifies that the AE_qualifier is an integer represented as a sequence of decimal digits.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

Distributed Transaction Processing: CPI-C Specification, Version 2 253

Set_AE_Qualifier (CMSAEQ) Call Reference Section

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The AE_qualifier_length is set to a value less than 1 or greater than 1024.

— The AE_qualifier_format specifies an undefined value.

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is not in Initialize state.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

APPLICATION USAGE

1. Specify AE_qualifier using the local system’s native encoding. CPI Communications
automatically converts the AE_qualifier from the native encoding where necessary.

2. If a return_code other than CM_OK is returned on the call, the AE_qualifier, the
AE_qualifier_length, and the AE_qualifier_format conversation characteristics remain
unchanged.

3. The AE_qualifier may be either a distinguished name or an integer. Distinguished names
may have any format and syntax that can be recognized by the local system. Integers are
represented as a series of digits.

SEE ALSO
Section 3.5.2 on page 22 and note 4 of Table A-3 on page 341 provide further discussion of the
AE_qualifier conversation characteristic.

Section 3.8.5 on page 38 provides further information on the automatic conversion of the
AE_qualifier parameter.

254 X/Open CAE Specification

Call Reference Section Set_Allocate_Confirm (CMSAC)

NAME
Set_Allocate_Confirm (CMSAC) — set the allocate_confirm conversation characteristic.

SYNOPSIS
CALL CMSAC(conversation_ID , allocate_confirm , return_code)

DESCRIPTION
Set_Allocate_Confirm (CMSAC) is used by a program to set the allocate_confirm characteristic for
a given conversation. Set_Allocate_Confirm overrides the value that was assigned when the
Initialize_Conversation call was issued.

Notes:

1. A program cannot issue Set_Allocate_Confirm after an Allocate call is issued.
Only the program that initiates the conversation (issues the
Initialize_Conversation call) can issue Set_Allocate_Confirm.

2. The allocate_confirm characteristic is used only by an OSI TP CRM.

The Set_Allocate_Confirm (CMSAC) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• allocate_confirm (input)

Specifies whether the program is to receive notification when the remote program confirms
its acceptance of the conversation. The allocate_confirm variable can have one of the
following values:

CM_ALLOCATE_NO_CONFIRM
Specifies that the program is not to receive notification when the remote program
confirms its acceptance of the conversation.

CM_ALLOCATE_CONFIRM
Specifies that the program is to receive notification when the remote program confirms
its acceptance of the conversation.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned identifier.

— The allocate_confirm specifies an undefined value.

— The allocate_confirm specifies CM_ALLOCATE_CONFIRM, and the conversation is
using an LU 6.2 CRM.

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is not in Initialize state.

CM_OPERATION_NOT_ACCEPTED

Distributed Transaction Processing: CPI-C Specification, Version 2 255

Set_Allocate_Confirm (CMSAC) Call Reference Section

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

APPLICATION USAGE

1. If a return_code other than CM_OK is returned on the call, the allocate_confirm conversation
characteristic remains unchanged.

2. When the remote program confirms its acceptance of the conversation, the initiating
program is notified by receiving a control_information_received value of
CM_ALLOCATE_CONFIRMED or CM_ALLOCATE_CONFIRMED_WITH_DATA on a
subsequent call.

3. After the remote program has accepted the conversation by issuing an
Accept_Conversation or Accept_Incoming call, it confirms the acceptance by issuing any
call other than a Cancel_Conversation, Deallocate with deallocate_type of
CM_DEALLOCATE_ABEND or Set_* or Extract_* call. The remote program rejects the
conversation by issuing a Cancel_Conversation call or a Deallocate call with deallocate_type
of CM_DEALLOCATE_ABEND as its first operation on the conversation (other than a
Set_* or Extract_* call).

4. The program that initiates the conversation (issues Initialize_Conversation) must set
allocate_confirm to cm_allocate_confirm if it is expecting initialization_data to be returned
from the remote program after the remote program confirms its acceptance of the
conversation.

256 X/Open CAE Specification

Call Reference Section Set_AP_Title (CMSAPT)

NAME
Set_AP_Title (CMSAPT) — set the AP_title conversation characteristic.

SYNOPSIS
CALL CMSAPT(conversation_ID , AP_title , AP_title_length ,

AP_title_format , return_code)

DESCRIPTION
Set_AP_Title (CMSAPT) is used by a program to set the AP_title, AP_title_length, and
AP_title_format characteristics for a conversation. Set_AP_Title overrides the current values that
were originally acquired from the side information using sym_dest_name.

Issuing this call does not change the values in the side information. It only changes the AP_title,
the AP_title_length, and the AP_title_format characteristics for this conversation.

Notes:

1. A program cannot issue Set_AP_Title after an Allocate call is issued. Only the
program that initiated the conversation (issued the Initialize_Conversation call)
can issue Set_AP_Title.

2. The AP_title characteristic is used only by an OSI TP CRM.

The Set_AP_Title (CMSAPT) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• AP_title (input)

Specifies the title of the application-process where the remote program is located.

• AP_title_length (input)

Specifies the length of AP_title. The length can be from 1 to 1024 bytes.

• AP_title_format (input)

Specifies the format of AP_title. The AP_title_format variable can have one of the following
values:

CM_DN
Specifies that the AP_title is a distinguished name.

CM_OID
Specifies that the AP_title is an object identifier.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

Distributed Transaction Processing: CPI-C Specification, Version 2 257

Set_AP_Title (CMSAPT) Call Reference Section

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned identifier.

— The AP_title_length is set to a value less than 1 or greater than 1024.

— The AP_title_format specifies an undefined value.

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is not in Initialize state.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

APPLICATION USAGE

1. Specify AP_title using the local system’s native encoding. CPI Communications
automatically converts the AP_title from the native encoding where necessary.

2. If a return_code other than CM_OK is returned on the call, the AP_title, the AP_title_length,
and the AP_title_format conversation characteristics remain unchanged.

3. The AP_title may be either a distinguished name or an object identifier. Distinguished
names can have any format and syntax that can be recognized by the local system. Object
identifiers are represented as a series of digits separated by periods (for example,
n.nn.n.nnn).

SEE ALSO
Section 3.5.2 on page 22 and note 4 of Table A-3 on page 341 provide further discussion of the
AP_title conversation characteristic.

Section 3.8.5 on page 38 provides more information on the automatic conversion of the AP_title
parameter.

258 X/Open CAE Specification

Call Reference Section Set_Application_Context_Name (CMSACN)

NAME
Set_Application_Context_Name (CMSACN) — set the application_context_name conversation
characteristic.

SYNOPSIS
CALL CMSACN(conversation_ID , application_context_name ,

application_context_name_length , return_code)

DESCRIPTION
Set_Application_Context_Name (CMSACN) is used by a program to set the
application_context_name and application_context_name_length characteristics for a conversation.
Set_Application_Context_Name overrides the current values that were originally acquired from
the side information using sym_dest_name.

Issuing this call does not change the values in the side information. It only changes the
application_context_name and application_context_name_length characteristics for this conversation.

Note: The application_context_name characteristic is used only by an OSI TP CRM.

The Set_Application_Context_Name (CMSACN) call uses the following input and output
parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• application_context_name (input)

Specifies the name of the application context to be used on the conversation. The length can
be 1-256 bytes.

• application_context_name_length (input)

Specifies the length of the application context name to be used on the conversation startup
request.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is not in the Initialize state.

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned identifier.

— The application_context_name_length is set to a value less than 1 or greater than 256.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

Distributed Transaction Processing: CPI-C Specification, Version 2 259

Set_Application_Context_Name (CMSACN) Call Reference Section

APPLICATION USAGE

1. Specify application_context_name using the local system’s native encoding. CPI
Communications automatically converts the application_context_name from the native
encoding where necessary.

2. If a return_code other than CM_OK is returned on the call, the application_context_name and
the application_context_name_length conversation characteristics remain unchanged.

3. The application context name is an object identifier and is represented as a series of digits
separated by periods. For example, the default application context name defined by ISO
for OSI TP with UDT is represented as 1.0.10026.6.2.

SEE ALSO
Section 3.5.2 on page 22 provides more information on the application_context_name conversation
characteristic.

Section 3.8.5 on page 38 provides further information on the automatic conversion of the
application_context_name parameter.

260 X/Open CAE Specification

Call Reference Section Set_Begin_Transaction (CMSBT)

NAME
Set_Begin_Transaction (CMSBT) — set the begin_transaction conversation characteristic.

SYNOPSIS
CALL CMSBT(conversation_ID , begin_transaction , return_code)

DESCRIPTION
Set_Begin_Transaction (CMSBT) is used by a program to set the begin_transaction characteristic
for a given conversation. Set_Begin_Transaction overrides the value that was assigned when the
Initialize_Conversation call was issued.

Note: The begin_transaction characteristic is used only by an OSI TP CRM.

The Set_Begin_Transaction (CMSBT) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• begin_transaction (input)

Specifies whether the superior will explicitly or implicitly ask that the subordinate program
join the transaction. The begin_transaction variable can have one of the following values:

CM_BEGIN_IMPLICIT
Specifies that the superior implicitly asks that the subordinate join the transaction by
issuing one of the following calls from Initialize, Send, Send-Pending or Send-Receive
states:

CMALLC — Allocate
CMSERR — Send_Error
CMPTR — Prepare_To_Receive
CMCFM — Confirm
CMINCL — Include_Partner_In_Transaction
CMPREP — Prepare
CMRCV — Receive
CMSEND — Send

CM_BEGIN_EXPLICIT
Specifies that the superior explicitly asks that the subordinate join the transaction by use
of the Include_Partner_In_Transaction (CMINCL) call.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is in Initialize-Incoming state.

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned identifier.

— The begin_transaction specifies an undefined value.

Distributed Transaction Processing: CPI-C Specification, Version 2 261

Set_Begin_Transaction (CMSBT) Call Reference Section

— The transaction_control is set to CM_CHAINED_TRANSACTIONS.

— The program is not the superior for the conversation.

CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level non-blocking for
the conversation and a previous call operation is still in progress.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

APPLICATION USAGE

1. If a return_code other than CM_OK is returned on the call, the begin_transaction
conversation characteristic remains unchanged.

2. This call does not apply to any previous call operation still in progress.

3. The remote program receives the request to join the transaction as a status_received
indicator of CM_JOIN_TRANSACTION on a Receive call it issues.

4. If the superior is not in transaction when it issues an Allocate, Confirm,
Include_Partner_In_Transaction, Prepare, Prepare_To_Receive, Receive, Send_data or
Send_Error call, the begin_transaction characteristic is ignored, and the subordinate is not
asked to join a transaction.

5. If begin_transaction is set to CM_BEGIN_IMPLICIT the subordinate is asked to join the
transaction only when the Allocate, Confirm, Include_Partner_In_Transaction, Prepare,
Prepare_To_Receive, Receive, Send_Data or Send_Error call is returned with return_code
CM_OK.

6. The call is not associated with any conversation queue. When a conversation uses queue-
level non-blocking, the call does not return CM_OPERATION_NOT_ACCEPTED on the
conversation.

SEE ALSO
Section 3.14.5 on page 58 discusses chained and unchained transactions.

Section 3.14.6 on page 59 discusses how a program requests the partner program to join a
transaction.

262 X/Open CAE Specification

Call Reference Section Set_Confirmation_Urgency (CMSCU)

NAME
Set_Confirmation_Urgency (CMSCU) — set the confirmation_urgency conversation characteristic.

SYNOPSIS
CALL CMSCU(conversation_ID , confirmation_urgency , return_code)

DESCRIPTION
Set_Confirmation_Urgency (CMSCU) is used by a program to set the confirm_urgency
characteristic for a given conversation. Set_Confirmation_Urgency overrides the value that was
assigned when the Initialize_Conversation, Accept_Conversation or Initialize_For_Incoming call
was issued.

Note: The confirmation_urgency characteristic is used only for a half-duplex conversation.

The Set_Confirmation_Urgency (CMSCU) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• confirmation_urgency (input)

Specifies whether the response to a Prepare_To_Receive call that requests confirmation will
be sent immediately. The confirmation_urgency variable can have one of the following values:

CM_CONFIRMATION_NOT_URGENT
Specifies that the remote program’s response to the confirmation request may not be sent
immediately.

CM_CONFIRMATION_URGENT
Specifies that the remote program’s response to the confirmation request will be sent
immediately.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned identifier.

— The confirmation_urgency variable specifies an undefined value.

— The send_receive_mode of the conversation is CM_FULL_DUPLEX.

— The sync_level is set to CM_NONE or CM_SYNC_POINT_NO_CONFIRM.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

APPLICATION USAGE

1. If a return_code other than CM_OK is returned on the call, the confirmation_urgency
conversation characteristic remains unchanged.

Distributed Transaction Processing: CPI-C Specification, Version 2 263

Set_Confirmation_Urgency (CMSCU) Call Reference Section

2. When the local program issues a Prepare_To_Receive call with prepare_to_receive_type set
to CM_PREP_TO_RECEIVE_CONFIRM or CM_PREP_TO_RECEIVE_SYNC_LEVEL with
sync_level set to CM_CONFIRM, the remote CRM may optimize link usage by buffering
the response generated by the Confirmed call until the remote program issues another call.
This may increase the time the local program must wait for control to be returned to it.

By issuing a Set_Confirmation_Urgency call with the confirmation_urgency parameter set to
CM_CONFIRMATION_URGENT before issuing the Prepare_To_Receive call, the local
program can request that the response from the Confirmed call be sent to the local
program as soon as it is issued by the remote program.

SEE ALSO
See Prepare_To_Receive (CMPTR) on page 202 for information on requesting confirmation.

264 X/Open CAE Specification

Call Reference Section Set_Conversation_Security_Password (CMSCSP)

NAME
Set_Conversation_Security_Password (CMSCSP) — set the security_password conversation
characteristic.

SYNOPSIS
CALL CMSCSP(conversation_ID , security_password ,

security_password_length , return_code)

DESCRIPTION
Set_Conversation_Security_Password (CMSCSP) is used by a program to set the
security_password and security_password_length characteristics for a conversation.
Set_Conversation_Security_Password overrides the current values, which were originally
acquired from the side information using sym_dest_name.

This call does not change the values in the side information. It only changes the
security_password and security_password_length characteristics for this conversation.

Note: A program cannot issue the Set_Conversation_Security_Password call after an Allocate
call is issued. Only the program that initiates the conversation (issues the
Initialize_Conversation call) can issue Set_Conversation_Security_Password. A
program can only specify a password when conversation_security_type is set to
CM_SECURITY_PROGRAM or CM_SECURITY_PROGRAM_STRONG.

The Set_Conversation_Security_Password (CMSCSP) call uses the following input and output
parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• security_password (input)

Specifies the password to be included in the conversation startup request. The partner
system uses this value and the user ID to validate the user’s access to the remote program.
The password is stored temporarily by node services, and is erased at the successful
completion of an Allocate call.

• security_password_length (input)

Specifies the length of the password. The length can be from 0 to 10 bytes. If zero, the
security_password_length characteristic is set to zero (effectively setting the security_password
characteristic to the null string), and the security_password parameter on this call is ignored.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation is not in Initialize state.

— conversation_security_type is not set to CM_SECURITY_PROGRAM or
CM_SECURITY_PROGRAM_STRONG.

Distributed Transaction Processing: CPI-C Specification, Version 2 265

Set_Conversation_Security_Password (CMSCSP) Call Reference Section

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The security_password_length is less than 0 or greater than 10.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

APPLICATION USAGE

1. When a program issues Set_Conversation_Security_Password, a user ID must also be
supplied. The user ID comes from side information or is set by the program issuing
Set_Conversation_Security_User_ID.

2. Specify security_password using the local system’s native encoding. CPI Communications
automatically converts the security_password from the native encoding where necessary.

3. Specification of a password that is not valid is not detected on this call. It is detected by
the partner system when it receives the conversation startup request. The partner system
returns an error indication to the local system, which reports the error to the program by
means of the CM_SECURITY_NOT_VALID return code on a call subsequent to the
Allocate call.

4. If a return_code other than CM_OK is returned on the call, the security_password and
security_password_length characteristics are unchanged.

SEE ALSO
Section 3.8.5 on page 38 provides further information on the automatic conversion of the
security_password parameter.

Section 3.11 on page 47 provides further information on security.

Set_Conversation_Security_Type (CMSCST) on page 267 provides more information on the
conversation_security_type characteristic.

Set_Conversation_Security_User_ID (CMSCSU) on page 269 provides more information on the
security_user_ID characteristic.

266 X/Open CAE Specification

Call Reference Section Set_Conversation_Security_Type (CMSCST)

NAME
Set_Conversation_Security_Type (CMSCST) — set the conversation_security_type conversation
characteristic.

SYNOPSIS
CALL CMSCST(conversation_ID , conversation_security_type , return_code)

DESCRIPTION
Set_Conversation_Security_Type (CMSCST) is used by a program to set the
conversation_security_type characteristic for a conversation. Set_Conversation_Security_Type
overrides the current value, which was originally acquired from the side information using
sym_dest_name.

This call does not change the value in the side information. It only changes the
conversation_security_type characteristic for this conversation.

Note: A program cannot issue the Set_Conversation_Security_Type call after an Allocate call
is issued. Only the program that initiates the conversation (issues the
Initialize_Conversation call) can issue Set_Conversation_Security_Type.

The Set_Conversation_Security_Type (CMSCST) call uses the following input and output
parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• conversation_security_type (input)

Specifies the type of access security information to be sent in the conversation startup request
to the partner system. The access security information, if present, consists of either a user ID,
or a user ID and a password. It is used by the partner system to validate the user’s access to
the remote program.

The conversation_security_type variable can have one of the following values:

CM_SECURITY_NONE
No access security information is included in the conversation startup request.

CM_SECURITY_SAME
The security parameters maintained by node services for the program when the
program issues the Allocate call are used to set the access security information included
in the conversation startup request.

CM_SECURITY_PROGRAM
The values of the security_user_ID and security_password characteristics are used to set
the access security information included in the conversation startup request.

CM_SECURITY_PROGRAM_STRONG
The values of the security_user_ID and security_password characteristics are used to set
the access security information included in the conversation startup request. The local
CRM ensures that the security_password is not exposed in clear-text form on the physical
network. If the local CRM cannot ensure this, then the subsequent Allocate request will
fail with a return_code of CM_SECURITY_NOT_SUPPORTED.

Distributed Transaction Processing: CPI-C Specification, Version 2 267

Set_Conversation_Security_Type (CMSCST) Call Reference Section

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is not in Initialize state.

CM_PARM_VALUE_NOT_SUPPORTED
This value indicates that the conversation_security_type specifies
CM_SECURITY_PROGRAM, CM_SECURITY_SAME or
CM_SECURITY_PROGRAM_STRONG and the value is not supported by the local
system.

CM_PROGRAM_PARAMETER_CHECK
This return code indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The conversation_security_type specifies an undefined value.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

APPLICATION USAGE

1. Existing OSI TP standards do not support conversation security. So for an OSI TP CRM,
the only valid conversation_security_type value is CM_SECURITY_NONE.

2. A conversation_security_type of CM_SECURITY_SAME is intended for use between nodes
which have the same set of user IDs and which accept user validation performed on one
node as verifying the user for all nodes. A password is not used in this case.

3. A conversation_security_type of CM_SECURITY_PROGRAM or
CM_SECURITY_PROGRAM_STRONG requires that a user ID and password be supplied
for inclusion in the conversation startup request. These may come from side information
or be set by the program using the Set_Conversation_Security_User_ID and
Set_Conversation_Security_Password calls.

4. If a return_code other than CM_OK is returned on the call, the conversation_security_type is
unchanged.

SEE ALSO
Section 3.11 on page 47 provides further information on security.

Set_Conversation_Security_Password (CMSCSP) on page 265 discusses setting the
security_password characteristic.

Set_Conversation_Security_User_ID (CMSCSU) on page 269 discusses setting the security_user_ID
characteristic.

268 X/Open CAE Specification

Call Reference Section Set_Conversation_Security_User_ID (CMSCSU)

NAME
Set_Conversation_Security_User_ID (CMSCSU) — set the security_user_ID conversation
characteristic.

SYNOPSIS
CALL CMSCSU(conversation_ID , security_user_ID ,

security_user_ID_length , return_code)

DESCRIPTION
Set_Conversation_Security_User_ID (CMSCSU) is used by a program to set the security_user_ID
and security_user_ID_length characteristics for a conversation.
Set_Conversation_Security_User_ID overrides the current values, which were originally
acquired from the side information using sym_dest_name.

This call does not change the values in the side information. It only changes the security_user_ID
and security_user_ID_length characteristics for this conversation.

Note: A program cannot issue the Set_Conversation_Security_User_ID call after an Allocate
call is issued. Only the program that initiates the conversation (issues the
Initialize_Conversation call) can issue Set_Conversation_Security_User_ID. A program
can only specify an access security user ID when conversation_security_type is set to
CM_SECURITY_PROGRAM or CM_SECURITY_PROGRAM_STRONG.

The Set_Conversation_Security_User_ID (CMSCSU) call uses the following input and output
parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• security_user_ID (input)

Specifies the user ID to be included in the conversation startup request. The partner system
uses this value and the password to validate the user’s access to the remote program. In
addition, the partner system may use the user ID for auditing or accounting purposes.

• security_user_ID_length (input)

Specifies the length of the user ID. The length can be from 0 to 10 bytes. If zero, the
security_user_ID_length characteristic is set to zero (effectively setting the security_user_ID
characteristic to the null string), and the security_user_ID parameter on this call is ignored.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation is not in Initialize state.

— The conversation_security_type is not set to CM_SECURITY_PROGRAM or
CM_SECURITY_PROGRAM_STRONG.

Distributed Transaction Processing: CPI-C Specification, Version 2 269

Set_Conversation_Security_User_ID (CMSCSU) Call Reference Section

CM_PROGRAM_PARAMETER_CHECK
This return code indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The security_user_ID_length is less than 0 or greater than 10.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

APPLICATION USAGE

1. When a program issues Set_Conversation_Security_User_ID, a password must also be
supplied. The password comes from side information or is set by the program using
Set_Conversation_Security_Password.

2. Specify security_user_ID using the local system’s native encoding. CPI Communications
automatically converts the security_user_ID from the native encoding where necessary.

3. Specification of a security user ID that is not valid is not detected on this call. It is detected
by the partner system when it receives the conversation startup request. The partner
system returns an error indication to the local system, which reports the error to the
program by means of the CM_SECURITY_NOT_VALID return code on a call subsequent
to the Allocate call.

4. If a return_code other than CM_OK is returned on the call, the security_user_ID and
security_user_ID_length characteristics are unchanged.

SEE ALSO
Section 3.8.5 on page 38 provides further information on the automatic conversion of the
security_user_ID parameter.

Section 3.11 on page 47 provides further information on security.

Set_Conversation_Security_Password (CMSCSP) on page 265 provides more information on the
security_password characteristic.

Set_Conversation_Security_Type (CMSCST) on page 267 provides more information on the
conversation_security_type characteristic.

270 X/Open CAE Specification

Call Reference Section Set_Conversation_Type (CMSCT)

NAME
Set _Conversation_Type (CMSCT) — set the conversation_type conversation characteristic.

SYNOPSIS
CALL CMSCT(conversation_ID , conversation_type , return_code)

DESCRIPTION
Set_Conversation_Type (CMSCT) is used by a program to set the conversation_type characteristic
for a given conversation. It overrides the value that was assigned when the
Initialize_Conversation or Initialize_For_Incoming call was issued.

Notes:

1. A program cannot use Set_Conversation_Type after an Allocate has been issued.
Only the program that initiates the conversation (using the
Initialize_Conversation call) can issue the Set_Conversation_Type call.

2. When using an LU 6.2 CRM, only the program that initiates the conversation
(using the Initialize_Conversation call) can issue the Set_Conversation_Type call,
and it must be issued before the Allocate is issued. When using an OSI TP CRM,
because the mapped/basic indication is not carried by the protocol, the recipient
of the conversation request must use Initialize_For_Incoming and
Set_Conversation_Type to override the conversation_type default of
CM_MAPPED_CONVERSATION. The recipient must issue these calls before the
Accept_Incoming call is issued.

The Set_Conversation_Type (CMSCT) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• conversation_type (input)

Specifies the type of conversation to be allocated when Allocate is issued. The
conversation_type variable can have one of the following values:

CM_BASIC_CONVERSATION
Specifies the allocation of a basic conversation.

CM_MAPPED_CONVERSATION
Specifies the allocation of a mapped conversation.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is not in Initialize or Initialize-Incoming
state.

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The conversation_type specifies an undefined value.

Distributed Transaction Processing: CPI-C Specification, Version 2 271

Set_Conversation_Type (CMSCT) Call Reference Section

— The conversation_type is set to CM_MAPPED_CONVERSATION, but fill is set to
CM_FILL_BUFFER.

— The conversation_type is set to CM_MAPPED_CONVERSATION, but a prior call to
Set_Log_Data is still in effect.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE

1. Because of the detailed manipulation of the data and resulting complexity of error
conditions, the use of basic conversations should be regarded as an advanced
programming technique.

2. If a return_code other than CM_OK is returned on the call, the conversation_type
conversation characteristic is unchanged.

SEE ALSO
Section 3.2 on page 19 and the APPLICATION USAGE section of Send_Data (CMSEND) on page
230 provide more information on the differences between mapped and basic conversations.

272 X/Open CAE Specification

Call Reference Section Set_Deallocate_Type (CMSDT)

NAME
Set_Deallocate_Type (CMSDT) — set the deallocate_type conversation characteristic.

SYNOPSIS
CALL CMSDT(conversation_ID , deallocate_type , return_code)

DESCRIPTION
Set_Deallocate_Type (CMSDT) is used by a program to set the deallocate_type characteristic for a
given conversation. Set_Deallocate_Type overrides the value that was assigned when the
Initialize_Conversation, Accept_Conversation, or Initialize_For_Incoming call was issued.

The Set_Deallocate_Type (CMSDT) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• deallocate_type (input)

Specifies the type of deallocation to be performed. The deallocate_type variable can have one
of the following values:

CM_DEALLOCATE_SYNC_LEVEL
Perform deallocation based on the sync_level characteristic in effect for this conversation:

— If sync_level is set to CM_NONE, or if sync_level is set to
CM_SYNC_POINT_NO_CONFIRM but the conversation is not currently included in
a transaction, execute the function of the Flush call and deallocate the conversation
normally.

— For half-duplex conversations, if sync_level is set to CM_CONFIRM, or if sync_level is
set to CM_SYNC_POINT but the conversation is not currently included in a
transaction, execute the function of the Confirm call. If the Confirm call is successful
(as indicated by a return code of CM_OK on the Deallocate call or a return code of
CM_OK on the Send_Data call with send_type set to
CM_SEND_AND_DEALLOCATE), deallocate the conversation normally. If the
Confirm call is not successful, the state of the conversation is determined by the
return code.

— If sync_level is set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and
the conversation is included in a transaction, defer the deallocation until the program
issues a resource recovery commit call. If the commit call is successful, the
conversation is deallocated normally. If the commit is not successful or if the
program issues a resource recovery backout call instead of a commit, the
conversation is not deallocated. See Deallocate (CMDEAL) on page 147 for more
information about deallocating conversations with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM.

CM_DEALLOCATE_FLUSH
Execute the function of the Flush call and deallocate the conversation normally.

CM_DEALLOCATE_CONFIRM
Execute the function of the Confirm call. If the Confirm call is successful (as indicated
by a return code of CM_OK on the Deallocate call or a return code of CM_OK on the
Send_Data call with send_type set to CM_SEND_AND_DEALLOCATE), deallocate the
conversation normally. If the Confirm call is not successful, the state of the conversation
is determined by the return code.

Distributed Transaction Processing: CPI-C Specification, Version 2 273

Set_Deallocate_Type (CMSDT) Call Reference Section

CM_DEALLOCATE_ABEND
For half-duplex conversations, execute the function of the Flush call when the
conversation is in Send state and deallocate the conversation abnormally. Data purging
can occur when the conversation is in Receive state. If the conversation is a basic
conversation, logical-record truncation can occur when the conversation is in Send state.

For full-duplex conversations, execute the function of the Flush call when the
conversation is in Send-Receive or Send-Only state and deallocate the conversation
abnormally. Data purging can occur when the conversation is in Send-Receive or
Receive-Only state. If the conversation is basic, logical-record truncation can occur
when the conversation is in Send-Receive or Send-Only state.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The deallocate_type specifies an undefined value.

— The deallocate_type is set to CM_DEALLOCATE_FLUSH, sync_level is set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, and transaction_control is
set to CM_CHAINED_TRANSACTIONS.

— The conversation is using an LU 6.2 CRM, deallocate_type is set to
CM_DEALLOCATE_CONFIRM, and sync_level is set to CM_NONE,
CM_SYNC_POINT, or CM_SYNC_POINT_NO_CONFIRM.

— The conversation is using an OSI TP CRM, deallocate_type is set to
CM_DEALLOCATE_CONFIRM, sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, and transaction_control is set to
CM_CHAINED_TRANSACTIONS.

CM_PROGRAM_STATE_CHECK
The conversation is in Initialize-Incoming state.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE

1. A deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL is used by a program to
deallocate a conversation based on the conversation’s synchronization level.

— For half-duplex conversations:

— If sync_level is set to CM_NONE, or if sync_level is set to
CM_SYNC_POINT_NO_CONFIRM but the conversation is not currently included
in a transaction, the conversation is unconditionally deallocated.

— If sync_level is set to CM_CONFIRM, or if sync_level is set to CM_SYNC_POINT but
the conversation is not currently included in a transaction, the conversation is

274 X/Open CAE Specification

Call Reference Section Set_Deallocate_Type (CMSDT)

deallocated when the remote program responds to the confirmation request by
issuing the Confirmed call. The conversation remains allocated when the remote
program responds to the confirmation request by issuing the Send_Error call.

— If sync_level is set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and
the conversation is included in a transaction, the deallocation is deferred until the
program issues a resource recovery commit call. If the commit call is successful, the
conversation is deallocated normally. If the commit is not successful or if the
program issues a resource recovery backout call instead of a commit, the
conversation is not deallocated.

— For full-duplex conversations:

— If sync_level is set to CM_NONE, or if sync_level is set to
CM_SYNC_POINT_NO_CONFIRM but the conversation is not currently included
in a transaction, and the Deallocate call is issued in Send-Receive state, the program
can no longer issue calls associated with the Send queue, but it can continue to issue
calls associated with the other conversation queues. If the Deallocate call is issued
in Send-Only state, the conversation is deallocated.

— If sync_level is set to CM_SYNC_POINT_NO_CONFIRM and the conversation is
included in a transaction, the deallocation is deferred until the program issues a
resource recovery commit call. If the commit call is successful, the conversation is
deallocated normally. If the commit is not successful or if the program issues a
backout call instead of a commit, the conversation is not deallocated.

2. A deallocate_type set to CM_DEALLOCATE_FLUSH is used by a program to
unconditionally deallocate the conversation. This deallocate_type value can be used for
conversations with sync_level set to CM_NONE or CM_CONFIRM. If the conversation is
using an OSI TP CRM, it can also be used for conversations with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM if the conversation is not
currently included in a transaction. The deallocate_type set to CM_DEALLOCATE_FLUSH
is functionally equivalent to deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL
combined with a sync_level set to CM_NONE.

For a half-duplex conversation, the conversation is deallocated. For a full-duplex
conversation, the program can no longer issue calls associated with the Send queue, and
the conversation is deallocated if the Deallocate call is issued in Send-Only state. This
deallocate_type value can be used for conversations with sync_level set to CM_NONE.

3. A deallocate_type set to CM_DEALLOCATE_CONFIRM is used by a program to
conditionally deallocate the conversation, depending on the remote program’s response,
when the sync_level is set to CM_CONFIRM. The deallocate_type set to
CM_DEALLOCATE_CONFIRM is functionally equivalent to deallocate_type set to
CM_DEALLOCATE_SYNC_LEVEL combined with a sync_level set to CM_CONFIRM.

The conversation is deallocated when the remote program responds to the confirmation
request by issuing Confirmed. The conversation remains allocated when the remote
program responds to the confirmation request by issuing Send_Error.

4. A deallocate_type set to CM_DEALLOCATE_ABEND is used by a program to
unconditionally deallocate a conversation regardless of its synchronization level and its
current state. Specifically, this deallocate_type value is used when the program detects an
error condition that prevents further useful communication (communication that would
lead to successful completion of the transaction).

Distributed Transaction Processing: CPI-C Specification, Version 2 275

Set_Deallocate_Type (CMSDT) Call Reference Section

5. If a return_code other than CM_OK is returned on the call, the deallocate_type conversation
characteristic is unchanged.

SEE ALSO
Deallocate (CMDEAL) on page 147 provides further discussion on the use of the deallocate_type
characteristic in the deallocation of a conversation.

Set_Sync_Level (CMSSL) on page 311 provides information on how the sync_level characteristic is
used in combination with the deallocate_type characteristic in the deallocation of a conversation.

276 X/Open CAE Specification

Call Reference Section Set_Error_Direction (CMSED)

NAME
Set_Error_Direction (CMSED) — set the error_direction conversation characteristic.

SYNOPSIS
CALL CMSED(conversation_ID , error_direction , return_code)

DESCRIPTION
Set_Error_Direction (CMSED) is used by a program to set the error_direction characteristic for a
given conversation. Set_Error_Direction overrides the value that was assigned when the
Initialize_Conversation, the Accept_Conversation, or the Initialize_For_Incoming call was
issued.

Note: The error_direction characteristic is used by an LU 6.2 CRM and only for a half-duplex
conversation.

The Set_Error_Direction (CMSED) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• error_direction (input)

Specifies the direction of the data flow in which the program detected an error. This
parameter is significant only if Send_Error is issued in Send-Pending state (that is,
immediately after a Receive on which both data and a conversation status of
CM_SEND_RECEIVED are received). Otherwise, the error_direction value is ignored when
the program issues Send_Error.

The error_direction variable can have one of the following values:

CM_RECEIVE_ERROR
Specifies that the program detected an error in the data it received from the remote
program.

CM_SEND_ERROR
Specifies that the program detected an error while preparing to send data to the remote
program.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The error_direction specifies CM_SEND_ERROR and the conversation is using an OSI
TP CRM.

— The error_direction specifies an undefined value.

— The send_receive_mode of the conversation is CM_FULL_DUPLEX.

CM_OPERATION_NOT_ACCEPTED

Distributed Transaction Processing: CPI-C Specification, Version 2 277

Set_Error_Direction (CMSED) Call Reference Section

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE

1. The error_direction conversation characteristic is significant only if Send_Error is issued
immediately after a Receive on which both data and a conversation status of
CM_SEND_RECEIVED are received (when the conversation is in Send-Pending state). In
this situation, the Send_Error may result from one of the following errors:

— an error in the received data (in the receive flow)

— an error having nothing to do with the received data, but instead being the result of
processing performed by the program after it had successfully received and processed
the data (in the send flow).

Because the system in this situation cannot tell which error occurred, the program has to
supply the error_direction information.

The error_direction defaults to a value of CM_RECEIVE_ERROR. To override the default, a
program can issue the Set_Error_Direction call prior to issuing Send_Error.

Once changed, the new error_direction value remains in effect until the program changes it
again. Therefore, a program should issue Set_Error_Direction before issuing Send_Error
for a conversation in Send-Pending state.

If the conversation is not in Send-Pending state, the error_direction characteristic is ignored.

2. If the conversation is in Send-Pending state and the program issues a Send_Error call, CPI
Communications examines the error_direction characteristic and notifies the partner
program accordingly:

— If error_direction is set to CM_RECEIVE_ERROR, the partner program receives a
return_code of CM_PROGRAM_ERROR_PURGING. This indicates that an error at the
remote program occurred in the data before the remote program received send control.

— If error_direction is set to CM_SEND_ERROR, the partner program receives a
return_code of CM_PROGRAM_ERROR_NO_TRUNC. This indicates that an error at
the remote program occurred in the send processing after the remote program received
send control.

3. If a return_code other than CM_OK is returned on the call, the error_direction conversation
characteristic is unchanged.

SEE ALSO
Section 4.3.6 on page 80 provides an example program using Set_Error_Direction.

Send_Error (CMSERR) on page 240 provides more information on reporting errors.

Section D.3.1 on page 481 provides more information on the error_direction characteristic.

278 X/Open CAE Specification

Call Reference Section Set_Fill (CMSF)

NAME
Set_Fill (CMSF) — set the fill conversation characteristic.

SYNOPSIS
CALL CMSF(conversation_ID , fill , return_code)

DESCRIPTION
Set_Fill (CMSF) is used by a program to set the fill characteristic for a given conversation.
Set_Fill overrides the value that was assigned when the Initialize_Conversation,
Accept_Conversation or Initialize_For_Incoming call was issued.

Note: This call applies only to basic conversations. The fill characteristic is ignored for
mapped conversations.

The Set_Fill (CMSF) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• fill (input)

Specifies whether the program is to receive data in terms of the logical-record format of the
data. The fill variable can have one of the following values:

CM_FILL_LL
Specifies that the program is to receive one complete or truncated logical record, or a
portion of the logical record that is equal to the length specified by the requested_length
parameter of the Receive call.

CM_FILL_BUFFER
Specifies that the program is to receive data independent of its logical-record format.
The amount of data received will be equal to or less than the length specified by the
requested_length parameter of the Receive call. The amount is less than the requested
length when the program receives the end of the data.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The conversation_type specifies CM_MAPPED_CONVERSATION.

— The fill specifies an undefined value.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE

1. The fill value provided (for a basic conversation) is used on all subsequent Receive calls for
the specified conversation until changed by the program with another Set_Fill call.

Distributed Transaction Processing: CPI-C Specification, Version 2 279

Set_Fill (CMSF) Call Reference Section

2. If a return_code other than CM_OK is returned on the call, the fill conversation
characteristic is unchanged.

SEE ALSO
Receive (CMRCV) on page 208 provides more information on how the fill characteristic is used
for basic conversations.

280 X/Open CAE Specification

Call Reference Section Set_Initialization_Data (CMSID)

NAME
Set_Initialization_Data (CMSID) — set the initialization_data conversation characteristic.

SYNOPSIS
CALL CMSID(conversation_ID , initialization_data ,

initialization_data_length , return_code)

DESCRIPTION
Set_Initialization_Data (CMSID) is used by a program to set the initialization_data and
initialization_data_length conversation characteristics to be sent to the remote program for a
given conversation. Set_Initialization_Data overrides the values that were assigned when the
Initialize_Conversation, Accept_Conversation, Initialize_For_Incoming or Accept_Incoming call
was issued.

The Set_Initialization_Data (CMSID) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• initialization_data (input)

Specifies the initialization data that is to be passed to the remote program during
conversation startup.

• initialization_data_length (input)

Specifies the length of the initialization data. The length can be from 0 to 10000 bytes. If
zero, the initialization_data parameter is ignored.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation is not in Initialize state, Receive state (for a half-duplex
conversation), or Send-Receive state (for a full-duplex conversation).

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned identifier.

— The initialization_data_length specifies a value greater than 10000 or less than zero.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

APPLICATION USAGE

1. Initialization data is data that the program initiating a conversation (using the
Initialize_Conversation call) can choose to send to the remote program. The initiator
issues a Set_Initialization_Data call between the Initialize_Conversation and Allocate calls

Distributed Transaction Processing: CPI-C Specification, Version 2 281

Set_Initialization_Data (CMSID) Call Reference Section

to specify the initialization data to be sent by the Allocate call. Following the successful
completion of either an Accept_Conversation or Accept_Incoming call, the remote
program issues an Extract_Initialization_Data call to extract the initialization data.

2. When the conversation is allocated using an OSI TP CRM, the remote program may issue a
Set_Initialization_Data call to identify data that is to be sent to the initiating program on its
next call following its acceptance of the conversation. To avoid overwriting initialization
data from the initiating program, the recipient must issue the Extract_Initialization_Data
call to extract the incoming initialization data before issuing the Set_Initialization_Data
call. The Set_Initialization_Data must be issued before any other call on the conversation,
except Set_* or Extract_* calls. To extract the data from the remote program, the initiating
program issues the Extract_Initialization_Data call after receiving a
control_information_received value of CM_ALLOCATE_CONFIRMED_WITH_DATA or
CM_ALLOCATE_REJECTED_WITH_DATA.

3. If a return_code other than CM_OK is returned on the call, the initialization_data and
initialization_data_length conversation characteristics remain unchanged.

SEE ALSO
Extract_Initialization_Data (CMEID) on page 170 describes the Extract_Initialization_Data call.

282 X/Open CAE Specification

Call Reference Section Set_Join_Transaction (CMSJT)

NAME
Set_Join_Transaction (CMSJT) — set the join_transaction characteristic.

SYNOPSIS
CALL CMSJT(conversation_ID , join_transaction , return_code)

DESCRIPTION
Set_Join_Transaction (CMSJT) is used by a program to set the join_transaction characteristic for a
given conversation. Set_Join_Transaction overrides the value that was assigned when the
Accept_Conversation or Accept_Incoming call was issued.

Note: The join_transaction characteristic is only meaningful in conjunction with the TX
(Transaction Demarcation) interface.

The Set_Join_Transaction (CMSJT) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• join_transaction (input)

Specifies whether the subordinate implicitly or explicitly joins the transaction after receiving
a join transaction request from the superior. The join_transaction characteristic can have one
of the following values:

CM_JOIN_IMPLICIT
Specifies that the subordinate automatically joins the transaction when receiving a join
transaction request from the superior.

CM_JOIN_EXPLICIT
Specifies that the subordinate must join the transaction explicitly when receiving a join
transaction request from the superior.

• return_code (output)

Specifies the result of the call execution. The return_code can be one of the following:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned identifier.

— The join_transaction specifies an undefined value.

— The program is not the subordinate for the conversation.

— The transaction_control characteristic is set to CM_CHAINED_TRANSACTIONS.

CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level non-blocking for
the conversation and a previous call operation is still in progress.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

Distributed Transaction Processing: CPI-C Specification, Version 2 283

Set_Join_Transaction (CMSJT) Call Reference Section

APPLICATION USAGE

1. If a return_code other than CM_OK is returned on the call, the join_transaction conversation
characteristic remains unchanged.

2. This call can be issued only by the subordinate program of a conversation.

3. This call can be issued in all states except Reset and Initialize. It should be issued in the
Initialize_Incoming state, so that it has an effect at the following Accept_Incoming call. In
all the other states it is allowed only if the transaction_control characteristic has the value
CM_UNCHAINED_TRANSACTIONS.

4. If a program wants to use CM_JOIN_EXPLICIT, it should extract the transaction_control
characteristic after a successful Accept_Incoming call. If the value is
CM_CHAINED_TRANSACTIONS, the program should join the transaction by issuing a
tx_begin() call. If the value is CM_UNCHAINED_TRANSACTIONS the program is
informed with a CM_JOIN_TRANSACTION status_received value, if it is to join the
transaction. In any case, the program may first do any local work that is not to be included
in the remote program’s transaction before joining the transaction.

5. This call does not apply to any previous call operation still in progress.

6. This call is not associated with any conversation queue. When a conversation uses queue-
level non-blocking, the call does not return CM_OPERATION_NOT_ACCEPTED on the
conversation.

SEE ALSO
Section 3.14.6 on page 59 discusses how a program can join a transaction.

284 X/Open CAE Specification

Call Reference Section Set_Log_Data (CMSLD)

NAME
Set_Log_Data (CMSLD) — set the log_data conversation characteristic.

SYNOPSIS
CALL CMSLD(conversation_ID , log_data , log_data_length , return_code)

DESCRIPTION
Set_Log_Data (CMSLD) is used by a program to set the log_data and log_data_length
characteristics for a given conversation. Set_Log_Data overrides the values that were assigned
when the Initialize_Conversation, Accept_Conversation or Initialize_For_Incoming call was
issued.

Note: When an LU 6.2 CRM is being used, the log_data characteristic is used only on basic
conversations.

The Set_Log_Data (CMSLD) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• log_data (input)

Specifies the program-unique error information that is to be logged. The data supplied by
the program is any data the program wants to have logged.

• log_data_length (input)

Specifies the length of the program-unique error information. The length can be from 0 to
512 bytes. If zero, the log_data_length characteristic is set to zero (effectively setting the
log_data characteristic to the null string), and the log_data parameter on this call is ignored.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_PROGRAM_PARAMETER_CHECK
This value can be one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The conversation_type is set to CM_MAPPED_CONVERSATION and the
conversation is using an LU 6.2 CRM.

— The log_data_length specifies a value less than 0 or greater than 512.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE

1. If the log_data characteristic contains data (as a result of a Set_Log_Data call), log data will
be sent to the remote system under any of the following conditions:

— when the local program issues a Send_Error call and the conversation is using an LU
6.2 CRM

Distributed Transaction Processing: CPI-C Specification, Version 2 285

Set_Log_Data (CMSLD) Call Reference Section

— when the local program issues a Deallocate call with deallocate_type set to
CM_DEALLOCATE_ABEND

— when the local program issues a Send_Data call with send_type set to
CM_SEND_AND_DEALLOCATE and deallocate_type set to
CM_DEALLOCATE_ABEND.

2. The system resets the log_data and log_data_length characteristics to their initial (null)
values after sending the log data. Therefore, the log_data is sent to the remote system only
once even though an error indication may be issued several times. See above for
conditions when log data is sent.

3. Specify log_data using the local system’s native encoding. When the log data is displayed
on the partner system, it will be displayed in that system’s native encoding.

4. If a return_code other than CM_OK is returned on the call, the log_data and log_data_length
conversation characteristics are unchanged.

SEE ALSO
Section 3.8.5 on page 38 provides further information on the automatic conversion of the
log_data parameter.

Send_Error (CMSERR) on page 240 and Deallocate (CMDEAL) on page 147 provide further
discussion on how the log_data characteristic is used.

286 X/Open CAE Specification

Call Reference Section Set_Mode_Name (CMSMN)

NAME
Set_Mode_Name (CMSMN) — set the mode_name conversation characteristic.

SYNOPSIS
CALL CMSMN(conversation_ID , mode_name, mode_name_length , return_code)

DESCRIPTION
Set_Mode_Name (CMSMN) is used by a program to set the mode_name and mode_name_length
characteristics for a conversation. Set_Mode_Name overrides the current values that were
originally acquired from the side information using the sym_dest_name.

Issuing this call does not change the values in the side information. It only changes the
mode_name and mode_name_length characteristics for this conversation.

Note: A program cannot issue the Set_Mode_Name call after an Allocate is issued. Only the
program that initiates the conversation (using the Initialize_Conversation call) can
issue this call.

The Set_Mode_Name (CMSMN) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• mode_name (input)

Specifies the mode name designating the network properties for the logical connection to be
allocated for the conversation. The network properties include, for example, the class of
service to be used, and whether data is to be enciphered.

Note: A program may require special authority to specify some mode names. For
example, SNASVCMG requires special authority with LU 6.2.

• mode_name_length (input)

Specifies the length of the mode name. The length can be from zero to eight bytes. If zero,
the mode name for this conversation is set to null and the mode_name parameter included
with this call is not significant.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The mode_name_length specifies a value less than zero or greater than eight.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

Distributed Transaction Processing: CPI-C Specification, Version 2 287

Set_Mode_Name (CMSMN) Call Reference Section

APPLICATION USAGE

1. Specification of a mode name that is not recognized by the system is not detected on this
call. It is detected on the subsequent Allocate call.

2. Specify mode_name using the local system’s native encoding. CPI Communications
automatically converts the mode_name from the native encoding where necessary.

3. If a return_code other than CM_OK is returned on the call, the mode_name and
mode_name_length conversation characteristics are unchanged.

SEE ALSO
Section 3.5.2 on page 22 further discusses the mode_name conversation characteristic.

Section 3.8.5 on page 38 provides further information on the automatic conversion of the
mode_name parameter.

Section D.3.3 on page 481 discusses SNA service transaction programs.

288 X/Open CAE Specification

Call Reference Section Set_Partner_LU_Name (CMSPLN)

NAME
Set_Partner_LU_Name (CMSPLN) — set the partner_LU_name conversation characteristic.

SYNOPSIS
CALL CMSPLN(conversation_ID , partner_LU_name , partner_LU_name_length ,

return_code)

DESCRIPTION
Set_Partner_LU_Name (CMSPLN) is used by a program to set the partner_LU_name and
partner_LU_name_length characteristics for a conversation. Set_Partner_LU_Name overrides the
current values that were originally acquired from the side information using the sym_dest_name.

Issuing this call does not change the information in the side information. It only changes the
partner_LU_name and partner_LU_name_length characteristics for this conversation.

Notes:

1. A program cannot issue Set_Partner_LU_Name after an Allocate call is issued.
Only the program that initiated the conversation (issued the
Initialize_Conversation call) can issue Set_Partner_LU_Name.

2. The partner_LU_name characteristic is used only by an LU 6.2 CRM.

The Set_Partner_LU_Name (CMSPLN) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• partner_LU_name (input)

Specifies the name of the remote LU at which the remote program is located. This LU name
is any name by which the local system knows the remote LU for purposes of allocating a
conversation.

• partner_LU_name_length (input)

Specifies the length of the partner LU name. The length can be from 1 to 17 bytes.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The partner_LU_name_length is set to a value less than 1 or greater than 17.

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is not in Initialize state.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

Distributed Transaction Processing: CPI-C Specification, Version 2 289

Set_Partner_LU_Name (CMSPLN) Call Reference Section

APPLICATION USAGE

1. Specify partner_LU_name using the local system’s native encoding. CPI Communications
automatically converts the partner_LU_name from the native encoding where necessary.

2. If a return_code other than CM_OK is returned on the call, the partner_LU_name and
partner_LU_name_length conversation characteristics are unchanged.

SEE ALSO
Section 3.5.2 on page 22 and notes 4 and 5 of Table A-3 on page 341 provide further discussion of
the partner_LU_name conversation characteristic.

Section 3.8.5 on page 38 provides further information on the automatic conversion of the
partner_LU_name parameter.

290 X/Open CAE Specification

Call Reference Section Set_Prepare_Data_Permitted (CMSPDP)

NAME
Set_Prepare_Data_Permitted (CMSPDP) — set the prepare_data_permitted conversation
characteristic.

SYNOPSIS
CALL CMSPDP(conversation_ID , prepare_data_permitted , return_code)

DESCRIPTION
Set_Prepare_Data_Permitted (CMSPDP) is used by a program to set the prepare_data_permitted
characteristic for a given conversation. Set_Prepare_Data_Permitted overrides the value that
was assigned when the Initialize_Conversation call was issued. The subordinate program on
the conversation cannot issue the Set_Prepare_Data_Permitted call.

Note: The prepare_data_permitted characteristic is used only by an OSI TP CRM, and only for a
half-duplex conversation.

The Set_Prepare_Data_Permitted (CMSPDP) call uses the following input and output
parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• prepare_data_permitted (input)

Specifies whether the superior program wants to allow the subordinate to send data
following the receipt of a take-commit notification. The prepare_data_permitted variable can
have one of the following values:

CM_PREPARE_DATA_NOT_PERMITTED
Specifies the subordinate will not be permitted to send data following the receipt of a
take-commit notification.

CM_PREPARE_DATA_PERMITTED
Specifies the subordinate will be permitted to send data following the receipt of a take-
commit notification.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned identifier.

— The prepare_data_permitted specifies CM_PREPARE_DATA_PERMITTED and the
conversation is using an LU 6.2 CRM.

— The prepare_data_permitted specifies an undefined value.

— The sync_level is set to CM_NONE or CM_CONFIRM.

— The program is not the superior for the conversation.

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is in Initialize-Incoming state.

Distributed Transaction Processing: CPI-C Specification, Version 2 291

Set_Prepare_Data_Permitted (CMSPDP) Call Reference Section

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

APPLICATION USAGE

1. If a return_code other than CM_OK is returned on the call, the prepare_data_permitted
conversation characteristic remains unchanged.

2. When the Prepare call is issued with the prepare_data_permitted characteristic set to
CM_PREPARE_DATA_PERMITTED, the subordinate program is notified that it is
permitted to send data through a take-commit notification that ends in a status_received
value of CM_TAKE_COMMIT_DATA_OK, CM_TAKE_COMMIT_SEND_DATA_OK or
CM_TAKE_COMMIT_DEALLOC_DATA_OK.

SEE ALSO
See Prepare (CMPREP) on page 199 for a description of the Prepare call.

292 X/Open CAE Specification

Call Reference Section Set_Prepare_To_Receive_Type (CMSPTR)

NAME
Set_Prepare_To_Receive_Type (CMSPTR) — set the prepare_to_receive_type conversation
characteristic.

SYNOPSIS
CALL CMSPTR(conversation_ID , prepare_to_receive_type , return_code)

DESCRIPTION
Set_Prepare_To_Receive_Type (CMSPTR) is used by a program to set the prepare_to_receive_type
characteristic for a conversation. This call overrides the value that was assigned when the
Initialize_Conversation, Accept_Conversation or Initialize_For_Incoming call was issued.

Note: The prepare_to_receive_type characteristic is used only for a half-duplex conversation.

The Set_Prepare_To_Receive_Type (CMSPTR) call uses the following input and output
parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• prepare_to_receive_type (input)

Specifies the type of prepare-to-receive processing to be performed for this conversation.
The prepare_to_receive_type variable can have one of the following values:

CM_PREP_TO_RECEIVE_SYNC_LEVEL
Perform the prepare-to-receive based on one of the following sync_level settings:

— If sync_level is set to CM_NONE, or if sync_level is set to
CM_SYNC_POINT_NO_CONFIRM but the conversation is not currently included in
a transaction, execute the function of the Flush call and enter Receive state.

— If sync_level is set to CM_CONFIRM, or if sync_level is set to CM_SYNC_POINT but
the conversation is not currently included in a transaction, execute the function of the
Confirm call and if successful (as indicated by a return code of CM_OK on the
Prepare_To_Receive call, or a return code of CM_OK on the Send_Data call with
send_type set to CM_SEND_AND_PREP_TO_RECEIVE), enter Receive state. If
Confirm is not successful, the state of the conversation is determined by the return
code.

— If sync_level is set to CM_SYNC_POINT and the conversation is included in a
transaction, enter Defer-Receive state until the program issues a resource recovery
commit or backout call, or until the program issues a Confirm or Flush call for this
conversation. If the commit or Confirm call is successful or if a Flush call is issued,
the conversation then enters Receive state. If the backout call is successful, the
conversation returns to its state at the previous sync point. Otherwise, the state of
the conversation is determined by the return code.

— If sync_level is set to CM_SYNC_POINT_NO_CONFIRM, and the conversation is
included in a transaction, enter Defer-Receive state until the program issues a
resource recovery commit or backout call, or until the program issues a Flush call for
this conversation. If the commit call is successful or if a Flush call is issued, the
conversation then enters Receive state. If the backout call is successful, the
conversation returns to its state at the previous sync point. Otherwise, the state of
the conversation is determined by the return code.

CM_PREP_TO_RECEIVE_FLUSH
Execute the function of the Flush call and enter Receive state.

Distributed Transaction Processing: CPI-C Specification, Version 2 293

Set_Prepare_To_Receive_Type (CMSPTR) Call Reference Section

CM_PREP_TO_RECEIVE_CONFIRM
Execute the function of the Confirm call and if successful (as indicated by a return code
of CM_OK on the Prepare_To_Receive call, or a return code of CM_OK on the
Send_Data call with send_type set to CM_SEND_AND_PREP_TO_RECEIVE), enter
Receive state. If it is not successful, the state of the conversation is determined by the
return code.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The prepare_to_receive_type is set to an undefined value.

— The prepare_to_receive_type is CM_PREP_TO_RECEIVE_CONFIRM, but the
conversation is assigned with sync_level set to CM_NONE or
CM_SYNC_POINT_NO_CONFIRM.

— The send_receive_mode of the conversation is CM_FULL_DUPLEX.

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is in Initialize-Incoming state.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE
If a return_code other than CM_OK is returned on the call, the prepare_to_receive_type
conversation characteristic is unchanged.

SEE ALSO
Section 4.3.4 on page 76 shows an example program using the Prepare_To_Receive call.

Prepare_To_Receive (CMPTR) on page 202 discusses how the prepare_to_receive_type is used.

294 X/Open CAE Specification

Call Reference Section Set_Processing_Mode (CMSPM)

NAME
Set_Processing_Mode (CMSPM) — set the processing_mode conversation characteristic.

SYNOPSIS
CALL CMSPM(conversation_ID , processing_mode , return_code)

DESCRIPTION
A program uses the Set_Processing_Mode (CMSPM) call to set the processing_mode characteristic
of a conversation. The processing_mode characteristic indicates whether CPI Communications
calls on the specified conversation are to be processed in blocking or non-blocking mode.
Set_Processing_Mode overrides the default value of CM_BLOCKING that was assigned when
the Initialize_Conversation, Initialize_For_Incoming, or Accept_Conversation call was issued.
The processing mode of a conversation cannot be changed prior to the completion of all
previous call operations on that conversation.

Note: The processing_mode characteristic is used only for a half-duplex conversation.

The Set_Processing_Mode (CMSPM) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• processing_mode (input)

Specifies the processing mode to be used for this conversation. processing_mode can have one
of the following values:

CM_BLOCKING
Specifies that calls will be processed in blocking mode. Calls complete before control is
returned to the program. The CM_OPERATION_INCOMPLETE return code will not be
returned on this conversation.

CM_NON_BLOCKING
Specifies that calls will be processed in non-blocking mode. If possible, the calls
complete immediately. When a call operation cannot complete immediately, CPI
Communications returns control to the program with the
CM_OPERATION_INCOMPLETE return code. The operation proceeds without
blocking the program.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The processing_mode specifies an undefined value.

— The send_receive_mode of the conversation is CM_FULL_DUPLEX.

— The program has chosen queue-level non-blocking for the conversation.

Distributed Transaction Processing: CPI-C Specification, Version 2 295

Set_Processing_Mode (CMSPM) Call Reference Section

CM_OPERATION_NOT_ACCEPTED
This value indicates that a previous call operation on the conversation is still in progress.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

APPLICATION USAGE

1. A program can choose to use conversation-level non-blocking by issuing the
Set_Processing_Mode call to set the processing_mode characteristic to
CM_NON_BLOCKING for a conversation. The processing mode applies to all the
subsequent calls on that conversation until it is set otherwise or the conversation ends.

2. If a return_code other than CM_OK is returned on the call, the processing_mode conversation
characteristic is unchanged.

3. When CM_OPERATION_INCOMPLETE is returned from any of the calls listed in Table 3-
6 on page 43, the call operation has not completed. The operation proceeds without
blocking the program. The data and buffer areas used in the call are in an indeterminate
state and should not be referenced until the operation is completed. For conversations
using conversation-level non-blocking, the Wait_For_Conversation call is used to
determine when an operation is completed. Each call to Wait_For_Conversation returns
the conversation identifier and return code (the conversation_return_code value) of a
completed operation. It is the responsibility of the program to keep track of the operation
being performed by each conversation in order to be able to properly interpret the
conversation_return_code value.

If programs place the Wait_For_Conversation call in a procedure other than the
accompanying CPI-C call that returned CM_OPERATION_INCOMPLETE, all parameters
of that CPI-C call must be in a global storage and not in automatic storage. This is
important even for parameters that the program won’t use. For example if the partner
program never uses any call that results in a control_information_received value other than
CM_NO_CONTROL_INFO_RECEIVED, the local program nevertheless has to place the
control_information_received parameter of the Receive call in the global storage.

4. Not all language processors support the use of non-blocking operations. See Section 5.2 on
page 117 for language processor restrictions on the use of non-blocking operations.

SEE ALSO
Section 3.9 on page 40 discusses the use of concurrent operations and conversation queues.

Section 3.10 on page 43 discusses the use of non-blocking operations.

Section 4.3.8 on page 84 shows an example of a program that uses conversation-level non-
blocking calls to accept multiple incoming half-duplex conversations.

Set_Queue_Callback_Function (CMSQCF) on page 297 describes how to set a callback function
and related information for a conversation queue.

Set_Queue_Processing_Mode (CMSQPM) on page 300 describes how to set the processing mode
for a conversation queue.

Wait_For_Conversation (CMWAIT) on page 325 describes the use of Wait_For_Conversation to
wait for completion of a conversation-level outstanding operation.

296 X/Open CAE Specification

Call Reference Section Set_Queue_Callback_Function (CMSQCF)

NAME
Set_Queue_Callback_Function (CMSQCF) — set a callback function and a user field for a given
conversation queue, and set the queue’s processing mode to CM_NON_BLOCKING.

SYNOPSIS

CALL CMSQCF(conversation_ID , conversation_queue , callback_function ,
user_field , return_code)

DESCRIPTION
Set_Queue_Callback_Function (CMSQCF) is used to set a callback function and a user field for a
given conversation queue, and to set the queue’s processing mode to CM_NON_BLOCKING.

The Set_Queue_Callback_Function (CMSQCF) call uses the following input and output
parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• conversation_queue (input)

Specifies the conversation queue on which completion of a call operation will invoke the
callback function. The conversation_queue can have one of the following values:

CM_INITIALIZATION_QUEUE

CM_SEND_QUEUE

CM_RECEIVE_QUEUE

CM_SEND_RECEIVE_QUEUE

CM_EXPEDITED_SEND_QUEUE

CM_EXPEDITED_RECEIVE_QUEUE.

• callback_function (input)

Specifies a callback function to be set for the identified queue.

• user_field (input)

Specifies a user field to be associated with the identified queue.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID contains an unassigned conversation identifier.

— The conversation_queue specifies a value that is not defined for the send_receive_mode
conversation characteristic.

— The program has chosen conversation-level non-blocking for the conversation.

Distributed Transaction Processing: CPI-C Specification, Version 2 297

Set_Queue_Callback_Function (CMSQCF) Call Reference Section

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation_queue parameter is set to CM_INITIALIZATION_QUEUE, and the
conversation is not in Initialize or Initialize-Incoming state.

— The conversation_queue parameter is set to CM_SEND_QUEUE,
CM_RECEIVE_QUEUE, CM_SEND_RECEIVE_QUEUE,
CM_EXPEDITED_SEND_QUEUE or CM_EXPEDITED_RECEIVE_QUEUE, and the
conversation is in Initialize-Incoming state.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE

1. Because of requiring support of passing a callback function as a parameter, the call is
supported by the C programming language only.

2. A program can choose to use queue-level non-blocking by issuing the
Set_Queue_Callback_Function call (or the Set_Queue_Processing_Mode call) for a
conversation queue. When the call completes successfully, the processing_mode
characteristic becomes meaningless to the conversation.

3. The call is associated with the queue specified in the conversation_queue parameter.

4. The program can issue the call for a conversation queue that is defined for the current
send-receive mode. The defined queues for each send-receive mode are listed in Table 5-2
on page 302 under the APPLICATION USAGE section of the
Set_Queue_Processing_Mode call.

In the special case when the conversation is in Initialize-Incoming state, the
send_receive_mode characteristic has no defined value. The program can issue the call only
for the Initialization queue.

5. Until the program sets the processing mode for a conversation queue (or chooses
conversation-level non-blocking), all the calls associated with that queue are processed in
blocking mode.

6. The call sets the processing mode of the identified queue to CM_NON_BLOCKING. The
processing mode applies to all subsequent calls to the queue until the processing mode is
set to CM_BLOCKING using a Set_Queue_Processing_Mode (CMSQPM) call or the
conversation ends.

7. Once set for the identified queue, the callback function and user field will be associated
with all subsequent outstanding operations on the queue until they are set differently, a
Set_Queue_Processing_Mode (CMSQPM) call is issued, or the conversation ends.

8. When CM_OPERATION_INCOMPLETE is returned from any of the calls listed in Table 3-
6 on page 43, the call operation has not completed. The operation proceeds without
blocking the program. The data and buffer areas used in the call are in an indeterminate
state and should not be referenced until the operation is completed.

9. A callback function is a user-defined routine and has two input parameters: user_field and
call_ID. It is used to handle completion of an outstanding operation.

298 X/Open CAE Specification

Call Reference Section Set_Queue_Callback_Function (CMSQCF)

If a callback function is set for a conversation queue, the function is invoked when an
outstanding operation on the queue completes. The user field as specified by the program,
and call ID for the completed operation, can then be passed to the callback function.

Note: An exception is the Microsoft Windows environment. The callback_function
parameter is ignored in Windows, and the user_field parameter contains a pointer
pointing to a structure of type MSG, as defined by Windows. The structure
contains at least a window handle, message number, word value, and
doubleword value. When an outstanding operation completes, CPI
Communications uses these fields as arguments to call the Windows
PostMessage function. Upon catching the message, the program can then invoke
a routine (taking the word value and doubleword value as input) to handle the
completion of the outstanding operation.

SEE ALSO
Section 3.9 on page 40 discusses the use of concurrent operations and conversation queues.

Section 3.10 on page 43 discusses the use of non-blocking operations.

Set_Queue_Processing_Mode (CMSQPM) on page 300 describes how to set the processing mode
for a conversation queue.

Wait_For_Completion (CMWCMP) on page 322 describes the use of Wait_For_Completion to wait
for completion of an outstanding operation on a conversation queue.

Distributed Transaction Processing: CPI-C Specification, Version 2 299

Set_Queue_Processing_Mode (CMSQPM) Call Reference Section

NAME
Set_Queue_Processing_Mode (CMSQPM) — set the processing mode for a given conversation
queue and to associate an outstanding-operation identifier (OOID) and a user field with the
queue.

SYNOPSIS

CALL CMSQPM(conversation_ID , conversation_queue , queue_processing_mode ,
user_field , OOID, return_code)

DESCRIPTION
Set_Queue_Processing_Mode (CMSQPM) is used to set the processing mode for a given
conversation queue. When the queue_processing_mode is set to CM_NON_BLOCKING, this call
also associates an outstanding-operation identifier (OOID) and a user field with the queue.

The Set_Queue_Processing_Mode (CMSQPM) call uses the following input and output
parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• conversation_queue (input)

Specifies the conversation queue for which the processing mode is to be set by this call.
conversation_queue can have one of the following values:

CM_INITIALIZATION_QUEUE

CM_SEND_QUEUE

CM_RECEIVE_QUEUE

CM_SEND_RECEIVE_QUEUE

CM_EXPEDITED_SEND_QUEUE

CM_EXPEDITED_RECEIVE_QUEUE.

• queue_processing_mode (input)

Specifies the processing mode to be used for the identified queue. queue_processing_mode can
have one of the following values:

CM_BLOCKING

CM_NON_BLOCKING.

• user_field (input)

Specifies a user field to be associated with the identified queue, when queue_processing_mode
is set to CM_NON_BLOCKING.

• OOID (output)

Specifies an outstanding operation identifier assigned to the identified queue, when
queue_processing_mode is set to CM_NON_BLOCKING.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

300 X/Open CAE Specification

Call Reference Section Set_Queue_Processing_Mode (CMSQPM)

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID contains an unassigned conversation identifier.

— The conversation_queue specifies a value that is not defined for the send_receive_mode
conversation characteristic.

— The queue_processing_mode specifies an undefined value.

— The program has chosen conversation-level non-blocking for the conversation.

CM_PROGRAM_STATE_CHECK
This value indicates one of the following:

— The conversation_queue parameter is set to CM_INITIALIZATION_QUEUE, and the
conversation is not in Initialize or Initialize-Incoming state.

— The conversation_queue parameter is set to CM_SEND_QUEUE,
CM_RECEIVE_QUEUE, CM_SEND_RECEIVE_QUEUE,
CM_EXPEDITED_SEND_QUEUE or CM_EXPEDITED_RECEIVE_QUEUE, and the
conversation is in Initialize-Incoming state.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE

1. A program can choose to use queue-level non-blocking by issuing the
Set_Queue_Processing_Mode call (or the Set_Queue_Callback_Function call) for a
conversation queue. When the call completes successfully, the processing_mode
characteristic becomes meaningless to the conversation.

2. The call is associated with the queue specified in the conversation_queue parameter.

3. The program can issue the call for a conversation queue that is defined for the current
send-receive mode. The defined queues for each send-receive mode are listed in Table 5-2
on page 302.

In the special case when the conversation is in Initialize-Incoming state, the
send_receive_mode characteristic has no defined value. The program can issue the call only
for the Initialization queue.

Distributed Transaction Processing: CPI-C Specification, Version 2 301

Set_Queue_Processing_Mode (CMSQPM) Call Reference Section

Table 5-2 Full-duplex and Half-duplex Conversation Queues

Send-Receive Mode Conversation Queues
Full-duplex Initialization

Send
Receive
Expedited-Send
Expedited-Receive

Half-duplex Initialization
Send-Receive
Expedited-Send
Expedited-Receive

4. Until the program sets the processing mode for a conversation queue (or chooses
conversation-level non-blocking), all the calls associated with that queue are processed in
blocking mode.

5. If a return code other than CM_OK is returned on the call, the processing mode of the
specified queue is unchanged.

6. Once a processing mode is set for a conversation queue, the processing mode applies to all
the subsequent calls associated with the queue until it is set differently using the call or
until the conversation ends.

7. If the queue processing mode is CM_BLOCKING, no OOID is returned on the call.
Therefore, the program should ignore the OOID parameter.

8. If the queue processing mode is CM_NON_BLOCKING, an OOID is returned on the call.
The OOID will be associated with all subsequent outstanding operations on the queue
until the processing mode is set to CM_BLOCKING, a Set_Queue_Callback_Function
(CMSQCF) call is issued, or the conversation ends.

9. When the program issues the call for a conversation queue and sets the queue processing
mode to CM_NON_BLOCKING for the first time, an OOID is created and set for the
queue. The OOID remains with the queue until the conversation ends. Even if the queue
processing mode changes several times or a Set_Queue_Callback_Function (CMSQCF) call
is issued during the conversation, each Set_Queue_Processing_Mode call to return to
CM_NON_BLOCKING reactivates the same OOID for that queue.

10. When CM_OPERATION_INCOMPLETE is returned from any of the calls listed in Table 3-
6 on page 43, the call operation has not completed. The operation proceeds without
blocking the program. The data and buffer areas used in the call are in an indeterminate
state and should not be referenced until the operation is completed. For conversations
using the Set_Queue_Processing_Mode call, the Wait_For_Completion call is used to
determine when an outstanding operation is completed.

11. The program may specify a user field on the call when the queue processing mode is
CM_NON_BLOCKING. If the program chooses to do so, the user field will be associated
with the identified queue along with an OOID. The user field specified by the program
will be returned on the user_field_list parameter of the Wait_For_Completion (CMWCMP)
call when an outstanding operation with the OOID has completed.

302 X/Open CAE Specification

Call Reference Section Set_Queue_Processing_Mode (CMSQPM)

SEE ALSO
Section 3.9 on page 40 discusses the use of concurrent operations and conversation queues.

Section 3.10 on page 43 discusses the use of non-blocking operations.

Section 4.3.12 on page 92 shows an example of a program that uses queue-level non-blocking.

Set_Queue_Callback_Function (CMSQCF) on page 297 describes how to set a callback function
and related information for a conversation queue.

Wait_For_Completion (CMWCMP) on page 322 describes the use of Wait_For_Completion to wait
for completion of an outstanding operation on a conversation queue.

Distributed Transaction Processing: CPI-C Specification, Version 2 303

Set_Receive_Type (CMSRT) Call Reference Section

NAME
Set_Receive_Type (CMSRT) — set the receive_type conversation characteristic.

SYNOPSIS
CALL CMSRT(conversation_ID , receive_type , return_code)

DESCRIPTION
Set_Receive_Type (CMSRT) is used by a program to set the receive_type characteristic for a
conversation. Set_Receive_Type overrides the value that was assigned when the
Initialize_Conversation, Accept_Conversation or Initialize_For_Incoming call was issued.

The Set_Receive_Type (CMSRT) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• receive_type (input)

Specifies the type of receive to be performed. The receive_type variable can have one of the
following values:

CM_RECEIVE_AND_WAIT
The Receive call is to wait for information to arrive on the specified conversation. If
information is already available, the program receives it without waiting.

CM_RECEIVE_IMMEDIATE
The Receive call is to receive any information that is available from the specified
conversation, but is not to wait for information to arrive.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The receive_type specifies an undefined value.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE
If a return_code other than CM_OK is returned on the call, the receive_type conversation
characteristic is unchanged.

SEE ALSO
Section 4.3.2 on page 72 discusses how a program can use Set_Receive_Type with a value of
CM_RECEIVE_IMMEDIATE.

Receive (CMRCV) on page 208 discusses how the receive_type characteristic is used.

304 X/Open CAE Specification

Call Reference Section Set_Return_Control (CMSRC)

NAME
Set_Return_Control (CMSRC) — set the return_control conversation characteristic.

SYNOPSIS
CALL CMSRC(conversation_ID , return_control , return_code)

DESCRIPTION
Set_Return_Control (CMSRC) is used to set the return_control characteristic for a given
conversation. Set_Return_Control overrides the value that was assigned when the
Initialize_Conversation call was issued.

Note: A program cannot issue the Set_Return_Control call after an Allocate has been issued
for a conversation. Only the program that initiates the conversation (with the
Initialize_Conversation call) can issue this call.

The Set_Return_Control (CMSRC) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• return_control (input)

Specifies when a program receives control back after issuing a call to Allocate. The
return_control can have one of the following values:

CM_WHEN_SESSION_ALLOCATED
Allocate a logical connection for the conversation before returning control to the
program.

CM_IMMEDIATE
Allocate a logical connection for the conversation if a logical connection is immediately
available and return control to the program with one of the following return codes
indicating whether or not a logical connection is allocated.

— A return code of CM_OK indicates a logical connection was immediately available
and has been allocated for the conversation. A logical connection is immediately
available when it is active; the logical connection is not allocated to another
conversation; and, for an LU 6.2 CRM, the local system is the contention winner for
the logical connection.

— A return code of CM_UNSUCCESSFUL indicates a logical connection is not
immediately available. Allocation is not performed.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The return_control specifies an undefined value.

Distributed Transaction Processing: CPI-C Specification, Version 2 305

Set_Return_Control (CMSRC) Call Reference Section

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE

1. An allocation error resulting from the local system’s failure to obtain a logical connection
for the conversation is reported on the Allocate call. An allocation error resulting from the
remote system’s rejection of the conversation startup request is reported on a subsequent
conversation call.

2. For an LU 6.2 CRM, two systems connected by a logical connection may both attempt to
allocate a conversation on the logical connection at the same time. This is called
contention. Contention is resolved by making one system the contention winner of the
session and the other system the contention loser of the session. The contention-winner
system allocates a conversation on a session without asking permission from the
contention-loser system. Conversely, the contention-loser system requests permission
from the contention-winner system to allocate a conversation on the session, and the
contention-winner system either grants or rejects the request. For more information, see
the referenced SNA Programmer’s Reference specification.

Contention may result in a CM_UNSUCCESSFUL return code for programs specifying
CM_IMMEDIATE.

3. If a return_code other than CM_OK is returned on the call, the return_control conversation
characteristic is unchanged.

SEE ALSO
Allocate (CMALLC) on page 130 provides more discussion on the use of the return_control
characteristic in allocating a conversation.

306 X/Open CAE Specification

Call Reference Section Set_Send_Receive_Mode (CMSSRM)

NAME
Set_Send_Receive_Mode (CMSSRM) — set the send_receive_mode conversation characteristic.

SYNOPSIS
CALL CMSSRM(conversation_ID , send_receive_mode , return_code)

DESCRIPTION
The Set_Send_Receive_Mode (CMSSRM) call is used by a program to set the send_receive_mode
characteristic for a conversation. Set_Send_Receive_Mode overrides the value that was assigned
when the Initialize_Conversation call was issued.

Note: A program cannot issue Set_Send_Receive_Mode after an Allocate call is issued. Only
the program that initiated the conversation (issued the Initialize_Conversation call) can
issue Set_Send_Receive_Mode.

The Set_Send_Receive_Mode (CMSSRM) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• send_receive_mode (input)

Specifies the send-receive mode of the conversation.

The send_receive_mode variable can have one of the following values:

CM_HALF_DUPLEX
Specifies the allocation of a half-duplex conversation.

CM_FULL_DUPLEX
Specifies the allocation of a full-duplex conversation.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_STATE_CHECK
This value indicates that the program is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The send_receive_mode specifies an undefined value.

— The sync_level is set to CM_CONFIRM or CM_SYNC_POINT, and send_receive_mode
is set to CM_FULL_DUPLEX.

— The sync_level is set to CM_SYNC_POINT_NO_CONFIRM, the conversation is using
a LU 6.2 CRM, and the send_receive_mode specifies CM_HALF_DUPLEX.

— The send_type is set to CM_SEND_AND_CONFIRM or
CM_SEND_AND_PREP_TO_RECEIVE, and send_receive_mode is set to
CM_FULL_DUPLEX.

— The deallocate_type is set to CM_DEALLOCATE_CONFIRM, the conversation is using
a LU 6.2 CRM, and the send_receive_mode specifies CM_FULL_DUPLEX.

Distributed Transaction Processing: CPI-C Specification, Version 2 307

Set_Send_Receive_Mode (CMSSRM) Call Reference Section

— The program has selected conversation-level non-blocking by issuing
Set_Processing_Mode successfully, and send_receive_mode is set to
CM_FULL_DUPLEX.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE

1. If a return_code other than CM_OK is returned on the call, the send_receive_mode
characteristic is unchanged.

2. Set_Send_Receive_Mode overrides the value assigned with the Initialize_Conversation call
and can only be issued when the program is in Initialize state.

SEE ALSO
Section 3.3 on page 19 provides more information on the differences between half-duplex and
full-duplex conversations.

Section 4.3.9 on page 86 shows an example of how a full-duplex conversation is set up.

Extract_Send_Receive_Mode (CMESRM) on page 182 tells how to determine the send-receive
mode used for a conversation.

308 X/Open CAE Specification

Call Reference Section Set_Send_Type (CMSST)

NAME
Set_Send_Type (CMSST) — set the send_type conversation characteristic.

SYNOPSIS
CALL CMSST(conversation_ID , send_type , return_code)

DESCRIPTION
Set_Send_Type (CMSST) is used by a program to set the send_type characteristic for a
conversation. Set_Send_Type overrides the value that was assigned when the
Initialize_Conversation, Accept_Conversation or Initialize_For_Incoming call was issued.

The Set_Send_Type (CMSST) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• send_type (input)

Specifies what, if any, information is to be sent to the remote program in addition to the data
supplied on the Send_Data call, and whether the data is to be sent immediately or buffered.

The send_type variable can have one of the following values:

CM_BUFFER_DATA
No additional information is to be sent to the remote program. Further, the supplied
data might not be sent immediately but, instead, might be buffered until a sufficient
quantity is accumulated.

CM_SEND_AND_FLUSH
No additional information is to be sent to the remote program. However, the supplied
data is sent immediately rather than buffered. Send_Data with send_type set to
CM_SEND_AND_FLUSH is functionally equivalent to a Send_Data with send_type set to
CM_BUFFER_DATA followed by a Flush call.

CM_SEND_AND_CONFIRM (half-duplex conversations only)
The supplied data is to be sent to the remote program immediately, along with a request
for confirmation. Send_Data with send_type set to CM_SEND_AND_CONFIRM is
functionally equivalent to Send_Data with send_type set to CM_BUFFER_DATA
followed by a Confirm call.

CM_SEND_AND_PREP_TO_RECEIVE (half-duplex conversations only)
The supplied data is to be sent to the remote program immediately, along with send
control of the conversation. Send_Data with send_type set to
CM_SEND_AND_PREP_TO_RECEIVE is functionally equivalent to Send_Data with
send_type set to CM_BUFFER_DATA followed by a Prepare_To_Receive call.

Note: The action depends on the value of the prepare_to_receive_type characteristic for
the conversation.

CM_SEND_AND_DEALLOCATE
The supplied data is to be sent to the remote program immediately, along with a
deallocation notification. Send_Data with send_type set to
CM_SEND_AND_DEALLOCATE is functionally equivalent to Send_Data with
send_type set to CM_BUFFER_DATA followed by a call to Deallocate.

Note: The action depends on the value of the deallocate_type characteristic for the
conversation.

Distributed Transaction Processing: CPI-C Specification, Version 2 309

Set_Send_Type (CMSST) Call Reference Section

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The send_type is set to CM_SEND_AND_CONFIRM and the conversation is assigned
with sync_level set to CM_NONE or CM_SYNC_POINT_NO_CONFIRM.

— The send_type specifies an undefined value.

— The send_type is set to CM_SEND_AND_CONFIRM or
CM_SEND_AND_PREP_TO_RECEIVE and the send_receive_mode is set to
CM_FULL_DUPLEX.

CM_PROGRAM_STATE_CHECK
This value indicates the conversation is in Initialize-Incoming state.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE
If a return_code other than CM_OK is returned on the call, the send_type conversation
characteristic is unchanged.

SEE ALSO
Section 4.3.4 on page 76 shows an example program flow using the Set_Send_Type call.

Send_Data (CMSEND) on page 230 discusses how the send_type characteristic is used by
Send_Data.

The same function of a call to Send_Data with different values of the send_type conversation
characteristic in effect can be achieved by combining Send_Data with other calls:

• Confirm (CMCFM) on page 137

• Deallocate (CMDEAL) on page 147

• Flush (CMFLUS) on page 190

• Prepare_To_Receive (CMPTR) on page 202.

310 X/Open CAE Specification

Call Reference Section Set_Sync_Level (CMSSL)

NAME
Set_Sync_Level (CMSSL) — set the sync_level conversation characteristic.

SYNOPSIS
CALL CMSSL(conversation_ID , sync_level , return_code)

DESCRIPTION
Set_Sync_Level (CMSSL) is used by a program to set the sync_level characteristic for a given
conversation. The sync_level characteristic is used to specify the level of synchronization
processing between the two programs. It determines whether the programs support no
synchronization, confirmation-level synchronization (using the Confirm and Confirmed CPI
Communications calls), or sync-point-level synchronization (using the calls of a resource
recovery interface). Set_Sync_Level overrides the value that was assigned when the
Initialize_Conversation call was issued.

Note: A program cannot use the Set_Sync_Level call after an Allocate has been issued. Only
the program that initiates a conversation (using the Initialize_Conversation call) can
issue this call.

The Set_Sync_Level (CMSSL) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• sync_level (input)

Specifies the synchronization level that the local and remote programs can use on this
conversation. The sync_level can have one of the following values:

CM_NONE
The programs will not perform confirmation or sync point processing on this
conversation. The programs will not issue any calls or recognize any returned
parameters relating to synchronization.

CM_CONFIRM (half-duplex conversations only)
The programs can perform confirmation processing on this conversation. The programs
can issue calls and recognize returned parameters relating to confirmation.

CM_SYNC_POINT (half-duplex conversations only)
The programs can perform sync point processing on this conversation. The programs
can issue resource recovery interface calls and will recognize returned parameters
relating to resource recovery processing. The programs can also perform confirmation
processing.

CM_SYNC_POINT_NO_CONFIRM
The programs can perform sync point processing on this conversation. The programs
can issue resource recovery interface calls and will recognize returned parameters
relating to resource recovery processing. The programs cannot perform confirmation
processing.

Note: If the conversation is using an OSI TP CRM, confirmation of the deallocation of the
conversation can be performed with any sync_level value.

Distributed Transaction Processing: CPI-C Specification, Version 2 311

Set_Sync_Level (CMSSL) Call Reference Section

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_PARM_VALUE_NOT_SUPPORTED
This value indicates that the sync_level specifies CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and the value is not supported by the local system.

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The sync_level specifies CM_NONE, the deallocate_type is set to
CM_DEALLOCATE_CONFIRM, and the conversation is using an LU 6.2 CRM.

— The sync_level specifies CM_NONE, the send_receive_mode is set to
CM_HALF_DUPLEX, and the prepare_to_receive_type is set to
CM_PREP_TO_RECEIVE_CONFIRM.

— The sync_level specifies CM_NONE or CM_SYNC_POINT_NO_CONFIRM, the
send_receive_mode is set to CM_HALF_DUPLEX, and the send_type is set to
CM_SEND_AND_CONFIRM.

— The sync_level specifies CM_CONFIRM or CM_SYNC_POINT and the
send_receive_mode is set to CM_FULL_DUPLEX.

— The sync_level specifies CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM,
the deallocate_type is set to CM_DEALLOCATE_FLUSH or
CM_DEALLOCATE_CONFIRM, and the conversation is using an LU 6.2 CRM.

— The sync_level specifies CM_SYNC_POINT_NO_CONFIRM, the send_receive_mode is
set to CM_HALF_DUPLEX, and the conversation is using an LU 6.2 CRM.

— The sync_level specifies an undefined value.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE
If a return_code other than CM_OK is returned on the call, the sync_level conversation
characteristic is unchanged.

SEE ALSO
Section 4.3.3 on page 74 shows how to use the Set_Sync_Level call.

Confirm (CMCFM) on page 137 and Confirmed (CMCFMD) on page 141 provide further
information on confirmation processing.

312 X/Open CAE Specification

Call Reference Section Set_TP_Name (CMSTPN)

NAME
Set_TP_Name (CMSTPN) — set the TP_name conversation characteristic.

SYNOPSIS
CALL CMSTPN(conversation_ID , TP_name, TP_name_length , return_code)

DESCRIPTION
Set_TP_Name (CMSTPN) is used by a program to set the TP_name and TP_name_length
characteristics for a given conversation. Set_TP_Name overrides the current values that were
originally acquired from the side information using the sym_dest_name. See Section 3.5.2 on page
22 for more information. This call does not change the values in the side information.
Set_TP_Name only changes the TP_name and TP_name_length characteristics for this
conversation.

Note: A program cannot issue Set_TP_Name after an Allocate is issued. Only a program that
initiates a conversation (using the Initialize_Conversation call) can issue this call.

The Set_TP_Name (CMSTPN) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• TP_name (input)

Specifies the name of the remote program.

Note: A program may require special authority to specify some TP names. For example,
SNA service transaction programs require special authority with LU 6.2. (For more
information, see Section D.3.3 on page 481.)

• TP_name_length (input)

Specifies the length of TP_name. The length can be from 1 to 64 bytes.

• return_code (output)

Specifies the result of the call execution. The return_code can have one of the following
values:

CM_OK

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is not in Initialize state.

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The TP_name_length specifies a value less than 1 or greater than 64.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE

1. Specify TP_name using the local system’s native encoding. CPI Communications
automatically converts the TP_name from the native encoding where necessary.

Distributed Transaction Processing: CPI-C Specification, Version 2 313

Set_TP_Name (CMSTPN) Call Reference Section

2. If a return_code other than CM_OK is returned on the call, the TP_name and TP_name_length
conversation characteristics are unchanged.

3. The TP_name specified on this call must be formatted according to the naming conventions
of the partner system.

SEE ALSO
Section 3.5.2 on page 22 and the notes following Table A-3 on page 341 provide further
discussion of the TP_name conversation characteristic.

Section 3.8.5 on page 38 provides further information on the automatic conversion of the
TP_name parameter.

Section D.3.3 on page 481 provides more information on privilege and service transaction
programs.

314 X/Open CAE Specification

Call Reference Section Set_Transaction_Control (CMSTC)

NAME
Set_Transaction_Control (CMSTC) — set the transaction_control conversation characteristic.

SYNOPSIS
CALL CMSTC(conversation_ID , transaction_control , return_code)

DESCRIPTION
Set_Transaction_Control (CMSTC) is used by a program to set the transaction_control
characteristic for a given conversation. Set_Transaction_Control overrides the value that was
assigned when the Initialize_Conversation call was issued.

Notes:

1. Only the program that initiates the conversation can issue this call.

2. The transaction_control characteristic is used only by an OSI TP CRM.

The Set_Transaction_Control (CMSTC) call uses the following input and output parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• transaction_control (input)

Specifies whether the superior program wants to use chained or unchained transactions on
the conversation with the subordinate. The transaction_control variable can have one of the
following values:

CM_CHAINED_TRANSACTIONS
Specifies that the conversation will use chained transactions.

CM_UNCHAINED_TRANSACTIONS
Specifies that the conversation will use unchained transactions.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_STATE_CHECK
This value indicates that the conversation is not in the Initialize state.

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned identifier.

— The transaction_control specifies an undefined value.

— The sync_level is set to either CM_NONE or CM_CONFIRM.

— The transaction_control specifies CM_UNCHAINED_TRANSACTIONS, and the
conversation is using an LU 6.2 CRM.

CM_OPERATION_NOT_ACCEPTED

CM_PRODUCT_SPECIFIC_ERROR.

Distributed Transaction Processing: CPI-C Specification, Version 2 315

Set_Transaction_Control (CMSTC) Call Reference Section

STATE CHANGES
This call does not cause any state changes.

APPLICATION USAGE
If a return_code other than CM_OK is returned on the call, the transaction_control conversation
characteristic remains unchanged.

SEE ALSO
Section 3.14.5 on page 58 provides more information about using chained and unchained
transactions with CPI Communications.

316 X/Open CAE Specification

Call Reference Section Specify_Local_TP_Name (CMSLTP)

NAME
Specify_Local_TP_Name (CMSLTP) — associate a name with itself.

SYNOPSIS
CALL CMSLTP(TP_name, TP_name_length , return_code)

DESCRIPTION
A program uses the Specify_Local_TP_Name (CMSLTP) call to associate a name with itself, thus
notifying CPI Communications that it can accept conversations destined for the name. A
program may have many local names simultaneously. It can extract the TP_name for a particular
conversation using the Extract_TP_Name call.

The Specify_Local_TP_Name (CMSLTP) call uses the following input and output parameters:

• TP_name (input)

Specifies a name to be associated with this program.

• TP_name_length (input)

Specifies the length of TP_name. The length can be from 1 to 64 bytes.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The TP_name specifies a name that is restricted in some way by node services.

— The TP_name has incorrect internal syntax as defined by node services.

— The TP_name_length specifies a value less than 1 or greater than 64.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause any state changes.

APPLICATION USAGE

1. If a return_code other than CM_OK is returned on the call, the names associated with the
current program remain unchanged.

2. Any of the names associated with the program at the time an Accept_Conversation or
Accept_Incoming call is issued can be used to satisfy the call.

3. If the program has an outstanding Accept_Incoming or Accept_Conversation call when it
issues Specify_Local_TP_Name, the names used to satisfy the outstanding
Accept_Incoming or Accept_Conversation are not affected. The newly specified name is
added to the names used to satisfy subsequent Accept_Incoming or Accept_Conversation
calls.

Distributed Transaction Processing: CPI-C Specification, Version 2 317

Specify_Local_TP_Name (CMSLTP) Call Reference Section

SEE ALSO
Accept_Conversation (CMACCP) on page 125 and Accept_Incoming (CMACCI) on page 127
describe how an incoming conversation is accepted by a program.

Release_Local_TP_Name (CMRLTP) on page 226 explains additional timing considerations for
names associated with the program.

318 X/Open CAE Specification

Call Reference Section Test_Request_To_Send_Received (CMTRTS)

NAME
Test_Request_To_Send_Received (CMTRTS) — determine whether or not the remote program is
requesting to send data.

SYNOPSIS
CALL CMTRTS(conversation_ID , control_information_received , return_code)

DESCRIPTION
Test_Request_To_Send_Received (CMTRTS) is used by a program to determine whether a
request-to-send or allocate-confirmed notification has been received from the remote program
for the specified conversation.

Note: The Test_Request_To_Send_Received call has meaning only when a half-duplex
conversation is being used.

The Test_Request_To_Send_Received (CMTRTS) call uses the following input and output
parameters:

• conversation_ID (input)

Specifies the conversation identifier.

• control_information_received (output)

Specifies the variable containing an indication of whether or not control information has been
received.

The control_information_received variable can have one of the following values:

CM_NO_CONTROL_INFO_RECEIVED
Indicates that no control information was received.

CM_REQ_TO_SEND_RECEIVED
The local program received a request-to-send notification from the remote program. The
remote program issued Request_To_Send, requesting the local program’s end of the
conversation to enter Receive state, which would place the remote program’s end of the
conversation in Send state. See Request_To_Send (CMRTS) on page 227 for further
discussion of the local program’s possible responses.

CM_ALLOCATE_CONFIRMED (OSI TP CRM only)
The local program received confirmation of the remote program’s acceptance of the
conversation.

CM_ALLOCATE_CONFIRMED_WITH_DATA (OSI TP CRM only)
The local program received confirmation of the remote program’s acceptance of the
conversation. The local program may now issue an Extract_Initialization_Data (CMEID)
call to receive the initialization data.

CM_ALLOCATE_REJECTED_WITH_DATA (OSI TP CRM only)
The remote program rejected the conversation. The local program may now issue an
Extract_Initialization_Data (CMEID) call to receive the initialization data.

This value is returned with a return code of CM_OK. The program will receive a
CM_DEALLOCATED_ABEND return code on a later call on the conversation.

CM_EXPEDITED_DATA_AVAILABLE (LU 6.2 CRM only)
Expedited data is available to be received.

CM_RTS_RCVD_AND_EXP_DATA_AVAIL (LU 6.2 CRM only)
The local program received a request-to-send notification from the remote program and
expedited data is available to be received.

Distributed Transaction Processing: CPI-C Specification, Version 2 319

Test_Request_To_Send_Received (CMTRTS) Call Reference Section

Notes:

1. If return_code is set to CM_PROGRAM_PARAMETER_CHECK or
CM_PROGRAM_STATE_CHECK, the value contained in
control_information_received has no meaning.

2. When more than one piece of control information is available to be returned to
the program, it will be returned in the following order:

— CM_ALLOCATE_CONFIRMED,
CM_ALLOCATE_CONFIRMED_WITH_DATA or
CM_ALLOCATE_REJECTED_WITH_DATA

— CM_RTS_RCVD_AND_EXP_DATA_AVAIL

— CM_REQ_TO_SEND_RECEIVED

— CM_EXPEDITED_DATA_AVAILABLE

— CM_NO_CONTROL_INFO_RECEIVED.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_PROGRAM_STATE_CHECK

— This value indicates that the conversation is not in Send, Receive, Send-Pending,
Defer-Receive, or Defer-Deallocate state.

— For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the program is in the Backout-Required
condition. The Test_Request_To_Send_Received call is not allowed for this
conversation while the program is in this condition.

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The conversation_ID specifies an unassigned conversation identifier.

— The send_receive_mode of the conversation is CM_FULL_DUPLEX.

CM_OPERATION_NOT_ACCEPTED
This value indicates that the program has chosen conversation-level non-blocking for
the conversation and a previous call operation is still in progress.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE

1. When the local system receives a request-to-send or allocate-confirmed notification, it
retains the notification until the local program issues a call (such as
Test_Request_To_Send_Received) with the control_information_received parameter. It
retains one request-to-send or allocate-confirmed notification at a time (per conversation).
Additional notifications are discarded until the retained notification is indicated to the
local program. Therefore, a remote program may issue the Request_To_Send call more
times than are indicated to the local program.

320 X/Open CAE Specification

Call Reference Section Test_Request_To_Send_Received (CMTRTS)

When the local system receives expedited data from the partner system, it is indicated on
the calls that have the control_information_received parameter until the expedited data is
actually received by the program.

2. After the retained notification, other than the expedited data notification, is indicated to
the local program through the control_information_received parameter, the local system
discards the notification.

3. Implementors should note that a request-to-send or allocate-confirmed notification can be
reported on this call (not associated with any queue), on the Send_Expedited_Data call
(associated with the Expedited-Send queue), and on the Receive_Expedited_Data call
(associated with the Expedited-Receive queue). When the program uses queue-level non-
blocking, more than one of these calls may be executed simultaneously. An
implementation should report the notification to the program only once, through one of
these calls.

4. A program should not rely solely on this call to test whether expedited data is available.
Expedited data may be available in the CRM but the implementation of the CPIC layer
may not always be able to indicate this to the program on this call. To test for the
availability of expedited data, the program should issue Receive_Expedited_Data with the
expedited_receive_type set to CM_RECEIVE_IMMEDIATE.

SEE ALSO
Request_To_Send (CMRTS) on page 227 provides further discussion of the request-to-send
function, and Set_Allocate_Confirm (CMSAC) on page 255 provides more information about the
allocate-confirmed function.

Distributed Transaction Processing: CPI-C Specification, Version 2 321

Wait_For_Completion (CMWCMP) Call Reference Section

NAME
Wait_For_Completion (CMWCMP) — wait for completion of one or more outstanding
operations represented in a specified outstanding-operation-ID (OOID) list.

SYNOPSIS
CALL CMWCMP(OOID_list , OOID_list_count , timeout , completed_op_index_list ,

completed_op_count , user_field_list , return_code)

DESCRIPTION
Wait_For_Completion (CMWCMP) is used to wait for completion of one or more outstanding
operations represented in a specified outstanding-operation-ID (OOID) list or its count.

The Wait_For_Completion (CMWCMP) call uses the following input and output parameters:

• OOID_list (input)

Specifies a list of OOIDs representing the outstanding operations for which completion is
expected.

• OOID_list_count (input)

Specifies the number of OOIDs contained in OOID_list.

• timeout (input)

Specifies the amount of time in milliseconds that the program is willing to wait for
completion of an operation. Valid timeout values are zero or any greater integer number.

• completed_op_index_list (output)

Specifies a list of indexes corresponding to the OOIDs in OOID_list for which the associated
operations have completed. The index is the position of an OOID in OOID_list, beginning
with 1.

• completed_op_count (output)

Specifies the number of indexes contained in completed_op_index_list, or the number of user
fields contained in user_field_list, or both.

• user_field_list (output)

Specifies a list of user fields corresponding to the completed operations.

• return_code (output)

Specifies the result of the call execution. The return_code variable can have one of the
following values:

CM_OK

CM_CALL_NOT_SUPPORTED

CM_PROGRAM_PARAMETER_CHECK
This value indicates one of the following:

— The OOID_list_count specifies a value less than 1.

— The number of OOIDs in OOID_list is less than the value specified in
OOID_list_count.

— The OOID_list contains an unassigned OOID.

— The timeout specifies a value less than zero.

322 X/Open CAE Specification

Call Reference Section Wait_For_Completion (CMWCMP)

CM_PROGRAM_STATE_CHECK
This value indicates that there is no outstanding operation associated with any of the
OOIDs specified in OOID_list or by use of a defined value of OOID_list_count.

CM_UNSUCCESSFUL
This value indicates that the specified timeout value has elapsed and none of the
operations specified in OOID_list or by use of a defined value of OOID_list_count has
completed.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
This call does not cause a state change.

APPLICATION USAGE

1. Unless the return_code indicates CM_OK, the values of all other parameters on this call
have no meaning.

2. The call returns the OOID corresponding to a completed operation only once. At that
time, all information about the completed operation is purged from the associated queue.
If the program issues the call to check the status of the same operation again, the OOID is
not returned.

3. When the call returns a completion operation to the program, the return code of the
completion operation can be found in the return_code parameter on the completed call.

4. A special timeout value of zero can be used to check the status of all the operations whose
OOIDs are specified in the OOID_list parameter. The call specified in this way incurs no
blocking.

5. The program can replace a previously returned OOID in the OOID_list parameter with a
null OOID (integer zero) and continue to use the same list for the following
Wait_For_Completion call. The null OOID is not associated with any outstanding
operation.

6. There is a one-to-one correspondence between elements of the completed-operation-index
list and those of the user-field list. Hence, the size of the user-field list equals that of the
completed-operation-index list.

7. The program should allocate the same amount of storage for the completed-operation-
index list and user-field list as it does for the outstanding-operation-ID list. If there is not
enough storage allocated, the program may lose some OOIDs and user fields that
correspond to the completed operations.

8. In a multi-threaded environment, concurrent Wait_For_Completion operations can occur.
If an OOID is specified on more than one Wait_For_Completion call, the OOID is returned
on only one of the Wait_For_Completion calls when the corresponding outstanding
operation completes.

9. Implementors should note that after returning CM_OPERATION_INCOMPLETE to the
program, an implementation should not fill the return code for the outstanding operation
before the program checks the return-code value. It is recommended that implementations
fill the return code only when the program issues a Wait_For_Completion call for the
outstanding operation.

Distributed Transaction Processing: CPI-C Specification, Version 2 323

Wait_For_Completion (CMWCMP) Call Reference Section

SEE ALSO
Section 3.10 on page 43 discusses the use of non-blocking operations.

Section 4.3.8 on page 84 shows an example of a program that uses conversation-level non-
blocking calls to accept multiple incoming half-duplex conversations.

Set_Queue_Processing_Mode (CMSQPM) on page 300 describes how to set the processing mode
for a conversation queue.

324 X/Open CAE Specification

Call Reference Section Wait_For_Conversation (CMWAIT)

NAME
Wait_For_Conversation (CMWAIT) — wait for the completion of any conversation-level
outstanding operation.

SYNOPSIS
CALL CMWAIT(conversation_ID , conversation_return_code , return_code)

DESCRIPTION
A program must use the Wait_For_Conversation (CMWAIT) call to wait for the completion of
an outstanding operation on a conversation using conversation-level non-blocking. An
outstanding operation is indicated when the CM_OPERATION_INCOMPLETE return_code
value is returned on an Accept_Incoming, Allocate, Confirm, Confirmed, Deallocate, Flush,
Prepare_To_Receive, Receive, Receive_Expedited_Data, Request_To_Send, Send_Data,
Send_Error, or Send_Expedited_Data call. This can occur when the processing_mode
conversation characteristic is set to CM_NON_BLOCKING and the requested operation cannot
complete immediately.

The Wait_For_Conversation (CMWAIT) call uses the following output parameters:

• conversation_ID (output)

Specifies the variable containing the conversation identifier for the completed operation.

Note: Unless return_code is set to CM_OK, the value contained in conversation_ID is not
meaningful.

• conversation_return_code (output)

Specifies the variable containing the return code for the completed operation. The meaning
of this return code depends upon the operation that was started. conversation_return_code can
have one of the following values:

CM_OK

CM_ALLOCATE_FAILURE_NO_RETRY

CM_ALLOCATE_FAILURE_RETRY

CM_BUFFER_TOO_SMALL

CM_CALL_NOT_SUPPORTED

CM_CONV_DEALLOC_AFTER_SYNCPT

CM_CONVERSATION_ENDING

CM_CONVERSATION_TYPE_MISMATCH

CM_DEALLOC_CONFIRM_REJECT

CM_DEALLOCATED_ABEND

CM_DEALLOCATED_ABEND_BO

CM_DEALLOCATED_ABEND_SVC

CM_DEALLOCATED_ABEND_SVC_BO

CM_DEALLOCATED_ABEND_TIMER

CM_DEALLOCATED_ABEND_TIMER_BO

CM_DEALLOCATED_NORMAL

Distributed Transaction Processing: CPI-C Specification, Version 2 325

Wait_For_Conversation (CMWAIT) Call Reference Section

CM_DEALLOCATED_NORMAL_BO

CM_EXP_DATA_NOT_SUPPORTED

CM_INCLUDE_PARTNER_REJECT_BO

CM_PIP_NOT_SPECIFIED_CORRECTLY

CM_PRODUCT_SPECIFIC_ERROR

CM_PROGRAM_ERROR_NO_TRUNC

CM_PROGRAM_ERROR_PURGING

CM_PROGRAM_ERROR_TRUNC

CM_RESOURCE_FAIL_NO_RETRY_BO

CM_RESOURCE_FAILURE_NO_RETRY

CM_RESOURCE_FAILURE_RETRY

CM_RESOURCE_FAILURE_RETRY_BO

CM_RETRY_LIMIT_EXCEEDED

CM_SECURITY_NOT_SUPPORTED

CM_SECURITY_NOT_VALID

CM_SEND_RCV_MODE_NOT_SUPPORTED

CM_SVC_ERROR_NO_TRUNC

CM_SVC_ERROR_PURGING

CM_SVC_ERROR_TRUNC

CM_SYNC_LVL_NOT_SUPPORTED_PGM

CM_SYNC_LVL_NOT_SUPPORTED_SYS

CM_TAKE_BACKOUT

CM_TP_NOT_AVAILABLE_NO_RETRY

CM_TP_NOT_AVAILABLE_RETRY

CM_TPN_NOT_RECOGNIZED.

Note: Unless return_code is set to CM_OK, the value contained in conversation_return_code
is not meaningful.

• return_code (output)

Specifies the result of the Wait_For_Conversation call execution. The return_code variable can
have one of the following values:

CM_OK
This value indicates that an outstanding operation has completed and that the
conversation_ID and conversation_return_code have been returned.

CM_SYSTEM_EVENT
This value indicates that, rather than an outstanding operation on a conversation, an
event (such as a signal) recognized by the program has occurred. The
Wait_For_Conversation call returns this return code value to allow the program to
decide whether to reissue the Wait_For_Conversation or to perform other processing.

326 X/Open CAE Specification

Call Reference Section Wait_For_Conversation (CMWAIT)

CM_PROGRAM_STATE_CHECK
This value indicates that there were no conversation-level outstanding operations for the
program.

CM_PRODUCT_SPECIFIC_ERROR.

STATE CHANGES
When return_code is set to CM_OK, the conversation identified by conversation_ID may change
state. The new state is determined by the operation that completed, the return code for that
operation (the conversation_return_code value), and the other factors that affect state transitions.

APPLICATION USAGE

1. Wait_For_Conversation waits for the completion of any outstanding operation on any
conversation using conversation-level non-blocking. It is the responsibility of the program
to keep track of the operation in progress on each conversation in order to be able to
interpret properly the conversation_return_code value.

2. In a multi-threaded environment, concurrent operations may occur. A
Wait_For_Conversation call waits for any operation, on any conversation using
conversation-level non-blocking, that either is already outstanding or becomes
outstanding during execution of the Wait_For_Conversation call. In case of concurrent
Wait_For_Conversation operations, completion of an outstanding operation is indicated
on one Wait_For_Conversation call only.

Note: An implementation should serialize execution of the concurrent
Wait_For_Conversation operations to prevent any Wait_For_Conversation call
from hanging forever.

3. It is the responsibility of the event-handling portion of the program to record sufficient
information for the program to decide how to proceed on receipt of the
CM_SYSTEM_EVENT return code.

4. This call applies only to conversations using conversation-level non-blocking support.

SEE ALSO
Section 3.10 on page 43 discusses the use of non-blocking operations.

Section 4.3.8 on page 84 shows an example of a program that uses conversation-level non-
blocking calls to accept multiple incoming half-duplex conversations.

Cancel_Conversation (CMCANC) on page 135 describes the means for terminating an operation
before it is completed.

Set_Processing_Mode (CMSPM) on page 295 describes setting the processing_mode conversation
characteristic.

Distributed Transaction Processing: CPI-C Specification, Version 2 327

Call Reference Section

328 X/Open CAE Specification

Appendix A

Variables and Characteristics

For the variables and characteristics used throughout this specification, this appendix provides
the following items:

• A table showing the values that variables and characteristics can take. The valid
pseudonyms and corresponding integer values are provided for each variable and
characteristic. (See Section A.1 on page 330.)

• The character sets used by CPI Communications. (See Section A.2 on page 337.)

• The data definitions for types and lengths of all CPI Communications characteristics and
variables. (See Section A.3 on page 340.)

Distributed Transaction Processing: CPI-C Specification, Version 2 329

Pseudonyms and Integer Values Variables and Characteristics

A.1 Pseudonyms and Integer Values
As explained in Section 1.3 on page 3, the values for variables and conversation characteristics
are shown as pseudonyms rather than integer values. For example, instead of stating that the
variable return_code is set to an integer value of 0, the specification shows the return_code being
set to a pseudonym value of CM_OK. Table A-1 provides a mapping from valid pseudonyms to
integer values for each variable and characteristic.

Pseudonyms can also be used for integer values in program code by making use of equate or
define statements. CPI Communications provides sample pseudonym files for several
programming languages in Appendix E. See Appendix F for an example of how a pseudonym
file is used by a COBOL program.

Note: Because the return_code variable is used for all CPI Communications calls, Appendix B
provides a more detailed description of its values, in addition to the list of values
provided here.

Table A-1 Variables/Characteristics and their Possible Values

Variable or Integer
CharacteristicName Pseudonym Values Values

AE_qualifier_format CM_DN 0
CM_INT_DIGITS 2

allocate_confirm CM_ALLOCATE_NO_CONFIRM 0
CM_ALLOCATE_CONFIRM 1

AP_title_format CM_DN 0
CM_OID 1

begin_transaction CM_BEGIN_IMPLICIT 0
CM_BEGIN_EXPLICIT 1

call_ID † CM_CMACCI 1
CM_CMACCP 2
CM_CMALLC 3
CM_CMCANC 4
CM_CMCFM 5
CM_CMCFMD 6
CM_CMCNVI 7
CM_CMCNVO 8
CM_CMDEAL 9
CM_CMDFDE 10
CM_CMEACN 11
CM_CMEAEQ 12
CM_CMEAPT 13
CM_CMECS 14
CM_CMECT 15
CM_CMEID 17

330 X/Open CAE Specification

Variables and Characteristics Pseudonyms and Integer Values

Variable or Integer
CharacteristicName Pseudonym Values Values

CM_CMEMBS 18
CM_CMEMN 19
CM_CMEPLN 21
CM_CMESI 22
CM_CMESL 23
CM_CMESRM 24
CM_CMESUI 25
CM_CMETC 26
CM_CMETPN 27
CM_CMFLUS 28
CM_CMINCL 29
CM_CMINIC 30
CM_CMINIT 31
CM_CMPREP 32
CM_CMPTR 33
CM_CMRCV 34
CM_CMRCVX 35
CM_CMRLTP 36
CM_CMRTS 37
CM_CMSAC 38
CM_CMSACN 39
CM_CMSAEQ 40
CM_CMSAPT 41
CM_CMSBT 42
CM_CMSCSP 43
CM_CMSCST 44
CM_CMSCSU 45
CM_CMSCT 46
CM_CMSCU 47
CM_CMSDT 48
CM_CMSED 49
CM_CMSEND 50
CM_CMSERR 51
CM_CMSF 52
CM_CMSID 53
CM_CMSLD 54
CM_CMSLTP 55
CM_CMSMN 56
CM_CMSNDX 57
CM_CMSPDP 58
CM_CMSPLN 60
CM_CMSPM 61
CM_CMSPTR 62
CM_CMSQCF 63
CM_CMSQPM 64
CM_CMSRC 65

Distributed Transaction Processing: CPI-C Specification, Version 2 331

Pseudonyms and Integer Values Variables and Characteristics

Variable or Integer
CharacteristicName Pseudonym Values Values

CM_CMSRT 66
CM_CMSSL 67
CM_CMSSRM 68
CM_CMSST 69
CM_CMSTC 70
CM_CMSTPN 71
CM_CMTRTS 72
CM_CMWAIT 73
CM_CMWCMP 74
CM_CMSJT 75

confirmation_urgency CM_CONFIRMATION_NOT_URGENT 0
CM_CONFIRMATION_URGENT 1

control_information_received CM_NO_CONTROL_INFO_RECEIVED 0
CM_REQ_TO_SEND_RECEIVED 1
CM_ALLOCATE_CONFIRMED 2
CM_ALLOCATE_CONFIRMED_WITH_DATA 3
CM_ALLOCATE_REJECTED_WITH_DATA 4
CM_EXPEDITED_DATA_AVAILABLE 5
CM_RTS_RCVD_AND_EXP_DATA_AVAIL 6

conversation_queue CM_INITIALIZATION_QUEUE 0
CM_SEND_QUEUE 1
CM_RECEIVE_QUEUE 2
CM_SEND_RECEIVE_QUEUE 3
CM_EXPEDITED_SEND_QUEUE 4
CM_EXPEDITED_RECEIVE_QUEUE 5

conversation_return_code See return_code.

conversation_security_type CM_SECURITY_NONE 0
CM_SECURITY_SAME 1
CM_SECURITY_PROGRAM 2
CM_SECURITY_PROGRAM_STRONG 5

conversation_state CM_INITIALIZE_STATE 2
CM_SEND_STATE 3
CM_RECEIVE_STATE 4
CM_SEND_PENDING_STATE 5
CM_CONFIRM_STATE 6
CM_CONFIRM_SEND_STATE 7
CM_CONFIRM_DEALLOCATE_STATE 8
CM_DEFER_RECEIVE_STATE 9
CM_DEFER_DEALLOCATE_STATE 10
CM_SYNC_POINT_STATE 11

332 X/Open CAE Specification

Variables and Characteristics Pseudonyms and Integer Values

Variable or Integer
CharacteristicName Pseudonym Values Values

CM_SYNC_POINT_SEND_STATE 12
CM_SYNC_POINT_DEALLOCATE_STATE 13
CM_INITIALIZE_INCOMING_STATE 14
CM_SEND_ONLY_STATE 15
CM_RECEIVE_ONLY_STATE 16
CM_SEND_RECEIVE_STATE 17
CM_PREPARED_STATE 18

conversation_type CM_BASIC_CONVERSATION 0
CM_MAPPED_CONVERSATION 1

data_received CM_NO_DATA_RECEIVED 0
CM_DATA_RECEIVED 1
CM_COMPLETE_DATA_RECEIVED 2
CM_INCOMPLETE_DATA_RECEIVED 3

deallocate_type CM_DEALLOCATE_SYNC_LEVEL 0
CM_DEALLOCATE_FLUSH 1
CM_DEALLOCATE_CONFIRM 2
CM_DEALLOCATE_ABEND 3

error_direction CM_RECEIVE_ERROR 0
CM_SEND_ERROR 1

expedited_receive_type CM_RECEIVE_AND_WAIT 0
CM_RECEIVE_IMMEDIATE 1

fill CM_FILL_LL 0
CM_FILL_BUFFER 1

join_transaction CM_JOIN_IMPLICIT 0
CM_JOIN_EXPLICIT 1

prepare_data_permitted CM_PREPARE_DATA_NOT_PERMITTED 0
CM_PREPARE_DATA_PERMITTED 1

prepare_to_receive_type CM_PREP_TO_RECEIVE_SYNC_LEVEL 0
CM_PREP_TO_RECEIVE_FLUSH 1
CM_PREP_TO_RECEIVE_CONFIRM 2

processing_mode CM_BLOCKING 0
CM_NON_BLOCKING 1

queue_processing_mode CM_BLOCKING 0
CM_NON_BLOCKING 1

Distributed Transaction Processing: CPI-C Specification, Version 2 333

Pseudonyms and Integer Values Variables and Characteristics

Variable or Integer
CharacteristicName Pseudonym Values Values

receive_type CM_RECEIVE_AND_WAIT 0
CM_RECEIVE_IMMEDIATE 1

request_to_send_received ‡ CM_REQ_TO_SEND_NOT_RECEIVED 0
CM_REQ_TO_SEND_RECEIVED 1

return_code CM_OK 0
and conversation_return_code CM_ALLOCATE_FAILURE_NO_RETRY 1

CM_ALLOCATE_FAILURE_RETRY 2
CM_CONVERSATION_TYPE_MISMATCH 3
CM_PIP_NOT_SPECIFIED_CORRECTLY 5
CM_SECURITY_NOT_VALID 6
CM_SYNC_LVL_NOT_SUPPORTED_SYS 7
CM_SYNC_LVL_NOT_SUPPORTED_PGM 8
CM_TPN_NOT_RECOGNIZED 9
CM_TP_NOT_AVAILABLE_NO_RETRY 10
CM_TP_NOT_AVAILABLE_RETRY 11
CM_DEALLOCATED_ABEND 17
CM_DEALLOCATED_NORMAL 18
CM_PARAMETER_ERROR 19
CM_PRODUCT_SPECIFIC_ERROR 20
CM_PROGRAM_ERROR_NO_TRUNC 21
CM_PROGRAM_ERROR_PURGING 22
CM_PROGRAM_ERROR_TRUNC 23
CM_PROGRAM_PARAMETER_CHECK 24
CM_PROGRAM_STATE_CHECK 25
CM_RESOURCE_FAILURE_NO_RETRY 26
CM_RESOURCE_FAILURE_RETRY 27
CM_UNSUCCESSFUL 28
CM_DEALLOCATED_ABEND_SVC 30
CM_DEALLOCATED_ABEND_TIMER 31
CM_SVC_ERROR_NO_TRUNC 32
CM_SVC_ERROR_PURGING 33
CM_SVC_ERROR_TRUNC 34
CM_OPERATION_INCOMPLETE 35
CM_SYSTEM_EVENT 36
CM_OPERATION_NOT_ACCEPTED 37
CM_CONVERSATION_ENDING 38
CM_SEND_RCV_MODE_NOT_SUPPORTED 39
CM_BUFFER_TOO_SMALL 40
CM_EXP_DATA_NOT_SUPPORTED 41
CM_DEALLOC_CONFIRM_REJECT 42
CM_ALLOCATION_ERROR 43
CM_RETRY_LIMIT_EXCEEDED 44
CM_NO_SECONDARY_INFORMATION 45
CM_SECURITY_NOT_SUPPORTED 46

334 X/Open CAE Specification

Variables and Characteristics Pseudonyms and Integer Values

Variable or Integer
CharacteristicName Pseudonym Values Values

CM_CALL_NOT_SUPPORTED 48
CM_PARM_VALUE_NOT_SUPPORTED 49
CM_TAKE_BACKOUT 100
CM_DEALLOCATED_ABEND_BO 130
CM_DEALLOCATED_ABEND_SVC_BO 131
CM_DEALLOCATED_ABEND_TIMER_BO 132
CM_RESOURCE_FAIL_NO_RETRY_BO 133
CM_RESOURCE_FAILURE_RETRY_BO 134
CM_DEALLOCATED_NORMAL_BO 135
CM_CONV_DEALLOC_AFTER_SYNCPT 136
CM_INCLUDE_PARTNER_REJECT_BO 137

return_control CM_WHEN_SESSION_ALLOCATED 0
CM_IMMEDIATE 1

send_receive_mode CM_HALF_DUPLEX 0
CM_FULL_DUPLEX 1

send_type CM_BUFFER_DATA 0
CM_SEND_AND_FLUSH 1
CM_SEND_AND_CONFIRM 2
CM_SEND_AND_PREP_TO_RECEIVE 3
CM_SEND_AND_DEALLOCATE 4

status_received CM_NO_STATUS_RECEIVED 0
CM_SEND_RECEIVED 1
CM_CONFIRM_RECEIVED 2
CM_CONFIRM_SEND_RECEIVED 3
CM_CONFIRM_DEALLOC_RECEIVED 4
CM_TAKE_COMMIT 5
CM_TAKE_COMMIT_SEND 6
CM_TAKE_COMMIT_DEALLOCATE 7
CM_TAKE_COMMIT_DATA_OK 8
CM_TAKE_COMMIT_SEND_DATA_OK 9
CM_TAKE_COMMIT_DEALLOC_DATA_OK 10
CM_PREPARE_OK 11
CM_JOIN_TRANSACTION 12

sync_level CM_NONE 0
CM_CONFIRM 1
CM_SYNC_POINT 2
CM_SYNC_POINT_NO_CONFIRM 3

transaction_control CM_CHAINED_TRANSACTIONS 0
CM_UNCHAINED_TRANSACTIONS 1

Distributed Transaction Processing: CPI-C Specification, Version 2 335

Pseudonyms and Integer Values Variables and Characteristics

Notes:

† The call_ID values greater than 10000 are reserved for the product extension calls.

‡ Early versions of CPI-C used the request_to_send_received variable. CPI-C 2.0
programs use control_information_received, which is an enhanced version of the
request_to_send_received variable.

336 X/Open CAE Specification

Variables and Characteristics Character Sets

A.2 Character Sets
CPI Communications makes use of character strings composed of characters from one of the
following character sets:

• Character set 01134, which is composed of the upper-case letters A through Z and numerals
0-9.

• Character set 00640, which is composed of the upper-case and lower-case letters A through
Z, numerals 0-9, and 20 special characters.

• Character set T61String, which is composed of the upper-case and lower-case letters A
through Z, numerals 0-9, and many additional special characters. The most commonly used
special characters are provided in Table A-2. See the referenced CCITT Recommendation
T.61 for other defined special characters.

These character sets, along with EBCDIC hexadecimal and graphic representations, are provided
in Table A-2. See the referenced SNA Formats specification for more information on character
sets.

Table A-2 Character Sets T61String, 01134 and 00640

Character Set
EBCDIC T61-

Hex Code Graphic Description String 01134 00640
40 Blank X X
4A [Left square bracket X
4B . Period X X
4C < Less than sign X X
4D (Left parenthesis X X
4E + Plus sign X X
4F ! Exclamation mark X
50 & Ampersand X X
5A] Right square bracket X
5C * Asterisk X X
5D) Right parenthesis X X
5E ; Semicolon X X
60 - Dash X X
61 / Slash X X
6B , Comma X X
6C % Percent sign X X
6D _ Underscore X X
6E > Greater than sign X X
6F ? Question mark X X
7A : Colon X X
7C @ Commercial a (at sign) X
7D ´ Single quote X X
7E = Equal sign X X
7F " Double quote X X
81 a Lower-case a X X

Distributed Transaction Processing: CPI-C Specification, Version 2 337

Character Sets Variables and Characteristics

Character Set
EBCDIC T61-

Hex Code Graphic Description String 01134 00640
82 b Lower-case b X X
83 c Lower-case c X X
84 d Lower-case d X X
85 e Lower-case e X X
86 f Lower-case f X X
87 g Lower-case g X X
88 h Lower-case h X X
89 i Lower-case i X X
91 j Lower-case j X X
92 k Lower-case k X X
93 l Lower-case l X X
94 m Lower-case m X X
95 n Lower-case n X X
96 o Lower-case o X X
97 p Lower-case p X X
98 q Lower-case q X X
99 r Lower-case r X X
A2 s Lower-case s X X
A3 t Lower-case t X X
A4 u Lower-case u X X
A5 v Lower-case v X X
A6 w Lower-case w X X
A7 x Lower-case x X X
A8 y Lower-case y X X
A9 z Lower-case z X X
BB L Vertical line X
C1 A Upper-case A X X X
C2 B Upper-case B X X X
C3 C Upper-case C X X X
C4 D Upper-case D X X X
C5 E Upper-case E X X X
C6 F Upper-case F X X X
C7 G Upper-case G X X X
C8 H Upper-case H X X X
C9 I Upper-case I X X X
D1 J Upper-case J X X X
D2 K Upper-case K X X X
D3 L Upper-case L X X X
D4 M Upper-case M X X X
D5 N Upper-case N X X X
D6 O Upper-case O X X X
D7 P Upper-case P X X X
D8 Q Upper-case Q X X X
D9 R Upper-case R X X X
E2 S Upper-case S X X X

338 X/Open CAE Specification

Variables and Characteristics Character Sets

Character Set
EBCDIC T61-

Hex Code Graphic Description String 01134 00640
E3 T Upper-case T X X X
E4 U Upper-case U X X X
E5 V Upper-case V X X X
E6 W Upper-case W X X X
E7 X Upper-case X X X X
E8 Y Upper-case Y X X X
E9 Z Upper-case Z X X X
F0 0 Zero X X X
F1 1 One X X X
F2 2 Two X X X
F3 3 Three X X X
F4 4 Four X X X
F5 5 Five X X X
F6 6 Six X X X
F7 7 Seven X X X
F8 8 Eight X X X
F9 9 Nine X X X

Distributed Transaction Processing: CPI-C Specification, Version 2 339

Variable Types Variables and Characteristics

A.3 Variable Types
CPI Communications makes use of two variable types, integer and character string. Table A-3
on page 341 defines the type and length of variables used in this document. Variable types are
described below.

A.3.1 Integers

The integers are signed, non-negative integers. Their length is provided in bits.

A.3.2 Character Strings

Character strings are composed of characters taken from one of the character sets discussed in
Section A.2 on page 337, or, in the case of buffer, are bytes with no restrictions (that is, a string
composed of characters from X’00’ to X’FF’).

Note: The name ‘‘character string’’ as used in this specification should not be confused with
‘‘character string’’ as used in the C programming language. No further restrictions
beyond those described above are intended.

The character-string length represents the number of characters a character string can contain.
CPI Communications defines two lengths for some character-string variables:

Minimum specification length
The minimum number of characters that a program can use to specify the character string.
For some character strings, the minimum specification length is zero. A zero-length
character string on a call means the character string is omitted, regardless of the length of
the variable that contains the character string (see the notes at the end of Table A-3 on page
341).

Maximum specification length
The maximum number of characters that a transaction program can use to specify a
character string. All products can send or receive the maximum specification length for the
character string.

For example, the character-string length for log_data is listed as 0-512 bytes, where 0 is the
minimum specification length and 512 is the maximum specification length.

If the variable to which a character string is assigned is longer than the character string, the
character string is left-justified within the variable and the variable is filled out to the right with
space characters (also referred to as blank characters). Space characters, if present, are not part
of the character string.

If the character string is formed from the concatenation of two or more individual character
strings, as is discussed in the notes following Table A-3 on page 341 (see the note regarding
partner_LU_name), the concatenated character string as a whole is left-justified within the
variable and the variable is filled out to the right with space characters. Space characters, if
present, are not part of the concatenated character string.

340 X/Open CAE Specification

Variables and Characteristics Variable Types

Table A-3 Variable Types and Lengths

Variable Variable Type Character Set Length
AE_qualifier 3, 4 Character string T61String 0-1024 bytes
AE_qualifier_format Integer N/A 32 bits
AE_qualifier_length Integer N/A 32 bits
allocate_confirm Integer N/A 32 bits
AP_title 3, 4 Character string T61String 0-1024 bytes
AP_title_format Integer N/A 32 bits
AP_title_length Integer N/A 32 bits
application_context_name 3, 4 Character string 00640 0-256 bytes
application_context_name_length Integer N/A 32 bits
begin_transaction Integer N/A 32 bits
buffer 1, 2 Character string no restriction 0-max supported by system
buffer_length 1 Integer N/A 32 bits
call_ID Integer N/A 32 bits
callback_function Pointer 10 N/A system-dependent 10

completed_op_index_list Array of integers N/A n X 32 bits
completed_op_count Integer N/A 32 bits
confirmation_urgency Integer N/A 32 bits
control_information_received Integer N/A 32 bits
conversation_ID Character string no restriction 8 bytes
conversation_queue Integer N/A 32 bits
conversation_return_code Integer N/A 32 bits
conversation_security_type Integer N/A 32 bits
conversation_state Integer N/A 32 bits
conversation_type Integer N/A 32 bits
data_received Integer N/A 32 bits
deallocate_type Integer N/A 32 bits
error_direction Integer N/A 32 bits
expedited_receive_type Integer N/A 32 bits
fill Integer N/A 32 bits
initialization_data 3, 4 Character string no restriction 0-10000 bytes
initialization_data_length Integer N/A 32 bits
join_transaction Integer N/A 32 bits
log_data 3 Character string no restriction 0-512 bytes
log_data_length Integer N/A 32 bits
maximum_buffer_size 2 Integer N/A 32 bits
mode_name 3, 4, 8 Character string 01134 0-8 bytes
mode_name_length Integer N/A 32 bits
OOID Integer N/A 32 bits
OOID_list Array of integers N/A n X 32 bits
OOID_list_count Integer N/A 32 bits
partner_LU_name 3, 4, 5 Character string 01134 1-17 bytes
partner_LU_name_length Integer N/A 32 bits
prepare_data_permitted Integer N/A 32 bits

Distributed Transaction Processing: CPI-C Specification, Version 2 341

Variable Types Variables and Characteristics

Variable Variable Type Character Set Length
prepare_to_receive_type Integer N/A 32 bits
processing_mode Integer N/A 32 bits
queue_processing_mode Integer N/A 32 bits
receive_type Integer N/A 32 bits
received_length 2 Integer N/A 32 bits
request_to_send_received 9 Integer N/A 32 bits
requested_length 2 Integer N/A 32 bits
return_code Integer N/A 32 bits
return_control Integer N/A 32 bits
security_password 3 Character string 00640 0-10 bytes
security_password_length Integer N/A 32 bits
security_user_ID 3, 4 Character string 00640 0-10 bytes
security_user_ID_length Integer N/A 32 bits
send_length 2 Integer N/A 32 bits
send_receive_mode Integer N/A 32 bits
send_type Integer N/A 32 bits
status_received Integer N/A 32 bits
sym_dest_name 3, 7 Character string 01134 8 bytes
sync_level Integer N/A 32 bits
timeout Integer N/A 32 bits
TP_name 3, 4, 6 Character string T61String 1-64 bytes
TP_name_length Integer N/A 32 bits
transaction_control Integer N/A 32 bits
user_field Character string no restriction 8 bytes
user_field_list Array of character strings no restriction n X 8 bytes

Notes:

1. When a transaction program is in conversation with another transaction program
executing in an unlike environment (for example, an EBCDIC-environment
program in conversation with an ASCII-environment program), buffer may
require conversion from one encoding to the other. For character data in
character data set 00640, this conversion can be accomplished by
Convert_Outgoing in the sending program and by Convert_Incoming in the
receiving program. The maximum allowed value of the buffer_length parameter
on the Convert_Incoming and Convert_Outgoing calls is implementation-
specific.

2. The maximum buffer size for sending and receiving data may vary from system
to system. The maximum buffer size is at least 32767.

3. Specify these fields using the native encoding of the local system. When
appropriate, CPI Communications automatically converts these fields to the
correct format (the negotiated transfer syntax on OSI TP and EBCDIC on LU 6.2)
when they are used as input parameters on CPI Communications calls. When
CPI Communications returns these fields to the program (for instance, as output
parameters on one of the Extract calls), they are returned in the native encoding of
the local system. See Section 3.8.5 on page 38 for more information on automatic
conversion of these fields.

342 X/Open CAE Specification

Variables and Characteristics Variable Types

Note that an LU 6.2 CRM converts log data in character set 00640 only. To
enhance program portability, it is recommended that character set 00640 be used
for the log_data characteristic.

4. Because the mode_name, partner_LU_name, security_user_ID, AE_qualifier, AP_title,
application_context_name, TP_name, and initialization_data characteristics are
output parameters on their respective Extract calls, the variables used to contain
the output character strings should be defined with a length equal to the
maximum specification length.

Note that an OSI TP CRM uses character set T61 String for the AE_qualifier,
AP_title, application_context_name, and TP_name. An LU 6.2 CRM uses character
set 00640 for the partner_LU_name and TP_name. Both CRM types use character
set 01134 for the mode_name. To enhance program portability, it is recommended
that character set 01134, a subset of character sets 00640 and T61 String, be used
for these characteristics.

5. The partner_LU_name can be of two varieties:

• A character string composed solely of characters drawn from character set
01134

• A character string consisting of two character strings composed of characters
drawn from character set 01134. The two character strings are concatenated
together by a period (the period is not part of character set 01134). The left-
hand character string represents the network ID, and the right-hand character
string represents the network LU name. The period is not part of the network
ID or the network LU name. Neither network ID nor network LU name may
be longer than eight bytes.

The use of the period defines which variety of partner_LU_name is being used.

6. The following usage notes apply when specifying the TP_name:

• The space character is not allowed in TP_name.

• When communicating with non-CPI Communications programs, the TP_name
can use characters other than those in character set 00640. See Section D.3 on
page 480 and Section D.3.3 on page 481 for details.

7. The field containing the sym_dest_name parameter on the CMINIT call must be
eight bytes long. The symbolic destination name within that field may be from 0
to 8 characters long, with its characters taken from character set 01134. If the
symbolic destination name is shorter than eight characters, it should be left-
justified in the variable field, and padded on the right with spaces. A
sym_dest_name parameter composed of eight spaces has special significance. See
Initialize_Conversation (CMINIT) on page 195 for more information.

8. The four names in the following list are mode names defined by the LU 6.2
architecture for user sessions and may be specified for CPI Communications
conversations on systems where they are defined, even though they contain the
character #, which is not found in character set 01134:

#BATCH
#BATCHSC
#INTER
#INTERSC

Distributed Transaction Processing: CPI-C Specification, Version 2 343

Variable Types Variables and Characteristics

9. The request_to_send_received variable is used by CPI-C 1.2 programs. CPI-C 2.0
programs use control_information_received, which is an enhanced version of this
variable.

10. callback_function specifies a pointer to a routine and is supported by the C
programming language only. Its length depends on the C compiler.

344 X/Open CAE Specification

Appendix B

Return Codes and Secondary Information

This chapter discusses the parameter called return_code that is passed back to the program at the
completion of a call. It also discusses associated secondary information that may be available
for the program to extract using the Extract_Secondary_Information call.

Distributed Transaction Processing: CPI-C Specification, Version 2 345

Return Codes Return Codes and Secondary Information

B.1 Return Codes
All calls have a parameter called return_code that is passed back to the program at the
completion of a call. The return code can be used to determine call-execution results and any
state change that may have occurred on the specified conversation. On some calls, the return
code is not the only source of call-execution information. For example, on the Receive call, the
status_received and data_received parameters should also be checked.

Some of the return codes indicate the results of the local processing of a call. These return codes
are returned on the call that invoked the local processing. Other return codes indicate results of
processing invoked at the remote end of the conversation. Depending on the call, these return
codes can be returned on the call that invoked the remote processing or on a subsequent call.
Still other return codes report events that originate at the remote end of the conversation. In all
cases, only one code is returned at a time.

Some of the return codes associated with the allocation of a conversation have the suffix RETRY
or NO_RETRY in their name.

• RETRY means that the condition indicated by the return code may not be permanent, and the
program can try to allocate the conversation again. Whether or not the retry attempt
succeeds depends on the duration of the condition. In general, the program should limit the
number of times it attempts to retry without success.

• NO_RETRY means that the condition is probably permanent. In general, a program should
not attempt to allocate the conversation again until the condition is corrected.

For programs using conversations with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, all return codes indicating a required backout have
numeric values equal to or greater than CM_TAKE_BACKOUT. This allows the CPI
Communications programmer to test for a range of return code values to determine if backout
processing is required. An example is:

return_code >= CM_TAKE_BACKOUT

The return codes shown below are listed alphabetically, and each description includes the
following:

• the meaning of the return code

• the origin of the condition indicated by the return code

• when the return code is reported to the program

• the state of the conversation when control is returned to the program.

Notes:

1. The individual call descriptions in Chapter 5 list the return code values that are
valid for each call.

2. The integer values that correspond to the pseudonyms listed below are provided
in Table A-1 on page 330 of Appendix A.

The valid return_code values are described below:

CM_ALLOCATE_FAILURE_NO_RETRY
The conversation cannot be allocated on a logical connection because of a condition that is
not temporary. When this return_code value is returned to the program, the conversation is
in Reset state. For example, if the conversation is using an LU 6.2 CRM, the logical
connection, i.e., session, to be used for the conversation cannot be activated because the
current session limit for the specified LU-name and mode-name pair is 0, or because of a

346 X/Open CAE Specification

Return Codes and Secondary Information Return Codes

system definition error or a session-activation protocol error. This return code is also
returned when the session is deactivated because of a session protocol error before the
conversation can be allocated. The program should not retry the allocation request until the
condition is corrected. This return code is returned on the Allocate call.

CM_ALLOCATE_FAILURE_RETRY
The conversation cannot be allocated on a logical connection because of a condition that
may be temporary. When this return_code value is returned to the program, the
conversation is in Reset state. For example, the logical connection to be used for the
conversation cannot be activated because of a temporary lack of resources at the local
system or remote system. This return code is also returned if the logical connection is
deactivated because of logical connection outage before the conversation can be allocated.
The program can retry the allocation request. This return code is returned on the Allocate
call.

CM_ALLOCATION_ERROR
This may be returned on calls associated with the Send queue (except the Deallocate call
with deallocate_type set to CM_DEALLOCATE_ABEND) while the conversation is in Send-
Receive state. The function requested on the call is not performed.

The return code indicates that the partner system rejected the conversation startup request.
At the time this return code information is returned, the cause of allocation rejection is not
returned to the program. The cause of the allocation rejection, which can be one of the
following, can be obtained through the return code on the first Receive call:

CM_SEND_RCV_MODE_NOT_SUPPORTED (OSI TP CRM only)
CM_CONVERSATION_TYPE_MISMATCH (LU 6.2 CRM only)
CM_PIP_NOT_SPECIFIED_CORRECTLY (LU 6.2 CRM only)
CM_SECURITY_NOT_VALID (LU 6.2 CRM only)
CM_SYNC_LVL_NOT_SUPPORTED_SYS (OSI TP CRM only)
CM_SYNC_LVL_NOT_SUPPORTED_PGM (LU 6.2 CRM only)
CM_TPN_NOT_RECOGNIZED
CM_TP_NOT_AVAILABLE_NO_RETRY
CM_TP_NOT_AVAILABLE_RETRY.

The conversation is in Receive-Only state.

CM_BUFFER_TOO_SMALL
The local program issued a CPI Communications call specifying a buffer size that is
insufficient for the amount of data available for the program to receive. The state of the
conversation remains unchanged.

CM_CALL_NOT_SUPPORTED
The call is not supported by the local system. This return code is returned on any call in an
optional support group when the implementation provides an entry point for the call but
does not support the function requested by the call. The state of the conversation remains
unchanged.

CM_CONV_DEALLOC_AFTER_SYNCPT (LU 6.2 CRM only)
The conversation was deallocated as a part of the last sync-point operation. The local
program was not given prior notification of the imminent deallocation because of a commit
operation race that arose as follows: This program issued the resource recovery commit
call. At the same time, the partner program issued a Deallocate call with deallocate_type set
to CM_DEALLOCATE_SYNC_LEVEL and sync_level set to
CM_SYNC_POINT_NO_CONFIRM, followed by the commit call.

Distributed Transaction Processing: CPI-C Specification, Version 2 347

Return Codes Return Codes and Secondary Information

CM_CONVERSATION_ENDING (LU 6.2 CRM only)
This return code is returned on the Send_Expedited_Data and Receive_Expedited_Data
calls and indicates one of the following:

— The local CRM is ending the conversation (normally).

— A notification indicating that the remote program is ending the conversation (normally
or abnormally) has been received by the local CRM.

— A notification of an error that causes the conversation to terminate has been received
from the remote CRM or occurred locally.

The error that causes the conversation to terminate may be an allocation error, a
conversation failure, or a deallocation of the conversation. The return code indicating the
cause of termination is returned on the calls associated with Send-Receive queue (half-
duplex conversations only) or with the Send and Receive queues (full-duplex conversations
only). The state of the conversation remains unchanged. Subsequent calls associated with
the expedited queues will be rejected with this return code until the conversation enters
Reset state.

CM_CONVERSATION_TYPE_MISMATCH (LU 6.2 CRM only)
The remote system rejected the conversation startup request because of one of the
following:

— The local program issued an Allocate call with conversation_type set to either
CM_MAPPED_CONVERSATION or CM_BASIC_CONVERSATION, and the remote
program does not support the respective conversation type.

— The local program issued an Allocate call with send_receive_mode set to either
CM_HALF_DUPLEX or CM_FULL_DUPLEX, and the remote program does not support
the respective send-receive mode.

For a half-duplex conversation, this return code is returned on a subsequent call to the
Allocate. For a full-duplex conversation, this return code is returned on the Receive call.
Calls associated with the Send queue that complete before this return code is returned on
the Receive call are notified of the conversation type mismatch by a
CM_ALLOCATION_ERROR return code.

When this return_code value is returned to the program, the conversation is in Reset state.

CM_DEALLOC_CONFIRM_REJECT (OSI TP CRM only)
This return code is returned on a full-duplex conversation under one of the following two
conditions:

— The program issued a Deallocate call with deallocate_type set to
CM_DEALLOCATE_CONFIRM and the partner program responded negatively to the
Deallocate by issuing a Send_Error call in Confirm-Deallocate state.

— The program issued a Send_Data call with send_type set to
CM_SEND_AND_DEALLOCATE and deallocate_type set to
CM_DEALLOCATE_CONFIRM, and the partner program responded negatively to the
Send-Data by issuing a Send_Error call in Confirm-Deallocate state.

A Receive call issued by the local program receives a CM_PROGRAM_ERROR_PURGING
return code after all available data is received. The state of the conversation remains
unchanged.

348 X/Open CAE Specification

Return Codes and Secondary Information Return Codes

CM_DEALLOCATED_ABEND
This return code may be returned under one of the following conditions:

— The remote program issued a Deallocate call with deallocate_type set to
CM_DEALLOCATE_ABEND, or a Cancel_Conversation call, or the remote system has
done so because of a remote program abnormal-ending condition. If the remote
program was in Receive state (half-duplex conversations only) or in Send-Receive or
Receive-Only state (full-duplex conversations only) when the call was issued,
information sent by the local program and not yet received by the remote program is
purged.

— The remote program terminated normally but did not deallocate the conversation before
terminating. Node services at the remote system deallocated the conversation on behalf
of the remote program.

— On a half-duplex conversation using an OSI TP CRM, the local program issued a
Send_Error call, and the error notification was delivered to the remote CRM.
Subsequently, the remote program issued a Deallocate call with deallocate_type set to
CM_DEALLOCATE_FLUSH, or with deallocate_type set to
CM_DEALLOCATE_SYNC_LEVEL and sync_level set to CM_NONE, or with
deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL, sync_level set to
CM_SYNC_POINT_NO_CONFIRM, and the conversation currently not included in a
transaction.

— begin_transaction_collision (OSI TP CRM only)
On a full-duplex conversation, there was a collision between a Deallocate call with
deallocate_type set to CM_DEALLOCATE_CONFIRM issued by the local program and an
Include_Partner_In_Transaction call issued by the partner program. No log data is
available.

— dealloc_confirm_collision (OSI TP CRM only)
On a full-duplex conversation, there was a collision between a Deallocate call with
deallocate_type set to CM_DEALLOCATE_CONFIRM issued by the local program and a
Deallocate call with deallocate_type set to CM_DEALLOCATE_CONFIRM call issued by
the partner program. No log data is available.

— On a full-duplex conversation in Send-Receive state or Receive-Only state, the local
program has issued a Deallocate call with deallocate_type set to
CM_DEALLOCATE_ABEND.

— CPI Communications deallocated the conversation because an implicit call of
tx_set_transaction_control () or tx_begin() failed.

For a half-duplex conversation, this return code is reported to the local program on a call
issued in Send or Receive state. For a full-duplex conversation, this return code is returned
on a Receive call issued in Send-Receive or Receive-Only state. It is also returned on calls
associated with the Send queue (except the Deallocate call with deallocate_type set to
CM_DEALLOCATE_ABEND) under one of the following conditions:

— They are issued in Send-Only state.

— They are issued in Send-Receive state and complete before this return code is returned
on the Receive call.

The conversation is now in Reset state unless the return code was returned on one of the
calls associated with the Send queue, issued in Send-Receive state. In that case, the
conversation is in Receive-Only state.

Distributed Transaction Processing: CPI-C Specification, Version 2 349

Return Codes Return Codes and Secondary Information

CM_DEALLOCATED_ABEND_BO
This return code is returned only for conversations with sync_level set to CM_SYNC_POINT
or CM_SYNC_POINT_NO_CONFIRM, and with the conversation included in a transaction.

This return code may be returned under one of the following conditions:

— The remote program issued a Deallocate call with deallocate_type set to
CM_DEALLOCATE_ABEND, or a Cancel_Conversation call, or the remote system has
done so because of a remote program abnormal-ending condition.

— dealloc_cfm_collision_bo (OSI TP CRM only)
On a full-duplex conversation, there was a collision between a
Include_Partner_In_Transaction call issued by this program and a Deallocate call with
deallocate_type set to CM_DEALLOCATE_CONFIRM issued by the partner program.
The Include_Partner_In_Transaction call got a return code of CM_OK. However, when
the collision is detected, a CM_DEALLOCATED_ABEND_BO return code is returned on
a subsequent call. No log data is available.

If the remote program was in Receive state (half-duplex conversations only) or in Send-
Receive, Prepared or Deferred-Deallocate states (full-duplex conversations only) when it
issued the Deallocate call, information sent by the local program and not yet received by the
remote program is purged.

For a half-duplex conversation, this return code is reported to the local program on a call
issued in Send or Receive state. For a full-duplex conversation, this return code is reported
to the local program on calls issued in Send-Receive, Sync-Point, Deferred-Deallocate,
Sync-Point-Deallocate and Prepared states. The conversation is now in Reset state. For a
full-duplex conversation, incoming information may not be received if this return code is
returned on a call associated with the Send queue.

The local program is in the Backout-Required condition, and the program must issue a
resource recovery backout call in order to restore all protected resources to their status as of
the last synchronization point.

CM_DEALLOCATED_ABEND_SVC (LU 6.2 CRM only)
This return code is returned for basic conversations only.

It may be returned under one of the following conditions:

— The remote program, using an LU 6.2 application programming interface and not using
CPI Communications, issued a DEALLOCATE verb specifying a TYPE parameter of
ABEND_SVC. If the remote program was in Receive state (half-duplex conversations
only) or in Send-Receive or Receive-Only state (full-duplex conversations only) when
the verb was issued, information sent by the local program and not yet received by the
remote program is purged.

— The remote program either terminated abnormally or terminated normally but did not
deallocate the conversation before terminating. Node services at the remote system
deallocated the conversation on behalf of the remote program.

For a half-duplex conversation, this return code is reported to the local program on a call
issued in Send or Receive state. For a full-duplex conversation, this return code is returned
on a Receive call issued in Send-Receive or Receive-Only state. It is also returned on calls
associated with the Send queue (except the Deallocate call with deallocate_type set to
CM_DEALLOCATE_ABEND) under one of the following conditions:

350 X/Open CAE Specification

Return Codes and Secondary Information Return Codes

— They are issued in Send-Only state.

— They are issued in Send-Receive state and complete before this return code is returned
on the Receive call.

The conversation is now in Reset state unless the return code was returned on one of the
calls associated with the Send queue issued in Send-Receive state. In that case, the
conversation is in Receive-Only state.

CM_DEALLOCATED_ABEND_SVC_BO (LU 6.2 CRM only)
This return code is returned only for basic conversations with sync_level set to
CM_SYNC_POINT. It is returned under the same conditions described under
CM_DEALLOCATED_ABEND_SVC above.

For a half-duplex conversation, this return code is reported to the local program on a call
issued in Send or Receive state. For a full-duplex conversation, this return code is reported
to the local program on calls issued in Send-Receive, Sync-Point, Deferred-Deallocate,
Sync-Point-Deallocate, and Prepared states. The conversation is now in Reset state.

The local program is in the Backout-Required condition and the program must issue a
resource recovery backout call in order to restore all protected resources to their status as of
the last synchronization point.

CM_DEALLOCATED_ABEND_TIMER (LU 6.2 CRM only)
This return code is returned only for basic conversations.

In addition, it is returned only when the remote program is using an LU 6.2 application
programming interface and is not using CPI Communications.

The remote LU 6.2 transaction program issued a DEALLOCATE verb specifying a TYPE
parameter of ABEND_TIMER. For a half-duplex conversation, this return code is reported
to the local program on a call issued in Send or Receive state. For a full-duplex
conversation, this return code is returned on a Receive call issued in Send-Receive or
Receive-Only state. It is also returned on calls associated with the Send queue (except the
Deallocate call with deallocate_type set to CM_DEALLOCATE_ABEND) under one of the
following conditions:

— They are issued in Send-Only state.

— They are issued in Send-Receive state and complete before this return code is returned
on the Receive call.

The conversation is now in Reset state unless the return code was returned on one of the
calls associated with the Send queue issued in Send-Receive state. In that case, the
conversation is in Receive-Only state.

CM_DEALLOCATED_ABEND_TIMER_BO (LU 6.2 CRM only)
This return code is returned only for basic conversations with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, and only when the remote
program is using an LU 6.2 application programming interface and is not using CPI
Communications.

The remote LU 6.2 transaction program issued a DEALLOCATE verb specifying a TYPE
parameter of ABEND_TIMER. If the conversation for the remote program was in Receive
state (half-duplex conversations only) or in Send-Receive, Prepared, or Deferred-
Deallocate state (full-duplex conversations only) when the verb was issued, information
sent by the local program and not yet received by the remote program is purged. If the
return code is returned on a call associated with the Send queue for a full-duplex
conversation, incoming data may be purged. For a half-duplex conversation, this return

Distributed Transaction Processing: CPI-C Specification, Version 2 351

Return Codes Return Codes and Secondary Information

code is reported to the local program on a call issued in Send or Receive state. For a full-
duplex conversation, this return code is reported to the local program on calls issued in
Send-Receive, Sync-Point, Deferred-Deallocate, Sync-Point-Deallocate, and Prepared
states. The conversation is now in Reset state.

The local program is in the Backout-Required condition and the program must issue a
resource recovery backout call in order to restore all protected resources to their status as of
the last synchronization point.

CM_DEALLOCATED_NORMAL
This return code may be returned under one of the following conditions:

— The remote program issued a Deallocate call or a Send_Data call with send_type set to
CM_SEND_AND_DEALLOCATE on a basic or mapped conversation with one of the
following:

— deallocate_type set to CM_DEALLOCATE_FLUSH

— deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL and sync_level set to
CM_NONE

— deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL, sync_level set to
CM_SYNC_POINT_NO_CONFIRM, and the conversation is not currently included
in a transaction.

For a half-duplex conversation, this return code is reported to the local program on a call
issued in Receive state. For a full-duplex conversation, this return code is reported to
the local program on the Receive call issued in Send-Receive or Receive-Only state. If
the conversation is a full-duplex conversation using an OSI TP CRM, this return code is
also returned on calls associated with the Send queue (except the Deallocate call with
deallocate_type set to CM_DEALLOCATE_ABEND).

— The local program issued a Deallocate call or a Send_Data call with send_type set to
CM_SEND_AND_DEALLOCATE and with one of the following:

— deallocate_type set to CM_DEALLOCATE_FLUSH

— deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL, sync_level set to
CM_NONE, and the conversation is a full-duplex conversation using an OSI TP
CRM

— deallocate_type set to CM_DEALLOCATE_SYNC_LEVEL, sync_level set to
CM_SYNC_POINT_NO_CONFIRM, and the conversation is not currently included
in a transaction.

This return code is returned to the local program on a Receive call that was outstanding
when the Deallocate call was issued.

For a half-duplex conversation, the conversation is now in Reset state. For a full-duplex
conversation, the conversation can now be in one of the following states:

— Reset state if this return code was returned on calls issued in Receive-Only or Send-
Only state.

— Send-Only state if this return code was returned on a Receive call issued in Send-
Receive state.

352 X/Open CAE Specification

Return Codes and Secondary Information Return Codes

— Receive-Only state if this return code was returned on calls associated with the Send
queue (except the Deallocate call with deallocate_type set to
CM_DEALLOCATE_ABEND) issued in Send-Receive state.

CM_DEALLOCATED_NORMAL_BO
This return code is returned only for half-duplex conversations with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, and with the conversation
included in a transaction.

When the conversation is using an LU 6.2 CRM and the Send_Error call is issued in Receive
state, incoming information is purged by the system. This purged information may include
an abend deallocation notification from the remote program or system. When such a
notification is purged, CPI Communications returns CM_DEALLOCATED_NORMAL_BO
instead of one of the following return codes:

CM_DEALLOCATED_ABEND_BO
CM_DEALLOCATED_ABEND_SVC_BO
CM_DEALLOCATED_ABEND_TIMER_BO.

The conversation is now in Reset state.

The local program is in the Backout-Required condition and the program must issue a
resource recovery backout call in order to restore all protected resources to their status as of
the last synchronization point.

CM_EXP_DATA_NOT_SUPPORTED (LU 6.2 CRM only)
An expedited data call was locally rejected because the remote CRM does not support
expedited data. The state of the conversation remains unchanged.

CM_INCLUDE_PARTNER_REJECT_BO (OSI TP CRM only)
A prior Include_Partner_In_Transaction call issued by the program completed locally with
CM_OK but was rejected by the partner system. The partner system rejected the request to
join the transaction because the partner program is already a part of another transaction and
cannot be a part of two transactions at the same time. The conversation is now in Reset
state.

The local program is in the Backout-Required condition and the program must issue a
resource recovery backout call in order to restore all protected resources to their status as of
the last synchronization point.

CM_NO_SECONDARY_INFORMATION
The Extract_Secondary_Information call did not complete successfully because no
secondary information was available for the specified call on the specified conversation.
The state of the conversation remains unchanged.

CM_OK
The call issued by the local program executed successfully (that is, the function defined for
the call, up to the point at which control is returned to the program, was performed as
specified). The state of the conversation is as defined for the call.

CM_OPERATION_INCOMPLETE
A non-blocking operation has been started either on the conversation (when conversation-
level non-blocking is used) or on the queue with which the call is associated (when queue-
level non-blocking is used), but the operation has not completed. This return code is
returned when the call is suspended waiting for incoming data, buffers, or other resources.
A program must do one of the following:

Distributed Transaction Processing: CPI-C Specification, Version 2 353

Return Codes Return Codes and Secondary Information

— For conversation-level non-blocking, use the Wait_For_Conversation call to wait for the
operation to complete and to retrieve the return code for the completed operation.

— For queue-level non-blocking:

— If an OOID is associated with the outstanding operation, use the
Wait_For_Completion call to wait for the operation to complete and to obtain the
OOID and user field corresponding to the completed operation.

— If a callback function is associated with the outstanding operation, use the callback
function, callback information, and user field to properly handle the completed
operation.

The state of the conversation remains unchanged.

CM_OPERATION_NOT_ACCEPTED
A previous operation either on this conversation (when conversation-level non-blocking is
chosen) or on the same queue (when conversation-level non-blocking is not chosen) is
incomplete. This return code is returned when there is an outstanding operation on the
conversation or queue, as indicated by the CM_OPERATION_INCOMPLETE return code to
a previous call. On a system that supports multiple program threads, when one thread has
started an operation that has not completed, this return code is returned on a call made by
another thread on the same conversation or associated with the same queue. The state of
the conversation remains unchanged.

CM_PARM_VALUE_NOT_SUPPORTED
The specified value of a call parameter is not supported by the local system. This return
code is returned on a call with defined parameter values that are optional for support of the
call. It is returned when the implementation supports the call but does not support the
specified optional parameter value. The state of the conversation remains unchanged.

CM_PARAMETER_ERROR
The local program issued a call specifying a parameter containing an invalid argument.
(‘‘Parameters’’ include not only the parameters described as part of the call syntax, but also
characteristics associated with the conversation_ID.) The source of the argument is
considered to be outside the program definition, such as an LU name supplied by a system
administrator in the side information and referenced by the Initialize_Conversation call.

The CM_PARAMETER_ERROR return code is returned on the call specifying the invalid
argument. The state of the conversation remains unchanged.

Note: Contrast this definition with the definition of the
CM_PROGRAM_PARAMETER_CHECK return code.

CM_PIP_NOT_SPECIFIED_CORRECTLY (LU 6.2 CRM only)
This return code is returned only when the remote program is using an LU 6.2 application
programming interface and is not using CPI Communications.

The remote CRM rejected the conversation startup request because the remote program has
one or more program initialization parameter (PIP) variables defined and the initialization
data specified by the local program is incorrect. This return code is returned on a call issued
after the Allocate for a half-duplex conversation. For a full-duplex conversation, this return
code is returned on the Receive call. Calls associated with the Send queue that complete
before this return code is returned are notified of the error by an
CM_ALLOCATION_ERROR return code. When this return code is returned to the
program, the conversation is in Reset state.

354 X/Open CAE Specification

Return Codes and Secondary Information Return Codes

CM_PRODUCT_SPECIFIC_ERROR
A product-specific error has been detected and a description of the error has been entered
into the product’s system error log. See product documentation for an indication of
conditions and state changes caused by this return code.

CM_PROGRAM_ERROR_NO_TRUNC (LU 6.2 CRM only)
One of the following occurred:

— The remote program issued a Send_Error call on a mapped conversation and the
conversation for the remote program was in Send state (half-duplex conversations only)
or in Send-Receive or Send-Only state (full-duplex conversations only). No truncation
occurs at the mapped conversation protocol boundary. This return code is reported to
the local program on a Receive call the program issues before receiving any data records
or after receiving one or more data records.

— The remote program issued a Send_Error call on a basic conversation, the conversation
for the remote program was in Send state (half-duplex conversations only) or in Send-
Receive or Send-Only state (full-duplex conversations only), and the call did not
truncate a logical record. No truncation occurs at the basic conversation protocol
boundary when a program issues Send_Error before sending any logical records or after
sending a complete logical record. This return code is reported to the local program on a
Receive call the program issues before receiving any logical records or after receiving
one or more complete logical records.

— The remote program issued a Send_Error call on a mapped or basic half-duplex
conversation and the conversation for the remote program was in Send-Pending state.
No truncation of data has occurred. This return code indicates that the remote program
has issued Set_Error_Direction to set the error_direction characteristic to
CM_SEND_ERROR. The return code is reported to the local program on a Receive call
the program issues before receiving any data records or after receiving one or more data
records.

The conversation remains in Receive state for a half-duplex conversation or in Send-
Receive or Receive-Only state for a full-duplex conversation.

CM_PROGRAM_ERROR_PURGING
One of the following occurred:

— The remote program issued a Send_Error call on a basic or mapped half-duplex
conversation while its end of the conversation was in Receive or Confirm state. The call
may have caused information enroute to the remote program to be purged (discarded),
but not necessarily.

Purging occurs when the remote program issues Send_Error for a half-duplex
conversation in Receive state before receiving all the information being sent by the local
program. No purging occurs when the remote program issues Send_Error for a
conversation in Receive state if the remote program has already received all the
information sent by the local program. Also, no purging occurs when the remote
program issues Send_Error for a conversation in Confirm state.

When information is purged, the purging can occur at the local system, the remote
system, or both.

— The remote program issued a Send_Error call on a mapped or basic half-duplex
conversation and the conversation for the remote program was in Send-Pending state.
No purging of data has occurred. This return code indicates that the remote program
has issued a Send_Error call with error_direction set to CM_RECEIVE_ERROR.

Distributed Transaction Processing: CPI-C Specification, Version 2 355

Return Codes Return Codes and Secondary Information

— The full-duplex conversation is allocated using an OSI TP CRM and the remote program
issued a Send_Error call while its end of the conversation was in Send-Receive, Send-
Only, or Confirm-Deallocate state. Purging of data sent by the local program may have
occurred in transit, if the remote program was in Send-Receive or Send-Only state
when it issued Send_Error.

For a half-duplex conversation, this return code is normally reported to the local program
on a call the program issues after sending some information to the remote program.
However, the return code can be reported on a call the program issues before sending any
information, depending on the call and when it is issued. For a full-duplex conversation,
this return code is returned on the Receive call. The half-duplex conversation remains in
Receive state. The full-duplex conversation remains in Send-Receive or Receive-Only
state.

CM_PROGRAM_ERROR_TRUNC (LU 6.2 CRM only)
The remote program issued a Send_Error call on a basic conversation, the conversation for
the remote program was in Send state (half-duplex conversations only) or in Send-Receive
or Send-Only state (full-duplex conversations only), and the call truncated a logical record.
Truncation occurs at the basic conversation protocol boundary when a program begins
sending a logical record and then issues Send_Error before sending the complete logical
record. This return code is reported to the local program on a Receive call the program
issues after receiving the truncated logical record. The conversation remains in Receive
state for a half-duplex conversation or in Send-Receive or Receive-Only state for a full-
duplex conversation.

CM_PROGRAM_PARAMETER_CHECK
The local program issued a call in which a programming error has been found in one or
more parameters. (‘‘Parameters’’ include not only the parameters described as part of the
call syntax, but also characteristics associated with the conversation_ID, the CRM type used
by the conversation, and the transaction role (superior or subordinate) of the program.) The
source of the error is considered to be inside the program definition (under the control of the
local program). This return code may be caused by the failure of the program to pass a
valid parameter address. The program should not examine any other returned variables
associated with the call as nothing is placed in the variables. The state of the conversation
remains unchanged.

CM_PROGRAM_STATE_CHECK
This return code may be returned under one of the following conditions:

— The local program issued a call for a conversation in a state that was not valid for that
call.

— There is no incoming conversation. The Accept_Conversation call was issued but did
not complete successfully.

— No name is associated with the program. The Accept_Conversation or
Accept_Incoming call was issued but did not complete successfully.

— The program started but did not finish sending a logical record.

— There is no outstanding operation. The Wait_For_Completion or
Wait_For_Conversation call was issued but did not complete successfully.

— For a conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, the program is in the Backout-Required condition.
The program issued a call that is not allowed for this conversation while it is in this
condition.

356 X/Open CAE Specification

Return Codes and Secondary Information Return Codes

— The program has received a status_received value of CM_JOIN_TRANSACTION. The
program issued a call that is not allowed before the program joins the transaction.

— The conversation is included in a transaction. The program issued a call that is allowed
only when the conversation is not currently included in a transaction.

— The conversation is not currently included in a transaction. The program issued a call
that is allowed only when the conversation is included in a transaction.

— A prior Deferred_Deallocate call is still in effect for the conversation. The
Prepare_To_Receive call was issued but is not allowed.

— The program has not received a take-commit notification from its superior. The Prepare
call was issued but is not allowed.

The program should not examine any other returned variables associated with the call as
nothing is placed in the variables. The state of the conversation remains unchanged.

CM_RESOURCE_FAILURE_NO_RETRY
This return code may be returned under one of the following conditions:

— A failure occurred that caused the conversation to be prematurely terminated. For
example, the logical connection being used for the conversation was deactivated because
of a logical-connection protocol error, or the conversation was deallocated because of a
protocol error between the mapped conversation components of the systems. The
condition is not temporary, and the program should not retry the transaction until the
condition is corrected.

— The remote program terminated normally but did not deallocate the conversation before
terminating. Node services at the remote system deallocated the conversation on behalf
of the remote program.

This return code can be reported to the local program on a call it issues for a conversation in
any state other than Reset or Initialize state for a half-duplex or full-duplex conversation,
or Sync-Point, Sync-Point-Deallocate, or Defer-Deallocate state for a full-duplex
conversation.

For a full-duplex conversation, this return code is returned on the Receive call, at which
time the conversation goes to Reset state. Calls associated with the Send queue (except the
Deallocate call with deallocate_type set to CM_DEALLOCATE_ABEND) that complete before
this return code is returned on the Receive call also get this return code, and the
conversation is in Receive-Only or Reset state, depending on whether the call was issued in
Send-Receive or Send-Only state. The conversation is in Reset state if this a half-duplex
conversation.

CM_RESOURCE_FAIL_NO_RETRY_BO
This return code is returned only for conversations with sync_level set to CM_SYNC_POINT
or CM_SYNC_POINT_NO_CONFIRM, and with the conversation included in a transaction.

A failure occurred that caused the conversation to be prematurely terminated. For example,
the logical connection being used for the conversation was deactivated because of a logical-
connection protocol error, or the conversation was deallocated because of a protocol error
between the mapped conversation components of the systems. The condition is not
temporary, and the program should not retry the transaction until the condition is
corrected. This return code can be reported to the local program on a call issued in any state
other than Reset or Initialize state. For a full-duplex conversation, incoming information
may not be received if this return code is returned on a call associated with the Send queue.
The conversation is in Reset state.

Distributed Transaction Processing: CPI-C Specification, Version 2 357

Return Codes Return Codes and Secondary Information

The local program is in the Backout-Required condition and the program must issue a
resource recovery backout call in order to restore all protected resources to their status as of
the last synchronization point.

CM_RESOURCE_FAILURE_RETRY
A failure occurred that caused the conversation to be prematurely terminated. For example,
the logical connection being used for the conversation was deactivated because of a logical-
connection outage such as a line failure, a modem failure, or a crypto engine failure. The
condition may be temporary, and the program can retry the transaction.

This return code can be reported to the local program on a call it issues for a conversation in
any state other than Reset or Initialize state for a half-duplex or full-duplex conversation,
or Sync-Point, Sync-Point-Deallocate, or Defer-Deallocate state for a full-duplex
conversation. For a full-duplex conversation, this return code is returned on the Receive
call, at which time the conversation goes to Reset state. Calls associated with the Send
queue (except the Deallocate call with deallocate_type set to CM_DEALLOCATE_ABEND)
that complete before this return code is returned on the Receive call also get this return
code, and the conversation is in Receive-Only or Reset state, depending on whether the call
was issued in Send-Receive or Send-Only state. The conversation is in Reset state if this is
a half-duplex conversation.

CM_RESOURCE_FAILURE_RETRY_BO
This return code is returned only for conversations with sync_level set to CM_SYNC_POINT
or CM_SYNC_POINT_NO_CONFIRM, and with the conversation included in a transaction.

A failure occurred that caused the conversation to be prematurely terminated. For example,
the logical connection being used for the conversation was deactivated because of a logical-
connection outage such as a line failure, a modem failure, or a crypto engine failure. The
condition may be temporary, and the program can retry the transaction. This return code
can be reported to the local program on a call it issues for a conversation in any state other
than Reset or Initialize. For a full-duplex conversation, incoming information may not be
received if this return code is returned on a call associated with the Send queue. The
conversation is in Reset state.

The local program is in the Backout-Required condition and the program must issue a
resource recovery backout call in order to restore all protected resources to their status as of
the last synchronization point.

CM_RETRY_LIMIT_EXCEEDED
The conversation cannot be allocated on a logical connection because CPI Communications
has exceeded the local system’s retry limit. When this return_code value is returned to the
program, the conversation is in Reset state.

CM_SECURITY_NOT_SUPPORTED
The local system rejected the allocate request because the local program specified a required
user name type and conversation security type combination that is not supported between
the local and remote systems. When this return_code value is returned to the program, the
conversation is in Reset state.

358 X/Open CAE Specification

Return Codes and Secondary Information Return Codes

CM_SECURITY_NOT_VALID
The remote system rejected the conversation startup request because the access security
information (provided by the local system) is invalid. This return code is returned on a call
issued after the Allocate for a half-duplex conversation. For a full-duplex conversation, this
return code is returned on the Receive call. Calls associated with the Send queue that
complete before this return code is returned on the Receive call are notified of the error by a
CM_ALLOCATION_ERROR return code. When this return_code value is returned to the
program, the conversation is in Reset state.

CM_SEND_RCV_MODE_NOT_SUPPORTED
This return code indicates that the conversation startup request was rejected because of one
of the following:

— The send_receive_mode characteristic is set to CM_HALF_DUPLEX but the remote system
does not support half-duplex conversations.

— The send_receive_mode characteristic is set to CM_FULL_DUPLEX but the remote system
does not support full-duplex conversations.

The state of the conversation remains unchanged.

CM_SVC_ERROR_NO_TRUNC (LU 6.2 CRM only)
This return code is returned only for basic conversations. In addition, it is returned only
when the remote program is using an LU 6.2 application programming interface and is not
using CPI Communications.

The remote LU 6.2 transaction program issued a Send_Error verb specifying a TYPE
parameter of SVC, the conversation for the remote program was in Send state for a half-
duplex conversation or in Send-Receive or Send-Only state for a full-duplex conversation,
and the verb did not truncate a logical record. This return code is returned on a Receive call.
When this return code is returned to the local program on a half-duplex conversation, the
conversation is in Receive state. There is no state change for a full-duplex conversation.

CM_SVC_ERROR_PURGING (LU 6.2 CRM only)
This return code is returned only for basic half-duplex conversations. In addition, it is
returned only when the remote program is using an LU 6.2 application programming
interface and is not using CPI Communications.

The remote LU 6.2 transaction program issued a Send_Error verb specifying a TYPE
parameter of SVC; the conversation for the remote program was in Receive, Confirm, or
Sync-Point state; and the verb may have caused information to be purged. This return code
is normally reported to the local program on a call the local program issues after sending
some information to the remote program. However, the return code can be reported on a
call the local program issues before sending any information, depending on the call and
when it is issued. When this return code is returned to the local program, the conversation
is in Receive state.

CM_SVC_ERROR_TRUNC (LU 6.2 CRM only)
This return code is returned only when the remote program is using an LU 6.2 application
programming interface and is not using CPI Communications.

The remote LU 6.2 transaction program issued a Send_Error verb specifying a TYPE
parameter of SVC, the conversation for the remote program was in Send state for a half-
duplex conversation or in Send-Receive or Send-Only state for a full-duplex conversation,
and the verb truncated a logical record. Truncation occurs at the basic conversation
protocol boundary when a program begins sending a logical record and then issues
Send_Error before sending the complete logical record. This return code is reported to the

Distributed Transaction Processing: CPI-C Specification, Version 2 359

Return Codes Return Codes and Secondary Information

local program on a Receive call the local program issues after receiving the truncated logical
record. The state of the conversation remains unchanged.

CM_SYNC_LVL_NOT_SUPPORTED_SYS
This return code is returned only for conversations with sync_level set to CM_SYNC_POINT
or CM_SYNC_POINT_NO_CONFIRM.

The local program specified a sync_level of CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, which the remote system does not support. This
return code is returned on the Allocate call.

For a full-duplex conversation, this return code is returned on the Receive call if an attempt
to allocate the conversation was made by the local program running on an OSI TP CRM and
the remote system does not support the sync_level of CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM specified in the conversation startup request. The
remote system has rejected the allocation attempt. Calls associated with the local Send
queue that complete before this return code is returned on the Receive call are notified of
the error by a CM_ALLOCATION_ERROR return code.

When this return_code value is returned to the program, the conversation is in Reset state.

CM_SYNC_LVL_NOT_SUPPORTED_PGM
The remote system rejected the conversation startup request because the local program
specified a synchronization level (with the sync_level parameter) that the remote program
does not support. For a half-duplex conversation, this return code is returned on a call
issued after the Allocate. For a full-duplex conversation, this return code is returned on the
Receive call. Calls associated with the Send queue that complete before this return code is
returned on the Receive call are notified of the error by a CM_ALLOCATION_ERROR
return code.

When this return_code value is returned to the program, the conversation is in Reset state.

CM_SYSTEM_EVENT
The Wait_For_Conversation call was being executed when an event (such as a signal)
handled by the program occurred. Wait_For_Conversation returns this return code to allow
the program to reissue the Wait_For_Conversation call or to perform other processing. It is
the responsibility of the event-handling portion of the program to record sufficient
information for the program to decide how to proceed upon receipt of this return code. The
state of the conversation remains unchanged.

CM_TAKE_BACKOUT
This return code is returned only for conversations with sync_level set to CM_SYNC_POINT
or CM_SYNC_POINT_NO_CONFIRM, and with the conversation included in a transaction.

The remote program, the local system, or the remote system issued a resource recovery
backout call, and the local application must issue a backout call in order to restore all
protected resources to their status as of the last synchronization point. The program is in
the Backout-Required condition upon receipt of this return code. Once the local program
issues a backout call, the conversation is placed in the state it was in at the time of the last
sync point operation.

CM_TPN_NOT_RECOGNIZED
The remote system rejected the conversation startup request because the local program
specified a remote program name that the remote system does not recognize. For a half-
duplex conversation, this return code is returned on a call issued after the Allocate. For a
full-duplex conversation, this return code is returned on the Receive call. Calls associated
with the Send queue that complete before this return code is returned on the Receive call are

360 X/Open CAE Specification

Return Codes and Secondary Information Return Codes

notified of the error by a CM_ALLOCATION_ERROR return code. When this return_code
value is returned to the program, the conversation is in Reset state.

CM_TP_NOT_AVAILABLE_NO_RETRY
The remote system rejected the conversation startup request because the local program
specified a remote program that the remote system recognizes but cannot start. The
condition is not temporary, and the program should not retry the allocation request. For a
half-duplex conversation, this return code is returned on a call issued after the Allocate. For
a full-duplex conversation, this return code is returned on the Receive call. Calls associated
with the Send queue that complete before this return code is returned on the Receive call are
notified of the error by a CM_ALLOCATION_ERROR return code. When this return_code
value is returned to the program, the conversation is in Reset state.

CM_TP_NOT_AVAILABLE_RETRY
The remote system rejected the conversation startup request because the local program
specified a remote program that the remote system recognizes but currently cannot start.
The condition may be temporary, and the program can retry the allocation request. For a
half-duplex conversation, this return code is returned on a call issued after the Allocate. For
a full-duplex conversation, this return code is returned on the Receive call. Calls associated
with the Send queue that complete before this return code is returned on the Receive call are
notified of the error by a CM_ALLOCATION_ERROR return code. When this return_code
value is returned to the program, the conversation is in Reset state.

CM_UNSUCCESSFUL
The call issued by the local program did not execute successfully. This return code is
returned on the unsuccessful call. The state of the conversation remains unchanged.

Distributed Transaction Processing: CPI-C Specification, Version 2 361

Secondary Information Return Codes and Secondary Information

B.2 Secondary Information
Associated with the return code, there may be secondary information available for the program
to extract using the Extract_Secondary_Information call. The secondary information can be used
to determine the cause of the return code and to aid problem determination. Based on its origin,
the secondary information and associated return code can belong to one of the four types, as
shown in Table B-1.

Table B-1 Secondary Information Types and Associated Return Codes

Secondary Information Type Associated Return Codes
Application-oriented CM_DEALLOCATED_ABEND

CM_DEALLOCATED_ABEND_BO
CM_DEALLOCATED_ABEND_SVC
CM_DEALLOCATED_ABEND_SVC_BO
CM_DEALLOCATED_ABEND_TIMER
CM_DEALLOCATED_ABEND_TIMER_BO
CM_PROGRAM_ERROR_NO_TRUNC
CM_PROGRAM_ERROR_PURGING
CM_PROGRAM_ERROR_TRUNC
CM_SVC_ERROR_NO_TRUNC
CM_SVC_ERROR_PURGING
CM_SVC_ERROR_TRUNC

CPI Communications-defined CM_DEALLOCATED_ABEND
CM_DEALLOCATED_ABEND_BO
CM_PARAMETER_ERROR
CM_PROGRAM_PARAMETER_CHECK
CM_PROGRAM_STATE_CHECK
CM_SECURITY_NOT_SUPPORTED

CRM-specific CM_ALLOCATE_FAILURE_NO_RETRY
CM_ALLOCATE_FAILURE_RETRY
CM_CONVERSATION_TYPE_MISMATCH
CM_PIP_NOT_SPECIFIED_CORRECTL Y
CM_RESOURCE_FAIL_NO_RETRY_BO
CM_RESOURCE_FAILURE_NO_RETRY
CM_RESOURCE_FAILURE_RETRY
CM_RESOURCE_FAILURE_RETRY_BO
CM_RETRY_LIMIT_EXCEEDED
CM_SECURITY_NOT_SUPPORTED
CM_SECURITY_NOT_VALID
CM_SEND_RCV_MODE_NOT_SUPPORTED
CM_SYNC_LVL_NOT_SUPPORTED_PGM
CM_SYNC_LVL_NOT_SUPPORTED_SYS
CM_TP_NOT_AVAILABLE_NO_RETRY
CM_TP_NOT_AVAILABLE_RETRY
CM_TPN_NOT_RECOGNIZED

Implementation-related CM_PRODUCT_SPECIFIC_ERROR

362 X/Open CAE Specification

Return Codes and Secondary Information Secondary Information

The following return codes, upon being returned to the program, are not associated with any
secondary information:

CM_ALLOCATION_ERROR
CM_BUFFER_TOO_SMALL
CM_CALL_NOT_SUPPORTED
CM_CONV_DEALLOC_AFTER_SYNCPT
CM_CONVERSATION_ENDING
CM_DEALLOC_CONFIRM_REJECT
CM_DEALLOCATED_NORMAL
CM_DEALLOCATED_NORMAL_BO
CM_EXP_DATA_NOT_SUPPORTED
CM_INCLUDE_PARTNER_REJECT_BO
CM_NO_SECONDARY_INFORMATION
CM_OK
CM_OPERATION_INCOMPLETE
CM_OPERATION_NOT_ACCEPTED
CM_PARM_VALUE_NOT_SUPPORTED
CM_SYSTEM_EVENT
CM_TAKE_BACKOUT
CM_UNSUCCESSFUL.

Except for application-oriented information, which is defined entirely by the application,
secondary information is a string of printable characters and, in general, consists of the following
information in the order listed:

1. Condition code

2. Description of the condition

3. Cause of the condition

4. Suggested actions

5. Additional information from the implementation.

For different secondary information types, the condition codes are in the range specified in Table
B-2. In some cases, secondary information may not have all these fields. Fields present in
secondary information are separated by two consecutive semicolons. The following sections
provide examples of secondary information in different types.

Table B-2 Range of Condition Codes for Different Secondary Information Types

Secondary Information Type Condition Codes
CPI Communications-defined 1 - 4000
CRM-specific 4001 (for an LU 6.2 CRM)

4002 (for an OSI TP CRM)
Implementation-related 4003

Distributed Transaction Processing: CPI-C Specification, Version 2 363

Secondary Information Return Codes and Secondary Information

B.2.1 Application-oriented Information

When a program discovers an abnormal condition during its processing, the program may use
log data to convey the condition to its partner program. The partner program receives the log
data when it issues the Extract_Secondary_Information call. Since log data is application data, it
is up to the application designer to define and interpret its content.

B.2.2 CPI Communications-defined Information

Table B-3 lists all CPI Communications-defined secondary information.

Table B-3 CPI Communications-defined Secondary Information

Condition
Code Description

Associated with CM_PROGRAM_PARAMETER_CHECK:
0 < n < 101 The nth parameter specifies an invalid address.

101 The conversation_ID specifies an unassigned conversation identifier.

102 The sync_level is set to CM_NONE.

103 The sync_level is set to CM_SYNC_POINT_NO_CONFIRM.

104 The send_receive_mode is set to CM_FULL_DUPLEX.

The send_receive_mode is set to CM_FULL_DUPLEX, and conversation is using an
LU 6.2 CRM.

105

The buffer_length specifies a value that is invalid for the range permitted by the
implementation.

106

The conversation is using an OSI TP CRM, and the program is not the superior
for the conversation.

107

108 The conversation is using an LU 6.2 CRM.

109 The requested_length specifies a value less than 0.

110 The transaction_control is set to CM_CHAINED_TRANSACTIONS.

111 The sym_dest_name specifies an unrecognized value.

112 The sync_level is set to CM_CONFIRM.

The requested_length specifies a value that exceeds the range permitted by the
implementation.

113

114 The requested_length specifies a value less than 0 or greater than 86.

115 The expedited_receive_type specifies an undefined value.

364 X/Open CAE Specification

Return Codes and Secondary Information Secondary Information

Condition
Code Description

116 The conversation is using an OSI TP CRM.

117 The TP_name specifies a name that is not associated with this program.

118 The TP_name_length specifies a value less than 1 or greater than 64.

The send_length specifies a value that exceeds the range permitted by the
implementation.

119

The conversation_type is set to CM_BASIC_CONVERSATION and buffer contains
an invalid logical record length (LL) value of X’0000’, X’0001’, X’8000’, X’8001’.

120

The send_type is set to CM_SEND_AND_PREP_TO_RECEIVE,
prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL,
sync_level is set to CM_SYNC_POINT, the conversation using an OSI TP CRM is
included in a transaction, and the program is not the superior for the
conversation.

121

The send_type is set to CM_SEND_AND_PREP_TO_RECEIVE,
prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL,
sync_level is set to CM_SYNC_POINT_NO_CONFIRM, the conversation using
an OSI TP CRM is included in a transaction, and the program is not the superior
for the conversation.

122

The send_type is set to CM_SEND_AND_DEALLOCATE, deallocate_type is set to
CM_DEALLOCATE_SYNC_LEVEL, sync_level is set to CM_SYNC_POINT, the
conversation using an OSI TP CRM is included in a transaction, and the program
is not the superior for the conversation.

123

The send_type is set to CM_SEND_AND_DEALLOCATE, deallocate_type is set to
CM_DEALLOCATE_SYNC_LEVEL, sync_level is set to
CM_SYNC_POINT_NO_CONFIRM, the conversation using an OSI TP CRM is
included in a transaction, and the program is not the superior for the
conversation.

124

125 The send_length specifies a value less than 1 or greater than 86.

The AE_qualifier_length specifies a value less than 1 or greater than 1024.126

127 The AE_qualifier_format specifies an undefined value.

128 Reserved, in use by the CPI-C Implementers’ Workshop (CIW).

129 The allocate_confirm specifies an undefined value.

The allocate_confirm specifies CM_ALLOCATE_CONFIRM, and the conversation
is using an LU 6.2 CRM.

130

131 The AP_title_length specifies a value less than 1 or greater than 1024.

132 The AP_title_format specifies an undefined value.

Distributed Transaction Processing: CPI-C Specification, Version 2 365

Secondary Information Return Codes and Secondary Information

Condition
Code Description

The application_context_name_length specifies a value less than 1 or greater than
256.

133

134 The begin_transaction specifies an undefined value.

135 The confirmation_urgency specifies an undefined value.

The security_password_length specifies a value less than 0 or greater than 10.136

The conversation_security_type specifies an undefined value.137

The security_user_ID_length specifies a value less than 0 or greater than 10.138

139 The conversation_type specifies an undefined value.

The conversation_type specifies CM_MAPPED_CONVERSATION, and fill is set to
CM_FILL_BUFFER.

140

The conversation_type specifies CM_MAPPED_CONVERSATION, and a prior call
to Set_Log_Data is still in effect.

141

The deallocate_type specifies CM_DEALLOCATE_FLUSH, sync_level is set to
CM_SYNC_POINT, and transaction_control is set to
CM_CHAINED_TRANSACTIONS.

142

The deallocate_type specifies CM_DEALLOCATE_FLUSH, sync_level is set to
CM_SYNC_POINT_NO_CONFIRM, and transaction_control is set to
CM_CHAINED_TRANSACTIONS.

143

The deallocate_type specifies CM_DEALLOCATE_CONFIRM, sync_level is set to
CM_NONE, and the conversation is using an LU 6.2 CRM.

144

The deallocate_type specifies CM_DEALLOCATE_CONFIRM, sync_level is set to
CM_SYNC_POINT, and the conversation is using an LU 6.2 CRM.

145

The deallocate_type specifies CM_DEALLOCATE_CONFIRM, sync_level is set to
CM_SYNC_POINT_NO_CONFIRM, and the conversation is using an LU 6.2
CRM.

146

The deallocate_type specifies CM_DEALLOCATE_CONFIRM, sync_level is set to
CM_SYNC_POINT, transaction_control is set to
CM_CHAINED_TRANSACTIONS, and the conversation is using an OSI TP
CRM.

147

The deallocate_type specifies CM_DEALLOCATE_CONFIRM, sync_level is set to
CM_SYNC_POINT_NO_CONFIRM, transaction_control is set to
CM_CHAINED_TRANSACTIONS, and the conversation is using an OSI TP
CRM.

148

149 The deallocate_type specifies an undefined value.

366 X/Open CAE Specification

Return Codes and Secondary Information Secondary Information

Condition
Code Description

The error_direction specifies CM_SEND_ERROR, and the conversation is using an
OSI TP CRM.

150

151 The error_direction specifies an undefined value.

152 The conversation_type is set to CM_MAPPED_CONVERSATION.

153 The fill specifies an undefined value.

The initialization_data_length specifies a value less than 0 or greater than 10000.154

The conversation_type is set to CM_MAPPED_CONVERSATION, and the
conversation is using an LU 6.2 CRM.

155

156 The log_data_length specifies a value less than 0 or greater than 512.

157 Reserved for future use by the CPI-C Implementers’ Workshop (CIW).

158 Reserved for future use by the CPI-C Implementers’ Workshop (CIW).

159 Reserved for future use by the CPI-C Implementers’ Workshop (CIW).

160 Reserved for future use by the CPI-C Implementers’ Workshop (CIW).

161 Reserved for future use by the CPI-C Implementers’ Workshop (CIW).

162 Reserved for future use by the CPI-C Implementers’ Workshop (CIW).

163 Reserved for future use by the CPI-C Implementers’ Workshop (CIW).

The partner_LU_name_length specifies a value less than 1 or greater than 17.164

The prepare_data_permitted specifies CM_PREPARE_DATA_PERMITTED, and the
conversation is using an LU 6.2 CRM.

165

166 The prepare_data_permitted specifies an undefined value.

The prepare_to_receive_type specifies CM_PREP_TO_RECEIVE_CONFIRM, and
sync_level set to CM_NONE.

167

The prepare_to_receive_type specifies CM_PREP_TO_RECEIVE_CONFIRM, and
sync_level set to CM_SYNC_POINT_NO_CONFIRM.

168

169 The prepare_to_receive_type specifies an undefined value.

170 The processing_mode specifies an undefined value.

171 The program has chosen queue-level non-blocking for the conversation.

The conversation_queue specifies a value that is not defined for the
send_receive_mode conversation characteristic.

172

Distributed Transaction Processing: CPI-C Specification, Version 2 367

Secondary Information Return Codes and Secondary Information

Condition
Code Description

The program has chosen conversation-level non-blocking for the conversation.173

174 The queue_processing_mode specifies an undefined value.

175 The receive_type specifies an undefined value.

176 The return_control specifies an undefined value.

The send_receive_mode specifies CM_FULL_DUPLEX, and sync_level is set to
CM_CONFIRM.

177

The send_receive_mode specifies CM_FULL_DUPLEX, and sync_level is set to
CM_SYNC_POINT.

178

The send_receive_mode specifies CM_FULL_DUPLEX, and send_type is set to
CM_SEND_AND_PREP_TO_RECEIVE.

179

The send_receive_mode specifies CM_FULL_DUPLEX, and the program has
chosen conversation-level non-blocking for the conversation.

180

181 The send_receive_mode specifies an undefined value.

The send_type specifies CM_SEND_AND_CONFIRM, and sync_level is set to
CM_NONE.

182

The send_type specifies CM_SEND_AND_CONFIRM, and sync_level is set to
CM_SYNC_POINT_NO_CONFIRM.

183

The send_type specifies CM_SEND_AND_CONFIRM, and send_receive_mode is set
to CM_FULL_DUPLEX.

184

The send_type specifies CM_SEND_AND_PREP_TO_RECEIVE, and
send_receive_mode is set to CM_FULL_DUPLEX.

185

186 The send_type specifies an undefined value.

The sync_level specifies CM_NONE, deallocate_type is set to
CM_DEALLOCATE_CONFIRM, and the conversation is using an LU 6.2 CRM.

187

The sync_level specifies CM_NONE, send_receive_mode is set to
CM_HALF_DUPLEX, and prepare_to_receive_type is set to
CM_PREP_TO_RECEIVE_CONFIRM.

188

The sync_level specifies CM_NONE, send_receive_mode is set to
CM_HALF_DUPLEX, and send_type is set to CM_SEND_AND_CONFIRM.

189

The sync_level specifies CM_SYNC_POINT_NO_CONFIRM, send_receive_mode is
set to CM_HALF_DUPLEX, and send_type is set to CM_SEND_AND_CONFIRM.

190

368 X/Open CAE Specification

Return Codes and Secondary Information Secondary Information

Condition
Code Description

The sync_level specifies CM_CONFIRM, and send_receive_mode is set to
CM_FULL_DUPLEX.

191

The sync_level specifies CM_SYNC_POINT, and send_receive_mode is set to
CM_FULL_DUPLEX.

192

The sync_level specifies CM_SYNC_POINT, deallocate_type is set to
CM_DEALLOCATE_FLUSH, and the conversation is using an LU 6.2 CRM.

193

The sync_level specifies CM_SYNC_POINT, deallocate_type is set to
CM_DEALLOCATE_CONFIRM, and the conversation is using an LU 6.2 CRM.

194

The sync_level specifies CM_SYNC_POINT_NO_CONFIRM, deallocate_type is set
to CM_DEALLOCATE_FLUSH, and the conversation is using an LU 6.2 CRM.

195

The sync_level specifies CM_SYNC_POINT_NO_CONFIRM, deallocate_type is set
to CM_DEALLOCATE_CONFIRM, and the conversation is using an LU 6.2
CRM.

196

The sync_level specifies CM_SYNC_POINT_NO_CONFIRM, send_receive_mode is
set to CM_HALF_DUPLEX, and the conversation is using an LU 6.2 CRM.

197

198 The sync_level specifies an undefined value.

The transaction_control specifies CM_UNCHAINED_TRANSACTIONS, and the
conversation is using an LU 6.2 CRM.

199

200 The transaction_control specifies an undefined value.

201 The TP_name_length specifies a value less than 1 or greater than 64.

The TP_name specifies a name that is restricted in some way by node services.202

The TP_name has incorrect internal syntax as defined by node services.203

204 The TP_name_length specifies a value less than 1 or greater than 64.

205 The OOID_list_count specifies a value less than 1.

The number of OOIDs in OOID_list is less than the value specified in
OOID_list_count.

206

207 The OOID_list contains an unassigned OOID.

208 The timeout specifies a value less than 0.

209 The join_transaction specifies an undefined value.

210 The program is not the subordinate for the conversation.

Distributed Transaction Processing: CPI-C Specification, Version 2 369

Secondary Information Return Codes and Secondary Information

Condition
Code Description

211 The transaction_control is set to CM_CHAINED_TRANSACTIONS.

Reserved for future conditions to be associated with
CM_PROGRAM_PARAMETER_CHECK.

212-1000

370 X/Open CAE Specification

Return Codes and Secondary Information Secondary Information

Condition
Code Description

Associated with CM_PROGRAM_STATE_CHECK:
1001 No incoming conversation exists.

No name is associated with the program. A program associates a name with
itself by issuing the Specify_Local_TP_Name call.

1002

1003 The conversation is not in Initialize-Incoming state.

1004 The conversation is not in Initialize state.

1005 The program is in the Backout-Required condition.

The conversation is not in Send, Send-Pending, or Defer-Receive state.1006

The conversation is basic, and the program started but did not finish sending a
logical record.

1007

The conversation is not in Confirm, Confirm-Send, or Confirm-Deallocate state.1008

1009 The conversation is not in Confirm-Deallocate state.

1010 The conversation is not in Send or Send-Pending state.

The deallocate_type is set to CM_DEALLOCATE_FLUSH, and the conversation is
currently included in a transaction.

1011

The deallocate_type is set to CM_DEALLOCATE_CONFIRM, and the
conversation is currently included in a transaction.

1012

The program has received a status_received value of CM_JOIN_TRANSACTION
and must issue a tx_begin () call to the TX (Transaction Demarcation) interface to
join the transaction.

1013

1014 The conversation is not in Send-Receive or Send-Only state.

1015 The conversation is not in Send-Receive state.

1016 The conversation is not currently included in a transaction.

1017 The conversation is in Initialize-Incoming state.

1018 The conversation is in Initialize state.

The conversation is not included in a transaction. The program must issue a
tx_begin () call to the TX (Transaction Demarcation) interface to start a
transaction.

1019

1020 The conversation is already included in the current transaction.

Distributed Transaction Processing: CPI-C Specification, Version 2 371

Secondary Information Return Codes and Secondary Information

Condition
Code Description

The conversation is using an OSI TP CRM, begin_transaction is set to
CM_BEGIN_EXPLICIT, and the conversation is not currently included in a
transaction.

1021

The conversation is using an OSI TP CRM, and the program is not the root of the
transaction and has not received a take-commit notification from its superior.

1022

1023 A prior call to Deferred_Deallocate is still in effect for the conversation.

The receive_type is set to CM_RECEIVE_AND_WAIT, and the conversation is not
in Send, Receive, Send-Pending, or Prepared state.

1024

The receive_type is set to CM_RECEIVE_IMMEDIATE, and the conversation is
not in Receive or Prepared state.

1025

The conversation is not in Send-Receive, Receive-Only, or Prepared state.1026

The conversation is not in Send, Receive, Send-Pending, Confirm, Confirm-
Send, Confirm-Deallocate, Sync-Point, Sync-Point-Send, Sync-Point-
Deallocate, or Prepared state.

1027

For a conversation using an OSI TP CRM, the Request_To_Send call is not
allowed from Send state.

1028

The conversation is not in Send, Send-Pending, Sync-Point, Sync-Point-Send,
or Sync-Point-Deallocate state.

1029

The program received a take-commit notification not ending in *_DATA_OK,
and the conversation is in Sync-Point, Sync-Point-Send, or Sync-Point-
Deallocate state.

1030

The send_type is set to CM_SEND_AND_CONFIRM or
CM_SEND_AND_PREP_TO_RECEIVE, and the conversation is in Sync-Point,
Sync-Point-Send, or Sync-Point-Deallocate state.

1031

The send_type is set to CM_SEND_AND_DEALLOCATE, deallocate_type is not set
to CM_DEALLOCATE_ABEND, and the conversation is in Sync-Point, Sync-
Point-Send, or Sync-Point-Deallocate state.

1032

The send_type is set to CM_SEND_AND_DEALLOCATE, deallocate_type is set to
CM_DEALLOCATE_FLUSH, sync_level is set to CM_SYNC_POINT, and the
conversation is included in a transaction.

1033

The send_type is set to CM_SEND_AND_DEALLOCATE, deallocate_type is set to
CM_DEALLOCATE_FLUSH, sync_level is set to
CM_SYNC_POINT_NO_CONFIRM, and the conversation is included in a
transaction.

1034

The send_type is set to CM_SEND_AND_DEALLOCATE, deallocate_type is set to
CM_DEALLOCATE_CONFIRM, sync_level is set to CM_SYNC_POINT, and the
conversation is included in a transaction.

1035

372 X/Open CAE Specification

Return Codes and Secondary Information Secondary Information

Condition
Code Description

The send_type is set to CM_SEND_AND_DEALLOCATE, deallocate_type is set to
CM_DEALLOCATE_CONFIRM, sync_level is set to
CM_SYNC_POINT_NO_CONFIRM, and the conversation is included in a
transaction.

1036

The conversation is not in Send-Receive, Send-Only, Sync-Point, or Sync-
Point-Deallocate state.

1037

The program receives a take-commit notification not ending in *_DATA_OK, and
the conversation is in Sync-Point or Sync-Point-Deallocate state.

1038

The send_type is set to CM_SEND_AND_DEALLOCATE, deallocate_type is not set
to CM_DEALLOCATE_ABEND, and the conversation is in Sync-Point or Sync-
Point-Deallocate state.

1039

The conversation is not in Send-Receive, Send-Only, or Confirm-Deallocate
state.

1040

The conversation_security_type is not set to CM_SECURITY_PROGRAM or
CM_SECURITY_PROGRAM_STRONG.

1041

1042 The conversation is not in Initialize or Initialize-Incoming state.

1043 The conversation is not in Initialize or Receive state.

1044 The conversation is not in Initialize or Send-Receive state.

The conversation_queue specifies CM_INITIALIZATION_QUEUE, and the
conversation is not in Initialize or Initialize-Incoming state.

1045

The conversation_queue specifies a value other than
CM_INITIALIZATION_QUEUE, and the conversation is in Initialize-Incoming
state.

1046

The conversation is not in Send, Receive, Send-Pending, Defer-Receive, or
Defer-Deallocate state.

1047

There is no outstanding operation associated with any of the OOIDs specified in
OOID_list or by use of a defined value of OOID_list_count has completed.

1048

There were no conversation-level outstanding operations for the program.1049

The sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, transaction_control is set to
CM_CHAINED_TRANSACTIONS, and the program is not in transaction mode.

1050

The program has issued a successful Accept_Conversation (CMACCP) or
Accept_Incoming (CMACCI) call on a conversation with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and using an OSI TP
CRM, and the program has not issued a Receive (CMRCV) call on this
conversation.

1051

Distributed Transaction Processing: CPI-C Specification, Version 2 373

Secondary Information Return Codes and Secondary Information

Condition
Code Description

The deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL,
CM_DEALLOCATE_FLUSH or CM_DEALLOCATE_CONFIRM, the local
program is the superior to the conversation, it has issued the Allocate
(CMALLC) call with the allocate_confirm characteristic set to
CM_ALLOCATE_CONFIRM, and it did not yet receive a
control_information_received value of CM_ALLOCATE_CONFIRMED or
CM_ALLOCATE_CONFIRMED_WITH_DATA.

1052

The Receive (CMRCV) call is the first activity on the conversation following
Accept_Conversation (CMACCP) or Accept_Incoming (CMACCI),
join_transaction is set to CM_JOIN_EXPLICIT, transaction_control is
CM_CHAINED_TRANSACTION and the program has not issued a tx_begin ()
call to the TX (Transaction Demarcation) interface to join the transaction.

1053

The Send_Error (CMSERR) call is the first activity on the conversation following
Accept_Conversation (CMACCP) or Accept_Incoming (CMACCI),
join_transaction is set to CM_JOIN_EXPLICIT, transaction_control is
CM_CHAINED_TRANSACTION and the program has not issued a tx_begin ()
call to the TX (Transaction Demarcation) interface to join the transaction.

1054

Reserved for future conditions to be associated with
CM_PROGRAM_STATE_CHECK.

1055-2000

374 X/Open CAE Specification

Return Codes and Secondary Information Secondary Information

Condition
Code Description

Associated with CM_PARAMETER_ERROR:
The mode_name characteristic (set from side information or by Set_Mode_Name)
specifies a mode name that is not recognized by the LU as being valid.

2001

The mode_name characteristic (set from side information or by Set_Mode_Name)
specifies a mode name that the local program does not have the authority to
specify. For example, SNASVCMG requires special authority with LU 6.2.

2002

The TP_name characteristic (set from side information or by Set_TP_Name)
specifies a transaction program name that the local program does not have the
appropriate authority to allocate a conversation to. For example, SNA service
programs require special authority with LU 6.2.

2003

The TP_name characteristic (set from side information or by Set_TP_Name)
specifies an SNA service transaction program and conversation_type is set to
CM_MAPPED_CONVERSATION.

2004

The partner_LU_name characteristic (set from side information or by
Set_Partner_LU_Name) specifies a partner LU name that is not recognized as
being valid.

2005

The AP_title characteristic (set from side information or using Set_AP_Title call
or the AE_qualifier characteristic (set from side information or using
Set_AE_Qualifier call) or the application_context_name characteristic (set from
side information or using the Set_Application_Context_Name call) specifies an
AP title or an AE qualifier or an application context name that is not recognized
as being valid.

2006

The conversation_security_type characteristic is set to CM_SECURITY_PROGRAM
or CM_SECURITY_PROGRAM_STRONG, and the security_password
characteristic or the security_user_ID characteristic (set from side information or
by Set calls) or both, are null.

2007

Reserved for future conditions to be associated with CM_PARAMETER_ERROR.2008-2500

Condition
Code Description

Associated with CM_SECURITY_NOT_SUPPORTED:
2501 Reserved for future use by the CPI-C Implementers’ Workshop (CIW).

Reserved for future conditions to be associated with
CM_SECURITY_NOT_SUPPORTED.

2502-3000

Distributed Transaction Processing: CPI-C Specification, Version 2 375

Secondary Information Return Codes and Secondary Information

Condition
Code Description

Associated with CM_DEALLOCATED_ABEND
(full-duplex conversations using an OSI TP CRM only):

There was a collision between a Deallocate call with deallocate_type set to
CM_DEALLOCATE_CONFIRM issued by the local program and an
Include_Partner_In_Transaction call issued by the partner program. No log data
is available.

3001

There was a collision between a Deallocate call with deallocate_type set to
CM_DEALLOCATE_CONFIRM issued by the local program and a Deallocate
call with deallocate_type set to CM_DEALLOCATE_CONFIRM call issued by the
partner program. No log data is available.

3002

CPI Communications deallocated the incoming conversation because an implicit
call of tx_set_transaction_control () failed with TX return code
[TX_PROTOCOL_ERROR].

3003

CPI Communications deallocated the incoming conversation because an implicit
call of tx_set_transaction_control () failed with TX return code [TX_FAIL].

3004

CPI Communications deallocated the conversation because an implicit call of
tx_begin () failed with TX return code [TX_OUTSIDE].

3005

CPI Communications deallocated the conversation because an implicit call of
tx_begin () failed with TX return code [TX_PROTOCOL_ERROR].

3006

CPI Communications deallocated the conversation because an implicit call of
tx_begin () failed with TX return code [TX_ERROR].

3007

CPI Communications deallocated the conversation because an implicit call of
tx_begin () failed with TX return code [TX_FAIL].

3008

Reserved for future conditions to be associated with
CM_DEALLOCATED_ABEND.

3009-3500

Condition
Code Description

Associated with CM_DEALLOCATED_ABEND_BO
(full-duplex conversations using an OSI TP CRM only):

There was a collision between a Include_Partner_In_Transaction call issued by
the local program and a Deallocate call with deallocate_type set to
CM_DEALLOCATE_CONFIRM issued by the partner program. No log data is
available.

3501

Reserved for future conditions to be associated with
CM_DEALLOCATED_ABEND_BO.

3502-4000

376 X/Open CAE Specification

Return Codes and Secondary Information Secondary Information

B.2.3 CRM-specific Information

When the underlying CRM discovers an abnormal condition, the condition, identified by a
CRM-specific message, is then mapped to a CPI Communications return code and returned to
the program. The CRM-specific message is the OSI diagnostic information for the CRM type of
OSI TP and SNA sense data information for the CRM type of LU 6.2.

Table B-4 Examples of Secondary Information from an OSI TP CRM

Associated with CM_RESOURCE_FAILURE_NO_RETRY,
CM_RESOURCE_FAIL_NO_RETRY_BO:

4002;;recipient-unknown
4002;;no-reason-given
4002;;permanent-failure
4002;;protocol-error

Associated with CM_TPN_NOT_RECOGNIZED:
4002;;recipient-tpsu-title-unknown
4002;;recipient-tpsu-title-required

Associated with CM_SYNC_LVL_NOT_SUPPORTED_SYS:
4002;;functional-unit-not-supported
4002;;functional-unit-combination-not-supported

Table B-5 Examples of Secondary Information from an LU 6.2 CRM

Associated with CM_CONVERSATION_TYPE_MISMATCH:
4001;;1008 6034 The FMH-5 Attach command specifies a conversation type that
the receiver does not support for the specified transaction program. This sense
data is sent only in FMH-7.

Associated with CM_TPN_NOT_RECOGNIZED:
4001;;1008 6021 Transaction Program Name Not Recognized: The FMH-5 Attach
command specifies a transaction program name that the receiver does not
recognize. This sense data is sent only in FMH-7.

Associated with CM_SYNC_LVL_NOT_SUPPORTED_SYS:
4001;;1008 6040 Invalid Attach Parameter: A parameter in the FMH-5 Attach
command conflicts with the statements of LU capability previously provided in
the BIND negotiation.

Note: See Chapter 10 of System Network Architecture Formats (IBM document number
GA27-3136) for complete information about sense data.

Distributed Transaction Processing: CPI-C Specification, Version 2 377

Secondary Information Return Codes and Secondary Information

B.2.4 Implementation-related Information

An implementation may return CM_PRODUCT_SPECIFIC_ERROR to the program for any
errors that are specific to the implementation or to the system that supports the implementation.
In this case, secondary information is the error message defined by the implementation or
system.

Table B-6 Examples of Implementation-related Secondary Information

Example 1:
4003;;0001 STACK_TOO_SMALL;; A minimum stack size of 3500 bytes is
required by CPI-C when a call is issued. CPI-C runs on the stack of the program
that calls it. When the call was issued, CPI-C found the stack size to be less than
the minimum size.;;Programmer Response: Increase the stack size specified in
the .DEF file used in linking. If your program calls CPI-C from a thread it has
created, be sure the stack size on the NewThreadStack parameter of your
DosCreateThread function call is large enough.

Example 2:
4003;;0002 CANNOT_ALLOCATE_SHARED_SEGMENT;; Communication
Resource Manager could not allocate the shared segment named
\SHAREMEM\ACSLGMEM.; ;Programmer Response: A necessary shared segment
is not currently available. There is no corrective action that your program can
take. This problem will recur until the Communication Resource Manager is
stopped and restarted. Operator Response: Communication Resource Manager
must be restarted to correct the problem.

378 X/Open CAE Specification

Appendix C

State Tables

The CPI Communications state tables show when and where different CPI Communications
calls can be issued. For example, a program must issue an Initialize_Conversation call before
issuing an Allocate call, and it cannot issue a Send_Data call before the conversation is allocated.

As described in Section 3.13 on page 49, CPI Communications uses the concepts of states and
state transitions to simplify explanations of the restrictions that are placed on the calls. A
number of states are defined for CPI Communications and, for any given call, a number of
transitions are allowed. Table C-1 on page 391 describes the state transitions that are allowed for
the CPI Communications calls on half-duplex conversations. Table C-4 on page 409 describes
the state transitions that are allowed for CPI Communications calls on full-duplex conversations.

Table C-2 on page 398 shows the effects of TX (Transaction Demarcation) calls on CPI
Communications conversation states for half-duplex conversations. Table C-3 on page 400
shows the effects of SAA resource recovery Commit and Backout calls on CPI Communications
conversation states for half-duplex conversations. Table C-5 on page 414 shows the effects of TX
(Transaction Demarcation) calls on CPI Communications conversation states for full-duplex
conversations. Table C-6 on page 416 shows the effects of SAA resource recovery calls on CPI
Communications conversation states for full-duplex conversations.

Distributed Transaction Processing: CPI-C Specification, Version 2 379

How to Use the State Tables State Tables

C.1 How to Use the State Tables
Each CPI Communications call4 is represented in the table by a group of input rows. The
possible conversation states are shown across the top of the table. The states correspond to the
columns of the matrix. The intersection of input (row) and state (column) represents the validity
of a CPI Communications call in that particular state and, for valid calls, what state transition (if
any) occurs.

The first row of each call input grouping (delineated by horizontal lines) contains the name of
the call and a symbol in each state column showing whether the call is valid for that state. A call
is valid for a given state only if that state’s column contains a downward pointing arrow (↓) on
this row. If the [sc] or [pc] symbol appears in a state’s column, the call is invalid for that state
and receives a return code of CM_PROGRAM_STATE_CHECK or
CM_PROGRAM_PARAMETER_CHECK, respectively. No state transitions occur for invalid
CPI Communications calls.

The remaining input rows in the call group show the state transitions for valid calls. The
transition from one conversation state to another often depends on the value of the return code
returned by the call; therefore, a given call group may have several rows, each showing the state
transitions for a particular return code or set of return codes.

For calls that are processed in non-blocking processing mode, the following special
considerations apply:

• When a call gets the CM_OPERATION_INCOMPLETE return code, the operation remains in
progress as an outstanding operation on the conversation (when conversation-level non-
blocking is used) or on the queue with which the call is associated (when queue-level non-
blocking is used). Any other calls (except Cancel_Conversation) on that conversation or
queue get a return code of CM_OPERATION_NOT_ACCEPTED, and no conversation state
transition occurs.

• The CM_OPERATION_NOT_ACCEPTED return code is not included in the state table.

The following special considerations apply for conversations with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM:

• A state transition symbol ending with a caret (for example, 1ˆ or −ˆ) means that the program
may be in the Backout-Required condition following the call. (Note that the state change for
the conversation is indicated by the first character of these symbols.)

• When a program is in the Backout-Required condition, its protected conversations are
restricted from issuing certain CPI Communications calls. These calls are designated in the
table with the symbol ↓’. Where this symbol appears, the call is valid in this state unless the
conversation is protected and the program is in the Backout-Required condition. If the call
is invalid, a return_code of CM_PROGRAM_STATE_CHECK is returned and no conversation
state transition occurs.

4. Only the calls that affect conversation states are included in the State table.

380 X/Open CAE Specification

State Tables How to Use the State Tables

C.1.1 Example

For an example of how the half-duplex state table might be used, look at the group of input rows
for the Deallocate(C) call. The (C) here means that this group is for the Deallocate call when
either deallocate_type is set to CM_DEALLOCATE_CONFIRM or deallocate_type is set to
CM_DEALLOCATE_SYNC_LEVEL and sync_level is set to CM_CONFIRM. The first row in this
group shows that this call is valid only when the conversation is in Send or Send-Pending state.
For all other states, either the call is invalid and a return_code of
CM_PROGRAM_PARAMETER_CHECK or CM_PROGRAM_STATE_CHECK is returned, or the
call is not possible.

Beneath the input row containing Deallocate(C), there are several rows showing the possible
return codes returned by this call. Since the call is valid only in Send and Send-Pending states,
only these states’ columns contain transition values on these rows. These transition values
provide the following information:

• The conversation goes from Send or Send-Pending state to Reset state (state 1) when a
return code abbreviated as ‘‘ok’’, ‘‘da’’ or ‘‘rf’’ is returned. See Section C.2.3 on page 386 to
find out what these abbreviations mean.

• The conversation goes from Send state to Reset state when a return code abbreviated as ‘‘ae’’
is returned. A return code abbreviated as ‘‘ae’’ is never returned when this call is issued from
Send-Pending state.

• The conversation goes from Send or Send-Pending state to Receive state (state 4) when a
return code abbreviated as ‘‘ep’’ is returned.

• There is no state transition when a return code of CM_PROGRAM_PARAMETER_CHECK
(‘‘pc’’) or CM_OPERATION_INCOMPLETE (‘‘oi’’) is returned.

• There is no state transition for a conversation in Send state when a return code of
CM_PROGRAM_STATE_CHECK (‘‘sc’’) is returned. This return code will never be returned
when this call is issued from Send-Pending state.

Distributed Transaction Processing: CPI-C Specification, Version 2 381

Explanation of Half-duplex State Table Abbreviations State Tables

C.2 Explanation of Half-duplex State Table Abbreviations
Abbreviations are used in the state table to indicate the different permutations of calls and
characteristics. There are three categories of abbreviations:

• Conversation characteristic abbreviations are enclosed by parentheses — (. . .).

• return_code abbreviations are enclosed by brackets — [. . .].

• data_received and status_received abbreviations are enclosed by braces and separated by a
comma — { . . . , . . . }. The abbreviation before the comma represents the data_received value,
and the abbreviation after the comma represents the value of status_received.

The next sections show the abbreviations used in each category.

382 X/Open CAE Specification

State Tables Explanation of Half-duplex State Table Abbreviations

C.2.1 Conversation Characteristics ()

The following abbreviations are used for conversation characteristics:

Abbreviation Meaning
A deallocate_type is set to CM_DEALLOCATE_ABEND

B send_type is set to CM_BUFFER_DATA

For a Deallocate call, C means one of the following:

• deallocate_type is set to CM_DEALLOCATE_CONFIRM.

• deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and sync_level is
set to CM_CONFIRM.

• deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and sync_level is
set to CM_SYNC_POINT, but the conversation is not currently included in a
transaction.

For a Prepare_To_Receive call, C means one of the following:

• prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_CONFIRM.

• prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and
sync_level is set to CM_CONFIRM.

• prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and
sync_level is set to CM_SYNC_POINT, but the conversation is not currently
included in a transaction.

For a Send_Data call, C means the following:

• send_type is set to CM_SEND_AND_CONFIRM.

C

send_type is set to CM_SEND_AND_DEALLOCATE. x represents the
deallocate_type and can be A, C, F or S. Refer to the appropriate entries in this
table for a description of these values.

D(x)

For a Deallocate call, F means one of the following:

• deallocate_type is set to CM_DEALLOCATE_FLUSH.

• deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and either
sync_level is set to CM_NONE or the conversation is in Initialize_Incoming
state.

• deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and sync_level is
set to CM_SYNC_POINT_NO_CONFIRM, but the conversation is not
currently included in a transaction.

For a Prepare_To_Receive call, F means one of the following:

• prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_FLUSH.

• prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and
sync_level is set to CM_NONE.

• prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL and
sync_level is set to CM_SYNC_POINT_NO_CONFIRM, but the conversation
is not currently included in a transaction.

For a Send_Data call, F means the following:

• send_type is set to CM_SEND_AND_FLUSH.

F

Distributed Transaction Processing: CPI-C Specification, Version 2 383

Explanation of Half-duplex State Table Abbreviations State Tables

Abbreviation Meaning

I receive_type is set to CM_RECEIVE_IMMEDIATE.

send_type is set to CM_SEND_AND_PREP_TO_RECEIVE. x represents the
prepare_to_receive_type and can be C, F or S. Refer to the appropriate entries in
this table for a description of these values.

P(x)

For a Deallocate call, S means the following:

• deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL, sync_level is set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, and the
conversation is currently included in a transaction.

For a Prepare_To_Receive call, S means the following:

• prepare_to_receive_type is set to CM_PREP_TO_RECEIVE_SYNC_LEVEL,
sync_level is set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, and the conversation is currently
included in a transaction.

S

W receive_type is set to CM_RECEIVE_AND_WAIT.

384 X/Open CAE Specification

State Tables Explanation of Half-duplex State Table Abbreviations

C.2.2 Conversation Queues ()

The following abbreviations are used for conversation queues:

Abbreviation Meaning
N conversation_queue is set to CM_INITIALIZATION_QUEUE

conversation_queue is set to one of the following:

CM_SEND_RECEIVE_QUEUE
CM_EXPEDITED_SEND_QUEUE
CM_EXPEDITED_RECEIVE_QUEUE

Q

Distributed Transaction Processing: CPI-C Specification, Version 2 385

Explanation of Half-duplex State Table Abbreviations State Tables

C.2.3 Return Code Values []

The following abbreviations are used for return codes:

Abbreviation Meaning
For an Allocate call, ae means one of the following:

CM_ALLOCATE_FAILURE_NO_RETRY
CM_ALLOCATE_FAILURE_RETRY
CM_SECURITY_NOT_VALID
CM_SECURITY_NOT_SUPPORTED
CM_SEND_RCV_MODE_NOT_SUPPORTED
CM_CONVERSATION_TYPE_MISMATCH
CM_PIP_NOT_SPECIFIED_CORRECTL Y
CM_RETRY_LIMIT_EXCEEDED
CM_SYNC_LVL_NOT_SUPPORTED_PGM
CM_SYNC_LVL_NOT_SUPPORTED_SYS
CM_TPN_NOT_RECOGNIZED
CM_TP_NOT_AVAILABLE_NO_RETRY
CM_TP_NOT_AVAILABLE_RETRY
CM_RESOURCE_FAILURE_NO_RETRY
CM_RESOURCE_FAILURE_RETRY

For any other call, ae means one of the following:

CM_CONVERSATION_TYPE_MISMATCH
CM_PIP_NOT_SPECIFIED_CORRECTL Y
CM_SECURITY_NOT_VALID
CM_SEND_RCV_MODE_NOT_SUPPORTED
CM_SYNC_LVL_NOT_SUPPORTED_PGM
CM_SYNC_LVL_NOT_SUPPORTED_SYS
CM_TPN_NOT_RECOGNIZED
CM_TP_NOT_AVAILABLE_NO_RETRY
CM_TP_NOT_AVAILABLE_RETRY

ae

CM_TAKE_BACKOUT. This return code is returned only for conversations with
sync_level set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM.

bo

da means one of the following:

CM_DEALLOCATED_ABEND
CM_DEALLOCATED_ABEND_SVC
CM_DEALLOCATED_ABEND_TIMER

da

db is returned only for conversations with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and means one of the following:

CM_DEALLOCATED_ABEND_BO
CM_DEALLOCATED_ABEND_SVC_BO
CM_DEALLOCATED_ABEND_TIMER_BO

db

dn CM_DEALLOCATED_NORMAL

CM_DEALLOCATED_NORMAL_BO. This return code is returned only for
conversations with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM.

dnb

386 X/Open CAE Specification

State Tables Explanation of Half-duplex State Table Abbreviations

Abbreviation Meaning

ed means one of the following:

CM_EXP_DATA_NOT_SUPPORTED
CM_BUFFER_TOO_SMALL
CM_CONVERSATION_ENDING

ed

en means one of the following:

CM_PROGRAM_ERROR_NO_TRUNC
CM_SVC_ERROR_NO_TRUNC

en

ep means one of the following:

CM_PROGRAM_ERROR_PURGING
CM_SVC_ERROR_PURGING

ep

et means one of the following:

CM_PROGRAM_ERROR_TRUNC
CM_SVC_ERROR_TRUNC

et

ns CM_NO_SECONDARY_INFORMATION

oi CM_OPERATION_INCOMPLETE

ok CM_OK

pb CM_INCLUDE_PARTNER_REJECT_BO

CM_PROGRAM_PARAMETER_CHECK. This return code means an error was
found in one or more parameters. For calls illegally issued in Reset state, pc is
returned because the conversation_ID is undefined in that state.

pc

pe CM_PARAMETER_ERROR

pn CM_PARM_VALUE_NOT_SUPPORTED

rb means one of the following:

CM_RESOURCE_FAIL_NO_RETRY_BO
CM_RESOURCE_FAILURE_RETRY_BO

rb

rf means one of the following:

CM_RESOURCE_FAILURE_NO_RETRY
CM_RESOURCE_FAILURE_RETRY

rf

sc CM_PROGRAM_STATE_CHECK

se CM_SYSTEM_EVENT

un CM_UNSUCCESSFUL

Distributed Transaction Processing: CPI-C Specification, Version 2 387

Explanation of Half-duplex State Table Abbreviations State Tables

Notes:

1. The return code CM_PRODUCT_SPECIFIC_ERROR is not included in the state
table because the state transitions caused by this return code are product-specific.

2. The CM_OPERATION_NOT_ACCEPTED return code is not included in the state
table. If conversation-level non-blocking is being used on a conversation, a
program receives CM_OPERATION_NOT_ACCEPTED when it issues any call
(except Cancel_Conversation) on the conversation while a previous operation is
still in progress, regardless of the state. If conversation-level non-blocking is not
being used on a conversation, a program receives
CM_OPERATION_NOT_ACCEPTED when it issues any call associated with a
queue that has a previous operation still in progress, regardless of the state. No
conversation state transition occurs.

3. The CM_CALL_NOT_SUPPORTED return code is not included in the state table.
It is returned when the local system provides an entry point for the call but does
not support the function requested by the call, regardless of the state. No state
transition occurs.

388 X/Open CAE Specification

State Tables Explanation of Half-duplex State Table Abbreviations

C.2.4 data_received and status_received { , }

The following abbreviations are used for the data_received values:

Abbreviation Meaning
Means one of the following:

CM_DATA_RECEIVED
CM_COMPLETE_DATA_RECEIVED
CM_INCOMPLETE_DATA_RECEIVED

dr

Means one of the following:

CM_DATA_RECEIVED
CM_COMPLETE_DATA_RECEIVED
CM_NO_DATA_RECEIVED

*

The following abbreviations are used for the status_received values:

Abbreviation Meaning
cd CM_CONFIRM_DEALLOC_RECEIVED

co CM_CONFIRM_RECEIVED

cs CM_CONFIRM_SEND_RECEIVED

jt CM_JOIN_TRANSACTION

no CM_NO_STATUS_RECEIVED

po CM_PREPARE_OK

se CM_SEND_RECEIVED

CM_TAKE_COMMIT or CM_TAKE_COMMIT_DATA_OK. These values are
returned only for conversations with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM.

tc

CM_TAKE_COMMIT_DEALLOCATE
or CM_TAKE_COMMIT_DEALLOC_DATA_OK. These values are returned only
for conversations with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM.

td

CM_TAKE_COMMIT_SEND or CM_TAKE_COMMIT_SEND_DATA_OK. These
values are returned only for conversations with sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM.

ts

Distributed Transaction Processing: CPI-C Specification, Version 2 389

Explanation of Half-duplex State Table Abbreviations State Tables

C.2.5 Table Symbols for the Half-duplex State Table

The following symbols are used in the state table to indicate the condition that results when a
call is issued from a certain state:

Symbol Meaning
Cannot occur. CPI Communications either does not allow this input or never
returns the indicated return codes for this input in this state.

/

− Remain in current state

1-18 Number of next state

It is valid to make this call from this state. See the table entries immediately
below this symbol to determine the state transition resulting from the call.

↓

For a conversation not using sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM, or not currently included in a transaction,
this is equivalent to ↓. If the conversation has sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and the conversation
is currently included in a transaction, however, ↓’ means it is valid to make this
call from this state unless the program is in the Backout-Required condition. In
that case, the call is invalid and CM_PROGRAM_STATE_CHECK is returned.
For valid calls, see the table entries immediately below this symbol to determine
the state transition resulting from the call.

↓’

For a conversation not using sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM or not currently included in a transaction,
this symbol should be ignored. For a conversation using sync_level set to
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM and currently
included in a transaction, when this symbol follows a state number or a − (for
example, 1ˆ or −ˆ), it means the program may be in the Backout-Required
condition following the call.

ˆ

A conversation with sync_level set to CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM and currently included in a transaction
goes to the state it was in at the completion of the most recent synchronization
point. If there was no prior synchronization event, the side of the conversation
that was initialized with an Allocate call goes to Send state, and the side of the
conversation that accepted the conversation goes to Receive state.

#

Wait_For_Completion and Wait_For_Conversation can only be issued when one
or more calls have received a return_code of CM_OPERATION_INCOMPLETE.
When Wait_For_Completion or Wait_For_Conversation completes with a
return_code of CM_OK, it indicates one or more conversations on which an
operation has completed. Each of those conversations then moves to the
appropriate state as determined by the return code for the operation that is now
completed and by the other factors that determine state transitions.

%

For programs using the TX (Transaction Demarcation) interface with sync_level
set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM, the state of the
conversation with respect to the transaction is unknown.

?

390 X/Open CAE Specification

State Tables Half-duplex State Table

C.3 Half-duplex State Table

Table C-1 States and Transitions for CPI Communications Calls: Half-duplex

States 1−8 and 14 are Used only by conversations with
used by all conversations sync_level set to CM_SYNC_POINT

or CM_SYNC_POINT_NO_CONFIRM

Reset Ini- Send Re- Send- Con- Con- Con- Defer- Defer- Sync- Sync- Sync- Pre- Ini-
tialize ceive Pend- firm firm firm Re- Deal- Point Point Point pared tialize-

ing Send Deal- ceive locate Send Deal- In-
locate locate coming

Inputs 1 2 3 4 5 6 7 8 9 10 11 12 13 18 14

Accept_Conversation ↓ / / / / / / / / / / / / / /

[ok] 4
[da,sc] −
Accept_Incoming [pc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓
[ok] 4
[da] 1
[oi,pc,sc] −
Allocate [pc] ↓’ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok] 3
[ae] 1
[oi,pc,pe,un,sc] −
Cancel_Conversation [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok] 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ
[pc] − − − − − − − − − − − − − −
Confirm [pc] [sc] ↓’ [sc] ↓’ [sc] [sc] [sc] ↓’ [sc] [sc] [sc] [sc] [sc] [sc]

[ok] − 3 4
[ae] 1 / 1
[da,rf] 1 1 1
[bo] −ˆ 3ˆ 4ˆ
[db,pb,rb] 1ˆ 1ˆ 1ˆ
[ep] 4 4 4
[oi,pc] − − −
[sc] − / /

Confirmed [pc] [sc] [sc] [sc] [sc] ↓’ ↓’ ↓’ [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok] 4 3 1
[oi,pc] − − −
Deallocate(A) [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ /

[ok] 1 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ
[oi,pc] − − − − − − − − − − − − −
Deallocate(C) [pc] [sc] ↓ [sc] ↓ [sc] [sc] [sc] / / / / / / /

[ok,da,rf] 1 1
[ae] 1 /
[ep] 4 4
[oi,pc] − −
[sc] − /

Deallocate(F) [pc] [sc] ↓ [sc] ↓ [sc] [sc] [sc] / / / / / / ↓
[ok] 1 1 1
[oi,pc] − − −
[sc] − / /

Deallocate(S) [pc] [sc] ↓’ [sc] ↓’ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] /

[ok] 10 10
[oi,pc] − −
[sc] − /

Distributed Transaction Processing: CPI-C Specification, Version 2 391

Half-duplex State Table State Tables

States 1−8 and 14 are Used only by conversations with
used by all conversations sync_level set to CM_SYNC_POINT

or CM_SYNC_POINT_NO_CONFIRM

Reset Ini- Send Re- Send- Con- Con- Con- Defer- Defer- Sync- Sync- Sync- Pre- Ini-
tialize ceive Pend- firm firm firm Re- Deal- Point Point Point pared tialize-

ing Send Deal- ceive locate Send Deal- In-
locate locate coming

Inputs 1 2 3 4 5 6 7 8 9 10 11 12 13 18 14

Deferred_Deallocate † [pc] [sc] ↓’ [sc] ↓’ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok] −‡ −‡

[ae] 1 /
[ep] 4 4
[oi,pc] − −
[db,rb] 1ˆ 1ˆ
[pb] 1ˆ /
[bo] −ˆ 3ˆ

Extract_AE_Qualifier [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] − − − − − − − − − − − − −
Extract_AP_Title [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] − − − − − − − − − − − − −
Extract_Appl_Ctx_Name [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] − − − − − − − − − − − − −
Extract_Conv_State [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − − − − − − −
[bo] / − − − − − / − − − − − − /

Extract_Conv_Type [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] − − − − − − − − − − − − −
Extract_Init_Data [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] − − − − − − − − − − − − −
Extract_Mode_Name [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] − − − − − − − − − − − − −
Extract_Part_LU_Name [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] − − − − − − − − − − − − −
Extr_Sec_User_ID [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] − − − − − − − − − − − − −
Extract_Secondary_Info ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,ns,pc] − − − − − − − − − − − − − − −
Extr_Send_Rcv_Mode [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] − − − − − − − − − − − − −
Extract_Sync_Level [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] − − − − − − − − − − − − −
Extract_TP_Name [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] − − − − − − − − − − − − −
Extract_Transaction_Control [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] − − − − − − − − − − − − −
Flush [pc] [sc] ↓’ [sc] ↓’ [sc] [sc] [sc] ↓’ [sc] [sc] [sc] [sc] [sc] [sc]

[ok] − 3 4
[oi,pc] − − −
Include_Ptr_In_Trans† [pc] [sc] ↓’ [sc] ↓’ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok] − 3
[oi,pc,sc] − −
[ae] 1 /
[ep] 4 4
[da,rf] 1 1

Init_Conversation§ ↓ / / / / / / / / / / / / / /

[ok] 2
[pc] −
Init_For_Incoming ↓ / / / / / / / / / / / / / /

[ok] 14

392 X/Open CAE Specification

State Tables Half-duplex State Table

States 1−8 and 14 are Used only by conversations with
used by all conversations sync_level set to CM_SYNC_POINT

or CM_SYNC_POINT_NO_CONFIRM

Reset Ini- Send Re- Send- Con- Con- Con- Defer- Defer- Sync- Sync- Sync- Pre- Ini-
tialize ceive Pend- firm firm firm Re- Deal- Point Point Point pared tialize-

ing Send Deal- ceive locate Send Deal- In-
locate locate coming

Inputs 1 2 3 4 5 6 7 8 9 10 11 12 13 18 14

Prepare [pc] [sc] ↓’ [sc] ↓’ [sc] [sc] [sc] ↓’ ↓’ [sc] [sc] [sc] [sc] [sc]

[ok] 18 18 18 18
[ae,rf] 1 / 1 1
[ep] 4 4 4 4
[oi,pc,sc] − − − −
[db,rb,pb] 1ˆ 1ˆ 1ˆ 1ˆ
[bo] −ˆ −ˆ −ˆ −ˆ

Prepare_To_Receive(C) [pc] [sc] ↓’ [sc] ↓’ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,ep] 4 4
[ae] 1 /
[da,rf] 1 1
[bo] 4ˆ 4ˆ
[db,pb,rb] 1ˆ 1ˆ
[oi,pc] − −
[sc] − /

Prepare_To_Receive(F) [pc] [sc] ↓’ [sc] ↓’ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok] 4 4
[oi,pc] − −
[sc] − /

Prepare_To_Receive(S) [pc] [sc] ↓’ [sc] ↓’ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok] 9 9
[oi,pc] − −
[sc] − /

Receive(I) [pc] [sc] [sc] ↓’ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓’ [sc]

[ok] {dr,no} − −
[ok] {nd,no} − −
[ok] {nd,se} 3 /
[ok] {dr,se} 5 /
[ok] {*,co} 6 /
[ok] {*,cs} 7 /
[ok] {*,cd} 8 /
[ok] {*,jt} − /
[ok] {*,po} / −
[ok] {*,tc} 11 /
[ok] {*,ts} 12 /
[ok] {*,td} 13 /
[ae] 1 1
[da,dn,rf] 1 /
[bo] −ˆ −ˆ
[db,pb,rb] 1ˆ 1ˆ
[en,ep] − 4
[et] − /
[pc,sc,un] − −

Distributed Transaction Processing: CPI-C Specification, Version 2 393

Half-duplex State Table State Tables

States 1−8 and 14 are Used only by conversations with
used by all conversations sync_level set to CM_SYNC_POINT

or CM_SYNC_POINT_NO_CONFIRM

Reset Ini- Send Re- Send- Con- Con- Con- Defer- Defer- Sync- Sync- Sync- Pre- Ini-
tialize ceive Pend- firm firm firm Re- Deal- Point Point Point pared tialize-

ing Send Deal- ceive locate Send Deal- In-
locate locate coming

Inputs 1 2 3 4 5 6 7 8 9 10 11 12 13 18 14

Receive(W) [pc] [sc] ↓’ ↓’ ↓’ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓’ [sc]

[ok] {dr,no} 4 − 4 −
[ok] {nd,no} 4 − 4 −
[ok] {nd,se} − 3 3 /
[ok] {dr,se} 5 5 − /
[ok] {*,co} 6 6 6 /
[ok] {*,cs} 7 7 7 /
[ok] {*,cd} 8 8 8 /
[ok] {*,jt} − − / /
[ok] {*,po} / / / −
[ok] {*,tc} 11 11 11 /
[ok] {*,ts} 12 12 12 /
[ok] {*,td} 13 13 13 /
[ae] 1 1 / 1
[bo] 4ˆ −ˆ 4ˆ −ˆ
[da,dn,rf] 1 1 1 /
[db,pb,rb] 1ˆ 1ˆ 1ˆ 1ˆ
[en,ep] 4 − 4 4
[et] / − / /
[oi,pc] − − − −
[sc] − − / −
Rcv_Exp_Data [pc] [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,ed,oi,pc] − − − − − − − − − − − −
Request_To_Send+ [pc] [sc] ↓’ ↓’ ↓’ ↓’ ↓’ ↓’ [sc] [sc] ↓’ ↓’ ↓’ ↓’ [sc]

[oi,ok,pc] − − − − − − − − − −
[sc] / − / / / / / / / /

Send_Data [pc] [sc] ↓’ [sc] ↓’ [sc] [sc] [sc] [sc] [sc] ↓’ ↓’ ↓’ [sc] [sc]

(B) [ok] − 3 − − −
(C) [ok] − 3 / / /
(F) [ok] − 3 − − −
(P(C)) [ok] 4 4 / / /
(P(F)) [ok] 4 4 / / /
(P(S)) [ok] 9 9 / / /
(D(A)) [ok] 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ
(D(C)) [ok] 1 1 / / /
(D(F)) [ok] 1 1 / / /
(D(S)) [ok] 10 10 / / /
[ae] 1 / / / /
[da,rf] 1 1 / / /
[bo] −ˆ 3ˆ −ˆ −ˆ −ˆ
[db,rb] 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ
[ep] 4 4 / / /
[oi,pc] − − − − −
[pb] 1ˆ / / / /
[sc] − / − − −

394 X/Open CAE Specification

State Tables Half-duplex State Table

States 1−8 and 14 are Used only by conversations with
used by all conversations sync_level set to CM_SYNC_POINT

or CM_SYNC_POINT_NO_CONFIRM

Reset Ini- Send Re- Send- Con- Con- Con- Defer- Defer- Sync- Sync- Sync- Pre- Ini-
tialize ceive Pend- firm firm firm Re- Deal- Point Point Point pared tialize-

ing Send Deal- ceive locate Send Deal- In-
locate locate coming

Inputs 1 2 3 4 5 6 7 8 9 10 11 12 13 18 14

Send_Error [pc] [sc] ↓’ ↓’ ↓’ ↓’ ↓’ ↓’ [sc] [sc] ↓’ ↓’ ↓’ [sc] [sc]

[ok] − 3 3 3 3 3 3 3 3
[ae,da] 1 1 / / / / / / /
[bo] −ˆ −ˆ 3ˆ / / −ˆ −ˆ −ˆ
[db] 1ˆ 1ˆ / / / / / / /
[dn] / 1 / / / / / / /
[dnb] / 1ˆ / / / / / / /
[ep] 4 − / / / / / / /
[oi,pc] − − − − − − − − −
[pb] 1ˆ 1ˆ / / / / / / /
[rb] 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ
[rf] 1 1 1 1 1 1 1 1 1
[sc] / − / / / / / / /

Send_Exp_Data [pc] [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,ed,oi,pc] − − − − − − − − − − − −
Set_AE_Qualifier [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_Allocate_Confirm [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_AP_Title [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_Appl_Context_Name [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_Begin_Transaction [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] − − − − − − − − − − − − −
Set_Confirmation_Urgency [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − − − − − − −
Set_Conv_Sec_PW [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_Conv_Sec_Type [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc,pn] −
Set_Conv_Sec_User_ID [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_Conv_Type [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_Deallocate_Type [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] − − − − − − − − − − − − −
Set_Error_Direction [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − − − − − − −
Set_Fill [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − − − − − − −
Set_Initialization_Data [pc] ↓ [sc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] − −
Set_Join_Transaction [pc] [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − − − − − −
Set_Log_Data [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − − − − − − −
Set_Mode_Name [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_Partner_LU_Name [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −

Distributed Transaction Processing: CPI-C Specification, Version 2 395

Half-duplex State Table State Tables

States 1−8 and 14 are Used only by conversations with
used by all conversations sync_level set to CM_SYNC_POINT

or CM_SYNC_POINT_NO_CONFIRM

Reset Ini- Send Re- Send- Con- Con- Con- Defer- Defer- Sync- Sync- Sync- Pre- Ini-
tialize ceive Pend- firm firm firm Re- Deal- Point Point Point pared tialize-

ing Send Deal- ceive locate Send Deal- In-
locate locate coming

Inputs 1 2 3 4 5 6 7 8 9 10 11 12 13 18 14

Set_Prep_Data_Permitted [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] − − − − − − − − − − − − −
Set_Prep_To_Rcv_Type [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] − − − − − − − − − − − − −
Set_Processing_Mode [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − − − − − − −
Set_Q_Callback_Func(N) [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓
[ok,pc] − −
Set_Q_Callback_Func(Q) [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] − − − − − − − − − − − − −
Set_Q_Proc_Mode(N) [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓
[ok,pc] − −
Set_Q_Proc_Mode(Q) [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] − − − − − − − − − − − − −
Set_Receive_Type [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − − − − − − −
Set_Return_Control [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_Send_Rcv_Mode [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_Send_Type [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ [sc]

[ok,pc] − − − − − − − − − − − − −
Set_Sync_Level [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc,pn] −
Set_TP_Name [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_Transaction_Control [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Test_Req_To_Send_Rcd [pc] [sc] ↓’ ↓’ ↓’ [sc] [sc] [sc] ↓’ ↓’ [sc] [sc] [sc] [sc] [sc]

[ok,pc] − − − − −
Wait_For_Completion ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok] / % % % % % % % % % % % % % %
[pc] / − − − − − − − − − − − − − −
Wait_For_Conversation ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok] / % % % % % % % % % % % % % %
[sc,se] / − − − − − − − − − − − − − −

Notes:

† The state table entries for Deferred_Deallocate and
Include_Partner_In_Transaction calls are for conversations using an OSI TP CRM
only. These calls get the CM_PROGRAM_PARAMETER_CHECK if issued on a
conversation using an LU 6.2 CRM, regardless of the state.

‡ CPI Communications suspends action on the Deferred_Deallocate call until the
transaction is committed or backed out.

§ While the Initialize_Conversation call can be issued only once for any given
conversation, a program can issue multiple Initialize_Conversation calls to
establish concurrent conversations with different partners. For more information,
see Section 3.7.1 on page 26.

396 X/Open CAE Specification

State Tables Half-duplex State Table

+ The Request_To_Send call is not allowed in Send, Send-Pending, Confirm-Send,
Confirm-Deallocate, Sync-Point, Sync-Point-Send, Sync-Point-Deallocate or
Prepared state when the conversation is using an OSI TP CRM. The call gets the
CM_PROGRAM_STATE_CHECK return code.

Distributed Transaction Processing: CPI-C Specification, Version 2 397

Effects of Calls on Half-duplex Conversations to X/Open TX Interface State Tables

C.4 Effects of Calls on Half-duplex Conversations to X/Open TX Interface
Table C-2 shows the state transitions resulting from calls to the TX (Transaction Demarcation)
interface on half-duplex conversations. This table applies only to conversations with sync_level
set to CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM.

The following abbreviations are used for return codes in Table C-2.

Abbreviation Meaning
bo [TX_ROLLBACK] or [TX_ROLLBACK_NO_BEGIN]

coh [TX_COMMITTED] or [TX_COMMITTED_NO_BEGIN]

com [TX_MIXED] or [TX_MIXED_NO_BEGIN]

cop [TX_HAZARD] or [TX_HAZARD_NO_BEGIN]

fa [TX_FAIL]

ok [TX_OK] or [TX_NO_BEGIN]

sc [TX_PROTOCOL_ERROR]

Table C-2 States and Transitions for Protected Half-duplex (X/Open TX)

Reset Ini- Send Re- Send- Con- Con- Con- Defer- Defer- Sync- Sync- Sync- Pre- Ini-
tialize ceive Pend- firm firm firm Re- Deal- Point Point Point pared tialize-

ing Send Deal- ceive locate Send Deal- In-
locate locate coming

Inputs 1 2 3 4 5 6 7 8 9 10 11 12 13 18 14

tx_commit() call [sc]† ↓‡ ↓ [sc] ↓ [sc] [sc] ↓‡ ↓ ↓ ↓ ↓ ↓ ↓ ↓‡

[ok,cop,com] − −♦ 3 − 4 1 4 3 1 3§ −
[bo] − # # − # # # # # # −
[sc] − − − − − − − − − − −
[fa] − ? ? − ? ? ? ? ? ? −
tx_rollback() call ↓+ ↓‡ ↓ ↓ ↓ ↓ ↓ ↓‡ ↓ ↓ ↓ ↓ ↓ ↓ ↓‡

[ok,com,cop,coh] − − # # # # # − # # # # # # −
[sc] − − − − − − − − − − − − − − −
[fa] − ? ? ? ? ? − ? ? ? ? ? ? −
tx_begin() call − − − − − − − − − − / / / / −
tx_close() call − − − − − − − − − − − − − − −
tx_info() call − − − − − − − − − − − − − − −
tx_open() call − − − − − − − − − − − − − − −
tx_set_commit_return() call − − − − − − − − − − − − − − −
tx_set_trans_control() call − − − − − − − − − − − − − − −
tx_set_trans_timeout() call − − − − − − − − − − − − − − −

Notes:

† When a program started by an incoming conversation startup request issues a
tx_commit() call before issuing an Accept_Conversation call, a state check results.
The tx_commit() call has no effect on other conversations in Reset state.

‡ Conversations in Initialize, Confirm-Deallocate or Initialize-Incoming state are
not affected by tx_commit() and tx_rollback () calls.

§ The conversation goes to Reset state if the local program had issued a
Deferred_Deallocate call or a Deallocate call with deallocate_type set to
CM_DEALLOCATE_SYNC_LEVEL prior to entering Prepared state. The

398 X/Open CAE Specification

State Tables Effects of Calls on Half-duplex Conversations to X/Open TX Interface

conversation goes to Receive state if the local program had issued a
Prepare_To_Receive call with prepare_to_receive_type set to
CM_PREP_TO_RECEIVE_SYNC_LEVEL, respectively, prior to entering Prepared
state.

+ When a program started by an incoming conversation startup request issues a
tx_rollback () call before issuing an Accept_Conversation call, the underlying
conversation is actually backed out, though the CPI Communications conversation
remains in Reset state.

♦ The conversation goes to Reset state if the program had issued a
Deferred_Deallocate call prior to issuing the tx_commit() call.

Distributed Transaction Processing: CPI-C Specification, Version 2 399

Effects of Calls to the SAA RRI on Half-duplex Conversations State Tables

C.5 Effects of Calls to the SAA RRI on Half-duplex Conversations
Table C-3 shows the state transitions resulting from calls to the SAA resource recovery interface
on half-duplex conversations. This table applies only to conversations with sync_level set to
CM_SYNC_POINT.

The following abbreviations are used for return codes in Table C-3.

Abbreviation Meaning
bo RR_BACKED_OUT

bom RR_BACKED_OUT_OUTCOME_MIXED

bop RR_BACKED_OUT_OUTCOME_PENDING

com RR_COMMITTED_OUTCOME_MIXED

cop RR_COMMITTED_OUTCOME_PENDING

ok RR_OK

sc RR_PROGRAM_STATE_CHECK

Table C-3 States and Transitions for Half-duplex Protected (CPIRR)

Reset Ini- Send Re- Send- Con- Con- Con- Defer- Defer- Sync- Sync- Sync- Ini-
tialize ceive Pend- firm firm firm Re- Deal- Point Point Point tialize-

ing Send Deal- ceive locate Send Deal- In-
locate locate coming

Inputs 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Commit call [sc]† ↓§ ↓ [sc] ↓ [sc] [sc] ↓§ ↓ ↓ ↓ ↓ ↓ ↓§

[ok,cop,com] − −+ 3 − 4 1 4 3 1 −
[bo,bop,bom] − # # − # # # # # −
[sc] − − − − − − − − − −
Backout call ↓‡ ↓§ ↓ ↓ ↓ ↓ ↓ ↓§ ↓ ↓ ↓ ↓ ↓ ↓§

[ok,bop,bom] − − # # # # # − # # # # # −

Notes:

† When a program started by an incoming conversation startup request issues a
Commit call before issuing an Accept_Conversation call, a state check results. The
Commit call has no effect on other conversations in Reset state.

‡ When a program started by an incoming conversation startup request issues a
Backout call before issuing an Accept_Conversation call, the underlying
conversation is actually backed out, though the CPI Communications conversation
remains in Reset state.

§ Conversations in Initialize, Confirm-Deallocate or Initialize-Incoming state are
not affected by Commit and Backout calls.

+ The conversation goes to Reset state if the program had issued a
Deferred_Deallocate call prior to issuing the Commit call.

400 X/Open CAE Specification

State Tables Explanation of Full-duplex State Table Abbreviations

C.6 Explanation of Full-duplex State Table Abbreviations
Abbreviations are used in the state table to indicate the different permutations of calls and
characteristics. There are three categories of abbreviations:

• Conversation characteristic abbreviations are enclosed by parentheses — (. . .)

• return_code abbreviations are enclosed by brackets — [. . .]

• data_received and status_received abbreviations are enclosed by braces and separated by a
comma — { . . . , . . . }. The abbreviation before the comma represents the data_received value,
and the abbreviation after the comma represents the value of status_received.

The next sections show the abbreviations used in each category.

Distributed Transaction Processing: CPI-C Specification, Version 2 401

Explanation of Full-duplex State Table Abbreviations State Tables

C.6.1 Conversation Characteristics ()

The following abbreviations are used for conversation characteristics:

Abbreviation Meaning
A deallocate_type is set to CM_DEALLOCATE_ABEND

B send_type is set to CM_BUFFER_DATA

C deallocate_type is set to CM_DEALLOCATE_CONFIRM

send_type is set to CM_SEND_AND_DEALLOCATE. x represents the
deallocate_type and can be A, C, F or S. Refer to the appropriate entries in this
table for a description of these values.

D(x)

For a Deallocate call, F means one of the following:

• deallocate_type is set to CM_DEALLOCATE_FLUSH.

• deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and either
sync_level is set to CM_NONE or the conversation is in Initialize_Incoming
state.

• deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL and sync_level is
set to CM_SYNC_POINT_NO_CONFIRM, but the conversation is not
currently included in a transaction.

For a Send_Data call, F means the following:

• send_type is set to CM_SEND_AND_FLUSH.

F

I receive_type is set to CM_RECEIVE_IMMEDIATE

For a Deallocate call, S means the following:

• deallocate_type is set to CM_DEALLOCATE_SYNC_LEVEL, sync_level is set to
CM_SYNC_POINT_NO_CONFIRM and the conversation is currently
included in a transaction.

S

W receive_type is set to CM_RECEIVE_AND_WAIT.

402 X/Open CAE Specification

State Tables Explanation of Full-duplex State Table Abbreviations

C.6.2 Conversation Queues ()

The following abbreviations are used for conversation queues:

Abbreviation Meaning
N conversation_queue is set to CM_INITIALIZATION_QUEUE

conversation_queue is set to one of the following:

CM_SEND_QUEUE
CM_RECEIVE_QUEUE
CM_EXPEDITED_SEND_QUEUE
CM_EXPEDITED_RECEIVE_QUEUE

Q

Distributed Transaction Processing: CPI-C Specification, Version 2 403

Explanation of Full-duplex State Table Abbreviations State Tables

C.6.3 Return Code Values []

The following table shows abbreviations that are used for return codes. The state table for CPI
Communications calls on full-duplex conversations follows.

Abbreviation Meaning
For an Allocate call, ae means one of the following:

CM_ALLOCATE_FAILURE_NO_RETRY
CM_ALLOCATE_FAILURE_RETRY
CM_SECURITY_NOT_VALID
CM_SECURITY_NOT_SUPPORTED
CM_SEND_RCV_MODE_NOT_SUPPORTED
CM_CONVERSATION_TYPE_MISMATCH
CM_PIP_NOT_SPECIFIED_CORRECTL Y
CM_RETRY_LIMIT_EXCEEDED
CM_SYNC_LVL_NOT_SUPPORTED_PGM
CM_SYNC_LVL_NOT_SUPPORTED_SYS
CM_TPN_NOT_RECOGNIZED
CM_TP_NOT_AVAILABLE_NO_RETRY
CM_TP_NOT_AVAILABLE_RETRY
CM_RESOURCE_FAILURE_NO_RETRY
CM_RESOURCE_FAILURE_RETRY

For any other call, ae means one of the following:

CM_ALLOCATION_ERROR
CM_CONVERSATION_TYPE_MISMATCH
CM_SEND_RCV_MODE_NOT_SUPPORTED
CM_PIP_NOT_SPECIFIED_CORRECTL Y
CM_SECURITY_NOT_VALID
CM_SYNC_LVL_NOT_SUPPORTED_SYS
CM_SYNC_LVL_NOT_SUPPORTED_PGM
CM_TPN_NOT_RECOGNIZED
CM_TP_NOT_AVAILABLE_NO_RETRY
CM_TP_NOT_AVAILABLE_RETRY

ae

CM_TAKE_BACKOUT. This return code is returned only for conversations with
sync_level set to CM_SYNC_POINT_NO_CONFIRM.

bo

da means one of the following:

CM_DEALLOCATED_ABEND
CM_DEALLOCATED_ABEND_SVC
CM_DEALLOCATED_ABEND_TIMER

da

db is returned only for conversations with sync_level set to
CM_SYNC_POINT_NO_CONFIRM and means one of the following:

CM_DEALLOCATED_ABEND_BO
CM_DEALLOCATED_ABEND_SVC_BO
CM_DEALLOCATED_ABEND_TIMER_BO

db

dn CM_DEALLOCATED_NORMAL

dr CM_DEALLOC_CONFIRM_REJECT

404 X/Open CAE Specification

State Tables Explanation of Full-duplex State Table Abbreviations

Abbreviation Meaning

CM_CONV_DEALLOC_AFTER_SYNCPT. This return code is returned only for
conversations with sync_level set to CM_SYNC_POINT_NO_CONFIRM.

ds

This return code is reported for expedited-data calls only. ed means one of the
following:

CM_EXP_DATA_NOT_SUPPORTED
CM_BUFFER_TOO_SMALL
CM_CONVERSATION_ENDING

ed

en means one of the following:

CM_PROGRAM_ERROR_NO_TRUNC
CM_SVC_ERROR_NO_TRUNC

en

ep means one of the following:

CM_PROGRAM_ERROR_PURGING
CM_SVC_ERROR_PURGING

ep

et means one of the following:

CM_PROGRAM_ERROR_TRUNC
CM_SVC_ERROR_TRUNC

et

ns CM_NO_SECONDARY_INFORMATION

oi CM_OPERATION_INCOMPLETE

ok CM_OK

pb CM_INCLUDE_PARTNER_REJECT_BO

CM_PROGRAM_PARAMETER_CHECK. This return code means an error was
found in one or more parameters. For calls illegally issued in Reset state, pc is
returned because the conversation_ID is undefined in that state.

pc

pe CM_PARAMETER_ERROR

pn CM_PARM_VALUE_NOT_SUPPORTED

rb means one of the following:

CM_RESOURCE_FAIL_NO_RETRY_BO
CM_RESOURCE_FAILURE_RETRY_BO

rb

rf means one of the following:

CM_RESOURCE_FAILURE_NO_RETRY
CM_RESOURCE_FAILURE_RETRY

rf

sc CM_PROGRAM_STATE_CHECK

un CM_UNSUCCESSFUL

Distributed Transaction Processing: CPI-C Specification, Version 2 405

Explanation of Full-duplex State Table Abbreviations State Tables

Notes:

1. The return code CM_PRODUCT_SPECIFIC_ERROR is not included in the state
table because the state transitions caused by this return code are product-specific.

2. The CM_OPERATION_NOT_ACCEPTED return code is not included in the state
table. A program receives CM_OPERATION_NOT_ACCEPTED when it issues a
call associated with a queue that has a a previous operation still in progress,
regardless of the state. No conversation state transition occurs.

3. The CM_CALL_NOT_SUPPORTED return code is not included in the state table.
It is returned when the local system provides an entry point for the call but does
not support the function requested by the call, regardless of the state. No state
transition occurs.

406 X/Open CAE Specification

State Tables Explanation of Full-duplex State Table Abbreviations

C.6.4 data_received and status_received { , }

The following abbreviations are used for the data_received values:

Abbreviation Meaning
Means one of the following:

CM_DATA_RECEIVED
CM_COMPLETE_DATA_RECEIVED
CM_INCOMPLETE_DATA_RECEIVED

dr

Means one of the following:

CM_DATA_RECEIVED
CM_COMPLETE_DATA_RECEIVED
CM_NO_DATA_RECEIVED

*

The following abbreviations are used for the status_received values:

Abbreviation Meaning
cd CM_CONFIRM_DEALLOC_RECEIVED

jt CM_JOIN_TRANSACTION

no CM_NO_STATUS_RECEIVED

po CM_PREPARE_OK

CM_TAKE_COMMIT or CM_TAKE_COMMIT_DATA_OK. These values are
returned only for conversations with sync_level set to
CM_SYNC_POINT_NO_CONFIRM.

tc

CM_TAKE_COMMIT_DEALLOCATE or
CM_TAKE_COMMIT_DEALLOC_DATA_OK. These values are returned only
for conversations with sync_level set to CM_SYNC_POINT_NO_CONFIRM.

td

Distributed Transaction Processing: CPI-C Specification, Version 2 407

Explanation of Full-duplex State Table Abbreviations State Tables

C.6.5 Table Symbols for the Full-duplex State Table

The following symbols are used in the state table to indicate the condition that results when a
call is issued from a certain state:

Symbol Meaning
Cannot occur. CPI Communications either will not allow this input or will
never return the indicated return codes for this input in this state.

/

− Remain in current state

1-18 Number of next state

It is valid to make this call from this state. See the table entries immediately
below this symbol to determine the state transition resulting from the call.

↓

Wait_for_Completion (CMWCMP) can only be issued when one or more of the
calls issued by the program has received a return code of
CM_OPERATION_INCOMPLETE. When Wait_for_Completion completes with
a return code of CM_OK, it returns a list of outstanding-operation-IDs that
identify the operations that have completed. Each of the conversations on
which a call has completed then makes a transition to the appropriate state as
indicated for the operations that are now complete.

%

For a conversation with sync_level set to CM_NONE or not currently included in
a transaction, this is equivalent to ↓. If the conversation has sync_level set to
CM_SYNC_POINT_NO_CONFIRM and the conversation is currently included
in a transaction, however, ↓’ means it is valid to make this call from this state
unless the program is in the Backout-Required condition. In that case, the call is
invalid and CM_PROGRAM_STATE_CHECK is returned. For valid calls, see the
table entries immediately below this symbol to determine the state transition
resulting from the call.

↓’

For a conversation with sync_level set to CM_NONE or not currently included in
a transaction, this symbol should be ignored. For a conversation using sync_level
set to CM_SYNC_POINT_NO_CONFIRM and currently included in a
transaction, when this symbol follows a state number or a − (for example, 1ˆ or
−ˆ), it means the program may be in the Backout-Required condition following
the call.

ˆ

Conversations with sync_level set to CM_SYNC_POINT_NO_CONFIRM go to
the state they were in at the completion of the most recent synchronization
point. If there was no prior synchronization event, both sides of the
conversation go to Send-Receive state.

#

Note: The following calls can only be issued on half-duplex conversations. When issued on
full-duplex conversations, CM_PROGRAM_PARAMETER_CHECK is returned for all
conversation states except Reset. Therefore, Confirm, Set_Error_Direction,
Prepare_To_Receive, Set_Prepare_To_Receive_Type, Request_To_Send,
Set_Processing_Mode, Set_Confirmation_Urgency and
Test_Request_To_Send_Received are not shown in the state tables.

408 X/Open CAE Specification

State Tables Full-duplex State Table

C.7 Full-duplex State Table

Table C-4 States and Transitions for CPI Communications Calls: Full-duplex

Used by CPI−C FDX conversations

Reset Ini- Ini- Send- Send- Receive- Defer- Sync- Sync-Pt- Prepared Confirm-
tialize tialize- Receive Only Only Dealloc Point Dealloc Dealloc†

Incoming
Inputs 1 2 14 17 15 16 10 11 13 18 8

Accept_Conversation ↓ / / / / / / / / / /

[ok] 17
[da,sc] −
Accept_Incoming [pc] [sc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok] 17
[da] 1
[oi,pc,sc] −
Allocate [pc] ↓’ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok] 17
[ae] 1
[oi,pc,pe,un,sc] −
Cancel_Conversation [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok] 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ
[pc] − − − − − − − − − −
Confirmed‡ [pc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] ↓
[ok] 1
[oi,pc] −
Deallocate(A) [pc] ↓ / ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok] 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ 1ˆ
[oi,pc] − − − − − − − − −
Deallocate(C) ‡ [pc] [sc] / ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,ae,da,dn,rf] 16
[dr,oi,pc,sc] −
Deallocate(F) [pc] [sc] ↓ ↓ ↓ [sc] [sc] [sc] [sc] [sc] [sc]

[ok] 1 16 1
[da,dn,rf] / 16 1
[ae] / 16 /
[oi,pc] − − −
[sc] / −
Deallocate(S) [pc] [sc] / ↓’ / / [sc] [sc] [sc] [sc] [sc]

[ok] 10
[ae,oi,pc,sc] −
[db,rb] 1ˆ
[bo] −ˆ
[ds] 1
[pb] 1ˆ

Deferred_Deallocate § [pc] [sc] [sc] ↓’ [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok] −+

[oi,pc] −
[ae] −
[db,rb,pb] 1ˆ
[bo] −ˆ

Extract_AE_Qualifier [pc] ↓ [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − −
Extract_AP_Title [pc] ↓ [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − −
Extract_Appl_Ctx_Name [pc] ↓ [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − −

Distributed Transaction Processing: CPI-C Specification, Version 2 409

Full-duplex State Table State Tables

Used by CPI−C FDX conversations

Reset Ini- Ini- Send- Send- Receive- Defer- Sync- Sync-Pt- Prepared Confirm-
tialize tialize- Receive Only Only Dealloc Point Dealloc Dealloc†

Incoming
Inputs 1 2 14 17 15 16 10 11 13 18 8

Extract_Conv_State [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − − −
[bo] / / − / / − − − − /

Extract_Conv_Type [pc] ↓ [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − −
Extract_Init_Data [pc] [sc] [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − −
Extract_Mode_Name [pc] ↓ [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − −
Extract_Part_LU_Name [pc] ↓ [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − −
Extract_Sec_User_ID [sc] ↓ [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − −
Extract_Secondary_Info ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,ns,pc] − − − − − − − − − − −
Extract_Send_Receive_Mode [pc] ↓ [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − −
Extract_Sync_Level [pc] ↓ [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − −
Extract_TP_Name [pc] ↓ [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − −
Extract_Transaction_Control [pc] ↓ [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − −
Flush [pc] [sc] [sc] ↓’ ↓ [sc] [sc] [sc] [sc] [sc] [sc]

[ok] − −
[oi,pc] − −
[rf,da,dn] 16 1
[ae] 16 /
[db,rb] 1ˆ /
[bo] −ˆ /
[ds] 1 /
[sc] − /
[pb] 1ˆ /

Include_Ptr_In_Trans§ [pc] [sc] [sc] ↓’ [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok] −
[oi,pc] −
[ae,da,rf,dn] 16

Initialize_Conversation ♦ ↓ / / / / / / / / / /

[ok] 2
[pc] −
Initialize_for_Incoming ↓ / / / / / / / / / /

[ok] 17
[pc] −
Prepare [pc] [sc] [sc] ↓’ [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok] 18
[oi,pc] −
[ae,rf] −
[db,pb,rb] 1ˆ
[ds] 1
[bo] −ˆ

410 X/Open CAE Specification

State Tables Full-duplex State Table

Used by CPI−C FDX conversations

Reset Ini- Ini- Send- Send- Receive- Defer- Sync- Sync-Pt- Prepared Confirm-
tialize tialize- Receive Only Only Dealloc Point Dealloc Dealloc†

Incoming
Inputs 1 2 14 17 15 16 10 11 13 18 8

Receive(I) [pc] [sc] [sc] ↓’ [sc] ↓ [sc] [sc] [sc] ↓’ [sc]

[ok] {dr,no} − − −
[ae] 1 1 1
[da,rf] 1 1 /
[dn] 15 1 /
[en,et] − − 17
[ep] − − /
[pc,un] − − −
[db,pb,rb] 1ˆ / 1ˆ
[bo] −ˆ / −ˆ
[ok] {*,tc} 11 / /
[ok] {*,td} 13 / /
[ok] {*,cd} 8 / /
[ds] 1 / /
[ok] {*,po} / / −
[ok] {*,jt} − / /
[sc] − / −
Receive(W) [pc] [sc] [sc] ↓’ [sc] ↓ [sc] [sc] [sc] ↓’ [sc]

[ok] {dr,no} − − −
[ae] 1 1 1
[da,rf] 1 1 /
[dn] 15 1 /
[en,et] − − 17
[ep] − − /
[oi,pc] − − −
[db,pb,rb] 1ˆ / 1ˆ
[bo] −ˆ / −ˆ
[ok] {*,tc} 11 / /
[ok] {*,td} 13 / /
[ok] {*,cd} 8 / /
[ds] 1 / /
[ok] {*,po} / / −
[ok] {*,jt} − / /
[sc] − / −
Receive_Exp_Data [pc] [sc] [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,ed,oi,pc,un] − − − − − − − −
Send_Data [pc] [sc] [sc] ↓’ ↓ [sc] [sc] ↓’ ↓’ [sc] [sc]

(B) [ok] − − − −
(F) [ok] − − − −
(D(A)) [ok] 1ˆ 1 1ˆ 1ˆ
(D(C)) [ok] 16 / / /
(D(F)) [ok] 16 1 / /
(D(S)) [ok] 10 / / /
[da,rf,dn] 16 1 / /
[ae] 16 / / /
[dr,oi,pc] − − − −
[db,rb] 1ˆ / 1ˆ 1ˆ
[bo] −ˆ / −ˆ −ˆ
[ds] 1 / / /
[sc] − / − −
[pb] 1ˆ / / /

Distributed Transaction Processing: CPI-C Specification, Version 2 411

Full-duplex State Table State Tables

Used by CPI−C FDX conversations

Reset Ini- Ini- Send- Send- Receive- Defer- Sync- Sync-Pt- Prepared Confirm-
tialize tialize- Receive Only Only Dealloc Point Dealloc Dealloc†

Incoming
Inputs 1 2 14 17 15 16 10 11 13 18 8

Send_Error [pc] [sc] [sc] ↓’ ↓ [sc] [sc] [sc] [sc] [sc] ↓
[ok] − − 17
[da,rf,dn] 16 1 1
[ae] 16 / /
[pc,oi] − − −
[ds] 1 / /
[sc] − / /
[db,rb] 1ˆ / /
[bo] −ˆ / /
[pb] 1ˆ / /

Send_Expedited_Data [pc] [sc] [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,ed,oi,pc] − − − − − − − −
Set_AE_Qualifier [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_Allocate_Confirm [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_AP_Title [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_Appl_Context_Name [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_Begin_Transaction [pc] ↓ [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − −
Set_Conv_Sec_PW [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_Conv_Sec_Type [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc,pn] −
Set_Conv_Sec_User_ID [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_Conversation_Type [pc] ↓ ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] − −
Set_Deallocate_Type [pc] ↓ [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − −
Set_Fill [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − − −
Set_Initialization_Data [pc] ↓ [sc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] − −
Set_Log_Data [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − − −
Set_Mode_Name [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_Partner_LU_Name [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_Prep_Data_Permitted [pc] ↓ [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − − −
Set_Processing_Mode [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[pc] − − − − − − − − − −
Set_Q_Callback_Func(N) [pc] ↓ ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] − −
Set_Q_Callback_Func(Q) [pc] ↓ [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − −
Set_Q_Proc_Mode(N) [pc] ↓ ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] − −

412 X/Open CAE Specification

State Tables Full-duplex State Table

Used by CPI−C FDX conversations

Reset Ini- Ini- Send- Send- Receive- Defer- Sync- Sync-Pt- Prepared Confirm-
tialize tialize- Receive Only Only Dealloc Point Dealloc Dealloc†

Incoming
Inputs 1 2 14 17 15 16 10 11 13 18 8

Set_Q_Proc_Mode(Q) [pc] ↓ [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − −
Set_Receive_Type [pc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − − −
Set_Return_Control [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_Send_Receive_Mode [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_Send_Type [pc] ↓ [sc] ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok,pc] − − − − − − − − −
Set_Sync_Level [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc,pn] −
Set_TP_Name [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Set_Transaction_Control [pc] ↓ [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc] [sc]

[ok,pc] −
Wait_For_Completion ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
[ok] / % % % % % % % % % %
[pc] / − − − − − − − − − −

Notes:

† This state is entered only if the conversation is allocated using an OSI TP CRM.

‡ This call can be issued only if the conversation is allocated using an OSI TP CRM.

§ The state table entries for Deferred_Deallocate and
Include_Partner_In_Transaction calls are for conversations using an OSI TP CRM
only. These calls get the CM_PROGRAM_PARAMETER_CHECK if issued on a
conversation using an LU 6.2 CRM, regardless of the state.

+ CPI Communications suspends action on the Deferred_Deallocate call until the
transaction is committed or backed out.

♦ While the Initialize_Conversation call can be issued only once for any given
conversation, a program can issue multiple Initialize_Conversation calls to
establish concurrent conversations with different partners. For more information,
see Section 3.7.1 on page 26.

Distributed Transaction Processing: CPI-C Specification, Version 2 413

Effects of Calls on Full-duplex Conversations to X/Open TX Interface State Tables

C.8 Effects of Calls on Full-duplex Conversations to X/Open TX Interface
Table C-5 shows the state transitions resulting from calls to the TX (Transaction Demarcation)
interface on full-duplex conversations. This table applies only to conversations with sync_level
set to CM_SYNC_POINT_NO_CONFIRM.

The following abbreviations are used for return codes in Table C-5:

Abbreviation Meaning
bo [TX_ROLLBACK] or [TX_ROLLBACK_NO_BEGIN]

coh [TX_COMMITTED] or [TX_COMMITTED_NO_BEGIN]

com [TX_MIXED] or [TX_MIXED_NO_BEGIN]

cop [TX_HAZARD] or [TX_HAZARD_NO_BEGIN]

fa [TX_FAIL]

ok [TX_OK] or [TX_NO_BEGIN]

sc [TX_PROTOCOL_ERROR]

Table C-5 States and Transitions for Protected Full-duplex (X/Open TX)

Used by CPI−C FDX conversations

Reset Ini- Ini- Send- Send- Receive- Defer- Sync- Sync-Pt- Prepared Confirm-
tialize tialize- Receive Only Only Dealloc Point Dealloc Dealloc

Incoming
Inputs 1 2 14 17 15 16 10 11 13 18 8

tx_commit() call [sc]† ↓‡ ↓‡ ↓ [sc] [sc] ↓ ↓ ↓ ↓ [sc]

[ok,cop,com] − − −♦ 1 17 1 17§

[bo] − − − 17 17 17 17
[sc] − − − − − − −
[fa] − − − − − − −
tx_rollback() call ↓+ ↓‡ ↓‡ ↓ [sc] [sc] ↓ ↓ ↓ ↓ [sc]

[ok,com,cop,coh] − − − − 17 17 17 17
[sc] − − − − − − − −
[fa] − − − − − − −
tx_begin() call − − − − − − − − / / /

tx_close() call − − − − − − − − − − −
tx_info() call − − − − − − − − − − −
tx_open() call − − − − − − − − − − −
tx_set_commit_return() call − − − − − − − − − − −
tx_set_trans_control() call − − − − − − − − − − −
tx_set_trans_timeout() call − − − − − − − − − − −

Notes:

† When a program started by an incoming conversation startup request issues a
tx_commit() call before issuing an Accept_Conversation call, a state check results.
The tx_commit() call has no effect on other conversations in Reset state.

‡ Conversations in Initialize or Initialize-Incoming state are not affected by
tx_commit() and tx_rollback () calls.

414 X/Open CAE Specification

State Tables Effects of Calls on Full-duplex Conversations to X/Open TX Interface

§ The conversation goes to Reset state if the local program had issued a
Deferred_Deallocate call or a Deallocate call with deallocate_type set to
CM_DEALLOCATE_SYNC_LEVEL prior to entering Prepared state.

+ When a program started by an incoming conversation startup request issues a
tx_rollback () call before issuing an Accept_Conversation call, the underlying
conversation is actually backed out, though the CPI Communications conversation
remains in Reset state.

♦ The conversation goes to Reset state if the program had issued a
Deferred_Deallocate call prior to issuing the tx_commit() call.

Distributed Transaction Processing: CPI-C Specification, Version 2 415

Effects of Calls to the SAA RRI on Full-duplex Conversations State Tables

C.9 Effects of Calls to the SAA RRI on Full-duplex Conversations
Table C-6 shows the state transitions resulting from calls to the SAA resource recovery interface
on full-duplex conversations. This table applies only to conversations with sync_level set to
CM_SYNC_POINT_NO_CONFIRM.

Commit and Backout are resource recovery calls. Their return codes are as follows.

Abbreviation Meaning
bo RR_BACKED_OUT

bom RR_BACKED_OUT_OUTCOME_MIXED

bop RR_BACKED_OUT_OUTCOME_PENDING

com RR_COMMITTED_OUTCOME_MIXED

cop RR_COMMITTED_OUTCOME_PENDING

ok RR_OK

sc RR_STATE_CHECK

Table C-6 States and Transitions for Protected Full-duplex (CPIRR)

Used by CPI−C FDX conversations

Reset Ini- Ini- Send- Send- Receive- Defer- Sync- Sync-Pt- Prepared Confirm-
tialize tialize- Receive Only Only Dealloc Point Dealloc Dealloc

Incoming
Inputs 1 2 14 17 15 16 10 11 13 18 8

Commit call† [sc] ↓§ ↓§ ↓ [sc] [sc] ↓ ↓ ↓ ↓ [sc]

[ok,cop,com] − − −+ 1 17 1 17
[bo,bop,bom] − − − 17 17 17 17
[fa,sc] − − − − − − −
Backout call‡ ↓ ↓§ ↓§ ↓ [sc] [sc] ↓ ↓ ↓ ↓ [sc]

[bo,bop,bom] − − − − 17 17 17 17

Notes:

† When a program started by an incoming conversation startup request issues a
Commit call before issuing an Accept_Conversation call, a state check results. The
Commit call has no effect on other conversations in Reset state.

‡ When a program started by an incoming conversation startup request issues a
Backout call before issuing an Accept_Conversation call, the underlying
conversation is actually backed out, though the CPI Communications conversation
remains in Reset state.

§ Conversations in Initialize or Initialize-Incoming state are not affected by
Commit and Backout calls.

+ The conversation goes to Reset state if the program had issued a
Deferred_Deallocate call prior to issuing the Commit call.

416 X/Open CAE Specification

Appendix D

Mapping to OSI TP and LU 6.2 CRMs

This appendix is intended to help programmers match CPI Communications functions to
equivalent OSI TP and LU 6.2 functions. It is divided into three sections, two for OSI TP (half-
duplex and full-duplex respectively) and one for LU 6.2.

Some CPI Communications functions are not part of the OSI TP or LU 6.2 services. Specifically,
these functions are provided by calls that map to local function only. The following is a list of
such calls:

Convert_Incoming
Convert_Outgoing
Extract_Initialization_Data
Extract_Maximum_Buffer_Size
Extract_Secondary_Information
Release_Local_TP_Name
Set_Processing_Mode
Set_Queue_Callback_Function
Set_Queue_Processing_Mode
Specify_Local_TP_Name
Wait_For_Completion
Wait_For_Conversation.

Calls that are not specifically a part of OSI TP or LU 6.2 services are not listed in the CPI
Communications to OSI TP and LU 6.2,respectively.

Distributed Transaction Processing: CPI-C Specification, Version 2 417

OSI TP CRMs (Half-duplex) Mapping to OSI TP and LU 6.2 CRMs

D.1 OSI TP CRMs (Half-duplex)
This section summarizes the CPI-C application service element (ASE) services, maps the services
both to and from the OSI TP services, and defines the sequencing rules and state table for CPI-C
use by OSI TP programs using half-duplex conversations.

The CPI Communications calls have been mapped to the OSI TP services described in ISO/IEC
10026-2, Information Technology — Open Systems Interconnection — Distributed Transaction
Processing — Part 2: OSI TP Service Definition.

Programs written using CPI Communications can communicate with OSI TP programs. Two
sets of tables beginning with Table D-1 on page 419 and Table D-16 on page 443 show the
functional relationships between OSI TP services and CPI Communications calls. Use these
tables to determine how the function of a particular OSI TP service is provided through CPI
Communications for half-duplex conversations.

This section is intended for programmers who are familiar with OSI TP.

D.1.1 Summary of CPI-C ASE Services

The CPI-C ASE services are defined in Chapter 5.

D.1.2 Mapping CPI-C to OSI TP Services

The following tables present the complete mapping from the CPI-C calls to the OSI TP services.
Some of the CPI-C calls provide local services only (such as CMSST, Set_Send_Type), and are not
included in these tables. However, the effect of these calls can be determined from this
mapping.

The following conventions are used within the tables in this section:

* The parameter is not directly supported by CPI-C.

=xxx The value xxx is always used.

n/a The value is not applicable in this case.

418 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Half-duplex)

Table D-1 Mapping CPI-C Calls to OSI TP Services

CPI-C Call OSI TP Service
CMALLC - Allocate

(See Table D-2 on page 421 for details.)
TP-BEGIN-DIALOGUE request

CMCANC - Cancel_Conversation
(See Table D-3 on page 424 for details.)

TP-BEGIN-DIALOGUE response
TP-U-ABORT request

CMCFM - Confirm
(See Table D-4 on page 425 for details.)

TP-BEGIN-TRANSACTION request
TP-HANDSHAKE request
TP-HANDSHAKE-AND-GRANT-CONTROL request

CMCFMD - Confirmed
(See Table D-5 on page 426 for details.)

TP-HANDSHAKE response
TP-HANDSHAKE-AND-GRANT-CONTROL response
TP-END-DIALOGUE response

CMDEAL - Deallocate
(See Table D-6 on page 427 for details.)

TP-BEGIN-DIALOGUE response
TP-END-DIALOGUE request
TP-DEFERRED-END-DIALOGUE request
TP-U-ABORT request

CMDFDE - Deferred_Deallocate
(See Table D-7 on page 429 for details.)

TP-DEFERRED-END-DIALOGUE request

CMFLUS - Flush Mapping
(See Table D-8 on page 430 for details.)

TP-GRANT-CONTROL request

CMINCL - Include_Partner_In_Transaction
(See Table D-9 on page 431 for details.)

TP-BEGIN-TRANSACTION request

CMPREP - Prepare
(See Table D-10 on page 432 for details.)

TP-BEGIN-TRANSACTION request
TP-PREPARE request

CMPTR - Prepare_to_Receive
(See Table D-11 on page 433 for details.)

TP-BEGIN-TRANSACTION request
TP-GRANT-CONTROL request
TP-HANDSHAKE-AND-GRANT-CONTROL request
TP-DEFERRED-GRANT-CONTROL request

CMRTS - Request_to_Send
(See Table D-12 on page 435 for details.)

TP-REQUEST-CONTROL request

CMRCV - Receive
(See Table D-13 on page 436 for details.)

TP-BEGIN-DIALOGUE response
TP-BEGIN-TRANSACTION request
TP-GRANT-CONTROL request

CMSEND - Send_Data
(See Table D-14 on page 437 for details.)

TP-BEGIN-TRANSACTION request
(TP-DATA request) UD-TRANSFER request
TP-HANDSHAKE request
TP-GRANT-CONTROL request
TP-HANDSHAKE-AND-GRANT-CONTROL request
TP-DEFERRED-GRANT-CONTROL request
TP-END-DIALOGUE request
TP-DEFERRED-END-DIALOGUE request
TP-U-ABORT request

CMSERR - Send_Error
(See Table D-15 on page 441 for details.)

TP-BEGIN-DIALOGUE response
TP-BEGIN-TRANSACTION request
TP-U-ERROR request

Distributed Transaction Processing: CPI-C Specification, Version 2 419

OSI TP CRMs (Half-duplex) Mapping to OSI TP and LU 6.2 CRMs

The following OSI TP services are not directly mapped to the CPI-C calls:

TP-COMMIT request
Supported through a resource recovery interface.

TP-DONE request
Not externalized to the application program.

TP-ROLLBACK request
Supported through a resource recovery interface.

420 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Half-duplex)

Table D-2 CMALLC — Allocate Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: sync_level = CM_NONE
CMALLC - Allocate TP-BEGIN-DIALOGUE request

* Initiating-TPSU-Title
AP_title (characteristic) Recipient-AP-Title

* Recipient-API-Identi fier
AE_qualifier (characteristic) Recipient-AE-Qualifier

* Recipient-AEI-Identi fier
TP_name (characteristic) Recipient-TPSU-Title

=Dialogue and Polarized Functional-Units
mode_name (characteristic) Quality-of-Service
application_context_name (characteristic) Application-Context-Name

n/a Begin-Transaction
allocate_confirm (characteristic) Confirmation
initialization_data (characteristic) User-Data

if: sync_level = CM_CONFIRM
CMALLC - Allocate TP-BEGIN-DIALOGUE request

* Initiating-TPSU-Title
AP_title (characteristic) Recipient-AP-Title

* Recipient-API-Identi fier
AE_qualifier (characteristic) Recipient-AE-Qualifier

* Recipient-AEI-Identi fier
TP_name (characteristic) Recipient-TPSU-Title

=Dialogue, Polarized, and Handshake Functional-Units
mode_name (characteristic) Quality-of-Service
application_context_name (characteristic) Application-Context-Name

n/a Begin-Transaction
allocate_confirm (characteristic) Confirmation
initialization_data (characteristic) User-Data

if: sync_level = CM_SYNC_POINT
and transaction_control = CM_CHAINED_TRANSACTIONS
CMALLC - Allocate TP-BEGIN-DIALOGUE request

* Initiating-TPSU-Title
AP_title (characteristic) Recipient-AP-Title

* Recipient-API-Identi fier
AE_qualifier (characteristic) Recipient-AE-Qualifier

* Recipient-AEI-Identi fier
TP_name (characteristic) Recipient-TPSU-Title

=Dialogue, Polarized, Handshake, Functional-Units
Commit, and Chained Transactions

mode_name (characteristic) Quality-of-Service
application_context_name (characteristic) Application-Context-Name

n/a Begin-Transaction
allocate_confirm (characteristic) Confirmation
initialization_data (characteristic) User-Data

Distributed Transaction Processing: CPI-C Specification, Version 2 421

OSI TP CRMs (Half-duplex) Mapping to OSI TP and LU 6.2 CRMs

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: sync_level = CM_SYNC_POINT
and transaction_control = CM_UNCHAINED_TRANSACTIONS
CMALLC - Allocate TP-BEGIN-DIALOGUE request

* Initiating-TPSU-Title
AP_title (characteristic) Recipient-AP-Title

* Recipient-API-Identi fier
AE_qualifier (characteristic) Recipient-AE-Qualifier

* Recipient-AEI-Identi fier
TP_name (characteristic) Recipient-TPSU-Title

=Dialogue, Polarized, Handshake, Functional-Units
Commit, and Unchained Transactions

mode_name (characteristic) Quality-of-Service
application_context_name (characteristic) Application-Context-Name
begin_transaction (characteristic) Begin-Transaction (See note at end of table.)
allocate_confirm (characteristic) Confirmation
initialization_data (characteristic) User-Data

if: sync_level = CM_SYNC_POINT_NO_CONFIRM
and transaction_control = CM_CHAINED_TRANSACTIONS
CMALLC - Allocate TP-BEGIN-DIALOGUE request

* Initiating-TPSU-Title
AP_title (characteristic) Recipient-AP-Title

* Recipient-API-Identi fier
AE_qualifier (characteristic) Recipient-AE-Qualifier

* Recipient-AEI-Identi fier
TP_name (characteristic) Recipient-TPSU-Title

=Dialogue, Polarized, Commit, Functional-Units
and Chained Transactions

mode_name (characteristic) Quality-of-Service
application_context_name (characteristic) Application-Context-Name

n/a Begin-Transaction
allocate_confirm (characteristic) Confirmation
initialization_data (characteristic) User-Data

422 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Half-duplex)

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: sync_level = CM_SYNC_POINT_NO_CONFIRM
and transaction_control = CM_UNCHAINED_TRANSACTIONS
CMALLC - Allocate TP-BEGIN-DIALOGUE request

* Initiating-TPSU-Title
AP_title (characteristic) Recipient-AP-Title

* Recipient-API-Identi fier
AE_qualifier (characteristic) Recipient-AE-Qualifier

* Recipient-AEI-Identi fier
TP_name (characteristic) Recipient-TPSU-Title

=Dialogue, Polarized, Commit, Functional-Units
and Unchained Transactions

mode_name (characteristic) Quality-of-Service
application_context_name (characteristic) Application-Context-Name
begin_transaction (characteristic) Begin-Transaction (See note at end of table.)
allocate_confirm (characteristic) Confirmation
initialization_data (characteristic) User-Data

Note: if: begin_transaction = CM_BEGIN_IMPLICIT
and transaction_control = CM_UNCHAINED_TRANSACTIONS
and the program is in transaction mode
then Begin-Transaction is set to true;
otherwise: Begin-Transaction is set to false.

Distributed Transaction Processing: CPI-C Specification, Version 2 423

OSI TP CRMs (Half-duplex) Mapping to OSI TP and LU 6.2 CRMs

Table D-3 CMCANC — Cancel_Conversation Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: Confirmation = true on TP-BEGIN-DIALOGUE indication
and it is the first activity on the conversation following Accept_Conversation or Accept_Incoming
CMCANC - Cancel_Conversation TP-BEGIN-DIALOGUE response

= rejected(user) Result
initialization_data (characteristic) User-Data

otherwise
CMCANC - Cancel_Conversation TP-U-ABORT request

=null User-Data

424 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Half-duplex)

Table D-4 CMCFM — Confirm Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: sync_level = CM_SYNC_POINT
and transaction_control = CM_UNCHAINED_TRANSACTIONS
and begin_transaction = CM_BEGIN_IMPLICIT
and it is the first activity on the conversation following the start of the current transaction
CMCFM - Confirm TP-BEGIN-TRANSACTION request

(no parameters)
TP-HANDSHAKE request

confirmation_urgency (characteristic) Confirmation-Urgency
if: sync_level = CM_SYNC_POINT
and the previous operation on the conversation was a Prepare_to_Receive
with prepare_to_receive_type = CM_PREP_TO_RECEIVE_SYNC_LEVEL
CMCFM - Confirm TP-HANDSHAKE-AND-GRANT-CONTROL request

(no parameters)
if: sync_level = CM_CONFIRM or sync_level = CM_SYNC_POINT
CMCFM - Confirm TP-HANDSHAKE request

confirmation_urgency (characteristic) Confirmation-Urgency

Distributed Transaction Processing: CPI-C Specification, Version 2 425

OSI TP CRMs (Half-duplex) Mapping to OSI TP and LU 6.2 CRMs

Table D-5 CMCFMD — Confirmed Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if in response to: status_received = CM_CONFIRM_RECEIVED
CMCFMD - Confirmed TP-HANDSHAKE response

(no parameters)
if in response to: status_received = CM_CONFIRM_SEND_RECEIVED
CMCFMD - Confirmed TP-HANDSHAKE_AND-GRANT-CONTROL response

(no parameters)
if in response to: status_received = CM_CONFIRM_DEALLOC_RECEIVED
CMCFMD - Confirmed TP-END-DIALOGUE response

(no parameters)

426 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Half-duplex)

Table D-6 CMDEAL — Deallocate Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
and sync_level = CM_NONE
CMDEAL - Deallocate (See note 2 at end of table.)

TP-END-DIALOGUE request
=false Confirmation

if: deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
and sync_level = CM_CONFIRM
CMDEAL - Deallocate (See note 1 at end of table.)

TP-END-DIALOGUE request
=true Confirmation

if: deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
and (sync_level = CM_SYNC_POINT or sync_level = CM_SYNC_POINT_NO_CONFIRM)
and (transaction_control = CM_CHAINED_TRANSACTIONS or (transaction_control =
CM_UNCHAINED_TRANSACTIONS and the conversation is included in the current transaction))
CMDEAL - Deallocate (See note 3 at end of table.)

TP-DEFERRED-END-DIALOGUE request
(no parameters)

if: deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
and sync_level = CM_SYNC_POINT
and (transaction_control = CM_UNCHAINED_TRANSACTIONS
and the conversation is not currently included in the transaction)
CMDEAL - Deallocate (See note 1 at end of table.)

TP-END-DIALOGUE request
=true Confirmation

if: deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
and sync_level = CM_SYNC_POINT_NO_CONFIRM
and (transaction_control = CM_UNCHAINED_TRANSACTIONS
and the conversation is not currently included in the transaction)
CMDEAL - Deallocate (See note 2 at end of table.)

TP-END-DIALOGUE request
=false Confirmation

if: deallocate_type = CM_DEALLOCATE_FLUSH
CMDEAL - Deallocate (See note 2 at end of table.)

TP-END-DIALOGUE request
=false Confirmation

if: deallocate_type = CM_DEALLOCATE_CONFIRM
CMDEAL - Deallocate (See note 1 at end of table.)

TP-END-DIALOGUE request
=true Confirmation

if: deallocate_type = CM_DEALLOCATE_ABEND
and it is the first activity on the conversation following Accept_Conversation or Accept_Incoming
CMDEAL - Deallocate TP-BEGIN-DIALOGUE response

=rejected(user) Result
initialization_data (characteristic) User-Data

Distributed Transaction Processing: CPI-C Specification, Version 2 427

OSI TP CRMs (Half-duplex) Mapping to OSI TP and LU 6.2 CRMs

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: deallocate_type = CM_DEALLOCATE_ABEND
and it is not the first activity on the conversation following Accept_Conversation or Accept_Incoming
CMDEAL - Deallocate TP-U-ABORT request

log_data (characteristic) User-Data
Note 1: if: Confirmation = true on TP-BEGIN-DIALOGUE indication
and it is the first activity on the conversation following Accept_Conversation or Accept_Incoming
then the identified OSI TP Service primitive will be preceded by
TP-BEGIN-DIALOGUE response (Result = accepted and
User-Data = initialization_data (characteristic)).
Note 2: if: a TP-U-ERROR indication has arrived but has not been indicated to the program
then: replace the TP-END-DIALOGUE request by a TP-U-ABORT request.
Note 3: if: a TP-U-ERROR indication has arrived but has not been indicated to the program
then: do not send any OSI TP Service primitive, a subsequent tx_commit()
will generate a TP-ROLLBACK request.

428 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Half-duplex)

Table D-7 CMDFDE — Deferred_Deallocate Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

CMDFDE - Deferred_Deallocate TP-DEFERRED-END-DIALOGUE request
(no parameters)

Distributed Transaction Processing: CPI-C Specification, Version 2 429

OSI TP CRMs (Half-duplex) Mapping to OSI TP and LU 6.2 CRMs

Table D-8 CMFLUS — Flush Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: the previous operation on the conversation was a Prepare_to_Receive
with prepare_to_receive_type = CM_PREP_TO_RECEIVE_SYNC_LEVEL
CMFLUS - Flush TP-GRANT-CONTROL request

(no parameters)

430 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Half-duplex)

Table D-9 CMINCL — Include_Partner_In_Transaction Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

CMINCL - Include_Partner_In_Transaction TP-BEGIN-TRANSACTION request
(no parameters)

Distributed Transaction Processing: CPI-C Specification, Version 2 431

OSI TP CRMs (Half-duplex) Mapping to OSI TP and LU 6.2 CRMs

Table D-10 CMPREP — Prepare Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: sync_level = CM_SYNC_POINT or sync_level = CM_SYNC_POINT_NO_CONFIRM
and transaction_control = CM_UNCHAINED_TRANSACTIONS
and begin_transaction = CM_BEGIN_IMPLICIT
and it is the first activity on the conversation following the start of the current transaction
CMPREP - Prepare TP-BEGIN-TRANSACTION request

(no parameters)
TP-PREPARE request

prepare_data_permitted (characteristic) Data-Permitted
if: sync_level = CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM,
and the previous operation on the conversation was a Prepare_To_Receive
with prepare_to_receive_type = CM_PREP_TO_RECEIVE_SYNC_LEVEL
CMPREP - Prepare TP-DEFERRED-GRANT-CONTROL request

(no parameters)
TP-PREPARE request

prepare_data_permitted (characteristic) Data-Permitted
if: sync_level = CM_SYNC_POINT or sync_level = CM_SYNC_POINT_NO_CONFIRM
CMPREP - Prepare TP-PREPARE request

prepare_data_permitted (characteristic) Data-Permitted

432 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Half-duplex)

Table D-11 CMPTR — Prepare_To_Receive Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: prepare_to_receive_type = CM_PREP_TO_RECEIVE_SYNC_LEVEL
and sync_level = CM_NONE
CMPTR - Prepare_To_Receive (see note 3 at end of table.)

TP-GRANT-CONTROL request
(no parameters)

if: prepare_to_receive_type = CM_PREP_TO_RECEIVE_SYNC_LEVEL
and sync_level = CM_CONFIRM
CMPTR - Prepare_To_Receive TP-HANDSHAKE-AND-GRANT-CONTROL request

confirmation_urgency (characteristic) Confirmation-Urgency
if: prepare_to_receive_type = CM_PREP_TO_RECEIVE_SYNC_LEVEL
and sync_level = CM_SYNC_POINT or sync_level = CM_SYNC_POINT_NO_CONFIRM
and (transaction_control = CM_CHAINED_TRANSACTIONS
or (transaction_control = CM_UNCHAINED_TRANSACTIONS
and the conversation is included in the current transaction))
CMPTR - Prepare_To_Receive (see notes 1, 2 and 4 at end of table.)
if: prepare_to_receive_type = CM_PREP_TO_RECEIVE_SYNC_LEVEL
and sync_level = CM_SYNC_POINT
and (transaction_control = CM_UNCHAINED_TRANSACTIONS
and the conversation is not currently included in the transaction)
CMPTR - Prepare_To_Receive TP-HANDSHAKE-AND-GRANT-CONTROL request

confirmation_urgency (characteristic) Confirmation-Urgency
if: prepare_to_receive_type = CM_PREP_TO_RECEIVE_SYNC_LEVEL
and sync_level = CM_SYNC_POINT_NO_CONFIRM
and (transaction_control = CM_UNCHAINED_TRANSACTIONS
and the conversation is not currently included in the transaction)
CMPTR - Prepare_To_Receive (see note 3 at end of table.)

TP-GRANT-CONTROL request
(no parameters)

if: prepare_to_receive_type = CM_PREP_TO_RECEIVE_FLUSH
CMPTR - Prepare_To_Receive (see notes 2 and 3 at end of table.)

TP-GRANT-CONTROL request
(no parameters)

Distributed Transaction Processing: CPI-C Specification, Version 2 433

OSI TP CRMs (Half-duplex) Mapping to OSI TP and LU 6.2 CRMs

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: prepare_to_receive_type = CM_PREP_TO_RECEIVE_CONFIRM
CMPTR - Prepare_To_Receive (see note 2 at end of table.)

TP-HANDSHAKE-AND-GRANT-CONTROL request
confirmation_urgency (characteristic) Confirmation-Urgency

Note 1: The completion of the mapping of Prepare_To_Receive depends
on the following operation on the conversation. If the operation is:
Flush — a TP-GRANT-CONTROL request will be sent
Confirm — a TP-HANDSHAKE-AND-GRANT-CONTROL request will be sent
a commit call — a TP-DEFERRED-GRANT-CONTROL request will be sent
Prepare — a TP-DEFERRED-GRANT-CONTROL request will be sent.

Note 2: if sync_level = CM_SYNC_POINT_NO_CONFIRM
and transaction_control = CM_UNCHAINED_TRANSACTIONS
and begin_transaction = CM_BEGIN_IMPLICIT
and the Prepare_To_Receive call is the first activity
on the conversation following the start of the current transaction,

then the identified OSI TP service primitives are preceded by a TP-BEGIN-TRANSACTION request.
Note 3: if: a TP-U-ERROR indication has arrived but has not been indicated to the program
then: do not send any OSI TP Service primitive.
Note 4: if: a TP-U-ERROR indication has arrived but has not been indicated to the program
then: do not send any OSI TP Service primitive, a subsequent tx_commit()
will generate a TP-ROLLBACK request.

434 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Half-duplex)

Table D-12 CMRTS — Request_To_Send Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

CMRTS - Request_To_Send TP-REQUEST-CONTROL request
(no parameters)

Distributed Transaction Processing: CPI-C Specification, Version 2 435

OSI TP CRMs (Half-duplex) Mapping to OSI TP and LU 6.2 CRMs

Table D-13 CMRCV — Receive

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: Confirmation = true on TP-BEGIN-DIALOGUE indication
and it is the first activity on the conversation following Accept_Conversation or Accept_Incoming
CMRCV - Receive TP-BEGIN-DIALOGUE response

= accepted Result
initialization_data (characteristic) User-Data

if: conversation_state = CM_SEND_STATE or CM_SEND_PENDING_STATE
and sync_level = CM_SYNC_POINT or sync_level = CM_SYNC_POINT_NO_CONFIRM
and transaction_control = CM_UNCHAINED_TRANSACTIONS
and begin_transaction = CM_BEGIN_IMPLICIT
and it is the first activity on the conversation following the start of the current transaction
CMRCV - Receive TP-BEGIN-TRANSACTION request

(no parameters)
TP-GRANT-CONTROL request

(no parameters)
if: conversation_state = CM_SEND_STATE
CMRCV - Receive TP-GRANT-CONTROL request

(no parameters)

436 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Half-duplex)

Table D-14 CMSEND — Send_Data Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: send_type = CM_BUFFER_DATA
CMSEND - Send_Data (See note 1 at end of table.)

(TP-DATA request) UD-TRANSFER request
buffer (parameter) User-Data

if: send_type = CM_SEND_AND_FLUSH
CMSEND - Send_Data (See note 1 at end of table.)

TP-DATA request) UD-TRANSFER request
buffer (parameter) User-Data

if: send_type = CM_SEND_AND_CONFIRM
CMSEND - Send_Data (See note 1 at end of table.)

(TP-DATA request) UD-TRANSFER request
buffer (parameter) User-Data

TP-HANDSHAKE request
confirmation_urgency (characteristic) Confirmation-Urgency

if: send_type = CM_SEND_AND_PREP_TO_RECEIVE
and prepare_to_receive_type = CM_PREP_TO_RECEIVE_SYNC_LEVEL
and sync_level = CM_NONE
CMSEND - Send_Data (TP-DATA request) UD-TRANSFER request

buffer (parameter) User-Data
TP-GRANT-CONTROL request

(no parameters)
if: send_type = CM_SEND_AND_PREP_TO_RECEIVE
and prepare_to_receive_type = CM_PREP_TO_RECEIVE_SYNC_LEVEL
and sync_level = CM_CONFIRM
CMSEND - Send_Data TP-DATA request) UD-TRANSFER request

buffer (parameter) User-Data
TP-HANDSHAKE-AND-GRANT-CONTROL request

confirmation_urgency (characteristic) Confirmation-Urgency
if: send_type = CM_SEND_AND_PREP_TO_RECEIVE
and prepare_to_receive_type = CM_PREP_TO_RECEIVE_SYNC_LEVEL
and sync_level = CM_SYNC_POINT or sync_level = CM_SYNC_POINT_NO_CONFIRM
and (transaction_control = CM_CHAINED_TRANSACTIONS
or (transaction_control = CM_UNCHAINED_TRANSACTIONS
and the conversation is included in the current transaction))
CMSEND - Send_Data (See note 1 at end of table.)

(TP-DATA request) UD-TRANSFER request
buffer (parameter) User-Data

(See note 2 at end of table.)

Distributed Transaction Processing: CPI-C Specification, Version 2 437

OSI TP CRMs (Half-duplex) Mapping to OSI TP and LU 6.2 CRMs

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: send_type = CM_SEND_AND_PREP_TO_RECEIVE
and prepare_to_receive_type = CM_PREP_TO_RECEIVE_SYNC_LEVEL
and sync_level = CM_SYNC_POINT
and (transaction_control = CM_UNCHAINED_TRANSACTIONS
and the conversation is not currently included in the transaction)
CMSEND - Send_Data (TP-DATA request) UD-TRANSFER request

buffer (parameter) User-Data
TP-HANDSHAKE-AND-GRANT-CONTROL request

confirmation_urgency (characteristic) Confirmation-Urgency
if: send_type = CM_SEND_AND_PREP_TO_RECEIVE
and prepare_to_receive_type = CM_PREP_TO_RECEIVE_SYNC_LEVEL
and sync_level = CM_SYNC_POINT_NO_CONFIRM
and (transaction_control = CM_UNCHAINED_TRANSACTIONS
and the conversation is not currently included in the transaction)
CMSEND - Send_Data (TP-DATA request) UD-TRANSFER request

buffer (parameter) User-Data
TP-GRANT-CONTROL request

(no parameters)
if: send_type = CM_SEND_AND_PREP_TO_RECEIVE
and prepare_to_receive_type = CM_PREP_TO_RECEIVE_FLUSH
CMSEND - Send_Data (See note 1 at end of table.)

(TP-DATA request) UD-TRANSFER request
buffer (parameter) User-Data

TP-GRANT-CONTROL request
(no parameters)

if: send_type = CM_SEND_AND_PREP_TO_RECEIVE
and prepare_to_receive_type = CM_PREP_TO_RECEIVE_CONFIRM
CMSEND - Send_Data (See note 1 at end of table.)

(TP-DATA request) UD-TRANSFER request
buffer (parameter) User-Data

TP-HANDSHAKE-AND-GRANT-CONTROL request
confirmation_urgency (characteristic) Confirmation-Urgency

if: send_type = CM_SEND_AND_DEALLOCATE
and deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
and sync_level = CM_NONE
CMSEND - Send_Data (TP-DATA request) UD-TRANSFER request

buffer (parameter) User-Data
TP-END-DIALOGUE request

=false Confirmation
if: send_type = CM_SEND_AND_DEALLOCATE
and deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
and sync_level = CM_CONFIRM
CMSEND - Send_Data (TP-DATA request) UD-TRANSFER request

buffer (parameter) User-Data
TP-END-DIALOGUE request

=true Confirmation

438 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Half-duplex)

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: send_type = CM_SEND_AND_DEALLOCATE
and deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
and sync_level = CM_SYNC_POINT or sync_level = CM_SYNC_POINT_NO_CONFIRM
and (transaction_control = CM_CHAINED_TRANSACTIONS
or (transaction_control = CM_UNCHAINED_TRANSACTIONS
and the conversation is included in the current transaction))
CMSEND - Send_Data (See note 1 at end of table.)

(TP-DATA request) UD-TRANSFER request
buffer (parameter) User-Data

TP-DEFERRED-END-DIALOGUE request
(no parameters)

if: send_type = CM_SEND_AND_DEALLOCATE
and deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
and sync_level = CM_SYNC_POINT
and (transaction_control = CM_UNCHAINED_TRANSACTIONS
and the conversation is not currently included in the transaction)
CMSEND - Send_Data (TP-DATA request) UD-TRANSFER request

buffer (parameter) User-Data
TP-END-DIALOGUE request

=true Confirmation
if: send_type = CM_SEND_AND_DEALLOCATE
and deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
and sync_level = CM_SYNC_POINT_NO_CONFIRM
and (transaction_control = CM_UNCHAINED_TRANSACTIONS
and the conversation is not currently included in the transaction)
CMSEND - Send_Data (TP-DATA request) UD-TRANSFER request

buffer (parameter) User-Data
TP-END-DIALOGUE request

=false Confirmation
if: send_type = CM_SEND_AND_DEALLOCATE
and deallocate_type = CM_DEALLOCATE_FLUSH
CMSEND - Send_Data (TP-DATA request) UD-TRANSFER request

buffer (parameter) User-Data
TP-END-DIALOGUE request

=false Confirmation
if: send_type = CM_SEND_AND_DEALLOCATE
and deallocate_type = CM_DEALLOCATE_CONFIRM
CMSEND - Send_Data (TP-DATA request) UD-TRANSFER request

buffer (parameter) User-Data
TP-END-DIALOGUE request

=true Confirmation

Distributed Transaction Processing: CPI-C Specification, Version 2 439

OSI TP CRMs (Half-duplex) Mapping to OSI TP and LU 6.2 CRMs

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: send_type = CM_SEND_AND_DEALLOCATE
and deallocate_type = CM_DEALLOCATE_ABEND
CMSEND - Send_Data (See note 1 at end of table.)

(TP-DATA request) UD-TRANSFER request
buffer (parameter) User-Data

TP-U-ABORT request
log_data (characteristic) User-Data

Note 1: if sync_level = CM_SYNC_POINT_NO_CONFIRM
and transaction_control = CM_UNCHAINED_TRANSACTIONS
and begin_transaction = CM_BEGIN_IMPLICIT
and the Send_Data call is the first activity on the conversation
following the start of the current transaction,
then the identified OSI TP service primitives are preceded by a TP-BEGIN-TRANSACTION request.
Note 2: The completion of the mapping of Send_Data depends
on the following operation on the conversation. If the operation is:
Flush — a TP-GRANT-CONTROL request will be sent
Confirm — a TP-HANDSHAKE-AND-GRANT-CONTROL request will be sent
a commit call — a TP-DEFERRED-GRANT-CONTROL request will be sent
Prepare — a TP-DEFERRED-GRANT-CONTROL request will be sent.

General Note: The data specified by the buffer and send_length
parameters of the CMSEND call maps exactly to the User-Data
of the UD-TRANSFER request, independent of the value of conversation_type.

440 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Half-duplex)

Table D-15 CMSERR — Send_Error Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: Confirmation = true on TP-BEGIN-DIALOGUE indication
and it is the first activity on the conversation following Accept_Conversation or Accept_Incoming
CMSERR - Send_Error TP-BEGIN-DIALOGUE response

= accepted Result
initialization_data (characteristic) User-Data

TP-U-ERROR request
(no parameters)

if: sync_level = CM_SYNC_POINT or sync_level = CM_SYNC_POINT_NO_CONFIRM
and transaction_control = CM_UNCHAINED_TRANSACTIONS
and begin_transaction = CM_BEGIN_IMPLICIT
and it is the first activity on the conversation following the start of the current transaction
CMSERR - Send_Error TP-BEGIN-TRANSACTION request

(no parameters)
TP-U-ERROR request

(no parameters)
if: the local CRM has received a TP-Prepare indication
CMSERR - Send_Error TP-ROLLBACK request

(no parameters)
otherwise:
CMSERR - Send_Error TP-U-ERROR request

(no parameters)

Distributed Transaction Processing: CPI-C Specification, Version 2 441

OSI TP CRMs (Half-duplex) Mapping to OSI TP and LU 6.2 CRMs

D.1.3 Mapping OSI TP Services to CPI-C for Half-duplex Conversations

The following tables present the complete mapping from the OSI TP services to CPI-C for half-
duplex conversations.

The following conventions are used within the tables in this section:

- The parameter is not applicable because of other parameter settings.

* The parameter is not directly supported by CPI-C.

=xxx The value xxx is expected by CPI-C.

442 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Half-duplex)

Table D-16 Mapping OSI TP to CPI-C Calls, Parameters and Characteristics

OSI TP Service CPI-C Calls, Parameters and Characteristics
(TP-DATA indication) UD-TRANSFER indication Completes an outstanding

CMRCV - Receive.
TP-BEGIN-DIALOGUE indication Completes an outstanding

(See Table D-17 on page 445 for details.) CMACCP - Accept_Conversation
CMACCI - Accept_Incoming

and maps to conversation characteristics.
TP-BEGIN-DIALOGUE confirm Completes an outstanding

(See Table D-18 on page 446 for details.) CMRCV - Receive
and maps to

control_information_received values.
TP-END-DIALOGUE indication Completes an outstanding

(See Table D-19 on page 448 for details.) CMRCV - Receive
and maps to status_received or return_code values.

TP-END-DIALOGUE confirm Completes an outstanding
(no parameters) CMSEND - Send_Data

CMDEAL - Deallocate
and maps to

return_code = CM_OK.
TP-U-ERROR indication Completes an outstanding

(no parameters) CMCFM - Confirm
CMDEAL - Deallocate
CMDFDE - Deferred_Deallocate
CMINCL - Include_Partner_In_Transaction
CMPREP - Prepare
CMPTR - Prepare_To_Receive
CMRCV - Receive
CMSEND - Send_Data
CMSERR - Send_Error

and maps to
return_code = CM_PROGRAM_ERROR_PURGING.

TP-U-ABORT indication Completes an outstanding
(See Table D-20 on page 449 for details.) CMRCV - Receive

and maps to return_code values.
TP-P-ABORT indication Completes an outstanding

(See Table D-21 on page 450 for details.) CMRCV - Receive
and maps to return_code values.

TP-GRANT-CONTROL indication Completes an outstanding
(no parameters) CMRCV - Receive

and maps to
status_received = CM_SEND_RECEIVED.

TP-REQUEST-CONTROL indication Maps to
(no parameters) control_information_received =

CM_REQ_TO_SEND_RECEIVED.
TP-HANDSHAKE indication Completes an outstanding

(no parameters) CMRCV - Receive
and maps to

status_received = CM_CONFIRM_RECEIVED.

Distributed Transaction Processing: CPI-C Specification, Version 2 443

OSI TP CRMs (Half-duplex) Mapping to OSI TP and LU 6.2 CRMs

OSI TP Service CPI-C Calls, Parameters and Characteristics
TP-HANDSHAKE confirm Completes an outstanding

(no parameters) CMCFM - Confirm
CMSEND - Send_Data

and maps to
return_code = CM_OK.

TP-HANDSHAKE-AND-GRANT-CONTROL indication Completes an outstanding
(no parameters) CMRCV - Receive

and maps to
status_received = CM_CONFIRM_SEND_RECEIVED.

TP-HANDSHAKE-AND-GRANT-CONTROL confirm Completes an outstanding
(no parameters) CMPTR - Prepare_To_Receive

CMSEND - Send_Data
and maps to

return_code = CM_OK.
TP-BEGIN-TRANSACTION indication Completes an outstanding

(no parameters) CMRCV - Receive
and maps to

status_received = CM_JOIN_TRANSACTION.
TP-DEFERRED-END-DIALOGUE indication Maps to status_received values.

(See Table D-22 on page 451 for details.)

TP-DEFERRED-GRANT-CONTROL indication Maps to status_received values.
(See Table D-22 on page 451 for details.)

TP-PREPARE indication Completes an outstanding
(See Table D-22 on page 451 for details.) CMRCV - Receive

and maps to status_received values.
TP-READY indication Completes an outstanding

CMRCV - Receive
and maps to status_received = CM_PREPARE_OK.

TP-COMMIT indication (Handled by a resource recovery component.)
TP-COMMIT-COMPLETE indication (Handled by a resource recovery component.)
TP-ROLLBACK indication Maps to

(no parameters) return_code = CM_TAKE_BACKOUT.
TP-ROLLBACK-COMPLETE indication (Handled by a resource recovery component.)
TP-HEURISTIC-REPORT indication (Handled by a resource recovery component.)

444 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Half-duplex)

Table D-17 TP-BEGIN-DIALOGUE indication Mapping

OSI TP Service Parameters CPI-C Calls, Parameters and Characteristics
TP-BEGIN-DIALOGUE indication Maps to conversation characteristics:

Initiating-AP-Title AP_title (characteristic)
Initiating-API-Identi fier *
Initiating-AE-Quali fier AE_qualifier (characteristic)
Initiating-AEI-Identi fier *
Recipient-TPSU-Title TP_name (characteristic)
Functional-Units sync_level, send_receive_mode, and

transaction_control (characteristics)
and TX transaction_control characteristic

Begin-Transaction
true Completes an outstanding

CMRCV - Receive
and maps to

status_received = CM_JOIN_TRANSACTION
(also available through a resource
recovery interface)

false * (through a resource recovery interface)
Confirmation * (confirmation is implicit)
User-Data initialization_data (characteristic)

Distributed Transaction Processing: CPI-C Specification, Version 2 445

OSI TP CRMs (Half-duplex) Mapping to OSI TP and LU 6.2 CRMs

Table D-18 TP-BEGIN-DIALOGUE confirm Mapping

OSI TP Service Parameters CPI-C Calls, Parameters and Characteristics
if: Result = accepted
and User-Data is not present
TP-BEGIN-DIALOGUE confirm Maps to control_information_received =

CM_ALLOCATE_CONFIRMED.
Functional-Units *
Diagnostic -
Rollback -
User-Data -

if: Result = accepted
and User-Data is present
TP-BEGIN-DIALOGUE confirm Maps to control_information_received =

CM_ALLOCATE_CONFIRMED_WITH_DATA
Functional-Units *
Diagnostic -
Rollback -
User-Data initialization_data (characteristic)

if: Result = rejected(user)
and User-Data is not present
TP-BEGIN-DIALOGUE confirm Maps to return_code values.

Functional-Units *
Diagnostic -
Rollback

true CM_DEALLOCATED_ABEND_BO
false CM_DEALLOCATED_ABEND

User-Data initialization_data (characteristic)
if: Result = rejected(user)
and User-Data is present
TP-BEGIN-DIALOGUE confirm Maps to control_information_received =

CM_ALLOCATE_REJECTED_WITH_DATA
Functional-Units *
Diagnostic -
Rollback -
User-Data initialization_data (characteristic)

Note: CM_DEALLOCATED_ABEND will be returned
to the next call.

446 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Half-duplex)

OSI TP Service Parameters CPI-C Calls, Parameters and Characteristics
if: Result = rejected(provider)
and Rollback = true
TP-BEGIN-DIALOGUE confirm Maps to return_code values.

Functional-Units *
Diagnostic

recipient-unknown CM_RESOURCE_FAIL_NO_RETRY_BO
recipient-tpsu-title-unknown CM_TPN_NOT_RECOGNIZED
tpsu-not-available(permanent) CM_TP_NOT_AVAILABLE_NO_RETRY
tpsu-not-available(transient) CM_TP_NOT_AVAILABLE_RETRY
recipient-tpsu-title-required CM_TPN_NOT_RECOGNIZED
functional-unit-not-supported if commit, chained transactions or

unchained transactions functional
units were requested return
CM_SYNC_LVL_NOT_SUPPORTED_SYS,

otherwise, if handshake functional
unit was requested return
CM_SYNC_LVL_NOT_SUPPORTED_PGM,

otherwise, return
CM_SEND_RCV_MODE_NOT_SUPPORTED.

functional-unit-combination-not-supported if commit, chained transactions or
unchained transactions functional
units were requested return
CM_SYNC_LVL_NOT_SUPPORTED_SYS,

otherwise, if handshake functional
unit was requested return
CM_SYNC_LVL_NOT_SUPPORTED_PGM,

otherwise, return
CM_SEND_RCV_MODE_NOT_SUPPORTED.

no-reason-given CM_RESOURCE_FAIL_NO_RETRY_BO
User-Data -

if: Result = rejected(provider)
and Rollback = false
TP-BEGIN-DIALOGUE confirm Maps to return_code values.

Functional-Units *
Diagnostic

recipient-unknown CM_RESOURCE_FAILURE_NO_RETRY
recipient-tpsu-title-unknown CM_TPN_NOT_RECOGNIZED
tpsu-not-available(permanent) CM_TP_NOT_AVAILABLE_NO_RETRY
tpsu-not-available(transient) CM_TP_NOT_AVAILABLE_RETRY
recipient-tpsu-title-required CM_TPN_NOT_RECOGNIZED
functional-unit-not-supported CM_SYNC_LVL_NOT_SUPPORTED_SYS
functional-unit-combination-not-supported CM_SYNC_LVL_NOT_SUPPORTED_SYS
no-reason-given CM_RESOURCE_FAILURE_NO_RETRY

User-Data -

Distributed Transaction Processing: CPI-C Specification, Version 2 447

OSI TP CRMs (Half-duplex) Mapping to OSI TP and LU 6.2 CRMs

Table D-19 TP-END-DIALOGUE indication Mapping

OSI TP Service Parameters CPI-C Calls, Parameters and Characteristics
if: Confirmation = true
TP-END-DIALOGUE indication status_received = CM_CONFIRM_DEALLOC_RECEIVED

(no parameters)
if: Confirmation = false
TP-END-DIALOGUE indication return_code = CM_DEALLOCATED_NORMAL

(no parameters)

448 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Half-duplex)

Table D-20 TP-U-ABORT indication Mapping

OSI TP Service Parameters CPI-C Calls, Parameters and Characteristics
if: Rollback = true
TP-U-ABORT indication return_code = CM_DEALLOCATED_ABEND_BO

User_Data log_data (characteristic)
if: Rollback = false
TP-U-ABORT indication return_code = CM_DEALLOCATED_ABEND

User_Data log_data (characteristic)

Distributed Transaction Processing: CPI-C Specification, Version 2 449

OSI TP CRMs (Half-duplex) Mapping to OSI TP and LU 6.2 CRMs

Table D-21 TP-P-ABORT indication Mapping

OSI TP Service Parameters CPI-C Calls, Parameters and Characteristics
if: Rollback = true
TP-P-ABORT indication Maps to return_code values:

Diagnostic
permanent-failure CM_RESOURCE_FAIL_NO_RETRY_BO
transient-failure CM_RESOURCE_FAILURE_RETRY_BO
protocol-error CM_RESOURCE_FAIL_NO_RETRY_BO
begin-transaction-reject *
end-dialogue-collision *
begin-transaction-end-dialogue-collision *

if: Rollback = false
TP-P-ABORT indication Maps to return_code values:

Diagnostic
permanent-failure CM_RESOURCE_FAILURE_NO_RETRY
transient-failure CM_RESOURCE_FAILURE_RETRY
protocol-error CM_RESOURCE_FAILURE_NO_RETRY
begin-transaction-reject *
end-dialogue-collision *
begin-transaction-end-dialogue-collision *

450 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Half-duplex)

Table D-22 TP-DEFERRED-* and TP-PREPARE indication Mapping

OSI TP Service Parameters CPI-C Calls, Parameters and Characteristics
if: a TP-DEFERRED-END-DIALOGUE indication has been received
TP-PREPARE indication Maps to Status_received values:

Data-Permitted
false CM_TAKE_COMMIT_DEALLOCATE
true CM_TAKE_COMMIT_DEALLOC_DATA_OK

if: a TP-DEFERRED-END-DIALOGUE indication has NOT been received
and a TP-DEFERRED-GRANT-CONTROL indication has been received
TP-PREPARE indication Maps to Status_received values:

Data-Permitted
false CM_TAKE_COMMIT_SEND
true CM_TAKE_COMMIT_SEND_DATA_OK

if: a TP-DEFERRED-END-DIALOGUE indication has NOT been received
and a TP-DEFERRED-GRANT-CONTROL indication has NOT been received
TP-PREPARE indication Maps to Status_received values:

Data-Permitted
false CM_TAKE_COMMIT
true CM_TAKE_COMMIT_DATA_OK

Distributed Transaction Processing: CPI-C Specification, Version 2 451

OSI TP CRMs (Half-duplex) Mapping to OSI TP and LU 6.2 CRMs

D.1.4 Sequencing Rules and State Tables

The sequencing rules and state tables for the CPI-C ASE are contained in Appendix C.

D.1.5 CPI-C ASE Protocol Definition

There are no additional protocol definitions required by the CPI-C ASE beyond those defined in
ISO/IEC 10026, Parts 1-6.

D.1.6 CPI-C ASE Structure and Encoding of APDUs

There are no additional APDUs required by the CPI-C ASE beyond those defined in ISO/IEC
10026, Parts 1-6.

452 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Full-duplex)

D.2 OSI TP CRMs (Full-duplex)
This section summarizes the CPI-C application service element (ASE) services, maps the services
both to and from the OSI TP services, and defines the sequencing rules and state table for CPI-C
use by OSI TP programs using full-duplex conversations.

The CPI Communications calls have been mapped to the OSI TP services described in ISO/IEC
10026-2, Information Technology — Open Systems Interconnection — Distributed Transaction
Processing — Part 2: OSI TP Service Definition.

This section is intended for programmers who are familiar with OSI TP.

The following conventions are used within the tables in this section:

* The parameter is not directly supported by CPI-C.

=xxx The value xxx is always used.

(R) returned on the Receive call

(S) returned on calls associated with the Send queue

The abbreviations for status_received and return code values used in this mapping are given in
Section C.6.3 on page 404 and Section C.6.4 on page 407, respectively.

Distributed Transaction Processing: CPI-C Specification, Version 2 453

OSI TP CRMs (Full-duplex) Mapping to OSI TP and LU 6.2 CRMs

Table D-23 Mapping CPI-C Calls on Full-duplex Conversations to OSI TP

CPI-C Call OSI TP Service
CMALLC - Allocate TP-BEGIN-DIALOGUE request
(See Table D-24 on page 455 for details.)

CMCANC - Cancel_Conversation TP-BEGIN-DIALOGUE response
(See Table D-25 on page 457 for details.) TP-U-ABORT request

CMCFMD - Confirmed TP-END-DIALOGUE response
(See Table D-26 on page 458 for details.)

CMDEAL - Deallocate TP-END-DIALOGUE request
(See Table D-27 on page 459 for details.) TP-DEFERRED-END-DIALOGUE request

TP-BEGIN-DIALOGUE response
TP-U-ABORT request

CMDFDE - Deferred_Deallocate TP-DEFERRED-END-DIALOGUE request
(See Table D-28 on page 461 for details.)

CMINCL - Include_Partner_In_Transaction TP-BEGIN-TRANSACTION request
(See Table D-29 on page 462 for details.)

CMPREP - Prepare TP-BEGIN-TRANSACTION request
(See Table D-30 on page 463 for details.) TP-PREPARE request

CMRCV - Receive TP-BEGIN-DIALOGUE response
(See Table D-31 on page 464 for details.) TP-BEGIN-TRANSACTION request

CMSEND - Send_Data TP-BEGIN-DIALOGUE response
(See Table D-32 on page 465 for details.) TP-BEGIN-TRANSACTION request

(TP-DATA request) UD-TRANSFER request
TP-END-DIALOGUE request
TP-DEFERRED-END-DIALOGUE request
TP-U-ABORT request

CMSERR - Send_Error TP-BEGIN-DIALOGUE response
(See Table D-33 on page 468 for details.) TP-BEGIN-TRANSACTION request

TP-U-ERROR request

The following OSI TP services are not directly mapped to from the CPI-C calls:

TP-COMMIT request
is supported through a resource recovery interface.

TP-DONE request
is not externalized to the application program.

TP-ROLLBACK request
is supported through a resource recovery interface.

454 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Full-duplex)

Table D-24 CMALLC — Allocate Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: sync_level = CM_NONE
CMALLC - Allocate TP-BEGIN-DIALOGUE request

* Initiating-TPSU-Title
AP_title (characteristic) Recipient-AP-Title

* Recipient-API-Identi fier
AE_qualifier (characteristic) Recipient-AE-Qualifier

* Recipient-AEI-Identi fier
TP_name (characteristic) Recipient-TPSU-Title

=Dialogue and Shared Functional-Units
mode_name (characteristic) Quality-of-Service
application_context_name (characteristic) Application-Context-Name

n/a Begin-Transaction
allocate_confirm (characteristic) Confirmation
initialization_data (characteristic) User-Data

if: sync_level = CM_SYNC_POINT_NO_CONFIRM
and transaction_control = CM_CHAINED_TRANSACTIONS
CMALLC - Allocate TP-BEGIN-DIALOGUE request

* Initiating-TPSU-Title
AP_title (characteristic) Recipient-AP-Title

* Recipient-API-Identi fier
AE_qualifier (characteristic) Recipient-AE-Qualifier

* Recipient-AEI-Identi fier
TP_name (characteristic) Recipient-TPSU-Title

=Dialogue, Shared, Functional-Units
Commit and Chained Transactions

mode_name (characteristic) Quality-of-Service
application_context_name (characteristic) Application-Context-Name

n/a Begin-Transaction
allocate_confirm (characteristic) Confirmation
initialization_data (characteristic) User-Data

Distributed Transaction Processing: CPI-C Specification, Version 2 455

OSI TP CRMs (Full-duplex) Mapping to OSI TP and LU 6.2 CRMs

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: sync_level = CM_SYNC_POINT_NO_CONFIRM
and transaction_control = CM_UNCHAINED_TRANSACTIONS
CMALLC - Allocate TP-BEGIN-DIALOGUE request

* Initiating-TPSU-Title
AP_title (characteristic) Recipient-AP-Title

* Recipient-API-Identi fier
AE_qualifier (characteristic) Recipient-AE-Qualifier

* Recipient-AEI-Identi fier
TP_name (characteristic) Recipient-TPSU-Title

=Dialogue, Shared, Functional-Units
Commit, and Unchained Transactions

mode_name (characteristic) Quality-of-Service
application_context_name (characteristic) Application-Context-Name
begin_transaction (characteristic) Begin-Transaction (See note at end of table.)
allocate_confirm (characteristic) Confirmation
initialization_data (characteristic) User-Data

Note: if: begin_transaction = CM_BEGIN_IMPLICIT
and transaction_control = CM_UNCHAINED_TRANSACTIONS
and the program is in transaction mode
then Begin-Transaction is set to true;
otherwise: Begin-Transaction is set to false.

456 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Full-duplex)

Table D-25 CMCANC — Cancel_Conversation Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: Confirmation = true on TP-BEGIN-DIALOGUE indication
and it is the first activity on the conversation following Accept_Conversation or Accept_Incoming
CMCANC - Cancel_Conversation TP-BEGIN-DIALOGUE response

= rejected(user) Result
initialization_data (characteristic) User-Data

otherwise:
CMCANC - Cancel_Conversation TP-U-ABORT request

=null User-Data

Distributed Transaction Processing: CPI-C Specification, Version 2 457

OSI TP CRMs (Full-duplex) Mapping to OSI TP and LU 6.2 CRMs

Table D-26 CMCFMD — Confirmed Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if in response to: status_received = CM_CONFIRM_DEALLOC_RECEIVED
CMCFMD - Confirmed TP-END-DIALOGUE response

(no parameters)

458 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Full-duplex)

Table D-27 CMDEAL — Deallocate Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
and sync_level = CM_NONE

(See note at end of table.)
CMDEAL - Deallocate TP-END-DIALOGUE request

=false Confirmation
(and TP-END-DIALOGUE indication

=false Confirmation
if (TP-END-DIALOGUE or TP-*-ABORT indication)
has not been processed)

if: deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
and sync_level = CM_SYNC_POINT_NO_CONFIRM
and (transaction_control = CM_CHAINED_TRANSACTIONS

or (transaction_control = CM_UNCHAINED_TRANSACTIONS
and conversation is included in a transaction))

(See note at end of table.)
CMDEAL - Deallocate TP-DEFERRED-END-DIALOGUE request

(no parameters)
if: deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
and sync_level = CM_SYNC_POINT_NO_CONFIRM
and NOT (transaction_control = CM_CHAINED_TRANSACTIONS

or (transaction_control = CM_UNCHAINED_TRANSACTIONS
and conversation is included in a transaction))

(See note at end of table.)
CMDEAL - Deallocate TP-END-DIALOGUE request

=false Confirmation
(and TP-END-DIALOGUE indication

=false Confirmation
if (TP-END-DIALOGUE or TP-*-ABORT indication)
has not been processed)

if: deallocate_type = CM_DEALLOCATE_FLUSH
(See note at end of table.)

CMDEAL - Deallocate TP-END-DIALOGUE request
=false Confirmation

(and TP-END-DIALOGUE indication
=false Confirmation

if (TP-END-DIALOGUE or TP-*-ABORT indication)
has not been processed)

Distributed Transaction Processing: CPI-C Specification, Version 2 459

OSI TP CRMs (Full-duplex) Mapping to OSI TP and LU 6.2 CRMs

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: deallocate_type = CM_DEALLOCATE_CONFIRM
(See note at end of table.)
if no collision with CM_ALLOCATION_ERROR,

CM_DEALLOCATED_ABEND_*,
CM_RESOURCE_FAILURE_*_RETRY or
CM_DEALLOCATED_NORMAL,
or (ok,(*,jt)) or (ok,(*,cd))

CMDEAL - Deallocate TP-END-DIALOGUE request
=true Confirmation

otherwise return, respectively,
CM_DEALLOC_CONFIRM_REJECT (S), or
TP-U-ABORT request (Rollback = true),
CM_DEALLOCATED_ABEND.begin_transaction_collision (R)
and
CM_DEALLOCATED_ABEND.begin_transaction_collision (S),
or
TP-U-ABORT request (Rollback = false),
CM_DEALLOCATED_ABEND.dealloc_confirm_collision (R)
and
CM_DEALLOCATED_ABEND.dealloc_confirm_collision (S).
If collision results in a return code on the Receive call,
replace the status_received value that caused the collision.

if: deallocate_type = CM_DEALLOCATE_ABEND
and it is the first activity on the conversation following Accept_Conversation or Accept_Incoming
CMDEAL - Deallocate TP-BEGIN-DIALOGUE response

=rejected(user) Result
initialization_data (characteristic) User-Data

if: deallocate_type = CM_DEALLOCATE_ABEND
and it is not the first activity on the conversation following Accept_Conversation or Accept_Incoming
CMDEAL - Deallocate TP-U-ABORT request

log_data (characteristic) User-Data
Note: if Confirmation = true on TP-BEGIN-DIALOGUE indication
and it is the first activity on the conversation following Accept_Conversation or Accept_Incoming
then the identified OSI TP Service primitive will be
preceded by TP-BEGIN-DIALOGUE response (Result = accepted and
User-Data = initialization_data (characteristic)).

460 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Full-duplex)

Table D-28 CMDFDE — Deferred_Deallocate Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

CMDFDE - Deferred_Deallocate TP-DEFERRED-END-DIALOGUE request
(no parameters)

Distributed Transaction Processing: CPI-C Specification, Version 2 461

OSI TP CRMs (Full-duplex) Mapping to OSI TP and LU 6.2 CRMs

Table D-29 CMINCL — Include_Partner_In_Transaction Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters
CMINCL - Include_Partner_In_Transaction

TP-BEGIN-TRANSACTION request
(no parameters)

if no collision with (ok,(*,dc));
otherwise return

CM_DEALLOCATED_ABEND_BO.dealloc_confirm_collision (R),
instead of (ok,(*,dc)), or
CM_DEALLOCATED_ABEND_BO.dealloc_confirm_collision (S),
and send
TP-U-ABORT request (Rollback = false).

462 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Full-duplex)

Table D-30 CMPREP — Prepare Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: sync_level = CM_SYNC_POINT_NO_CONFIRM
and transaction_control = CM_UNCHAINED_TRANSACTIONS

and begin_transaction = CM_BEGIN_IMPLICIT
and it is the first activity on the conversation following the start of the current transaction

CMPREP - Prepare TP-BEGIN-TRANSACTION request
(no parameters)

TP-PREPARE request
prepare_data_permitted (characteristic) Data-Permitted

if: sync_level = CM_SYNC_POINT_NO_CONFIRM
and not (transaction_control = CM_UNCHAINED_TRANSACTIONS
and begin_transaction = CM_BEGIN_IMPLICIT
and it is the first activity on the conversation following the start of the current transaction)
CMPREP - Prepare TP-PREPARE request
prepare_data_permitted (characteristic) Data-Permitted

Distributed Transaction Processing: CPI-C Specification, Version 2 463

OSI TP CRMs (Full-duplex) Mapping to OSI TP and LU 6.2 CRMs

Table D-31 CMRCV — Receive

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: Confirmation = true on TP-BEGIN-DIALOGUE indication
and it is the first activity on the conversation following Accept_Conversation or Accept_Incoming
CMRCV - Receive TP-BEGIN-DIALOGUE response

= accepted Result
initialization_data (characteristic) User-Data

if: sync_level = CM_SYNC_POINT_NO_CONFIRM
and transaction_control = CM_UNCHAINED_TRANSACTIONS
and begin_transaction = CM_BEGIN_IMPLICIT
and it is the first activity on the conversation following the start of the current transaction
CMRCV - Receive TP-BEGIN-TRANSACTION request

(no parameters)

464 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Full-duplex)

Table D-32 CMSEND — Send_Data Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: send_type = CM_BUFFER_DATA
(See notes 1 and 2 at end of table.)

CMSEND - Send_Data (TP-DATA request) UD-TRANSFER request
buffer (parameter) User-Data

if: send_type = CM_SEND_AND_FLUSH
(See notes 1 and 2 at end of table.)

CMSEND - Send_Data (TP-DATA request) UD-TRANSFER request
buffer (parameter) User-Data

if: send_type = CM_SEND_AND_DEALLOCATE
and deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
and sync_level = CM_NONE

(See note 1 at end of table.)
CMSEND - Send_Data (TP-DATA request) UD-TRANSFER request

buffer (parameter) User-Data
TP-END-DIALOGUE request

=false Confirmation
(and TP-END-DIALOGUE indication

=false Confirmation
if (TP-END-DIALOGUE or TP-*-ABORT indication)
has not been processed)

if: send_type = CM_SEND_AND_DEALLOCATE
and deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
and sync_level = CM_SYNC_POINT_NO_CONFIRM
and ((transaction_control = CM_UNCHAINED_TRANSACTIONS

and not (begin_transaction = CM_BEGIN_IMPLICIT
and it is the first activity on the conversation following the start of the current transaction))

or transaction_control = CM_CHAINED_TRANSACTIONS)
and the conversation is included in a transaction

(See notes 1 and 2 at end of table.)
CMSEND - Send_Data (TP-DATA request) UD-TRANSFER request

buffer (parameter) User-Data
TP-DEFERRED-END-DIALOGUE request

(no parameters)

Distributed Transaction Processing: CPI-C Specification, Version 2 465

OSI TP CRMs (Full-duplex) Mapping to OSI TP and LU 6.2 CRMs

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: send_type = CM_SEND_AND_DEALLOCATE
and deallocate_type = CM_DEALLOCATE_SYNC_LEVEL
and sync_level = CM_SYNC_POINT_NO_CONFIRM
and ((transaction_control = CM_UNCHAINED_TRANSACTIONS

and not (begin_transaction = CM_BEGIN_IMPLICIT
and it is the first activity on the conversation following the start of the current transaction))

or transaction_control = CM_CHAINED_TRANSACTIONS)
and the conversation is not currently included in a transaction

(See note 1 at end of table.)
CMSEND - Send_Data (TP-DATA request) UD-TRANSFER request

buffer (parameter) User-Data
TP-END-DIALOGUE request

=false Confirmation
(and TP-END-DIALOGUE indication

=false Confirmation
if (TP-END-DIALOGUE or TP-*-ABORT indication)
has not been processed)

if: send_type = CM_SEND_AND_DEALLOCATE
and deallocate_type = CM_DEALLOCATE_FLUSH

(See note 1 at end of table.)
CMSEND - Send_Data (TP-DATA request) UD-TRANSFER request

buffer (parameter) User-Data
TP-END-DIALOGUE request

=false Confirmation
(and TP-END-DIALOGUE indication

=false Confirmation
if (TP-END-DIALOGUE or TP-*-ABORT indication)
has not been processed)

466 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Full-duplex)

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: send_type = CM_SEND_AND_DEALLOCATE
and deallocate_type = CM_DEALLOCATE_CONFIRM

(See note 1 at end of table.)
CMSEND - Send_Data (TP-DATA request) UD-TRANSFER request

buffer (parameter) User-Data.
if no collision with CM_ALLOCATION_ERROR,

CM_DEALLOCATED_ABEND_*,
CM_RESOURCE_FAILURE_*_RETRY or
CM_DEALLOCATED_NORMAL,
or (ok,(*,jt)) or (ok,(*,cd))

TP-END-DIALOGUE request
=true Confirmation

otherwise return, respectively,
CM_DEALLOC_CONFIRM_REJECT (S), or
TP-U-ABORT request (Rollback = true),
CM_DEALLOCATED_ABEND.begin_transaction_collision (R)
and
CM_DEALLOCATED_ABEND.begin_transaction_collision (S),
or
TP-U-ABORT request (Rollback = false),
CM_DEALLOCATED_ABEND.dealloc_confirm_collision (R)
and
CM_DEALLOCATED_ABEND.dealloc_confirm_collision (S).
If collision results in a return code to the Receive call,
replace the status_received value that caused the collision.

if: send_type = CM_SEND_AND_DEALLOCATE
and deallocate_type = CM_DEALLOCATE_ABEND

(See notes 1 and 2 at end of table.)
CMSEND - Send_Data (TP-DATA request) UD-TRANSFER request

buffer (parameter) User-Data
TP-U-ABORT request

log_data (characteristic) User-Data
Note 1: if Confirmation = true on TP-BEGIN-DIALOGUE indication
and it is the first activity on the conversation following Accept_Conversation or Accept_Incoming
then the identified OSI TP Service primitive will be
preceded by TP-BEGIN-DIALOGUE response (Result = accepted and
User-Data = initialization_data (characteristic)).
Note 2: if sync_level = CM_SYNC_POINT_NO_CONFIRM
and transaction_control = CM_UNCHAINED_TRANSACTIONS
and begin_transaction = CM_BEGIN_IMPLICIT
and the Send_Data call is the first activity on the conversation following the start of the current transaction,
then the identified OSI TP service primitives are preceded by a TP-BEGIN-TRANSACTION request.
General Note: The data specified by the buffer and send_length
parameters of the CMSEND call maps exactly to the User-Data
of the UD-TRANSFER request, independent of the value of conversation_type.

Distributed Transaction Processing: CPI-C Specification, Version 2 467

OSI TP CRMs (Full-duplex) Mapping to OSI TP and LU 6.2 CRMs

Table D-33 CMSERR — Send_Error Mapping

CPI-C Call Parameters OSI TP Service
and Conversation Characteristics Parameters

if: Confirmation = true on TP-BEGIN-DIALOGUE indication
and it is the first activity on the conversation following Accept_Conversation or Accept_Incoming
CMSERR - Send_Error TP-BEGIN-DIALOGUE response

= accepted Result
initialization_data (characteristic) User-Data

TP-U-ERROR request
(no parameters)

if: sync_level = CM_SYNC_POINT_NO_CONFIRM
and transaction_control = CM_UNCHAINED_TRANSACTIONS
and begin_transaction = CM_BEGIN_IMPLICIT
and it is the first activity on the conversation following the start of the current transaction
CMSERR - Send_Error TP-BEGIN-TRANSACTION request

(no parameters)
TP-U-ERROR request

(no parameters)
otherwise:
CMSERR - Send_Error

D.2.1 Mapping OSI TP Services to CPI-C for Full-duplex Conversations

The following tables present the complete mapping from the OSI TP services to CPI-C for full-
duplex conversations.

The following conventions are used within the tables in this section:

- The parameter is not applicable because of other parameter settings.

* The parameter is not directly supported by CPI-C.

=xxx The value xxx is expected by CPI-C.

(R) The return code is returned on the Receive call

(S) The return code is returned on calls associated with Send queue

x (R) [+ y (S)] If x is returned before y, then y need not be returned. If y is returned before x,
then x must also be returned.

a.b ‘‘a’’ is the return code and ‘‘b’’ is the secondary information associated with
the return code

468 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Full-duplex)

Table D-34 Mapping OSI TP to CPI-C Calls, Parameters and Characteristics

OSI TP Service CPI-C Calls, Parameters and Characteristics
(TP-DATA indication) UD-TRANSFER indication Completes an outstanding

CMRCV - Receive
TP-BEGIN-DIALOGUE indication Completes an outstanding
(See Table D-17 on page 445 for details.) CMACCP - Accept_Conversation

CMACCI - Accept_Incoming
and maps to conversation characteristics.

TP-BEGIN-DIALOGUE confirm Completes an outstanding
(See Table D-18 on page 446 for details.) CMRCV - Receive

and maps to
control_information_received values

TP-END-DIALOGUE indication Completes an outstanding
(See Table D-19 on page 448 for details.) CMRCV - Receive

and maps to status_received or return_code values.
TP-END-DIALOGUE confirm Completes an outstanding

(no parameters) CMSEND - Send_Data
CMDEAL - Deallocate

and maps to
return_code = CM_OK (S)
and CM_DEALLOCATE_NORMAL (R)

TP-U-ERROR indication Completes an outstanding
(no parameters) CMRCV - Receive

CMDEAL - Deallocate(Confirm)
and maps to

return_code = CM_PROGRAM_ERROR_PURGING (R)
(if CMDEAL - DEALLOCATE(Confirm) is being processed,
also maps to

CM_DEALLOC_CONFIRM_REJECT (S))
TP-U-ABORT indication Completes an outstanding
(See Table D-20 on page 449 for details.) CMRCV - Receive

and maps to return_code values.
TP-P-ABORT indication Completes an outstanding
(See Table D-39 on page 477 for details.) CMRCV - Receive

CMDEAL - DEALLOCATE(Confirm)
and maps to return_code values.

Distributed Transaction Processing: CPI-C Specification, Version 2 469

OSI TP CRMs (Full-duplex) Mapping to OSI TP and LU 6.2 CRMs

OSI TP Service CPI-C Calls, Parameters and Characteristics
TP-BEGIN-TRANSACTION indication If collision with outstanding CMDEAL(Confirm),

(no parameters) then completes the outstanding
CMDEAL - DEALLOCATE(Confirm)

and maps to
return_code=
CM_DEALLOCATED_ABEND.begin_transaction_collision (R)
and
CM_DEALLOCATED_ABEND.begin_transaction_collision (S)
and TP-U-ABORT request (Rollback = true)

else if conv_state = SEND-RECEIVE
then completes an outstanding

CMRCV - Receive
and maps to

status_received = CM_JOIN_TRANSACTION
TP-DEFERRED-END-DIALOGUE indication Maps to status_received values.
(See Table D-22 on page 451 for details.)

TP-PREPARE indication Completes an outstanding
(See Table D-22 on page 451 for details.) CMRCV - Receive

and maps to status_received values.
TP-READY indication Completes an outstanding

CMRCV - Receive
and maps to status_received = CM_PREPARE_OK.

TP-COMMIT indication (Handled by a resource recovery component.)
TP-COMMIT-COMPLETE indication (Handled by a resource recovery component.)
TP-ROLLBACK indication Maps to

(no parameters) return_code = CM_TAKE_BACKOUT.
TP-ROLLBACK-COMPLETE indication (Handled by a resource recovery component.)
TP-HEURISTIC-REPORT indication (Handled by a resource recovery component.)

470 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Full-duplex)

Table D-35 TP-BEGIN-DIALOGUE indication Mapping

OSI TP Service Parameters CPI-C Calls, Parameters and Characteristics
TP-BEGIN-DIALOGUE indication Maps to conversation characteristics:

Initiating-AP-Title AP_title (characteristic)
Initiating-API-Identi fier *
Initiating-AE-Quali fier AE_qualifier (characteristic)
Initiating-AEI-Identi fier *
Recipient-TPSU-Title TP_name (characteristic)
Functional-Units sync_level, send_receive_mode, and

transaction_control (characteristics)
and TX transaction_control characteristic

if Handshake FU selected then
TP-BEGIN-DIALOGUE response with
Diagnostic=FU-comb-not-supported

Begin-Transaction
true Completes an outstanding

CMRCV - Receive
and maps to

status_received = CM_JOIN_TRANSACTION
(also available through a resource
recovery interface)

false * (through a resource recovery interface)
Confirmation * (confirmation is implicit)
User-Data initialization_data (characteristic)

Distributed Transaction Processing: CPI-C Specification, Version 2 471

OSI TP CRMs (Full-duplex) Mapping to OSI TP and LU 6.2 CRMs

Table D-36 TP-BEGIN-DIALOGUE confirm Mapping

OSI TP Service Parameters CPI-C Calls, Parameters and Characteristics
if: Result = accepted
and User-Data is not present
TP-BEGIN-DIALOGUE confirm Maps to control_information_received =

CM_ALLOCATE_CONFIRMED.
Functional-Units *
Diagnostic -
Rollback -
User-Data -

if: Result = accepted
and User-Data is present
TP-BEGIN-DIALOGUE confirm Maps to control_information_received =

CM_ALLOCATE_CONFIRMED_WITH_DATA
Functional-Units *
Diagnostic -
Rollback -
User-Data initialization_data (characteristic)

if: Result = rejected(user)
and User-Data is not present
TP-BEGIN-DIALOGUE confirm Maps to return_code values.

Functional-Units *
Diagnostic -
Rollback

true CM_DEALLOCATED_ABEND_BO (S or R)
false CM_DEALLOCATED_ABEND (R)

[+CM_DEALLOCATED_ABEND (S)]
User-Data initialization_data (characteristic)
if: Result = rejected(user)
and User-Data is present
TP-BEGIN-DIALOGUE confirm Maps to control_information_received =

CM_ALLOCATE_REJECTED_WITH_DATA
Functional-Units *
Diagnostic -
Rollback -
User-Data initialization_data (characteristic)

Note: CM_DEALLOCATED_ABEND will be returned
to the next call.

472 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Full-duplex)

OSI TP Service Parameters CPI-C Calls, Parameters and Characteristics
if: Result = rejected(provider)
and Rollback = true
TP-BEGIN-DIALOGUE confirm Maps to return_code values.

Functional-Units *
Diagnostic

recipient-unknown CM_RESOURCE_FAIL_NO_RETRY_BO (S or R)
recipient-tpsu-title-unknown CM_TPN_NOT_RECOGNIZED (R)

[+ CM_ALLOCATION_ERROR (S)]
tpsu-not-available(permanent) CM_TP_NOT_AVAILABLE_NO_RETRY (R)

[+ CM_ALLOCATION_ERROR (S)]
tpsu-not-available(transient) CM_TP_NOT_AVAILABLE_RETRY (R)

[+ CM_ALLOCATION_ERROR (S)]
recipient-tpsu-title-required CM_TPN_NOT_RECOGNIZED (R)

[+ CM_ALLOCATION_ERROR (S)]
functional-unit-not-supported if commit, chained transactions or

unchained transactions functional
units were requested return
CM_SYNC_LVL_NOT_SUPPORTED_SYS (R),

otherwise, if handshake functional
unit was requested return
CM_SYNC_LVL_NOT_SUPPORTED_PGM (R),

otherwise, return
CM_SEND_RCV_MODE_NOT_SUPPORTED (R)
[+CM_ALLOCATION_ERROR (S)]

functional-unit-combination-not-supported if commit, chained transactions or
unchained transactions functional
units were requested return
CM_SYNC_LVL_NOT_SUPPORTED_SYS (S),

otherwise, if handshake functional
unit was requested return
CM_SYNC_LVL_NOT_SUPPORTED_PGM (S),

otherwise, return
CM_SEND_RCV_MODE_NOT_SUPPORTED (S).

no-reason-given CM_RESOURCE_FAIL_NO_RETRY_BO (S or R)
User-Data -

Distributed Transaction Processing: CPI-C Specification, Version 2 473

OSI TP CRMs (Full-duplex) Mapping to OSI TP and LU 6.2 CRMs

OSI TP Service Parameters CPI-C Calls, Parameters and Characteristics
if: Result = rejected(provider)
and Rollback = false
TP-BEGIN-DIALOGUE confirm Maps to return_code values.

Functional-Units *
Diagnostic

recipient-unknown CM_RESOURCE_FAILURE_NO_RETRY (R)
[+ CM_RESOURCE_FAILURE_NO_RETRY (S)]

recipient-tpsu-title-unknown CM_TPN_NOT_RECOGNIZED (R)
[+ CM_ALLOCATION_ERROR (S)]

tpsu-not-available(permanent) CM_TP_NOT_AVAILABLE_NO_RETRY (R)
[+ CM_ALLOCATION_ERROR (S)]

tpsu-not-available(transient) CM_TP_NOT_AVAILABLE_RETRY (R)
[+ CM_ALLOCATION_ERROR (S)]

recipient-tpsu-title-required CM_TPN_NOT_RECOGNIZED (R)
[+ CM_ALLOCATION_ERROR (S)]

functional-unit-not-supported CM_SYNC_LVL_NOT_SUPPORTED_SYS (R) or
CM_SEND_RECEIVE_MODE_NOT_SUPPORTED (R),
[+ CM_ALLOCATION_ERROR (S)]

functional-unit-combination-not-supported CM_SYNC_LVL_NOT_SUPPORTED_SYS (R) and/or
CM_SEND_RECEIVE_MODE_NOT_SUPPORTED (R),
[+ CM_ALLOCATION_ERROR (S)]

no-reason-given CM_RESOURCE_FAILURE_NO_RETRY (R)
[+ CM_RESOURCE_FAILURE_NO_RETRY (S)]

User-Data -

474 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Full-duplex)

Table D-37 TP-END-DIALOGUE indication Mapping

OSI TP Service Parameters CPI-C Calls, Parameters and Characteristics
if: Confirmation = true
TP-END-DIALOGUE indication if no collision with CMSERR or CMDEAL(C) or CMINCL,

status_received = CM_CONFIRM_DEALLOC_RECEIVED
otherwise, respectively,

no-op or
CM_DEALLOCATED_ABEND.dealloc_confirm_collision (R)
[+ CM_DEALLOCATED_ABEND.dealloc_confirm_collision (S)],
and TP-U-ABORT request (Rollback = false) or
CM_DEALLOCATED_ABEND_BO.dealloc_confirm_collision (S or R)
and TP-U-ABORT request (Rollback = false).

(no parameters)
if: Confirmation = false
TP-END-DIALOGUE indication return_code = CM_DEALLOCATED_NORMAL (R)

[+ CM_DEALLOCATED_NORMAL (S)]
(no parameters)

Distributed Transaction Processing: CPI-C Specification, Version 2 475

OSI TP CRMs (Full-duplex) Mapping to OSI TP and LU 6.2 CRMs

Table D-38 TP-U-ABORT indication Mapping

OSI TP Service Parameters CPI-C Calls, Parameters and Characteristics
if: Rollback = true
TP-U-ABORT indication return_code = CM_DEALLOCATED_ABEND_BO (S or R)

User-Data log_data (characteristic)
if: Rollback = false
TP-U-ABORT indication return_code = CM_DEALLOCATED_ABEND (R)

[+ CM_DEALLOCATED_ABEND (S)]
User-Data log_data (characteristic)

476 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Full-duplex)

Table D-39 TP-P-ABORT indication Mapping

OSI TP Service Parameters CPI-C Calls, Parameters and Characteristics
if: Rollback = true
TP-P-ABORT indication Maps to return_code values:
Diagnostic
permanent-failure CM_RESOURCE_FAIL_NO_RETRY_BO (S or R)
transient-failure CM_RESOURCE_FAILURE_RETRY_BO (S or R)
protocol-error CM_RESOURCE_FAIL_NO_RETRY_BO (S or R)
begin-transaction-reject CM_INCLUDE_PARTNER_REJECT_BO (S or R)
end-dialogue-collision -
begin-transaction-end-dialogue-collision CM_DEALLOCATED_ABEND_BO.dealloc_confirm_collision (S or R)

if: Rollback = false
TP-P-ABORT indication Maps to return_code values:
Diagnostic
permanent-failure CM_RESOURCE_FAILURE_NO_RETRY (R)

[+ CM_RESOURCE_FAILURE_NO_RETRY (S)]
transient-failure CM_RESOURCE_FAILURE_RETRY (R)

[+ CM_RESOURCE_FAILURE_RETRY (S)]
protocol-error CM_RESOURCE_FAILURE_NO_RETRY (R)

[+ CM_RESOURCE_FAILURE_NO_RETRY (S)]
begin-transaction-reject -
end-dialogue-collision CM_DEALLOCATED_ABEND.dealloc_confirm_collision (R)

[+ CM_DEALLOCATED_ABEND.dealloc_confirm_collision (S)]
begin-transaction-end-dialogue-collision CM_DEALLOCATED_ABEND.begin_transaction_collision (R)

[+CM_DEALLOCATED_ABEND.begin_transaction_collision (S)]

Distributed Transaction Processing: CPI-C Specification, Version 2 477

OSI TP CRMs (Full-duplex) Mapping to OSI TP and LU 6.2 CRMs

Table D-40 TP-DEFERRED-END-DIALOGUE and TP-PREPARE indication Mapping

OSI TP Service Parameters CPI-C Calls, Parameters and Characteristics
if: a TP-DEFERRED-END-DIALOGUE indication has been received
TP-PREPARE indication status_received = CM_TAKE_COMMIT_DEALLOCATE

Data-Permitted = false
if: a TP-DEFERRED-END-DIALOGUE indication has NOT been received
TP-PREPARE indication status_received = CM_TAKE_COMMIT

Data-Permitted = false

478 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs OSI TP CRMs (Full-duplex)

D.2.2 Sequencing Rules and State Tables

The sequencing rules and state tables for the CPI-C ASE are contained in Appendix C.

D.2.3 CPI-C ASE Protocol Definition

There are no additional protocol definitions required by the CPI-C ASE beyond those defined in
ISO/IEC 10026, Parts 1-6.

D.2.4 CPI-C ASE Structure and Encoding of APDUs

There are no additional APDUs required by the CPI-C ASE beyond those defined in ISO/IEC
10026, Parts 1-6.

Distributed Transaction Processing: CPI-C Specification, Version 2 479

LU 6.2 CRMs Mapping to OSI TP and LU 6.2 CRMs

D.3 LU 6.2 CRMs
This section is intended for programmers who are familiar with the LU 6.2 application
programming interface. (LU 6.2 is also known as Advanced Program-to-Program
Communications or APPC.) It describes the functional relationship between the APPC verbs and
the CPI Communications calls described in this specification.

The CPI Communications calls have been built on top of the LU 6.2 verbs described in the
referenced SNA Programmer’s Reference specification. Table D-41 on page 483 shows the
relationship between APPC verbs and CPI Communications calls. Use this table to determine
how the function of a particular LU 6.2 verb is provided through CPI Communications.

Note: Although much of the LU 6.2 function has been included in CPI Communications,
some of the function has not. Likewise, CPI Communications contains features that are
not found in LU 6.2. These features are differences in syntax. The semantics of LU 6.2
function have not been changed or extended.

CPI Communications contains the following features not found in LU 6.2:

• The Initialize_Conversation call and side information, used to initialize conversation
characteristics without requiring the application program to explicitly specify these
parameters.

• A conversation state of Send-Pending (discussed in more detail in Section D.3.1 on page 481).

• The Accept_Conversation call for use by a remote program to explicitly establish a
conversation, the conversation identifier, and the conversation’s characteristics.

• The error_direction conversation characteristic (discussed in more detail in Section D.3.1 on
page 481).

• A send_type conversation characteristic for use in combining functions (this function was
available with LU 6.2 verbs, but the verbs had to be issued separately).

• The capability to return both data and conversation status on the same Receive call.

CPI Communications does not support the following functions that are available with the LU 6.2
interface:

• MAP_NAME

• USER_CONTROL_DATA.

Finally, to increase portability between systems, the character sets used to specify the partner
TP_name, partner_LU_name, and log_data have been modified slightly from the character sets
allowed by LU 6.2. To answer specific questions of compatibility, check the character sets
described in Appendix A.

Note: A publication that may be of interest to APPC programmers is The APPC Resource
Book (G325-0055). It lists over 200 courses and books offered by IBM and other
companies on CPI Communications, APPC, and related topics. This book also includes
extensive directories of more than 350 APPC platforms, gateways, applications, and
development tools.

480 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs LU 6.2 CRMs

D.3.1 Send-Pending State and the error_direction Characteristic

The Send-Pending state and error_direction characteristic are used in CPI Communications to
eliminate ambiguity about the source of some errors. A program using CPI Communications
can receive data and a change-of-direction indication at the same time. This double function
creates a possibly ambiguous error condition, since it is impossible to determine whether a
reported error (from Send_Error) was encountered because of the received data or after the
processing of the change of direction.

The ambiguity is eliminated in CPI Communications by use of the Send-Pending state and
error_direction characteristic. CPI Communications places the conversation in Send-Pending
state whenever the program has received data and a status_received parameter of
CM_SEND_RECEIVED (indicating a change of direction). Then, if the program encounters an
error, it uses the Set_Error_Direction call to indicate how the error occurred. If the conversation
is in Send-Pending state and the program issues a Send_Error call, CPI Communications
examines the error_direction characteristic and notifies the partner program accordingly:

• If error_direction is set to CM_RECEIVE_ERROR, the partner program receives a return_code
of CM_PROGRAM_ERROR_PURGING. This indicates that the error at the remote program
occurred in the data, before (in LU 6.2 terms) the change-direction indicator was received.

• If error_direction is set to CM_SEND_ERROR, the partner program receives a return_code of
CM_PROGRAM_ERROR_NO_TRUNC. This indicates that the error at the remote program
occurred in the send processing after the change-direction indicator was received.

For an example of how CPI Communications uses the Send-Pending state and the error_direction
characteristic, see Section 4.3.6 on page 80.

D.3.2 Can CPI-C Programs Communicate with APPC Programs?

Programs written using CPI Communications can communicate with APPC programs. Some
examples of the limitations on the APPC program are:

• CPI Communications does not allow the specification of MAP_NAME.

• CPI Communications does not allow the specification of User_Control_Data.

• APPC programs with names containing characters no longer allowed may require a name
change. See Section D.3.3 for a discussion of naming conventions for service transaction
programs.

D.3.3 SNA Service Transaction Programs

If a CPI Communications program wants to specify an SNA service transaction program, the
character set shown for TP_name in Appendix A on page 329 is inadequate. The first character of
an SNA service transaction program name is a character with a value in the range from X’00’
through X’0D’ or X’10’ through X’3F’ (excluding X’0E’ and X’0F’). See the referenced SNA
Programmer’s Reference specification for more details on SNA service transaction programs.

Distributed Transaction Processing: CPI-C Specification, Version 2 481

LU 6.2 CRMs Mapping to OSI TP and LU 6.2 CRMs

A CPI Communications program that has the appropriate privilege may specify the name of an
SNA service transaction program for its partner TP_name. Privilege is an identification that a
product or installation defines in order to differentiate LU service transaction programs from
other programs, such as application programs. TP_name cannot specify an SNA service
transaction program name at the mapped conversation protocol boundary.

Note: Because of the special nature of SNA service transaction program names, they cannot
be specified on the Set_TP_Name call in a non-EBCDIC environment. A CPI
Communications program in a non-EBCDIC environment wanting to establish a
conversation with an SNA service transaction program must ensure that the desired
TP_name is included in the side information.

D.3.4 Relationship between LU 6.2 Verbs and CPI Communications Calls

Table D-41 on page 483 shows CPI Communications calls on the left side and LU 6.2 verbs and
their parameters across the top. The tables relate a verb or verb parameter to a call (not a call to
a verb). A letter at the intersection of a verb or verb parameter column and a call row is
interpreted as follows:

D This parameter has been set to a default value by the CPI Communications call. Default
values can be found in the individual call descriptions.

X A similar or equal function for the LU 6.2 verb or parameter is available from the CPI
Communications call. If more than one X appears on a line for a verb, the function is
available by issuing a combination of the calls.

S This parameter can be set using the CPI Communications call.

Note: The mapping for the following calls is applicable for half-duplex conversations only:

Confirm
Prepare_To_Receive
Request_To_Send
Set_Error_Direction
Set_Prepare_To_Receive_Type
Test_Request_To_Send_Received.

482 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs LU 6.2 CRMs

Table D-41 Relationship of LU 6.2 Verbs to CPI Communications Calls

Starter Set
Accept_Conversation
Allocate
Deallocate
Initilize_Conversation
Receive
Send_Data

Advanced Function

X

X D D D DD DD D D

DX
X

X
X

X X

X

X

X
D

X

X X

X

XX

X

D

X
X
X
X

S
S
S

S

S

S

S
S

S

S

X S

X

X
X

X
X

X
X

CPI Communications Calls

Accept_Incoming
Cancel_Conversation
Confirm
Confirmed
Extract_Conversation_State
Extract_Conversation_Type
Extract_Mode_Name
Extract_Partner_LU_Name
Extract_Security_User_ID
Extract_Send_Receive_Mode
Extract_Sync_Level
Extract_TP_Name
Flush
Initialize_For_Incoming
Prepare
Prepare_To_Receive
Receive_Expedited_Data
Request_To_Send
Send_Error
Send_Expedited_Data
Set_Confirmation_Urgency
Set_Conversation_Security_Password
Set_Conversation_Security_Type
Set_Conversation_Security_User_ID
Set_Conversation_Type
Set_Deallocate_Type
Set_Error_Direction
Set_Fill
Set_Initialization_Data
Set_Log_Data
Set_Mode_Name
Set_Partner_LU_Name
Set_Prepare_To_Receive_Type
Set_Receive_Type
Set_Return_Control
Set_Send_Receive_Mode
Set_Send_Type
Set_Sync_Level
Set_TP_Name
Test_Request_To_Send_Received

M
C

_A
LL

O
C

A
T

E

-
LU

_
N

A
M

E

-
M

O
D

E
_N

A
M

E

-
T

P
N

-
T

Y
P

E

-
R

E
T

U
R

N
_

C
O

N
T

R
O

L

-
C

O
N

V
E

R
S

A
T

IO
N

_G
R

O
U

P
_I

D

-
S

Y
N

C
_L

E
V

E
L

-
S

E
C

U
R

IT
Y

-
P

IP

M
C

_F
LU

S
H

M
C

_G
E

T
_A

T
T

R
IB

U
T

E
S

-
P

A
R

T
N

E
R

_
L

U
_

N
A

M
E

-
P

A
R

T
_F

U
LL

_Q
U

A
L_

LU
_N

A
M

E

-
M

O
D

E
_N

A
M

E

-
S

Y
N

C
_L

E
V

E
L

-
C

O
N

V
E

R
S

A
T

IO
N

_S
TA

T
E

-
C

O
N

V
_

C
O

R
R

E
L

A
T

O
R

-
S

E
S

S
IO

N
_I

D

-
C

O
N

V
E

R
S

A
T

IO
N

_G
R

O
U

P
_I

D

M
C

_C
O

N
F

IR
M

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

M
C

_C
O

N
F

IR
M

E
D

M
C

_D
E

A
LL

O
C

A
T

E

-
T

Y
P

E

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

Distributed Transaction Processing: CPI-C Specification, Version 2 483

LU 6.2 CRMs Mapping to OSI TP and LU 6.2 CRMs

Starter Set
Accept_Conversation
Allocate
Deallocate
Initilize_Conversation
Receive
Send_Data

Advanced Function

D

D

D

D

X XX XX X XX
X XX

D D

S

S

X
X

X

X
X X

X X X
X

CPI Communications Calls

Accept_Incoming
Cancel_Conversation
Confirm
Confirmed
Extract_Conversation_State
Extract_Conversation_Type
Extract_Mode_Name
Extract_Partner_LU_Name
Extract_Security_User_ID
Extract_Send_Receive_Mode
Extract_Sync_Level
Extract_TP_Name
Flush
Initialize_For_Incoming
Prepare
Prepare_To_Receive
Receive_Expedited_Data
Request_To_Send
Send_Error
Send_Expedited_Data
Set_Confirmation_Urgency
Set_Conversation_Security_Password
Set_Conversation_Security_Type
Set_Conversation_Security_User_ID
Set_Conversation_Type
Set_Deallocate_Type
Set_Error_Direction
Set_Fill
Set_Initialization_Data
Set_Log_Data
Set_Mode_Name
Set_Partner_LU_Name
Set_Prepare_To_Receive_Type
Set_Receive_Type
Set_Return_Control
Set_Send_Receive_Mode
Set_Send_Type
Set_Sync_Level
Set_TP_Name
Test_Request_To_Send_Received

M
C

_P
O

S
T

_O
N

_R
E

C
E

IP
T

M
C

_P
R

E
P

A
R

E
_F

O
R

_S
Y

N
C

P
T

M
C

_P
R

E
P

A
R

E
_T

O
_R

E
C

E
IV

E

-
T

Y
P

E

-
LO

C
K

S

M
C

_R
E

C
E

IV
E

_A
N

D
_W

A
IT

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

-
W

H
A

T
_R

E
C

E
IV

E
D

-
M

A
P

_N
A

M
E

M
C

_R
C

V
_E

X
P

E
D

IT
E

D
_D

A
TA

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

M
C

_R
E

C
E

IV
E

_I
M

M
E

D
IA

T
E

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

-
W

H
A

T
_R

E
C

E
IV

E
D

-
M

A
P

_N
A

M
E

M
C

_R
E

Q
U

E
S

T
_T

O
_S

E
N

D

M
C

_S
E

N
D

_D
A

TA

-
M

A
P

_N
A

M
E

-
U

S
E

R
_

C
O

N
T

R
O

L
_

D
A

TA

-
E

N
C

R
Y

P
T

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

484 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs LU 6.2 CRMs

Starter Set
Accept_Conversation
Allocate
Deallocate
Initilize_Conversation
Receive
Send_Data

Advanced Function

X

X
XX

X X

X

X

X X

X
X

X
X

X

CPI Communications Calls

Accept_Incoming
Cancel_Conversation
Confirm
Confirmed
Extract_Conversation_State
Extract_Conversation_Type
Extract_Mode_Name
Extract_Partner_LU_Name
Extract_Security_User_ID
Extract_Send_Receive_Mode
Extract_Sync_Level
Extract_TP_Name
Flush
Initialize_For_Incoming
Prepare
Prepare_To_Receive
Receive_Expedited_Data
Request_To_Send
Send_Error
Send_Expedited_Data
Set_Confirmation_Urgency
Set_Conversation_Security_Password
Set_Conversation_Security_Type
Set_Conversation_Security_User_ID
Set_Conversation_Type
Set_Deallocate_Type
Set_Error_Direction
Set_Fill
Set_Initialization_Data
Set_Log_Data
Set_Mode_Name
Set_Partner_LU_Name
Set_Prepare_To_Receive_Type
Set_Receive_Type
Set_Return_Control
Set_Send_Receive_Mode
Set_Send_Type
Set_Sync_Level
Set_TP_Name
Test_Request_To_Send_Received

M
C

_S
E

N
D

_E
R

R
O

R

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

M
C

_S
E

N
D

_E
X

P
E

D
IT

E
D

_D
A

TA

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

M
C

_T
E

S
T

-
T

E
S

T
_P

O
S

T
E

D

-
T

E
S

T
_R

E
Q

_T
O

_S
E

N
D

_R
C

V
D

B
A

C
K

O
U

T

G
E

T
_T

P
_P

R
O

P
E

R
T

IE
S

-
O

W
N

_F
U

LL
Y

_Q
U

A
L_

LU
_N

A
M

E

-
O

W
N

_T
P

_N
A

M
E

-
O

W
N

_
T

P
_

IN
S

TA
N

C
E

-
S

E
C

U
R

IT
Y

_U
S

E
R

_I
D

-
S

E
C

U
R

IT
Y

_P
R

O
F

IL
E

-
LU

W
_I

D
E

N
T

IF
IE

R

-
P

R
O

T
E

C
T

E
D

_L
U

W
_I

D
E

N
T

IF
IE

R

G
E

T
_T

Y
P

E

S
E

T
_S

Y
N

C
P

T
_O

P
T

IO
N

S

S
Y

N
C

P
T

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

W
A

IT

-
R

E
S

O
U

R
C

E
_P

O
S

T
E

D

W
A

IT
_F

O
R

_C
O

M
P

LE
T

IO
N

Distributed Transaction Processing: CPI-C Specification, Version 2 485

LU 6.2 CRMs Mapping to OSI TP and LU 6.2 CRMs

Starter Set
Accept_Conversation
Allocate
Deallocate
Initilize_Conversation
Receive
Send_Data

Advanced Function

X

X X X
X

X
X D D D D D D D

D D

D D

D

D

D
X

X

X

S

X S
X

X

X

X

S
SX

X

X

X

X

X

S

S

S

S

S
S

S
S

S

CPI Communications Calls

Accept_Incoming
Cancel_Conversation
Confirm
Confirmed
Extract_Conversation_State
Extract_Conversation_Type
Extract_Mode_Name
Extract_Partner_LU_Name
Extract_Security_User_ID
Extract_Send_Receive_Mode
Extract_Sync_Level
Extract_TP_Name
Flush
Initialize_For_Incoming
Prepare
Prepare_To_Receive
Receive_Expedited_Data
Request_To_Send
Send_Error
Send_Expedited_Data
Set_Confirmation_Urgency
Set_Conversation_Security_Password
Set_Conversation_Security_Type
Set_Conversation_Security_User_ID
Set_Conversation_Type
Set_Deallocate_Type
Set_Error_Direction
Set_Fill
Set_Initialization_Data
Set_Log_Data
Set_Mode_Name
Set_Partner_LU_Name
Set_Prepare_To_Receive_Type
Set_Receive_Type
Set_Return_Control
Set_Send_Receive_Mode
Set_Send_Type
Set_Sync_Level
Set_TP_Name
Test_Request_To_Send_Received

A
LL

O
C

A
T

E

-
LU

_N
A

M
E

-
M

O
D

E
_N

A
M

E

-
T

P
N

-
T

Y
P

E

-
R

E
T

U
R

N
_

C
O

N
T

R
O

L

-
C

O
N

V
E

R
S

A
T

IO
N

_G
R

O
U

P
_I

D

-
S

Y
N

C
_L

E
V

E
L

-
S

E
C

U
R

IT
Y

-
P

IP

C
O

N
F

IR
M

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

C
O

N
F

IR
M

E
D

D
E

A
LL

O
C

A
T

E

-
T

Y
P

E

-
LO

G
_D

A
TA

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

F
LU

S
H

486 X/Open CAE Specification

Mapping to OSI TP and LU 6.2 CRMs LU 6.2 CRMs

Starter Set
Accept_Conversation
Allocate
Deallocate
Initilize_Conversation
Receive
Send_Data

Advanced Function

X X

X X

X

X X

X
X

X

X X

X X

X

X

X

X

X

D

D

D

D

D

D

D

D

D

X

X

X

S

S

S

CPI Communications Calls

Accept_Incoming
Cancel_Conversation
Confirm
Confirmed
Extract_Conversation_State
Extract_Conversation_Type
Extract_Mode_Name
Extract_Partner_LU_Name
Extract_Security_User_ID
Extract_Send_Receive_Mode
Extract_Sync_Level
Extract_TP_Name
Flush
Initialize_For_Incoming
Prepare
Prepare_To_Receive
Receive_Expedited_Data
Request_To_Send
Send_Error
Send_Expedited_Data
Set_Confirmation_Urgency
Set_Conversation_Security_Password
Set_Conversation_Security_Type
Set_Conversation_Security_User_ID
Set_Conversation_Type
Set_Deallocate_Type
Set_Error_Direction
Set_Fill
Set_Initialization_Data
Set_Log_Data
Set_Mode_Name
Set_Partner_LU_Name
Set_Prepare_To_Receive_Type
Set_Receive_Type
Set_Return_Control
Set_Send_Receive_Mode
Set_Send_Type
Set_Sync_Level
Set_TP_Name
Test_Request_To_Send_Received

G
E

T
_A

T
T

R
IB

U
T

E
S

-
P

A
R

T
N

E
R

_
L

U
_

N
A

M
E

-
P

A
R

T
_F

U
LL

_Q
U

A
L_

LU
_N

A
M

E

-
M

O
D

E
_N

A
M

E

-
S

Y
N

C
_L

E
V

E
L

-
C

O
N

V
E

R
S

A
T

IO
N

_S
TA

T
E

-
C

O
N

V
_

C
O

R
R

E
L

A
T

O
R

-
S

E
S

S
IO

N
_I

D

-
C

O
N

V
E

R
S

A
T

IO
N

_G
R

O
U

P
_I

D

P
O

S
T

_O
N

_R
E

C
E

IP
T

-
F

IL
L

P
R

E
P

A
R

E
_F

O
R

_S
Y

N
C

P
T

P
R

E
A

P
A

R
E

_T
O

_R
E

C
E

IV
E

-
T

Y
P

E

-
LO

C
K

S

R
E

C
E

IV
E

_A
N

D
_W

A
IT

-
F

IL
L

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

-
W

H
A

T
_R

E
C

E
IV

E
D

R
E

C
E

IV
E

_E
X

P
E

D
IT

E
D

_D
A

TA

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

Distributed Transaction Processing: CPI-C Specification, Version 2 487

LU 6.2 CRMs Mapping to OSI TP and LU 6.2 CRMs

Starter Set
Accept_Conversation
Allocate
Deallocate
Initilize_Conversation
Receive
Send_Data

Advanced Function

X

XXX

X X X X
X X X

X

X

X S

D XX

D

D

D

D

D

D

X

X

X X

S

CPI Communications Calls

Accept_Incoming
Cancel_Conversation
Confirm
Confirmed
Extract_Conversation_State
Extract_Conversation_Type
Extract_Mode_Name
Extract_Partner_LU_Name
Extract_Security_User_ID
Extract_Send_Receive_Mode
Extract_Sync_Level
Extract_TP_Name
Flush
Initialize_For_Incoming
Prepare
Prepare_To_Receive
Receive_Expedited_Data
Request_To_Send
Send_Error
Send_Expedited_Data
Set_Confirmation_Urgency
Set_Conversation_Security_Password
Set_Conversation_Security_Type
Set_Conversation_Security_User_ID
Set_Conversation_Type
Set_Deallocate_Type
Set_Error_Direction
Set_Fill
Set_Initialization_Data
Set_Log_Data
Set_Mode_Name
Set_Partner_LU_Name
Set_Prepare_To_Receive_Type
Set_Receive_Type
Set_Return_Control
Set_Send_Receive_Mode
Set_Send_Type
Set_Sync_Level
Set_TP_Name
Test_Request_To_Send_Received

R
E

C
E

IV
E

_I
M

M
E

D
IA

T
E

-
F

IL
L

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

-
W

H
A

T
_R

E
C

E
IV

E
D

R
E

Q
U

E
S

T
_T

O
_S

E
N

D

S
E

N
D

_D
A

TA

-
E

N
C

R
Y

P
T

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

S
E

N
D

_E
X

P
E

D
IT

E
D

_D
A

TA

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

S
E

N
D

_E
R

R
O

R

-
T

Y
P

E

-
LO

G
_D

A
TA

-
R

E
Q

_T
O

_S
E

N
D

_R
E

C
E

IV
E

D

-
E

X
P

E
D

IT
E

D
_D

A
TA

_R
E

C
E

IV
E

D

T
E

S
T

-
T

E
S

T
_P

O
S

T
E

D

-
T

E
S

T
_R

E
Q

_T
O

_S
E

N
D

_R
C

V
D

488 X/Open CAE Specification

Appendix E

Pseudonym Files

This appendix contains sample pseudonym files for the C and COBOL programming languages.
These pseudonym files are provided as a usability aid for the CPI Communications programmer.
Because the filenames and file contents differ from system to system, the samples shown in this
appendix are representative but not complete. Customised pseudonym files may be provided
on many systems that use CPI Communications.

Distributed Transaction Processing: CPI-C Specification, Version 2 489

C Pseudonym File (CMC or CPIC.H) Pseudonym Files

E.1 C Pseudonym File (CMC or CPIC.H)
CPIC 1.0 and CPIC 1.1 contained a pseudonym file for C named CMC. X/Open introduced a
pseudonym file named CPIC.H. The updated pseudonym file merges CMC and CPIC.H for
CPIC 1.2.

/* *
* *
* CPI Communications Pseudonyms -- SC31-6180-01 *
* *
* *
* NOTE:
* Before you use this file, you must set a supported operating
* system constant. Search on SYSTEM to find the list of supported
* constants and how to set the appropriate one.
*/

/*
* This file is organized as follows:
* - product specific preprocessor directives that must be before all
* other declarations
* - Base CPI-C constants and type definitions
* - Base CPI-C function prototypes
* - Product specific constants and type definitions (enclosed in #if/#endif)
* - Product specific function prototypes (enclosed in #if/#endif)
*/

#ifndef _cpic_h
#define _cpic_h

#define CM_INT32 signed long int

#define CM_ENTRY extern void
#define CM_PTR *

/*
* - Base CPI-C constants and type definitions
*/

/* conversation ID */
typedef unsigned char CONVERSATION_ID [8];
typedef unsigned char SECURITY_PASSWORD [10];
typedef unsigned char SECURITY_USER_ID [10];

typedef CM_INT32 CM_AE_QUAL_OR_AP_TITLE_FORMAT;
/* used for AE_QUALIFIER_FORMAT */
/* and AP_TITLE_FORMAT */

typedef CM_INT32 CM_ALLOCATE_CONFIRM_TYPE;
typedef CM_INT32 CM_BEGIN_TRANSACTION;
typedef CM_INT32 CM_BUFFER_LENGTH;
typedef CM_INT32 CM_CALL_ID;
typedef CM_INT32 CM_COMPLETED_OP_COUNT;
typedef CM_INT32 CM_CONFIRMATION_URGENCY;
typedef CM_INT32 CM_CONTROL_INFORMATION_RECEIVED;

490 X/Open CAE Specification

Pseudonym Files C Pseudonym File (CMC or CPIC.H)

typedef CM_INT32 CM_CONVERSATION_QUEUE;
typedef CM_INT32 CM_CONVERSATION_RETURN_CODE;
typedef CM_INT32 CM_SECURITY_PASSWORD_LENGTH;
typedef CM_INT32 CM_CONVERSATION_SECURITY_TYPE;
typedef CM_INT32 CM_SECURITY_USER_ID_LENGTH;
typedef CM_INT32 CM_CONVERSATION_STATE;
typedef CM_INT32 CM_CONVERSATION_TYPE;
typedef CM_INT32 CM_DATA_RECEIVED_TYPE;
typedef CM_INT32 CM_DEALLOCATE_TYPE;
typedef CM_INT32 CM_DIRECTORY_ENCODING;
typedef CM_INT32 CM_DIRECTORY_SYNTAX;
typedef CM_INT32 CM_ERROR_DIRECTION;
typedef CM_INT32 CM_FILL;
typedef CM_INT32 CM_JOIN_TRANSACTION_TYPE;
typedef CM_INT32 CM_MAXIMUM_BUFFER_SIZE;
typedef CM_INT32 CM_OOID;
typedef CM_INT32 CM_OOID_LIST_COUNT;
typedef CM_INT32 CM_PREPARE_DATA_PERMITTED_TYPE;
typedef CM_INT32 CM_PREPARE_TO_RECEIVE_TYPE;
typedef CM_INT32 CM_PROCESSING_MODE; /* also used for queue_processing_mode */
typedef CM_INT32 CM_RECEIVE_TYPE; /* also used for expedited_receive_type */
typedef CM_CONTROL_INFORMATION_RECEIVED CM_REQUEST_TO_SEND_RECEIVED;
typedef CM_INT32 CM_RETURN_CODE;
typedef CM_INT32 CM_RETURN_CONTROL;
typedef CM_INT32 CM_SEND_RECEIVE_MODE;
typedef CM_INT32 CM_SEND_TYPE;
typedef CM_INT32 CM_STATUS_RECEIVED;
typedef CM_INT32 CM_SYNC_LEVEL;
typedef CM_INT32 CM_TIMEOUT;
typedef CM_INT32 CM_TRANSACTION_CONTROL;

/* X/open typedefs for compatibility */
typedef CM_INT32 CONVERSATION_TYPE;
typedef CM_INT32 CONVERSATION_SECURITY_TYPE;
typedef CM_INT32 DATA_RECEIVED;
typedef CM_INT32 DEALLOCATE_TYPE;
typedef CM_INT32 ERROR_DIRECTION;
typedef CM_INT32 PREPARE_TO_RECEIVE_TYPE;
typedef CM_INT32 PROCESSING_MODE;
typedef CM_INT32 RECEIVE_TYPE;
typedef CM_INT32 REQUEST_TO_SEND_RECEIVED;
typedef CM_INT32 CM_RETCODE;
typedef CM_INT32 RETURN_CONTROL;
typedef CM_INT32 SEND_TYPE;
typedef CM_INT32 STATUS_RECEIVED;
typedef CM_INT32 SYNC_LEVEL;

/*
* Enumerated data types (enum) have not been used for the
* constant values because the default type for an enum
* is ’int’. This causes type conflicts on compilers where
* int is not the same size as CM_INT32.
*/

/* AE_qual_or_AP_title_format values, used for
AE_qualifier_format and AP_title_format parameters */

#define CM_DN (CM_AE_QUAL_OR_AP_TITLE_FORMAT) 0
#define CM_OID (CM_AE_QUAL_OR_AP_TITLE_FORMAT) 1

Distributed Transaction Processing: CPI-C Specification, Version 2 491

C Pseudonym File (CMC or CPIC.H) Pseudonym Files

#define CM_INT_DIGITS (CM_AE_QUAL_OR_AP_TITLE_FORMAT) 2

/* allocate_confirm values */

#define CM_ALLOCATE_NO_CONFIRM (CM_ALLOCATE_CONFIRM_TYPE) 0
#define CM_ALLOCATE_CONFIRM (CM_ALLOCATE_CONFIRM_TYPE) 1

/* begin_transaction values */

#define CM_BEGIN_IMPLICIT (CM_BEGIN_TRANSACTION) 0
#define CM_BEGIN_EXPLICIT (CM_BEGIN_TRANSACTION) 1

/* call_ID values */

#define CM_CMACCI (CM_CALL_ID) 1
#define CM_CMACCP (CM_CALL_ID) 2
#define CM_CMALLC (CM_CALL_ID) 3
#define CM_CMCANC (CM_CALL_ID) 4
#define CM_CMCFM (CM_CALL_ID) 5
#define CM_CMCFMD (CM_CALL_ID) 6
#define CM_CMCNVI (CM_CALL_ID) 7
#define CM_CMCNVO (CM_CALL_ID) 8
#define CM_CMDEAL (CM_CALL_ID) 9
#define CM_CMDFDE (CM_CALL_ID) 10
#define CM_CMEACN (CM_CALL_ID) 11
#define CM_CMEAEQ (CM_CALL_ID) 12
#define CM_CMEAPT (CM_CALL_ID) 13
#define CM_CMECS (CM_CALL_ID) 14
#define CM_CMECT (CM_CALL_ID) 15
#define CM_CMECTX (CM_CALL_ID) 16
#define CM_CMEID (CM_CALL_ID) 17
#define CM_CMEMBS (CM_CALL_ID) 18
#define CM_CMEMN (CM_CALL_ID) 19
#define CM_CMEPLN (CM_CALL_ID) 21
#define CM_CMESI (CM_CALL_ID) 22
#define CM_CMESL (CM_CALL_ID) 23
#define CM_CMESRM (CM_CALL_ID) 24
#define CM_CMESUI (CM_CALL_ID) 25
#define CM_CMETC (CM_CALL_ID) 26
#define CM_CMETPN (CM_CALL_ID) 27
#define CM_CMFLUS (CM_CALL_ID) 28
#define CM_CMINCL (CM_CALL_ID) 29
#define CM_CMINIC (CM_CALL_ID) 30
#define CM_CMINIT (CM_CALL_ID) 31
#define CM_CMPREP (CM_CALL_ID) 32
#define CM_CMPTR (CM_CALL_ID) 33
#define CM_CMRCV (CM_CALL_ID) 34
#define CM_CMRCVX (CM_CALL_ID) 35
#define CM_CMRLTP (CM_CALL_ID) 36
#define CM_CMRTS (CM_CALL_ID) 37
#define CM_CMSAC (CM_CALL_ID) 38
#define CM_CMSACN (CM_CALL_ID) 39
#define CM_CMSAEQ (CM_CALL_ID) 40
#define CM_CMSAPT (CM_CALL_ID) 41
#define CM_CMSBT (CM_CALL_ID) 42
#define CM_CMSCSP (CM_CALL_ID) 43

492 X/Open CAE Specification

Pseudonym Files C Pseudonym File (CMC or CPIC.H)

#define CM_CMSCST (CM_CALL_ID) 44
#define CM_CMSCSU (CM_CALL_ID) 45
#define CM_CMSCT (CM_CALL_ID) 46
#define CM_CMSCU (CM_CALL_ID) 47
#define CM_CMSDT (CM_CALL_ID) 48
#define CM_CMSED (CM_CALL_ID) 49
#define CM_CMSEND (CM_CALL_ID) 50
#define CM_CMSERR (CM_CALL_ID) 51
#define CM_CMSF (CM_CALL_ID) 52
#define CM_CMSID (CM_CALL_ID) 53
#define CM_CMSLD (CM_CALL_ID) 54
#define CM_CMSLTP (CM_CALL_ID) 55
#define CM_CMSMN (CM_CALL_ID) 56
#define CM_CMSNDX (CM_CALL_ID) 57
#define CM_CMSPDP (CM_CALL_ID) 58
#define CM_CMSPLN (CM_CALL_ID) 60
#define CM_CMSPM (CM_CALL_ID) 61
#define CM_CMSPTR (CM_CALL_ID) 62
#define CM_CMSQCF (CM_CALL_ID) 63
#define CM_CMSQPM (CM_CALL_ID) 64
#define CM_CMSRC (CM_CALL_ID) 65
#define CM_CMSRT (CM_CALL_ID) 66
#define CM_CMSSL (CM_CALL_ID) 67
#define CM_CMSSRM (CM_CALL_ID) 68
#define CM_CMSST (CM_CALL_ID) 69
#define CM_CMSTC (CM_CALL_ID) 70
#define CM_CMSTPN (CM_CALL_ID) 71
#define CM_CMTRTS (CM_CALL_ID) 72
#define CM_CMWAIT (CM_CALL_ID) 73
#define CM_CMWCMP (CM_CALL_ID) 74
#define CM_CMSJT (CM_CALL_ID) 75

/* confirmation_urgency values */

#define CM_CONFIRMATION_NOT_URGENT (CM_CONFIRMATION_URGENCY) 0
#define CM_CONFIRMATION_URGENT (CM_CONFIRMATION_URGENCY) 1

/* control_information_received, request_to_send_received values */

#define CM_NO_CONTROL_INFO_RECEIVED (CM_CONTROL_INFORMATION_RECEIVED) 0
#define CM_REQ_TO_SEND_NOT_RECEIVED (CM_CONTROL_INFORMATION_RECEIVED) 0
#define CM_REQ_TO_SEND_RECEIVED (CM_CONTROL_INFORMATION_RECEIVED) 1
#define CM_ALLOCATE_CONFIRMED (CM_CONTROL_INFORMATION_RECEIVED) 2
#define CM_ALLOCATE_CONFIRMED_WITH_DATA (CM_CONTROL_INFORMATION_RECEIVED) 3
#define CM_ALLOCATE_REJECTED_WITH_DATA (CM_CONTROL_INFORMATION_RECEIVED) 4
#define CM_EXPEDITED_DATA_AVAILABLE (CM_CONTROL_INFORMATION_RECEIVED) 5
#define CM_RTS_RCVD_AND_EXP_DATA_AVAIL (CM_CONTROL_INFORMATION_RECEIVED) 6

/* conversation_queue values */

#define CM_INITIALIZATION_QUEUE (CM_CONVERSATION_QUEUE) 0
#define CM_SEND_QUEUE (CM_CONVERSATION_QUEUE) 1
#define CM_RECEIVE_QUEUE (CM_CONVERSATION_QUEUE) 2
#define CM_SEND_RECEIVE_QUEUE (CM_CONVERSATION_QUEUE) 3
#define CM_EXPEDITED_SEND_QUEUE (CM_CONVERSATION_QUEUE) 4
#define CM_EXPEDITED_RECEIVE_QUEUE (CM_CONVERSATION_QUEUE) 5

Distributed Transaction Processing: CPI-C Specification, Version 2 493

C Pseudonym File (CMC or CPIC.H) Pseudonym Files

/* conversation_state values */

#define CM_INITIALIZE_STATE (CM_CONVERSATION_STATE) 2
#define CM_SEND_STATE (CM_CONVERSATION_STATE) 3
#define CM_RECEIVE_STATE (CM_CONVERSATION_STATE) 4
#define CM_SEND_PENDING_STATE (CM_CONVERSATION_STATE) 5
#define CM_CONFIRM_STATE (CM_CONVERSATION_STATE) 6
#define CM_CONFIRM_SEND_STATE (CM_CONVERSATION_STATE) 7
#define CM_CONFIRM_DEALLOCATE_STATE (CM_CONVERSATION_STATE) 8
#define CM_DEFER_RECEIVE_STATE (CM_CONVERSATION_STATE) 9
#define CM_DEFER_DEALLOCATE_STATE (CM_CONVERSATION_STATE) 10
#define CM_SYNC_POINT_STATE (CM_CONVERSATION_STATE) 11
#define CM_SYNC_POINT_SEND_STATE (CM_CONVERSATION_STATE) 12
#define CM_SYNC_POINT_DEALLOCATE_STATE (CM_CONVERSATION_STATE) 13
#define CM_INITIALIZE_INCOMING_STATE (CM_CONVERSATION_STATE) 14
#define CM_SEND_ONLY_STATE (CM_CONVERSATION_STATE) 15
#define CM_RECEIVE_ONLY_STATE (CM_CONVERSATION_STATE) 16
#define CM_SEND_RECEIVE_STATE (CM_CONVERSATION_STATE) 17
#define CM_PREPARED_STATE (CM_CONVERSATION_STATE) 18

/* conversation_type values */

#define CM_BASIC_CONVERSATION (CM_CONVERSATION_TYPE) 0
#define CM_MAPPED_CONVERSATION (CM_CONVERSATION_TYPE) 1

/* data_received values */

#define CM_NO_DATA_RECEIVED (CM_DATA_RECEIVED_TYPE) 0
#define CM_DATA_RECEIVED (CM_DATA_RECEIVED_TYPE) 1
#define CM_COMPLETE_DATA_RECEIVED (CM_DATA_RECEIVED_TYPE) 2
#define CM_INCOMPLETE_DATA_RECEIVED (CM_DATA_RECEIVED_TYPE) 3

/* deallocate_type values */

#define CM_DEALLOCATE_SYNC_LEVEL (CM_DEALLOCATE_TYPE) 0
#define CM_DEALLOCATE_FLUSH (CM_DEALLOCATE_TYPE) 1
#define CM_DEALLOCATE_CONFIRM (CM_DEALLOCATE_TYPE) 2
#define CM_DEALLOCATE_ABEND (CM_DEALLOCATE_TYPE) 3

/* error_direction values */

#define CM_RECEIVE_ERROR (CM_ERROR_DIRECTION) 0
#define CM_SEND_ERROR (CM_ERROR_DIRECTION) 1

/* fill values */

#define CM_FILL_LL (CM_FILL) 0
#define CM_FILL_BUFFER (CM_FILL) 1

/* join transaction values */

#define CM_JOIN_IMPLICIT (CM_JOIN_TRANSACTION_TYPE) 0
#define CM_JOIN_EXPLICIT (CM_JOIN_TRANSACTION_TYPE) 1

494 X/Open CAE Specification

Pseudonym Files C Pseudonym File (CMC or CPIC.H)

/* prepare_data_permitted values */

#define CM_PREPARE_DATA_NOT_PERMITTED (CM_PREPARE_DATA_PERMITTED_TYPE) 0
#define CM_PREPARE_DATA_PERMITTED (CM_PREPARE_DATA_PERMITTED_TYPE) 1

/* prepare_to_receive_type values */

#define CM_PREP_TO_RECEIVE_SYNC_LEVEL (CM_PREPARE_TO_RECEIVE_TYPE) 0
#define CM_PREP_TO_RECEIVE_FLUSH (CM_PREPARE_TO_RECEIVE_TYPE) 1
#define CM_PREP_TO_RECEIVE_CONFIRM (CM_PREPARE_TO_RECEIVE_TYPE) 2

/* processing_mode values */

#define CM_BLOCKING (CM_PROCESSING_MODE) 0
#define CM_NON_BLOCKING (CM_PROCESSING_MODE) 1

/* receive_type values */

#define CM_RECEIVE_AND_WAIT (CM_RECEIVE_TYPE) 0
#define CM_RECEIVE_IMMEDIATE (CM_RECEIVE_TYPE) 1

/* return_code values */

#define CM_OK (CM_RETURN_CODE) 0
#define CM_ALLOCATE_FAILURE_NO_RETRY (CM_RETURN_CODE) 1
#define CM_ALLOCATE_FAILURE_RETRY (CM_RETURN_CODE) 2
#define CM_CONVERSATION_TYPE_MISMATCH (CM_RETURN_CODE) 3
#define CM_PIP_NOT_SPECIFIED_CORRECTLY (CM_RETURN_CODE) 5
#define CM_SECURITY_NOT_VALID (CM_RETURN_CODE) 6
#define CM_SYNC_LVL_NOT_SUPPORTED_LU (CM_RETURN_CODE) 7
#define CM_SYNC_LVL_NOT_SUPPORTED_SYS (CM_RETURN_CODE) 7
#define CM_SYNC_LVL_NOT_SUPPORTED_PGM (CM_RETURN_CODE) 8
#define CM_TPN_NOT_RECOGNIZED (CM_RETURN_CODE) 9
#define CM_TP_NOT_AVAILABLE_NO_RETRY (CM_RETURN_CODE) 10
#define CM_TP_NOT_AVAILABLE_RETRY (CM_RETURN_CODE) 11
#define CM_DEALLOCATED_ABEND (CM_RETURN_CODE) 17
#define CM_DEALLOCATED_NORMAL (CM_RETURN_CODE) 18
#define CM_PARAMETER_ERROR (CM_RETURN_CODE) 19
#define CM_PRODUCT_SPECIFIC_ERROR (CM_RETURN_CODE) 20
#define CM_PROGRAM_ERROR_NO_TRUNC (CM_RETURN_CODE) 21
#define CM_PROGRAM_ERROR_PURGING (CM_RETURN_CODE) 22
#define CM_PROGRAM_ERROR_TRUNC (CM_RETURN_CODE) 23
#define CM_PROGRAM_PARAMETER_CHECK (CM_RETURN_CODE) 24
#define CM_PROGRAM_STATE_CHECK (CM_RETURN_CODE) 25
#define CM_RESOURCE_FAILURE_NO_RETRY (CM_RETURN_CODE) 26
#define CM_RESOURCE_FAILURE_RETRY (CM_RETURN_CODE) 27
#define CM_UNSUCCESSFUL (CM_RETURN_CODE) 28
#define CM_DEALLOCATED_ABEND_SVC (CM_RETURN_CODE) 30
#define CM_DEALLOCATED_ABEND_TIMER (CM_RETURN_CODE) 31
#define CM_SVC_ERROR_NO_TRUNC (CM_RETURN_CODE) 32
#define CM_SVC_ERROR_PURGING (CM_RETURN_CODE) 33
#define CM_SVC_ERROR_TRUNC (CM_RETURN_CODE) 34
#define CM_OPERATION_INCOMPLETE (CM_RETURN_CODE) 35 /* CPIC 1.2 */
#define CM_SYSTEM_EVENT (CM_RETURN_CODE) 36 /* CPIC 1.2 */
#define CM_OPERATION_NOT_ACCEPTED (CM_RETURN_CODE) 37 /* CPIC 1.2 */

Distributed Transaction Processing: CPI-C Specification, Version 2 495

C Pseudonym File (CMC or CPIC.H) Pseudonym Files

#define CM_CONVERSATION_ENDING (CM_RETURN_CODE) 38 /* CPIC 2.0 */
#define CM_SEND_RCV_MODE_NOT_SUPPORTED (CM_RETURN_CODE) 39 /* CPIC 2.0 */
#define CM_BUFFER_TOO_SMALL (CM_RETURN_CODE) 40 /* CPIC 2.0 */
#define CM_EXP_DATA_NOT_SUPPORTED (CM_RETURN_CODE) 41 /* CPIC 2.0 */
#define CM_DEALLOC_CONFIRM_REJECT (CM_RETURN_CODE) 42 /* CPIC 2.0 */
#define CM_ALLOCATION_ERROR (CM_RETURN_CODE) 43 /* CPIC 2.0 */
#define CM_RETRY_LIMIT_EXCEEDED (CM_RETURN_CODE) 44 /* CPIC 2.0 */
#define CM_NO_SECONDARY_INFORMATION (CM_RETURN_CODE) 45 /* CPIC 2.0 */
#define CM_SECURITY_NOT_SUPPORTED (CM_RETURN_CODE) 46 /* CPIC 2.0 */
#define CM_CALL_NOT_SUPPORTED (CM_RETURN_CODE) 48 /* CPIC 2.0 */
#define CM_PARM_VALUE_NOT_SUPPORTED (CM_RETURN_CODE) 49 /* CPIC 2.0 */
#define CM_TAKE_BACKOUT (CM_RETURN_CODE) 100
#define CM_DEALLOCATED_ABEND_BO (CM_RETURN_CODE) 130
#define CM_DEALLOCATED_ABEND_SVC_BO (CM_RETURN_CODE) 131
#define CM_DEALLOCATED_ABEND_TIMER_BO (CM_RETURN_CODE) 132
#define CM_RESOURCE_FAIL_NO_RETRY_BO (CM_RETURN_CODE) 133
#define CM_RESOURCE_FAILURE_RETRY_BO (CM_RETURN_CODE) 134
#define CM_DEALLOCATED_NORMAL_BO (CM_RETURN_CODE) 135
#define CM_CONV_DEALLOC_AFTER_SYNCPT (CM_RETURN_CODE) 136 /* CPIC 2.0 */
#define CM_INCLUDE_PARTNER_REJECT_BO (CM_RETURN_CODE) 137 /* CPIC 2.0 */

/* return_control values */

#define CM_WHEN_SESSION_ALLOCATED (CM_RETURN_CONTROL) 0
#define CM_IMMEDIATE (CM_RETURN_CONTROL) 1

/* send_receive_mode values */

#define CM_HALF_DUPLEX (CM_SEND_RECEIVE_MODE) 0
#define CM_FULL_DUPLEX (CM_SEND_RECEIVE_MODE) 1

/* send_type values */

#define CM_BUFFER_DATA (CM_SEND_TYPE) 0
#define CM_SEND_AND_FLUSH (CM_SEND_TYPE) 1
#define CM_SEND_AND_CONFIRM (CM_SEND_TYPE) 2
#define CM_SEND_AND_PREP_TO_RECEIVE (CM_SEND_TYPE) 3
#define CM_SEND_AND_DEALLOCATE (CM_SEND_TYPE) 4

/* status_received values */

#define CM_NO_STATUS_RECEIVED (CM_STATUS_RECEIVED) 0
#define CM_SEND_RECEIVED (CM_STATUS_RECEIVED) 1
#define CM_CONFIRM_RECEIVED (CM_STATUS_RECEIVED) 2
#define CM_CONFIRM_SEND_RECEIVED (CM_STATUS_RECEIVED) 3
#define CM_CONFIRM_DEALLOC_RECEIVED (CM_STATUS_RECEIVED) 4
#define CM_TAKE_COMMIT (CM_STATUS_RECEIVED) 5
#define CM_TAKE_COMMIT_SEND (CM_STATUS_RECEIVED) 6
#define CM_TAKE_COMMIT_DEALLOCATE (CM_STATUS_RECEIVED) 7
#define CM_TAKE_COMMIT_DATA_OK (CM_STATUS_RECEIVED) 8
#define CM_TAKE_COMMIT_SEND_DATA_OK (CM_STATUS_RECEIVED) 9
#define CM_TAKE_COMMIT_DEALLOC_DATA_OK (CM_STATUS_RECEIVED) 10
#define CM_PREPARE_OK (CM_STATUS_RECEIVED) 11
#define CM_JOIN_TRANSACTION (CM_STATUS_RECEIVED) 12

496 X/Open CAE Specification

Pseudonym Files C Pseudonym File (CMC or CPIC.H)

/* sync_level values */

#define CM_NONE (CM_SYNC_LEVEL) 0
#define CM_CONFIRM (CM_SYNC_LEVEL) 1
#define CM_SYNC_POINT (CM_SYNC_LEVEL) 2
#define CM_SYNC_POINT_NO_CONFIRM (CM_SYNC_LEVEL) 3

/* conversation_security_type values */

#define CM_SECURITY_NONE (CM_CONVERSATION_SECURITY_TYPE) 0
#define CM_SECURITY_SAME (CM_CONVERSATION_SECURITY_TYPE) 1
#define CM_SECURITY_PROGRAM (CM_CONVERSATION_SECURITY_TYPE) 2
#define CM_SECURITY_PROGRAM_STRONG (CM_CONVERSATION_SECURITY_TYPE) 5

/* transaction_control values */

#define CM_CHAINED_TRANSACTIONS (CM_TRANSACTION_CONTROL) 0
#define CM_UNCHAINED_TRANSACTIONS (CM_TRANSACTION_CONTROL) 1

/*
* - Base CPI-C function prototypes
*/

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */

CM_ENTRY cmacci(unsigned char CM_PTR, /* conversation_ID */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmaccp(unsigned char CM_PTR, /* conversation_ID */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmallc(unsigned char CM_PTR, /* conversation_ID */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmcanc(unsigned char CM_PTR, /* conversation_ID */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmcfm(unsigned char CM_PTR, /* conversation_ID */
CM_CONTROL_INFORMATION_RECEIVED CM_PTR,

/* control_information_received */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmcfmd(unsigned char CM_PTR, /* conversation_ID */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmcnvi(unsigned char CM_PTR, /* buffer */
CM_INT32 CM_PTR, /* buffer_length */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmcnvo(unsigned char CM_PTR, /* buffer */
CM_INT32 CM_PTR, /* buffer_length */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmdeal(unsigned char CM_PTR, /* conversation_ID */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmdfde(unsigned char CM_PTR, /* conversation_ID */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmeaeq(unsigned char CM_PTR, /* conversation_ID */
unsigned char CM_PTR, /* AE_qualifier */
CM_INT32 CM_PTR, /* AE_qualifier_length */
CM_AE_QUAL_OR_AP_TITLE_FORMAT CM_PTR,

/* AE_qualifier_format */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmeapt(unsigned char CM_PTR, /* conversation_ID */

Distributed Transaction Processing: CPI-C Specification, Version 2 497

C Pseudonym File (CMC or CPIC.H) Pseudonym Files

unsigned char CM_PTR, /* AP_title */
CM_INT32 CM_PTR, /* AP_title length */
CM_AE_QUAL_OR_AP_TITLE_FORMAT CM_PTR,

/* AP_title format */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmeacn(unsigned char CM_PTR, /* conversation_ID */
unsigned char CM_PTR, /* application_context_name */
CM_INT32 CM_PTR, /* appl_context_name_length */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmecs(unsigned char CM_PTR, /* conversation_ID */
CM_CONVERSATION_STATE CM_PTR, /* conversation_state */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmect(unsigned char CM_PTR, /* conversation_ID */
CM_CONVERSATION_TYPE CM_PTR, /* conversation_type */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmeid(unsigned char CM_PTR, /* conversation_ID */
unsigned char CM_PTR, /* initialization_data */
CM_INT32 CM_PTR, /* requested_length */
CM_INT32 CM_PTR, /* initialization_data_leng */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmembs(CM_INT32 CM_PTR, /* maximum_buffer_size */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmemn(unsigned char CM_PTR, /* conversation_ID */
unsigned char CM_PTR, /* mode_name */
CM_INT32 CM_PTR, /* mode_name_length */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmepln(unsigned char CM_PTR, /* conversation_ID */
unsigned char CM_PTR, /* partner_LU_name */
CM_INT32 CM_PTR, /* partner_LU_name_length */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmesi(unsigned char CM_PTR, /* conversation_ID */
CM_INT32 CM_PTR, /* call_ID */
unsigned char CM_PTR, /* buffer */
CM_INT32 CM_PTR, /* requested_length */
CM_DATA_RECEIVED_TYPE CM_PTR, /* data_received */
CM_INT32 CM_PTR, /* received_length */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmesl(unsigned char CM_PTR, /* conversation_ID */
CM_SYNC_LEVEL CM_PTR, /* sync_level */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmesrm(unsigned char CM_PTR, /* conversation_ID */
CM_SEND_RECEIVE_MODE CM_PTR, /* send_receive_mode */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmesui(unsigned char CM_PTR, /* conversation_ID */
unsigned char CM_PTR, /* user_ID */
CM_INT32 CM_PTR, /* user_ID_length */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmetc(unsigned char CM_PTR, /* conversation_ID */
CM_TRANSACTION_CONTROL CM_PTR,/* transaction_control */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmetpn(unsigned char CM_PTR, /* conversation_ID */
unsigned char CM_PTR, /* TP_name */
CM_INT32 CM_PTR, /* TP_name_length */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmflus(unsigned char CM_PTR, /* conversation_ID */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmincl(unsigned char CM_PTR, /* conversation_ID */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cminic(unsigned char CM_PTR, /* conversation_ID */

498 X/Open CAE Specification

Pseudonym Files C Pseudonym File (CMC or CPIC.H)

CM_RETURN_CODE CM_PTR); /* return_code */
CM_ENTRY cminit(unsigned char CM_PTR, /* conversation_ID */

unsigned char CM_PTR, /* sym_dest_name */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmprep(unsigned char CM_PTR, /* conversation_ID */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmptr(unsigned char CM_PTR, /* conversation_ID */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmrcv(unsigned char CM_PTR, /* conversation_ID */
unsigned char CM_PTR, /* buffer */
CM_INT32 CM_PTR, /* requested_length */
CM_DATA_RECEIVED_TYPE CM_PTR, /* data_received */
CM_INT32 CM_PTR, /* received_length */
CM_STATUS_RECEIVED CM_PTR, /* status_received */
CM_CONTROL_INFORMATION_RECEIVED CM_PTR,

/* control_information_received */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmrcvx(unsigned char CM_PTR, /* conversation_ID */
unsigned char CM_PTR, /* buffer */
CM_INT32 CM_PTR, /* requested_length */
CM_INT32 CM_PTR, /* received_length */
CM_CONTROL_INFORMATION_RECEIVED CM_PTR,

/* control_information_received */
CM_RECEIVE_TYPE CM_PTR, /* expedited_receive_type */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmrltp(unsigned char CM_PTR, /* TP_name */
CM_INT32 CM_PTR, /* TP_name_length */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmrts(unsigned char CM_PTR, /* conversation_ID */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsaeq(unsigned char CM_PTR, /* conversation_ID */
unsigned char CM_PTR, /* AE_qualifier */
CM_INT32 CM_PTR, /* AE_qualifier length */
CM_AE_QUAL_OR_AP_TITLE_FORMAT CM_PTR,

/* AE_qualifier format */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsac(unsigned char CM_PTR, /* conversation_ID */
CM_ALLOCATE_CONFIRM_TYPE CM_PTR,

/* allocate_confirm */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsacn(unsigned char CM_PTR, /* conversation_ID */
unsigned char CM_PTR, /* application_context_name */
CM_INT32 CM_PTR, /* appl_context_name_length */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsapt(unsigned char CM_PTR, /* conversation_ID */
unsigned char CM_PTR, /* AP_title */
CM_INT32 CM_PTR, /* AP_title_length */
CM_AE_QUAL_OR_AP_TITLE_FORMAT CM_PTR,

/* AP_title_format */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsbt(unsigned char CM_PTR, /* conversation_ID */
CM_BEGIN_TRANSACTION CM_PTR, /* begin_transaction */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmscsp(unsigned char CM_PTR, /* conversation_ID */
unsigned char CM_PTR, /* password */
CM_INT32 CM_PTR, /* password_length */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmscst(unsigned char CM_PTR, /* conversation_ID */
CM_CONVERSATION_SECURITY_TYPE CM_PTR,

Distributed Transaction Processing: CPI-C Specification, Version 2 499

C Pseudonym File (CMC or CPIC.H) Pseudonym Files

/* conv_security_type */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmscsu(unsigned char CM_PTR, /* conversation_ID */
unsigned char CM_PTR, /* user_ID */
CM_INT32 CM_PTR, /* user_ID_length */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsct(unsigned char CM_PTR, /* conversation_ID */
CM_CONVERSATION_TYPE CM_PTR, /* conversation_type */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmscu(unsigned char CM_PTR, /* conversation_ID */
CM_CONFIRMATION_URGENCY CM_PTR,

/* confirmation_urgency */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsdt(unsigned char CM_PTR, /* conversation_ID */
CM_DEALLOCATE_TYPE CM_PTR, /* deallocate_type */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsed(unsigned char CM_PTR, /* conversation_ID */
CM_ERROR_DIRECTION CM_PTR, /* error_direction */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsend(unsigned char CM_PTR, /* conversation_ID */
unsigned char CM_PTR, /* buffer */
CM_INT32 CM_PTR, /* send_length */
CM_CONTROL_INFORMATION_RECEIVED CM_PTR,

/* control_information_received */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmserr(unsigned char CM_PTR, /* conversation_ID */
CM_CONTROL_INFORMATION_RECEIVED CM_PTR,

/* control_information_received */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsf(unsigned char CM_PTR, /* conversation_ID */
CM_FILL CM_PTR, /* fill */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsid(unsigned char CM_PTR, /* conversation_ID */
unsigned char CM_PTR, /* initialization_data */
CM_INT32 CM_PTR, /* init_data length */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsjt(unsigned char CM_PTR, /* conversation_ID */
CM_JOIN_TRANSACTION_TYPE CM_PTR,

/* join_transaction */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsld(unsigned char CM_PTR, /* conversation_ID */
unsigned char CM_PTR, /* log_data */
CM_INT32 CM_PTR, /* log_data_length */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsltp(unsigned char CM_PTR, /* TP_name */
CM_INT32 CM_PTR, /* TP_name_length */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsmn(unsigned char CM_PTR, /* conversation_ID */
unsigned char CM_PTR, /* mode_name */
CM_INT32 CM_PTR, /* mode_name_length */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsndx(unsigned char CM_PTR, /* conversation_ID */
unsigned char CM_PTR, /* buffer */
CM_INT32 CM_PTR, /* send_length */
CM_CONTROL_INFORMATION_RECEIVED CM_PTR,

/* control_information_received */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmspdp(unsigned char CM_PTR, /* conversation_ID */
CM_PREPARE_DATA_PERMITTED_TYPE CM_PTR,

500 X/Open CAE Specification

Pseudonym Files C Pseudonym File (CMC or CPIC.H)

/* prepare_data_permitted */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmspln(unsigned char CM_PTR, /* conversation_ID */
unsigned char CM_PTR, /* partner_LU_name */
CM_INT32 CM_PTR, /* partner_LU_name_length */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmspm(unsigned char CM_PTR, /* conversation_ID */
CM_PROCESSING_MODE CM_PTR, /* processing_mode */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsptr(unsigned char CM_PTR, /* conversation_ID */
CM_PREPARE_TO_RECEIVE_TYPE CM_PTR,

/* prepare_to_receive_type */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsqcf(unsigned char CM_PTR, /* conversation_ID */
CM_CONVERSATION_QUEUE CM_PTR, /* conversation_queue */
void CM_PTR, /* callback_function */
unsigned char CM_PTR, /* user_field */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsqpm(unsigned char CM_PTR, /* conversation_ID */
CM_CONVERSATION_QUEUE CM_PTR, /* conversation_queue */
CM_PROCESSING_MODE CM_PTR, /* queue_processing_mode */
unsigned char CM_PTR, /* user_field */
CM_INT32 CM_PTR, /* OOID */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsrc(unsigned char CM_PTR, /* conversation_ID */
CM_RETURN_CONTROL CM_PTR, /* return_control */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsrt(unsigned char CM_PTR, /* conversation_ID */
CM_RECEIVE_TYPE CM_PTR, /* receive_type */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmssl(unsigned char CM_PTR, /* conversation_ID */
CM_SYNC_LEVEL CM_PTR, /* sync_level */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmssrm(unsigned char CM_PTR, /* conversation_ID */
CM_SEND_RECEIVE_MODE CM_PTR, /* send_receive_mode */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmsst(unsigned char CM_PTR, /* conversation_ID */
CM_SEND_TYPE CM_PTR, /* send_type */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmstc(unsigned char CM_PTR, /* conversation_ID */
CM_TRANSACTION_CONTROL CM_PTR,/* transaction_control */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmstpn(unsigned char CM_PTR, /* conversation_ID */
unsigned char CM_PTR, /* TP_name */
CM_INT32 CM_PTR, /* TP_name_length */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmtrts(unsigned char CM_PTR, /* conversation_ID */
CM_CONTROL_INFORMATION_RECEIVED CM_PTR,

/* control_information_received */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmwait(unsigned char CM_PTR, /* conversation_ID */
CM_RETURN_CODE CM_PTR, /* conversation_ret_code */
CM_RETURN_CODE CM_PTR); /* return_code */

CM_ENTRY cmwcmp(unsigned char CM_PTR, /* OOID_list */
CM_OOID_LIST_COUNT CM_PTR, /* OOID_list_count */
CM_INT32 CM_PTR, /* timeout */
unsigned char CM_PTR, /* completed_op_index_list */
CM_INT32 CM_PTR, /* completed_op_count */
unsigned char CM_PTR, /* user_field_list */

Distributed Transaction Processing: CPI-C Specification, Version 2 501

C Pseudonym File (CMC or CPIC.H) Pseudonym Files

CM_RETURN_CODE CM_PTR); /* return_code */

#ifdef __cplusplus
}
#endif /* __cplusplus */

/*
* These macros allow you to write programs that are easier to read, since
* you can use the full name of the CPI-C call rather than its 6 character
* entry point.
*
* When porting code that uses these macros, you will have to ensure that
* the macros are defined on the target platform.
*/

#ifdef READABLE_MACROS
#define Accept_Conversation(v1,v2) cmaccp(v1,v2)
#define Accept_Incoming(v1, v2) cmacci(v1,v2)
#define Allocate(v1,v2) cmallc(v1,v2)
#define Cancel_Conversation(v1,v2) cmcanc(v1,v2)
#define Confirm(v1,v2,v3) cmcfm(v1,v2,v3)
#define Confirmed(v1,v2) cmcfmd(v1,v2)
#define Convert_Incoming(v1,v2,v3) cmcnvi(v1,v2,v3)
#define Convert_Outgoing(v1,v2,v3) cmcnvo(v1,v2,v3)
#define Deallocate(v1,v2) cmdeal(v1,v2)
#define Deferred_Deallocate(v1,v2) cmdfde(v1,v2)
#define Extract_AE_Qualifier(v1,v2,v3,v4,v5) cmeaeq(v1,v2,v3,v4,v5)
#define Extract_AP_Title(v1,v2,v3,v4,v5) cmeapt(v1,v2,v3,v4,v5)
#define Extract_Application_Context_Name(v1,v2,v3,v4) cmeacn(v1,v2,v3,v4)
#define Extract_Conversation_State(v1,v2,v3) cmecs(v1,v2,v3)
#define Extract_Conversation_Type(v1,v2,v3) cmect(v1,v2,v3)
#define Extract_Initialization_Data(v1,v2,v3,v4,v5) cmeid(v1,v2,v3,v4,v5)
#define Extract_Maximum_Buffer_Size(v1,v2) cmembs(v1,v2)
#define Extract_Mode_Name(v1,v2,v3,v4) cmemn(v1,v2,v3,v4)
#define Extract_Partner_LU_Name(v1,v2,v3,v4) cmepln(v1,v2,v3,v4)
#define Extract_Secondary_Information(v1,v2,v3,v4,v5,v6,v7) \

cmesi(v1,v2,v3,v4,v5,v6,v7)
#define Extract_Security_User_ID(v1,v2,v3,v4) cmesui(v1,v2,v3,v4)
#define Extract_Send_Receive_Mode(v1,v2,v3) cmesrm(v1,v2,v3)
#define Extract_Sync_Level(v1,v2,v3) cmesl(v1,v2,v3)
#define Extract_Transaction_Control(v1,v2,v3) cmetc(v1,v2,v3)
#define Extract_TP_Name(v1,v2,v3,v4) cmetpn(v1,v2,v3,v4)
#define Flush(v1,v2) cmflus(v1,v2)
#define Include_Partner_In_Transaction(v1,v2) cmincl(v1,v2)
#define Initialize_Conversation(v1,v2,v3) cminit(v1,v2,v3)
#define Initialize_For_Incoming(v1,v2) cminic(v1,v2)
#define Prepare(v1,v2) cmprep(v1,v2)
#define Prepare_To_Receive(v1,v2) cmptr(v1,v2)
#define Receive(v1,v2,v3,v4,v5,v6,v7,v8) cmrcv(v1,v2,v3,v4,v5,v6,v7,v8)
#define Receive_Expedited_Data(v1,v2,v3,v4,v5,v6,v7) cmrcvx(v1,v2,v3,v4,v5,v6,v7)
#define Release_Local_TP_Name(v1,v2,v3) cmrltp(v1,v2,v3)
#define Request_To_Send(v1,v2) cmrts(v1,v2)
#define Send_Data(v1,v2,v3,v4,v5) cmsend(v1,v2,v3,v4,v5)
#define Send_Error(v1,v2,v3) cmserr(v1,v2,v3)
#define Send_Expedited_Data(v1,v2,v3,v4,v5) cmsndx(v1,v2,v3,v4,v5)
#define Set_AE_Qualifier(v1,v2,v3,v4,v5) cmsaeq(v1,v2,v3,v4,v5)
#define Set_Allocate_Confirm(v1,v2,v3) cmsac(v1,v2,v3)

502 X/Open CAE Specification

Pseudonym Files C Pseudonym File (CMC or CPIC.H)

#define Set_AP_Title(v1,v2,v3,v4,v5) cmsapt(v1,v2,v3,v4,v5)
#define Set_Application_Context_Name(v1,v2,v3,v4) cmsacn(v1,v2,v3,v4)
#define Set_Begin_Transaction(v1,v2,v3) cmsbt(v1,v2,v3)
#define Set_Confirmation_Urgency(v1,v2,v3) cmscu(v1,v2,v3)
#define Set_Conversation_Security_Password(v1,v2,v3,v4) cmscsp(v1,v2,v3,v4)
#define Set_Conversation_Security_Type(v1,v2,v3) cmscst(v1,v2,v3)
#define Set_Conversation_Security_User_ID(v1,v2,v3,v4) cmscsu(v1,v2,v3,v4)
#define Set_Conversation_Type(v1,v2,v3) cmsct(v1,v2,v3)
#define Set_Deallocate_Type(v1,v2,v3) cmsdt(v1,v2,v3)
#define Set_Error_Direction(v1,v2,v3) cmsed(v1,v2,v3)
#define Set_Fill(v1,v2,v3) cmsf(v1,v2,v3)
#define Set_Initialization_Data(v1,v2,v3,v4) cmsid(v1,v2,v3,v4)
#define Set_Join_Transaction(v1,v2,v3) cmsjt(v1,v2,v3)
#define Set_Log_Data(v1,v2,v3,v4) cmsld(v1,v2,v3,v4)
#define Set_Mode_Name(v1,v2,v3,v4) cmsmn(v1,v2,v3,v4)
#define Set_Partner_LU_Name(v1,v2,v3,v4) cmspln(v1,v2,v3,v4)
#define Set_Prepare_Data_Permitted(v1,v2,v3) cmspdp(v1,v2,v3)
#define Set_Prepare_To_Receive_Type(v1,v2,v3) cmsptr(v1,v2,v3)
#define Set_Processing_Mode(v1,v2,v3) cmspm(v1,v2,v3)
#define Set_Queue_Callback_Function(v1,v2,v3,v4,v5) cmsqcf(v1,v2,v3,v4,v5)
#define Set_Queue_Processing_Mode(v1,v2,v3,v4,v5,v6) cmsqpm(v1,v2,v3,v4,v5,v6)
#define Set_Receive_Type(v1,v2,v3) cmsrt(v1,v2,v3)
#define Set_Return_Control(v1,v2,v3) cmsrc(v1,v2,v3)
#define Set_Send_Receive_Mode(v1,v2,v3) cmssrm(v1,v2,v3)
#define Set_Send_Type(v1,v2,v3) cmsst(v1,v2,v3)
#define Set_Sync_Level(v1,v2,v3) cmssl(v1,v2,v3)
#define Set_TP_Name(v1,v2,v3,v4) cmstpn(v1,v2,v3,v4)
#define Set_Transaction_Control(v1,v2,v3) cmstc(v1,v2,v3)
#define Specify_Local_TP_Name(v1,v2,v3) cmsltp(v1,v2,v3)
#define Test_Request_To_Send_Received(v1,v2,v3) cmtrts(v1,v2,v3)
#define Wait_For_Completion(v1,v2,v3,v4,v5,v6,v7) cmwcmp(v1,v2,v3,v4,v5,v6,v7)
#define Wait_For_Conversation(v1,v2,v3) cmwait(v1,v2,v3)

#endif

/*
* The following list provides compatibility with the former
* version of X/Open CPI-C published as an X/Open CAE specification
* in February 1992.
*/

#define CMACCI cmacci
#define CMACCP cmaccp
#define CMALLC cmallc
#define CMCANC cmcanc
#define CMCFM cmcfm
#define CMCFMD cmcfmd
#define CMCNVI cmcnvi
#define CMCNVO cmcnvo
#define CMDEAL cmdeal
#define CMDFDE cmdfde
#define CMEACN cmeacn
#define CMEAEQ cmeaeq
#define CMEAPT cmeapt
#define CMECS cmecs
#define CMECT cmect
#define CMEID cmeid
#define CMEMBS cmembs
#define CMEMN cmemn
#define CMEPLN cmepln

Distributed Transaction Processing: CPI-C Specification, Version 2 503

C Pseudonym File (CMC or CPIC.H) Pseudonym Files

#define CMESI cmesi
#define CMESL cmesl
#define CMESRM cmesrm
#define CMESUI cmesui
#define CMETC cmetc
#define CMETPN cmetpn
#define CMFLUS cmflus
#define CMINCL cmincl
#define CMINIC cminic
#define CMINIT cminit
#define CMPREP cmprep
#define CMPTR cmptr
#define CMRCV cmrcv
#define CMRCVX cmrcvx
#define CMRLTP cmrltp
#define CMRTS cmrts
#define CMSAC cmsac
#define CMSACN cmsacn
#define CMSAEQ cmsaeq
#define CMSAPT cmsapt
#define CMSBT cmsbt
#define CMSCSP cmscsp
#define CMSCST cmscst
#define CMSCSU cmscsu
#define CMSCT cmsct
#define CMSCU cmscu
#define CMSDT cmsdt
#define CMSED cmsed
#define CMSEND cmsend
#define CMSERR cmserr
#define CMSF cmsf
#define CMSID cmsid
#define CMSJT cmsjt
#define CMSLD cmsld
#define CMSLTP cmsltp
#define CMSMN cmsmn
#define CMSNDX cmsndx
#define CMSPDP cmspdp
#define CMSPLN cmspln
#define CMSPM cmspm
#define CMSPTR cmsptr
#define CMSQCF cmsqcf
#define CMSQPM cmsqpm
#define CMSRC cmsrc
#define CMSRT cmsrt
#define CMSSL cmssl
#define CMSSRM cmssrm
#define CMSST cmsst
#define CMSTC cmstc
#define CMSTPN cmstpn
#define CMTRTS cmtrts
#define CMWAIT cmwait
#define CMWCMP cmwcmp

#endif

/* ********************* End of Pseudonyms ********************** */

504 X/Open CAE Specification

Pseudonym Files C Pseudonym File (CMC or CPIC.H)

E.2 COBOL Pseudonym File (CMCOBOL)

* *
* *
* CPI COMMUNICATIONS PSEUDONYMS -- SC31-6180-01 *
* *
* *
* NOTE: BUFFER MUST BE DEFINED IN WORKING STORAGE
*
*

01 AE-QUALIFIER PIC X(1024).
* 0-1024 BYTES
*
* AE-QUALIFIER-FORMAT USES AE-QUAL-OR-AP-TITLE-FORMAT VALUES
*

01 AE-QUAL-OR-AP-TITLE-FORMAT PIC 9(9) COMP-5.
88 CM-DN VALUE 0.
88 CM-OID VALUE 1.
88 CM-INT-DIGITS VALUE 2.

*
01 AE-QUALIFIER-LENGTH PIC 9(9) COMP-5.

*
01 ALLOCATE-CONFIRM PIC 9(9) COMP-5.

88 CM-ALLOCATE-NO-CONFIRM VALUE 0.
88 CM-ALLOCATE-CONFIRM VALUE 1.

*
01 APPLICATION-CONTEXT-NAME PIC X(256).

* 0-256 BYTES
*

01 APPLICATION-CONTEXT-NAME-LEN PIC 9(9) COMP-5.
*

01 AP-TITLE PIC X(1024).
* 0-1024 BYTES
*
* AP-TITLE-FORMAT USES AE-QUAL-OR-AP-TITLE-FORMAT VALUES
*

01 AP-TITLE-LENGTH PIC 9(9) COMP-5.
*

01 BEGIN-TRANSACTION PIC 9(9) COMP-5.
88 CM-BEGIN-IMPLICIT VALUE 0.
88 CM-BEGIN-EXPLICIT VALUE 1.

*
01 BUFFER-LENGTH PIC 9(9) COMP-5.

*
01 CALL-ID PIC 9(9) COMP-5.

88 CM-CMACCI VALUE 1.
88 CM-CMACCP VALUE 2.
88 CM-CMALLC VALUE 3.
88 CM-CMCANC VALUE 4.
88 CM-CMCFM VALUE 5.
88 CM-CMCFMD VALUE 6.
88 CM-CMCNVI VALUE 7.
88 CM-CMCNVO VALUE 8.
88 CM-CMDEAL VALUE 9.
88 CM-CMDFDE VALUE 10.
88 CM-CMEACN VALUE 11.
88 CM-CMEAEQ VALUE 12.
88 CM-CMEAPT VALUE 13.

Distributed Transaction Processing: CPI-C Specification, Version 2 505

COBOL Pseudonym File (CMCOBOL) Pseudonym Files

88 CM-CMECS VALUE 14.
88 CM-CMECT VALUE 15.
88 CM-CMEID VALUE 17.
88 CM-CMEMBS VALUE 18.
88 CM-CMEMN VALUE 19.
88 CM-CMEPLN VALUE 21.
88 CM-CMESI VALUE 22.
88 CM-CMESL VALUE 23.
88 CM-CMESRM VALUE 24.
88 CM-CMESUI VALUE 25.
88 CM-CMETC VALUE 26.
88 CM-CMETPN VALUE 27.
88 CM-CMFLUS VALUE 28.
88 CM-CMINCL VALUE 29.
88 CM-CMINIC VALUE 30.
88 CM-CMINIT VALUE 31.
88 CM-CMPREP VALUE 32.
88 CM-CMPTR VALUE 33.
88 CM-CMRCV VALUE 34.
88 CM-CMRCVX VALUE 35.
88 CM-CMRLTP VALUE 36.
88 CM-CMRTS VALUE 37.
88 CM-CMSAC VALUE 38.
88 CM-CMSACN VALUE 39.
88 CM-CMSAEQ VALUE 40.
88 CM-CMSAPT VALUE 41.
88 CM-CMSBT VALUE 42.
88 CM-CMSCSP VALUE 43.
88 CM-CMSCST VALUE 44.
88 CM-CMSCSU VALUE 45.
88 CM-CMSCT VALUE 46.
88 CM-CMSCU VALUE 47.
88 CM-CMSDT VALUE 48.
88 CM-CMSED VALUE 49.
88 CM-CMSEND VALUE 50.
88 CM-CMSERR VALUE 51.
88 CM-CMSF VALUE 52.
88 CM-CMSID VALUE 53.
88 CM-CMSLD VALUE 54.
88 CM-CMSLTP VALUE 55.
88 CM-CMSMN VALUE 56.
88 CM-CMSNDX VALUE 57.
88 CM-CMSPDP VALUE 58.
88 CM-CMSPLN VALUE 60.
88 CM-CMSPM VALUE 61.
88 CM-CMSPTR VALUE 62.
88 CM-CMSQCF VALUE 63.
88 CM-CMSQPM VALUE 64.
88 CM-CMSRC VALUE 65.
88 CM-CMSRT VALUE 66.
88 CM-CMSSL VALUE 67.
88 CM-CMSSRM VALUE 68.
88 CM-CMSST VALUE 69.
88 CM-CMSTC VALUE 70.
88 CM-CMSTPN VALUE 71.
88 CM-CMTRTS VALUE 72.
88 CM-CMWAIT VALUE 73.
88 CM-CMWCMP VALUE 74.
88 CM-CMSJT VALUE 75.

506 X/Open CAE Specification

Pseudonym Files COBOL Pseudonym File (CMCOBOL)

*
01 COMPLETED-OP-COUNT PIC 9(9) COMP-5.

*
01 CONFIRMATION-URGENCY PIC 9(9) COMP-5.

88 CM-CONFIRMATION-NOT-URGENT VALUE 0.
88 CM-CONFIRMATION-URGENT VALUE 1.

*
* CONTROL-INFORMATION-RECEIVED USES REQUEST-SEND-RECEIVED VALUES
*

01 CONVERSATION-ID PIC X(8).
* 8 BYTES
*

01 CONVERSATION-QUEUE PIC 9(9) COMP-5.
88 CM-INITIALIZATION-QUEUE VALUE 0.
88 CM-SEND-QUEUE VALUE 1.
88 CM-RECEIVE-QUEUE VALUE 2.
88 CM-SEND-RECEIVE-QUEUE VALUE 3.
88 CM-EXPEDITED-SEND-QUEUE VALUE 4.
88 CM-EXPEDITED-RECEIVE-QUEUE VALUE 5.

*
01 CONVERSATION-STATE PIC 9(9) COMP-5.

88 CM-INITIALIZE-STATE VALUE 2.
88 CM-SEND-STATE VALUE 3.
88 CM-RECEIVE-STATE VALUE 4.
88 CM-SEND-PENDING-STATE VALUE 5.
88 CM-CONFIRM-STATE VALUE 6.
88 CM-CONFIRM-SEND-STATE VALUE 7.
88 CM-CONFIRM-DEALLOCATE-STATE VALUE 8.
88 CM-DEFER-RECEIVE-STATE VALUE 9.
88 CM-DEFER-DEALLOCATE-STATE VALUE 10.
88 CM-SYNC-POINT-STATE VALUE 11.
88 CM-SYNC-POINT-SEND-STATE VALUE 12.
88 CM-SYNC-POINT-DEALLOCATE-STATE VALUE 13.
88 CM-INITIALIZE-INCOMING-STATE VALUE 14.
88 CM-SEND-ONLY-STATE VALUE 15.
88 CM-RECEIVE-ONLY-STATE VALUE 16.
88 CM-SEND-RECEIVE-STATE VALUE 17.
88 CM-PREPARED-STATE VALUE 18.

*
01 CONVERSATION-TYPE PIC 9(9) COMP-5.

88 CM-BASIC-CONVERSATION VALUE 0.
88 CM-MAPPED-CONVERSATION VALUE 1.

*
01 CONVERSATION-SECURITY-TYPE PIC 9(9) COMP-5.

88 CM-SECURITY-NONE VALUE 0.
88 CM-SECURITY-SAME VALUE 1.
88 CM-SECURITY-PROGRAM VALUE 2.
88 CM-SECURITY-PROGRAM-STRONG VALUE 5.

*
01 CM-RETCODE PIC 9(9) COMP-5.

* ===> RETURN-CODE IS A RESERVED WORD IN SOME <===
* ===> VERSIONS OF COBOL <===
*
******* THIS PARAMETER ALSO USED FOR***************
* CONVERSATION-RETURN-CODE PARAMETER
*

88 CM-OK VALUE 0.
88 CM-ALLOCATE-FAILURE-NO-RETRY VALUE 1.
88 CM-ALLOCATE-FAILURE-RETRY VALUE 2.

Distributed Transaction Processing: CPI-C Specification, Version 2 507

COBOL Pseudonym File (CMCOBOL) Pseudonym Files

88 CM-CONVERSATION-TYPE-MISMATCH VALUE 3.
88 CM-PIP-NOT-SPECIFIED-CORRECTLY VALUE 5.
88 CM-SECURITY-NOT-VALID VALUE 6.
88 CM-SYNC-LVL-NOT-SUPPORTED-LU VALUE 7.
88 CM-SYNC-LVL-NOT-SUPPORTED-SYS VALUE 7.
88 CM-SYNC-LVL-NOT-SUPPORTED-PGM VALUE 8.
88 CM-TPN-NOT-RECOGNIZED VALUE 9.
88 CM-TP-NOT-AVAILABLE-NO-RETRY VALUE 10.
88 CM-TP-NOT-AVAILABLE-RETRY VALUE 11.
88 CM-DEALLOCATED-ABEND VALUE 17.
88 CM-DEALLOCATED-NORMAL VALUE 18.
88 CM-PARAMETER-ERROR VALUE 19.
88 CM-PRODUCT-SPECIFIC-ERROR VALUE 20.
88 CM-PROGRAM-ERROR-NO-TRUNC VALUE 21.
88 CM-PROGRAM-ERROR-PURGING VALUE 22.
88 CM-PROGRAM-ERROR-TRUNC VALUE 23.
88 CM-PROGRAM-PARAMETER-CHECK VALUE 24.
88 CM-PROGRAM-STATE-CHECK VALUE 25.
88 CM-RESOURCE-FAILURE-NO-RETRY VALUE 26.
88 CM-RESOURCE-FAILURE-RETRY VALUE 27.
88 CM-UNSUCCESSFUL VALUE 28.
88 CM-DEALLOCATED-ABEND-SVC VALUE 30.
88 CM-DEALLOCATED-ABEND-TIMER VALUE 31.
88 CM-SVC-ERROR-NO-TRUNC VALUE 32.
88 CM-SVC-ERROR-PURGING VALUE 33.
88 CM-SVC-ERROR-TRUNC VALUE 34.
88 CM-OPERATION-INCOMPLETE VALUE 35.
88 CM-SYSTEM-EVENT VALUE 36.
88 CM-OPERATION-NOT-ACCEPTED VALUE 37.
88 CM-CONVERSATION-ENDING VALUE 38.
88 CM-SEND-RCV-MODE-NOT-SUPPORTED VALUE 39.
88 CM-BUFFER-TOO-SMALL VALUE 40.
88 CM-EXP-DATA-NOT-SUPPORTED VALUE 41.
88 CM-DEALLOC-CONFIRM-REJECT VALUE 42.
88 CM-ALLOCATION-ERROR VALUE 43.
88 CM-RETRY-LIMIT-EXCEEDED VALUE 44.
88 CM-NO-SECONDARY-INFORMATION VALUE 45.
88 CM-SECURITY-NOT-SUPPORTED VALUE 46.
88 CM-CALL-NOT-SUPPORTED VALUE 48.
88 CM-PARM-VALUE-NOT-SUPPORTED VALUE 49.
88 CM-TAKE-BACKOUT VALUE 100.
88 CM-DEALLOCATED-ABEND-BO VALUE 130.
88 CM-DEALLOCATED-ABEND-SVC-BO VALUE 131.
88 CM-DEALLOCATED-ABEND-TIMER-BO VALUE 132.
88 CM-RESOURCE-FAIL-NO-RETRY-BO VALUE 133.
88 CM-RESOURCE-FAILURE-RETRY-BO VALUE 134.
88 CM-DEALLOCATED-NORMAL-BO VALUE 135.
88 CM-CONV-DEALLOC-AFTER-SYNCPT VALUE 136.
88 CM-INCLUDE-PARTNER-REJECT-BO VALUE 137.

*
*

01 DATA-RECEIVED PIC 9(9) COMP-5.
88 CM-NO-DATA-RECEIVED VALUE 0.
88 CM-DATA-RECEIVED VALUE 1.
88 CM-COMPLETE-DATA-RECEIVED VALUE 2.
88 CM-INCOMPLETE-DATA-RECEIVED VALUE 3.

*
01 DEALLOCATE-TYPE PIC 9(9) COMP-5.

88 CM-DEALLOCATE-SYNC-LEVEL VALUE 0.

508 X/Open CAE Specification

Pseudonym Files COBOL Pseudonym File (CMCOBOL)

88 CM-DEALLOCATE-FLUSH VALUE 1.
88 CM-DEALLOCATE-CONFIRM VALUE 2.
88 CM-DEALLOCATE-ABEND VALUE 3.

*
01 ERROR-DIRECTION PIC 9(9) COMP-5.

88 CM-RECEIVE-ERROR VALUE 0.
88 CM-SEND-ERROR VALUE 1.

*
* EXPEDITED-RECEIVE-TYPE USES RECEIVE-TYPE VALUES
*

01 FILL PIC 9(9) COMP-5.
88 CM-FILL-LL VALUE 0.
88 CM-FILL-BUFFER VALUE 1.

*
01 INITIALIZATION-DATA PIC X(10000).

* 0-10000 BYTES
*

01 INITIALIZATION-DATA-LENGTH PIC 9(9) COMP-5.
*

01 JOIN-TRANSACTION PIC 9(9) COMP-5.
88 CM-JOIN-IMPLICIT VALUE 0.
88 CM-JOIN-EXPLICIT VALUE 1.

*
01 LOG-DATA PIC X(512).

* 0-512 BYTES
*

01 LOG-DATA-LENGTH PIC 9(9) COMP-5.
*

01 MAXIMUM-BUFFER-SIZE PIC 9(9) COMP-5.
*

01 MODE-NAME PIC X(8).
* 0-8 BYTES
*

01 MODE-NAME-LENGTH PIC 9(9) COMP-5.
*

01 OOID PIC 9(9) COMP-5.
*

01 PARTNER-LU-NAME PIC X(17).
* 1-17 BYTES
*

01 PARTNER-LU-NAME-LENGTH PIC 9(9) COMP-5.
*

01 PREPARE-DATA-PERMITTED PIC 9(9) COMP-5.
88 CM-PREPARE-DATA-NOT-PERMITTED VALUE 0.
88 CM-PREPARE-DATA-PERMITTED VALUE 1.

*
01 PREPARE-TO-RECEIVE-TYPE PIC 9(9) COMP-5.

88 CM-PREP-TO-RECEIVE-SYNC-LEVEL VALUE 0.
88 CM-PREP-TO-RECEIVE-FLUSH VALUE 1.
88 CM-PREP-TO-RECEIVE-CONFIRM VALUE 2.

*
01 PROCESSING-MODE PIC 9(9) COMP-5.

88 CM-BLOCKING VALUE 0.
88 CM-NON-BLOCKING VALUE 1.

*
* QUEUE-PROCESSING-MODE USES PROCESSING-MODE VALUES
*

01 RECEIVED-LENGTH PIC 9(9) COMP-5.
*

Distributed Transaction Processing: CPI-C Specification, Version 2 509

COBOL Pseudonym File (CMCOBOL) Pseudonym Files

01 RECEIVE-TYPE PIC 9(9) COMP-5.
88 CM-RECEIVE-AND-WAIT VALUE 0.
88 CM-RECEIVE-IMMEDIATE VALUE 1.

*
01 REQUESTED-LENGTH PIC 9(9) COMP-5.

*
01 REQUEST-TO-SEND-RECEIVED PIC 9(9) COMP-5.

88 CM-REQ-TO-SEND-NOT-RECEIVED VALUE 0.
88 CM-NO-CONTROL-INFO-RECEIVED VALUE 0.
88 CM-REQ-TO-SEND-RECEIVED VALUE 1.
88 CM-ALLOCATE-CONFIRMED VALUE 2.
88 CM-ALLOCATE-CONFIRMED-DATA VALUE 3.
88 CM-ALLOCATE-REJECTED-WITH-DATA VALUE 4.
88 CM-EXPEDITED-DATA-AVAILABLE VALUE 5.
88 CM-RTS-RCVD-AND-EXP-DATA-AVAIL VALUE 6.

*
*

01 RETURN-CONTROL PIC 9(9) COMP-5.
88 CM-WHEN-SESSION-ALLOCATED VALUE 0.
88 CM-IMMEDIATE VALUE 1.

*
01 SECURITY-PASSWORD PIC X(10).

* 0-10 BYTES
*

01 SECURITY-PASSWORD-LENGTH PIC 9(9) COMP-5.
*

01 SECURITY-USER-ID PIC X(10).
* 0-10 BYTES
*

01 SECURITY-USER-ID-LENGTH PIC 9(9) COMP-5.
*

01 SEND-LENGTH PIC 9(9) COMP-5.
*

01 SEND-RECEIVE-MODE PIC 9(9) COMP-5.
88 CM-HALF-DUPLEX VALUE 0.
88 CM-FULL-DUPLEX VALUE 1.

*
01 SEND-TYPE PIC 9(9) COMP-5.

88 CM-BUFFER-DATA VALUE 0.
88 CM-SEND-AND-FLUSH VALUE 1.
88 CM-SEND-AND-CONFIRM VALUE 2.
88 CM-SEND-AND-PREP-TO-RECEIVE VALUE 3.
88 CM-SEND-AND-DEALLOCATE VALUE 4.

*
01 STATUS-RECEIVED PIC 9(9) COMP-5.

88 CM-NO-STATUS-RECEIVED VALUE 0.
88 CM-SEND-RECEIVED VALUE 1.
88 CM-CONFIRM-RECEIVED VALUE 2.
88 CM-CONFIRM-SEND-RECEIVED VALUE 3.
88 CM-CONFIRM-DEALLOC-RECEIVED VALUE 4.
88 CM-TAKE-COMMIT VALUE 5.
88 CM-TAKE-COMMIT-SEND VALUE 6.
88 CM-TAKE-COMMIT-DEALLOCATE VALUE 7.
88 CM-TAKE-COMMIT-DATA-OK VALUE 8.
88 CM-TAKE-COMMIT-SEND-DATA-OK VALUE 9.
88 CM-TAKE-COMMIT-DEALLOC-DATA-OK VALUE 10.
88 CM-PREPARE-OK VALUE 11.
88 CM-JOIN-TRANSACTION VALUE 12.

*

510 X/Open CAE Specification

Pseudonym Files COBOL Pseudonym File (CMCOBOL)

01 SYNC-LEVEL PIC 9(9) COMP-5.
88 CM-NONE VALUE 0.
88 CM-CONFIRM VALUE 1.
88 CM-SYNC-POINT VALUE 2.
88 CM-SYNC-POINT-NO-CONFIRM VALUE 3.

*
01 SYM-DEST-NAME PIC X(8).

*
01 TIMEOUT PIC 9(9) COMP-5.

*
01 TP-NAME PIC X(64).

* 1-64 BYTES
*

01 TP-NAME-LENGTH PIC 9(9) COMP-5.
*

01 TRANSACTION-CONTROL PIC 9(9) COMP-5.
88 CM-CHAINED-TRANSACTIONS VALUE 0.
88 CM-UNCHAINED-TRANSACTIONS VALUE 1.

*
01 USER-FIELD PIC X(8).

*
* ***************** END OF PSEUDONYMS*****************

Distributed Transaction Processing: CPI-C Specification, Version 2 511

Pseudonym Files

512 X/Open CAE Specification

Appendix F

Sample Programs

This appendix contains sample programs.

• Section F.1 on page 514

The COBOL program SALESRPT establishes a conversation with its partner program,
CREDRPT, in order to transfer a sales record for credit processing. After sending the sales
record, SALESRPT waits for a reply from CREDRPT.

• Section F.2 on page 518

After the conversation is started — thus causing CREDRPT to be loaded into memory and
begin execution — CREDRPT accepts the conversation and receives the credit record sent by
SALESRPT. When CREDRPT has successfully received the record, it sends a message back to
SALESRPT informing SALESRPT of this fact.

• Section F.3 on page 523 This section shows the output generated by the DISPLAY statements
in CREDRPT and SALESRPT upon successful execution of the programs.

Both CREDRPT and SALESRPT use the various conversation characteristic values in the COBOL
pseudonym file. They access the pseudonym file by executing the following command:

COPY CMCOBOL.

Note: These sample programs are provided for tutorial purposes only. A complete handling
of error conditions has not been shown or attempted. The details of error handling
depend on the nature of actual applications.

Distributed Transaction Processing: CPI-C Specification, Version 2 513

SALESRPT (Initiator of the Conversation) Sample Programs

F.1 SALESRPT (Initiator of the Conversation)

IDENTIFICATION DIVISION.
PROGRAM-ID. SALESRPT.

* THIS IS THE SALESRPT PROGRAM THAT SENDS DATA TO THE *
* CREDRPT PROGRAM FOR CREDIT BALANCE PROCESSING. *
* *
* PURPOSE: SEND A SALES-RECORD TO THE CREDRPT PROGRAM FOR *
* CREDIT BALANCE PROCESSING, THEN RECEIVE AND *
* DISPLAY A STATUS INDICATION FROM CREDRPT. *
* *
* INPUT: PROCESSING-RESULTS-RECORD FROM CREDRPT. *
* *
* OUTPUT: SALES-RECORD TO THE CREDRPT PROGRAM. *
* *
* *
* NOTE: SALES-RECORD PROCESSING HAS BEEN GREATLY *
* SIMPLIFIED IN THIS EXAMPLE. *

*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
SPECIAL-NAMES.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
I-O-CONTROL.

*
DATA DIVISION.
FILE SECTION.
WORKING-STORAGE SECTION.

01 BUFFER PIC X(52) VALUE SPACES.

01 CM-ERROR-DISPLAY-MSG PIC X(40) VALUE SPACES.

* SALES-RECORD *

01 SALES-RECORD.
05 CUST-NUM PIC X(4) VALUE "0010".
05 CUST-NAME PIC X(20) VALUE "XYZ INC.".
05 FILLER PIC X(5) VALUE SPACES.
05 CREDIT-BALANCE PIC S9(7)V99 VALUE 4275.50.
05 CREDIT-LIMIT PIC S9(7)V99 VALUE 5000.
05 CREDIT-FLAG PIC X VALUE "1".

* PROCESSING-RESULTS-RECORD *

01 PROCESSING-RESULTS-RECORD PIC X(25) VALUE SPACES.

**
* USE THE CPI-COMMUNICATIONS PSEUDONYM FILE *
**

COPY CMCOBOL.

514 X/Open CAE Specification

Sample Programs SALESRPT (Initiator of the Conversation)

LINKAGE SECTION.

EJECT.
*

PROCEDURE DIVISION.
**
************************** START OF MAINLINE *******************
**

MAINLINE.

PERFORM APPC-INITIALIZE
THRU APPC-INITIALIZE-EXIT.

DISPLAY "SALESRPT CONVERSATION INITIALIZED".

PERFORM APPC-ALLOCATE
THRU APPC-ALLOCATE-EXIT.

DISPLAY "SALESRPT CONVERSATION ALLOCATED".

PERFORM APPC-SEND
THRU APPC-SEND-EXIT.

DISPLAY "SALESRPT DATA RECORD SENT".

PERFORM APPC-RECEIVE
THRU APPC-RECEIVE-EXIT
UNTIL NOT CM-OK.

DISPLAY "SALESRPT RESULTS RECORD RECEIVED".

PERFORM CLEANUP
THRU CLEANUP-EXIT.

STOP RUN.
**
*************************** END OF MAINLINE ********************
**
*

APPC-INITIALIZE.
MOVE "CREDRPT" TO SYM-DEST-NAME.

**
** ESTABLISH DEFAULT CONVERSATION CHARACTERISTICS **
**

CALL "CMINIT" USING CONVERSATION-ID
SYM-DEST-NAME
CM-RETCODE.

IF CM-OK
NEXT SENTENCE

ELSE
MOVE "INITIALIZATION PROCESSING TERMINATED"

TO CM-ERROR-DISPLAY-MSG
PERFORM CLEANUP

THRU CLEANUP-EXIT.
APPC-INITIALIZE-EXIT. EXIT.

*

APPC-ALLOCATE.

* ALLOCATE THE APPC CONVERSATION *

CALL "CMALLC" USING CONVERSATION-ID
CM-RETCODE

IF CM-OK

Distributed Transaction Processing: CPI-C Specification, Version 2 515

SALESRPT (Initiator of the Conversation) Sample Programs

NEXT SENTENCE
ELSE

MOVE "ALLOCATION PROCESSING TERMINATED"
TO CM-ERROR-DISPLAY-MSG

PERFORM CLEANUP
THRU CLEANUP-EXIT.

APPC-ALLOCATE-EXIT. EXIT.

*

APPC-SEND.
MOVE SALES-RECORD TO BUFFER.
MOVE 52 TO SEND-LENGTH.

* SEND THE SALES-RECORD DATA RECORD *

CALL "CMSEND" USING CONVERSATION-ID
BUFFER
SEND-LENGTH
REQUEST-TO-SEND-RECEIVED
CM-RETCODE.

IF CM-OK
NEXT SENTENCE

ELSE
MOVE "SEND PROCESSING TERMINATED"

TO CM-ERROR-DISPLAY-MSG
PERFORM CLEANUP

THRU CLEANUP-EXIT.
APPC-SEND-EXIT. EXIT.

*

APPC-RECEIVE.
**
* PERFORM THIS CALL UNTIL A "NOT" CM-OK *
* RETURN CODE IS RECEIVED. ALLOWING RECEPTION OF: *
* - PROCESSING-RESULTS-RECORD FROM CREDRPT PROGRAM *
* - CONVERSATION DEALLOCATION RETURN CODE *
* FROM THE CREDRPT PROGRAM *
**

MOVE 25 TO REQUESTED-LENGTH.
CALL "CMRCV" USING CONVERSATION-ID

BUFFER
REQUESTED-LENGTH
DATA-RECEIVED
RECEIVED-LENGTH
STATUS-RECEIVED
REQUEST-TO-SEND-RECEIVED
CM-RETCODE.

*
IF CM-COMPLETE-DATA-RECEIVED

MOVE BUFFER TO PROCESSING-RESULTS-RECORD
DISPLAY PROCESSING-RESULTS-RECORD

END-IF.

IF CM-OK OR CM-DEALLOCATED-NORMAL
NEXT SENTENCE

ELSE
MOVE "RECEIVE PROCESSING TERMINATED"

TO CM-ERROR-DISPLAY-MSG.

516 X/Open CAE Specification

Sample Programs SALESRPT (Initiator of the Conversation)

APPC-RECEIVE-EXIT. EXIT.

*

CLEANUP.

* DISPLAY EXECUTION COMPLETE OR ERROR MESSAGE *
* NOTE: CREDRPT WILL DEALLOCATE CONVERSATION *

IF CM-ERROR-DISPLAY-MSG = SPACES
DISPLAY "PROGRAM: SALESRPT EXECUTION COMPLETE"

ELSE
DISPLAY "SALESRPT PROGRAM - ",

CM-ERROR-DISPLAY-MSG, " RC= ", CM-RETCODE.
STOP RUN.

CLEANUP-EXIT. EXIT.

Distributed Transaction Processing: CPI-C Specification, Version 2 517

CREDRPT (Acceptor of the Conversation) Sample Programs

F.2 CREDRPT (Acceptor of the Conversation)

IDENTIFICATION DIVISION.
PROGRAM-ID. CREDRPT.

* THIS IS THE CREDRPT PROGRAM THAT RECEIVES DATA FROM THE *
* SALESRPT PROGRAM FOR CREDIT BALANCE PROCESSING. *
* *
* PURPOSE: RECEIVE A SALES-RECORD FROM THE SALESRPT PROGRAM *
* AND COMPUTE AND DISPLAY A NEW CREDIT BALANCE, *
* THEN SEND A STATUS INDICATION TO SALESRPT. *
* *
* INPUT: SALES-RECORD FROM SALESRPT PROGRAM. *
* *
* OUTPUT: DISPLAY OUTPUT-RECORD. *
* PROCESSING-RESULTS-RECORD TO SALESRPT. *
* *
* NOTE: SALES-RECORD PROCESSING HAS BEEN GREATLY *
* SIMPLIFIED IN THIS EXAMPLE. *

*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
SPECIAL-NAMES.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
I-O-CONTROL.

*
DATA DIVISION.
FILE SECTION.
WORKING-STORAGE SECTION.

01 CM-ERROR-DISPLAY-MSG PIC X(40) VALUE SPACES.

01 BUFFER PIC X(52).

01 CURRENT-CREDIT-BALANCE PIC S9(7)V99.

01 CONVERSATION-STATUS PIC 9(9) COMP-5.
88 CONVERSATION-ACCEPTED VALUE 1.
88 CONVERSATION-NOT-ESTABLISHED VALUE 0.

* SALES-RECORD *

01 SALES-RECORD.
05 CUST-NUM PIC X(4).
05 CUST-NAME PIC X(20).
05 FILLER PIC X(5).
05 CREDIT-BALANCE PIC S9(7)V99.
05 CREDIT-LIMIT PIC S9(7)V99.
05 CREDIT-FLAG PIC X.

* OUTPUT-RECORD *

518 X/Open CAE Specification

Sample Programs CREDRPT (Acceptor of the Conversation)

01 OUTPUT-RECORD.
05 FILLER PIC X.
05 OP-CUST-NUM PIC X(4).
05 FILLER PIC X(3) VALUE SPACES.
05 OP-CUST-NAME PIC X(20).
05 FILLER PIC X(5) VALUE SPACES.
05 OP-CREDIT-LIMIT PIC Z(6)9.99-.
05 FILLER PIC X(5) VALUE SPACES.
05 OP-CREDIT-BALANCE PIC Z(6)9.99-.
05 FILLER PIC X(5) VALUE SPACES.
05 OP-TEXT-FIELD PIC X(25).
05 FILLER PIC X(5) VALUE SPACES.

* PROCESSING-RESULTS-RECORD *

01 PROCESSING-RESULTS-RECORD PIC X(25) VALUE SPACES.

**
* CPI-COMMUNICATIONS PSEUDONYM COPYBOOK FILE *
**

COPY CMCOBOL.

LINKAGE SECTION.

EJECT.
*

PROCEDURE DIVISION.
**
************************** START OF MAINLINE *******************
**

MAINLINE.

PERFORM APPC-ACCEPT
THRU APPC-ACCEPT-EXIT.

DISPLAY "CREDRPT CONVERSATION ACCEPTED".

PERFORM APPC-RECEIVE
THRU APPC-RECEIVE-EXIT
UNTIL CM-SEND-RECEIVED.

DISPLAY "CREDRPT RECORD RECEIVED".

PERFORM PROCESS-RECORD
THRU PROCESS-RECORD-EXIT.

DISPLAY "CREDRPT DATA PROCESSED".

PERFORM APPC-SEND
THRU APPC-SEND-EXIT.

DISPLAY "CREDRPT RESULTS RECORD SENT".

PERFORM CLEANUP
THRU CLEANUP-EXIT.

STOP RUN.
**
*************************** END OF MAINLINE ********************
**
*

APPC-ACCEPT.
**

Distributed Transaction Processing: CPI-C Specification, Version 2 519

CREDRPT (Acceptor of the Conversation) Sample Programs

* ACCEPT INCOMING APPC CONVERSATION ESTABLISHING *
* DEFAULT CONVERSATION CHARACTERISTICS *
**

CALL "CMACCP" USING CONVERSATION-ID
CM-RETCODE.

IF CM-OK
SET CONVERSATION-ACCEPTED TO TRUE

ELSE
MOVE "ACCEPT PROCESSING TERMINATED"

TO CM-ERROR-DISPLAY-MSG
PERFORM CLEANUP

THRU CLEANUP-EXIT
END-IF.

APPC-ACCEPT-EXIT. EXIT.

*

APPC-RECEIVE.

* PERFORM THIS CALL UNTIL A CM-SEND-RECEIVE INDICATION IS *
* RECEIVED. THIS INDICATES A CONVERSATION STATE CHANGE FROM *
* RECEIVE TO SEND OR SEND-PENDING STATE, THUS "CMRCV" *
* (RECEIVE) HAS COMPLETED. ALLOWING RECEPTION OF: *
* - SALES-RECORD FROM SALESRPT PROGRAM *

MOVE 52 TO REQUESTED-LENGTH.
CALL "CMRCV" USING CONVERSATION-ID

BUFFER
REQUESTED-LENGTH
DATA-RECEIVED
RECEIVED-LENGTH
STATUS-RECEIVED
REQUEST-TO-SEND-RECEIVED
CM-RETCODE.

*
IF CM-COMPLETE-DATA-RECEIVED

MOVE BUFFER TO SALES-RECORD
END-IF.

*
IF CM-OK

NEXT SENTENCE
ELSE

PERFORM APPC-SET-DEALLOCATE-TYPE
THRU APPC-SET-DEALLOCATE-TYPE-EXIT

MOVE "RECEIVE PROCESSING TERMINATED"
TO CM-ERROR-DISPLAY-MSG

PERFORM CLEANUP
THRU CLEANUP-EXIT.

APPC-RECEIVE-EXIT. EXIT.

*

PROCESS-RECORD.
SUBTRACT CREDIT-BALANCE FROM CREDIT-LIMIT

GIVING CURRENT-CREDIT-BALANCE.
IF CREDIT-FLAG = "0"

MOVE "**CREDIT LIMIT EXCEEDED**" TO OP-TEXT-FIELD
ELSE

MOVE SPACES TO OP-TEXT-FIELD
END-IF.
MOVE CUST-NUM TO OP-CUST-NUM.

520 X/Open CAE Specification

Sample Programs CREDRPT (Acceptor of the Conversation)

MOVE CUST-NAME TO OP-CUST-NAME.
MOVE CREDIT-LIMIT TO OP-CREDIT-LIMIT.
MOVE CURRENT-CREDIT-BALANCE TO OP-CREDIT-BALANCE.
DISPLAY OUTPUT-RECORD.

*
MOVE "CREDIT RECORD UPDATED" TO PROCESSING-RESULTS-RECORD.

PROCESS-RECORD-EXIT. EXIT.

*

APPC-SEND.
MOVE PROCESSING-RESULTS-RECORD TO BUFFER.
MOVE 25 TO SEND-LENGTH.

**
* SEND THE PROCESSING-RESULTS-RECORD TO SALESRPT *
**

CALL "CMSEND" USING CONVERSATION-ID
BUFFER
SEND-LENGTH
REQUEST-TO-SEND-RECEIVED
CM-RETCODE.

IF CM-OK
NEXT SENTENCE

ELSE
PERFORM APPC-SET-DEALLOCATE-TYPE

THRU APPC-SET-DEALLOCATE-TYPE-EXIT
MOVE "SEND PROCESSING TERMINATED"

TO CM-ERROR-DISPLAY-MSG
PERFORM CLEANUP

THRU CLEANUP-EXIT.
APPC-SEND-EXIT. EXIT.

*

APPC-SET-DEALLOCATE-TYPE.
SET CM-DEALLOCATE-ABEND TO TRUE.

* ON ERROR SET DEALLOCATE-TYPE TO ABEND *

CALL "CMSDT" USING CONVERSATION-ID
DEALLOCATE-TYPE
CM-RETCODE.

IF CM-OK
NEXT SENTENCE

ELSE
DISPLAY "ERROR SETTING CONVERSATION DEALLOCATE TYPE".

APPC-SET-DEALLOCATE-TYPE-EXIT. EXIT.

*

CLEANUP.
IF CONVERSATION-ACCEPTED

* DEALLOCATE APPC CONVERSATION *

CALL "CMDEAL" USING CONVERSATION-ID
CM-RETCODE

DISPLAY "CREDRPT DEALLOCATED CONVERSATION"
END-IF.
IF CM-ERROR-DISPLAY-MSG = SPACES

Distributed Transaction Processing: CPI-C Specification, Version 2 521

CREDRPT (Acceptor of the Conversation) Sample Programs

DISPLAY "PROGRAM: CREDRPT EXECUTION COMPLETE"
ELSE

DISPLAY "CREDRPT PROGRAM - ",
CM-ERROR-DISPLAY-MSG, " RC= ", CM-RETCODE

END-IF.
STOP RUN.

CLEANUP-EXIT. EXIT.

522 X/Open CAE Specification

Sample Programs Results of Successful Program Execution

F.3 Results of Successful Program Execution

SALESRPT Program

SALESRPT CONVERSATION INITIALIZED
SALESRPT CONVERSATION ALLOCATED
SALESRPT DATA RECORD SENT
SALESRPT RESULTS RECORD RECEIVED
PROGRAM: SALESRPT EXECUTION COMPLETE

CREDRPT Program

CREDRPT CONVERSATION ACCEPTED
CREDRPT RECORD RECEIVED

0010 XYZ INC. 5000.00 724.50
CREDRPT DATA PROCESSED
CREDRPT RESULTS RECORD SENT
CREDRPT DEALLOCATED CONVERSATION
PROGRAM: CREDRPT EXECUTION COMPLETE

Distributed Transaction Processing: CPI-C Specification, Version 2 523

Sample Programs

524 X/Open CAE Specification

Appendix G

Application Migration from CPI-C to CPI-C, Version 2

This appendix describes the application migration from the original version of X/Open CPI-C
(see the referenced CPI-C CAE specification) to Version 2 of CPI-C defined by this specification.

The following points should be noted with regard to migration between these two versions:

• The Accept_Conversation (CMACCP) call behaves differently when no incoming
conversation exists. CPI-C Version 2 returns CM_PROGRAM_STATE_CHECK, whereas the
original X/Open CPI-C returns CM_OPERATION_INCOMPLETE and a conversation_ID.
Programs that want to accept multiple conversations should use the following calls instead
of Accept_Conversation:

— Initialize_For_Incoming (CMINIC)

— Set_Processing_Mode (CMSPM), processing_mode = CM_NON_BLOCKING

— Accept_Incoming (CMACCI).

As examples, flows 7 and 8 on pages 34 to 37 of the original CPI-C must be changed.

• All conversation-specific calls except Cancel_Conversation (CMCANC) return a
CM_OPERATION_NOT_ACCEPTED return code, instead of
CM_PROGRAM_STATE_CHECK, when the conversation-specific call has been attempted
after receiving a CM_OPERATION_INCOMPLETE return_code value to the previous
conversation-specific call and prior to calling Wait_For_Conversation (CMWAIT).

• The Extract_Conversation_Security_User_ID (CMECSU) call is not supported in CPI-C
Version 2; the function is available using Extract_Security_User_ID (CMESUI). The name has
been changed to force an awareness of the increased length of the security_user_ID.

• The Convert_Incoming (CMCNVI) and Convert_Outgoing (CMCNVO) calls may receive an
unexpected return_code of CM_PROGRAM_PARAMETER_CHECK if the buffer_length
exceeds the maximum length permitted by the local implementation.

• The CM_SYNC_LEVEL_NOT_SUPPORTED_PGM return_code value must be changed to
CM_SYNC_LVL_NOT_SUPPORTED_PGM. This was a printing error in the original
X/Open CPI-C specification.

• The function specify_Local_TP_Name must be changed to Specify_Local_TP_Name. This
was a printing error in the original X/Open CPI-C specification.

• The original X/Open CPI-C specification states that several processes may share the same
conversation_ID (see page 42 of that specification). This feature is not supported by X/Open
CPI-C Version 2.

• The original X/Open CPI-C defines all functions as type CM_RETCODE, for example:

extern CM_RETCODE CMACCP;

CPI-C Version 2 defines all functions as type void, for example:

extern CM_ENTRY cmaccp;

Programs that test the return value of a CPI-C call must test the parameter cm_return_code.

Distributed Transaction Processing: CPI-C Specification, Version 2 525

Application Migration from CPI-C to CPI-C, Version 2

• The readable macros (for example Accept_Conversation instead of CMACCP) are only
available in CPI-C Version 2 if the program or the include file contains the line:

#define READABLE_MACROS

• Some parameters have other types in X/Open CPI-C and CPI-C Version 2. Some compilers
may give out warnings when compiling existing CPI-C programs with the new CPI-C
Version 2 include file.

Table G-1 Comparison of Parameters between X/Open CPI-C Versions

Original X/Open CPI-C X/Open CPIC, Version 2
Conversation ID parameter CONVERSATION_ID unsigned char CM_PTR

(char [8]) (unsigned char *)

Character pointers char * unsigned char CM_PTR
(unsigned char *)

Length parameters int * CM_INT32 CM_PTR
(signed long int *)

Definitions of return codes typedef enum #define
and numeric parameters

526 X/Open CAE Specification

Glossary

API
Application Programming Interface.

application-entity
The part of an application-process that exclusively defines communication formats and
protocols for OSI-compliant systems.

application-entity-qualifier
The qualifier that is used to identify a specific instance of an application-entity. It must be
unambiguous within the scope of the application-process. See also ISO/IEC 7498-3.

application-process
The part of an open system that performs the information processing for a particular
application. See also ISO/IEC 7498.

application-process-title
The unambiguous title of the application-process. It must be unambiguous within the OSI
environment. See also ISO/IEC 7498-3.

application context
The set of rules that define the exchange of information between two application programs.
See also ISO/IEC 9545.

application context name
The registered name of the application context. See also ISO/IEC 9545.

association
A relationship between two application-entity instances for the purpose of exchanging data.
An association is similar to an SNA LU 6.2 session and is sometimes called a logical
connection. See also ISO/IEC 9594.

basic conversation
A conversation in which programs exchange data records in an SNA-defined format. This
format is a stream of data containing 2-byte length prefixes that specify the amount of data
to follow before the next prefix.

blocking
A CPI Communications call-processing mode in which a call operation completes before
control is returned to the program. The program (or thread) is blocked (unable to perform
any other work) until the call operation is completed.

callback function
An application-defined function that is called when an outstanding operation completes.

chained transactions
A series of transactions in which the (n+1)th transaction begins immediately upon the
termination of the nth transaction. See also ISO/IEC 10026-1.

communication resource manager (CRM)
The component within a system that manages a particular resource — in this case, a
conversational communication resource. See also the referenced DTP guide.

conversation
A logical connection between two programs over an LU type 6.2 session that allows them to

Distributed Transaction Processing: CPI-C Specification, Version 2 527

Glossary

communicate with each other while processing a transaction. See also basic conversation
and mapped conversation.

conversation characteristics
The attributes of a conversation that determine the functions and capabilities of programs
within the conversation.

conversation partner
One of the two programs involved in a conversation.

conversation queue
A logical grouping of CPI Communications calls on a conversation. Calls associated with a
specific queue are processed serially. Calls associated with different queues are processed
independently.

conversation state
The condition of a conversation that reflects what the past action on that conversation has
been and that determines what the next set of actions may be.

distinguished name
A completely qualified name that is used to access an entry in a distributed directory.

initialization data
Application-specific data that may be exchanged between two application programs during
conversation initialization. See also the ISO/IEC 10026-2 standard for User-Data on TP-
BEGIN-DIALOGUE and the SNA Transaction Programmers Reference Manual for LU Type
6.2.

local program
The program being discussed within a particular context. Contrast with remote program.

logical connection
The generic term used to refer to either an SNA LU 6.2 session or an OSI association.

logical unit
A port providing formatting, state synchronization, and other high-level services through
which an end user communicates with another end user over an SNA network.

logical unit type 6.2
The SNA logical unit type that supports general communication between programs in a
distributed processing environment; the SNA logical unit type on which CPI
Communications is built.

mapped conversation
A conversation in which programs exchange data records with arbitrary data formats
agreed upon by the applications programmers.

mode name
Part of the CPI Communications side information. The mode name is used by LU 6.2 to
designate the properties for the logical connection that will be allocated for a conversation.

network name
In SNA, the symbolic identifier by which end users refer to a network accessible unit
(NAU), link station or link.

non-blocking
A CPI Communications call-processing mode in which, if possible, a call operation
completes immediately. If the call operation cannot complete immediately, control is
returned to the program with the CM_OPERATION_INCOMPLETE return code. The call

528 X/Open CAE Specification

Glossary

operation remains in progress, and completion of the call operation occurs at a later time.
Meanwhile, the program is free to perform other work.

OSI TP
Refers to the International Standard ISO/IEC 10026, Information Technology — Open
Systems Interconnection — Distributed Transaction Processing. ISO/IEC 10026 is one of a
set of standards produced to facilitate the interconnection of computer systems.

outstanding operation
A call operation for which the program has received the CM_OPERATION_INCOMPLETE
return code. The call remains in progress, and completion occurs at a later time. An
outstanding operation can only occur on a conversation using non-blocking processing
mode.

partner
See conversation partner.

privilege
An identification that a product or installation defines in order to differentiate SNA service
transaction programs from other programs, such as application programs.

protected resource
A local or distributed resource that is updated in a synchronized manner during processing
managed by a resource recovery interface and a sync point manager.

pseudonym file
A file that provides CPI Communications declarations for a particular programming
language.

remote program
The program at the other end of a conversation with respect to the reference program.
Contrast with local program.

resource recovery interface
An interface to services and facilities that use two-phase commit protocols to coordinate
changes to distributed resources.

secondary information
Information associated with the return code at the completion of a call. The information can
be used to determine the cause of the return code.

session
A logical connection between two logical units that can be activated, tailored to provide
various protocols, and deactivated as requested.

side information
System-defined values that are used for the initial values of the conversation_security_type,
mode_name, partner_LU_name, security_password, security_user_ID, and TP_name
characteristics.

state
See conversation state.

state transition
The act of moving from one conversation state to another.

subordinate program
The application program that issued either Accept_Conversation or Accept_Incoming for a
protected conversation.

Distributed Transaction Processing: CPI-C Specification, Version 2 529

Glossary

superior program
The application program that issued Initialize_Conversation for a protected conversation.

symbolic destination name
Variable corresponding to an entry in the side information.

synchronization point
A reference point during transaction processing to which resources can be restored if a
failure occurs.

sync point manager
A component of the operating environment that coordinates commit and backout
processing among all the protected resources involved in a sync point transaction.
Synonymous with transaction manager.

Systems Network Architecture
A description of the logical structure, formats, protocols, and operational sequences for
transmitting information units through, and controlling the configuration and operation of,
networks.

transaction
A related set of operations that are characterized by the ACID (atomicity, consistency,
isolation, and durability) properties. See also ISO/IEC 10026-1.

transaction manager (TM)
The component within a system that manages the coordination of resources within a
transaction. Synonymous with sync point manager. See also the referenced DTP guide.

transition
See state transition.

unchained transactions
A series of transactions in which the (n+1)th transaction does not begin immediately upon
the termination of the nth transaction, but is explicitly started at a later time. See also
ISO/IEC 10026-1.

user field
Application data that can be associated with an outstanding operation. The data, as
specified by the program, can be returned to the program through a Wait_For_Completion
call issued for that outstanding operation, or it can be passed to the callback function
associated with the outstanding operation, when the operation completes.

X/Open
X/Open is an independent, worldwide, open systems organization whose mission is to
bring users greater value from computing, through the practical implementation of open
systems.

X/Open TX (Transaction Demarcation) interface
X/Open Distributed Transaction Processing: The TX (Transaction Demarcation)
Specification defines an interface between the transaction manager and the application
program. It is similar to the IBM SAA resource recovery interface.

530 X/Open CAE Specification

Index

& (ampersand) ..117
- (dash) ..117
_ (underscore)..3, 117
abnormal program ending......................................22
Accept_Conversation (CMACCP)......................125

call description..125
example flow using..67

Accept_Incoming (CMACCI)127
call description..127
example flow using..83

access to resources..1
account verification..15
ACID properties..15

atomicity...15
consistency...15
coordination by TM ...15
durability..15
isolation ..15
responsibility of RM ..15

advanced function calls
description ...24
examples...70
list ..25

advanced program-to-program communication
verbs..483

AE_qualifier
possible values..330

AE_qualifier, defined..22-23
Allocate (CMALLC)...130

call description..130
example flow using..67

allocate_confirm
possible values..330

AP...1
component ...12
CRM ..13
environment ..11
interface to CRM...13
interface to RM..13
interface to TM..13
sharing resources..1

AP-CRM interface ..13
AP-RM interface ...13
AP-TM interface..13
API...527

portability...1

APPC
verbs..483

application
communication ...1
distribution ..1
entity ...18
portability...1
program..1

application context...23, 527
application context name23, 527
application program (AP)

component ...12
environment ..11
interface to CRM...13
interface to RM..13
interface to TM..13
sharing resources..1

application-entity ...22, 527
application-entity-qualifier23, 527
application-process ..22, 527
application-process-title22, 527
application_context_name, defined......................23
AP_title

possible values..330
AP_title, defined ...22
ASCII, conversion of ..342
association ...18, 527
atomicity...15

TM..12
atomicity of commitment16
autonomy of RMs...16
awareness

lack of between RMs..16
backout call ..51
backout-required condition

described ..55
effect on multiple conversations48

basic conversation....................................19, 238, 527
begin conversation

CMALLC (Allocate)...130
example flow ...65
example flow using..87, 91
program startup..22
simple example ...26

begin_transaction
possible values..330

Distributed Transaction Processing: CPI-C Specification, Version 2 531

Index

blank sym_dest_name.....................................23, 195
blocking ..43, 527
blocking operations..44
buffering of data

description...71, 237
example flow ...65

C considerations ...117
callback function...527
calls

advanced function, examples70
advanced function, list ..25
description ...24
for resource recovery interface51
naming conventions...3
starter set, examples64, 69
starter set, list ..25
table of ..24, 120

call_ID
possible values..330

Cancel_Conversation (CMCANC)135
call description..135

chained transactions ..527
changing data flow direction

by receiving program ..76
by sending program.......................................68, 72

character set
exceptions for SNA TP names.........................481
general ..337

character string ...340
characteristic values

resource recovery interface38
characteristics

AE_qualifier, possible values...........................330
allocate_confirm, possible values330
AP_title, possible values...................................330
automatic conversion of38
begin_transaction, possible values330
call_ID, possible values.....................................330
comparison of defaults..30
confirmation_urgency, possible values332
control_information_received, possible
values ..332
conversation_queue, possible values.............332
conversation_return_code, possible values..332
conversation_security_type, possible
values ..332
conversation_security_type, set......................267
conversation_state, extract...............................166
conversation_state, possible values332
conversation_type, extract168
conversation_type, possible values................333

conversation_type, set.......................................271
date_received, possible values333
deallocate_type, possible values.....................333
deallocate_type, set..273
default values ..26
described ..29
error_direction, possible values..............330, 333
error_direction, set ...277
expedited_receive_type, possible values333
fill, possible values ...333
fill, set..279
how to examine...29
initial values, table of...30
integer values ..330
join_transaction, possible values333
log_data, set...285
log_data_length, set ...285
mode_name, extract...173
mode_name, set ..287
mode_name_length, extract.............................173
mode_name_length, set287
modifying...29
naming conventions...3
overview...29
partner_LU_name, extract................................175
partner_LU_name, set289
partner_LU_name_length, extract175
partner_LU_name_length, set289
prepare_date_permitted, possible values333
prepare_to_receive_type, possible values333
prepare_to_receive_type, set293
processing_mode, possible values333
processing_mode, set ..295
pseudonyms ..3
queue_processing_mode, possible values333
receive_type, possible values334
receive_type, set ...304
request_to_send_received, possible values ..334
return_code, possible values............................334
return_control, possible values335
return_control, set ..305
security_password, set......................................265
security_password_length, set265
security_user_ID, extract180
security_user_ID, set ...269
security_user_ID_length, set............................269
send_receive_mode, possible values335
send_type, possible values...............................335
send_type, set..309
status_received, possible values335
sync_level, extract ..184

532 X/Open CAE Specification

Index

sync_level, possible values...............................335
sync_level, set ...311
TP_name, extract ..186
TP_name, set ...313
TP_name_length, set..313
transaction_control, possible values335
viewing ...29

CMACCI (Accept_Incoming)
call description..127
example flow using..83

CMACCP (Accept_Conversation)
call description..125
example flow using..67

CMALLC (Allocate)
call description..130
example flow using..67

CMCANC (Cancel_Conversation)
call description..135

CMCFM (Confirm)
call description..137
example flow using..75

CMCFMD (Confirmed)
call description..141
example flow using..75

CMCNVI (Convert_Incoming)
call description..143

CMCNVO (Convert_Outgoing)
call description..145

CMDEAL (Deallocate)
call description..147
example flow using..67

CMDFDE (Deferred_Deallocate)
call description..158

CMEACN (Extract_Application_Context_Name)
call description..164

CMEAEQ (Extract_AE_Qualifier)
call description..160

CMEAPT (Extract_AP_Title)
call description..162

CMECS (Extract_Conversation_State)
call description..166

CMECT (Extract_Conversation_Type)
call description..168

CMEID (Extract_Initialization_Data)
call description..170

CMEMBS (Extract_Maximum_Buffer_Size)
call description..172

CMEMN (Extract_Mode_Name)
call description..173

CMEPLN (Extract_Partner_LU_Name)
call description..175

CMESI (Extract_Secondary_Information)
call description..177

CMESL (Extract_Sync_Level)
call description..184

CMESRM (Extract_Send_Receive_Mode)
call description..182

CMESUI (Extract_Security_User_ID)180
call description..180

CMETC (Extract_Transaction_Control)
call description..188

CMETPN (Extract_TP_Name).............................186
call description..186

CMFLUS (Flush)
call description..190
example flow using..75

CMINCL (Include_Partner_In_Transaction)
call description..193

CMINIC (Initialize_For_Incoming)
call description..197
example flow using..83

CMINIT (Initialize_Conversation)
call description..195
example flow using..67

CMPREP (Prepare)
call description..199

CMPTR (Prepare_To_Receive)
call description..202
example flow using..73, 77

CMRCV (Receive)
call description..208
example flow using..67

CMRCVX (Receive_Expedited_Data)
call description..223

CMRLTP (Release_Local_TP_Name)
call description..226

CMRTS (Request_To_Send)
call description..227
example flow using..77

CMSAC (Set_Allocate_Confirm)
call description..255

CMSACN (Set_Application_Context_Name)
call description..259

CMSAEQ (Set_AE_Qualifier)
call description..253

CMSAPT (Set_AP_Title)
call description..257

CMSBT (Set_Begin_Transaction)
call description..261

CMSCSP (Set_Conversation_Security_Password)
call description..265

Distributed Transaction Processing: CPI-C Specification, Version 2 533

Index

CMSCST (Set_Conversation_Security_Type)
call description..267

CMSCSU (Set_Conversation_Security_User_ID)
call description..269

CMSCT (Set_Conversation_Type)
call description..271

CMSCU (Set_Confirmation_Urgency)
call description..263

CMSDT (Set_Deallocate_Type)
call description..273

CMSED (Set_Error_Direction)
call description..277

CMSEND (Send_Data)
call description..230
example flow using..67

CMSERR (Send_Error)
call description..240
example flow using..79

CMSF (Set_Fill)
call description..279

CMSID (Set_Initialization_Data)
call description..281

CMSJT (Set_Join_Transaction)
call description..283

CMSLD (Set_Log_Data)
call description..285

CMSLTP (Specify_Local_TP_Name)
call description..317

CMSMN (Set_Mode_Name)
call description..287

CMSNDX (Send_Expedited_Data)
call description..250

CMSPDP (Set_Prepare_Data_Permitted)
call description..291

CMSPLN (Set_Partner_LU_Name)
call description..289

CMSPM (Set_Processing_Mode)
call description..295

CMSPTR (Set_Prepare_To_Receive_Type)
call description..293

CMSQCF (Set_Queue_Callback_Function)
call description..297

CMSQPM (Set_Queue_Processing_Mode)
call description..300

CMSRC (Set_Return_Control)
call description..305

CMSRT (Set_Receive_Type)
call description..304

CMSSL (Set_Sync_Level)
call description..311
example flow using..75

CMSSRM (Set_Send_Receive_Mode)
call description..307

CMSST (Set_Send_Type)
call description..309
example flow using..77

CMSTC (Set_Transaction_Control)
call description..315

CMSTPN (Set_TP_Name)
call description..313

CMTRTS (Test_Request_To_Send_Received)
call description..319

CMWAIT (Wait_For_Conversation)
call description..325
example flow using..85

CMWCMP (Wait_For_Completion)
call description..322

COBOL considerations..117
commit

atomic ...16
decision...12, 15

commit call...51
committing transaction ...15
communication ...60

across an SNA network.......................................18
CRM ..18
with an APPC program.....................................481

communication protocol...1
communication resource manager............................
(CRM) ...1, 18, 527

application entity..18
characteristic values...36
component ...12
interface to AP...13
interface to OSI-TP...14
interface to TM..13
logical unit ...18
using particular type..36

completion of transaction15
coordinate ..12

component ...11
AP ..1, 12
AP-CRM interface ..13
AP-RM interface ...13
AP-TM interface ...13
CRM ..1, 12
CRM-OSI TP interface ...14
failure ..12
interchangeability...1
interfaces between..13
interoperability ...1
RM ...1, 12

534 X/Open CAE Specification

Index

RM-TM interface ..13
TM ...1, 12
TM-CRM interface ...13

computational task...15
concurrent conversations..26
concurrent operations..40

conversation queues ..40
example of queues..40
multiple program threads40

Confirm (CMCFM)...137
call description..137
example flow using..75

Confirm state ...49
Confirm-Deallocate state ..49
Confirm-Send state...49
confirmation processing

Confirm call ...137
Confirmed call...141
example flow ...75

confirmation_urgency
possible values..332

Confirmed (CMCFMD)...141
call description..141
example flow using..75

consistency...15
consistent effect of decision....................................15
consistent state ..15
control ...11
control_information_received

possible values..332
control_information_received parameter24
conventions

naming..3
conversation ..527

accept ..125
allocate..130
basic ..19, 238
canceling...135
concurrent ..26
Confirm call ...137
Confirmed call...141
dangling..22
deallocate ...147
description ...19
examples ..26, 64
Flush call ..190
full-duplex, setting up...89
full-duplex, terminating......................................91
full-duplex, using ...89
identifier ...26
included in a transaction.....................................51

initialize..195
mapped ..19, 238
multiple ..26
multiple inbound..27
multiple inbound, example27
multiple inbound, in server programs.............27
multiple outbound ...27
multiple outbound, conversation_ID...............22
multiple outbound, example27
Prepare_To_Receive call202
protected ..51, 58
queues...44
queues, example flow..93
Request_To_Send call..227
security ...47
Send_Error...240
set the join_transaction characteristic283
startup request22, 29, 65, 87, 91
synchronization and control137, 141, 190
...202, 227, 240, 319
Test_Request_To_Send_Received...................319
transition from a state ...49
types ..19

conversation characteristics528
conversation partner..528
conversation queue..528
conversation security...47
conversation state...528

additional CPI states..61
description ...49
extracting ...166
full-duplex (CPIRR) ...416
full-duplex (X/Open) ..414
half-duplex (CPIRR) ..400
list ..49
possible values..330
pseudonyms ..3
table ..391, 414, 416
table, half-duplex..391
valid for resource recovery.................................62

conversation state change
example flow using..113

conversation type characteristic
extract ...168
possible values..330
set...271

conversation_ID
described ..26

conversation_queue
possible values..332

Distributed Transaction Processing: CPI-C Specification, Version 2 535

Index

conversation_return_code
described ..325
possible values..325, 332

conversation_security_type
possible values..332

conversation_security_type, defined23
conversation_state

possible values..332
conversation_type

possible values..333
conversion

of characteristics ...38
of data ...48

conversion to and from ASCII.............................342
Convert_Incoming (CMCNVI)............................143

call description..143
Convert_Outgoing (CMCNVO)..........................145

call description..145
CPI Communications

communication with APPC programs481
conversational model ..2
functional levels..6
history ...5
in SNA networks ..18
interface overview..17
naming conventions...3
program operating environment21
relationship to LU 6.2 interface480
TX Extensions..62
versions of, table ...7
with resource recovery interface.......................51

CPI-C interface ..12-13
CRM ..1, 18

application entity..18
characteristic values...36
component ...12
interface to AP...13
interface to OSI-TP...14
interface to TM..13
logical unit ...18
using particular type..36

CRM-AP interface ..13
CRM-OSI TP interface ...14
CRM-TM interface..13
dangling conversation, deallocating22
data

buffering and transmission71
direction, changing, by receiving program.....76
direction, changing, by sending program.68, 72
flow, in both directions68
flow, in one direction...............................65, 87, 91

purging...78, 247
reception and validation of74

data records
description ...19
Receive call ..209
Send_Data call...238

database ..1
data_received parameter ..24
date_received

possible values..333
DBMS ..12
Deallocate (CMDEAL)...147

call description..147
example flow using..67

deallocate_type
possible values..333

deallocate_type characteristic
set...273

decision to commit ...12
decision to commit or roll back15
Deferred_Deallocate (CMDFDE)158

call description..158
definition ..11, 15

DTP model ...11
transaction properties..15

demarcation of transaction.....................................12
destination name, symbolic

blank ...23, 195
defined ..20
example ..65
example flow using..87, 91

distinguished name..528
distributed transaction processing (DTP)15
DTP

implications of ..15
DTP model ...1, 11

definition ..11
durability..15
EBCDIC, conversion to

automatic ...38
error direction characteristic

and Send-Pending state80, 481
set...277

error reporting
example ..78
Send_Error call..246

error_direction
possible values..333

examining conversation characteristics...............29
expedited_receive_type

possible values..333

536 X/Open CAE Specification

Index

extract calls
Conversation_State (CMECS)166
Conversation_Type (CMECT)168
Maximum_Buffer_Size (CMEMBS)................172
Mode_Name (CMEMN)173
Partner_LU_Name (CMEPLN)........................175
Security_User_ID (CMESUI)180
Sync_Level (CMESL) ...184
TP_Name (CMETPN)..186

Extract_AE_Qualifier (CMEAEQ).......................160
call description..160

Extract_Application_Context_Name
(CMEACN) ..164

call description..164
Extract_AP_Title (CMEAPT)162

call description..162
Extract_Conversation_State (CMECS)166

call description..166
Extract_Conversation_Type (CMECT)168

call description..168
Extract_Initialization_Data (CMEID).................170

call description..170
Extract_Maximum_Buffer_Size (CMEMBS).....172

call description..172
Extract_Mode_Name (CMEMN)173

call description..173
Extract_Partner_LU_Name (CMEPLN).............175

call description..175
Extract_Secondary_Information (CMESI).........177

call description..177
Extract_Security_User_ID (CMESUI)180

call description..180
Extract_Send_Receive_Mode (CMESRM).........182

call description..182
Extract_Sync_Level (CMESL)184

call description..184
Extract_TP_Name (CMETPN).............................186

call description..186
Extract_Transaction_Control (CMETC)188

call description..188
failure of system component..................................15
file access method...12
file access system ..1
fill

possible values..333
fill characteristic

set...279
flow

definition of ...63
diagrams...65

flow of control ...11

Flush (CMFLUS)...190
call description..190
example flow using..75

format of calls ..115-116
full-duplex..19
full-duplex conversation

take-commit notification.....................................54
functional component

AP ..12
CRM ..12
RM ...12
TM..12

functional model...11
global transaction ...12
graphic representations for character sets

table showing ..337
half-duplex...19
half-duplex conversation

take-commit notification.....................................53
implications of DTP ...15
included in a transaction...51
Include_Partner_In_Transaction (CMINCL)193

call description..193
initialization data..32-33, 528
initialize

conversation ..195
state ...49

Initialize_Conversation (CMINIT)195
call description..195
example flow using..67

Initialize_For_Incoming (CMINIC)197
call description..197
example flow using..83

Initialize_Incoming state...50
integer values ..330
interchangeability...1
interface ..11

AP-CRM ...13
AP-RM ..13
AP-TM ..13
between components...13
CPI-C ...12-13
CRM-OSI TP..14
function...13
illustrated ...11
ISAM..12-13
SQL..13
system-level ...1
TM-CRM ..13
TM-RM ...13
TX...13

Distributed Transaction Processing: CPI-C Specification, Version 2 537

Index

TxRPC..12-13
XA..13
XA+..12-13
XAP-TP...12, 14
XATMI...12-13

interface overview..17
interoperability..1
ISAM..12

interface ..13
isolation ..15
join_transaction

possible values..333
key topics ...119
language considerations, programming............117
local partner...20
local program ..20, 528
location-independence of transaction work15
logical connection...18, 528

association..18
session...18

logical records
description ...19
Receive call ..209
Send_Data call...238

logical unit ...18, 528
illustration..18

logical unit type 6.2 ..528
log_data characteristic

set...285
LU 6.2 ..18, 22

and CPI Communications480
application programming interface........479-480
verbs..483

LU 6.2 CRM..36
mapped conversation..............................19, 238, 528
MAP_NAME ...480
method of referencing transaction........................15
mode name ..528
mode name, defined...23
mode, processing..295
model ..1, 11

functional ...11
mode_name characteristic

defined ..23
extract ...173
length ..343
set...287

mode_name SNASVCMG
Allocate call ...131
Set_Mode_Name call...287

modifying conversation characteristics29

modifying shared resource.....................................15
multiple conversations ..26
multiple program threads.......................................40
naming conventions...3
native interface..13

constraints..13
network...18
network name ...528
node services ...22
non-blocking..43, 528
non-blocking operations

calls..44
conversation-level ..44
outstanding operation...44
processing_mode..44
queue-level, callback function44
queue-level, using ..44
queue-level, wait facility.....................................44

operating environment..21
example in CPI..21
generic elements ...21

operations known within RM................................16
OSI TP...18, 22, 529
OSI TP CRM...36
OSI TP standards..12, 14
OSI TP-CRM interface ...14
outstanding operation.............................44, 325, 529
overview of CPI-C interface...................................17
parameters

input ..24
output ...24

partly protected half-duplex
example flow using..107

partner ..20, 529
identify partner program....................................20
identify partner program, program supplied.20
identify partner program, side information ...20
install...20, 22
local ...20
multiple partners..27
naming programs...26
remote ...20

partner_LU_name...22
partner_LU_name characteristic

extract ...175
length ..343
set...289

partner_LU_name, defined.....................................23
PIP data...480
portability...1
Prepare (CMPREP)...199

538 X/Open CAE Specification

Index

call description..199
prepare_date_permitted

possible values..333
Prepare_To_Receive (CMPTR)202

call description..202
example flow using..73, 77

prepare_to_receive_type
possible values..333

prepare_to_receive_type characteristic
set...293

privilege..529
processing_mode

possible values..333
program

calls..24
local ...20
partners...20
remote ...20
startup processing..22
termination processing..22

programming language considerations.............117
protected conversation......................................51, 58
protected half-duplex

example flow using......................................95, 101
protected resource..51, 529
protocol...1
pseudonym

example of..3
explanation of..3
values ..330

pseudonym file ...529
C...490
COBOL ...505

queue-level
callback function ..44, 414
using..44
wait facility ..44

queue_processing_mode
possible values..333

Receive (CMRCV) ..208
call description..208
example flow using..67

Receive state
description ...49
how a program enters228

Receive_Expedited_Data (CMRCVX)................223
call description..223

receive_type
possible values..334

receive_type characteristic
set...304

records, logical
description ...19
Receive call ..209
Send_Data call...238

recovery
TM..12

referencing transaction
method of ...15

Release_Local_TP_Name (CMRLTP).................226
call description..226

remote partner...20
definition ..20
residing on local system......................................20

remote program..20, 529
reporting errors

example ..78
Send_Error call..246

Request_To_Send (CMRTS)227
call description..227
example flow using..77

request_to_send_received
possible values..334

Reset state...49
resource...1

access to ..1
database..1
file access system..1
manager..1

resource manager (RM)...1
ACID properties responsibility15
component ...12
interface to AP...13
interface to TM..13

resource recovery interface529
characteristic values...38
described ..51

return codes...330, 345, 361
return_code

possible values..334
return_code parameter

definitions of values345, 361
described ..24

return_control
possible values..335

return_control characteristic
set...305

RM..1
ACID properties responsibility15
component ...12
interface to AP...13
interface to TM..13

Distributed Transaction Processing: CPI-C Specification, Version 2 539

Index

work done across RMs ..15
RM-AP interface ...13
RM-TM interface...13
rollback

decision...15
rollback call ..51
rolling back transaction...15
SAA resource recovery interface

with CPI Communications.................................51
sample programs

CREDRPT program ...518
introduction...513
pseudonym file for...505
results of ...523
SALESRPT program ..514

secondary information..................................362, 529
application-oriented ..362
consists of...362
CPI-defined..362
CRM-specific ...377
CRM-specific, examples from LU 6.2.............377
CRM-specific, examples from OSI TP............377
implementation-related, examples.................378
types and return codes362
types and return codes, not associated with 362

security_password, defined23
security_user_ID, defined.......................................23
send control ...19
Send state ...49
Send-Pending state

and error_direction characteristic...................481
description ...49

send-receive mode ...19, 37
characteristic values...37
full-duplex...19, 37, 89, 404
half-duplex ..19, 37
send control ...19

sending program issues commit
example flow using..95

Send_Data (CMSEND) ..230
call description..230
example flow using..67

Send_Error (CMSERR) ..240
call description..240
example flow using..79

Send_Expedited_Data (CMSNDX).....................250
call description..250

send_receive_mode
possible values..335

send_type
possible values..335

send_type characteristic
set...309

service transaction programs...............................481
session...18, 529
set calls

conversation_security_type267
conversation_type..271
deallocate_type ...273
error_direction ..277
fill ...279
log_data..285
mode_name ...287
partner_LU_name ..289
prepare_to_receive_type293
processing_mode..295
receive_type...304
return_control ...305
security_password ...265
security_user_ID...269
send_type...309
sync_level...311
TP_name...313

Set_AE_Qualifier (CMSAEQ)253
call description..253

Set_Allocate_Confirm (CMSAC)255
call description..255

Set_Application_Context_Name (CMSACN)..259
call description..259

Set_AP_Title (CMSAPT)257
call description..257

Set_Begin_Transaction (CMSBT)261
call description..261

Set_Confirmation_Urgency (CMSCU)...............263
call description..263

Set_Conversation_Security_Password.....................
(CMSCSP)...265

call description..265
Set_Conversation_Security_Type (CMSCST) ..267

call description..267
Set_Conversation_Security_User_ID
(CMSCSU)..269

call description..269
Set_Conversation_Type (CMSCT)......................271

call description..271
Set_Deallocate_Type (CMSDT)273

call description..273
Set_Error_Direction (CMSED).............................277

call description..277
Set_Fill (CMSF) ...279

call description..279
Set_Initialization_Data (CMSID)281

540 X/Open CAE Specification

Index

call description..281
Set_Join_Transaction (CMSJT).............................283

call description..283
Set_Log_Data (CMSLD)..285

call description..285
Set_Mode_Name (CMSMN)287

call description..287
Set_Partner_LU_Name (CMSPLN)289

call description..289
Set_Prepare_Data_Permitted (CMSPDP)..........291

call description..291
Set_Prepare_To_Receive_Type (CMSPTR)293

call description..293
Set_Processing_Mode (CMSPM).........................295

call description..295
Set_Queue_Callback_Function (CMSQCF)297

call description..297
Set_Queue_Processing_Mode (CMSQPM).......300

call description..300
Set_Receive_Type (CMSRT).................................304

call description..304
Set_Return_Control (CMSRC).............................305

call description..305
Set_Send_Receive_Mode (CMSSRM)307

call description..307
Set_Send_Type (CMSST)309

call description..309
example flow using..77

Set_Sync_Level (CMSSL)......................................311
call description..311
example flow using..75

Set_TP_Name (CMSTPN)313
call description..313

Set_Transaction_Control (CMSTC)315
call description..315

shared resource
modifying...15
RM ...12

shared resources
permanence of changes to15

side information..529
side information, defining

overview...22
purpose...22
setting and accessing ...22

simultaneous updates across RMs........................16
SNA

network...18
service transaction programs...........................481

spanning RMs
distributed transaction ..15

specification
CPI-C interface ..12-13
TX interface..13
TxRPC interface...12-13
XA interface ...13
XA+ interface...13
XAP-TP interface ..14
XATMI interface ..12-13

Specify_Local_TP_Name (CMSLTP)..................317
call description..317

SQL
interface ..13

standards
OSI TP...12, 14

starter-set calls
description ...24
examples ..64, 69
list ..25

state ...529
state tables for conversations...............391, 414-416

abbreviations...382, 401
example of how to use380
full-duplex ...401
half-duplex...391

state transition...529
state, conversation

description ...49
extracting ...166
list ..49
possible values..330
pseudonyms ..3
table ..391, 414, 416

status of work done anywhere15
status_received

possible values..335
status_received parameter......................................24
strings, character...340
subordinate program.......................................60, 529

commit tree..60
superior program ...60, 530

commit tree..60
symbolic destination name...................................530

blank ...23, 195
defined ..20
example ..65
example flow using..87, 91

sync point
described ..51
logical unit of work..51
sync point manager..51
transaction manager (TM)..................................51

Distributed Transaction Processing: CPI-C Specification, Version 2 541

Index

transaction mode..51
sync point manager..530
synchronization point..530
sync_level

possible values..335
sync_level characteristic

extract ...184
set...311

system component
failure of ...15

system-level interface ..1
Systems Network Architecture530

network...18
service transaction programs...........................481

take-backout notification ..55
response to ...57

take-commit notification...52
full-duplex conversation.....................................54
half-duplex conversation....................................53
response to ...57

Test_Request_To_Send_Received (CMTRTS) ..319
call description..319

TM..1, 12
ACID properties coordination...........................15
API...13
atomicity...12
interface to AP...13
interface to CRM...13
interface to RM..13
recovery..12

TM-AP interface..13
TM-CRM interface..13
TM-RM interface...13
TP_name characteristic

extract ...186
set...313

TP_name, defined...23
transaction ...58, 530

actions ...1
boundary..12
chained..36-37, 58
commit decision..12
committing...15
completion ...1, 12
conversation included in51
defining boundaries ...1
definition of ...15
demarcation ...12-13
failure ..1
global...1, 12
identifier assigning...1

join ...59
join, explicit request...59
join, implicit request....................................59, 378
manager..1
mode..51
properties ...15
recovery ..1
RM-internal..16
rolling back ..15

transaction manager
ACID properties coordination...........................15
API...13
atomicity...12
recovery..12

transaction manager (TM)..........................1, 12, 530
interface to AP...13
interface to CRM...13
interface to RM..13

transaction mode ..51
transaction work

location-independence of15
transaction_control

possible values..335
transition ..530
transition, state..49
transmission of data...71
tutorial information

example flows ...63
terms and concepts ..62

two chained transaction
example flow using..101

TX commit instruction
example flow using.....................95, 101, 107, 113

TX Extensions for CPI Communications.............62
TX interface..13
TxRPC interface...12-13
types of conversations ...19
unchained transaction

example flow using..107
unchained transactions58, 530
undoing work..15
uniform effect of decision15
unit of work ...15
user field...530
USER_CONTROL_DATA.....................................480
validation of data reception74
values

integers ...330
pseudonyms..3, 330

variables
integer values ..330

542 X/Open CAE Specification

Index

lengths ..340
pseudonyms ..3
types ..340

viewing conversation characteristics29
Wait_For_Completion (CMWCMP)...................322

call description..322
Wait_For_Conversation (CMWAIT)325

call description..325
example flow using..85

work done ..15
work done across RMs ..15
work done anywhere

status of ..15
X/Open...530
X/Open publications ...1
X/Open specification

CPI-C interface ..12-13
TX interface..13
TxRPC interface...12-13
XA interface ...13
XA+ interface...13
XAP-TP interface ..14
XATMI interface ..12-13

X/Open TX (Transaction Demarcation)
interface..398, 530
X/Open-compliant interface..................................15
XA interface ...13
XA+ interface ...12-13
XAP-TP interface ..12, 14
XATMI interface ..12-13

Distributed Transaction Processing: CPI-C Specification, Version 2 543

Index

544 X/Open CAE Specification

