
X/Open CAE Specification

ACSE/Presentation: Transaction Processing API (XAP-TP)

X/Open Company Ltd.

 March 1995, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

ACSE/Presentation: Transaction Processing API (XAP-TP)

ISBN: 1-85912-091-1
X/Open Document Number: C409

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.org

ii X/Open CAE Specification

Contents

Chapter 1 Introduction... 1
 1.1 Motivation.. 1
 1.2 Scope and Purpose.. 3
 1.3 Overview of OSI TP Services ... 4
 1.3.1 OSI Distributed Transaction Processing ... 4
 1.3.2 Polarised and Shared Control Functional Units................................ 4
 1.3.3 Handshake Functional Unit... 5
 1.3.4 Commit Functional Unit .. 5
 1.3.5 Application Supported Transactions... 5
 1.3.6 Provider Supported Transactions... 6
 1.3.7 Dialogue Tree.. 6
 1.3.8 Transaction Branches .. 7
 1.3.9 Transaction Tree ... 7
 1.3.10 Relationship of the MACF to the TPSUI and Dialogue Tree 8
 1.3.11 Unchained Transactions ... 8
 1.3.12 Chained Transactions.. 9
 1.3.13 Mixing Chained and Unchained Transactions within a TPSUI 9
 1.3.14 Neither Chained nor Unchained Transactions 9
 1.3.15 Dialogues without Commit FU .. 9
 1.3.16 Deferred End Dialogue... 9
 1.3.17 Deferred Grant Control .. 9
 1.3.18 Position of Control after Commitment or Rollback 10
 1.3.19 Atomic Action Identifiers... 10
 1.3.20 Branch Identifiers... 10
 1.3.21 Logging.. 11
 1.3.22 Recovery Context Handles .. 12
 1.3.23 Recovery .. 12
 1.3.24 Recovery after Association Loss... 12
 1.3.25 Recovery after Process Crash .. 13
 1.3.26 Recovery after System Crash .. 13
 1.4 Terminology... 14
 1.5 XAP-TP Compliance .. 15
 1.6 Future Directions .. 16

Chapter 2 Overview of XAP-TP.. 17
 2.1 XAP-TP Model... 18
 2.1.1 X/Open DTP Model.. 18
 2.1.2 X/Open DTP Model with Communications 19
 2.1.3 OSI TP Model.. 21
 2.1.4 Relationship between OSI TP and DTP Models................................ 23
 2.1.5 Mapping Multiple TPSUIs to a DTP AP ... 25
 2.1.6 Relationship of XAP-TP to OSI TP and X/Open DTP Models 27

ACSE/Presentation: Transaction Processing API (XAP-TP) iii

Contents

 2.2 XAP-TP Functions and Mechanisms .. 28
 2.2.1 Selection of TP Mode .. 28
 2.2.2 Categories of TP Service Primitives... 28
 2.2.3 Sending and Receiving XAP-TP Service Primitives 29
 2.3 OSITP Address Lookup and Directories.. 32
 2.4 Association Allocation and Deallocation .. 33
 2.5 Mapping TPSUIs to Processes.. 34
 2.6 Control of Dialogue Tree Structure... 35
 2.7 Control of the Transaction Tree Structure ... 37
 2.8 User Setting of AAID and BRID .. 39
 2.9 U-ASE Support in XAP-TP ... 41
 2.9.1 Types of U-ASE .. 41
 2.9.2 U-ASEs Below the XAP-TP Interface... 41
 2.9.3 U-ASEs Above the XAP-TP Interface .. 42
 2.10 Explicit Control of the Two Phases of Commit 43
 2.11 Recovery Context Groups... 44
 2.12 Recovery in XAP-TP... 46
 2.12.1 XAP-TP Control Instance Resumption ... 47
 2.12.2 XAP-TP Restart of a Recovery Context Group.................................. 48
 2.12.3 Failure to Complete a Restart.. 49
 2.12.4 Unavailability of Log Records for a Recovery Context Group...... 49
 2.13 XAP-TP Log Record Format ... 50
 2.14 Heuristic Logging ... 57
 2.15 Instance State and Node State.. 58
 2.16 XAP-TP Instance Synchronisation .. 59
 2.16.1 Principles for XAP-TP Instance Synchronisation.............................. 59
 2.16.2 Propagation... 61
 2.16.3 Implicit or Explicit Close of an XAP-TP Instance 62
 2.16.4 TP_U_ABORT_REQ Primitives Issued by the User 63
 2.16.5 Accounting for Failure Conditions .. 63
 2.16.6 Information Passed with TP_DIALOGUE_LOST_IND Primitive. 64
 2.16.7 Resuming Operation of a Control Instance.. 65
 2.16.8 Aligning the Commitment and Rollback State Tables..................... 65
 2.16.9 XAP-TP Instance Synchronisation on Global Primitives 66
 2.17 Advice on the Use of A-ABORT Request .. 67
 2.18 Advice on Flushing the Concatenator .. 68
 2.19 Using the XAP-TP Interface.. 70
 2.20 Summary .. 72

Chapter 3 Environment.. 73

Chapter 4 XAP-TP Functions.. 85
 4.1 Overview .. 86
 4.1.1 Functions ... 86
 4.1.2 Errors.. 86
 4.1.3 Mapping between XAP-TP and OSI TP Service State Numbers ... 91
 4.1.4 Structure Definitions ... 92
 ap_rcv() .. 94

iv X/Open CAE Specification

Contents

 ap_snd().. 105

Chapter 5 XAP-TP Commands.. 115
 xap_tp_osic ... 116

Chapter 6 XAP-TP File Formats.. 119
 6.1 Environment File... 119

Chapter 7 XAP-TP Primitives .. 123
 APM_ALLOCATE_REQ .. 124
 APM_ALLOCATE_CNF .. 127
 APM_ASSOCIATION_LOST_IND ... 130
 TP_BEGIN_DIALOGUE_REQ ... 132
 TP_BEGIN_DIALOGUE_IND.. 136
 TP_BEGIN_DIALOGUE_RSP.. 138
 TP_BEGIN_DIALOGUE_CNF ... 140
 TP_BEGIN_TRANSACTION_REQ... 143
 TP_BEGIN_TRANSACTION_IND.. 145
 TP_COMMIT_REQ .. 147
 TP_COMMIT_IND... 149
 TP_COMMIT_COMPLETE_IND .. 151
 TP_DATA_REQ .. 153
 TP_DATA_IND ... 155
 TP_DEFERRED_END_DIALOGUE_REQ... 157
 TP_DEFERRED_END_DIALOGUE_IND.. 158
 TP_DEFERRED_GRANT_CONTROL_REQ... 159
 TP_DEFERRED_GRANT_CONTROL_IND.. 160
 TP_DIALOGUE_LOST_IND .. 161
 TP_DONE_REQ ... 163
 TP_END_DIALOGUE_REQ... 165
 TP_END_DIALOGUE_IND ... 166
 TP_END_DIALOGUE_RSP.. 167
 TP_END_DIALOGUE_CNF... 168
 TP_FLUSH_REQ .. 169
 TP_GRANT_CONTROL_REQ ... 170
 TP_GRANT_CONTROL_IND.. 171
 TP_HANDSHAKE_REQ ... 172
 TP_HANDSHAKE_IND.. 173
 TP_HANDSHAKE_RSP .. 174
 TP_HANDSHAKE_CNF ... 175
 TP_HANDSHAKE_AND_GRANT_CONTROL_REQ............................. 176
 TP_HANDSHAKE_AND_GRANT_CONTROL_IND.............................. 178
 TP_HANDSHAKE_AND_GRANT_CONTROL_RSP.............................. 179
 TP_HANDSHAKE_AND_GRANT_CONTROL_CNF............................. 180
 TP_HEURISTIC_REPORT_IND.. 181
 TP_LOG_DAMAGE_IND ... 182
 TP_MANAGE_REQ ... 184
 TP_NODE_STATUS_IND ... 186

ACSE/Presentation: Transaction Processing API (XAP-TP) v

Contents

 TP_P_ABORT_IND.. 188
 TP_PREPARE_REQ ... 190
 TP_PREPARE_IND .. 191
 TP_PREPARE_ALL_REQ ... 192
 TP_READY_IND .. 194
 TP_READY_ALL_IND .. 195
 TP_RECOVER_REQ .. 197
 TP_REQUEST_CONTROL_REQ .. 199
 TP_REQUEST_CONTROL_IND ... 200
 TP_RESUME_REQ .. 201
 TP_RESUME_COMPLETE_IND... 202
 TP_RESTART_REQ ... 203
 TP_RESTART_COMPLETE_REQ ... 204
 TP_RESTART_COMPLETE_IND.. 205
 TP_ROLLBACK_REQ .. 207
 TP_ROLLBACK_IND... 209
 TP_ROLLBACK_COMPLETE_IND .. 211
 TP_UPDATE_LOG_DAMAGE_REQ.. 213
 TP_U_ABORT_REQ .. 215
 TP_U_ABORT_IND ... 216
 TP_U_ERROR_REQ .. 218
 TP_U_ERROR_IND ... 219

Appendix A XAP-TP Header File.. 221

 Glossary ... 229

 Index... 233

vi X/Open CAE Specification

Contents

List of Figures

1-1 OSI Service Interfaces ... 2
1-2 A Dialogue Tree.. 6
1-3 Two Transaction Trees on a Dialogue Tree... 8
1-4 AAIds and BRIds in the Transaction Tree... 10
2-1 DTP Model without Communications.. 18
2-2 DTP Model with Communications .. 20
2-3 OSI TP Model of a Transaction Node .. 21
2-4 Mapping of a TPSUI to DTP Model ... 23
2-5 Multiple TPSUIs Mapped to a Single DTP AP .. 26
2-6 XAP-TP in Relation to the X/Open DTP and OSI TP Models.............. 27
2-7 Synchronising a Dialogue using Handshake... 30
2-8 One TPSUI Across Several Processes .. 35
2-9 Several TPSUIs within a Process .. 35
2-10 Resumption and Restart State/Event Flows ... 47

List of Tables

2-1 XAP-TP Dialogue Category Service Primitives....................................... 29
2-2 XAP-TP Control Category Service Primitives ... 30
4-1 Mapping XAP-TP States to OSI TP Service State Numbers 91
6-1 Attributes that may be Initialised in an Environment File.................... 120

ACSE/Presentation: Transaction Processing API (XAP-TP) vii

Contents

viii X/Open CAE Specification

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

ACSE/Presentation: Transaction Processing API (XAP-TP) ix

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

x X/Open CAE Specification

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:

request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.

This Document

This document is a CAE Specification (see above). It defines the X/Open ACSE/Presentation
(XAP) programming interface Transaction Processing extension (XAP-TP).

X/Open has already defined an ACSE/Presentation (XAP) programming interface (see
Referenced Documents), which provides for access to the ISO OSI protocol stack at the upper
two layers (Association Control Service Element and Presentation) of the OSI 7-layer model.

The XAP-TP API is an interface to the OSI Transaction Processing Service Element, and to the
Presentation Layer, of the 7-layer Open Systems Interconnection model. It allows concurrent use
of the existing XAP facilities on XAP instances supporting associations, in parallel with the use
of XAP-TP facilities on XAP instances supporting OSI TP dialogues.

The XAP-TP extension to XAP provides a programming interface to the OSI Transaction
Processing facilities, which support X/Open’s interface specifications for TP applications (Peer-
to-Peer, XATMI, TxRPC). In addition, the programming interface is at such a level as also to
enable existing Transaction Monitors and applications to have access to OSI TP for interworking
with new applications, thereby enabling users to retain their considerable investment in existing
TP applications while they develop new X/Open-conformant ones.

Structure

• Chapter 1 explains the motivation for developing this XAP-TP API specification, and gives a
short description of the services to which it provides access. It also defines the requirements
placed upon implementations of this Systems Programming Interface (SPI). These include
the minimum set of functions that must be provided by an implementation of XAP-TP, and
the requirements placed upon the underlying implementation of the OSI TP and ACSE
application-service-elements and Presentation Layer. Finally, it identifies areas of
development of the OSI standards upon which this document are based, which may result in
changes to the interface in a possible future version of this XAP-TP specification.

• Chapter 2 lists XAP-TP functions, and describes how they may be used to set up dialogues
and transfer data. This chapter also describes the extensions to the structures provided for
exchanging data and control information between XAP and the user, and shows how they
are used.

ACSE/Presentation: Transaction Processing API (XAP-TP) xi

Preface

• Chapter 3 defines the XAP-TP environment and the structures used for exchanging data and
control information with the SPI.

• Chapter 4 presents the manual page definitions for the XAP-TP SPI. These define the
functions which make up XAP-TP, giving the detailed specifications of parameters and data
structures where there are differences from the corresponding XAP functions. Manual pages
which have not changed from the XAP specification are not repeated here.

• Chapter 5 presents the manual page definition for the XAP-TP xap_tp_osic command.

• Chapter 6 provides information on the format of files used by XAP-TP. Specifically, it
describes the XAP-TP environment file, which is used by the xap_tp_osic command.

• Chapter 7 presents manual page definitions for each of the primitives of the underlying OSI
services to which the XAP provides access via the ap_snd() and ap_rcv() functions. Each
manual page provides a short description of an OSI TP, ACSE or Presentation Layer
primitive, including the circumstances under which it may be sent or received, and a detailed
description of the parameters associated with it.

• Appendix A presents an example XAP-TP header file <xap_tp.h>.

Intended Audience

This specification has two specific groups of implementors as its target audience:

SPI Implementors
System vendors who are implementing an OSI stack providing OSI TP support may use this
specification to design an XAP-TP conformant interface to the stack’s services, facilitating
support of applications from diverse sources.

Applications Implementors
Implementors of OSI applications and application-specific service APIs which are to run
over OSI TP protocol stacks, may use this specification in conjunction with the appropriate
application-specific protocol specifications to design applications and ASEs which are
portable across OSI TP protocol stack implementations from different vendors running on
different systems and/or different hardware (for example, X/Open TP-CRMs, RDA, OSI-
RPC, and so on).

Note: As a System Programming Interface, XAP-TP is not expected to be used directly by
end users for the implementation of end-user applications. Rather it is expected to
be used for the construction of system-level components which may themselves be
of direct use to end-user application developers.

Positioning

This specification provides an extension to the XAP specification. It is intended to be read in
conjunction with that specification and so does not repeat text from XAP where it is unchanged
from the XAP version.

The reader is expected to be familiar with the first three chapters of the XAP specification before
reading this specification.

Throughout the rest of this specification, functions and primitives that are unchanged from XAP
have been omitted — the reader should refer to the XAP specification for their definition.

xii X/Open CAE Specification

Preface

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— command operands, command option-arguments or variable names, for example,
substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name(). Names without parentheses are C external
variables, C function family names, utility names, command operands or command
option-arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

• The notation [ABCD] is used to identify a return value ABCD, including if this is an an error
value.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [] , are part of the syntax and do not indicate optional
items.

ACSE/Presentation: Transaction Processing API (XAP-TP) xiii

Trade Marks

UNIX is a registered trade mark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Limited.

xiv X/Open CAE Specification

Referenced Documents

The following documents are referenced in this guide:

The OSI Reference Model

ISO 7498
ISO 7498: 1984, Information Processing Systems — Open Systems Interconnection — Basic
Reference Model.

ISO ACSE

ISO 8649
ISO 8649: 1988, Information Processing Systems — Open Systems Interconnection — Service
Definition for the Association Control Service Element.

ISO 8650
ISO 8650: 1992 Information Processing Systems — Open Systems Interconnection —
Protocol Specification for the Association Control Service Element.

ISO Presentation

ISO 8822
ISO 8822: 1988, Information Processing Systems — Open Systems Interconnection —
Connection-oriented Presentation Service Definition.

ISO 8822, Amendment 5
ISO 8822: 1988, Information Processing Systems — Open Systems Interconnection —
Connection-oriented Presentation Service Definition — Amendment 5: Additional
Synchronization Facility.

ISO 8823
ISO 8823: 1988, Information Processing Systems — Open Systems Interconnection —
Connection-oriented Presentation Protocol Specification.

ISO 8823, Amendment 5
ISO 8823: 1988, Information Processing Systems — Open Systems Interconnection —
Connection-oriented Presentation Protocol Specification — Amendment 5: Additional
Synchronization Facility..

ASN.1 Notation

ISO 8824
ISO 8824: 1990, Information Technology — Open Systems Interconnection — Specification
of Abstract Syntax Notation One (ASN.1).

ACSE/Presentation: Transaction Processing API (XAP-TP) xv

Referenced Documents

ASN.1 Basic Encoding Rules

BER
ISO/IEC 8825:1990 (ITU-T Recommendation X.209 (1988)), Information Technology —
Open Systems Interconnection — Specification of Basic Encoding Rules for Abstract Syntax
Notation One (ASN.1).

OSI Session Layer

ISO 8326
ISO 8326: 1987, Information Processing Systems — Open Systems Interconnection — Basic
Connection Oriented Session Service Definition.

ISO 8326, Amendment 4
ISO 8326: 1987, Information Processing Systems — Open Systems Interconnection — Basic
Connection-oriented Session Service Definition — Amendment 4: Additional
Synchronization Facility.

ISO 8327
ISO 8327: 1987, Information Processing Systems — Open Systems Interconnection — Basic
Connection Oriented Session Protocol Specification.

OSI Distributed Transaction Processing

OSI TP Model
ISO/IEC 10026-1: 1992, Information Technology — Open Systems Interconnection —
Distributed Transaction Processing — Part 1: OSI TP Model.

OSI TP Service
ISO/IEC 10026-2: 1992, Information Technology — Open Systems Interconnection —
Distributed Transaction Processing — Part 2: OSI TP Service.

OSI TP Protocol
ISO/IEC 10026-3: 1992 Information Technology — Open Systems Interconnection —
Distributed Transaction Processing — Part 3: Protocol Specification.

ISP 12061
ISP 12061, Information Technology — Open System Interconnection — International
Standardized Profiles: OSI Distributed Transaction Processing, Part 5 (ATP11), Part 6
(ATP12), Part 7 (ATP21), Part 8 (ATP22), Part 9 (ATP31), Part 10 (ATP32).

OSI Commitment, Concurrency and Recovery

ISO/IEC 9804
ISO/IEC 9804: 1990, Information Technology — Open Systems Interconnection — Service
Definition for the Commitment, Concurrency, and Recovery Service Element, together with:

Technical Corrigendum 1: 1991 to ISO/IEC 9804: 1990
Amendment 2: 1992 to ISO/IEC 9804: 1990 Session mapping changes.

ISO/IEC 9805
ISO/IEC 9805: 1990, Information Technology — Open Systems Interconnection — Protocol
Specification for the Commitment, Concurrency, and Recovery Service Element, together
with:

xvi X/Open CAE Specification

Referenced Documents

Technical Corrigendum 1: 1991 to ISO/IEC 9805: 1990
Technical Corrigendum 2: 1992 to ISO/IEC 9805: 1990
Amendment 2: 1992 to ISO/IEC 9805: 1990 Session mapping changes.

X/Open Specifications

DTP
X/Open Guide, November 1993, Distributed Transaction Processing: Reference Model,
Version 2 (ISBN: 1-85912-019-9, G307).

XAP
X/Open CAE Specification, September 1993, ACSE/Presentation Services API (XAP) (ISBN:
1-872630-91-X, C303).

CPI-C Version 2
X/Open Preliminary Specification, November 1994, The CPI-C Specification, Version 2,
X/Open Document Number P415, ISBN: 1-85912-057-1.

TxRPC
X/Open Preliminary Specification, July 1993, Distributed Transaction Processing: The
TxRPC Specification (ISBN: 1-85912-000-8, P305).

XATMI
X/Open Preliminary Specification, July 1993, Distributed Transaction Processing: The
XATMI Specification (ISBN: 1-872630-99-5, P306).

ACSE/Presentation: Transaction Processing API (XAP-TP) xvii

Referenced Documents

xviii X/Open CAE Specification

Chapter 1

Introduction

1.1 Motivation
X/Open has already defined a Systems Programming Interface (SPI) which can be used to access
the OSI protocol stack at the ACSE and Presentation layers: the X/Open ACSE/Presentation
programming interface (XAP).

This provides for the portability of OSI applications (for example, X.400, File Transfer Access and
Management (FTAM), Directory Services, Network Management, VTP) to protocol stacks
provided by multiple vendors by provision of a standardised interface to core common upper-
layer functions.

X/Open is defining APIs for distributed transaction processing applications. The relationship
between this Systems Programming Interface and the X/Open Distributed Transaction
Processing (DTP) APIs is shown in Section 2.1.6 on page 27.

There are a number of reasons why X/Open has decided to extend this Systems Programming
Interface to provide access to the services provided by OSI TP:

• OSI TP constrains the U-ASE used with it. It has rules for how U-ASE pdus are concatenated
with OSI TP protocol data units (pdus). To control this concatenation, OSI TP must have
knowledge of the P_DATA requests issued by the U-ASE. This is difficult to achieve with
ASEs sharing use of an XAP instance.

• Many companies that implement or purchase OSI stacks providing OSI TP access do not
wish to implement those OSI ASEs and applications which make use of it as they emerge. A
standard interface capable of supporting these applications (such as X/Open DTP CRMs,
RDA, OSI RPC, and so on) makes it possible for system vendors and users to purchase
products from various independent software vendors (ISVs) and add them to their existing
common upper-layer stack.

• In the TP world, considerable investment of time and effort has been expended producing
current applications and Transaction Monitors. Users expect these programs to fulfill their
purpose for their planned lifespan.

X/Open is currently producing interface specifications for TP applications. These will certainly
be the basis for the majority of the new TP applications developed in the next decade; however,
customers will continue to require that their existing applications operate until they reach the
end of their useful life and their replacements have been designed and built.

During the transition period (which will be years), users will increasingly require their existing
applications to interoperate with the new applications being built, until evolution causes the old
applications and systems to be replaced by new X/Open-conformant systems and applications.

These existing applications and systems should not be excluded from interworking with new
applications utilising OSI TP.

The XAP-TP provides a standardised interface to OSI TP at a level that enables existing
Transaction Monitors and applications to have access to OSI TP for interworking with the new
applications during this transition period.

For these reasons, X/Open has identified an extension to the XAP specification to provide access
to the OSI TP ASE, whilst still providing access to the existing XAP facilities.

ACSE/Presentation: Transaction Processing API (XAP-TP) 1

Motivation Introduction

In the XAP specification the case for standardisation of the XAP interface has been clearly stated.
The addition of OSI TP makes it possible for system vendors and users to purchase application-
layer products utilising OSI TP from various ISVs. In addition, it allows the ISVs to design
products to a single standard interface avoiding the investment needed to operate over multiple
different OSI TP interfaces.

Figure 1-1 illustrates possible System Programming Interfaces to OSI services, and their
relationship to potential applications.

OSI TRANSPORT
SERVICES

XTI API

OSI LAYERS
5 & 6

XAP-TP API

ACSE
OSI TP

APPLICATION-
SPECIFIC
SERVICES

APPLICATION-
SPECIFIC API

OSI
APPLICATION

Figure 1-1 OSI Service Interfaces

The characteristics of the XAP-TP OSI TP interface allow:

• multiple simultaneous use by different Transaction Managers and ASEs

• existing applications being upgraded to support transactional semantics.

2 X/Open CAE Specification

Introduction Scope and Purpose

1.2 Scope and Purpose
The purpose of this document is to describe the extensions to the XAP Systems Programming
Interface (SPI) for OSI TP support, and to define the new functions and data structures which it
provides for use by applications. The specification defines the items of state information which
control the operation of the SPI and its underlying service-provider, the states in which the
primitives provided by the SPI are valid, and the effect on the state information of each of these
primitives.

It is not the purpose of this specification to define a particular subset of the OSI TP, ACSE and
Presentation Layer protocols which implementations must support. The compliance
requirements for an implementation of the SPI and the underlying protocol implementation to
which it provides access are defined in Section 1.5 on page 15.

ACSE/Presentation: Transaction Processing API (XAP-TP) 3

Overview of OSI TP Services Introduction

1.3 Overview of OSI TP Services
In the remainder of this specification, readers are assumed to be familiar with the services
provided by the ACSE and Presentation protocols. Those readers who require a brief overview
of the services of the upper layers of the OSI protocol stack will find one in the equivalent
overview section of the XAP specification.

This section provides a brief overview of the services of the OSI Transaction Processing
Standard, for the benefit of those readers who require it. The text includes references to the OSI
specifications for the services and protocols under discussion.

1.3.1 OSI Distributed Transaction Processing

This provides support for distributed, coordinated transaction processing. The OSI TP model is
defined in ISO/IEC 10026-1: 1992 (the OSI TP Model), the service in ISO/IEC 10026-2: 1992 (the
OSI TP Service), and the protocol in ISO/IEC 10026-3: 1992 (the OSI TP Protocol).

OSI TP introduces the concept of a TP Service User (TPSU) which is separately addressable
within an Application Entity Invocation (AEI) by its TPSU-Title. Use of a TPSU running within
an AEI is a TPSU Invocation (TPSUI).

These TPSUIs communicate with each other as peers. An instance of communication between
TPSUIs is a dialogue. Within a dialogue, application-specific protocols are performed by the U-
ASE. They are complemented by OSI TP protocols to perform transaction processing functions.
Dialogues are established over associations, and OSI TP envisages pools of associations to
minimise the association establishment costs.

The services provided by OSI TP are split into separate functional units, which are selected per
dialogue at dialogue establishment time. The Dialogue functional unit provides the core
capability of beginning and ending dialogues and reporting errors (TP-BEGIN-DIALOGUE, TP-
END-DIALOGUE, TP-U-ERROR, TP-U-ABORT and TP-P-ABORT).

1.3.2 Polarised and Shared Control Functional Units

Dialogues may be operated in polarised control (half duplex mode), or in shared control (full
duplex mode). In polarised control, only the TPSUI which has control of a dialogue may send
data (by means of the U-ASE) and may issue commitment requests. In shared control both
TPSUIs have control of the dialogue all the time.

Use of Polarised Control is enabled by selection of the Polarised Control functional unit.
Similarly use of shared control is enabled by selection of the Shared Control functional unit.
These functional units are mutually exclusive.

In polarised control, turn is passed using the TP-GRANT-CONTROL service, and can be
requested using the TP-REQUEST-CONTROL service. Control may also be exchanged by
rollback or by use of the TP-DEFERRED-GRANT-CONTROL service. These services are
automatically available when the Polarised Control functional unit is selected. In shared control
there is no need for these turn control services, and they are unavailable.

4 X/Open CAE Specification

Introduction Overview of OSI TP Services

1.3.3 Handshake Functional Unit

In simple usage of polarised control the two TPSUIs using a dialogue can synchronise their
processing by inspection of the received PDU stream. In more complex usage of polarised
control and in shared control this is more difficult, and synchronisation services become
necessary.

The Handshake services allow the synchronisation of two TPSUIs. They may be used when
either the shared control or the polarised control is selected. When the shared control is selected
both TPSUIs may request a synchronisation at the same time. Use of handshake is enabled by
selection of the Handshake functional unit.

OSI TP provides combination TP-HANDSHAKE-AND-GRANT-CONTROL services for use
when both the Polarised Control and Handshake functional units are selected, thus allowing
optimisation of the protocol flows.

1.3.4 Commit Functional Unit

The OSI TP Commit functional unit provides the direct support for coordinated commitment of
multiple dialogues. The OSI TP protocol uses the CCR ASE (Commitment Concurrency and
Recovery — ISO/IEC 9804: 1990 and ISO/IEC 9805: 1990) to effect the coordination and recovery
of transactions. OSI TP and CCR use a two-phase commit protocol, whereby a node brings its
resources to a READY state, in which it must guarantee to be capable of releasing them in their
final state if the transaction is committed, or in their initial state if the transaction is rolled back.
(Final state is the state of the resources at the end of the transaction; initial state is the state of the
resources at the beginning of the transaction.) When all resources involved in a transaction have
reached the ready state, the initiator of the entire transaction issues an instruction to commit. If,
for some reason, one of the resources cannot be brought to the ready state, this failure is reported
and a rollback is triggered in the transaction tree.

This coordination of multiple resources is performed by the MACF in OSI TP (Multiple
Association Control Facility). It coordinates the CCR flows on the multiple dialogues from the
TPSUI to subordinate TPSUIs and the flows on the dialogue to the superior TPSUI (if one exists).

Until reaching the ready state, both OSI TP and the TPSUIs presume rollback. If a dialogue to a
node is lost before the node has reached the ready state, the transaction shall be rolled back, and
so no recovery is needed.

Note: When the Commit functional unit is selected, either the Chained transactions
functional unit (see Section 1.3.12 on page 9) or the Unchained Transactions functional
unit (see Section 1.3.11 on page 8) must also be selected.

1.3.5 Application Supported Transactions

When the TPSUIs communicating over a dialogue do not make use of the Commit functional
unit, the TP Service Provider (TPSP) is not involved in any transaction or its commitment — if
this functionality is needed then it must be performed by some private protocol that flows over
the dialogue. The TPSP merely provides access to data transfer, error notification and dialogue
control functionality. This is known as an Application Supported Transaction.

ACSE/Presentation: Transaction Processing API (XAP-TP) 5

Overview of OSI TP Services Introduction

1.3.6 Provider Supported Transactions

When the TPSUIs communicating over a dialogue use the Commit functional unit, the TPSP
provides direct support for the delineation of transactions and their commitment or rollback.
This is known as a Provider Supported Transaction.

In the rest of this document transaction is taken to mean provider supported transaction, and
application supported transaction is used explicitly where necessary.

Note: When both the Commit and Unchained Transactions functional units are selected on a
dialogue but the dialogue is not currently involved in a (provider supported)
transaction, it is possible to run an application supported transaction over it.

1.3.7 Dialogue Tree

In OSI TP dialogues are formed into trees, the dialogues linking nodes in the tree. The nodes are
individual TPSUIs and the dialogues are the branches of the dialogue tree.

Within a dialogue tree the node that initiates a dialogue is referred to as the direct superior of the
node with which the dialogue is established. The node with which the dialogue is established is
referred to as the direct subordinate of the node that initiated the dialogue.

A node which has no superior is called a root node, one which has no subordinates is called a leaf
node, and one which has both a superior and one or more subordinates is called an intermediate
node.

This is shown in Figure 1-2.

LEAF LEAF

INTERMEDIATE LEAF

ROOT

Figure 1-2 A Dialogue Tree

6 X/Open CAE Specification

Introduction Overview of OSI TP Services

1.3.8 Transaction Branches

When a dialogue branch is running within a transaction (either application or provider
supported) it is known as a transaction branch. In the OSI TP specification, and throughout the
rest of this specification, transaction branch is used to refer to provider supported transaction branch
and application supported transaction branch is used explicitly where necessary.

A dialogue supporting a transaction branch is called a coordinated dialogue (coordination-level
= COMMIT). A dialogue not supporting a transaction branch is uncoordinated (coordination
level = NONE).

Note: The superior always starts transaction branches to the subordinate. It is not possible in
the current version of OSI TP for a subordinate in the dialogue tree to commence a
transaction branch to its superior.

A new transaction branch is commenced either explicitly or implicitly:

• explicitly, by starting a dialogue in transaction mode or by issuing a TP-BEGIN-
TRANSACTION request over an existing dialogue

• implicitly, by commitment or rollback of the current transaction branch when the Chained
Transactions functional unit is selected (see Section 1.3.12 on page 9).

A transaction branch is terminated when the corresponding transaction is terminated
(committed or rolled back).

1.3.9 Transaction Tree

In a similar way to the dialogue tree, the transaction tree is a tree with TPSUIs as nodes and
(provider supported) transaction branches linking them. The same terms of root, intermediate
and leaf are used to refer to the equivalent parts of the transaction tree. All the transaction
branches are involved in a single distributed transaction, and the root node (together with its
TPPM) is the coordinator of commitment for this transaction.

All the nodes and transaction branches of a transaction tree are involved in the same provider
supported transaction.

There may be more than one transaction tree on a dialogue tree at any time; however, OSI TP
constrains them to be separated by at least one uncoordinated dialogue branch (see Figure 1-3).

ACSE/Presentation: Transaction Processing API (XAP-TP) 7

Overview of OSI TP Services Introduction

LEAF
Tree 2

LEAF
Tree 2

ROOT
Tree 2

LEAF
Tree 1

ROOT
Tree 1

Uncoordinated

Dialogue

Figure 1-3 Two Transaction Trees on a Dialogue Tree

1.3.10 Relationship of the MACF to the TPSUI and Dialogue Tree

The dialogue from a superior and those dialogues to subordinates for a particular node (TPSUI)
all share a single OSI TP MACF. In this way, it is guaranteed that a node (and those transaction
branches related to it) will only participate in at most a single transaction at a time.

1.3.11 Unchained Transactions

If the Unchained Transactions functional unit is selected, transaction branches are explicitly
started by issuing a TP-BEGIN-TRANSACTION request on an existing dialogue, or by starting a
dialogue in transaction mode. A transaction branch is ended by commitment or rollback of the
transaction, at which time the dialogue is free to be used for an application-supported
transaction branch or to become part of another distributed transaction by issuing a TP-BEGIN-
TRANSACTION request.

Note: When the Unchained Transactions functional unit is selected, the Commit functional
unit must also be selected.

8 X/Open CAE Specification

Introduction Overview of OSI TP Services

1.3.12 Chained Transactions

When the Chained Transactions functional unit is selected, the first transaction branch
commences when the dialogue is established, and each time a transaction is committed or rolled
back, a new transaction branch commences on the dialogue. The dialogue is always involved in
a provider supported transaction, and so cannot be used for an application-supported
transaction branch.

Note: When the Chained Transactions functional unit is selected the Commit functional unit
must also be selected.

1.3.13 Mixing Chained and Unchained Transactions within a TPSUI

It is entirely permissible for a TPSUI to have a mixture of chained and unchained dialogues at
the same time.

1.3.14 Neither Chained nor Unchained Transactions

If neither the Chained or Unchained Transactions functional unit is selected, the Commit
functional unit shall not be selected.

1.3.15 Dialogues without Commit FU

Dialogues without the Commit functional unit selected may only participate in application-
supported transactions.

1.3.16 Deferred End Dialogue

Because a dialogue with the Chained Transactions functional unit selected is always involved in
a provider-supported transaction, it is not possible to utilise the TP-END-DIALOGUE request
service. The TP-DEFERRED-END-DIALOGUE request service fills this role. A superior uses
deferred end dialogue to instruct the TPPM to end the dialogue to a subordinate after
commitment of the current transaction branch. A TP-DEFERRED-END-DIALOGUE indication
is issued to the subordinate TPSUI to inform it that the dialogue will end after commitment. If
the transaction branch is rolled back, the deferred end dialogue is cancelled and the dialogue
placed in a new transaction.

The TP-DEFERRED-END-DIALOGUE request service may also be used when the Unchained
Transactions functional unit is selected. This allows the caller to optimise the protocol flows
across the underlying association. If the transaction is rolled back, the deferred end dialogue is
cancelled and the dialogue continues but is no longer within a transaction.

Deferred End Dialogue is only available on a dialogue that supports a transaction branch
operated in polarised control.

1.3.17 Deferred Grant Control

Similar to deferred end dialogue, the TP-DEFERRED-GRANT-CONTROL request service allows
the superior to instruct the TPPM that control of the dialogue resides with the subordinate after
commitment of the transaction branch. This is signalled to the subordinate TPSUI with a TP-
DEFERRED-GRANT-CONTROL indication service.

Deferred Grant Control is only available on a dialogue operated in polarised control which
supports a transaction branch.

ACSE/Presentation: Transaction Processing API (XAP-TP) 9

Overview of OSI TP Services Introduction

1.3.18 Position of Control after Commitment or Rollback

On those dialogues using polarised control, when a transaction branch is committed, control of
the dialogue resides with the superior unless a deferred grant control has been issued, in which
case control resides with the subordinate.

If a transaction branch is rolled back control of the dialogue resides with the TPSUI which had
control of the dialogue at the start of the transaction.

1.3.19 Atomic Action Identifiers

OSI TP uses CCR Atomic Action Identifiers (AAIds) to identify uniquely a provider-supported
distributed transaction. The AAId applies to the entire transaction tree. So, each transaction
branch of the tree has the same AAId. The AAId is formed from the Application Entity Title
(AET) of the originator of the transaction and a suffix unique within the scope of the AET.

Note: The AAId must be globally unique.

1.3.20 Branch Identifiers

Each branch of a transaction tree has a branch identifier, unique within the scope of the AAID,
consisting of the AET of the originator of the branch (the superior) and a suffix.

The combination of AAId and Branch Identifier (BRId) uniquely identifies an individual branch
of a transaction, and is used by OSI TP on all CCR exchanges relating to that branch. Figure 1-4
shows the AAId and BRIds in use for a transaction tree.

LEAF

Tree 2

AET=D

LEAF

Tree 2

AET=E

ROOT

Tree 2

AET=B

INTERMEDIATE

Tree 1

AET=C

ROOT

Tree 1

AET=A

LEAF

Tree 1

AET=F

Uncoordinated

Dialogue

AAId=A1

BRId=A3

AAId=B1

BRId=B1

AAId=B1

BRId=B2

AAId=A1

BRId=C1

Figure 1-4 AAIds and BRIds in the Transaction Tree

10 X/Open CAE Specification

Introduction Overview of OSI TP Services

1.3.21 Logging

In order to ensure recovery after a system node crash, OSI TP requires log records to be written
at appropriate points.

OSI TP defines four different log records:

• log-ready record

• log-commit record

• log-damage record

• log-heuristic record.

These records have the following uses:

log-ready record
This is secured prior to reporting ready to the superior and contains enough detail of the
transaction node and its branches to enable a node to contact its subordinates (if any) and its
superior during recovery.

log-commit record
This is secured at a root node after all subordinates have reported ready and before the root
node propagates the commit decision to its subordinates and the TPSUI. This ensures the
root node can contact its subordinates during recovery.

log-damage record
This holds details of a possible or actual heuristic condition for reporting to the TPSUI and
the superior (if any). It contains a status of heuristic-hazard or heuristic-mix and enough
detail to identify the transaction node and enable it to contact its superior (if any) during
recovery. It is secured when one of the following is true:

— the node has not reached the ready state and it loses contact with a subordinate after
issuing a prepare PDU

— the node receives the decision from the superior and determines that its bound data is
inconsistent with the outcome of the transaction, and that it cannot rectify the situation

— the node receives the outcome of the commit or rollback from a subordinate which
reports that a heuristic damage condition has occurred.

Reports from subordinates may result in a log-damage record being updated from
heuristic-hazard to heuristic-mix.

log-heuristic record
This is used to record the state of the bound data for a node when the node takes a heuristic
decision. It contains details of the node, the state of the bound data, and information to
enable the node to contact its superior (if any) during recovery.

Both log-damage and log-heuristic records persist until removed by local administrative means.

ACSE/Presentation: Transaction Processing API (XAP-TP) 11

Overview of OSI TP Services Introduction

1.3.22 Recovery Context Handles

OSI TP provides the Recovery Context Handle mechanism to allow the identification of a
grouping of log records to be used for all transactions on a particular association. Its use is
optional — if it is not present on the association, no grouping is used. If used, the Recovery
Context Handle is passed during recovery to identify the grouping.

1.3.23 Recovery

OSI TP only performs recovery for provider supported transaction branches. Recovery is
initiated only by nodes that are either in the ready state or nodes that have propagated a commit
decision. A node that is not in the ready or decided (commit) state automatically initiates a
rollback in case of failure. Recovery is performed by OSI TP for the users behind the scenes, and so
is not directly visible (see Section 8.7 of ISO/IEC 10026-1: 1992 (the OSI TP Model)). The terms
subordinate and superior used during the discussion on recovery refer to the OSI TP recovery
facilities at the subordinate and the superior nodes, respectively.

There are three possibilities:

• recovery from association loss

• recovery from process loss

• recovery from system crash.

These are described in the following three sections.

1.3.24 Recovery after Association Loss

If the TPSUI has not completed the first phase of the two phase commit, the transaction is rolled
back and the node has no recovery responsibility.

The actions taken differ for the subordinate of the transaction branch and the superior as follows.

Subordinate

When an association with the superior is lost after the subordinate has reported (and logged)
READY, but before the commit or rollback request has been received, the subordinate is in doubt
and must determine the outcome of the transaction. The subordinate allocates a TP channel for
recovery and issues a C-RECOVER(READY). The superior returns one of the following
responses:

COMMIT Commit the transaction branch; the subordinate shall commit the transaction
in its subtree, forget the transaction branch and issue a C-RECOVER(DONE).

UNKNOWN The transaction branch has been rolled back at the superior’s side; the
subordinate shall rollback the transaction in its subtree and forget the
transaction branch.

RETRY LATER The recover request cannot be handled at this time; the subordinate has to
reissue C-RECOVER(READY) at a later time (it may also receive a C-
RECOVER(COMMIT) from the superior).

When the association with the superior is lost after the subordinate has received a commit order,
it finishes the commitment procedure in its subtree and then forgets the transaction branch; the
subordinate is not in doubt and has no recovery responsibility. The subordinate then receives a
C-RECOVER(COMMIT) and has to respond C-RECOVER(DONE) after the commitment
procedure has been finished and the transaction branch forgotten.

12 X/Open CAE Specification

Introduction Overview of OSI TP Services

When the association with the superior is lost while the subordinate is performing rollback, it
finishes the rollback procedure in its subtree and forgets the transaction. No recovery is
performed for this branch by either partner.

When a subordinate receives a C-RECOVER(COMMIT) for a transaction branch that it does not
know, it replies C-RECOVER(DONE).

If a heuristic decision or a heuristic hazard exists in the subordinate subtree, the transaction
branch is never forgotten (unless explicitly required by local means) and the heuristic report is
conveyed to the superior in the C-RECOVER(DONE).

Superior

When an association with a subordinate is lost after the superior has issued a commit order, the
superior allocates a TP channel for recovery and issues a C-RECOVER(COMMIT) on this
channel. A response of DONE indicates that the commitment has been successfully performed
in the subordinate’s subtree (unless the C-RECOVER(DONE) contains a heuristic report).

When an association with a subordinate is lost while the superior is performing a rollback, it
finishes the rollback procedure and forgets the transaction. No recovery is then performed for
this branch by either partner. If a prepare has been sent to this subordinate, a heuristic hazard
condition exits for this transaction branch and is logged. This is defined in Annex H of
ISO/IEC 10026-3: 1992 (the OSI TP Protocol).

1.3.25 Recovery after Process Crash

OSI TP detects the loss of the process supporting the TPSUI. If this occurs prior to the
completion of the first phase of the two phase commit, then the dialogues are aborted and any
local resources for the transaction branch are rolled back and the branch forgotten.

If this occurs after the completion of the first phase of commit, then the action taken depends on
the effect of the process loss on the OSI TP implementation, as follows:

• The process loss may cause loss of associations supporting the TPSUI. OSI TP treats this as
described in Section 1.3.24 on page 12.

• The process loss may result in the loss of the entire TPPM. OSI TP reconstitutes the TPPM
and then treats the case as association loss (see Section 1.3.24 on page 12).

• The process loss causes neither loss of associations nor loss of the TPPM. OSI TP continues
the commitment or rollback of the transaction branch without the involvement of the TPSUI.

1.3.26 Recovery after System Crash

This is seen by the subordinates and superiors of TPSUIs affected as association loss. On reload
of the system, the TPPMs are reconstructed from log data, and recovery occurs for each
transaction branch as described in Section 1.3.24 on page 12.

ACSE/Presentation: Transaction Processing API (XAP-TP) 13

Terminology Introduction

1.4 Terminology

Definition of Terms

The terminology of this specification is that defined in the OSI standards to which XAP-TP
provides access. For convenience, the Glossary provides brief definitions of many of these
terms. This specification is one of a number of extensions to the XAP specification, and as such
utilises the terminology and conventions of that specification.

Use of Naming Prefixes

In order to preserve uniqueness, all functions, typedefs, data items and constants unique to this
document have names that begin with the prefix ap_tp_ or AP_TP_. Functions, typedefs, data
items and constants used within this specification but defined by the XAP specification have
names that begin with the prefix ap_ or AP_ as required by that specification.

While the AP_ prefix is used on the symbolic constant which identifies a primitive, it is not
applied to the primitive name itself, so as to avoid making the primitive names unnecessarily
unwieldy.

Alignment with ISO C

The definition of this API has been modified to align it with the ISO C standard:

• the function definitions use ISO C function declaration syntax

• the "const" type qualifier has been added to those arguments that are treated as "read-only"
by the API functions.

14 X/Open CAE Specification

Introduction XAP-TP Compliance

1.5 XAP-TP Compliance
All the XAP functions, as detailed in the XAP Compliance section of the XAP specification must
be provided. However, the functionality defined for some of these functions is optional. When
a function call is made to a service which is not available, the implementation must return the
error code [AP_NOT_SUPPORTED].

The choice of underlying profile, as reflected in the appropriate Protocol Implementation
Conformance Statement (PICS) for the ISO/IEC, determines which XAP-TP Service primitives,
listed in Table 2-1 on page 29 and Table 2-2 on page 30, are supported. This information must be
given in the conformance statement submitted for branding purposes.

International Standardized Profiles for OSI TP are currently under review within ISO. These
profiles include reference information to be used while completing PICSs. PICS proformas for
the ISO/IEC Session, Presentation, ACSE, CCR and TP protocol specifications are currently
under review.

An implementation which complies with this specification shall be conformant to one or more of
the profiles ATP11, ATP12, ATP21, ATP22, ATP31 and ATP32, which are defined in ISP 12061 (TP
Profiles). Which of these profiles are supported has to be stated in the conformance statement
submitted for branding purposes.

Conformance to the OSI TP profiles requires conformance to ISO/IEC Session, Presentation,
ACSE, CCR and OSI TP, as specified in ISO/IEC 10026-3: 1992 (the OSI TP Protocol).
Conformant completion of the related PICS proformas shall also apply to implementations
claiming conformance to this specification, once these PICS have been approved by ISO/IEC.

ACSE/Presentation: Transaction Processing API (XAP-TP) 15

Future Directions Introduction

1.6 Future Directions
Work is progressing within ISO in the following areas:

• commitment optimisations (including read-only, one-phase commit, rollback diagnostics,
migration of commit coordinator, dynamic commitment)

• subtransactions

• dialogue recovery

• separation of data and commit flows (that is, on different associations).

This specification will be updated to reflect this work when it becomes standardised.

In addition, any changes deemed necessary as a result of pilot implementations of this
Preliminary Specification will be taken into account.

16 X/Open CAE Specification

Chapter 2

Overview of XAP-TP

This chapter provides an overview of the XAP-TP extension to the XAP interface, its relationship
to the X/Open DTP and OSI TP models, its functions, and the mechanisms provided for
communication with it. A brief example of how the interface may be used to establish a
dialogue and transfer data is also provided.

Readers are expected to have read Chapter 1 prior to reading this chapter.

ACSE/Presentation: Transaction Processing API (XAP-TP) 17

XAP-TP Model Overview of XAP-TP

2.1 XAP-TP Model
XAP-TP uses the Service User, Service Provider, XAP Instance, XAP Environment, Service
Primitive Parameters and User Data features of the XAP specification unchanged.

The TP extension introduces new environment attributes: an extended cdata structure
(ap_tp_cdata_t) for use with ap_snd() and ap_rcv(); and further primitives which can be utilised
when TP_MODE is selected for an XAP instance.

XAP-TP provides access to two categories of service primitives:

• dialogue primitives, which apply to an individual dialogue

• control primitives, which apply to all transaction mode dialogues of one TPSUI.

XAP-TP allows the user to map these two categories to one or more processes (see Section 2.5 on
page 34).

The following sections describe the X/Open DTP Model, the OSI TP Model, their relationship to
each other, and their relationship to XAP-TP. They discuss the relationship between the models.
They do not provide an implementation guide, nor do they provide an exhaustive description of
all aspects of the models.

2.1.1 X/Open DTP Model

The X/Open DTP model describes 3 components: an Application Program (AP), a Transaction
manager (TM), and one or more Resource managers (RMs). (See the the DTP guide.) The DTP
model without communications is as shown in Figure 2-1.

TM

TX

DTP AP

RM1
XA

RM2

NATIVE I/F

XA

RM3

XA

DB

DB

DB

Figure 2-1 DTP Model without Communications

A DTP Application uses the Transaction demarcation interface (TX) to delineate the start and
end of transactions.

An RM controls access to a resource (for example a database), and a DTP application uses the
native interface provided by the RM (for example, SQL) to manipulate the resource.

The TM uses the XA interface to control the delineation, commitment and rollback of
transactions with the RMs. XA provides two phase commit, which enables the TM to coordinate
the commitment of multiple RMs, ensuring that resources are kept in a consistent state.

18 X/Open CAE Specification

Overview of XAP-TP XAP-TP Model

During the first phase of commitment, each RM logs its READY status to secure storage prior to
reporting READY to the TM. This enables recovery, to a consistent state, after process or system
crash.

The relationship between the TM and RMs is analogous to that in OSI TP between the MACF
and the SACFs of individual dialogues.

An RM may provide the view of a single resource to the DTP Application and the TM whilst
employing multiple resources internally. In this case, the RM coordinates resources internally to
provide this view. For example, a database may consist internally of multiple file sections on
multiple discs.

To sum up:

• The TM coordinates the preparation, commitment and rollback of one (or more) resources
(represented by RMs) in use by the application.

• The TX interface is used for the application to request commitment or rollback of the TM,
and for the TM to report the outcome of the commitment or rollback to the application.

• The TM uses the XA interface to coordinate the RMs.

• The RMs are responsible for logging their transaction details to secure storage.

• An RM may provide a single resource by internally coordinating multiple resources.

2.1.2 X/Open DTP Model with Communications

The introduction of communications changes the DTP model, and requires an extended interface
between a Communication RM (CRM) and the TM. This extended interface is XA+.

XA is extended in two ways to make XA+:

• New Log primitives allow any RM to pass responsibility for logging to the TM.

• Additional two phase commit primitives allow a CRM to control the two phases of the
commitment of the TMs’ subordinate resources.

When communication is in use there are two cases to consider:

• The root of the transaction is the DTP AP. Commitment of the transaction is requested locally
by the DTP AP, and is controlled by the TM. The TM acts as superior to all the RMs,
including those providing communication to subordinates nodes.

• The root of the transaction lies elsewhere. Commitment of the transaction locally is
controlled by the CRM providing the communications with the superior node. The DTP AP
and TM are subordinate to the CRM. The TM still acts as superior to the other RMs in use.

The first case, where DTP application is the ROOT node of the transaction, is straightforward.
This behaves as described above in Section 2.1.1 on page 18, with the exception that CRMs can
exploit the XA+ feature to pass log records to the TM for logging to secure storage. This case is
not discussed further here.

The second case, where the ROOT node of the transaction resides elsewhere, is more complex.
An example of the X/Open DTP model with communications from a superior is shown in Figure
2-2 on page 20.

ACSE/Presentation: Transaction Processing API (XAP-TP) 19

XAP-TP Model Overview of XAP-TP

TM

TX

DTP AP

CRM
XA+

RM2

NATIVE I/F

XA

RM3

XA DB

DB

communication
from superior

Figure 2-2 DTP Model with Communications

When a DTP AP becomes a subordinate in a transaction, by communication from a superior
node through a CRM, the DTP AP can no longer request overall commitment of the transaction,
it can only indicate to the TM its readiness to participate in commitment of the transaction. The
CRM explicitly controls the two phases of commitment with exchanges to the TM through the
XA+ interface.

The first phase of commitment (the prepare phase) is entered when the subordinate node
receives a TP-PREPARE-RI pdu from its superior. Processing of the commit procedure is
continued after the DTP AP has signalled its willingness to participate in commitment by calling
tx_commit() — which it does either as a result of communication received from its superior node
through the CRM, or as a result of a local decision that its part in the transaction is ready for
commitment.

Once the TM has received the tx_commit() request from the DTP application it instructs the RMs
to bring their resources into the READY state. The TM reports the outcome of preparation to the
CRM (and so to the superior) using XA+. If one (or more) of the RMs fail to reach the READY
state, the TM rolls back the transaction locally and informs the CRM of the rollback. The CRM
informs the superior which then rolls back the rest of the transaction.

The CRMs may pass log information to the TM for inclusion in its transaction log through the
XA+ interface. The destination and source of all the transaction-mode communications are
recorded to enable recovery after process or system crash.

After the TM has informed the superior (through the CRM) of successfully reaching the READY
state, the CRM (using the XA+ interface) informs the TM of the decision by the node to commit
or rollback the transaction. The TM reports the result of commitment (or rollback) to the CRM
through the XA+ interface.

To sum up:

• XA+ allows the CRM to pass responsibility for logging to the TM.

• XA+ enables a CRM to act as superior to the TM (instead of the subordinate role RMs play in
XA) when the ROOT node of the transaction is elsewhere.

20 X/Open CAE Specification

Overview of XAP-TP XAP-TP Model

2.1.3 OSI TP Model

The OSI TP model describes application-supported transactions. They are not discussed further
here, because their delineation, commitment, rollback and recovery are performed without any
protocol involvement by OSI TP.

The OSI TP model describes a distributed transaction as a series of interconnected NODES
forming a transaction tree. The OSI TP model for a node in the transaction tree is shown in
Figure 2-3.

Local
Resources

TPSUI

MACF

S
A
C
F

S
A
C
F

S
A
C
F

Local
Resources

T
P
P
M

..

..

..

..

..

..

..

.

.......
DIALOGUES

..

..

..

..

..

..

..

.

.......

..

..

..

..

..

..

..

.

.......
COMMITMENT

Figure 2-3 OSI TP Model of a Transaction Node

At each of these nodes there is a TPSUI, and the dialogues that allow it to communicate with its
superior and subordinate TPSUIs (if any).

Each dialogue passes through a common Multiple Association Control Function (MACF), and
use a separate Single Association Control Function (SACF). The MACF is fully aware of the
exchanges passing across the dialogue through each SACF.

The OSI TP protocol Machine (TPPM) provides the TP services to a single TPSUI and
encompasses the TP logic and protocol for a single node in the transaction tree. The TPPM
includes the MACF and SACFs, and provides the TP services to the user.

The TPSUI and/or the TPPM (on behalf of the TPSUI) may have local resources under their
control that are part of the distributed data of the transaction.

The root TPPM coordinates the commitment of the nodes in the transaction tree. Each TPPM in
the transaction instructs its TPSUI to coordinate its local resources (if any), and coordinates local
resources on behalf of the TPSUI (if any).

The TPSUI can be informed of the start of a transaction (on arrival of a TP-BEGIN-DIALOGUE
indication or by arrival of a TP-BEGIN-TRANSACTION indication on an existing dialogue), or it
may start a transaction itself. The TPSUI can then extend the transaction tree to subordinates by
either establishing transaction mode dialogues or commencing transaction branches on existing
dialogues. All of these transaction mode dialogues share a single MACF.

ACSE/Presentation: Transaction Processing API (XAP-TP) 21

XAP-TP Model Overview of XAP-TP

TPPM service primitives are either local or global in scope. Local primitives apply to a single
dialogue, for example, TP-GRANT-CONTROL request. Global primitives apply to all the
coordinated dialogues of the transaction node, for example, TP-COMMIT request, TP-
ROLLBACK request and TP-DONE request.

If the TPSUI has a superior, it is instructed to prepare for commitment by receipt of a TP-
PREPARE indication on the dialogue from the superior. Alternatively, if the TPSUI has
completed its work for a transaction it can, as a local decision, prepare its local resources
without having received a TP-PREPARE indication from its superior; however, it may not issue
a TP-COMMIT request until it receives a TP-PREPARE indication and it may be required to
make further modifications to local resources to satisfy unexpected transaction semantics (for
example, the superior may abandon the transaction and instruct the subordinate to rollback, or
further requests may be received prior to the TP-PREPARE indication). In response to a TP-
PREPARE indication the TPSUI indicates the success or failure of bringing its local resources (if
any) into the READY state, and indicates success or failure by a single TP-COMMIT request or
TP-ROLLBACK request to the MACF. A TP-COMMIT request indicates the TPSUI’s willingness
to participate in commitment of the transaction. The MACF issues prepare requests to the
subordinates of the node in the transaction tree. When all subordinate nodes have reported
READY, and the local TPSUI has indicated its willingness to commit (by issuing a TP-COMMIT
request), the MACF reports READY to its superior.

When all resources in the transaction tree have reached the ready state, and the TPSUI at the
ROOT node has instructed its MACF to commit (by issuing a TP-COMMIT request), three
actions occur at each node:

• The TPPM sets any local resources under its control to the committed (final) state.

• The TPPM passes a single TP-COMMIT indication to the TPSUI (to instruct it to commit its
local resources).

• The MACF within the TPPM propagates the commit decision to its subordinate nodes
without external intervention.

The OSI TP model allows a superior TPSUI individually to prepare selected subordinate
transaction branches by issuing TP-PREPARE requests on those branches rather than a TP-
COMMIT request to the node, which prepares all subordinate branches. When each prepared
branch becomes "ready" the TPPM indicates this to the superior TPSUI through a TP-READY
indication.

Failure of a resource to reach the ready state is reported to the ROOT node by the transaction
subtree that experienced the failure, where the MACF indicates the decision to rollback to the
local TPSUI and propagates the decision to all its subordinate subtrees that did not experience
the failure. At each READY node in the transaction tree, the MACF passes a TP-ROLLBACK
indication to the local TPSUI, and propagates the rollback decision to subordinate nodes in the
transaction tree.

The TPSUI indicates to the MACF the result of the commitment (or rollback) of local resources
by issuing a TP-DONE request.

To sum up:

• The MACF within a TPPM is fully aware of the transaction management protocol over each
dialogue.

• The MACF within the TPPM exchanges PDUs on all the coordinated dialogues for a node
during commitment and rollback, without the involvement of the TPSUI in the exchanges on
a individual dialogue — it coordinates the exchanges on individual dialogues (in a similar
manner to the TM coordinating multiple RMs).

22 X/Open CAE Specification

Overview of XAP-TP XAP-TP Model

• The TPSUI coordinates the preparation, commitment and rollback of any local resources
under its control (OSI TP regards them as a single entity).

• The TPPM coordinates the preparation, commitment and rollback of any local resources
under its control.

2.1.4 Relationship between OSI TP and DTP Models

In the OSI TP model a node in the transaction tree comprises a TPSUI and a TPPM consisting of
a MACF and coupled SACFs (with their dialogues). In the X/Open DTP model there is an AP, a
TM and one or more RMs. The following description explains how these two views fit together.

The coordination of multiple local resources by the TPSUI is outside the scope of the OSI TP
model. This coordination of local resources is performed by the TPSUI. The internal structure of
a TPSUI, with its coordination of local resources, can be exemplified by the DTP model as shown
in Figure 2-4.

TM

TX

DTP AP

TPSUI

CRM
XA+

RM2

XA

RM3

NATIVE I/F

XA DB

DB

MACF

S
A
C
F

S
A
C
F

S
A
C
F

T
P
P
M

..

..

..

..

..

.....
DIALOGUES

..

..

..

..

..

.....

..

..

..

..

..

.....

NATIVE I/F

COMMITMENT

Figure 2-4 Mapping of a TPSUI to DTP Model

From a DTP model perspective, OSI TP is represented as a single resource via a CRM. The
internal coordination of multiple dialogues performed by the MACF during commitment and
rollback is not visible in the TPSUI. This is analogous to the database case where the database
consists of multiple resources coordinated internally, but represented as a single resource by an
RM. The CRM may be either superior to (when the DTP AP is not the ROOT node), or
subordinate of (when the DTP application is the ROOT node), the DTP application and the TM.

ACSE/Presentation: Transaction Processing API (XAP-TP) 23

XAP-TP Model Overview of XAP-TP

From an OSI TP model perspective, the CRM, the DTP AP and the TM taken together can be
viewed as a single TPSUI.

The CRM relays commitment and rollback exchanges between the MACF and the TM through
the XA+ interface. Exchanges on individual dialogues are routed to the DTP AP after any local
processing by the CRM.

When the DTP AP is the ROOT node of the transaction, the TM coordinates commitment of the
RMs. All the RMs are subordinate to the TM. In this situation it is not possible for the CRM to
issue a commit request to the TM. The OSI TP MACF still generates a TP-COMMIT indication to
instruct the TPSUI to commit the local resources, and expects a TP-DONE request when this
commitment is complete. As the local resources are already being committed under the control
of the TM, and as the CRM is subordinate to the TM, there are no local resources for the TPSUI
to commit in response to this request from the MACF. The CRM therefore immediately issues a
TP-DONE request indicating successful commitment of the (zero) local resources to the MACF.

The outcome of the OSI TP commitment of subordinate nodes is reported back, via the CRM, to
the TM which collates the results from all RMs and reports the overall outcome to the DTP AP as
required.

The X/Open DTP model treats all subordinate RMs and CRMS in the same manner. Each is first
requested to bring their resources into the ready to commit state by a call to xa_prepare() and
when all have reported success they are all instructed to commit by calls to xa_commit().

The OSI TP model, however, requires that the TPSUI prepare its local resources (bringing them
to the ready-to-commit state) before issuing a TP-COMMIT request. On receipt of the TP-
COMMIT request, the OSI TP MACF completely controls both phases of commitment without
allowing the TPSUI to intervene.

The outcome of this is that the two models cannot be integrated as they stand.

In order to integrate the two models, an XAP-TP implementation of OSI TP separates the two
phases of commitment in OSI TP so that they can be explicitly driven within the X/Open DTP
model.

The two phases of commit are performed in XAP-TP using the following primitives:

TP_PREPARE_ALL_REQ
To request completion of the first phase of commitment.

TP_READY_ALL_IND
To indicate completion of the first phase of commitment.

TP_COMMIT_REQ
To commence the second phase of commitment.

The primitive TP_COMMIT_REQ in XAP-TP is not therefore the equivalent of the TP-COMMIT
request abstract service definition in ISO/IEC 10026-2: 1992 (the OSI TP Service). Rather, the
combination TP_PREPARE_ALL_REQ, TP_READY_ALL_IND and TP_COMMIT_REQ is the
equivalent of the TP-COMMIT request abstract service defined in ISO/IEC 10026-2: 1992 (the
OSI TP Service).

The separation of the 2 phases of commitment in this way requires changes to the OSI TP state
table definitions. Two new states are introduced into the OSI TP service state table:

• AP_TP_PREPARING

• AP_TP_LOGGING_READY

24 X/Open CAE Specification

Overview of XAP-TP XAP-TP Model

and the state AP_TP_WCOMMITind (S20) has different semantics under XAP-TP.

When a TP_PREPARE_ALL_REQ is issued, the state is changed to AP_TP_PREPARING and the
first phase of commitment is commenced with subordinates. If a failure occurs in this state, the
transaction is rolled back. If all subordinates report ready, the state is changed to
AP_TP_LOGGING_READY and the primitive TP_READY_ALL_IND is returned to the user. At
this point, if a failure occurs it is not known if the XAP-TP user wishes to commit the transaction
or rollback the transaction, so the OSI TP TPPM is maintained in its current state and any
recovery attempts are refused with the response retry-later (it behaves as if it were a node with a
dialogue to a superior in the READY state).

The XAP-TP user requests commencement of the second phase of commitment by issuing a
TP_COMMIT_REQ primitive. The action taken depends on whether the node has an OSI TP
superior branch or not, as follows:

• With an OSI TP superior, it changes state to AP_TP_WCOMMITind, issues a ready to the
superior, and awaits the instruction to commit or rollback. If a failure occurs, the TPPM will
instigate recovery to discover the outcome of the transaction from the OSI TP superior.

• Without an OSI TP superior, the state is changed to AP_TP_COMMIT_WDONEreq, a
TP_COMMIT_IND primitive is issued to the user, and commit is propagated to subordinate
dialogues. Due to the asynchronous nature of the XAP-TP interface, the interface state
becomes AP_TP_WCOMMITind before the TP_COMMIT_IND primitive is received, and
changes to AP_TP_COMMIT_WDONEreq when the primitive has been received. Again, a
failure causes the TPPM to instigate recovery to determine the outcome of the subordinate
affected.

2.1.5 Mapping Multiple TPSUIs to a DTP AP

Another equally valid view of the relationship between the OSI TP model and the X/Open DTP
model is that only a portion of the DTP AP and a CRM are contained within a TPSUI.

It is therefore possible to have multiple TPSUIs mapped to a single DTP AP. In order for the
work of the TPSUIs to be coordinated into a single transaction, they must be coordinated by that
portion of the X/Open DTP model lying outside the TPSUIs. This coordination is outside the
scope of the OSI TP model.

An example utilising Peer-to-Peer and RDA CRMs is shown in Figure 2-5 on page 26. Note that
the figure could as easily have shown an XATMI CRM or a TxRPC CRM in conjunction with a
Coordinated Systems Management CRM.

ACSE/Presentation: Transaction Processing API (XAP-TP) 25

XAP-TP Model Overview of XAP-TP

TM

DTP AP

TX

Peer To Peer
CRMXA+

TPSUI
1

MACF

S
A
C
F

S
A
C
F

T
P
P
M

..

..

..

..

..

.....
DIALOGUES

..

..

..

..

..

.....

P2P

COMMIT

RDA
CRM

SQL

XA+

TPSUI
2

MACF

S
A
C
F

T
P
P
M

DIALOGUE

..

..

..

..

..

.

...........

COMMIT

Figure 2-5 Multiple TPSUIs Mapped to a Single DTP AP

As each of the CRMs belongs to a separate TPSUI, each CRM has a separate OSI TP MACF, and
they must be separately prepared and committed. The TM uses the XA+ interface of both CRMs
to coordinate the overall commitment of the transaction.

As the two dialogues of the Peer-to-Peer CRM belong to the same TPSUI, they share an MACF,
and the MACF coordinates the commitment flows on the dialogues. Only a single xa_prepare()
and xa_commit() call is made to the CRM from the TM.

If the Peer-to-Peer CRM implementors had chosen to separate the dialogues into two separate
TPSUIs, then each would have had a separate MACF. Two instances of the CRM would be open
for the transaction, and the TM would have to prepare and commit each instance separately.

Note: If the TPPMs involved come from different vendors or are different software
components, and both utilise the same AAID, then each must ensure that BRIDs
allocated are unique.

26 X/Open CAE Specification

Overview of XAP-TP XAP-TP Model

2.1.6 Relationship of XAP-TP to OSI TP and X/Open DTP Models

XAP-TP provides a well-defined interface to the services of OSI TP MACF and SACF.

As has been seen in Section 2.1.4 on page 23, the integration of the OSI TP procedures with the
X/Open DTP model requires a CRM, to:

• provide an XA+ mapping to an DTP TM

• provide a U-ASE and native interface to a DTP AP.

Applications portability for communicating X/Open DTP applications is being provided by the
DTP interfaces for Client/Server (XATMI), Peer-to-Peer (P2P), and Transactional RPC (TxRPC),
each being represented by a CRM. XAP-TP provides the means to construct each of these, and
other RMs requiring OSI TP access, independent of the underlying OSI TP implementation. This
provides system portability and component interchangeability for DTP-conformant TP systems.

Its position in respect to components of the X/Open DTP model is shown in Figure 2-6.

TM

TX

DTP AP

TPSUI

CRM
XA+

RM2

XA

RM3

NATIVE I/F

XA DB

DB

XAP-TP

MACF

S
A
C
F

S
A
C
F

S
A
C
F

T
P
P
M

..

..

..

..

..

.....
DIALOGUES

..

..

..

..

..

.....

..

..

..

..

..

.....

NATIVE I/F

COMMITMENT

Figure 2-6 XAP-TP in Relation to the X/Open DTP and OSI TP Models

ACSE/Presentation: Transaction Processing API (XAP-TP) 27

XAP-TP Functions and Mechanisms Overview of XAP-TP

2.2 XAP-TP Functions and Mechanisms
XAP-TP uses the existing functions and mechanisms of XAP (see the XAP specification).

2.2.1 Selection of TP Mode

A user selects the use of the TP extension on an XAP instance by setting the AP_MODE_SEL
environment attribute to AP_TP_MODE. The AP_MODE_AVAIL environment attribute has
AP_TP_MODE set in an implementation supporting this specification (other modes of operation
may be available as defined in the XAP specification and other XAP extension specifications).

A particular implementation may make OSI TP access available either:

• through a separate communications provider from ACSE/Presentation and other extensions

• through the same communications provider as ACSE/Presentation and/or other extensions.

When OSI TP access is made available through a separate provider, only AP_TP_MODE will be
available in AP_MODE_AVAIL. If OSI TP access is made available through a common provider,
multiple modes are available in AP_MODE_AVAIL, of which one is AP_TP_MODE.

Note: Only one mode can be selected on an XAP instance at a time with AP_MODE_SEL,
when OSI TP access is made available through a common provider.

2.2.2 Categories of TP Service Primitives

The XAP-TP primitives are split into two categories:

1. dialogue primitives, which apply to an individual dialogue

2. control primitives, which are individual primitives that apply to all transaction mode
dialogues of a TPSUI; the commit, logging and recovery primitives.

Note: These groupings do not directly reflect the OSI TP functional units.

The category (or categories) of TP service primitives to be used on an XAP instance are selected
by bit settings of the AP_TP_CATEGORY environment attribute. The two categories can be
selected singly or in combination. At least one category must be selected on an XAP instance
supporting TP.

The categories are AP_TP_DIALOGUE and AP_TP_CONTROL.

An XAP instance with the AP_TP_CONTROL category selected but not supporting a dialogue
can be used to send and receive commit, logging and recovery primitives for any TPSUI that is
bound to the same local AET.

An XAP instance supporting a transaction mode dialogue and which has the AP_TP_CONTROL
category selected can only send and receive commit and logging primitives for the TPSUI to
which the dialogue belongs. Further, an XAP instance which supports a dialogue not in
transaction mode and which has the AP_TP_CONTROL category selected cannot send or receive
any commit or log primitives until either the dialogue ends or it is placed into transaction mode.

Later sections of this chapter explain how the various services of OSI TP are made available
through an XAP instance or instances.

28 X/Open CAE Specification

Overview of XAP-TP XAP-TP Functions and Mechanisms

2.2.3 Sending and Receiving XAP-TP Service Primitives

The services offered by the OSI TP service provider are made available to the service user
through a collection of XAP-TP service primitives that are sent and received using the ap_snd()
and ap_rcv() functions.

The OSI TP services available through this version of the XAP-TP interface for each of the
categories are shown in Table 2-1 and Table 2-2 on page 30, together with the related XAP-TP
service primitives.

The service primitives available on a particular XAP instance for a dialogue are restricted to
those permitted by the combination of functional units selected.

Service Primitives
Services Send Receive

APM_ALLOCATE * ..._REQ ..._CNF
APM_ASSOCIATION_LOST * ..._IND
A_ABORT ..._REQ
TP_BEGIN_DIALOGUE ..._REQ ..._RSP ..._IND ..._CNF
TP_BEGIN_TRANSACTION ..._REQ ..._IND
TP_COMMIT ..._IND
TP_COMMIT_COMPLETE ..._IND
TP_DATA ..._REQ ..._IND
TP_DEFERRED_END_DIALOGUE ..._REQ ..._IND
TP_DEFERRED_GRANT_CONTROL ..._REQ ..._IND
TP_DIALOGUE_LOST * ..._IND
TP_END_DIALOGUE ..._REQ ..._RSP ..._IND ..._CNF
TP_FLUSH * ..._REQ
TP_GRANT_CONTROL ..._REQ ..._IND
TP_HANDSHAKE ..._REQ ..._RSP ..._IND ..._CNF
TP_HANDSHAKE_AND_GRANT_CONTROL ..._REQ ..._RSP ..._IND ..._CNF
TP_HEURISTIC_REPORT ..._IND
TP_PREPARE ..._REQ ..._IND
TP_P_ABORT ..._IND
TP_READY ..._IND
TP_REQUEST_CONTROL ..._REQ ..._IND
TP_ROLLBACK ..._IND
TP_ROLLBACK_COMPLETE ..._IND
TP_U_ABORT ..._REQ ..._IND
TP_U_ERROR ..._REQ ..._IND

* Local service not defined in ISO/IEC 10026-2: 1992 (the OSI TP Service).

Table 2-1 XAP-TP Dialogue Category Service Primitives

ACSE/Presentation: Transaction Processing API (XAP-TP) 29

XAP-TP Functions and Mechanisms Overview of XAP-TP

Service Primitives
Services Send Receive

TP_COMMIT ** ..._REQ ..._IND
TP_COMMIT_COMPLETE ..._IND
TP_DONE ..._REQ
TP_DIALOGUE_LOST * ..._IND
TP_LOG_DAMAGE * ..._IND
TP_MANAGE * ..._REQ
TP_NODE_STATUS * ..._IND
TP_PREPARE_ALL * ..._REQ
TP_READY_ALL * ..._IND
TP_RECOVER * ..._REQ
TP_RESTART * ..._REQ
TP_RESTART_COMPLETE * ..._REQ ..._IND
TP_RESUME * ..._REQ
TP_RESUME_COMPLETE * ..._IND
TP_ROLLBACK ..._REQ ..._IND
TP_ROLLBACK_COMPLETE ..._IND
TP_UPDATE_LOG_DAMAGE * ..._REQ

* Local services not defined in ISO/IEC 10026-2: 1992 (the OSI TP Service).

** The TP_COMMIT_REQ primitive in XAP-TP is not the equivalent of the TP_COMMIT
request service definition in ISO/IEC 10026-2: 1992 (the OSI TP Service). Rather, the
combination of TP_PREPARE_ALL_REQ, TP_READY_ALL_IND and TP_COMMIT_REQ
primitives is the equivalent of the TP_COMMIT request abstract service defined in
ISO/IEC 10026-2: 1992 (the OSI TP Service).

Table 2-2 XAP-TP Control Category Service Primitives

Complete information about the effects on the XAP-TP interface of sending and receiving the
various services primitives is provided in ap_snd() and ap_rcv() in Chapter 4, and on the manual
pages for the individual primitives in Chapter 7.

Services that can be initiated by the service user may be associated with either one, two or four
service primitives, depending on whether or not the service is confirmed. Figure 2-7 illustrates
how an initiator and a responder may use the ap_snd() and ap_rcv() functions, together with the
TP_HANDSHAKE service primitives, to synchronise their processing.

INITIATOR RESPONDER

Provider

ap_snd(TP_HANDSHAKE_REQ)

ap_rcv(TP_HANDSHAKE_IND)

ap_snd(TP_HANDSHAKE_RSP)

ap_rcv(TP_HANDSHAKE_CNF)

Figure 2-7 Synchronising a Dialogue using Handshake

Note that when using the XAP-TP library with a provider which supports both AP_TP_MODE
and AP_NORMAL_MODE, only one mode can be selected on an individual XAP instance at a

30 X/Open CAE Specification

Overview of XAP-TP XAP-TP Functions and Mechanisms

time. An individual XAP instance may be used to drive an association using the primitives from
the XAP specification or, alternatively, to drive a dialogue using the primitives from this
specification.

ACSE/Presentation: Transaction Processing API (XAP-TP) 31

OSI TP Address Lookup and Directories Overview of XAP-TP

2.3 OSI TP Address Lookup and Directories
The XAP-TP interface uses the addressing from the OSI TP Service Standard. This is at the level
of AETs. The AETs in use for branches of a transaction are amongst the information stored in the
log record for the TPSUI to enable recovery to be effected.

The use of the AETs during recovery when the application may no longer be available precludes
the application from providing the lower-level addresses that these AETs map to. The need to
enable relocation of failed systems to alternative hardware, with its consequent change of
addressing, precludes the addresses being stored in the log records.

The means used to convert an AET into the addressing information used by presentation and
below is implementation-dependent. Typically an XAP-TP implementation would use a local
configuration file or a directory search to find the address to which an AET maps.

For recovery purposes, it may be necessary to relocate an AET to different hardware (at a
different address) so a local mechanism should be provided to allow the address to which an
AET maps to be changed in the running system.

32 X/Open CAE Specification

Overview of XAP-TP Association Allocation and Deallocation

2.4 Association Allocation and Deallocation
For outgoing TP_BEGIN_DIALOGUE_REQ primitives an association must be allocated. This
can be performed in one of two ways:

Automatically
by ensuring the AP_TP_ASSOC_ALLOCATED bit is UNSET in the cdata→tp_options field on
the send of a TP_BEGIN_DIALOGUE_REQ primitive

Specifically
by using the APM_ALLOCATE_REQ primitive to allocate an association prior to issuing a
TP_BEGIN_DIALOGUE_REQ primitive with the AP_TP_ASSOC_ALLOCATED bit set in
the cdata→tp_options field.

In automatic allocation, the user issues a TP_BEGIN_DIALOGUE_REQ primitive, which is
internally queued within the XAP-TP provider whilst it performs association allocation. An
APM_ALLOCATE_CNF primitive is issued to the user to report the success or failure of
association allocation and TP_BEGIN_DIALOGUE_REQ submission. If success is reported, the
queued TP-BEGIN-DIALOGUE request has been submitted, otherwise it has been silently
discarded and no association has been allocated.

In specific allocation, the user issues an APM_ALLOCATE_REQ primitive to perform
association allocation. Once again, an APM_ALLOCATE_CNF primitive is issued to the user to
report the success or failure of association allocation.

When specific allocation is employed, the user may receive an
APM_ASSOCIATION_LOST_IND primitive if the association becomes unavailable prior to the
user issuing the TP_BEGIN_DIALOGUE_REQ. This can occur because either:

• The association has ceased to exist.

• An incoming TP_BEGIN_DIALOGUE_IND has arrived on the association, causing it to be
allocated to another XAP-TP instance.

It is an error to attempt combining both forms of association allocation. Specifically attempts to:

• issue a TP_BEGIN_DIALOGUE_REQ without the AP_TP_ASSOC_ALLOCATED bit set in
cdata→tp_options when an association has been allocated with APM_ALLOCATE_REQ

• issue a TP_BEGIN_DIALOGUE_REQ with the AP_TP_ASSOC_ALLOCATED bit set in
cdata→tp_options when no association is currently allocated to the XAP-TP instance

cause an error code to be returned.

With specific or automatic allocation, the association will be deallocated when one of the
following conditions occurs:

• The dialogue supported on it ends.

• The association is lost.

• The XAP-TP instance is closed without a TP_BEGIN_DIALOGUE_REQ primitive having
been issued.

At this point, it is returned to an association pool for re-use, or freed, based on a local
implementation decision.

ACSE/Presentation: Transaction Processing API (XAP-TP) 33

Mapping TPSUIs to Processes Overview of XAP-TP

2.5 Mapping TPSUIs to Processes
The OSI TP specification does not constrain the mapping of TPSUIs to real processes on a real
end system. The XAP-TP specification allows the user flexibility in the choice of this mapping:

• many TPSUIs in one process

• single TPSUI spread across many processes (for example, one per dialogue).

An XAP instance may either support a single OSI TP dialogue (and optionally logging and
commit primitives for its TPSUI) or logging/commit primitives for the local AET to which the
instance is bound.

The X/Open DTP model allows commitment and logging to be performed in a different process
from the communication on dialogues. XAP-TP allows the separation of commit and logging
functions for a TPSUI to one or more processes by using the AP_TP_CATEGORY environment
attribute to select the AP_TP_CONTROL category of primitives on an XAP instance.

On those implementations that support the functions, ap_save() and ap_restore() may be used to
drive a dialogue in multiple processes.

34 X/Open CAE Specification

Overview of XAP-TP Control of Dialogue Tree Structure

2.6 Control of Dialogue Tree Structure
As a single node of a dialogue tree may be distributed over many processes, and multiple nodes
from different dialogue trees may be contained within a single process, it is necessary to identify
to which node a particular dialogue belongs when establishing it.

This allows the dialogues of a node to share an OSI TP MACF, and so to be committed and
logged as a unit in transaction mode.

When a dialogue arrives from a superior, XAP-TP allocates a unique Dialogue Tree Node
Identifier (DTNId) and places this in the AP_DTNID environment attribute.

A user can retrieve the AP_DTNID attribute and set it on another XAP instance prior to
initiating a dialogue to tie the new dialogue to the same node. This is shown in Figure 2-8.

PROCESS
1

DTNID
1

PROCESS
2

DTNID
1

TPSUI
1

Figure 2-8 One TPSUI Across Several Processes

If the user does not set the AP_DTNID environment attribute (or if it is set to NULL), then XAP-
TP will allocate a new DTNId and the dialogue will belong to a newly created root node in a
separate dialogue tree when a TP_BEGIN_DIALOGUE_REQ is issued. If this dialogue is
subsequently placed into transaction mode, it will be separately logged and committed.

An application which requires control over the phases of commitment for each dialogue can
ensure this by setting AP_DTNID to NULL prior to starting new dialogues. Figure 2-9 shows
the effect of this.

TPSUI
1

DTNID
1

TPSUI
2

DTNID
2

TPSUI
3

DTNID
3

PROCESS
1

Figure 2-9 Several TPSUIs within a Process

ACSE/Presentation: Transaction Processing API (XAP-TP) 35

Control of Dialogue Tree Structure Overview of XAP-TP

Constraints on the Dialogues of a Node in the Dialogue Tree

All XAP-TP instances supporting dialogues of the same node in the dialogue tree are constrained
to have the same values for the following environment attributes:

• AP_LCL_APT

• AP_LCL_AEQ

• AP_LCL_APID

• AP_LCL_AEID

• AP_LCL_TPSUT

All dialogues of the node with the commit functional unit selected are supported on associations
having the same value of user-assigned recovery context handle (see Section 2.11 on page 44).

Uniqueness of Dialogue Tree Node Identifier Values

Dialogue tree node identifier values are only required to be unique within the scope of a local
AET.

If a single software product is using multiple local AETs, it should take into account that the
dialogue tree node identifier values returned from instances bound to different local AETs may
be the same.

36 X/Open CAE Specification

Overview of XAP-TP Control of the Transaction Tree Structure

2.7 Control of the Transaction Tree Structure
As we have seen in the OSI TP overview, the branches of a transaction tree are supported on the
branches of a dialogue tree, and all the branches of the transaction tree for a node (TPSUI +
TPPM) share a single OSI TP MACF. They are therefore logged and committed as a whole.

Using the AP_DTNID attribute, the user can control the construction of the dialogue tree. The
normal TP_BEGIN_DIALOGUE (in transaction mode) and TP_BEGIN_TRANSACTION
primitives allow the user to control which dialogues of the tree are also in the transaction tree.

Using a Local Identifier

In a TP system there often exists a local identifier which is more convenient for referring to the
transaction on a particular node. XAP-TP allows this identifier to be associated with the node
and it may be used as an alternative to the DTNId when:

• adding further branches to the dialogue tree

• issuing and receiving commit or log category primitives for the transaction node.

The identifier is called the Transaction Tree Node Identifier, and is held in the AP_TTNID
environment attribute. The user may set the AP_TTNID environment attribute from any of the
XAP instances supporting a dialogue for the TPSUI. Note that there only exists a single
AP_TTNID (and AP_DTNID) for all of the dialogues of a node — changing the AP_TTNID on
one XAP instance affects all others.

The AP_TTNID is secured in a nodes log record by XAP-TP to protect it from system crashes
during commitment. It is the user’s responsibility to set the attributes AP_NEXT_TTNID and
AP_TTNID to a new value as needed.

A superior node must set the AP_TTNID attribute before issuing a
TP_BEGIN_DIALOGUE_REQ or TP_BEGIN_TRANSACTION_REQ primitive in order to start a
transaction branch, and a subordinate node must set the attribute after receiving a
TP_BEGIN_DIALOGUE_IND or TP_BEGIN_TRANSACTION_IND primitive which starts a
transaction branch.

When a transaction node is chaining, the AP_NEXT_TTNID attribute must be set:

• before issuing a TP_COMMIT_REQ primitive for the current transaction

• before issuing a TP_DONE_REQ primitive for the current transaction when rollback has been
initiated.

Before indicating termination of the current transaction by issuing a
TP_COMMIT_COMPLETE_IND or TP_ROLLBACK_COMPLETE_IND primitive, the provider
copies the value of AP_NEXT_TTNID into the AP_TTNID attribute and unsets the
AP_NEXT_TTNID attribute.

When a transaction node is not chaining, the AP_NEXT_TTNID attribute is not used. On
transaction termination, the AP_TTNID attribute is unset and must be set to a new value prior to
initiating another transaction, or after receiving indication of the start of another transaction, as
described above.

ACSE/Presentation: Transaction Processing API (XAP-TP) 37

Control of the Transaction Tree Structure Overview of XAP-TP

Uniqueness of Transaction Tree Node Identifier Values

Transaction tree node identifier values are only required to be unique within the scope of the
individual recovery context group they are being used in. If separate explicit recovery context
groups are not being used for an AET, transaction tree node identifier values must be unique
within the scope of the AET.

If multiple software products are cooperating in using the XAP-TP interface, they must
cooperate to ensure that the transaction tree node identifier values remain unique.

38 X/Open CAE Specification

Overview of XAP-TP User Setting of AAID and BRID

2.8 User Setting of AAID and BRID
Where permitted by the OSI TP protocol, the user may choose to allocate Atomic Action Identifiers
(AAIDs) and/or Branch Identifiers (BRIDs), or alternately allow the provider to allocate them.

At a ROOT node of the transaction tree, the global attribute AP_AAID holds the current Atomic
Action Identifier in use on the transaction tree node, or the Atomic Action Identifier to be used for
the next transaction on the node if no current transaction exists. If the user leaves AP_AAID
unset (or specifically removes it from the environment by issuing an ap_set_env() call with a
NULL pointer as the val argument), the OSI TP provider will generate a new AAID for the
transaction when it starts and place its value into the AP_AAID attribute.

Similarly, the user may set the AP_BRID attribute for a dialogue prior to commencing a
transaction branch. The value from AP_BRID is used for the Branch Identifier of the transaction
branch. If the user leaves AP_BRID unset (or specifically removes it from the environment by
issuing an ap_set_env() call with a NULL pointer as the val argument), the OSI TP provider will
generate a new BRID for the transaction branch and place its value into the AP_BRID attribute.

Note that when the user provides Atomic Action Identifiers and/or Branch Identifiers, they must
conform to the requirements of the OSI TP protocol, specifically the Branch Identifiers must
contain the AET of the node.

At an INTERMEDIATE or LEAF node in the transaction tree, the Atomic Action Identifier is
received from the superior and is placed in the AP_AAID attribute by the XAP-TP
implementation. Similarly, the Branch Identifier is received from the superior and is placed into
the AP_BRID attribute of the XAP-TP instance supporting the superior dialogue. The user may
choose to specifically set the Branch Identifier values for subordinate transaction branches or to
allow the OSI TP provider to allocate them as described above.

When a transaction node is not chaining and a transaction terminates, the AP_AAID attribute is
unset. The AP_BRID attribute remains unchanged.

Transaction Chaining

When chained transactions are in use, the attributes AP_NEXT_AAID and AP_NEXT_BRID
allow the user to specify the Atomic Action Identifier and Branch Identifier to be used for the next
transaction in a chain. The value present in AP_NEXT_AAID (and AP_NEXT_BRID) is used at
different times by the OSI TP implementation depending on whether rollback or commitment
occurs.

When rollback is initiated, the user may set a new value for a Branch Identifier into the
AP_NEXT_BRID attribute of all the chaining subordinate dialogues of the node prior to issuing
the first TP_DONE_REQ primitive for the transaction node rolling back. At rollback completion,
for a chaining subordinate dialogue, the value from AP_NEXT_BRID becomes the new Branch
Identifier for the branch, is copied into the AP_BRID attribute, and AP_NEXT_BRID is set NULL
by the provider.

The user may place a new Atomic Action Identifier value into the AP_NEXT_AAID attribute prior
to issuing the first TP_DONE_REQ primitive for the transaction node. Note that the value in
AP_NEXT_AAID is only used if the node is the root of the transaction (or becomes the root of
the transaction tree) at rollback completion.

Similarly, for commitment, any values for AP_NEXT_AAID and AP_NEXT_BRID must be set
prior to issuing the TP_COMMIT_REQ primitive for the transaction node.

If the node is the root of a new transaction at transaction completion, the AP_NEXT_AAID value
becomes the Atomic Action Identifier for the node, is copied into the AP_AAID attribute, and
AP_NEXT_AAID is set NULL by the provider. If the node is not a ROOT node, a new Atomic

ACSE/Presentation: Transaction Processing API (XAP-TP) 39

User Setting of AAID and BRID Overview of XAP-TP

Action Identifier is received from the superior and is placed into the AP_AAID attribute. Any
value in the AP_NEXT_AAID attribute remains unchanged.

During commit completion, for a chaining subordinate dialogue, the value from
AP_NEXT_BRID becomes the new Branch Identifier for the branch. It is copied into the AP_BRID
attribute and AP_NEXT_BRID is set NULL by the provider.

If the user leaves AP_NEXT_BRID unset (or specifically removes it from the environment by
issuing an ap_set_env() call with a NULL pointer as the val argument) the existing Branch
Identifier will be reused for the new transaction branch. If the user leaves the AP_NEXT_AAID
attribute unset (or specifically removes it from the environment by issuing an ap_set_env() call
with a NULL pointer as the val argument), and the transaction node commences another
transaction as a ROOT node, the OSI TP provider will generate a new Atomic Action Identifier and
place its value into the AP_AAID attribute.

Note that if the user application, with a chaining superior dialogue, wishes to exercise control
over the allocation of AAIDs and can tolerate becoming the ROOT of the transaction tree, it
should set the AP_NEXT_AAID attribute for this eventuality prior to issuing the first
TP_DONE_REQ primitive during rollback or before issuing a TP_COMMIT_REQ primitive
prior to commitment.

40 X/Open CAE Specification

Overview of XAP-TP U-ASE Support in XAP-TP

2.9 U-ASE Support in XAP-TP

2.9.1 Types of U-ASE

U-ASEs can be divided into 2 types: simple and complex U-ASEs.

Complex U-ASEs do one or more of the following:

• exchange pdus at association establishment time

• maintain state on the association independently of the presence or absence of a dialogue

• directly access association facilities (for example, minor sync)

• change the default mapping of TP pdus.

Examples are RDA and CMISE.

Simple U-ASEs:

• do not exchange pdus at association establishment time

• transfer data on an association only within the bounds of a dialogue

• do not maintain state on the association independent of the presence or absence of a dialogue

• do not directly access association facilities (for example, minor sync)

• do not change the default mappings of TP pdus.

Examples are XATMI-ASE and TxRPC RPC-ASE.

Complex U-ASEs are embedded below the XAP-TP interface as shown in the diagrams in
ISO/IEC 10026-3: 1992 (the OSI TP Protocol). Simple U-ASEs may be either embedded below or
reside above the XAP-TP interface. XAP-TP supports U-ASEs both above and below the
interface through the TP_DATA_REQ and TP_DATA_IND primitives.

For a particular application context, the U-ASEs must be either all above or all below the XAP-
TP interface.

Local configuration information (outside the scope of this specification) defines for a particular
application context whether its component U-ASEs reside above or below the XAP-TP interface.

2.9.2 U-ASEs Below the XAP-TP Interface

The XAP-TP user utilises the TP_DATA_REQ primitive with the ap_snd() function to pass a
request (or fragment of a request) to a particular U-ASE of the application context. Each
fragment of a request except the last has the AP_MORE flag set on the ap_snd() function call.

An embedded U-ASE passes an indication (or fragment of an indication) to the user through a
TP_DATA_IND primitive.

The user_id field of the cdata structure holds the index number, within the application context, of
the U-ASE to which a request or indication belongs (indices commence at 0).

The data formats of the U-ASE service primitives passed in the data buffers of TP_DATA_REQ
and TP_DATA_IND primitives are defined in the U-ASE specifications.

ACSE/Presentation: Transaction Processing API (XAP-TP) 41

U-ASE Support in XAP-TP Overview of XAP-TP

2.9.3 U-ASEs Above the XAP-TP Interface

A U-ASE above the XAP-TP performs its own pdu encoding and decoding, submitting each U-
ASE PDV-List to XAP-TP as a separate TP_DATA_REQ.

All TP_DATA_REQ primitives are passed to a simple U-ASE support function component which
submits each PDV-List for concatenation according to the TP and CCR concatenation rules. If
there are no TP or CCR pdus buffered, a new concatenation sequence is commenced and will be
carried on P-DATA unless subsequent TP or CCR PDUs require a different carrier, in which case
the required TP or CCR carrier takes precedence.

A U-ASE can use the TP_FLUSH primitive or AP_FLUSH flag on ap_snd() to end a
concatenation sequence.

When a concatenation sequence is received and separated, the simple U-ASE support
component passes each U-ASE PDV-List to the XAP-TP user as a separate TP_DATA_IND
primitive.

42 X/Open CAE Specification

Overview of XAP-TP Explicit Control of the Two Phases of Commit

2.10 Explicit Control of the Two Phases of Commit

Coordination with Local Resources

Provision of TP_PREPARE_ALL_REQ and TP_READY_ALL_IND primitives allows the first
phase of commitment to be performed in parallel with preparation of local resources.

Coordination with an External MACF

Note that there may be a Control Function outside the scope of the OSI TP MACF which
coordinates the commitment of multiple OSI TP MACFs and other resources. XAP-TP supports
this by provision of the TP_PREPARE_ALL_REQ and TP_READY_ALL_IND primitives.

ACSE/Presentation: Transaction Processing API (XAP-TP) 43

Recovery Context Groups Overview of XAP-TP

2.11 Recovery Context Groups
The OSI TP recovery context handle concept may be used by an implementation to segment the
set of transaction nodes into separate groups such that logging and recovery for one group can
be handled independently of logging and recovery for another.

XAP-TP supports this by allowing nodes to be separated into different recovery context groups.
A Recovery Context Group is identified by a user-assigned portion of the OSI TP recovery
context handle.

The XAP-TP provider may also use the OSI TP Recovery Context Handle concept for its own
purposes. It combines any user-assigned portion with any provider-generated parts to form the
actual OSI TP Recovery Context Handle used. The user-assigned portion is held in the
AP_URCH attribute, and may be from 0 to 32 octets in length.

Each different recovery context group within the scope of an AET is identified by a different
AP_URCH value. The XAP-TP provider ensures that OSI TP recovery context handles created
from different AP_URCH values remain unambiguous. Each Local AET is treated separately for
recovery purposes, so recovery context groups having the same AP_URCH attribute, but
different local AETs, are treated as separate and distinct from each other.

Dialogues of a node which have the commit functional unit selected must all have either the
same recovery context handle, or no recovery context handle. This is achieved by ensuring the
AP_URCH environment variable is set to the same value on each instance prior to allocating an
association and establishing a dialogue.

The Default Recovery Context Group

If the user does not wish to use the recovery context group facility, the AP_URCH attribute may
be left unset. As a result, either no recovery context handle will be used, or the handle used will
be entirely XAP-TP provider-generated.

Selecting a Recovery Context Group

A Recovery Context Group is selected by setting the AP_URCH attribute prior to calling
ap_bind() for an XAP-TP instance. An XAP-TP instance in the AP_TP_IDLE state can be moved
to another recovery context group by setting a different value in the AP_URCH environment
attribute and calling ap_bind() again.

Control Instances within a Recovery Context Group

Commitment and logging for transaction nodes within a recovery context group is performed
through one or more XAP-TP instances with the AP_TP_CONTROL category selected. Each of
these control instances are bound to the LAET and user-assigned recovery context handle of the
group.

Identifying Control Instances within a Group

Each control instance in a group must be uniquely identifiable to ensure correct operation during
recovery. Thus, each control instance has a group-wide identifier assigned by the user. This
identifier is set in the AP_CONTROL_ID environment attribute prior to calling ap_bind() to bind
a control instance to the recovery context group. If a control instance with the control identifier
already exists within the recovery context group, the ap_bind() call will fail and the error
[AP_TP_BAD_CONTROL_ID] will be returned.

Note: The AP_CONTROL_ID attribute has no default and must be set to a non-null value.

44 X/Open CAE Specification

Overview of XAP-TP Recovery Context Groups

Nominating a Control Instance for a Node

Before a transaction can commence on a dialogue, the dialogue tree node must have a
nominated control instance to route commit, rollback and log primitives to. The user identifies
the control instance using its control identifier.

In order to ensure that no transaction starts on a node without a nominated control instance,
XAP-TP requires that the control instance be nominated prior to allocating an association for an
outgoing dialogue, and prior to commencing listening for incoming dialogues. This is therefore
done as part of binding.

The user sets the AP_CONTROL_ID attribute to the control identifier of the nominated control
instance prior to calling ap_bind() for the instance which is to support the first dialogue on the
node.

If the nominated control instance is not available (presumably due to a failure in some other part
of the system) the bind will be successful, but commitment, rollback and logging will stall
waiting for XAP-TP control instance resumption (see Section 2.12.1 on page 47) until the control
instance becomes available or the user changes the control instance for the node.

Changing the Control Instance for a Node

The user may change the control instance for a node by issuing a TP_MANAGE_REQ primitive
for the node identified by DTNId or TTNId on the new control instance where logging,
commitment or rollback is to occur. This new control instance must be within the same recovery
context group as the original. A TP_NODE_STATUS_IND primitive will be issued by XAP-TP
for the node on the new control instance. This enables the user to synchronise its view of the
transaction state and log record contents with XAP-TP.

Due to the asynchronous nature of the XAP-TP interface, changing a control instance for a node
in this manner, while the original control instance is still available, may result in primitives being
received on the original instance that were issued by XAP-TP prior to the change taking effect.
These redundant primitives can be safely discarded.

Persistence of Recovery Context Groups

A Recovery Context Group comes into existence within an XAP-TP provider the first time one of
the following occurs:

• an XAP-TP instance with the AP_TP_CONTROL category selected is bound to the group

• an association pool is defined using the Recovery Context Handle identifying the group.

A Recovery Context Group ceases to exist within an XAP-TP provider when all of the following
conditions are true:

• There are no association pools defined within the provider using the Recovery Context
Handle which identifies the group.

• There are no transaction nodes present in the group (whether connected to an XAP-TP user
or not — note this includes heuristic report nodes for transactions which have completed).

• There are no XAP-TP instances bound to the Recovery Context Group.

ACSE/Presentation: Transaction Processing API (XAP-TP) 45

Recovery in XAP-TP Overview of XAP-TP

2.12 Recovery in XAP-TP
The recovery facilities of XAP-TP allow the user and XAP-TP to synchronise their processing on
behalf of a transaction node after one or more of the following:

• system failure

• process failure

• XAP-TP provider failure.

From the perspective of XAP-TP, these three failures types have different effects as follows:

System Failure
All running activity has been lost.

The user will have to use its log to reconstruct its list of transactions and recover them. The
XAP-TP provider will have lost all knowledge of transactions that were running at the point
of failure. The user will have to restart XAP-TP to reconstruct its internal tables and recover
transaction nodes in commitment at the point of failure.

Process Failure
The effects depend on the process’ involvement in XAP-TP usage, as follows:

— None.

If, as a result of this failure, the user discovers that its tables are in an inconsistent state,
it may decide to reconstruct them and resynchronise with XAP-TP. This would be
manifested to XAP-TP by the user closing the control instances affected, later re-
establishing them and performing an XAP-TP resumption for them.

— One or more XAP-TP instances are in use within the process.

Each of these instances will be implicitly closed.

If the instance supports an active dialogue, this causes an implicit TP_U_ABORT_REQ
to be issued on the dialogue. If the aborted dialogue supported a transaction branch and
the transaction node was not in commitment, this causes the node to rollback.

If the instance has the AP_TP_CONTROL category selected, the control identifier will be
marked unavailable within the XAP-TP provider until recovery takes place.

XAP-TP Provider Loss
This results in all XAP-TP instances becoming unusable for one, many or all recovery
context groups. All affected instances are marked unusable, and return the error
[AP_TP_NO_PROVIDER] on any function call. Any incomplete call will abnormally
terminate. For example, if the user is blocked in a synchronous ap_snd() call, this will return
with the error value [AP_TP_NO_PROVIDER]. Each of the instances will be returned to the
AP_TP_UNBOUND state and attempts to bind instances specifying the recovery context
group without the AP_TP_CONTROL category selected will fail with the error code
[AP_TP_NO_PROVIDER], until the affected part of the XAP-TP provider becomes
operational again and the recovery context group has been successfully restarted.

Two types of recovery are provided by XAP-TP: resumption and restart.

Resumption
XAP-TP passes the current state of each of the transaction nodes for a control instance to the
XAP-TP user to allow the user to synchronise its view of the transaction state and log with
XAP-TPs. It applies to the single control instance within a recovery context group as
identified by its control identifier AP_CONTROL_ID.

46 X/Open CAE Specification

Overview of XAP-TP Recovery in XAP-TP

Note: XAP-TP does not initiate rollback of all active nodes associated with a control
instance when the control instance is closed. The user should therefore initiate
rollback for active nodes which are unknown to it.

Restart
The user passes all the logged ready, commit and heuristic_damage records of the recovery
context group to XAP-TP for it to reconstruct its internal tables and perform recovery of the
transaction nodes involved. This would typically be performed after system reload or
XAP-TP provider loss.

Figure 2-10 shows the primitive and state transitions for resumption and restart, and how they
interact. The sections following explain the details of resume and restart in detail.

AP_TP_UNBOUND

ap_bind()

AP_TP_WRESUMEreq

TP_RESUME_REQ

[AP_TP_RESTART_REQD] or

[AP_TP_RESTARTING]

AP_TP_WRESTARTreq

TP_RESTART_COMPLETE_IND

(AP_TP_ACCEPT)

AP_TP_IDLE

TP_RESTART_REQ

AP_TP_RESTART

TP_RESTART_COMPLETE_REQ

AP_TP_WRESTART_COMPLETEind

TP_RECOVER_REQ

TP_RESUME_REQ

(success)

AP_TP_RESUME

TP_NODE_STATUS_IND

TP_RESUME_COMPLETE_IND

TP_RESTART_COMPLETE_IND

(AP_TP_REJ_PROV or

AP_TP_REJ_USER)

Figure 2-10 Resumption and Restart State/Event Flows

2.12.1 XAP-TP Control Instance Resumption

For an XAP-TP control instance, return from ap_bind() leaves the instance in state
AP_TP_WRESUMEreq. The only valid primitive in this state is TP_RESUME_REQ.

If the recovery context group requires restarting, the TP_RESUME_REQ fails returning the error
code [AP_TP_RESTART_REQD]. If restart of the group is in progress, the call fails returning the
error code [AP_TP_RESTARTING]. In both cases the state of the instance changes to
AP_TP_WRESTARTreq and the user must either actively or passively participate in restart of the
group (see Section 2.12.2).

If the issuing of the TP_RESUME_REQ primitive succeeds, the resumption continues to return a
succession of TP_NODE_STATUS_IND primitives (one for each node that has the instance as its
nominated control instance) until the XAP-TP provider signals the end of resumption by
returning a TP_RESUME_COMPLETE_IND primitive to indicate the resumption is complete.

ACSE/Presentation: Transaction Processing API (XAP-TP) 47

Recovery in XAP-TP Overview of XAP-TP

The user performs the following steps to resume use of a control instance within a recovery
context group:

1. issues a TP_RESUME_REQ primitive on the instance.

2. then calls ap_rcv() repeatedly to retrieve TP_NODE_STATUS_IND primitives until a
TP_RESUME_COMPLETE_IND primitive is received. The AP_NODE_STATUS_IND
primitive returns the following information for the node:

— the state of the first coordinated dialogue of the node

— its TTNId (if set)

— its DTNId

— the current log record for the node (if one has been issued by XAP-TP).

The dialogue state reflects the commitment state of the node and is the same value that would be
returned by an ap_get_env() call to retrieve AP_STATE on the instance supporting the dialogue.

If the dialogue is in one of the active states prior to commitment or rollback and the user has no
record of the transactions TTNId or DTNId, it should initiate rollback for the node.

2.12.2 XAP-TP Restart of a Recovery Context Group

Restart of a recovery context group is necessary if all knowledge of the group, and therefore the
transactions within the group, has been lost. This may occur because of any of the following
conditions:

• The system has become unavailable and been reloaded.

• Part or all of the XAP-TP provider has become unavailable and has been reloaded.

• Simply because the group is not currently in use.

The user is informed that a restart is required or is in progress by the return of the error codes
[AP_TP_RESTART_REQD] and [AP_TP_RESTARTING] respectively from an ap_snd() of a
TP_RESUME_REQ primitive. The control instance is then in state AP_TP_WRESTARTreq and
the user can either participate actively in restart by issuing a TP_RESTART_REQ primitive, or
participate passively by waiting for the TP_RESTART_COMPLETE_IND primitive to be
received, indicating that the restart is complete.

An active participant in restart typically extracts the XAP-TP portion of log data from its internal
tables or its log and passes this to XAP in a TP_RECOVER_REQ primitive. The XAP-TP provider
constructs either an OSI TP TPPM or an internal heuristic_damage entry for each log record
passed, as follows:

• for a log-ready record without a superior branch section:
creates a TPPM, and places the node into state AP_TP_LOGGING_READY.

• for a log-ready record with a superior branch section:
creates a TPPM, and places the node into state AP_TP_WCOMMITind.

• for a log-commit record:
creates a TPPM and places the node into state AP_TP_WCOMMITind.

• for a log-damage record:
creates an internal heuristic damage entry for the node and places the node into state
AP_TP_HEURISTIC_LOG.

The user can select which control instance is to be used for further log and commit exchanges by
issuing the TP_RECOVER_REQ on the control instance to be used. This may be any control

48 X/Open CAE Specification

Overview of XAP-TP Recovery in XAP-TP

instance within the group that is actively participating in restart. In order for a control instance
to actively participate in restart, a TP_RESTART_REQ must have been issued on it.

When the user has completed passing log records to the XAP-TP provider on a control instance,
a TP_RESTART_COMPLETE_REQ must be issued. When a TP_RESTART_COMPLETE_REQ
primitive has been received by the provider on each control instance actively participating in
restart, it completes the restart by issuing a TP_RESTART_COMPLETE_IND primitive on all
control endpoints which are actively or passively participating in restart, and commences
operation of the recovery context group. Once operation of the group starts, outgoing recovery
attempts commence and incoming recovery attempts are no longer refused (retry-later).

The user performs the following steps to perform restart of a recovery context group:

1. Establish one or more control instances for the group.

2. Bind each to the group using ap_bind().

3. Issue a TP_RESUME_REQ primitive on each instance — this fails, returning the error code
[AP_TP_RESTART_REQD] or [AP_TP_RESTARTING].

4. Issue a TP_RESTART_REQ on each control instance to actively participate in restart.

5. For each log record in turn, the user selects the control instance for further commit,
rollback and logging primitive exchanges, and issues a TP_RECOVER_REQ primitive on it
passing the log record.

Note: This must be a control instance actively participating in restart.

6. When the last log record has been passed on each active control instance, the user issues a
TP_RESTART_COMPLETE_REQ primitive on each of the active control instances.

7. The user waits for a TP_RESTART_COMPLETE_IND primitive on each active and passive
control instance on the group. After receipt of the primitive, the control instance is
available for use.

2.12.3 Failure to Complete a Restart

If a failure occurs during the restart process such that all the control instances for the group
become closed without XAP-TP having received a TP_RESTART_COMPLETE_REQ primitive,
then the completeness of the information provided cannot be relied upon. XAP-TP will delete
all the reconstructed TPPMs and heuristic damage nodes, and remove knowledge of the
recovery context group.

Incoming recovery requests for the group will continue to be deferred with retry later responses
until a restart is successfully completed for the group.

2.12.4 Unavailability of Log Records for a Recovery Context Group

If the users log for a particular recovery context group is unavailable, for whatever reason, the
user must defer the restart until the log becomes available. As no restart has been performed,
XAP-TP will reject all incoming recovery attempts for the recovery context group with a
response of retry later.

Other recovery context groups whose records are available can, of course, be restarted and
commence normal operation.

ACSE/Presentation: Transaction Processing API (XAP-TP) 49

XAP-TP Log Record Format Overview of XAP-TP

2.13 XAP-TP Log Record Format
The XAP-TP log record is of variable length. A single log record contains all the OSI TP log
record forms.

The record format consists of a number of variable-length sections.

Header Section

Node Details Section

Superior Branch Section
(if present)

Subordinate Branch Section 1
(if subordinate branches present)

.

.

.

Subordinate Branch Section n
(if subordinate branches present)

Each section contains a number of fields. Each field may be either an integer field or a variable
field. An integer field is unsigned numeric. A variable field consists of two parts: the length item
and the data item. The length item is simply an integer field which gives the length of the
following variable data.

When a field in the header section indicates a section is not present, then none of the fields of the
section are present in the variable part.

In the following section, the notation:

<integer> name

indicates the presence of a field called name of type integer , and the notation:

<variable> name2

indicates the presence of a variable-length field called name2 which consists of an <integer>
length field followed by the actual data.

No padding is placed between fields or sections.

50 X/Open CAE Specification

Overview of XAP-TP XAP-TP Log Record Format

The Header Section

The header section contains basic information about the record and allows the user to determine
the number and type of the optional sections present in the record.

/*
* header section -- always present
*/

<integer> version /* 1 for this version */
<integer> flags /* bit flags -- meanings are: */

/* 1 -- superior’s section present */
<integer> SnD_type /* Node state. One of: */

/* - AP_TP_NONE */
/* - AP_TP_READY_LOG */
/* - AP_TP_COMMIT_LOG */

<integer> SldD_type /* Log damage state. One of: */
/* - AP_TP_NONE */
/* - AP_TP_HEUR_MIX */
/* - AP_TP_HEUR_HAZ */

<integer> sub_count /* count of subordinate branches */
/* zero if none present */

The following hash defines are used:

/* log record flags bit settings */
#define AP_TP_SUPERIOR_SECTION 1

/* log record type field values */
#define AP_TP_NONE 0
#define AP_TP_READY_LOG 1
#define AP_TP_COMMIT_LOG 2
#define AP_TP_HEUR_MIX 1
#define AP_TP_HEUR_HAZ 2

The fields are used as follows:

version Version number of the log record format. The value 1 identifies this version.

flags Identifies presence of optional sections in the variable part of the record. The
following bit settings are defined:

AP_TP_SUPERIOR_SECTION
When set, indicates a superior section is present.

SnD_type Node Data type. One of:

AP_TP_NONE
Log record does not represent a ready or committing transaction. SldD_type
must have a value other than AP_TP_NONE.

AP_TP_READY_LOG
Log record represents a ready transaction node.

AP_TP_COMMIT_LOG
Log record represents a transaction node being committed.

ACSE/Presentation: Transaction Processing API (XAP-TP) 51

XAP-TP Log Record Format Overview of XAP-TP

SldD_type Log damage Data type. One of:

AP_TP_NONE
No heuristic damage logged.

AP_TP_HEUR_MIX
Heuristic mix exists in subtree.

AP_TP_HEUR_HAZ
Heuristic hazard exists in subtree.

sub_count Number of subordinate branches present in record. The record contains a
subordinate branch section for each of these branches. Zero if no subordinate
branch sections are present.

The Node Details Section

This contains details of the node.

/*
* node section -- always present
*/

<variable> ttnid /* User assigned TTNID value */
/* length == 0 if none assigned */

<variable> aaid /* Atomic Action Identifier */
<variable> aet /* Node’s AE-title */
<variable> rch /* Node’s Recovery Context Handle */

/* length == 0 if no handle */

The fields aaid, aet and rch contain the ASN.1 BER encoding of their respective data types. They
are defined as follows:

aaid SEQUENCE {
masters-name CHOICE {

name [0] EXPLICIT AE-title,
side [1] ENUMERATED { sender (0), receiver (1) }

},
atomic-action-suffix CHOICE {

form1 [2] OCTET STRING,
form2 [3] INTEGER

}
}

aet AE-title

rch OCTET STRING

The Superior Branch Section

This contains details of the superior branch. This section is only present if the bit flag
AP_TP_SUPERIOR_SECTION is set in the flags field of the header section.

52 X/Open CAE Specification

Overview of XAP-TP XAP-TP Log Record Format

/*
* superior branch section -- present if superior set in flags
*/

<variable> branch_suffix /* Superior Branch suffix */
<variable> aet /* AE Title of superior */
<variable> rch /* Recovery context handle provided */

/* by superior, length == 0 if none */
/* provided */

The fields branch_suffix, aet and rch contain the ASN.1 BER encoding of their respective data
types. They are defined as follows:

branch_suffix

CHOICE {
form1 [2] OCTET STRING,
form2 [3] INTEGER

}

aet AE-title

rch OCTET STRING

The Subordinate Branch Section

There is one section for each subordinate branch. Each contains details of a single subordinate
branch. If the sub_count field in the header section is zero, there are no subordinate branch
sections present in the log record.

/*
* subordinate branches section -- present if subordinate_count > 0
* one section for each subordinate
*/

<integer> status /* heuristic damage state. One of: */
/* - AP_TP_NONE */
/* - AP_TP_HEUR_MIX */
/* - AP_TP_HEUR_HAZ */

<variable> branch_suffix /* Subordinate Branch Suffix */
<variable> aet /* AE-title of subordinate */
<variable> rch /* Recovery context handle provided by */

/* subordinate, length == 0 if none */
/* provided */

The fields branch_suffix, aet and rch contain the ASN.1 BER encoding of their respective data
types. They are defined as follows:

branch_suffix

CHOICE {
form1 [2] OCTET STRING,
form2 [3] INTEGER

}

aet AE-title

rch OCTET STRING

ACSE/Presentation: Transaction Processing API (XAP-TP) 53

XAP-TP Log Record Format Overview of XAP-TP

Encoding and Decoding the Log Record

The following macros are used to encode and decode the log record fields:

AP_TP_VP_INT_LENGTH(val)
Returns the number of octets that the encoding of the <integer> value val would occupy
in the variable part.

AP_TP_VP_VAL_LENGTH(len)
Returns the number of octets that the encoding of the data part of a <variable> value of
length len would occupy in the variable part. Note that this excludes the amount of space
necessary for the length item which precedes the actual data.

AP_TP_VP_ENCODE_INT(ptr, val)
Encodes an <integer> value into the buffer location pointed at by ptr (which must be of
type unsigned char *), and returns an updated pointer to the next available location in the
buffer.

AP_TP_VP_ENCODE_VAL(ptr, len, val)
Encodes a <variable> value into the buffer pointed at by ptr (which must be of type
unsigned char *), and returns an updated pointer to the next available location in the buffer.
Note that the preceding length item must have been encoded into the buffer using the
macro AP_TP_VP_ENCODE_INT prior to this call.

AP_TP_VP_INT(ptr)
Decodes the <integer> field or item from the buffer pointed at by ptr (which must be of
type unsigned char *), and updates ptr to reference the next item in the buffer.

AP_TP_VP_PTR(ptr, len)
Returns a pointer to the value part of a <variable> field in the buffer pointed at by ptr
(which must be of type unsigned char *), and updates ptr to reference the next item in the
buffer. Note that the user must have decoded the preceding length part of the field.

Encoding Implementation

The following encoding for the variable part balances minimal encoding with minimal
processing overhead.

The representation close packs fields. There are no alignment or padding octets.

Integer fields are encoded into one, two or four octets depending on the integer value. Integer
values ≤ 127 (0x7f) are encoded into a single octet, values ≤ 16383 (0x3fff) are encoded into two
octets, and values above this are encoded into 4 octets.

The 0x80 bit of the first two octets is used to indicate continuation. If 0x80 bit is set in the first
octet, the value is continue into the next octet. If the 0x80 bit is set in the second octet, the value
is continued in the next two octets. The actual encoding of an integer becomes apparent from the
example macros below.

Note this representation places an upper limit of (0x3ffffff) on an unsigned integer value.

Data fields are stored as is, with no padding or alignment.

54 X/Open CAE Specification

Overview of XAP-TP XAP-TP Log Record Format

The following are example macros to perform this encoding and decoding:

/*
* return number of unsigned chars needed to hold an int field
*/

#define AP_TP_VP_INT_LENGTH(val) \
(((val) ≤ 0x7f)? 1: ((val) ≤ 0x3fff)? 2: 4)

/*
* return number of unsigned chars needed to hold
* a variable data value
*/

#define AP_TP_VP_VAL_LENGTH(len) (len)

/*
* encode an integer field and return pointer to next free location
*/

#define AP_TP_VP_ENCODE_INT(ptr, val) \
(((val) ≤ 0x7f)? \

*(ptr)++ = (unsigned char) (val):\
((val) ≤ 0x3fff)? \

(*(ptr)++ = (unsigned char) (((val) & 0x7f) | 0x80),\
*(ptr)++ = (unsigned char) ((val) >> 7)) :\

(*(ptr)++ = (unsigned char) (((val) & 0x7f) | 0x80),\
*(ptr)++ = (unsigned char) ((((val) >> 7) & 0x7f) | 0x80),\
*(ptr)++ = (unsigned char) (((val) >> 14) & 0xff),\
*(ptr)++ = (unsigned char) (((val) >> 22) & 0xff)), (ptr))

/*
* encode a variable data field and return pointer to next
* free location
*/

#define AP_TP_VP_ENCODE_VAL(ptr, len, val) \
(ptr = ((unsigned char *) memcpy((ptr), (val), (len))) + (len))

/*
* return the integer field from the current location
* referenced by ptr, and update ptr to reference the next field
*/

#define AP_TP_VP_INT(ptr) \
(!((ptr)[0] & 0x80))? \

(unsigned int) *(ptr)++: \
(!((ptr)[1] & 0x80))? \

((ptr) += 2, ((unsigned int) (ptr)[-2] & 0x7f) | \
((ptr)[-1] << 7)): \

((ptr) += 4, ((unsigned int) (ptr)[-4] & 0x7f) | \
(((ptr)[-3] & 0x7f) << 7) | \
((ptr)[-2] << 14) | \
((ptr)[-1] << 22))

/*
* return ptr to variable length field and update ptr to
* reference the next field

ACSE/Presentation: Transaction Processing API (XAP-TP) 55

XAP-TP Log Record Format Overview of XAP-TP

*/
#define AP_TP_VP_PTR(ptr, len) \

((ptr) += (len), ((ptr) - (len)))

56 X/Open CAE Specification

Overview of XAP-TP Heuristic Logging

2.14 Heuristic Logging
Heuristic damage logging requires some special discussion.

Recovery from heuristic conditions is outside the scope of ISO/IEC 10026, and for this reason it
does not detail what information should be logged to enable diagnosis and rectification of such a
condition.

When a heuristic hazard or heuristic mix condition is detected, XAP-TP updates the node’s log
record to include details of which branch experienced the condition, and passes the entire
updated log record to the user in a TP_LOG_DAMAGE_IND primitive. In this way, XAP-TP
ensures that the user has the opportunity to preserve enough basic information to diagnose
which branches have an actual or potential heuristic condition.

The user should log this information. If the user chooses not to log all the information, it must at
least preserve a minimum log damage record (see TP_LOG_DAMAGE_IND on page 182). If the
user logs the entire record, once it is secure the previous log-ready, log-commit or log-damage
record can be safely forgotten, as the new record combines the log-ready or log-commit
information with the log-damage information. If, however, the user decides to log only a
minimal damage record, it may forget a previous damage record for the node once the new
record is secure.

On commit or rollback completion, the user may delete a log-ready or log-commit record
immediately, but may only delete a record updated with log-damage status as a result of some
local administration instruction. This ensures the log-damage record persists until
administrative intervention diagnoses and rectifies any problem.

ACSE/Presentation: Transaction Processing API (XAP-TP) 57

Instance State and Node State Overview of XAP-TP

2.15 Instance State and Node State
XAP-TP maintains two state variables, one to reflect the state of an instance, and one to reflect
the state of the current transaction node where multiple transaction nodes are being controlled
from a single instance.

Instance State Attribute AP_STATE

The AP_STATE attribute value reflects the state of the library for an XAP-TP instance. It is used
for two purposes:

• to reflect the state of progress through restart or resumption for an instance with the
AP_TP_CONTROL category selected

• to reflect the state of any dialogue on the instance.

In the first case, once resume or restart has been completed, the instance will remain in the state
AP_TP_IDLE unless the instance also has the AP_TP_DIALOGUE category selected, when it
reflects the state of any dialogue on the instance.

Node State Attribute AP_TP_STATE

The AP_TP_STATE attribute is only present in the environment of an instance with the control
category selected.

It reflects the state of the current transaction node identified by the AP_DTNID or AP_TTNID
attribute. The state of a transaction node is taken to be that of one of the coordinated dialogues,
or if there are none, one of the uncoordinated dialogues. If the transaction node is a heuristic
damage entry from a completed transaction, AP_TP_STATE has the value
AP_TP_HEURISTIC_LOG.

58 X/Open CAE Specification

Overview of XAP-TP XAP-TP Instance Synchronisation

2.16 XAP-TP Instance Synchronisation

2.16.1 Principles for XAP-TP Instance Synchronisation

Synchronisation is only necessary for XAP-TP instances supporting coordinated dialogues.

Synchronisation is necessary under the following circumstances:

• when a failure occurs (an event which disrupts normal processing)

• when the commit instruction is received (TP-COMMIT indication)

• at commit (or rollback) completion.

The following conditions can initiate rollback:

• the XAP-TP user issuing a TP_ROLLBACK_REQ primitive on a control category instance

• the XAP-TP user issuing a TP_U_ABORT_REQ primitive for a dialogue

• loss of a single dialogue by TP_U_ABORT_IND or TP_P_ABORT_IND

• receipt of an explicit instruction to rollback from a remote transaction node (C-ROLLBACK-
RI received), TP_ROLLBACK_IND

• a protocol error being detected

• a local error being detected by the XAP-TP provider.

Some further definitions are useful:

Active Coordinated Instance
An open XAP-TP instance supporting a coordinated dialogue which has not been aborted.

Passive Coordinated Instance
An Active coordinated instance which has had its dialogue aborted, but which is still
participating in commitment or rollback of the current transaction (that is, awaiting a
TP_COMMIT_COMPLETE_IND or TP_ROLLBACK_COMPLETE_IND).

The synchronisation which occurs depends on the state as described below.

States AP_TP_IDLE → AP_TP_WPREP_ALLreq_DATAP

Failure conditions causing rollback, which propagate TP_ROLLBACK_IND:

• issuing a TP_ROLLBACK_REQ

• receipt of a TP_ROLLBACK_IND.

Failure conditions causing rollback, which propagate TP_DIALOGUE_LOST_IND:

• receipt of a TP_U_ABORT_IND(rollback=TRUE)

• receipt of a TP_P_ABORT_IND(rollback=TRUE)

• issuing a TP_U_ABORT_REQ()

• implicit or explicit close of the XAP-TP instance.

ACSE/Presentation: Transaction Processing API (XAP-TP) 59

XAP-TP Instance Synchronisation Overview of XAP-TP

State AP_TP_PREPARING (20A)

Failure conditions causing rollback, which propagate TP_ROLLBACK_IND:

• issuing a TP_ROLLBACK_REQ

• receipt of a TP_ROLLBACK_IND.

Failure conditions causing rollback, which propagate TP_DIALOGUE_LOST_IND:

• receipt of TP_BEGIN_DIALOGUE_CNF(result=REJECTED, rollback=TRUE)

• receipt of a TP_U_ABORT_IND(rollback=TRUE)

• receipt of a TP_P_ABORT_IND(rollback=TRUE)

• implicit or explicit close of the XAP-TP instance.

State AP_TP_LOGGING_READY (20B)

Failure conditions not causing rollback, which propagate TP_DIALOGUE_LOST_IND:

• receipt of TP_P_ABORT_IND(rollback=FALSE)

• implicit or explicit close of the XAP-TP instance (at a Root node).

Note: The user may have already commenced commitment.

Failure conditions causing rollback, which propagate TP_ROLLBACK_IND:

• issuing a TP_ROLLBACK_REQ

• receipt of a TP_ROLLBACK_IND.

Failure conditions causing rollback, which propagate TP_DIALOGUE_LOST_IND:

• receipt of a TP_U_ABORT_IND(rollback=TRUE)

• receipt of a TP_P_ABORT_IND(rollback=TRUE)

• implicit or explicit close of the XAP-TP instance (at an Intermediate or a Leaf node).

State AP_TP_WCOMMITind (20C)

Non-failure conditions, which propagate TP_COMMIT_IND:

• receipt of a TP_COMMIT_IND.

Failure conditions not causing rollback, which propagate TP_DIALOGUE_LOST_IND:

• receipt of TP_P_ABORT_IND(rollback=FALSE)

• implicit or explicit close of the XAP-TP instance.

Failure conditions causing rollback, which propagate TP_ROLLBACK_IND:

• receipt of a TP_ROLLBACK_IND.

Failure conditions causing rollback, which propagate TP_DIALOGUE_LOST_IND:

• receipt of a TP_U_ABORT_IND(rollback=TRUE).

60 X/Open CAE Specification

Overview of XAP-TP XAP-TP Instance Synchronisation

State AP_TP_COMMIT_WDONEreq (21)

Failure conditions, which propagate TP_DIALOGUE_LOST_IND:

• receipt of TP_U_ABORT_IND(rollback=FALSE)

• receipt of TP_P_ABORT_IND(rollback=FALSE)

• implicit or explicit close of the XAP-TP instance.

State AP_TP_WCOMMIT_COMPind (22)

Failure conditions, which propagate TP_DIALOGUE_LOST_IND:

• receipt of TP_U_ABORT_IND(rollback=FALSE)

• receipt of TP_P_ABORT_IND(rollback=FALSE)

• implicit or explicit close of the XAP-TP instance.

Completion conditions, which propagate TP_COMMIT_COMPLETE_IND:

• receipt of TP_COMMIT_COMPLETE_IND.

State AP_TP_ROLL_WDONEreq (23)

Failure conditions, which propagate TP_DIALOGUE_LOST_IND:

• receipt of TP_BEGIN_DIALOGUE_CNF(result=REJECTED, rollback=FALSE)

• receipt of TP_U_ABORT_IND(rollback=FALSE)

• receipt of TP_P_ABORT_IND(rollback=FALSE)

• implicit or explicit close of the XAP-TP instance.

State AP_TP_WROLL_COMPind (24)

Failure conditions, which propagate TP_DIALOGUE_LOST_IND:

• receipt of TP_BEGIN_DIALOGUE_CNF(result=REJECTED, rollback=FALSE)

• receipt of TP_U_ABORT_IND(rollback=FALSE)

• receipt of TP_P_ABORT_IND(rollback=FALSE)

• implicit or explicit close of the XAP-TP instance.

Completion conditions, which propagate TP_ROLLBACK_COMPLETE_IND:

• receipt of TP_ROLLBACK_COMPLETE_IND.

2.16.2 Propagation

Transaction completion conditions (signified by TP_COMMIT_COMPLETE_IND or
TP_ROLLBACK_COMPLETE_IND) are propagated to all active and passive coordinated
instances and to the nominated control instance if this is not an active or passive coordinated
instance.

For primitives other than TP_COMMIT_COMPLETE_IND and
TP_ROLLBACK_COMPLETE_IND, the instance on which the primitive causing propagation is
issued is known as the originating instance . Propagation takes place to all active coordinated
instances of the node apart from the originating instance, and also to the nominated control
instance of the node if it is neither an active coordinated instance nor the originating instance.

ACSE/Presentation: Transaction Processing API (XAP-TP) 61

XAP-TP Instance Synchronisation Overview of XAP-TP

2.16.3 Implicit or Explicit Close of an XAP-TP Instance

Implicit or explicit close of an XAP-TP instance usually occurs as a result of some program or
process error, which indicates the program or process can no longer drive the instance.

Recovery and resynchronisation for control instances is catered for by XAP-TP. Additional
features will need to be added to XAP-TP to enable support for dialogue recovery when this is
supported by OSI TP. Until that time, there is no mechanism to allow reconnection and
resynchronisation of a (possibly reinstantiated) program to an individual dialogue.

Unfortunately the OSI TP specification does not model the loss of a part of the TPSUI, and so
some special action is necessary in an XAP-TP provider to ensure correct functioning of OSI TP
when an implicit or explicit close occurs.

Special care must be taken if the dialogue from the user has a
TP_BEGIN_DIALOGUE_IND(confirmation=TRUE) indication outstanding when the XAP-TP
instance supporting it is closed. The dialogue must be implicitly accepted before being aborted.

Implicit or explicit close of an XAP-TP instance with an uncoordinated dialogue extant causes
the dialogue to be terminated as if a TP_U_ABORT_REQ had been issued.

When supporting a coordinated dialogue the action taken depends on the state of the node as
follows:

States AP_TP_IDLE → AP_TP_WPREP_ALLreq_DATAP
Treated as user issuing TP_U_ABORT_REQ.

Note: This will cause rollback of the transaction node.

State AP_TP_PREPARING (20A)
Causes dialogue to be aborted and transaction node to be rolled back.

State AP_TP_LOGGING_READY (20B)
For an intermediate or leaf node, causes dialogue to be aborted and transaction node to be
rolled back.

For a root node treated as an allowable TP_U_ABORT_REQ, does not cause rollback (as
commitment may already have been commenced by the user).

State AP_TP_WCOMMITind (20C)
Treated as an allowable TP_U_ABORT_REQ, does not cause rollback.

State AP_TP_COMMIT_WDONEreq (21)
Treated as an allowable TP_U_ABORT_REQ, does not cause rollback.

State AP_TP_WCOMMIT_COMPind (22)
Treated as an allowable TP_U_ABORT_REQ, does not cause rollback, will cause transit to
state AP_TP_COMMIT_WDONEreq.

State AP_TP_ROLL_WDONEreq (23)
Treated as an allowable TP_U_ABORT_REQ, does not cause rollback.

State AP_TP_WROLL_COMPind (24)
Treated as an allowable TP_U_ABORT_REQ, does not cause rollback, will cause transit to
state AP_TP_ROLL_WDONEreq.

62 X/Open CAE Specification

Overview of XAP-TP XAP-TP Instance Synchronisation

As an example, the state table intersect for TP_LOGGING_READY could be written as follows:

Nr, ˆDanyb
[VNfaT]

[ABTPSUI]
[NOTCHAIN]

20B
Nr, Danyb

20B
ˆNr

[DELIMIT]
[ABTPSUI]

[NOTCHAIN]
[INITRB]

[OWEDONE]
20B

2.16.4 TP_U_ABORT_REQ Primitives Issued by the User

A TP_U_ABORT_REQ primitive issued on an active coordinated instance during the active
phase is a failure condition which causes the transaction to rollback. It is propagated to all
active coordinated instances of the node apart from the originating instance, and also to the
nominated control instance of the node if it is neither an active coordinated instance nor the
originating instance. Note that when such a TP_U_ABORT_REQ is issued on a control and
dialogue instance, no TP_DIALOGUE_LOST_IND is received and so the tp_fail_count for the
subsequent TP_DONE_REQ must be set to the value one by the originating application. See
Section 2.16.5, below.

A TP_U_ABORT_REQ primitive issued after a failure condition has been reported to the user is
not itself treated as a failure condition. It is a legitimate action taken by the user in response to
the reported failure (and therefore no propagation takes place for it).

A TP_U_ABORT_REQ primitive issued after a failure condition has been reported in state
AP_TP_LOGIN_READY, behaves differently at a root node than at an intermediate or leaf node.
At a root node the TP_U_ABORT_REQ does not cause rollback (because commitment may have
been commenced by the user). At an intermediate or leaf node it causes the dialogue to be
aborted and the transaction node to be rolled back.

2.16.5 Accounting for Failure Conditions

When a number of failure conditions have been signalled to the user and the user issues a
TP_DONE_REQ primitive to acknowledge them, the OSI TP provider must be assured that all
the outstanding failure conditions have been taken into account. To this end the provider
maintains an internal variable for the transaction node to hold the count of outstanding error
conditions (tp_fail_count).

tp_fail_count is set to zero at the start of each new transaction on the node, and is incremented
each time one of the failure conditions described above occurs. The value of the node’s
tp_fail_count is returned on each of the following primitives when issued on an active
coordinated instance:

• TP_P_ABORT_IND

• TP_U_ABORT_IND

ACSE/Presentation: Transaction Processing API (XAP-TP) 63

XAP-TP Instance Synchronisation Overview of XAP-TP

• TP_BEGIN_DIALOGUE_CNF(REJECTED, . . .)

and unconditionally on the following primitives:

• TP_DIALOGUE_LOST_IND

• TP_ROLLBACK_IND

• TP_NODE_STATUS_IND.

The last value of tp_fail_count taken into account by the user must be passed on a
TP_DONE_REQ primitive to enable the provider to check that no failure primitives are pending
on the user. If no failure condition has been initiated or received by the user, the value zero
should be used. If the user’s tp_fail_count and the provider’s tp_fail_count do not match, the
TP_DONE_REQ primitive is refused with the error code [AP_TP_BADCD_FAIL_COUNT]. The
TP_DONE_REQ primitive must be resubmitted when all pending failure indications have been
taken into account. The failure count handling rules can be summarised as follows:

• If the fail count is zero when a TP_U_ABORT_REQ or TP_ROLLBACK_REQ is issued, then
the fail count is incremented to 1.

• If the fail count is greater than zero when a TP_U_ABORT_REQ or TP_ROLLBACK_REQ is
issued, then the fail count is not changed.

• A failure indication will always increment the fail count and the new fail count will be
returned with the indication.

• TP_ROLLBACK_REQ will return TP_ROLLBACK_IND to all other active coordinated
instances (not to the nominated control instance which originated the request).

2.16.6 Information Passed with TP_DIALOGUE_LOST_IND Primitive

The following information is passed with a TP_DIALOGUE_LOST_IND:

The argument cdata→tp_options indicates if the transaction, in which the recipient is involved, is
being rolled back as a result of the failure, and whether the failure occurred on the dialogue from
the superior. The bit values in tp_options used are:

AP_TP_ROLLBACK
If set, the transaction is being rolled back. If unset, this dialogue loss has not commenced
rollback.

AP_TP_SUPERIOR
If set, the dialogue lost was that from the superior. If unset, the dialogue lost was to a
subordinate.

The cdata→tp_fail_count argument holds the number of failure conditions which have occurred
on the node since the start of the transaction, and must be used when issuing a TP_DONE_REQ
primitive to acknowledge completion of any failure related actions.

64 X/Open CAE Specification

Overview of XAP-TP XAP-TP Instance Synchronisation

2.16.7 Resuming Operation of a Control Instance

When resuming operation of a control category instance (see Section 2.12 on page 46), the user
must determine the state of all transaction nodes assigned to the instance and take appropriate
action.

A TP_NODE_STATUS_IND primitive is returned for each transaction node. In addition to
returning the state of the node, this returns the current value of tp_fail_count. The user can
determine from the node state whether a TP_DONE_REQ primitive is owed, and in conjunction
with the software driving the coordinated dialogues determine appropriate action to take to
restore itself to a consistent state.

2.16.8 Aligning the Commitment and Rollback State Tables

At the time of publication, the OSI TP service state tables do not treat the signalling of a dialogue
failure to the user in a consistent manner for rollback and commitment.

In the rollback state 24 (AP_TP_WROLL_COMPind), a dialogue failure will change to state 23
(AP_TP_ROLL_WDONEreq) and a TP-DONE request will be expected. In the equivalent
commitment state 22 (AP_TP_WCOMMIT_COMPind) no state change occurs. Although the
state table will function correctly as defined, it is somewhat inconsistent, as the underlying
OSI TP protocol state tables will not permit a TP-COMMIT-COMPLETE indication to be
delivered to the user until the user has issued a TP-DONE request to acknowledge the
outstanding failure, and the TPSP constraints on TP-COMMIT-COMPLETE indication in the
service state this constraint.

If the OSI TP service state tables were employed with this limitation it would not be possible for
the XAP-TP user to directly determine from the state whether a TP_DONE_REQ primitive was
owed for the transaction node. This is particularly the case when the user resumes the use of a
control instance.

In order to make the XAP-TP states directly reflect when a TP_DONE_REQ primitive is required,
the following amendments to the OSI TP service state table for state 22
(AP_TP_WCOMMIT_COMPind) are used:

State 22
Predicates

Dl
Event
TP-U-ABORT req (blank cell)
TP-U-ABORT ind ˆDb
(Rollback="false") 21

[p][l]
TP-P-ABORT ind ˆDb
(Rollback="false") 21

[p][l]
TP-DONE req * (blank cell)
(without Heuristic-Report)

ACSE/Presentation: Transaction Processing API (XAP-TP) 65

XAP-TP Instance Synchronisation Overview of XAP-TP

2.16.9 XAP-TP Instance Synchronisation on Global Primitives

When a global primitive is issued on a control instance, XAP-TP propagates the state change to
AP_STATE on all other XAP instances supporting transaction mode dialogues of the transaction
node. This allows each dialogue of the node to be in synchronisation with the actual state of the
node. This prevents accidental rollback due to state inconsistencies between XAP-TP AP_STATE
for a dialogue and the TP MACF state.

66 X/Open CAE Specification

Overview of XAP-TP Advice on the Use of A-ABORT Request

2.17 Advice on the Use of A-ABORT Request
It is not envisaged that the A-ABORT request service be used in conjunction with OSI TP except
under unusual circumstances. For example, the following are two legitimate uses of A-ABORT
request with OSI TP:

• The user has allocated an association for dialogue establishment, is part way through
sending a fragmented TP_BEGIN_DIALOGUE_REQ primitive, and due to a failure can no
longer complete the user data portion of the primitive. Rather than allow an invalidly
constructed PDU to be sent, the user can issue an A_ABORT_REQ primitive to abandon the
association and so discard the erroneous PDU.

• The user has received a U-ASE pdu which is invalidly encoded, and cannot therefore be
sensibly decoded. The user can signal this U-ASE protocol error by issuing an
A_ABORT_REQ to abandon the association. Alternatively, the user may consider discarding
the pdu and issuing a TP_U_ERROR_REQ primitive.

If the user does make use of the A-ABORT request service to abandon the association underlying
a dialogue, they should be aware that OSI TP interprets any user data passed as TP pdus, and
the presence of anything user generated in the user data field will result in OSI TP signalling a
protocol error on receipt and decoding of the A-ABORT pdu. For this reason the user shall not
pass user data on an A-ABORT request primitive.

ACSE/Presentation: Transaction Processing API (XAP-TP) 67

Advice on Flushing the Concatenator Overview of XAP-TP

2.18 Advice on Flushing the Concatenator
Concatenation in OSI TP provides a powerful tool to optimise network traffic for application
exchanges. The OSI TP and CCR concatenation rules define the permissible concatenation
sequences. The user can rely on the concatenation rules of TP and CCR to flush the concatenator
at the end of a concatenation sequence. Alternatively, the user can flush the contents of the
concatenator prior to the end of a concatenation sequence by setting the AP_FLUSH bit in the
flags field of an ap_snd() for a primitive, or by issuing an explicit ap_snd() of a TP_FLUSH_REQ
primitive.

There are situations where the OSI TP implementation will implicitly flush the contents of the
concatenator prior to end of a concatenation sequence. These are:

• when the dialogue ceases to exist

• in polarised control, for a subordinate at commit completion when control resides with the
superior after commitment.

The user should therefore be aware of concatenation sequences under construction and flush
them when the PDUs are required to be delivered to the peer.

For example, the following exchanges show a shared control chained transactions dialogue,
where the user must explicitly flush the concatenator in order to complete commitment.

TP_BEGIN_DIALOGUE_REQ--------- ->[1][2]
TP_DATA_REQ-------------------- ->[3]
TP_PREPARE_REQ(data-permitted)- ->[4]

(implicit flush takes place as C-PREPARE-RI is end of a
concatenation sequence)

.

.
[1+2+3+4]

.

.
[1][2]->TP_BEGIN_DIALOGUE_IND
[3]- ------------ ->TP_DATA_IND
[4]- --------- ->TP_PREPARE_IND
[5]<- ------------ -TP_DATA_REQ

<------ -TP_PREPARE_ALL_REQ
-------- ->TP_READY_ALL_IND

[6]<- ---------- -TP_COMMIT_REQ
(implicit flush takes place as C-READY-RI ends a concatenation
sequence)

.

.
[5+6]

.

.
TP_DATA_IND<- ------------------- -[5]
TP_PREPARE_ALL_REQ-------------->
TP_READY_ALL_IND<- -------------- -[6]
TP_COMMIT_REQ------------------ ->[7+8]

(implicit flush takes place as C-COMMIT_RI is end of a concatenation
sequence)

TP_COMMIT_IND<------------------- .
TP_DONE_REQ---------------------> .

[7+8]
.
.

68 X/Open CAE Specification

Overview of XAP-TP Advice on Flushing the Concatenator

[7+8]- -------- ->TP_COMMIT_IND
[9]<- ------------ -TP_DONE_REQ

--->TP_COMMIT_COMPLETE_IND
.
.
.
<------------ -TP_FLUSH_REQ

[9]
(subordinate must explicitly flush the C-COMMIT_RC concatenation
sequence as no further PDUs are to be sent to the superior prior to a
request from the superior) .

.
TP_COMMIT_COMPLETE_IND<--------- -[9]

Key to PDUs:
[1] TP-BEGIN-DIALOGUE-RI
[2] C-BEGIN-RI
[3] U-ASE pdu
[4] C-PREPARE-RI
[5] U-ASE pdu
[6] C-READY-RI
[7] C-COMMIT-RI
[8] C-BEGIN-RI
[9] C-COMMIT-RC

Note that the subordinate must issue an explicit flush in order to clear the concatenator of the
C-COMMIT-RC concatenation sequence

Of course, if the subordinate already had U-ASE PDUs to send, it could issue these requests
prior to flushing the concatenator, and thereby optimise network traffic further.

ACSE/Presentation: Transaction Processing API (XAP-TP) 69

Using the XAP-TP Interface Overview of XAP-TP

2.19 Using the XAP-TP Interface
Below is a summary of the steps required to establish a dialogue with a remote application
entity using XAP-TP. The procedure presented is intended solely as a general description of
how the interface might be used. It should not be construed as an attempt to provide a template
for constructing any particular application. Moreover, it is assumed that the service user is
familiar with the OSI TP protocol and understands the role of the OSI TP-service-user in
establishing, using and terminating a dialogue between two application entities.

Obtain an XAP Instance

First, an XAP instance is created. This is accomplished either by using ap_open(), or by acquiring
an already established instance through some other implementation-specific mechanism.

Initialise the XAP-TP Environment

Next, the XAP-TP Environment is initialised (or restored) using the ap_init_env () (or
ap_restore()) function.

After the environment is initialised, the user may examine or alter the environment attributes,
subject to the readability and writability restrictions discussed on the ap_env() manual page.

Select TP MODE

Before using any of the XAP-TP extensions, the XAP instance must be placed into
AP_TP_MODE. This is accomplished by setting the AP_MODE_SEL attribute to AP_TP_MODE
by a call to the ap_set_env() function or a call to the ap_init_env () function.

Select the Category of TP Primitives

Before any service primitives can be sent or received, the categories of TP primitives to be
available on the XAP instance must be selected. In this case, the AP_TP_DIALOGUE category of
primitives is needed. This is accomplished by setting the AP_TP_CATEGORY environment
attribute to AP_TP_DIALOGUE by a call to the ap_set_env() function or a call to the
ap_init_env () function.

Bind the XAP-TP Instance

Before any service primitives can be sent or received, the XAP instance must be bound to a local
AET, a local TPSUT and a recovery context group selected (if required). This is accomplished by
setting the AP_BIND_TPADDR and AP_LCL_TPSUT attributes to values which the service user
is authorised to use, and the AP_URCH attribute to the user-assigned recovery context handle (if
required), and then calling ap_bind() to validate the address. These attributes can be set using
either a call to the ap_set_env() function or a call to the ap_init_env () function.

Set Other Environment Attributes

In addition to AP_BIND_TPADDR and AP_LCL_TPSUT, other environment variables must be
set before a dialogue is established, particularly if the service user is the dialogue-initiator. For
example, before issuing a TP_BEGIN_DIALOGUE_REQ primitive, the service user must specify
the address of the remote entity by setting the AP_REM_APT, AP_REM_APID, AP_REM_AEQ,
AP_REM_AEID and AP_REM_TPSUT attributes, and set the AP_CNTX_NAME attribute to
select an application context for the dialogue.

Refer to the manual pages in Chapter 4 and Chapter 7 for further information about the XAP-TP
environment attributes and how they relate to sending and receiving individual primitives.

70 X/Open CAE Specification

Overview of XAP-TP Using the XAP-TP Interface

Send or Receive TP_BEGIN_DIALOGUE Service Primitives

Once the XAP-TP environment has been properly initialised, the service user may attempt to
establish a dialogue with a remote TPSUI by using the TP_BEGIN_DIALOGUE service
primitives in conjunction with the ap_snd() and ap_rcv() functions. Each of the
TP_BEGIN_DIALOGUE primitives is described in detail in Chapter 7.

Transfer Data

Once the dialogue is established, information may be exchanged with the remote TPSUI by
sending and receiving the appropriate XAP primitives (using ap_snd() and ap_rcv()).

Releasing the Dialogue

A dialogue may be released either normally (using the TP_END_DIALOGUE or
TP_DEFERRED_END_DIALOGUE primitives), or abnormally (using the TP_U_ABORT
primitive).

ACSE/Presentation: Transaction Processing API (XAP-TP) 71

Summary Overview of XAP-TP

2.20 Summary
This chapter provided an introduction to the XAP-TP interface. Chapter 4 contains information
about all of the XAP-TP environment attributes and functions, where these are different from
those in the XAP specification. Chapter 7 provides information that is specific to each of the
XAP-TP service primitives.

72 X/Open CAE Specification

Chapter 3

Environment

This chapter specifies the additional and changed XAP environment attributes for OSI TP.

The following subset (only) of the XAP environment attributes are available unchanged within
the XAP-TP environment. These attributes are:

AP_CNTX_NAME
AP_DCS
AP_FLAGS
AP_MSTATE
AP_QOS
AP_LIB_AVAIL
AP_LIB_SEL

The XAP-TP environment is made up of the XAP environment plus an additional set of TP
related attributes. These additional attributes are used by XAP-TP to keep TP-specific state
information and to hold the various pieces of data required to establish and maintain a dialogue
with another TPSUI and to commit or rollback transactions.

Three existing attributes, AP_MODE_AVAIL, AP_MODE_SEL and AP_STATE, have modified
semantics in XAP-TP. An XAP-TP implementation may provide access to all XAP-TP modes
through a single provider, or alternatively provide access to subsets of the available modes
through multiple service providers.

The attributes with altered semantics are:

AP_MODE_AVAIL
The AP_MODE_AVAIL attribute indicates the available modes of operation for XAP and
provider. The modes that may be supported are those of XAP plus TP mode
(AP_TP_MODE). See also the XAP definition of AP_MODE_AVAIL.

AP_MODE_SEL
The AP_MODE_SEL attribute indicates the mode in which XAP and provider are to be
used. Only one mode can be selected at a time. A provider which supports only TP mode
will have this attribute set to AP_TP_MODE as default.

AP_ROLE_ALLOWED
The AP_ROLE_ALLOWED attribute is used to specify how an XAP-TP instance may be
used. Specifically, the value of this attribute indicates whether the XAP-TP instance may be
used to send a TP_BEGIN_DIALOGUE_REQ primitive, receive a
TP_BEGIN_DIALOGUE_IND primitive, or both.

Notes:

1. This attribute only affects the roles that an XAP-TP instance may play with
respect to dialogue establishment. Changing the value of this attribute will
not affect the way in which XAP-TP participates in a dialogue that has
already been established.

2. A a TP_BEGIN_DIALOGUE_IND primitive may be received event after this
attribute has been set to AP_INITIATOR in the AP_TP_IDLE state. This
situation occurs when AP_ROLE_ALLOWED included the value
AP_RESPONDER and a TP_BEGIN_DIALOGUE_IND had been queued
prior to setting AP_ROLE_ALLOWED to AP_INITIATOR. To avoid this

ACSE/Presentation: Transaction Processing API (XAP-TP) 73

Environment

situation, the AP_ROLE_ALLOWED attribute should be set before the XAP-
TP instance is bound to an address if it will only be used to initiate dialogues.

AP_ROLE_CURRENT
The AP_ROLE_CURRENT attribute indicates the role of the user in the current dialogue.
The attribute is set to AP_INITIATOR as soon as a TP_BEGIN_DIALOGUE_REQ is sent,
and remains unchanged until the dialogue is rejected or terminated. Similarly, the attribute
is set to AP_RESPONDER upon receipt of a TP_BEGIN_DIALOGUE_IND and remains
unchanged until the dialogue is terminated.

AP_STATE
The AP_STATE attribute is used to convey state information about the XAP-TP interface. It
is used to determine which primitives are legal and which attributes can be read/written.

In XAP-TP, there are a set of attributes which apply to the node in the dialogue or transaction
tree rather than to a specific dialogue. These are referred to as global attributes, and are
accessible through the environment of each instance tied to the node.

Setting the value of a global attribute through the environment of one instance changes the value
for all instances tied to the node.

The additional global TP attributes in the XAP-TP environment are:

AP_AAID
The AP_AAID attribute holds the Atomic Action Identifier of the transaction on the TPSUIs
node in the transaction tree. If none of the dialogues of the TPSUI are in transaction mode,
the attribute holds the Atomic Action Identifier to be used for the next transaction to be
commenced by the TPSUI.

AP_NEXT_AAID
The AP_NEXT_AAID attribute holds the Atomic Action Identifier to be used for the next
transaction on the TPSUIs node in the transaction tree when chained transactions are in use.
If unset, a new AAID will be generated by the TP service provider.

When the next transaction in a chain starts at a root node, the value in this attribute is used
as the Atomic Action Identifier for the transaction. It is copied to the AP_AAID attribute
and this attribute is unset. If the attribute is not set, the OSI TP implementation will
generate a new Atomic Activity Identifier and place it in the AP_AAID attribute.

AP_NEXT_TTNID
The AP_NEXT_TTNID holds the next Transaction Tree Node Identifier to be used to
identify the next transaction in a chain when chained transactions are in use.

When the next transaction in a chain commences at a node, the value of this attribute is
copied to the AP_TTNID attribute and this attribute is unset. If chained transactions are in
use, this attribute must be set prior to issuing a TP_COMMIT_REQ primitive for
commitment and prior to issuing a TP_DONE_REQ primitive during rollback.

AP_TP_STATE
The AP_TP_STATE attribute is used to convey state information about the single transaction
node identified by the AP_TTNID or AP_DTNID attribute. It is used to determine which
control category primitives are legal.

Note: If the AP_TTNID or AP_DTNID does not identify a transaction node, its value is
undefined. This attribute only exists in the environment of XAP-TP instances with
the AP_TP_CONTROL category selected.

AP_TTNID
The AP_TTNID attribute holds the Transaction Tree Node Identifier of the TPSUI. Setting

74 X/Open CAE Specification

Environment

the value of the AP_TTNID attribute on an endpoint which does not have
AP_TP_DIALOGUE set in AP_TP_CATEGORY, will have the effect of setting the value of
the AP_DTNID attribute to not present.

The additional local TP attributes in the XAP-TP environment are:

AP_BIND_TPADDR
The AP_BIND_TPADDR is used to indicate the address to which this instance of XAP is
bound.

Setting this attribute and calling ap_bind() will result in the attributes AP_LCL_APT,
AP_LCL_AEQ, AP_LCL_APID and AP_LCL_AEID being set, and the set of allowable local
TPSUTs being declared for a RESPONDER. A listener application may use a wildcard for the
set of local TPSUTs and use the called TPSUT (conveyed in AP_LCL_TPSUT) to dispatch
dialogues.

AP_BRID
The BRID attribute holds the Branch Identifier of the transaction branch on the instance. If
the instance is not supporting a transaction branch, it holds the branch identifier to be used
for the next transaction branch on the instance.

AP_CONTROL_ID
The AP_CONTROL_ID attribute uniquely identifies a control instance within a recovery
context group within an AET.

AP_DTNID
The AP_DTNID attribute indicates to which node of the dialogue tree a dialogue on this
instance belongs. Setting the value of the AP_DTNID attribute on an endpoint which does
not have AP_TP_DIALOGUE set in AP_TP_CATEGORY will have the effect of setting the
value of the AP_TTNID attribute to not present.

AP_LCL_AEID
The AP_LCL_AEID attribute holds the Application Entity Invocation Identifier of the
TPSUI.

This attribute is not directly settable by the user. However, setting the AP_BIND_TPADDR
attribute will result in this attribute being set to the AEID portion of that attribute.

AP_LCL_AEQ
The AP_LCL_AEQ attribute holds the Application Entity Qualifier of the TPSUI.

This attribute is not directly settable by the user. However, setting the AP_BIND_TPADDR
attribute will result in this attribute being set to the AEQ portion of that attribute.

AP_LCL_APID
The AP_LCL_APID attribute holds the Application Process Invocation Identifier of the
TPSUI.

This attribute is not directly settable by the user. However, setting the AP_BIND_TPADDR
attribute will result in this attribute being set to the APID portion of that attribute.

AP_LCL_APT
The AP_LCL_APT attribute holds the Application Process Title of the TPSUI.

This attribute is not directly settable by the user. However, setting the AP_BIND_TPADDR
attribute will result in this attribute being set to the APT portion of that attribute.

AP_LCL_TPSUT
The AP_LCL_TPSUT attribute holds the TP service User Title of the TPSUI.

ACSE/Presentation: Transaction Processing API (XAP-TP) 75

Environment

AP_NEXT_BRID
The AP_NEXT_BRID attribute holds the Branch Identifier to be used for the next transaction
branch on the dialogue when chained transactions are in use. If unset, the existing Branch
Identifier is reused for the next transaction branch.

When the next transaction branch in a chain starts on a dialogue, the value in this attribute
is used as the Branch Identifier. It is copied to the AP_BRID attribute and this attribute is
unset. If the attribute is not set, the existing Branch Identifier in AP_BRID will be reused for
the new transaction branch.

AP_REM_AEID
The AP_REM_AEID attribute holds the Application Entity Invocation Identifier of the
remote TPSUI.

AP_REM_AEQ
The AP_REM_AEQ attribute holds the Application Entity Qualifier of the remote TPSUI.

AP_REM_APID
The AP_REM_APID attribute holds the Application Process Invocation Identifier of the
remote TPSUI.

AP_REM_APT
The AP_REM_APT attribute holds the Application Process Title of the remote TPSUI.

AP_REM_TPSUT
The AP_REM_TPSUT attribute holds the TP service User Title of the remote TPSUI.

AP_TPFU_AVAIL
The AP_TPFU_AVAIL attribute indicates which TP functional units are currently available.

AP_TPFU_SEL
The AP_TPFU_SEL attribute indicates which TP functional units have been requested for
use on the current instance.

AP_TP_AVAIL
The AP_TP_AVAIL attribute indicates which versions of the TP protocol are currently
available.

AP_TP_CATEGORY
The AP_TP_CATEGORY attribute holds the categories of TP primitives which are usable on
the instance.

AP_TP_COPYENV
The AP_TP_COPYENV attribute is used to indicate whether certain environment attributes
that correspond to parameters on the TP-BEGIN-DIALOGUE and TP-BEGIN-
TRANSACTION indications, or to parameters on commit or log category indications,
should be returned to the user in the cdata argument of the ap_rcv() function. When the
value of the attribute is TRUE, these attributes are returned via the cdata argument.

AP_TP_SEL
The AP_TP_SEL attribute indicates which version of the TP protocol has been selected for
use on the current instance.

AP_URCH
The AP_URCH uniquely identifies a group of transaction nodes within an AET for recovery
purposes.

The attribute descriptions above indicate when setting one attribute’s value may affect the value
of another attribute. These dependencies are summarised in the table below:

76 X/Open CAE Specification

Environment

Attribute Name Affects Is Affected By
AP_LCL_APT
AP_LCL_AEQ
AP_LCL_APID
AP_LCL_AEID

AP_BIND_TPADDR

AP_LCL_APT AP_BIND_TPADDR
AP_LCL_AEQ AP_BIND_TPADDR
AP_LCL_APID AP_BIND_TPADDR
AP_LCL_AEID AP_BIND_TPADDR
AP_DTNID AP_TTNID AP_TTNID
AP_TTNID AP_DTNID AP_DTNID

The table on the following pages provides additional information about the XAP-TP
environment attributes. The following data is included:

Attribute The symbolic constant defined in <xap_tp.h> which is used to identify the
attribute.

Type The data type of the values which are legal for the attribute.

Default The default value supplied for the attribute (if any).

Values If applicable, the set of values which are legal for the attribute. If no default value
is supplied, the default value is given as ‘‘none’’ or ‘‘not present’’. ‘‘None’’ implies
that a value must be specified by the user prior to issuance of a primitive, whereas
‘‘not present’’ implies that a value need not be specified, as the attribute represents
an optional field of a particular primitive. They are otherwise identical.

Readable The states in which the attribute may be read using ap_get_env() (states are given
as values of the AP_STATE attribute).

Writable The states during which the attribute may be assigned a value using either
ap_set_env() or ap_init_env () (states are given as values of the AP_STATE
attribute).

Attribute Type/Values Readable Writable
ap_aaid_t
default: not present

any state whilst node not in a
transaction

AP_AAID always

ap_tpaddr_t
default: none

only in states AP_TP_UNBOUND
AP_TP_IDLE

AP_BIND_TPADDR always

ap_brid_t
default: not present

any state whilst dialogue not in a
transaction

AP_BRID always

ap_cid_t
default: not present

only in states AP_TP_UNBOUND
AP_TP_IDLE

AP_CONTROL_ID always

ap_dtnid_t
default: not present

only in state AP_TP_IDLEAP_DTNID always

ap_aei_api_id_tAP_LCL_AEID always never

ap_aeq_tAP_LCL_AEQ always never

ap_aei_api_id_tAP_LCL_APID always never

ap_apt_tAP_LCL_APT always never

ACSE/Presentation: Transaction Processing API (XAP-TP) 77

Environment

ap_tpsut_t
default: not present

only in states AP_TP_UNBOUND
AP_TP_IDLE

AP_LCL_TPSUT always

unsigned long
bit values:

AP_NORMAL_MODE
AP_X410_MODE
AP_TP_MODE

AP_MODE_AVAIL always never

unsigned long
bit values:

AP_NORMAL_MODE
AP_X410_MODE
AP_TP_MODE

default:
AP_NORMAL_MODE
if available
AP_TP_MODE
otherwise

only in states AP_TP_UNBOUND
AP_TP_IDLE

AP_MODE_SEL always

ap_aaid_t
default: not present

All except: AP_TP_WCOMMITind
AP_TP_COMMIT_WDONEreq
AP_TP_WCOMMIT_COMPind,
AP_TP_WROLL_COMPind
AP_TP_ZOMBIE
AP_TP_WRESUMEreq
AP_TP_RESUME,
AP_TP_WRESTARTreq
AP_TP_RESTART
AP_TP_W_RESTART_COMPLETEind

AP_NEXT_AAID always

ap_brid_t
default: not present

All except: AP_TP_WCOMMITind
AP_TP_COMMIT_WDONEreq
AP_TP_WCOMMIT_COMPind,
AP_TP_WROLL_COMPind
AP_TP_ZOMBIE
AP_TP_WRESUMEreq
AP_TP_RESUME,
AP_TP_WRESTARTreq
AP_TP_RESTART
AP_TP_W_RESTART_COMPLETEind

AP_NEXT_BRID always

ap_ttnid_t
default: not present

All except: AP_TP_WCOMMITind
AP_TP_COMMIT_WDONEreq
AP_TP_WCOMMIT_COMPind,
AP_TP_WROLL_COMPind
AP_TP_ZOMBIE
AP_TP_WRESUMEreq
AP_TP_RESUME,
AP_TP_WRESTARTreq
AP_TP_RESTART
AP_TP_W_RESTART_COMPLETEind

AP_NEXT_TTNID always

78 X/Open CAE Specification

Environment

Attribute Type/Values Readable Writable
ap_aeq_t
default: not present

only in states
AP_TP_UNBOUND
AP_TP_IDLE

AP_REM_AEQ always

ap_aei_api_id_t
default: not present

only in states
AP_TP_UNBOUND
AP_TP_IDLE

AP_REM_APID always

ap_apt_t
default: not present

only in states
AP_TP_UNBOUND
AP_TP_IDLE

AP_REM_APT always

ap_tpsut_t
default: not present

only in states
AP_TP_UNBOUND
AP_TP_IDLE

AP_REM_TPSUT always

unsigned long
one of:

AP_TP_UNBOUND
AP_TP_IDLE
AP_TP_WALLOCcnf
AP_TP_ALLOCATED
AP_TP_DATA_XFER
AP_TP_RECV
AP_TP_ERROR_RECV
AP_TP_ERROR
AP_TP_WHANDcnf
AP_TP_WHANDrsp
AP_TP_WHANDrsp_WHANDcnf
AP_TP_WHANDcnf_WENDrsp
AP_TP_WHANDrsp_WENDcnf
AP_TP_WENDcnf
AP_TP_WENDrsp
AP_TP_WHAND_GCcnf
AP_TP_WHAND_GCrsp
AP_TP_WREADYind
AP_TP_WREADYind_DATAP
AP_TP_READY
AP_TP_WPREP_ALLreq
AP_TP_WPREP_ALLreq_DATAP
AP_TP_PREPARING
AP_TP_LOGGING_READY
AP_TP_WCOMMITind
AP_TP_COMMIT_WDONEreq
AP_TP_WCOMMIT_COMPind
AP_TP_ROLL_WDONEreq
AP_TP_WROLL_COMPind
AP_TP_ZOMBIE
AP_TP_WRESUMEreq
AP_TP_RESUME
AP_TP_WRESTARTreq
AP_TP_RESTART
AP_TP_WRESTART_COMPLETEind

AP_STATE

ACSE/Presentation: Transaction Processing API (XAP-TP) 79

Environment

Attribute Type/Values Readable Writable
unsigned long
bit values:

AP_TP_POLARIZED_CONTROL
AP_TP_SHARED_CONTROL
AP_TP_COMMIT_AND_CHAINED
AP_TP_COMMIT_AND_UNCHAINED
AP_TP_HANDSHAKE

AP_TPFU_AVAIL always never

unsigned long
bit values:

AP_TP_POLARIZED_CONTROL
AP_TP_SHARED_CONTROL
AP_TP_COMMIT_AND_CHAINED
AP_TP_COMMIT_AND_UNCHAINED
AP_TP_HANDSHAKE

default: NULL

only in states
AP_TP_UNBOUND
AP_TP_IDLE

AP_TPFU_SEL always

unsigned long
bit values:

AP_TPVER1

AP_TP_AVAIL always never

unsigned long
bit values:

AP_TP_DIALOGUE
AP_TP_CONTROL

AP_TP_CATEGORY always AP_TP_UNBOUND

long
one of: TRUE FALSE
default: FALSE

AP_TP_COPYENV always always

unsigned long
bit values:

AP_TPVER1
default: AP_TPVER1

only in states
AP_TP_UNBOUND
AP_TP_IDLE

AP_TP_SEL always

80 X/Open CAE Specification

Environment

Attribute Type/Values Readable Writable
unsigned long
one of:

AP_TP_DATA_XFER
AP_TP_RECV
AP_TP_ERROR_RECV
AP_TP_ERROR
AP_TP_WHANDcnf
AP_TP_WHANDrsp
AP_TP_WHANDrsp_WHANDcnf
AP_TP_WHANDcnf_WENDrsp
AP_TP_WHANDrsp_WENDcnf
AP_TP_WENDcnf
AP_TP_WENDrsp
AP_TP_WHAND_GCcnf
AP_TP_WHAND_GCrsp
AP_TP_WREADYind
AP_TP_WREADYind_DATAP
AP_TP_READY
AP_TP_WPREP_ALLreq
AP_TP_WPREP_ALLreq_DATAP
AP_TP_PREPARING
AP_TP_LOGGING_READY
AP_TP_WCOMMITind
AP_TP_COMMIT_WDONEreq
AP_TP_WCOMMIT_COMPind
AP_TP_ROLL_WDONEreq
AP_TP_WROLL_COMPind
AP_TP_ZOMBIE
AP_TP_HEURISTIC_LOG

AP_TP_STATE always never

ap_ttnid_t
default: not present

AP_TTNID always always

ap_urch_t
default: not present

only in states
AP_TP_UNBOUND
AP_TP_IDLE

AP_URCH always

ACSE/Presentation: Transaction Processing API (XAP-TP) 81

Environment

The following C types appear in the table above and are defined in <xap.h> or <xap_tp.h>.

ap_aaid_t is used to convey objects specified as ASN.1 type ATOMIC-ACTION-IDENTIFIER
and is defined as:

typedef struct {
int size; /* buffer size in bytes */
unsigned char *udata; /* buffer with user-encoded */

/* ATOMIC-ACTION-IDENTIFIER */
} ap_aaid_t;

udata is a pointer to a buffer of user encoded ATOMIC-ACTION-IDENTIFIER; size is the length
of that buffer in octets.

ap_aeq_t is used to convey objects specified as ASN.1 type AE-qualifier and is defined as:

typedef struct {
int size; /* buffer size in bytes */
unsigned char *udata; /* buffer with user encoded AE-qualifier */

} ap_aeq_t;

udata is a pointer to a buffer of user encoded AE-qualifier; size is the length of that buffer in
octets.

ap_apt_t is used to convey objects specified as ASN.1 type AP-title and is defined as:

typedef struct {
int size; /* buffer size in bytes */
unsigned char *udata; /* buffer with user encoded AP-title */

} ap_apt_t;

udata is a pointer to a buffer of user-encoded AP-title; size is the length of that buffer in octets.

For optional PDU parameters of type, AE-qualifier or AP-title, setting size to −1 indicates that the
parameter is not present. In addition, an optional parameter that corresponds to an environment
attribute may be specified to be absent by invoking ap_set_env() with a NULL pointer as the val
argument.

ap_aei_api_id_t is used to convey application entity/process identifier and is defined as:

typedef struct {
int size; /* buffer size in bytes */
unsigned char *udata; /* buffer with user encoded AE-identifier */

/* or AP-identifier */
} ap_aei_api_id_t;

The ap_aei_api_id_t structure is used to convey application entity/process identifier values.
Application entity/process identifier values are stored in their encoded form including tag and
length . The absence of an application entity/process identifier parameter is indicated by setting
the size field to −1.

ap_brid_t is used to convey objects specified as ASN.1 type BRANCH-IDENTIFIER and is
defined as:

typedef struct {
int size; /* buffer size in bytes */
unsigned char *udata; /* buffer with user encoded BRANCH-IDENTIFIER */

} ap_brid_t;

udata is a pointer to a buffer of user encoded BRANCH-IDENTIFIER; size is the length of that
buffer in octets.

ap_cid_t is used to convey control identifier values, and is defined as:

82 X/Open CAE Specification

Environment

typedef struct {
int size; /* control identifier length in bytes */
unsigned char *udata; /* buffer with control identifier */

} ap_cid_t;

udata is a pointer to a buffer containing the control identifier; size is the length of that buffer in
octets.

ap_dtnid_t is used to convey Dialogue Tree Node Identifiers and is defined as:

typedef struct {
int size; /* buffer size in bytes */
unsigned char *udata; /* buffer with Dialogue Tree Node Identifier */

} ap_dtnid_t;

udata is a pointer to a buffer containing a Dialogue Tree Node Identifier; size is the length of that
buffer in octets.

ap_urch_t is used to convey the user-assigned recovery context handle to which an instance is
bound. It is defined as:

typedef struct {
int size; /* recovery context handle length in bytes */
unsigned char *udata; /* buffer with user-assigned recovery */

/* context handle */
} ap_urch_t;

udata is a pointer to a buffer containing the user-assigned recovery context handle; size is the
length of that buffer in octets, in the range 0 to 32.

Note: The value in the buffer is not encoded (has no tag and length wrapping).

ap_tpaddr_t is used to convey the address to which an instance is bound and to declare the
allowable set of local TPSUTs for a responder. It is defined as:

typedef struct {
ap_apt_t apt; /* application process title */
ap_aei_api_id_t apid; /* application process invocation identifier */
ap_aeq_t aeq; /* application entity qualifier */
ap_aei_api_t aeid; /* application entity invocation identifier */
long n_tpsuts; /* number of TP service user titles */
ap_tpsut_t *tpsuts; /* array of TP service user titles */

} ap_tpaddr_t;

apt and aeq give the application entity title. apid and aeid give the application process invocation
identifier and application entity invocation identifiers, respectively.

The n_tpsuts element is used to specify the number of tpsut components in the array tpsuts. Each
element in the array tpsuts holds a TP service user title.

When used to represent a wildcard TP service user title, the value of n_tpsuts shall be zero. In
this case all locally-defined TP service user titles are implied. In all other cases, n_tpsuts must be
positive.

ap_tpsut_t is used to convey objects specified as ASN.1 type TPSU-title and is defined as:

typedef struct {
int size; /* buffer size in bytes */
unsigned char *udata; /* buffer with user encoded TPSU-title */

} ap_tpsut_t;

udata is a pointer to a buffer of user-encoded TPSU-title; size is the length of that buffer in octets.
TPSU-title values are stored in their encoded form, including tag and length.

ACSE/Presentation: Transaction Processing API (XAP-TP) 83

Environment

For optional PDU parameters of type TPSU-title, setting size to −1 indicates that the parameter is
not present. In an ap_tpaddr_t structure, an element in the tpsuts array having a size of −1
indicates an omitted TPSU-title. In addition, an optional parameter that corresponds to an
environment attribute may be specified to be absent by invoking ap_set_env() with a NULL
pointer as the val argument.

ap_ttnid_t is used to convey locally-defined Transaction Tree Node Identifiers and is defined as:

typedef struct {
int size; /* buffer size in bytes */
unsigned char *udata; /* buffer transaction tree node identifier */

} ap_ttnid_t;

udata is a pointer to a buffer containing a user-defined local transaction tree node identifier; size
is the length of that buffer in octets.

Values are assigned to attributes either through ap_init_env (), ap_set_env() or during ap_rcv()
event processing. When ap_get_env() is issued for an attribute that has no value assigned, the
location pointed at by aperrno_p is set to [AP_BADENV].

84 X/Open CAE Specification

Chapter 4

XAP-TP Functions

This chapter presents the manual page definitions for the XAP-TP SPI. These define the
functions which make up XAP-TP, providing the detailed specifications of parameters and data
structures where there are differences from the corresponding XAP functions.

Manual pages which have not changed from the XAP specification are not repeated here.

The manual pages for ap_snd() and ap_rcv() include the detailed state tables for the underlying
protocol implementation. These define the valid states in which each primitive can be sent or
received, the resulting state, and the effect on the variables that control the protocol’s operation.

ACSE/Presentation: Transaction Processing API (XAP-TP) 85

Overview XAP-TP Functions

4.1 Overview

4.1.1 Functions

This section describes the functions in the XAP-TP Library. A complete list of these functions is
provided below.

ap_bind() Associate a TP Address with an instance of XAP-TP.

ap_close() Close an instance of the XAP-TP Library.

ap_error() Return an error message.

ap_free() Free memory for XAP-TP Library data structures.

ap_get_env() Get the value of an XAP-TP Library environment attribute.

ap_init_env() Initialise an instance of XAP-TP.

ap_ioctl() Control the generation of software interrupts.

ap_look() Examine the next XAP-TP primitive from the instance.

ap_open() Establish an instance of the XAP-TP Library.

ap_osic() XAP-TP Library OSI information compiler.

ap_poll() input/output multiplexing.

ap_save() Save an instance of the XAP-TP Library.

ap_set_env() Set the value of an XAP-TP Library environment attribute.

ap_snd() Send an XAP-TP primitive over the association/connection.

ap_rcv() Receive an XAP-TP primitive from the association/connection.

ap_restore() Restore an instance of the XAP-TP Library environment.

4.1.2 Errors

Most of these functions have one or more possible error returns. The Return Value section of
each XAP-TP Library manual page indicates how the occurrence of an error is signalled to the
user. For most functions, an error condition is indicated by a returned value of −1, and the
variable pointed to by aperrno_p is set to the error identifier indicating the error condition.

Each function description includes a list of error conditions that are reported by the XAP-TP
Library. In addition, errors reported by underlying service providers (that is, OSI TP, ACSE,
Presentation, Session, Transport, ASN.1 or the operating system) may be passed through to the
user. The class of a particular error can be determined by examining the two most significant
octets of the error code. The following bit masks can be used to distinguish between the various
error classes:

86 X/Open CAE Specification

XAP-TP Functions Overview

/*
* These ID numbers for each protocol are used to distinguish
* #defines of various kinds for each layer, such as primitive
* names, environment attribute names, error codes, and so on.
*
* ID NUMBERS MAY NOT EXCEED 125 (could be sign extension problems
* otherwise).
*/

#define AP_TP_ID (15)
#define AP_ASN1_ID (11)
#define AP_ID (8)
#define AP_ACSE_ID (7)
#define AP_PRES_ID (6)
#define AP_SESS_ID (5)
#define AP_TRAN_ID (4)
#define AP_OS_ID (0)

Below is a complete list of errors that are reported by the XAP-TP Library. Error codes
associated with errors reported from underlying service providers are dependent on the
particular provider in question. Refer to the interface specifications for those providers for
further information.

XAP-TP Library Errors

[AP_ACCES]
Request to bind to specified address denied.

[AP_AGAIN]
Request not completed.

[AP_AGAIN_DATA_PENDING]
XAP-TP was unable to complete the requested action. Try again. There is an event available
for the user to receive.

[AP_BADATTRVAL]
Bad value for environment attribute.
cdata field value invalid: act_id.

[AP_BADCD_DIAG]
cdata field value invalid: diag.

[AP_BADCD_EVT]
cdata field value invalid: event.

[AP_BADCD_OLD_ACT_ID]
cdata field value invalid: old_act_id.

[AP_BADCD_OLD_CONN_ID]
cdata field value invalid: old_conn_id.

[AP_BADCD_RES]
cdata field value invalid: res.

[AP_BADCD_RESYNC_TYPE]
cdata field value invalid: resync_type.

[AP_BADCD_RSN]
cdata field value invalid: rsn.

ACSE/Presentation: Transaction Processing API (XAP-TP) 87

Overview XAP-TP Functions

[AP_BADCD_SYNC_P_SN]
cdata field value invalid: sync_p_sn.

[AP_BADCD_SYNC_TYPE]
cdata field value invalid: sync_type.

[AP_BADCD_TOKENS]
cdata field value invalid: tokens.

[AP_BADDATA]
User data not allowed on this service.

[AP_BADENC]
Bad encoding choice in enveloping function.

[AP_BADENV]
A mandatory attribute is not set.

[AP_BADF]
Not a presentation service endpoint.

[AP_BADFLAGS]
The specified combination of flags is invalid.

[AP_BADFREE]
Could not free structure members.

[AP_BADKIND]
Unknown structure type.

[AP_BADPARSE]
Attribute parse failed.

[AP_BADPRIM]
Unrecognised primitive from user.

[AP_BADREF]
Bad reference in enveloping function.

[AP_BADRESTR]
Attributes not restored due to more bit on.

[AP_BADROLE]
Request invalid due to value of AP_ROLE.

[AP_BADSAVE]
Attributes not saved due to more bit on.

[AP_BADSAVEF]
Invalid FILE pointer.

[AP_BADLSTATE]
Instance in bad state for that command.

[AP_BADUBUF]
Bad length for user data.

[AP_DATA_OVERFLOW]
User data and presentation pci exceeds 512 bytes.

[AP_HANGUP]
Association closed or aborted.

88 X/Open CAE Specification

XAP-TP Functions Overview

[AP_LOOK]
A pending event requires attention.

[AP_NOATTR]
No such attribute.

[AP_NOBUF]
Could not allocate enough buffers.

[AP_NODATA]
An attempt was made to send a primitive which requires user data without user-data.

[AP_NOENV]
No environment for that fd.

[AP_NOMEM]
Could not allocate enough memory.

[AP_NOREAD]
Attribute is not readable.

[AP_NOT_SUPPORTED]
The action requested is not supported by this implementation of XAP-TP.

[AP_NO_PROVIDER]
The XAP-TP service provider servicing this instance has become unavailable. The XAP-TP
instance has reverted to the AP_TP_UNBOUND state.

[AP_NOWRITE]
Attribute is not writable.

[AP_PDUREJ]
Invalid PDU rejected.

[AP_SUCCESS_DATA_PENDING]
The requested action was completed successfully. There is an event available for the user to
receive.

[AP_TP_BADCD_FAIL_COUNT]
The given tp_fail_count does not match the XAP-TP provider’s count of failure conditions.

[AP_TP_BADCD_TP_OPTIONS]
cdata field value invalid: tp_options.

[AP_TP_BAD_CONTROL_ID]
The given control identifier is already in use on another XAP-TP instance within the
recovery context group.

[AP_TP_BAD_LOG]
The log record supplied does not belong to AE-title the instance is bound to, or does not
belong to the recovery context group the instance is bound to.

[AP_TP_BAD_NODE]
AP_TTNID or AP_DTNID does not identify an extant transaction node.

[AP_TP_BAD_URCH]
The node does not belong to the same recovery context group as the XAP-TP instance.

[AP_TP_BAD_TTNID]
The TTNID in the log record supplied is already in use by another transaction node in the
recovery context group.

ACSE/Presentation: Transaction Processing API (XAP-TP) 89

Overview XAP-TP Functions

[AP_TP_BAD_UDATA]
User data not allowed when there is no association already established.

[AP_TP_RESTART_REQD]
The recovery context group is currently unavailable.

[AP_TP_RESTARTING]
The recovery context group is currently restarting.

90 X/Open CAE Specification

XAP-TP Functions Overview

4.1.3 Mapping between XAP-TP and OSI TP Service State Numbers

The XAP-TP states are strongly linked to the OSI TP service state numbers. This relationship is
shown in Table 4-1.

XAP-TP State OSI TP Service State
AP_TP_IDLE 1
AP_TP_ALLOCATED -
AP_TP_WALLOCcnf -
AP_TP_DATA_XFER 2
AP_TP_RECV 3
AP_TP_ERROR_RECV 4
AP_TP_ERROR 5
AP_TP_WHANDcnf 6
AP_TP_WHANDrsp 7
AP_TP_WHANDrsp_WHANDcnf 8
AP_TP_WHANDcnf_WENDrsp 9
AP_TP_WHANDrsp_WENDcnf 10
AP_TP_WENDcnf 11
AP_TP_WENDrsp 12
AP_TP_WHAND_GCcnf 13
AP_TP_WHAND_GCrsp 14
AP_TP_WREADYind 15
AP_TP_WREADYind_DATAP 16
AP_TP_READY 17
AP_TP_WPREP_ALLreq 18
AP_TP_WPREP_ALLreq_DATAP 19
AP_TP_PREPARING -
AP_TP_LOGGING_READY -
AP_TP_WCOMMITind 20
AP_TP_COMMIT_WDONEreq 21
AP_TP_WCOMMIT_COMPind 22
AP_TP_ROLL_WDONEreq 23
AP_TP_WROLL_COMPind 24
AP_TP_ZOMBIE 25
AP_TP_UNBOUND -
AP_TP_WRESUMEreq -
AP_TP_RESUME -
AP_TP_WRESTARTreq -
AP_TP_RESTART -
AP_TP_WRESTART_COMPLETEind -
AP_TP_HEURISTIC_LOG -

Table 4-1 Mapping XAP-TP States to OSI TP Service State Numbers

ACSE/Presentation: Transaction Processing API (XAP-TP) 91

Overview XAP-TP Functions

4.1.4 Structure Definitions

The following are definitions for the ap_tp_cdata_t and tp_dialog_env_t structures.

Note: The a_assoc_env_t remains as specified in the XAP specification.

The definitions shown here are referenced in subsequent manual pages.

/* Dialogue environment structure */

typedef struct {
int size; /* buffer size in bytes */
unsigned char *udata; /* buffer with user encoded */

/* ATOMIC-ACTION-IDENTIFIER */
} ap_aaid_t;

typedef struct {
int size; /* buffer size in bytes */
unsigned char *udata; /* buffer with user encoded BRANCH-IDENTIFIER */

} ap_brid_t;

typedef struct {
int size; /* buffer size in bytes */
unsigned char *udata; /* buffer with Dialogue Tree Node Identifier */

} ap_dtnid_t;

typedef struct {
int size; /* buffer size in bytes */
unsigned char *udata; /* buffer transaction tree node identifier */

} ap_ttnid_t;

typedef struct {
int size; /* buffer size in bytes */
unsigned char *udata; /* buffer with user encoded TPSU-title */

} ap_tpsut_t;

typedef struct {
unsigned long mask;
ap_aaid_t aaid;
ap_aaid_t next_aaid;
ap_brid_t brid;
ap_brid_t next_brid;
ap_dtnid_t dtnid;
ap_ttnid_t ttnid;
ap_ttnid_t next_ttnid;
ap_apt_t lcl_apt;
ap_aei_api_id_t lcl_apid;
ap_aeq_t lcl_aeq;
ap_aei_api_id_t lcl_aeid;
ap_tpsu_t lcl_tpsut;
ap_apt_t rem_apt;
ap_aei_api_id_t rem_apid;
ap_aeq_t rem_aeq;
ap_aei_api_id_t rem_aeid;
ap_tpsu_t rem_tpsut;
unsigned long tp_version_sel;
unsigned long tpfu_sel;
unsigned long tp_state;

} tp_dialog_env_t;

92 X/Open CAE Specification

XAP-TP Functions Overview

typedef struct {
/* XAP members */
long udata_length; /* length of user-data field */
long rsn; /* reason for activity/abort/release */
long evt; /* event that caused abort */
long sync_p_sn; /* sync point serial number */
long sync_type; /* sync type */
long resync_type; /* resync type */
long src; /* source of abort */
long res; /* result of primitive */
long res_src; /* source of result */
long diag; /* reason for rejection (if rejected) */
unsigned long tokens; /* tokens identifier */
unsigned long token_assignment;/* tokens assignment */
ap_a_assoc_env_t *env; /* environment attribute values */
ap_octet_string_t act_id; /* activity identifier */
ap_octet_string_t old_act_id; /* old activity identifier */
ap_old_conn_id_t *old_conn_id; /* old session connection identifier */
/* XAP-TP members */
long tp_options; /* bit significant TP flags */
unsigned long user_id; /* abstract syntax or U_ASE identifier*/
long tp_fail_count; /* count of failure conditions */
tp_dialog_env_t *tp_env; /* dialogue attribute values */

} ap_tp_cdata_t;

The specification of ap_tp_cdata_t in this manner allows compatibility with existing applications
using the ap_cdata_t definition for access to associations. On some systems this also allows
modules compiled with the XAP header file to use the XAP-TP library. It is recommended that
applications being upgraded to use the XAP-TP library for concurrent access to dialogues and
associations are updated to include the <xap_tp.h> header file and to use the ap_tp_cdata_t
definition where appropriate.

ACSE/Presentation: Transaction Processing API (XAP-TP) 93

ap_rcv() XAP-TP Functions

NAME
ap_rcv — receive an XAP-TP primitive

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
This function is used to receive an indication or confirmation primitive. fd identifies the XAP-TP
instance for which the user wishes to receive primitives.

When ap_rcv() is called, sptype must point to an unsigned long, and cdata must point to an
ap_tp_cdata_t structure.

Note: When a single library provides simultaneous access to TP and other ASEs, the function
prototype for ap_rcv() uses void * for the cdata pointer, which allows use of the function
with the cdata type definitions of each of the ASEs.

Upon return, the value of the unsigned long pointed to by sptype will indicate the type of
primitive that was received. The table below lists the primitives that can be received using
ap_rcv(). The following information is provided in the table:

primitive The symbolic constant defined in <xap_tp.h> that is used to identify the
primitive.

valid in states The states during which this primitive may be received.

next state The state that will be entered upon receipt of this primitive.

States in the following table refer to values of the AP_STATE attribute, except for primitives
marked "*", where they represent values of the AP_STATE attribute for instances with the
TP_DIALOGUE category selected, and to values of the AP_TP_STATE attribute for instances
with only the AP_TP_CONTROL category selected.

94 X/Open CAE Specification

XAP-TP Functions ap_rcv()

Primitive/State Relationships
Primitive Valid in States Next State

APM_ALLOCATE_CNF AP_TP_WALLOCcnf AP_TP_ALLOCATED
(accepted — after
APM_ALLOCATE_REQ)
APM_ALLOCATE_CNF AP_TP_WALLOCcnf AP_TP_DATA_XFER
(accepted — after
TP_BEGIN_DIALOGUE_REQ)
APM_ALLOCATE_CNF AP_TP_WALLOCcnf AP_TP_IDLE
(rejected)
APM_ASSOCIATION_LOST_IND AP_TP_ALLOCATED AP_TP_IDLE
TP_BEGIN_DIALOGUE_IND AP_TP_IDLE AP_TP_RECV
(polarised)
TP_BEGIN_DIALOGUE_IND AP_TP_IDLE AP_TP_DATA_XFER
(shared)
TP_BEGIN_DIALOGUE_CNF AP_TP_DATA_XFER no state change
(accepted) AP_TP_RECV

AP_TP_ERROR_RECV
AP_TP_WHANDcnf
AP_TP_WHAND_GCcnf
AP_TP_WREADYind
AP_TP_WREADYind_DATAP
AP_TP_ROLL_WDONEreq
AP_TP_WROLL_COMPind

TP_BEGIN_DIALOGUE_CNF AP_TP_DATA_XFER AP_TP_IDLE
(rejected, uncoordinated and AP_TP_RECV AP_TP_IDLE
rollback = FALSE) AP_TP_ERROR_RECV AP_TP_IDLE

AP_TP_WHANDcnf AP_TP_IDLE
AP_TP_WENDcnf AP_TP_IDLE
AP_TP_WHAND_GCcnf AP_TP_IDLE

TP_BEGIN_DIALOGUE_CNF AP_TP_DATA_XFER AP_TP_ZOMBIE
(rejected, coordinated and AP_TP_RECV AP_TP_ZOMBIE
rollback = FALSE) AP_TP_ERROR_RECV AP_TP_ZOMBIE

AP_TP_WHANDcnf AP_TP_ZOMBIE
AP_TP_WHAND_GCcnf AP_TP_ZOMBIE
AP_TP_WREADYind AP_TP_ZOMBIE
AP_TP_WREADYind_DATAP AP_TP_ZOMBIE
AP_TP_ROLL_WDONEreq AP_TP_ROLL_WDONEreq
AP_TP_WROLL_COMPind AP_TP_ROLL_WDONEreq

TP_BEGIN_DIALOGUE_CNF AP_TP_PREPARING AP_TP_ROLL_WDONEreq
(rejected, coordinated and
rollback = TRUE)
TP_BEGIN_TRANSACTION_IND AP_TP_DATA_XFER no state change

AP_TP_RECV
AP_TP_ERROR_RECV
AP_TP_WHANDcnf

TP_DIALOGUE_LOST_IND AP_TP_LOGGING_READY AP_TP_LOGGING_READY
(Rollback="false") * AP_TP_WCOMMITind AP_TP_WCOMMITind

AP_TP_COMMIT_WDONEreq AP_TP_COMMIT_WDONEreq
AP_TP_WCOMMIT_COMPind AP_TP_COMMIT_WDONEreq
AP_TP_ROLL_WDONEreq AP_TP_ROLL_WDONEreq
AP_TP_WROLL_COMPind AP_TP_ROLL_WDONEreq

ACSE/Presentation: Transaction Processing API (XAP-TP) 95

ap_rcv() XAP-TP Functions

Primitive/State Relationships
Primitive Valid in States Next State

TP_DIALOGUE_LOST_IND AP_TP_DATAXFER AP_TP_ROLL_WDONEreq
(Rollback="true") * AP_TP_RECV AP_TP_ROLL_WDONEreq

AP_TP_ERROR_RECV AP_TP_ROLL_WDONEreq
AP_TP_ERROR AP_TP_ROLL_WDONEreq
AP_TP_WHANDcnf AP_TP_ROLL_WDONEreq
AP_TP_WHANDrsp AP_TP_ROLL_WDONEreq
AP_TP_WHANDrsp_WHANDcnf AP_TP_ROLL_WDONEreq
AP_TP_WHAND_GCcnf AP_TP_ROLL_WDONEreq
AP_TP_WHAND_GCrsp AP_TP_ROLL_WDONEreq
AP_TP_WREADYind AP_TP_ROLL_WDONEreq
AP_TP_WREADYind_DATAP AP_TP_ROLL_WDONEreq
AP_TP_READY AP_TP_ROLL_WDONEreq
AP_TP_WPREP_ALLreq AP_TP_ROLL_WDONEreq
AP_TP_WPREP_ALLreq_DATAP AP_TP_ROLL_WDONEreq
AP_TP_PREPARING AP_TP_ROLL_WDONEreq
AP_TP_LOGGING_READY AP_TP_ROLL_WDONEreq
AP_TP_WCOMMITind AP_TP_ROLL_WDONEreq

TP_COMMIT_IND* AP_TP_WCOMMITind AP_TP_COMMIT_WDONEreq
TP_COMMIT_COMPLETE_IND* AP_TP_WCOMMIT_COMPind AP_TP_IDLE

AP_TP_DATA_XFER
AP_TP_RECV
AP_TP_ZOMBIE

TP_DATA_IND AP_TP_DATA_XFER no state change
AP_TP_RECV
AP_TP_WHANDcnf
AP_TP_WENDcnf
AP_TP_WREADYind_DATAP

TP_DEFERRED_END_DIALOGUE_IND AP_TP_DATA_XFER no state change
AP_TP_RECV
AP_TP_ERROR_RECV
AP_TP_WHANDcnf

TP_DEFERRED_GRANT_CONTROL_IND AP_TP_RECV no state change
AP_TP_ERROR_RECV

TP_END_DIALOGUE_IND AP_TP_DATA_XFER AP_TP_WENDrsp
(confirmation = TRUE) AP_TP_RECV AP_TP_WENDrsp

AP_TP_ERROR_RECV AP_TP_DATA_XFER
AP_TP_WHANDcnf AP_TP_WHANDcnf_WENDrsp

TP_END_DIALOGUE_IND AP_TP_DATA_XFER AP_TP_IDLE
(confirmation = FALSE) AP_TP_RECV AP_TP_IDLE

AP_TP_ERROR_RECV AP_TP_IDLE
AP_TP_WHANDcnf AP_TP_IDLE
AP_TP_WENDcnf AP_TP_IDLE

96 X/Open CAE Specification

XAP-TP Functions ap_rcv()

Primitive/State Relationships
Primitive Valid in States Next State

TP_END_DIALOGUE_CNF AP_TP_WENDcnf AP_TP_IDLE
TP_END_RESUME_IND AP_TP_RESUME AP_TP_IDLE
TP_GRANT_CONTROL_IND AP_TP_RECV AP_TP_DATA_XFER

AP_TP_ERROR_RECV AP_TP_DATA_XFER
TP_HANDSHAKE_IND AP_TP_DATA_XFER AP_TP_WHANDrsp

AP_TP_RECV AP_TP_WHANDrsp
AP_TP_ERROR_RECV AP_TP_DATA_XFER
AP_TP_WHANDcnf AP_TP_WHANDrsp_WHANDcnf
AP_TP_WENDcnf AP_TP_WHANDrsp_WENDcnf

TP_HANDSHAKE_CNF AP_TP_WHANDcnf AP_TP_DATA_XFER
AP_TP_WHANDrsp_WHANDcnf AP_TP_WHANDrsp
AP_TP_WHANDcnf_WENDrsp AP_TP_WENDrsp

TP_HANDSHAKE_AND_GRANT_CONTROL_IND AP_TP_RECV AP_TP_WHAND_GCrsp
AP_TP_ERROR_RECV AP_TP_DATA_XFER

TP_HANDSHAKE_AND_GRANT_CONTROL_CNF AP_TP_WHAND_GCcnf AP_TP_RECV
TP_HEURISTIC_REPORT_IND AP_TP_COMMIT_WDONEreq no state change

AP_TP_WCOMMIT_COMPind
AP_TP_ROLL_WDONEreq
AP_TP_WROLL_COMPind

TP_LOG_DAMAGE_IND * AP_TP_COMMIT_WDONEreq no state change
AP_TP_WCOMMIT_COMPind
AP_TP_ROLL_WDONEreq
AP_TP_WROLL_COMPind

TP_NODE_STATUS_IND* any no state change
TP_P_ABORT_IND AP_TP_DATA_XFER AP_TP_IDLE
(coordinated, superior dialogue, AP_TP_RECV AP_TP_IDLE
awaiting confirm and AP_TP_ERROR AP_TP_IDLE
rollback = FALSE) AP_TP_WHANDrsp AP_TP_IDLE

AP_TP_WHAND_GCrsp AP_TP_IDLE
TP_P_ABORT_IND AP_TP_DATA_XFER AP_TP_ZOMBIE
(coordinated not (superior dialogue AP_TP_RECV AP_TP_ZOMBIE
awaiting confirm) AP_TP_ERROR_RECV AP_TP_ZOMBIE
and rollback = FALSE) AP_TP_ERROR AP_TP_ZOMBIE

AP_TP_WHANDcnf AP_TP_ZOMBIE
AP_TP_WHANDrsp AP_TP_ZOMBIE
AP_TP_WHANDrsp_WHANDcnf AP_TP_ZOMBIE
AP_TP_WHAND_GCcnf AP_TP_ZOMBIE
AP_TP_WHAND_GCrsp AP_TP_ZOMBIE
AP_TP_WREADYind AP_TP_ZOMBIE
AP_TP_WREADYind_DATAP AP_TP_ZOMBIE
AP_TP_LOGGING_READY AP_TP_LOGGING_READY
AP_TP_WCOMMITind AP_TP_WCOMMITind
AP_TP_COMMIT_WDONEreq AP_TP_COMMIT_WDONEreq
AP_TP_WCOMMIT_COMPind AP_TP_COMMIT_WDONEreq
AP_TP_ROLL_WDONEreq AP_TP_ROLL_WDONEreq
AP_TP_WROLL_COMPind AP_TP_ROLL_WDONEreq

ACSE/Presentation: Transaction Processing API (XAP-TP) 97

ap_rcv() XAP-TP Functions

Primitive/State Relationships
Primitive Valid in States Next State

TP_P_ABORT_IND AP_TP_DATA_XFER AP_TP_IDLE
(uncoordinated and AP_TP_RECV AP_TP_IDLE
rollback = FALSE) AP_TP_ERROR_RECV AP_TP_IDLE

AP_TP_ERROR AP_TP_IDLE
AP_TP_WHANDcnf AP_TP_IDLE
AP_TP_WHANDrsp AP_TP_IDLE
AP_TP_WHANDrsp_WHANDcnf AP_TP_IDLE
AP_TP_WHANDcnf_WENDrsp AP_TP_IDLE
AP_TP_WHANDrsp_WENDcnf AP_TP_IDLE
AP_TP_WENDcnf AP_TP_IDLE
AP_TP_WENDrsp AP_TP_IDLE
AP_TP_WHAND_GCcnf AP_TP_IDLE
AP_TP_WHAND_GCrsp AP_TP_IDLE

TP_P_ABORT_IND AP_TP_DATA_XFER AP_TP_ROLL_WDONEreq
(rollback = TRUE) AP_TP_RECV AP_TP_ROLL_WDONEreq

AP_TP_ERROR_RECV AP_TP_ROLL_WDONEreq
AP_TP_ERROR AP_TP_ROLL_WDONEreq
AP_TP_WHANDcnf AP_TP_ROLL_WDONEreq
AP_TP_WHANDrsp AP_TP_ROLL_WDONEreq
AP_TP_WHANDrsp_WHANDcnf AP_TP_ROLL_WDONEreq
AP_TP_WHAND_GCcnf AP_TP_ROLL_WDONEreq
AP_TP_WHAND_GCrsp AP_TP_ROLL_WDONEreq
AP_TP_WREADYind AP_TP_ROLL_WDONEreq
AP_TP_WREADYind_DATAP AP_TP_ROLL_WDONEreq
AP_TP_READY AP_TP_ROLL_WDONEreq
AP_TP_WPREP_ALLreq AP_TP_ROLL_WDONEreq
AP_TP_WPREP_ALLreq_DATAP AP_TP_ROLL_WDONEreq
AP_TP_PREPARING AP_TP_ROLL_WDONEreq
AP_TP_LOGGING_READY AP_TP_ROLL_WDONEreq

TP_PREPARE_IND AP_TP_DATA_XFER AP_TP_WPREP_ALLreq_DATAP
(data_permitted = FALSE) AP_TP_RECV AP_TP_WPREP_ALLreq
TP_PREPARE_IND AP_TP_RECV AP_TP_WPREP_ALLreq_DATAP
(data_permitted = TRUE)
TP_READY_ALL_IND* AP_TP_PREPARING AP_TP_LOGGING_READY
TP_READY_IND AP_TP_WREADYind AP_TP_READY

AP_TP_WREADYind_DATAP AP_TP_READY
TP_REQUEST_CONTROL_IND AP_TP_DATA_XFER no state change

AP_TP_WHANDcnf
TP_RESTART_COMPLETE_IND AP_TP_WRESTARTreq AP_TP_IDLE
(accepted) AP_TP_WRESTART_COMPLETEind AP_TP_IDLE
TP_RESTART_COMPLETE_IND AP_TP_WRESTARTreq AP_TP_WRESUMEreq
(rejected) AP_TP_WRESTART_COMPLETEind AP_TP_WRESUMEreq

98 X/Open CAE Specification

XAP-TP Functions ap_rcv()

Primitive/State Relationships
Primitive Valid in States Next State

TP_ROLLBACK_IND* AP_TP_DATA_XFER AP_TP_ROLL_WDONEreq
AP_TP_RECV AP_TP_ROLL_WDONEreq
AP_TP_ERROR_RECV AP_TP_ROLL_WDONEreq
AP_TP_ERROR AP_TP_ROLL_WDONEreq
AP_TP_WHANDcnf AP_TP_ROLL_WDONEreq
AP_TP_WHANDrsp AP_TP_ROLL_WDONEreq
AP_TP_WHANDrsp_WHANDcnf AP_TP_ROLL_WDONEreq
AP_TP_WHAND_GCcnf AP_TP_ROLL_WDONEreq
AP_TP_WHAND_GCrsp AP_TP_ROLL_WDONEreq
AP_TP_WREADYind AP_TP_ROLL_WDONEreq
AP_TP_WREADYind_DATAP AP_TP_ROLL_WDONEreq
AP_TP_READY AP_TP_ROLL_WDONEreq
AP_TP_WPREP_ALLreq AP_TP_ROLL_WDONEreq
AP_TP_WPREP_ALLreq_DATAP AP_TP_ROLL_WDONEreq
AP_TP_PREPARING AP_TP_ROLL_WDONEreq
AP_TP_LOGGING_READY AP_TP_ROLL_WDONEreq
AP_TP_WCOMMITind AP_TP_ROLL_WDONEreq
AP_TP_ZOMBIE AP_TP_ROLL_WDONEreq

TP_ROLLBACK_COMPLETE_IND* AP_TP_WROLL_COMPind AP_TP_IDLE
AP_TP_DATA_XFER
AP_TP_RECV

TP_U_ABORT_IND AP_TP_DATA_XFER AP_TP_ZOMBIE
(coordinated and AP_TP_RECV AP_TP_ZOMBIE
rollback = FALSE) AP_TP_ERROR_RECV AP_TP_ZOMBIE

AP_TP_ERROR AP_TP_ZOMBIE
AP_TP_WHANDcnf AP_TP_ZOMBIE
AP_TP_WHANDrsp AP_TP_ZOMBIE
AP_TP_WHANDrsp_WHANDcnf AP_TP_ZOMBIE
AP_TP_WHAND_GCcnf AP_TP_ZOMBIE
AP_TP_WHAND_GCrsp AP_TP_ZOMBIE
AP_TP_WREADYind AP_TP_ZOMBIE
AP_TP_WREADYind_DATAP AP_TP_ZOMBIE
AP_TP_COMMIT_WDONEreq AP_TP_COMMIT_WDONEreq
AP_TP_WCOMMIT_COMPind AP_TP_COMMIT_WDONEreq
AP_TP_ROLL_WDONEreq AP_TP_ROLL_WDONEreq
AP_TP_WROLL_COMPind AP_TP_ROLL_WDONEreq

TP_U_ABORT_IND AP_TP_DATA_XFER AP_TP_IDLE
(uncoordinated and AP_TP_RECV AP_TP_IDLE
rollback = FALSE) AP_TP_ERROR_RECV AP_TP_IDLE

AP_TP_ERROR AP_TP_IDLE
AP_TP_WHANDcnf AP_TP_IDLE
AP_TP_WHANDrsp AP_TP_IDLE
AP_TP_WHANDrsp_WHANDcnf AP_TP_IDLE
AP_TP_WHANDcnf_WENDrsp AP_TP_IDLE
AP_TP_WHANDrsp_WENDcnf AP_TP_IDLE
AP_TP_WENDcnf AP_TP_IDLE
AP_TP_WENDrsp AP_TP_IDLE
AP_TP_WHAND_GCcnf AP_TP_IDLE
AP_TP_WHAND_GCrsp AP_TP_IDLE

ACSE/Presentation: Transaction Processing API (XAP-TP) 99

ap_rcv() XAP-TP Functions

Primitive/State Relationships
Primitive Valid in States Next State

TP_U_ABORT_IND AP_TP_DATA_XFER AP_TP_ROLL_WDONEreq
(rollback = TRUE) AP_TP_RECV AP_TP_ROLL_WDONEreq

AP_TP_ERROR_RECV AP_TP_ROLL_WDONEreq
AP_TP_ERROR AP_TP_ROLL_WDONEreq
AP_TP_WHANDcnf AP_TP_ROLL_WDONEreq
AP_TP_WHANDrsp AP_TP_ROLL_WDONEreq
AP_TP_WHANDrsp_WHANDcnf AP_TP_ROLL_WDONEreq
AP_TP_WHAND_GCcnf AP_TP_ROLL_WDONEreq
AP_TP_WHAND_GCrsp AP_TP_ROLL_WDONEreq
AP_TP_WREADYind AP_TP_ROLL_WDONEreq
AP_TP_WREADYind_DATAP AP_TP_ROLL_WDONEreq
AP_TP_READY AP_TP_ROLL_WDONEreq
AP_TP_WPREP_ALLreq AP_TP_ROLL_WDONEreq
AP_TP_WPREP_ALLreq_DATAP AP_TP_ROLL_WDONEreq
AP_TP_PREPARING AP_TP_ROLL_WDONEreq
AP_TP_LOGGING_READY AP_TP_ROLL_WDONEreq
AP_TP_WCOMMITind AP_TP_ROLL_WDONEreq

TP_U_ERROR_IND AP_TP_DATA_XFER AP_TP_DATA_XFER
(shared) AP_TP_WHANDcnf AP_TP_DATA_XFER

AP_TP_WHANDrsp AP_TP_WHANDrsp
AP_TP_WHANDrsp_WHANDcnf AP_TP_WHANDrsp
AP_TP_WHANDcnf_WENDrsp AP_TP_WENDrsp
AP_TP_WHANDrsp_WENDcnf AP_TP_WHANDrsp
AP_TP_WENDcnf AP_TP_DATA_XFER

TP_U_ERROR_IND AP_TP_DATA_XFER AP_TP_ERROR
(polarised) AP_TP_RECV AP_TP_RECV

AP_TP_WHANDcnf AP_TP_RECV
AP_TP_WHANDrsp AP_TP_WHANDrsp
AP_TP_WENDcnf AP_TP_RECV
AP_TP_WHAND_GCcnf AP_TP_RECV

The following table lists the environment attributes associated with each primitive. The
following information is provided in the table:

primitive The symbolic constant defined in <xap_tp.h> that is used to identify the
primitive.

must be set A list of XAP environment attributes that must be set in order to be able to
receive this primitive. (Attributes marked * have defaults.)

Note that some attributes that had to be set in order to enter a state where this
primitive is legal, may not be listed.

may change A list of the attributes that may change as a result of receiving this primitive.

100 X/Open CAE Specification

XAP-TP Functions ap_rcv()

Primitive/Attribute Relationships
Primitive Must be Set May Change

APM_ALLOCATE_CNF none AP_DCS
AP_DTNID
AP_QOS
AP_STATE
AP_TTNID

APM_ASSOCIATION_LOST_IND none AP_STATE
TP_BEGIN_DIALOGUE_IND AP_BIND_TPADDR AP_AAID

AP_LIB_SEL AP_BRID
AP_MODE_SEL* AP_CNTX_NAME

AP_DCS
AP_DTNID
AP_QOS
AP_REM_AEID
AP_REM_AEQ
AP_REM_APID
AP_REM_APT
AP_REM_PADDR
AP_REM_TPSUT
AP_ROLE_CURRENT
AP_TPFU_SEL
AP_TP_SEL
AP_STATE

TP_BEGIN_DIALOGUE_CNF none AP_STATE
TP_BEGIN_TRANSACTION_IND none AP_AAID

AP_BRID
AP_STATE

TP_COMMIT_IND none AP_STATE
AP_TP_STATE

TP_COMMIT_COMPLETE_IND none AP_AAID
AP_BRID
AP_NEXT_AAID
AP_NEXT_BRID
AP_NEXT_TTNID
AP_STATE
AP_TP_STATE
AP_TTNID

TP_DATA_IND none none
TP_DEFERRED_END_DIALOGUE_IND none none
TP_DEFERRED_GRANT_CONTROL_IND none none
TP_DIALOGUE_LOST_IND none AP_STATE

AP_TP_STATE
TP_END_DIALOGUE_IND none AP_STATE
TP_END_DIALOGUE_CNF none AP_STATE
TP_END_RESUME_IND AP_TP_CATEGORY none
TP_GRANT_CONTROL_IND none AP_STATE
TP_HANDSHAKE_IND none AP_STATE
TP_HANDSHAKE_CNF none AP_STATE
TP_HANDSHAKE_AND_GRANT_CONTROL_IND none AP_STATE
TP_HANDSHAKE_AND_GRANT_CONTROL_CNF none AP_STATE
TP_HEURISTIC_REPORT_IND none AP_STATE

ACSE/Presentation: Transaction Processing API (XAP-TP) 101

ap_rcv() XAP-TP Functions

Primitive/Attribute Relationships
Primitive Must be Set May Change

TP_LOG_DAMAGE_IND AP_TP_CATEGORY AP_AAID
AP_BRID
AP_DTNID
AP_TTNID

TP_NODE_STATUS_IND AP_TP_CATEGORY AP_STATE
AP_TP_STATE

TP_P_ABORT_IND none AP_STATE
TP_PREPARE_IND none AP_STATE
TP_READY_ALL_IND none AP_STATE

AP_TP_STATE
TP_READY_IND none AP_STATE
TP_REQUEST_CONTROL_IND none none
TP_RESTART_COMPLETE_IND AP_TP_CATEGORY AP_STATE
TP_ROLLBACK_IND none AP_STATE

AP_TP_STATE
TP_ROLLBACK_COMPLETE_IND none AP_STATE

AP_TP_STATE
TP_U_ABORT_IND none AP_STATE
TP_U_ERROR_IND none AP_STATE

Protocol information received with a primitive will be conveyed by the ap_tp_cdata_t structure
pointed to by cdata. The value returned in sptype serves as the discriminant for what members of
the cdata are affected. A complete discussion of the use of the cdata parameter is provided for
each XAP primitive in Chapter 7.

User-data received with a primitive will be returned to the user via the ubuf parameter. The XAP
interface supports a vectored buffering scheme for handling user data. All data buffers are
passed to XAP by the user in a chain of one or more ap_osi_vbuf_t/ap_osi_dbuf_t pairs. ubuf must
point to a location holding a pointer to an ap_osi_vbuf_t structure, defined as follows:

typedef struct {
unsigned char *db_base; /* beginning of buffer */
unsigned char *db_lim; /* last octet+1 of buffer */
unsigned char db_ref; /* reference count */

} ap_osi_dbuf_t ;

typedef struct ap_osi_vbuf ap_osi_vbuf_t;
struct ap_osi_vbuf {

ap_osi_vbuf_t *b_cont; /* next message block */
unsigned char *b_rptr; /* 1st octet of data */
unsigned char *b_wptr; /* 1st free location */
ap_osi_dbuf_t *b_datap; /* data block */

};

User-data associated with XAP primitives is returned in a linked list of message blocks. Each
message block is represented by an ap_osi_vbuf_t structure and is associated with a data block.
Data blocks, which are represented by ap_osi_dbuf_t structures, may be associated with more
than one message block. The db_ref field of the ap_osi_dbuf_t structure indicates the number of
ap_osi_vbuf_t structures that reference a particular data block. The db_base and db_lim fields of
the ap_osi_dbuf_t structure point to the beginning and end of the data block respectively. The
b_rptr and b_wptr fields of the referencing ap_osi_vbuf_t structures point to the first octets to be
read and written within the data block respectively. The b_cont field of the ap_osi_vbuf_t points
to the next message block in the chain or is NULL if this is the end of the list.

102 X/Open CAE Specification

XAP-TP Functions ap_rcv()

The user allocation routine is responsible for setting up all fields of the ap_osi_vbuf_t and
ap_osi_dbuf_t structures when allocating buffers. If buffers are allocated by another
mechanism, the user must ensure that the fields of each ap_osi_vbuf_t and ap_osi_dbuf_t pair
in the chain are set up prior to calling ap_rcv().

ap_rcv() places data into any buffer where write space is available (b_wptr < db_lim) and updates
b_wptr — no other fields in the ap_osi_vbuf_t/ap_osi_dbuf_t structures are updated (with the
exception of b_cont which is updated when adding further ap_osi_vbuf_t/ap_osi_dbuf_t pairs to
the chain).

The user may pass full, partially full and empty receive buffers to ap_rcv(). The user is
responsible for ensuring that it is valid for the XAP library to fill any of the supplied buffers from
b_wptr to db_lim.

If the user wishes all the buffers for ap_rcv() to be allocated using the user allocation routine,
then the ubuf pointer must point to a NULL ap_osi_vbuf_t pointer.

The XAP user is responsible for decoding the user data received in the ubuf parameter; see
individual manual pages in Chapter 7.

The flags argument is a bit mask used to control certain aspects of XAP processing. Values for
this field are formed by OR’ing together zero or more of the following flags:

AP_ALLOC
If AP_ALLOC is set and the user did not specify an allocation routine on ap_open() (or
ap_restore()) then −1 is returned and the location pointed at by aperrno_p is set to the
[AP_BAD_FLAGS] error code.

If no space is available in the supplied buffer chain (or the location pointed to by ubuf
contains NULL), and either AP_ALLOC is not set or AP_ALLOC is set but the user,
allocation routine refuses to supply any buffers, then the call to ap_rcv() fails, −1 is returned
and the location pointed to by aperrno_p is set to the [AP_NOBUF] error code.

The AP_ALLOC flag setting only takes effect when any supplied buffers have been filled
and more data remains to be returned to the user:

— If the AP_ALLOC flag is set, the user allocation routine is called to supply further buffers
as they are needed. If the user allocation routine refuses to supply further buffers, then
the AP_MORE flag is set and the call to ap_rcv() completes; 0 is returned. The user must
free any buffers allocated by the user allocation routine either by calling the ap_free()
function or by calling the user deallocation routine directly.

— If AP_ALLOC is not set, then the AP_MORE flag is set and 0 is returned.

AP_MORE
This flag is ignored by XAP when ap_rcv() is called.

Upon return, if all data associated with a primitive has not been received, the AP_MORE bit
of the flags argument is set, and 0 is returned. This indicates to the user that further ap_rcv()
calls are required to receive the remainder of the data.

If the AP_MORE bit is not set, all data associated with the primitive has been received.

It should be noted that the sptype argument must be checked after each invocation of
ap_rcv(), since an unsequenced primitive (for example, TP_P_ABORT_IND,
TP_ROLLBACK_IND) may arrive before all of the data associated with the first primitive is
received. In this case, the remaining data from the original primitive will be lost.

ACSE/Presentation: Transaction Processing API (XAP-TP) 103

ap_rcv() XAP-TP Functions

If XAP is being used in blocking execution mode (AP_NDELAY bit of the AP_FLAGS
environment attribute is not set), ap_rcv() blocks until either an entire primitive is received, or
XAP fills the buffer(s) pointed to by ubuf.

If XAP is being used in non-blocking execution mode (AP_NDELAY bit is set) and no data is
available to be received, ap_rcv() returns −1 and the location pointed at by aperrno_p is set to the
[AP_AGAIN] error code.

If rollback is triggered while further fragments of another primitive are being awaited, the rest of
the in-progress primitive is lost and ap_rcv() returns the error code [AP_LOOK] with the
AP_MORE bit of the flags argument set. This signals the user that XAP-TP has aborted
processing of the current primitive. The user should use the ap_rcv() function to retrieve the
pending TP_ROLLBACK_IND primitive. The rest of the in-progress primitive is lost and should
not be expected by the user.

aperrno_p must be set to point to a location which will be used to carry an error code back to the
user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
the location pointed at by aperrno_p is set to indicate the error.

ERRORS

[AP_AGAIN]
XAP was unable to complete the requested action. Try again.

[AP_BADF]
Not a presentation service endpoint.

[AP_BADLSTATE]
XAP is in a state where ap_rcv() is not allowed (for example, AP_UNBOUND).

[AP_BADUBUF]
Either the buffers pointed to by ubuf are invalid, or the pointer is NULL and yet AP_ALLOC
is not set.

[AP_LOOK]
An event is pending.

[AP_NOBUF]
Out of buffers.

[AP_NOENV]
There is no XAP environment associated with fd.

[AP_NOMEM]
Out of memory.

[AP_PDUREJ]
XAP rejected the received PDU.

In addition, operating system and asn.1 class errors are reported.

104 X/Open CAE Specification

XAP-TP Functions ap_snd()

NAME
ap_snd — send an XAP-TP primitive

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
This function is used to send a request or response primitive. fd identifies the XAP-TP instance
for which the primitive is to be sent. The sptype parameter identifies which request or response
primitive is to be sent. The table below lists the primitives that can be sent using ap_snd(), and
the associated states. The following information is provided in the table:

primitive The symbolic constant defined in <xap_tp.h> that is used to identify the
primitive.

valid in states The states during which this primitive may be sent.

next state The state that will be entered upon successfully issuing this primitive.

States in the following table refer to values of the AP_STATE attribute, except for primitives
marked "*" where they represent values of the AP_STATE attribute for instances with the
TP_DIALOGUE category selected, and to values of the AP_TP_STATE attribute for instances
with only the AP_TP_CONTROL category selected.

ACSE/Presentation: Transaction Processing API (XAP-TP) 105

ap_snd() XAP-TP Functions

Primitive/State Relationships
Primitive Valid in States Next State

APM_ALLOCATE_REQ AP_TP_IDLE AP_TP_WALLOCcnf
A_ABORT_REQ AP_TP_WALLOCcnf AP_TP_IDLE

AP_TP_ALLOCATED AP_TP_IDLE
AP_TP_DATA_XFER AP_TP_DATA_XFER
AP_TP_RECV AP_TP_RECV
AP_TP_ERROR_RECV AP_TP_ERROR_RECV
AP_TP_ERROR AP_TP_ERROR
AP_TP_WHANDcnf AP_TP_WHANDcnf
AP_TP_WHANDrsp AP_TP_WHANDrsp
AP_TP_WHANDrsp_WHANDcnf AP_TP_WHANDrsp_WHANDcnf
AP_TP_WHANDcnf_WENDrsp AP_TP_WHANDcnf_WENDrsp
AP_TP_WHANDrsp_WENDcnf AP_TP_WHANDrsp_WENDcnf
AP_TP_WENDcnf AP_TP_WENDcnf
AP_TP_WENDrsp AP_TP_WENDrsp
AP_TP_WHAND_GCcnf AP_TP_WHAND_GCcnf
AP_TP_WHAND_GCrsp AP_TP_WHAND_GCrsp
AP_TP_WREADYind AP_TP_WREADYind
AP_TP_WREADYind_DATAP AP_TP_WREADYind_DATAP
AP_TP_READY AP_TP_READY
AP_TP_WPREP_ALLreq AP_TP_WPREP_ALLreq
AP_TP_WPREP_ALLreq_DATAP AP_TP_WPREP_ALLreq_DATAP
AP_TP_ROLL_WDONEreq AP_TP_ROLL_WDONEreq

TP_BEGIN_DIALOGUE_REQ AP_TP_IDLE AP_TP_WALLOCcnf
AP_TP_ALLOCATED AP_TP_DATA_XFER

TP_BEGIN_DIALOGUE_RSP TP_DATA_XFER TP_DATA_XFER
(accepted) AP_TP_RECV AP_TP_RECV

AP_TP_ERROR AP_TP_ERROR
AP_TP_WHANDrsp AP_TP_WHANDrsp
AP_TP_WHAND_GCrsp AP_TP_WHAND_GCrsp
AP_TP_WPREP_ALLreq AP_TP_WPREP_ALLreq
AP_TP_WPREP_ALLreq_DATAP AP_TP_WPREP_ALLreq_DATAP
AP_TP_ROLL_WDONEreq AP_TP_ROLL_WDONEreq

TP_BEGIN_DIALOGUE_RSP TP_DATA_XFER AP_TP_IDLE
(rejected) AP_TP_RECV AP_TP_IDLE

AP_TP_ERROR AP_TP_IDLE
AP_TP_WENDrsp AP_TP_IDLE
AP_TP_WHANDrsp AP_TP_IDLE
AP_TP_WHAND_GCrsp AP_TP_IDLE
AP_TP_WPREP_ALLreq AP_TP_IDLE
AP_TP_WPREP_ALLreq_DATAP AP_TP_IDLE
AP_TP_ROLL_WDONEreq AP_TP_IDLE

TP_BEGIN_TRANSACTION_REQ AP_TP_DATA_XFER AP_TP_DATA_XFER
TP_COMMIT_REQ* AP_TP_LOGGING_READY AP_TP_WCOMMITind
TP_DATA_REQ AP_TP_DATA_XFER no state change

AP_TP_WHANDrsp
AP_TP_WPREP_ALLreq_DATAP

TP_DEFERRED_END_DIALOGUE_REQ AP_TP_DATA_XFER AP_TP_DATA_XFER
TP_DEFERRED_GRANT_CONTROL_REQ AP_TP_DATA_XFER AP_TP_DATA_XFER
TP_DONE_REQ* AP_TP_COMMIT_WDONEreq AP_TP_WCOMMIT_COMPind

AP_TP_ROLL_WDONEreq AP_TP_WROLL_COMPind
TP_END_DIALOGUE_REQ AP_TP_DATA_XFER AP_TP_WENDcnf
(confirm=TRUE)
TP_END_DIALOGUE_REQ AP_TP_DATA_XFER AP_TP_IDLE
(confirm=FALSE)

106 X/Open CAE Specification

XAP-TP Functions ap_snd()

Primitive/State Relationships
Primitive Valid in States Next State

TP_END_DIALOGUE_RSP AP_TP_WENDrsp AP_TP_IDLE
TP_FLUSH_REQ any no state change
TP_GRANT_CONTROL_REQ AP_TP_DATA_XFER AP_TP_RECV

AP_TP_ERROR AP_TP_RECV
TP_HANDSHAKE_REQ AP_TP_DATA_XFER AP_TP_WHANDcnf

AP_TP_WHANDrsp AP_TP_WHANDrsp_WHANDcnf
TP_HANDSHAKE_RSP AP_TP_WHANDrsp AP_TP_DATA_XFER
(shared) AP_TP_WHANDrsp_WHANDcnf AP_TP_WHANDcnf

AP_TP_WHANDrsp_WENDcnf AP_TP_WENDcnf
TP_HANDSHAKE_RSP AP_TP_WHANDrsp AP_TP_RECV
(polarised)
TP_HANDSHAKE_AND_GRANT_CONTROL_REQ AP_TP_DATA_XFER AP_TP_WHAND_GCcnf
TP_HANDSHAKE_AND_GRANT_CONTROL_RSP AP_TP_WHAND_GCrsp AP_TP_DATA_XFER
TP_MANAGE_REQ* any no state change
TP_PREPARE_ALL_REQ* AP_TP_DATA_XFER AP_TP_PREPARING

AP_TP_WREADYind AP_TP_PREPARING
AP_TP_WREADYind_DATAP AP_TP_PREPARING
AP_TP_READY AP_TP_PREPARING
AP_TP_WPREP_ALLreq AP_TP_PREPARING
AP_TP_WPREP_ALLreq_DATAP AP_TP_PREPARING
AP_TP_ZOMBIE AP_TP_PREPARING

TP_PREPARE_REQ AP_TP_DATA_XFER AP_TP_WREADYind
(polarised and
data_permitted = FALSE)
TP_PREPARE_REQ AP_TP_DATA_XFER AP_TP_WREADYind_DATAP
(shared or
data_permitted = TRUE)
TP_RECOVER_REQ AP_TP_RESTART no state change
TP_REQUEST_CONTROL_REQ AP_TP_RECV no state change

AP_TP_WHANDrsp
TP_RESTART_COMPLETE_REQ AP_TP_RESTART AP_TP_WRESTART_COMPLETEind
TP_RESTART_REQ AP_TP_WRESTARTreq AP_TP_RESTART
TP_RESUME_REC AP_TP_WRESUMEreq AP_TP_RESUME
(success)
TP_RESUME_REQ AP_TP_WRESUMEreq AP_TP_WRESTARTreq
(failure)
TP_ROLLBACK_REQ* AP_TP_DATA_XFER AP_TP_ROLL_WDONEreq

AP_TP_RECV AP_TP_ROLL_WDONEreq
AP_TP_ERROR_RECV AP_TP_ROLL_WDONEreq
AP_TP_ERROR AP_TP_ROLL_WDONEreq
AP_TP_WHANDcnf AP_TP_ROLL_WDONEreq
AP_TP_WHANDrsp AP_TP_ROLL_WDONEreq
AP_TP_WHANDrsp_WHANDcnf AP_TP_ROLL_WDONEreq
AP_TP_WHAND_GCcnf AP_TP_ROLL_WDONEreq
AP_TP_WHAND_GCrsp AP_TP_ROLL_WDONEreq
AP_TP_WREADYind AP_TP_ROLL_WDONEreq
AP_TP_WREADYind_DATAP AP_TP_ROLL_WDONEreq
AP_TP_READY AP_TP_ROLL_WDONEreq
AP_TP_PREPARING AP_TP_ROLL_WDONEreq
AP_TP_LOGGING_READY AP_TP_ROLL_WDONEreq
AP_TP_WPREP_ALLreq AP_TP_ROLL_WDONEreq
AP_TP_WPREP_ALLreq_DATAP AP_TP_ROLL_WDONEreq
AP_TP_ZOMBIE AP_TP_ROLL_WDONEreq

ACSE/Presentation: Transaction Processing API (XAP-TP) 107

ap_snd() XAP-TP Functions

Primitive/State Relationships
Primitive Valid in States Next State

TP_UPDATE_LOG_DAMAGE_REQ AP_TP_COMMIT_WDONEreq no state change
(non-NULL log record) AP_TP_WCOMMIT_COMPind

AP_TP_ROLL_WDONEreq
AP_TP_WROLL_COMPind
AP_TP_HEURISTIC_LOG

TP_UPDATE_LOG_DAMAGE_REQ AP_TP_HEURISTIC_LOG node ceases to exist
(NULL log record)
TP_U_ABORT_REQ AP_TP_DATA_XFER AP_TP_ROLL_WDONEreq
(coordinated) AP_TP_RECV AP_TP_ROLL_WDONEreq

AP_TP_ERROR_RECV AP_TP_ROLL_WDONEreq
AP_TP_ERROR AP_TP_ROLL_WDONEreq
AP_TP_WHANDcnf AP_TP_ROLL_WDONEreq
AP_TP_WHANDrsp AP_TP_ROLL_WDONEreq
AP_TP_WHANDrsp_WHANDcnf AP_TP_ROLL_WDONEreq
AP_TP_WHAND_GCcnf AP_TP_ROLL_WDONEreq
AP_TP_WHAND_GCrsp AP_TP_ROLL_WDONEreq
AP_TP_WREADYind AP_TP_ROLL_WDONEreq
AP_TP_WREADYind_DATAP AP_TP_ROLL_WDONEreq
AP_TP_READY AP_TP_ROLL_WDONEreq
AP_TP_WPREP_ALLreq AP_TP_ROLL_WDONEreq
AP_TP_WPREP_ALLreq_DATAP AP_TP_ROLL_WDONEreq
AP_TP_LOGGING_READY AP_TP_LOGGING_READY
AP_TP_LOGGING_READY AP_TP_ROLL_WDONEreq
AP_TP_WCOMMITind AP_TP_WCOMMITind
AP_TP_COMMIT_WDONEreq AP_TP_COMMIT_WDONEreq
AP_TP_ROLL_WDONEreq AP_TP_ROLL_WDONEreq

TP_U_ABORT_REQ AP_TP_DATA_XFER AP_TP_IDLE
(not coordinated) AP_TP_RECV AP_TP_IDLE

AP_TP_ERROR_RECV AP_TP_IDLE
AP_TP_ERROR AP_TP_IDLE
AP_TP_WHANDcnf AP_TP_IDLE
AP_TP_WHANDrsp AP_TP_IDLE
AP_TP_WHANDrsp_WHANDcnf AP_TP_IDLE
AP_TP_WHANDcnf_WENDrsp AP_TP_IDLE
AP_TP_WHANDrsp_WENDcnf AP_TP_IDLE
AP_TP_WENDcnf AP_TP_IDLE
AP_TP_WENDrsp AP_TP_IDLE
AP_TP_WHAND_GCcnf AP_TP_IDLE
AP_TP_WHAND_GCrsp AP_TP_IDLE

TP_U_ERROR_REQ AP_TP_DATA_XFER AP_TP_DATA_XFER
AP_TP_RECV AP_TP_ERROR_RECV
AP_TP_WHANDcnf AP_TP_WHANDcnf
AP_TP_WHANDrsp AP_TP_DATA_XFER
AP_TP_WHANDrsp_WHANDcnf AP_TP_WHANDcnf
AP_TP_WHANDcnf_WENDrsp AP_TP_WHANDcnf
AP_TP_WHANDrsp_WENDcnf AP_TP_WENDcnf
AP_TP_WENDrsp AP_TP_DATA_XFER
AP_TP_WHAND_GCrsp AP_TP_DATA_XFER

Note: The combination of TP_PREPARE_ALL_REQ, TP_READY_ALL_IND and
TP_COMMIT_REQ primitives is the equivalent of the TP_COMMIT request service
defined in ISO/IEC 10026-3: 1992 (the OSI TP Protocol).

The following table lists the environment attributes associated with each primitive. The
following information is provided in the table:

primitive The symbolic constant defined in <xap_tp.h> that is used to identify the
primitive.

108 X/Open CAE Specification

XAP-TP Functions ap_snd()

must be set A list of XAP environment attributes that must be set prior to issuing this
primitive.

Note that some attributes that had to be set in order to enter a state where this
primitive is legal may not be listed. Attributes other than those listed may be
required by the remote application entity.

may be used A list of XAP environment attributes may be set prior to sending this
primitive and the values of which will have an affect on the primitive.

may change A list of the attributes that may change as a result of sending this primitive.

Primitive/Attribute Relationships
Primitive Must be Set May be Used May Change

APM_ALLOCATE_REQ AP_BIND_TPADDR AP_LCL_TPSUT AP_DCS
AP_CNTX_NAME AP_REM_AEID AP_QOS
AP_LIB_SEL AP_REM_AEQ AP_ROLE_CURRENT
AP_MODE_SEL AP_REM_APID AP_STATE

AP_REM_TPSUT
AP_ROLE_ALLOWED
AP_TPFU_SEL

AP_REM_APT AP_TP_SEL
AP_URCH
AP_CONTROL_ID

A_ABORT_REQ none none AP_STATE
TP_BEGIN_DIALOGUE_REQ AP_BIND_TPADDR AP_AAID AP_DCS

AP_CNTX_NAME AP_BRID AP_DTNID
AP_LIB_SEL AP_DTNID AP_REM_AEID
AP_MODE_SEL AP_LCL_TPSUT AP_REM_APID
AP_REM_APT AP_REM_AEID AP_REM_PADDR

AP_REM_AEQ AP_ROLE_CURRENT
AP_REM_APID AP_STATE
AP_REM_TPSUT AP_TTNID
AP_ROLE_ALLOWED
AP_TPFU_SEL
AP_TP_SEL
AP_TTNID
AP_URCH
AP_CONTROL_ID

TP_BEGIN_DIALOGUE_RSP none none AP_STATE
TP_BEGIN_TRANSACTION_REQ none AP_AAID AP_DTNID

AP_BRID AP_STATE
TP_COMMIT_REQ AP_DTNID/AP_TTNID none AP_STATE

AP_TP_CATEGORY AP_TP_STATE
TP_DATA_REQ none none none
TP_DEFERRED_END_DIALOGUE_REQ none none none
TP_DEFERRED_GRANT_CONTROL_REQ none none none
TP_DONE_REQ AP_DTNID/AP_TTNID none AP_STATE

AP_TP_CATEGORY AP_TP_STATE
TP_END_DIALOGUE_REQ none none AP_STATE
TP_END_DIALOGUE_RSP none none AP_STATE
TP_FLUSH_REQ none none none

ACSE/Presentation: Transaction Processing API (XAP-TP) 109

ap_snd() XAP-TP Functions

Primitive/Attribute Relationships
Primitive Must be Set May be Used May Change

TP_GRANT_CONTROL_REQ none none AP_STATE
TP_HANDSHAKE_REQ none none AP_STATE
TP_HANDSHAKE_RSP none none AP_STATE
TP_HANDSHAKE_AND_GRANT_CONTROL_REQ none none AP_STATE
TP_HANDSHAKE_AND_GRANT_CONTROL_RSP none none AP_STATE
TP_MANAGE_REQ AP_DTNID/AP_TTNID none AP_TP_STATE

AP_TP_CATEGORY
TP_PREPARE_ALL_REQ AP_DTNID/AP_TTNID none AP_STATE

AP_TP_CATEGORY AP_TP_STATE
TP_PREPARE_REQ none none AP_STATE
TP_RECOVER_REQ AP_TP_CATEGORY none none
TP_REQUEST_CONTROL_REQ none none none
TP_RESUME_REQ AP_TP_CATEGORY none AP_STATE
TP_RESTART_COMPLETE_REQ AP_TP_CATEGORY none AP_STATE
TP_RESTART_REQ none none AP_STATE
TP_ROLLBACK_REQ AP_DTNID/AP_TTNID none AP_STATE

AP_TP_CATEGORY AP_TP_STATE
TP_UPDATE_LOG_DAMAGE_REQ AP_DTNID/AP_TTNID none none

AP_TP_CATEGORY
TP_U_ABORT_REQ none none AP_STATE
TP_U_ERROR_REQ none none AP_STATE

Note: The use of ‘‘/’’ in the ‘‘Must be Set’’ column indicates ‘‘either/or’’.

ap_snd() returns the error code [AP_BADLSTATE] when sptype indicates a primitive which is not
valid for the current state. For primitives which apply to a transaction node (for example,
TP_PREPARE_ALL_REQ, TP_COMMIT_REQ, TP_DONE_REQ), the state check is applied to
each of the dialogues of the transaction node, and if it fails then AP_TP_STATE is set to reflect
the state of the dialogue causing failure. For other primitives, the state check is against the
AP_STATE attribute. An error code of [AP_BADLSTATE] indicates a program logic error. Thus,
the XAP-TP user must keep track of the state of the instance, and of the state of the transaction
node.

ap_snd() returns [AP_LOOK] when the primitive specified by sptype is made invalid by an
incoming event which has been processed by the underlying service provider but which has not
yet been received by the XAP-user.

The [AP_LOOK] error code does not indicate a program logic error. It only indicates that the
XAP user should issue ap_rcv() calls to process one or more outstanding incoming events, and
then take action appropriate to the current state of the instance.

The [AP_LOOK] error code can result when any of the following primitives is waiting to be
received:

APM_ASSOCIATION_LOST_IND
TP_BEGIN_DIALOGUE_IND
TP_BEGIN_DIALOGUE_CNF (rejected)
TP_DIALOGUE_LOST_IND(Rollback="true")
TP_RESTART_COMPLETE_IND
TP_P_ABORT_IND
TP_ROLLBACK_IND
TP_U_ABORT_IND
TP_U_ERROR_IND

110 X/Open CAE Specification

XAP-TP Functions ap_snd()

Each of these is disruptive, and terminates any in progress send or receive. An XAP-TP user,
after getting [AP_LOOK] and receiving one of these primitives, should assume any send or
receive in progress was terminated by XAP-TP.

Note: [AP_LOOK] implies that the XAP implementation includes some mechanism which
permits a delay between a primitive being processed by the service provider and that
primitive being passed to the API user. Thus, some implementations of XAP may not
be capable of generating this return code.

If the primitive being sent is to be accompanied by protocol information, that information must
be contained in an ap_tp_cdata_t structure pointed to by cdata . It is the users responsibility to
supply all required information in this structure. Chapter 7 describes the use of the cdata
argument for each XAP primitive. If no additional protocol information is to be sent with an
XAP primitive, cdata may be NULL.

Note: When a single library provides simultaneous access to TP and other ASEs, the function
prototype for ap_snd() uses void * for the cdata pointer which allows use of the function
with the cdata type definitions of each of the ASEs. When sending a TP primitive the
cdata argument must point to an ap_tp_cdata_t structure as described above.

User-data can be sent with many XAP primitives. If no user-data is to be sent with a primitive,
ubuf may be set to NULL. To send data, ubuf must point to a linked list of ap_osi_vbuf_t
structures. These structures allow data stored in several different buffers to be sent with a single
ap_snd() invocation.

The ap_osi_vbuf_t structure is defined as shown below.

typedef struct {
unsigned char *db_base; /* beginning of buffer */
unsigned char *db_lim; /* last octet+1 of buffer */
unsigned char *db_ref; /* reference count */

} ap_osi_dbuf_t ;

typedef struct ap_osi_vbuf ap_osi_vbuf_t;
struct ap_osi_vbuf {

ap_osi_vbuf_t *b_cont; /* next message block */
unsigned char *b_rptr; /* 1st octet of data */
unsigned char *b_wptr; /* 1st free location */
ap_osi_dbuf_t *b_datap; /* data block */

} ;

The b_cont field of the ap_osi_vbuf_t structure points to the next buffer in the chain, or is NULL
if this is the end of the list. The b_datap element points to a data block that contains user data.
The b_rptr element points to the beginning of the user-data within the data block, while b_wptr
references the location following the last octet of data in the buffer.

Each data block is represented by an ap_osi_dbuf_t structure. The db_ref element of the
ap_osi_dbuf_t structure indicates the number of ap_osi_vbuf_t structures that reference this
data block. The db_base element points to the beginning of a buffer and db_lim indicates the end
of that buffer (buffer size = db_lim−db_base).

The API user is responsible for encoding the user data passed to XAP in the ubuf parameter; see
individual manual pages in Chapter 7.

The flags argument is a bit mask that can be used to control certain aspects of how the ap_snd()
invocation is handled by XAP. Legal values for the flags argument are formed by OR’ing
together zero or more of the flags described below.

ACSE/Presentation: Transaction Processing API (XAP-TP) 111

ap_snd() XAP-TP Functions

AP_MORE
This flag indicates that data associated with the specified primitive will be sent with
multiple ap_snd() calls. Each ap_snd() call with the AP_MORE bit set indicates that another
ap_snd() will follow with additional data associated with the specified primitive.

The value of the sptype argument must be the same for all ap_snd() calls used to send a
single primitive.

Calling ap_snd() with the AP_MORE bit reset signals that the primitive is complete.

AP_QUERY_DATA_PENDING
This flag indicates to XAP that a check shall be made for the availability of incoming data on
the connection, and that if data is available this shall be indicated by returning a result of −1
and setting the location pointed at by aperrno_p as indicated below.

AP_FLUSH
This flag indicates to XAP that the primitive being passed is to end a concatenation
sequence.

This flag may not be set in conjunction with the AP_MORE flag.

If XAP is being used in blocking execution mode (that is, the AP_NDELAY bit of the AP_FLAGS
attribute is not set), ap_snd() blocks until sufficient resources are available to permit all of the
data in the ubuf buffer(s) to be sent. If XAP is being used in non-blocking execution mode (that
is, the AP_NDELAY bit of the AP_FLAGS attribute is set), ap_snd() may return after having sent
only a portion of the data to the Provider. If all data is not sent, ap_snd() will return a value of
−1 and the location pointed to by aperrno will be set to the [AP_AGAIN] error code. The user
must continue to call ap_snd() with exactly the same arguments until the function completes
successfully (that is, returns a value of 0).

If AP_MORE is set by the user or if [AP_AGAIN] is returned by XAP, sending a primitive
requires multiple invocations of ap_snd(). In general, ap_snd() is issued repeatedly with the
same primitive until:

1. the user resets the AP_MORE flag

and

2. XAP returns success; that is, does not return [AP_AGAIN]

or

3. XAP returns [AP_LOOK] or [AP_HANGUP] error codes.

An association can be aborted by the user even if a send is ‘‘in progress’’, that is, conditions 1
and 2 have not been met. An ap_snd() specifying A_ABORT_REQ will cause the in-progress
send and the association to be aborted. An ap_close () will also have this effect.

It is not permissible to issue ap_snd() specifying any primitive other than A_ABORT_REQ while
there is a send in progress. If this is attempted, XAP returns the error code [AP_BADLSTATE].

The XAP user must not prematurely terminate an in-progress send by resetting AP_MORE, as
this will result in a partial APDU being sent to the remote system which, in turn, may cause the
remote system to abort the application association.

aperrno_p must be set to point to a location which will be used to carry an error code back to the
user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of −1 is returned and
the location pointed to by aperrno_p is set to indicate the error.

112 X/Open CAE Specification

XAP-TP Functions ap_snd()

ERRORS

[AP_ACCES]
The user is not authorised to use the address specified for AP_BIND_TPADDR.

[AP_AGAIN_DATA_PENDING]
XAP was unable to complete the requested action. Try again. There is an event available
for the user to receive.

[AP_AGAIN]
XAP was unable to complete the requested action. Try again.

[AP_BADATTRVAL]
An environment attribute override contains an invalid value for the attribute.

[AP_BADDATA]
User data not allowed on this service. User data and presentation pci exceeds 512 bytes.

[AP_BADENV]
A mandatory environment attribute is not set.

[AP_BADFLAGS]
The specified combination of flags is invalid.

[AP_BADF]
Not a presentation service endpoint.

[AP_BADLSTATE]
The specified primitive cannot be issued in current state.

[AP_BADPRIM]
The specified primitive is not valid (that is, unknown type, or known type but corresponds
to an unavailable service).

[AP_BADUBUF]
The length given for user data does not match what was sent; or the AP_MORE bit was
reset but no data was given for a primitive that is not associated with either an ACSE or
Presentation PDU.

[AP_HANGUP]
The association has been aborted. Use ap_rcv() to read the abort indication.

[AP_LOOK]
A pending event requires attention.

[AP_NOENV]
There is no XAP environment associated with fd.

[AP_SUCCESS_DATA_PENDING]
The requested action was completed successfully. There is an event available for the user to
receive.

In addition, operating system, asn.1, acse, presentation, session and transport class errors are
reported.

ACSE/Presentation: Transaction Processing API (XAP-TP) 113

XAP-TP Functions

114 X/Open CAE Specification

Chapter 5

XAP-TP Commands

This chapter describes the XAP-TP commands, of which there is only one: xap_tp_osic .

The command, including its usage, is descriped in manual page format.

Support for xap_tp_osic is optional.

ACSE/Presentation: Transaction Processing API (XAP-TP) 115

xap_tp_osic XAP-TP Commands

NAME
xap_tp_osic — XAP-TP Library OSI information compiler.

SYNOPSIS
xap_tp_osic [options] files

DESCRIPTION
The xap_tp_osic command processes ap_env_file files to generate an environment initialisation
file that can be used by the ap_init_env () function to initialise the XAP-TP Library
environment. The xap_tp_osic command is optional; implementations required to be portable
cannot rely on it being available on all platforms.

The format of the ap_env_file input files is defined in Chapter 3 on page 73.

One or more ap_env_file files can be named on the command line. The xap_tp_osic command
parses these files, checks them for errors, and writes the combined initialisation information
to a file named ap_osi.env. The following options are interpreted by xap_tp_osic :

-o outfile: write output to outfile instead of ap_osi.env.

-v By default, the attributes named in each ap_env_file file are assigned values in a specific
order, regardless of the order that they appear in that file. This is to prevent the case where
attribute A is assigned a value before attribute B when the value of B may affect the
allowable values for A. The user may override this default ordering by specifying the -v
option. If this option is used, environment attributes will be assigned values in the same
order that they appear in the ap_env_file file or files.

The default attribute assignment order used in the absence of the -v option is:

AP_LIB_SEL, AP_ROLE_ALLOWED, AP_CNTX_NAME,
AP_MODE_SEL, AP_FLAGS, AP_TP_SEL, AP_TP_CATEGORY,
AP_TPFU_SEL, AP_CONTROL_ID, AP_BIND_TPADDR,
AP_AAID, AP_NEXT_AAID, AP_BRID, AP_NEXT_BRID,
AP_URCH, AP_TTNID, AP_NEXT_TTNID, AP_LCL_TPSUT,
AP_REM_APT, AP_REM_APID, AP_REM_AEQ, AP_REM_AEID,
AP_REM_TPSUT, AP_TP_COPYENV.

FILES

ap_osi.env default output file

CAVEAT
The output from the xap_tp_osic command of one XAP-TP implementation is not
necessarily readable by the ap_init_env () function of another XAP-TP implementation,
because the format of the intermediate file is not defined. Environment initialisation files
are therefore only guaranteed to be portable in the ap_env_file form.

DIAGNOSTICS
Most diagnostic messages produced by xap_tp_osic begin with the line number and name of the
file in which the error was detected. If one of these conditions is detected, no output is written
to the output file. The following error messages may occur:

Cannot open file
One of the specified input files cannot be opened for reading.

Syntax error
There is a syntax error in the ap_env_file file. Refer to the ap_env_file manual page for a
description of the proper syntax.

116 X/Open CAE Specification

XAP-TP Commands xap_tp_osic

Illegal attribute
An illegal attribute name was specified in the ap_env_file file.

Illegal value
An illegal value was assigned to an attribute in the ap_env_file file. In addition to these
errors, the xap_tp_osic command produces a warning (see [Duplicate attribute ignored]
below) if multiple assignments to a single attribute are encountered. In this case, only the
first assignment is used and a warning is written to stderr for each additional
initialisation value encountered for that attribute. If no errors are detected, output will
be written to the output file.

Duplicate attribute ignored
More than one assignment was encountered for a single attribute. The first value is used.

ACSE/Presentation: Transaction Processing API (XAP-TP) 117

XAP-TP Commands

118 X/Open CAE Specification

Chapter 6

XAP-TP File Formats

This chapter defines the format of files used by XAP-TP.

6.1 Environment File
This defines the format of an XAP-TP Library initialisation file.

An ap_env_file is an ASCII file containing a list of XAP-TP environment variable assignments. It
is used as input to the xap_tp_osic command, which generates a compiled version of the
assignments for use as an environment initialisation file by the ap_init_env () function. Support
of the xap_tp_osic command and intialisation of the XAP-TP environment from an input file is
optional, so this mechanism may not be available in all implementations of XAP-TP.

Each ap_env_file file consists of entries of the following types:

• Assignment pairs of the form:

<attribute name> = <value>

where <attribute name> is the name of an XAP-TP library environment attribute (see
Chapter 3 on page 73) and <value> is a legal value for the attribute.

• C-style comments (/*....*/) with the syntax and semantics defined by ISO C.

• #include lines with the syntax and semantics defined by the ISO C preprocessor.

• #define lines with the syntax and semantics defined by the ISO C preprocessor for the
#define identifier token-sequence form.

An entry may be split across multiple lines by terminating intermediate lines with a backslash
character (\). Otherwise each entry must occupy a single line.

An ap_env_file file may contain assignments for any of the settable XAP-TP Library
environment attributes. The assignment pairs may appear in any order provided each pair
begins on a new line.

ACSE/Presentation: Transaction Processing API (XAP-TP) 119

Environment File XAP-TP File Formats

Since not all attributes are of the same type, the format of <value> depends upon the
particular attribute being initialised. Table 6-1 lists all of the attributes that may be initialised in
an ap_env_file file and the format each requires for the <value> component of its initialisation
pair.

attribute name type value format
AP_AAID ap_aaid_t encoded string
AP_BRID ap_brid_t encoded string
AP_BIND_TPADDR ap_tpaddr_t address
AP_CNTX_NAME ap_objid_t object identifier
AP_CONTROL_ID ap_cid_t octet string
AP_FLAGS unsigned long bitmask
AP_LCL_TPSUT ap_tpsut_t encoded string
AP_LIB_SEL long integer constant
AP_MODE_SEL long integer constant
AP_NEXT_AAID ap_aaid_t encoded string
AP_NEXT_BRID ap_brid_t encoded string
AP_NEXT_TTNID ap_ttnid_t octet string
AP_REM_AEID ap_aei_api_id_t encoded string
AP_REM_AEQ ap_aeq_t encoded string
AP_REM_APID ap_aei_api_id_t encoded string
AP_REM_APT ap_apt_t encoded string
AP_REM_TPSUT ap_tpsut_t encoded string
AP_TTNID ap_ttnid_t octet string
AP_URCH ap_urch_t octet string
AP_ROLE_ALLOWED unsigned long bitmask
AP_TP_CATEGORY long integer constant
AP_TP_COPYENV long integer constant
AP_TP_SEL long integer constant
AP_TPFU_SEL long bitmask

Table 6-1 Attributes that may be Initialised in an Environment File

Below is a description of the <value> formats specified in the preceding table. Note that
blanks, newlines, horizontal and vertical tabs and form feeds in the ap_env_file file are
considered white space and are ignored except as token separators.

Address

Values in this format must be given as

{[apt], [apid], [aeq], [aeid], count [, {tpsut [, tpsut]*}]}

where apt, apid, aeq, aeid, count and tpsut are defined as follows:

apt: A value in the encoded string format of any length.

apid: A value in the encoded string format of any length.

aeq: A value in the encoded string format of any length.

aeid: A value in the encoded string format of any length.

count: An integer constant value which specifies the number of tpsut values that follow.
A value of zero is allowed and implies that no list of tpsut values follows.

120 X/Open CAE Specification

XAP-TP File Formats Environment File

tpsut: One or more tpsut values may be specified here in a comma separated list. Each
tpsut is represented by a value in the encoded string format.

Example:

AP_BIND_TPADDR = { {06074150546C6F6F70}, {020101}, {020101}, {020101}, \
1, { {13056C65616631} } }

Bitmask

Values in this format must be given as one or more items in the integer constant format OR’ed
together.

Example:

AP_TPFU_SEL = AP_TP_POLARIZED_CONTROL | AP_TP_COMMIT_AND_UNCHAINED

Integer Constant

Values in this format must be given as one of the following:

• a decimal integer

• an octal integer (prefixed by 0)

• a hexadecimal integer (prefixed by 0x or 0X)

• a symbolic constant that is either defined by the user in the ap_env_file file (using
#define), or defined in a file included in the ap_env_filefile (using #include).

Note: The constants in the <xap_tp.h> header file are included automatically. Users are
cautioned against redefining any of the constants in that file.

Example:

AP_ROLE_ALLOWED = AP_RESPONDER

Object Identifier

Values in this format must be given as a sequence of values in the integer constant format that
are separated by blanks and enclosed in braces.

The following identifiers of OBJECT IDENTIFIER component values have been assigned by ISO
and CCITT and are recognised by xap_tp_osic :

iso, standard, registration_authority, member_body,
identified_organisation, ccitt, recommendation,
question, administration, network_operator,
joint_iso_ccitt, asn1, basic_encoding.

Note: The above identifiers use an ‘‘_’’ (underscore) character as a separator instead of a ‘‘-’’
(hyphen). For example, joint-iso-ccitt is defined as joint_iso_ccitt . Since the
environment file format is ‘‘C’’ structure based, using a ‘‘-’’ as a separator would
constitute an expression and not a definition.

In addition, the user may define other identifier values by using the #define preprocessor
construct.

Examples:

AP_CNTX_NAME = {iso standard 8571 1}
AP_CNTX_NAME = {1 0 8571 1}

ACSE/Presentation: Transaction Processing API (XAP-TP) 121

Environment File XAP-TP File Formats

Octet String

Values in this format must be given as either an even number of hexadecimal digits or a legal C
language string constant enclosed in braces. Characters in string constants will be treated as 8-
bit values where bit 8 (MSB) is 0 and the low order 7 bits correspond to the character’s ASCII
encoding.

Examples:

AP_CONTROL_ID = {000ff0ff}
AP_TTNID = {"tran 1259"}

Encoded String

Values in this format must be given as a single value in the octet string format. This octet string
must correspond to a valid encoding of an ASN.1 type value.

Example:

AP_REM_APT = {06062B80CE0F0107}

122 X/Open CAE Specification

Chapter 7

XAP-TP Primitives

This chapter presents manual page definitions for each of the primitives of the underlying OSI
services to which the XAP provides access via the ap_snd() and ap_rcv() functions. Each manual
page provides a short description of an OSI TP, ACSE or Presentation Layer primitive, including
the circumstances under which it may be sent or received, and a detailed description of the
parameters associated with it.

ACSE/Presentation: Transaction Processing API (XAP-TP) 123

APM_ALLOCATE_REQ XAP-TP Primitives

NAME
APM_ALLOCATE_REQ — used to request allocation of an association for an outgoing dialogue

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The APM_ALLOCATE_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to request allocation of an association prior to initiating an outgoing dialogue with
a TP_BEGIN_DIALOGUE_REQ primitive. If the APM_ALLOCATE_REQ primitive is accepted,
no further primitives can be issued, except an A_ABORT_REQ, until an APM_ALLOCATE_CNF
primitive is received.

The result of the allocation attempt will be reported by receipt of an APM_ALLOCATE_CNF
primitive.

The primitive is only used when automatic allocation is not being used on the
TP_BEGIN_DIALOGUE_REQ primitive.

An association allocated by this primitive will be suitable for use with the TP functional units
requested. Where an application context supports both provider and application supported
transactions, an attempt to allocate an association for use with the commit functional unit may
fail where an attempt to allocate without would be successful.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the APM_ALLOCATE_REQ primitive and restrictions on its use.

To issue an APM_ALLOCATE_REQ primitive, the arguments to ap_snd() must be set as
described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to APM_ALLOCATE_REQ.

cdata The following members of cdata are used for this primitive:

long tp_options; /* synchronous allocation? */
a_assoc_env_t *env; /* association attribute values */
tp_dialog_env_t *tp_env; /* dialogue attribute values */

cdata→tp_options can be set to indicate whether the primitive is to return an error if
an association is not immediately available from a suitable pool or is to wait for
establishment of a new association. The possible bit settings of cdata→tp_options
for this primitive are:

AP_TP_SYNC_ALLOC
If set, indicates that an APM_ALLOCATE_CNF primitive rejecting the
allocation attempt is to be issued immediately if an association cannot be
allocated from a suitable pool.

124 X/Open CAE Specification

XAP-TP Primitives APM_ALLOCATE_REQ

If unset, indicates that the allocation attempt is to remain pending until a
association is allocated from a suitable pool.

AP_TP_CONT_WINNER
If set, indicates that the association must be a contention-winner.

cdata→env can be used to override XAP environment attribute values used by this
primitive. If no attribute values are to be overridden, cdata→env may be set to
NULL. Otherwise, cdata→env must point to an a_assoc_env_t structure, and the
following elements are used for this primitive:

unsigned long mask; /* bit mask */
objid_t cntx_name; /* AP_CNTX_NAME */
ap_qos_t qos; /* AP_QOS */

The mask element of this structure is a bit mask indicating which parameters are
present. Values for this field are formed by OR’ing together zero or more of the
flags listed in the table below. When a bit is set, the specified parameter was sent
or received when the association was established. Otherwise, the parameter was
not sent or received and the corresponding field in the a_assoc_env_t structure is
not set.

Flag Parameter Field
AP_CNTX_NAME_BIT Application Context Name cntx_name
AP_QOS_BIT Quality of Service qos

cdata→tp_env can be used to override XAP environment attribute values used by
this primitive. If no attribute values are to be overridden, cdata→tp_env may be set
to NULL. Otherwise, cdata→tp_env must point to a tp_dialog_env_t structure, and
the following elements are used for this primitive:

unsigned long mask; /* bit mask */
ap_apt_t rem_apt; /* AP_REM_APT */
ap_aei_api_id_t rem_apid; /* AP_REM_APID */
ap_aeq_t rem_aeq; /* AP_REM_AEQ */
ap_aei_api_id_t rem_aeid; /* AP_REM_AEID */
unsigned long tp_version_sel; /* AP_TP_SEL */
unsigned long tpfu_sel; /* AP_TPFU_SEL */

The mask element of this structure is a bit mask indicating which environment
attributes associated with this primitive are to be overridden. Values for this field
are formed by OR’ing together zero or more of the flags listed in the table below.
When a bit is set, the value of the associated parameter will be taken from cdata
rather than from the XAP environment. Specifying a value for a particular
parameter in cdata has the same effect on the value of the corresponding attribute
in the XAP environment as calling ap_set_env().

Flag Parameter Field
AP_REM_APT_BIT Remote Application Process Title rem_apt
AP_REM_APID_BIT Remote Application Process Invocation Identifier rem_apid
AP_REM_AEQ_BIT Remote Application Entity Qualifier rem_aeq
AP_REM_AEID_BIT Remote Application Entity Invocation Identifier rem_aeid
AP_TP_SEL_BIT TP Version Selector tp_version_sel
AP_TPFU_SEL_BIT TP Requirements tpfu_sel

ubuf Not used.

ACSE/Presentation: Transaction Processing API (XAP-TP) 125

APM_ALLOCATE_REQ XAP-TP Primitives

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
In addition to the errors listed on the ap_snd() manual page, the following
APM_ALLOCATE_REQ errors may occur:

[AP_BADROLE]
The AP_INITIATOR bit of the AP_ROLE attribute is not set.

[AP_TP_BADCD_TP_OPTIONS]
The setting of cdata→tp_options is invalid.

126 X/Open CAE Specification

XAP-TP Primitives APM_ALLOCATE_CNF

NAME
APM_ALLOCATE_CNF — used to confirm an association allocation request

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The APM_ALLOCATE_CNF primitive is used in conjunction with ap_rcv() and the XAP Library
environment to confirm allocation of an association to support an outgoing begin dialogue, or to
inform the application of failure to allocate or establish an association.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the APM_ALLOCATE_CNF primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
APM_ALLOCATE_CNF.

cdata The following members of cdata are used for this primitive:

long res; /* result of request */
long res_src; /* source of result */
long diag; /* reason (if rejected) */

cdata→res will be set to indicate the result of the association allocation request.
The possible values for cdata→res are as follows:

AP_ACCEPT
Association has been allocated.

AP_REJ_PERM
Association allocation or establishment permanently rejected.

AP_REJ_TRAN
Association allocation or establishment temporarily rejected.

The argument cdata→res_src indicates the source of the result and will be one of
the following:

AP_APM_SERV_PROV
APM service provider (Association Pool Manager)

AP_TP_SERV_PROV
TP service provider.

AP_ACSE_SERV_USER
ACSE service user.

ACSE/Presentation: Transaction Processing API (XAP-TP) 127

APM_ALLOCATE_CNF XAP-TP Primitives

AP_ACSE_SERV_PROV
ACSE service provider.

AP_PRES_SERV_PROV
Presentation service provider.

AP_SESS_SERV_PROV
Session service provider.

AP_TRAN_SERV_PROV
Transport service provider.

The value of the cdata→diag is not meaningful when the value of cdata→res is
AP_ACCEPT. When the value is either AP_REJ_PERM or AP_REJ_TRAN, the
possible values for cdata→diag depend on the source of the result. If the source of
the result is AP_TP_SERV_PROV, cdata→diag will be either the value:

AP_TP_NRSN
No reason given.

or a bit significant field value giving the reason(s) for rejection. The bits which
may be set are:

AP_TP_CCR_V2_NAVAIL
CCR version 2 is not available.

AP_TP_VER_NAVAIL
TP version incompatibility.

AP_TP_CW_REJ
Contention winner assignment rejected.

AP_TP_BM_REJ
Bid mandatory value rejected.

If the source of the result is AP_APM_SERV_PROV, cdata→diag will be one of the
following:

AP_TP_ASSOC_NVAIL
Synchronous allocation from pool was requested via the
AP_TP_SYNC_ALLOC bit setting in cdata→tp_options , but no suitable
association could be found. Pool limits permit establishment of further
associations so the XAP-TP provider will have commenced establishment of
another association for the pool prior to returning.

AP_TP_BAD_AET
The specified local or remote AET is unknown.

AP_TP_BAD_POOL
No usable pool definition is available for associations joining the specified
AETs.

AP_TP_POOL_LIMIT
Synchronous allocation from pool was requested via the
AP_TP_SYNC_ALLOC bit setting in cdata→tp_options , but pool limits prevent
further associations from being established.

AP_TP_POOL_TIMEOUT
The pool manager has exceeded its configured maximum waiting time for an
association to be freed back into the pool.

128 X/Open CAE Specification

XAP-TP Primitives APM_ALLOCATE_CNF

AP_TP_DIALOGUE_REFUSED
The pool manager cannot join a transaction mode dialogue to a transaction
node which is in the termination phase.

When the value of cdata→res_src is one of AP_ACSE_SERV_USER,
AP_ACSE_SERV_PROV, AP_PRES_SERV_PROV, AP_SESS_SERV_PROV or
AP_TRAN_SERV_PROV, a failure occurred in the attempt to establish an
association, and the value of the cdata→diag argument will be set to one of the
values detailed on the A_ASSOC_CNF manual page of the XAP specification.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

ACSE/Presentation: Transaction Processing API (XAP-TP) 129

APM_ASSOCIATION_LOST_IND XAP-TP Primitives

NAME
APM_ASSOCIATION_LOST_IND — used to indicate loss of an allocated association

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The APM_ASSOCIATION_LOST_IND primitive is used in conjunction with ap_rcv() and the
XAP Library environment to indicate that an association allocated by an
APM_ALLOCATE_REQ primitive has been lost.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the APM_ASSOCIATION_LOST_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
APM_ASSOCIATION_LOST_IND.

cdata The following members of cdata are used for this primitive:

long rsn; /* reason for association loss */
long evt; /* event that caused loss */
long src; /* source of loss */

cdata→src indicates the source of the association loss. Possible values for this field
are as follows:

AP_APM_SERV_PROV
APM service provider (Association Pool Manager).

AP_ACSE_SERV_USER
ACSE service user.

AP_ACSE_SERV_PROV
ACSE service provider.

AP_PRES_SERV_PROV
Presentation service provider.

AP_SESS_SERV_PROV
Session service provider.

AP_TRAN_SERV_PROV
Transport service provider.

130 X/Open CAE Specification

XAP-TP Primitives APM_ASSOCIATION_LOST_IND

cdata→rsn indicates the reason for the association loss. The possible values for
cdata→rsn depend on the value of cdata→src. If cdata→src is set to
AP_APM_SERV_PROV, cdata→rsn will be set to the following:

AP_TP_IN_DIALOGUE
An incoming dialogue has claimed the association.

If cdata→src is set to AP_ACSE_SERV_USER, the association loss was caused by
either an A_ABORT_IND or an A_RELEASE_IND primitive being received.
cdata→rsn will be set to one of the following:

AP_TP_ABORTED
An A_ABORT_IND was received.

AP_REL_NORMAL
Normal release request.

AP_REL_URGENT
Urgent release request.

AP_REL_USER_DEF
User defined release request.

AP_RSN_NOVAL
A_RELEASE_IND received but reason not specified.

If cdata→src is set to AP_ACSE_SERV_PROV, the association loss was caused by
an A_ABORT_IND being received. cdata→rsn will be set to the following:

AP_TP_ABORTED
An A_ABORT_IND was received.

If cdata→src is set to one of the values AP_PRES_SERV_PROV,
AP_SESS_SERV_PROV or AP_TRAN_SERV_PROV, the association loss was
caused by an A_PABORT_IND primitive being received, the values of cdata→rsn
and cdata→evt will be set at detailed on the A_PABORT_IND manual page of the
XAP specification.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

ACSE/Presentation: Transaction Processing API (XAP-TP) 131

TP_BEGIN_DIALOGUE_REQ XAP-TP Primitives

NAME
TP_BEGIN_DIALOGUE_REQ — used to begin a dialogue

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_BEGIN_DIALOGUE_REQ primitive is used in conjunction with ap_snd() and the XAP
Library environment to begin a dialogue between two application entities.

If the underlying association has not been previously allocated (AP_TP_ASSOC_ALLOCATED
bit not set in cdata→tp_options) then the XAP-TP provider queues the request internally,
performs an implicit APM_ALLOCATE_REQ, and reports the result to the user by issuing an
APM_ALLOCATE_CNF primitive. If the APM_ALLOCATE_CNF reports success, the
TP_BEGIN_DIALOGUE_REQ has been submitted, otherwise it has been discarded, and no
association will have been allocated. If the user wishes to abandon a
TP_BEGIN_DIALOGUE_REQ whilst association allocation is being performed, an
A_ABORT_REQ can be issued.

The caller can include the dialogue into a particular node of a dialogue tree by providing either
the AP_DTNID or the AP_TTNID (if one has been associated) environment attribute. (See also
Section 2.6 on page 35 and Using a Local Identifier on page 37.)

Note that the AP_LCL_APT, AP_LCL_APID, AP_LCL_AEQ, AP_LCL_AEID and
AP_LCL_TPSUT attributes of all dialogues belonging to a node in the tree must be the same.

If adding a new branch to the transaction tree, the caller may give the BrId in the AP_BRID
environment attribute. If omitted, XAP-TP will allocate a Branch Identifier. If the caller supplies
a value in AP_AAID, it must be the same as the AAId currently in use for the TPSUIs transaction
tree.

When starting a new transaction tree, the user may set the AP_AAID and AP_BRID singly or in
combination. XAP-TP will allocate the AAId and/or the BrId if they are not supplied.

Note that when the user allocates an AAId and/or BRId, they must conform to the OSI TP
standard. XAP-TP validates the format of user-supplied AAIds and BrIds, and that a user-
supplied BrId contains the AET the instance is bound to.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_BEGIN_DIALOGUE_REQ primitive and restrictions on its use.

To send a TP_BEGIN_DIALOGUE_REQ primitive, the arguments to ap_snd() must be set as
described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_BEGIN_DIALOGUE_REQ.

132 X/Open CAE Specification

XAP-TP Primitives TP_BEGIN_DIALOGUE_REQ

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-information field */
long tp_options; /* allocate/start trans/confirm? */
a_assoc_env_t *env; /* association attribute values */
tp_dialog_env_t *tp_env; /* dialogue attribute values */

cdata→udata_length may be set to the total number of octets of encoded user-
information that will be sent with this primitive. If the amount of data to be sent
with this primitive is not known, this field should be set to −1. In some XAP-TP
implementations, setting this field may improve performance.

cdata→tp_options will be set to indicate if an association has already been allocated
for the dialogue, if the dialogue is to be started in transaction mode, and if
confirmation is required. The possible bit settings of cdata→tp_options for this
primitive are:

AP_TP_ASSOC_ALLOCATED
Indicates that a prior call to APM_ALLOCATE_REQ has allocated the
association for the begin dialogue. If unset, an association will be allocated
from a suitable pool.

AP_TP_SYNC_ALLOC
If set, indicates that an APM_ALLOCATE_CNF primitive rejecting the
allocation attempt is to be issued immediately if an association cannot be
allocated from a suitable pool.

The error code returned depends on the status of the pool; if unset, indicates
that the allocation attempt is to remain pending until a association is allocated
from a suitable pool.

AP_TP_CONT_WINNER
If set, indicates that the association must be a contention-winner.

AP_TP_TRANSACTION
When the unchained transactions functional unit is selected, it indicates that
the dialogue is to be started in transaction mode.

AP_TP_CONFIRM
Explicit confirmation by the remote TPSUI is required.

Notes: 1. When the chained transactions functional unit is selected, a
dialogue always starts in transaction mode.

2. When joining a transaction mode dialogue to an existing transaction
node, on a specifically allocated association, if the transaction node
is in termination, the TP_BEGIN_DIALOGUE_REQ primitive will
fail [AP_BADLSTATE] because the Node is in a bad state to accept
the primitive. When using automatic association allocation, this
situation is not detected until the association has been acquired, and
so the TP_BEGIN_DIALOGUE_REQ is accepted, but the result
AP_TP_DIALOGUE_REFUSED is reported on the
APM_ALLOCATE_CNF primitive.

ACSE/Presentation: Transaction Processing API (XAP-TP) 133

TP_BEGIN_DIALOGUE_REQ XAP-TP Primitives

cdata→env can be used to override XAP environment attribute values used by this
primitive. If no attribute values are to be overridden, cdata→env may be set to
NULL. Otherwise, cdata→env must point to an a_assoc_env_t structure, and the
following elements are used for this primitive:

unsigned long mask; /* bit mask */
objid_t cntx_name; /* AP_CNTX_NAME */
ap_qos_t qos; /* AP_QOS */

The mask element of this structure is a bit mask indicating which parameters are
present. Values for this field are formed by OR’ing together zero or more of the
flags listed in the table below. When a bit is set, the specified parameter was sent
or received when the association was established. Otherwise, the parameter was
not sent or received and the corresponding field in the a_assoc_env_t structure is
not set.

Flag Parameter Field
AP_CNTX_NAME_BIT Application Context Name cntx_name
AP_QOS_BIT Quality of Service qos

cdata→tp_env can be used to override XAP environment attributes values used as
parameters to the TP-BEGIN-DIALOGUE request service. If no attribute values
are to be overridden, cdata→tp_env may be set to NULL. Otherwise, cdata→tp_env
must point to a tp_dialog_env_t structure, and the following elements are used for
this primitive:

unsigned long mask; /* bit mask */
ap_aaid_t aaid; /* AP_AAID */
ap_brid_t brid; /* AP_BRID */
ap_dtnid_t dtnid; /* AP_DTNID */
ap_ttnid_t ttnid; /* AP_TTNID */
ap_tpsu_t lcl_tpsut; /* AP_LCL_TPSUT */
ap_apt_t rem_apt; /* AP_REM_APT */
ap_aei_api_id_t rem_apid; /* AP_REM_APID */
ap_aeq_t rem_aeq; /* AP_REM_AEQ */
ap_aei_api_id_t rem_aeid; /* AP_REM_AEID */
ap_tpsu_t rem_tpsut; /* AP_REM_TPSUT */
unsigned long tp_version_sel; /* AP_TP_SEL */
unsigned long tpfu_sel; /* AP_TPFU_SEL */

The mask element of this structure is a bit mask indicating which environment
attributes associated with this primitive are to be overridden. Values for this field
are formed by OR’ing together zero or more of the flags listed in the table below.
When a bit is set, the value of the associated parameter will be taken from cdata
rather than from the XAP environment. Specifying a value for a particular
parameter in cdata has the same effect on the value of the corresponding attribute
in the XAP environment as calling ap_set_env().

134 X/Open CAE Specification

XAP-TP Primitives TP_BEGIN_DIALOGUE_REQ

Flag Parameter Field
AP_AAID_BIT Atomic Action Identifier aaid
AP_BRID_BIT Branch Identifier brid
AP_DTNID_BIT Dialogue Tree Node Identifier dtnid
AP_TTNID_BIT Transaction Tree Node Identifier ttnid
AP_LCL_TPSUT_BIT Local TP Service User Title lcl_tpsut
AP_REM_APT_BIT Remote Application Process Title rem_apt
AP_REM_APID_BIT Remote Application Process Invocation Identifier rem_apid
AP_REM_AEQ_BIT Remote Application Entity Qualifier rem_aeq
AP_REM_AEID_BIT Remote Application Entity Invocation Identifier rem_aeid
AP_REM_TPSUT_BIT Remote TP Service User Title rem_tpsut
AP_TP_SEL_BIT TP Version Selector tp_version_sel
AP_TPFU_SEL_BIT TP Requirements tpfu_sel

ubuf Use of ubuf is described on the ap_snd() manual page. Data carried in the ubuf
buffer(s) must be encoded according to the definition specified in ISO/IEC 10026-
3: 1992 (the OSI TP Protocol), ([30] IMPLICIT SEQUENCE OF EXTERNAL).

Note: It is only permissible to include user data on the begin dialogue if the
association has been previously allocated and the
AP_TP_ASSOC_ALLOCATED bit is set in cdata→tp_options.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
In addition to the errors listed on the ap_snd() manual page, the following
TP_BEGIN_DIALOGUE_REQ errors may occur:

[AP_BADROLE]
The AP_INITIATOR bit of the AP_ROLE attribute is not set.

[AP_TP_BAD_UDATA]
User data has been passed on the primitive and the AP_TP_ASSOC_ALLOCATED bit is not
set in cdata→tp_options.

[AP_TP_BADCD_TP_OPTIONS]
The cdata→tp_options setting is invalid.

ACSE/Presentation: Transaction Processing API (XAP-TP) 135

TP_BEGIN_DIALOGUE_IND XAP-TP Primitives

NAME
TP_BEGIN_DIALOGUE_IND — used to indicate a request to establish a dialogue

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_BEGIN_DIALOGUE_IND primitive is used in conjunction with ap_rcv() and the XAP
Library environment to indicate a request to establish a dialogue between two application
entities.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_BEGIN_DIALOGUE_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_BEGIN_DIALOGUE_IND.

cdata The following members of cdata are used for this primitive:

long tp_options; /* start transaction/confirm? */
tp_dialog_env_t *tp_env; /* dialogue attribute values */

cdata→tp_options will be set to indicate if the dialogue is being started in
transaction mode, and if confirmation is required. The possible values for
cdata→tp_options are as follows:

AP_TP_TRANSACTION
When the unchained transactions functional unit is selected, indicates that the
dialogue is in transaction mode.

AP_TP_CONFIRM
This TP_BEGIN_DIALOGUE_IND requires explicit confirmation by a
TP_BEGIN_DIALOGUE_RSP primitive if accepted by the user.

Note that if the chained transactions functional unit is selected, then the dialogue
is always started in transaction mode.

If the AP_TP_COPYENV attribute in the XAP environment is FALSE, the values
corresponding to the parameters of the TP-BEGIN-DIALOGUE indication service
will not be returned in the cdata argument and cdata→tp_env will be set to NULL.
If AP_TP_COPYENV is TRUE, cdata→tp_env will point to a tp_dialog_env_t
structure, and the following elements are used for this primitive:

unsigned long mask; /* bit mask */
ap_aaid_t aaid; /* AP_AAID */
ap_brid_t brid; /* AP_BRID */

136 X/Open CAE Specification

XAP-TP Primitives TP_BEGIN_DIALOGUE_IND

ap_dtnid_t dtnid; /* AP_DTNID */
ap_tpsu_t lcl_tpsut; /* AP_LCL_TPSUT */
ap_apt_t rem_apt; /* AP_REM_APT */
ap_aei_api_id_t rem_apid; /* AP_REM_APID */
ap_aeq_t rem_aeq; /* AP_REM_AEQ */
ap_aei_api_id_t rem_aeid; /* AP_REM_AEID */
ap_tpsu_t rem_tpsut; /* AP_REM_TPSUT */
unsigned long tp_version_sel; /* AP_TP_SEL */
unsigned long tpfu_sel; /* AP_TPFU_SEL */

The mask element of this structure is a bit mask indicating which parameters
associated with this primitive were received. Values for this field are formed by
OR’ing together zero or more of the flags listed in the table below. When a bit is
set, the specified parameter was received. Otherwise, the parameter was not
received and the corresponding field in the tp_dialog_env_t structure is not set.

Flag Parameter Field
AP_AAID_BIT Atomic Action Identifier aaid
AP_BRID_BIT Branch Identifier brid
AP_DTNID_BIT Dialogue Tree Node Identifier dtnid
AP_LCL_TPSUT_BIT Local TP Service User Title lcl_tpsut
AP_REM_APT_BIT Remote Application Process Title rem_apt
AP_REM_APID_BIT Remote Application Process Invocation Identifier rem_apid
AP_REM_AEQ_BIT Remote Application Entity Qualifier rem_aeq
AP_REM_AEID_BIT Remote Application Entity Invocation Identifier rem_aeid
AP_REM_TPSUT_BIT Remote TP Service User Title rem_tpsut
AP_TP_SEL_BIT TP Version Selector tp_version_sel
AP_TPFU_SEL_BIT TP Requirements tpfu_sel

ubuf Use of the ubuf parameter is described on the manual page for ap_rcv().

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

ACSE/Presentation: Transaction Processing API (XAP-TP) 137

TP_BEGIN_DIALOGUE_RSP XAP-TP Primitives

NAME
TP_BEGIN_DIALOGUE_RSP — used to respond to a begin dialogue indication

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_BEGIN_DIALOGUE_RSP primitive is used in conjunction with ap_snd() and the XAP
Library environment to respond to a begin dialogue request. This primitive may always be
issued in response to a TP_BEGIN_DIALOGUE_IND to reject the dialogue, but may only be
issued to confirm acceptance of the dialogue when confirmation has been specifically requested
via the AP_TP_CONFIRM bit setting of cdata→tp_options on the TP-BEGIN-DIALOGUE
indication.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_BEGIN_DIALOGUE_RSP primitive and restrictions on its use.

To send a TP_BEGIN_DIALOGUE_RSP primitive, the arguments to ap_snd() must be set as
described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_BEGIN_DIALOGUE_RSP.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-information field */
long res; /* result of request */

cdata→udata_length may be set to the total number of octets of encoded user-
information that will be sent with this primitive. If the amount of data to be sent
with this primitive is not known, this field should be set to −1. In some XAP-TP
implementations, setting this field may improve performance.

The argument, cdata→res must be one of the following:

AP_TP_ACCEPT
Accept the dialogue.

AP_TP_REJ_USER
Dialogue rejected.

ubuf Use of the ubuf argument is described on the ap_snd() manual page. Data carried in
the ubuf buffer(s) must be encoded according to the definition specified in
ISO/IEC 10026-3: 1992 (the OSI TP Protocol) ([30] IMPLICIT SEQUENCE OF
EXTERNAL).

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

138 X/Open CAE Specification

XAP-TP Primitives TP_BEGIN_DIALOGUE_RSP

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
In addition to the those listed on the manual page for ap_snd(), the following error conditions
are reported for this primitive:

[AP_BADCD_RES]
The value of cdata→res is not valid.

ACSE/Presentation: Transaction Processing API (XAP-TP) 139

TP_BEGIN_DIALOGUE_CNF XAP-TP Primitives

NAME
TP_BEGIN_DIALOGUE_CNF — used to confirm a begin dialogue request

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_BEGIN_DIALOGUE_CNF primitive is used in conjunction with ap_rcv() and the XAP
Library environment to confirm establishment of a dialogue between two application entities, or
to inform the application of the failure to establish the dialogue.

Note that a TP_BEGIN_DIALOGUE_CNF indicating acceptance will only be returned if
confirmation was requested in the initiating TP_BEGIN_DIALOGUE_REQ (AP_TP_CONFIRM
bit of cdata→tp_options was set).

If a dialogue has been rejected the cdata→tp_options will indicate whether the transaction is being
rolled back as a result via the AP_TP_ROLLBACK bit setting.

If the dialogue has been rejected, and the transaction is being rolled back as a result or the
transaction was already being rolled back (state prior to receiving the primitive was
AP_TP_ROLL_WDONEreq or AP_TP_WROLL_COMPind), then the current failure count
returned in cdata→tp_fail_count will have been incremented, and the failure is propagated to
each other active coordinated instance of the node and to the control instance (if it is not an
active coordinated instance) as a TP_DIALOGUE_LOST_IND primitive. This propagation
allows the user to coordinate failure-related actions.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_BEGIN_DIALOGUE_CNF primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_BEGIN_DIALOGUE_CNF.

cdata The following members of cdata are used for this primitive:

long res; /* result of request */
long diag; /* reason (if rejected) */
long tp_options; /* rollback transaction? */
long tp_fail_count; /* count of failure conditions */
tp_dialog_env_t *tp_env; /* dialogue attribute values */

cdata→res will be set to indicate the result of the dialogue request. The possible
values for cdata→res are as follows:

AP_TP_ACCEPT
Accept the dialogue.

140 X/Open CAE Specification

XAP-TP Primitives TP_BEGIN_DIALOGUE_CNF

AP_TP_REJ_PROV
Dialogue rejected by TP service provider.

AP_TP_REJ_USER
Dialogue rejected by TP service user.

If the dialogue has been rejected and the value of cdata→res is AP_TP_REJ_PROV,
then the value of cdata→diag indicates the cause of the rejection. cdata→diag will
be one of the following:

AP_TP_NRSN
No reason given.

AP_TP_RECIPIENT_UNKNOWN
The parameters identifying the recipient application-entity-invocation do not
identify a known application-entity-invocation.

AP_TP_TPSUT_UNKNOWN
The called TPSUT was not recognised.

AP_TP_TPSUT_NVAIL_PERM
The called TPSUT was recognised, but is permanently unavailable.

AP_TP_TPSUT_NVAIL_TRAN
The called TPSUT was recognised, but is temporarily unavailable.

AP_TP_TPSUT_NEEDED
Called TPSUT was not provided in TP_BEGIN_DIALOGUE_REQ and is
required.

AP_TP_FU_NSUP
One or more of the functional units selected in the
TP_BEGIN_DIALOGUE_REQ are not supported by the recipient for the
dialogue.

AP_TP_FU_COMB_NSUP
The combination of functional units selected in the
TP_BEGIN_DIALOGUE_REQ are not supported by the recipient for the
dialogue.

AP_TP_ASSOC_RES
The association is reserved for usage by the remote system.

When the value of cdata→res is not AP_TP_ACCEPT, cdata→tp_options indicates if
the transaction in which the recipient is involved is to be rolled back. The bit value
in cdata→tp_options used is:

AP_TP_ROLLBACK
If set, the transaction is to be rolled back. If unset, no rollback is to occur.

cdata→tp_fail_count holds the number of failure conditions which have occurred on
the transaction node since the start of the transaction, and must be used when
issuing a TP_DONE_REQ primitive to acknowledge completion of any failure
related actions. This is only valid if the dialogue was coordinated.

cdata→tp_env can be used to retrieve the values of the XAP environment attributes
that correspond to parameters of TP-BEGIN-DIALOGUE confirmation service. If
the AP_TP_COPYENV attribute in the XAP environment is FALSE, these values
will not be returned in cdata and cdata→tp_env is set to NULL when ap_rcv()
returns. If AP_TP_COPYENV is TRUE, cdata→tp_env points to a tp_dialog_env_t

ACSE/Presentation: Transaction Processing API (XAP-TP) 141

TP_BEGIN_DIALOGUE_CNF XAP-TP Primitives

structure, and the following elements are used for this primitive:

unsigned long mask; /* bit mask */
unsigned long tpfu_sel /* AP_TPFU */

The mask element of this structure is a bit mask indicating which parameters
associated with this primitive were received. Values for this field are formed by
OR’ing together zero or more of the flags listed in the table below. When a bit is
set, the specified parameter was received. Otherwise, the parameter was not
received and the corresponding field in the tp_dialog_env_t structure is not set.

Flag Parameter Field
AP_TPFU_SEL_BIT TP Requirements tpfu_sel

ubuf Use of the ubuf parameter is described on the manual page for ap_rcv().

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

142 X/Open CAE Specification

XAP-TP Primitives TP_BEGIN_TRANSACTION_REQ

NAME
TP_BEGIN_TRANSACTION_REQ — used to commence a transaction on a dialogue

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_BEGIN_TRANSACTION_REQ primitive is used in conjunction with ap_snd() and the
XAP Library environment to commence a transaction on a dialogue.

When adding a new branch to the transaction tree the caller may give the BrId in the AP_BRID
environment attribute. If omitted, XAP-TP will allocate a Branch Identifier. If the caller supplies
a value in AP_AAID, it must be the same as the AAId currently in use for the TPSUIs transaction
tree.

When starting a new transaction tree, the user may set the AP_AAID and AP_BRID singly or in
combination. XAP-TP will allocate the AAId and/or the BrId if they are not supplied.

Note that when the user allocates an AAId and/or BRId, they must conform to the OSI TP
standard. XAP-TP validates the format of user-supplied AAIds and BrIds, and that a user-
supplied BrId contains the AET the instance is bound to.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_BEGIN_TRANSACTION_REQ primitive and restrictions on its use.

Note: An attempt to begin a transaction branch on a dialogue which is part of a transaction
node which is in the termination phase (undergoing commitment or rollback) will be
rejected with the error code [AP_BADLSTATE], because the Node is in a bad state to
accept the primitive.

To send a TP_BEGIN_TRANSACTION_REQ primitive, the arguments to ap_snd() must be set as
described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_BEGIN_TRANSACTION_REQ.

cdata The following members of cdata are used for this primitive:

tp_dialog_env_t *tp_env; /* dialogue attribute values */

cdata→tp_env can be used to override XAP environment attributes values used as
parameters to the TP-BEGIN-DIALOGUE request service. If no attribute values
are to be overridden, cdata→tp_env may be set to NULL. Otherwise, cdata→tp_env
must point to a tp_dialog_env_t structure, and the following elements are used for
this primitive:

unsigned long mask; /* bit mask */
ap_aaid_t aaid; /* AP_AAID */
ap_brid_t brid; /* AP_BRID */

ACSE/Presentation: Transaction Processing API (XAP-TP) 143

TP_BEGIN_TRANSACTION_REQ XAP-TP Primitives

The mask element of this structure is a bit mask indicating which environment
attributes associated with this primitive are to be overridden. Values for this field
are formed by OR’ing together zero or more of the flags listed in the table below.
When a bit is set, the value of the associated parameter will be taken from cdata
rather than from the XAP environment. Specifying a value for a particular
parameter in cdata has the same effect on the value of the corresponding attribute
in the XAP environment as calling ap_set_env().

Flag Parameter Field
AP_AAID_BIT Atomic Action Identifier aaid
AP_BRID_BIT Branch Identifier brid

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
Refer to the manual page for ap_snd().

144 X/Open CAE Specification

XAP-TP Primitives TP_BEGIN_TRANSACTION_IND

NAME
TP_BEGIN_TRANSACTION_IND — is used to indicate a request to commence a transaction

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_BEGIN_TRANSACTION_IND primitive is used in conjunction with ap_rcv() and the
XAP Library environment to indicate a request to commence a transaction on the dialogue.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_BEGIN_TRANSACTION_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_BEGIN_TRANSACTION_IND.

cdata The following members of cdata are used for this primitive:

tp_dialog_env_t *tp_env; /* dialogue attribute values */

cdata→tp_env can be used to retrieve the values of the XAP environment attributes
that correspond to parameters of TP-BEGIN-TRANSACTION indication service.
If the AP_TP_COPYENV attribute in the XAP environment is FALSE, these values
will not be returned in cdata and cdata→tp_env will be set to NULL when ap_rcv()
returns. If AP_TP_COPYENV is TRUE, cdata→tp_env will point to a
tp_dialog_env_t structure, and the following elements are used for this primitive:

unsigned long mask; /* bit mask */
ap_aaid_t aaid; /* AP_AAID */
ap_brid_t brid; /* AP_BRID */

The mask element of this structure is a bit mask indicating which parameters
associated with this primitive were received. Values for this field are formed by
OR’ing together zero or more of the flags listed in the table below. When a bit is
set, the specified parameter was received. Otherwise, the parameter was not
received and the corresponding field in the tp_dialog_env_t structure is not set.

Flag Parameter Field
AP_AAID_BIT Atomic Action Identifier aaid
AP_BRID_BIT Branch Identifier brid

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

ACSE/Presentation: Transaction Processing API (XAP-TP) 145

TP_BEGIN_TRANSACTION_IND XAP-TP Primitives

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

146 X/Open CAE Specification

XAP-TP Primitives TP_COMMIT_REQ

NAME
TP_COMMIT_REQ — used to request commitment of a transaction

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_COMMIT_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to request commitment of the transaction identified by dtnid or ttnid.

For a superior it indicates the transaction is to be committed, otherwise (for an intermediate or
leaf node) indicates the first phase of commitment has been completed and the caller is ready to
accept commitment or rollback of the transaction.

The primitive must be issued on the nominated control instance for the transaction node.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_COMMIT_REQ primitive and restrictions on its use.

To send a TP_COMMIT_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_COMMIT_REQ.

cdata The following members of cdata are used for this primitive:

tp_dialog_env_t *tp_env; /* dialogue attribute values */

cdata→tp_env can be used to override XAP environment attributes values used as
parameters to the TP-COMMIT request service. If no attribute values are to be
overridden, cdata→tp_env may be set to NULL. Otherwise, cdata→tp_env must
point to a tp_dialog_env_t structure, and the following elements are used for this
primitive:

unsigned long mask; /* bit mask */
ap_dtnid_t dtnid; /* AP_DTNID */
ap_ttnid_t ttnid; /* AP_TTNID */

The mask element of this structure is a bit mask indicating which environment
attributes associated with this primitive are to be overridden. Values for this field
are formed by setting zero or one of the flags listed in the table below. When a bit
is set, the value of the associated parameter will be taken from cdata rather than
from the XAP environment. Specifying a value for a particular parameter in cdata
has the same effect on the value of the corresponding attribute in the XAP
environment as calling ap_set_env().

ACSE/Presentation: Transaction Processing API (XAP-TP) 147

TP_COMMIT_REQ XAP-TP Primitives

Flag Parameter Field
AP_DTNID_BIT Dialogue Tree Node Identifier dtnid
AP_TTNID_BIT Transaction Tree Node Identifier ttnid

The user may identify the transaction to be committed using one of:

• the Dialogue Tree Node Identifier AP_DTNID

• the Transaction Tree Node Identifier AP_TTNID.

If the XAP instance has the TP_DIALOGUE category selected, it is only possible to
request commitment of a transaction on the dialogue tree referenced by a dialogue
on the XAP instance.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
In addition to those listed in the manual page for ap_snd(), the following error conditions can be
reported for this primitive:

[AP_TP_BAD_NODE]
An extant transaction node is not identified by AP_DTNID or AP_TTNID.

148 X/Open CAE Specification

XAP-TP Primitives TP_COMMIT_IND

NAME
TP_COMMIT_IND — used to indicate a request to commit a transaction

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_COMMIT_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate a request for the transaction manager to commit the transaction
identified by dtnid or ttnid. This primitive is issued on the nominated control instance for the
transaction node, and on each of the active coordinated instances of the node (except when it is
also the nominated control instance).

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_COMMIT_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to TP_COMMIT_IND.

cdata The following members of cdata are used for this primitive:

tp_dialog_env_t *tp_env; /* dialogue attribute values */

cdata→tp_env can be used to retrieve the values of the XAP environment attributes
that correspond to parameters of TP-COMMIT indication service. If the
AP_TP_COPYENV attribute in the XAP environment is FALSE, these values will
not be returned in cdata and cdata→tp_env will be set to NULL when ap_rcv()
returns. If AP_TP_COPYENV is TRUE, cdata→tp_env will point to a
tp_dialog_env_t structure, and the following elements are used for this primitive:

unsigned long mask; /* bit mask */
ap_dtnid_t dtnid; /* AP_DTNID */
ap_ttnid_t ttnid; /* AP_TTNID */

The mask element of this structure is a bit mask indicating which parameters
associated with this primitive were received. Values for this field are formed by
setting zero or one of the flags listed in the table below. When a bit is set, the
specified parameter was received. Otherwise, the parameter was not received and
the corresponding field in the tp_dialog_env_t structure is not set.

Flag Parameter Field
AP_DTNID_BIT Dialogue Tree Node Identifier dtnid
AP_TTNID_BIT Transaction Tree Node Identifier ttnid

The dialogue tree node identifier dtnid will be set to the value allocated to the
TPSUI when it was started. The transaction tree node identifier ttnid will only be
present if the user has set a value in this attribute for the TPSUI.

ACSE/Presentation: Transaction Processing API (XAP-TP) 149

TP_COMMIT_IND XAP-TP Primitives

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

150 X/Open CAE Specification

XAP-TP Primitives TP_COMMIT_COMPLETE_IND

NAME
TP_COMMIT_COMPLETE_IND — used to indicate completion of a transaction

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_COMMIT_COMPLETE_IND primitive is used in conjunction with ap_rcv() and the XAP
Library environment to indicate the transaction identified by dtnid or ttnid has been completed.

This primitive is passed to the user on each coordinated instance of the node, and also on the
nominated control instance for the node (if it is not a coordinated instance).

Each passive coordinated instance (those for which a TP_P_ABORT_IND, TP_U_ABORT_IND,
TP_U_ABORT_REQ or TP_BEGIN_DIALOGUE_CONF(rejected, Rollback="false") primitive has
been issued) returns to the AP_TP_IDLE state on receipt of this primitive.

All dialogues for which a TP_DEFERRED_END_DIALOGUE request or indication was issued
during the committed transaction are terminated.

Control of all dialogues with a TP_DEFERRED_GRANT_CONTROL_REQ outstanding has now
passed to the receiver of the TP_DEFERRED_GRANT_CONTROL_IND.

The coordination level of all dialogues with the commit and unchained transactions functional
unit selected has reverted to none.

If one or more of the dialogues has the commit and chained transactions functional unit selected,
then they are involved in a new transaction.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_COMMIT_COMPLETE_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_COMMIT_COMPLETE_IND.

cdata The following members of cdata are used for this primitive:

tp_dialog_env_t *tp_env; /* dialogue attribute values */

cdata→tp_env can be used to retrieve the values of the XAP environment attributes
that correspond to parameters of TP-COMMIT-COMPLETE indication service. If
the AP_TP_COPYENV attribute in the XAP environment is FALSE, these values
will not be returned in cdata and cdata→tp_env will be set to NULL when ap_rcv()
returns. If AP_TP_COPYENV is TRUE, cdata→tp_env will point to a
tp_dialog_env_t structure, and the following elements are used for this primitive:

ACSE/Presentation: Transaction Processing API (XAP-TP) 151

TP_COMMIT_COMPLETE_IND XAP-TP Primitives

unsigned long mask; /* bit mask */
ap_dtnid_t dtnid; /* AP_DTNID */
ap_ttnid_t ttnid; /* AP_TTNID */

The mask element of this structure is a bit mask indicating which parameters
associated with this primitive were received. Values for this field are formed by
setting zero or one of the flags listed in the table below. When a bit is set, the
specified parameter was received. Otherwise, the parameter was not received and
the corresponding field in the tp_dialog_env_t structure is not set.

Flag Parameter Field
AP_DTNID_BIT Dialogue Tree Node Identifier dtnid
AP_TTNID_BIT Transaction Tree Node Identifier ttnid

The dialogue tree node identifier dtnid will be set to the value allocated to the
TPSUI when it was started. The transaction tree node identifier ttnid will only be
present if the user has set a value in this attribute for the node.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

152 X/Open CAE Specification

XAP-TP Primitives TP_DATA_REQ

NAME
TP_DATA_REQ — used to send a U-ASE primitive

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_DATA_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to send user data over an established dialogue.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_DATA_REQ primitive and restrictions on its use.

To send a TP_DATA_REQ primitive, the arguments to ap_snd() must be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_DATA_REQ.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of */
/* user-information field */

unsigned long user_id; /* U-ASE identifier */

cdata→udata_length may be set to the total number of octets of user-information
that will be sent with this primitive. If the amount of data to be sent with this
primitive is not known, this field should be set to −1. In some XAP-TP
implementations, setting this field may improve performance.

If the U-ASE resides above the XAP-TP interface, user_id is not used.

If the U-ASE resides below the XAP-TP interface, user_id identifies the U-ASE
index number (commencing with 0) within the application context to which the
request (or portion of a request) in data is being sent.

ubuf Use of the ubuf argument is described on the ap_snd() manual page. If the U-ASE
resides below the XAP-TP interface the data is formatted according to the U-ASE
specification. If the U-ASE resides above the XAP-TP interface, the buffer(s) are
encoded as:

SEQUENCE
{ Transfer-syntax-name OBJECT IDENTIFIER OPTIONAL,

Presentation-context-identifier INTEGER,
Presentation-data-values CHOICE

{ single-ASN1-type [0] ANY,
octet-aligned [1] IMPLICIT OCTET STRING,
arbitrary [2] IMPLICIT BIT STRING}

}

ACSE/Presentation: Transaction Processing API (XAP-TP) 153

TP_DATA_REQ XAP-TP Primitives

Note that a TP_DATA_REQ primitive may not be issued without one or more
octets of user data.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

Note that the TP_DATA_REQ primitive may not be issued without one or more
octets of user-data.

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
In addition to the errors listed on the ap_snd() manual page, the following TP_DATA_REQ error
may occur:

[AP_NODATA]
An attempt was made to send this primitive with no user-data.

154 X/Open CAE Specification

XAP-TP Primitives TP_DATA_IND

NAME
TP_DATA_IND — used to indicate receipt of a U-ASE primitive

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_DATA_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate the receipt of a U-ASE primitive.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_DATA_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to TP_DATA_IND.

cdata The following members of cdata are used for this primitive:

unsigned long user_id; /* U-ASE identifier */

If the U-ASE resides above the XAP-TP interface, user_id is not used.

If the U-ASE resides below the XAP-TP interface, user_id identifies the U-ASE
index number (commencing with 0) within the application context from which the
primitive (or portion of a primitive) in data has been received.

ubuf Use of the ubuf argument is described on the ap_rcv() manual page. If the U-ASE
resides below the XAP-TP interface, the data is formatted according to the U-ASE
specification. If the U-ASE resides above the XAP-TP interface the buffer(s) are
encoded as:

SEQUENCE
{ Transfer-syntax-name OBJECT IDENTIFIER OPTIONAL,

Presentation-context-identifier INTEGER,
Presentation-data-values CHOICE

{ single-ASN1-type [0] ANY,
octet-aligned [1] IMPLICIT OCTET STRING,
arbitrary [2] IMPLICIT BIT STRING}

}

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

ACSE/Presentation: Transaction Processing API (XAP-TP) 155

TP_DATA_IND XAP-TP Primitives

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

156 X/Open CAE Specification

XAP-TP Primitives TP_DEFERRED_END_DIALOGUE_REQ

NAME
TP_DEFERRED_END_DIALOGUE_REQ — request the dialogue end when the transaction is
committed

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_DEFERRED_END_DIALOGUE_REQ primitive is used in conjunction with ap_snd() and
the XAP Library environment to request that the dialogue is ended when the transaction is
committed.

The dialogue must have a coordination level of commitment.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_DEFERRED_END_DIALOGUE_REQ primitive and restrictions on its use.

To send a TP_DEFERRED_END_DIALOGUE_REQ primitive, the arguments to ap_snd() must
be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_DEFERRED_END_DIALOGUE_REQ.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
Refer to the manual page for ap_snd().

ACSE/Presentation: Transaction Processing API (XAP-TP) 157

TP_DEFERRED_END_DIALOGUE_IND XAP-TP Primitives

NAME
TP_DEFERRED_END_DIALOGUE_IND — the dialogue is to be ended when the transaction
commits

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_DEFERRED_END_DIALOGUE_IND primitive is used in conjunction with ap_rcv() and
the XAP Library environment to indicate that the dialogue is to be ended when the transaction is
committed.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_DEFERRED_END_DIALOGUE_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_DEFERRED_END_DIALOGUE_IND.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

158 X/Open CAE Specification

XAP-TP Primitives TP_DEFERRED_GRANT_CONTROL_REQ

NAME
TP_DEFERRED_GRANT_CONTROL_REQ — request control pass to other end of dialogue on
transaction commitment

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_DEFERRED_GRANT_CONTROL_REQ primitive is used in conjunction with ap_snd()
and the XAP Library environment to request that control pass to the other end of the dialogue on
transaction commitment.

The dialogue must have a coordination level of commitment.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_DEFERRED_GRANT_CONTROL_REQ primitive and restrictions on its use.

To send a TP_DEFERRED_GRANT_CONTROL_REQ primitive, the arguments to ap_snd() must
be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_DEFERRED_GRANT_CONTROL_REQ.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
Refer to the manual page for ap_snd().

ACSE/Presentation: Transaction Processing API (XAP-TP) 159

TP_DEFERRED_GRANT_CONTROL_IND XAP-TP Primitives

NAME
TP_DEFERRED_GRANT_CONTROL_IND — indicates that control is to pass on transaction
completion

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_DEFERRED_GRANT_CONTROL_IND primitive is used in conjunction with ap_rcv()
and the XAP Library environment to indicate that control is to pass to this end of the dialogue
on transaction completion.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_DEFERRED_GRANT_CONTROL_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_DEFERRED_GRANT_CONTROL_IND.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

160 X/Open CAE Specification

XAP-TP Primitives TP_DIALOGUE_LOST_IND

NAME
TP_DIALOGUE_LOST_IND — indicates that one of the coordinated dialogues of the node has
been lost

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_DIALOGUE_LOST_IND primitive is used in conjunction with ap_rcv() and the XAP
Library environment to indicate that one of the coordinated dialogues of the node has been
abnormally terminated.

When a coordinated dialogue is abnormally terminated, all other XAP-TP instances supporting
an active coordinated dialogue for the node and the nominated control instance (if this is not
also supporting an active coordinated dialogue) receive a TP_DIALOGUE_LOST_IND primitive
to allow the user to coordinate failure related actions.

If the transaction is being rolled back as a result of this failure, any in progress send or receive
will have been terminated.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_DIALOGUE_LOST_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_DIALOGUE_LOST_IND.

cdata The following members of cdata are used for this primitive:

long tp_options; /* rollback / failure details */
long tp_fail_count; /* count of failure conditions */
tp_dialog_env_t *tp_env; /* dialogue attribute values */

cdata→tp_options indicates if the transaction in which the recipient is involved has
commenced rollback as a result of the failure, and whether the dialogue which
failed was from the superior or to a subordinate. The bit values in
cdata→tp_options used are:

AP_TP_ROLLBACK
If set, the transaction has commenced rollback as a result of this dialogue loss.
If unset, no rollback is occurring as a result of this dialogue loss or rollback
was already in progress at the time of the dialogue loss.

AP_TP_SUPERIOR
If set, the dialogue lost was from the superior. If unset, it was to a
subordinate.

ACSE/Presentation: Transaction Processing API (XAP-TP) 161

TP_DIALOGUE_LOST_IND XAP-TP Primitives

cdata→tp_fail_count holds the number of failure conditions which have occurred on
the transaction node since the start of the transaction, and must be used when
issuing a TP_DONE_REQ primitive to acknowledge completion of any failure
related actions.

cdata→tp_env can be used to retrieve the values of the XAP environment attributes
that correspond to parameters of TP-DIALOGUE-LOST indication service. If the
AP_TP_COPYENV attribute in the XAP environment is FALSE, these values are
not returned in cdata and cdata→tp_env is set to NULL when ap_rcv() returns. If
AP_TP_COPYENV is TRUE, cdata→tp_env points to a tp_dialog_env_t structure,
and the following elements are used for this primitive:

unsigned long mask; /* bit mask */
ap_dtnid_t dtnid; /* AP_DTNID */
ap_ttnid_t ttnid; /* AP_TTNID */

The mask element of this structure is a bit mask indicating which parameters
associated with this primitive were received. Values for this field are formed by
OR’ing together zero or more of the flags listed in the table below. When a bit is
set, the specified parameter was received. Otherwise, the parameter was not
received and the corresponding field in the tp_dialog_env_t structure is not set.

Flag Parameter Field
AP_DTNID_BIT Dialogue Tree Node Identifier dtnid
AP_TTNID_BIT Transaction Tree Node Identifier ttnid

The dialogue tree node identifier dtnid will be set to the value allocated to the
TPSUI when it was started. The transaction tree node identifier ttnid will only be
present if the user has set a value in this attribute for the node.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

162 X/Open CAE Specification

XAP-TP Primitives TP_DONE_REQ

NAME
TP_DONE_REQ — used to indicate that local commitment is complete

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_DONE_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to indicate that commitment of local resources, and/or failure-related actions have
been completed for the node identified by dtnid or ttnid.

If not all failure conditions have been taken into account by the user, the TP_DONE_REQ
primitive will be refused with the error code [AP_TP_BADCD_FAIL_COUNT]. The user should
receive the pending failure indication(s) and resubmit the TP_DATA_REQ primitive with an
updated cdata→tp_fail_count when any failure-related actions necessary have been completed.

The primitive must be issued on the nominated control instance for the transaction node.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_DONE_REQ primitive and restrictions on its use.

To send a TP_DONE_REQ primitive, the arguments to ap_snd() must be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_DONE_REQ.

cdata The following members of cdata are used for this primitive:

long res; /* local outcome */
long tp_fail_count; /* count of failure conditions */
tp_dialog_env_t *tp_env; /* dialogue attribute values */

cdata→res is used to return the results of local commitment or rollback by the
TPSUI. The following values may be used:

AP_TP_NONE
Commit or rollback has completed successfully.

AP_TP_HEUR_MIX
The bound data handled by the TPSUI are in a state inconsistent with the
outcome of the transaction and the inconsistency cannot be corrected.

AP_TP_HEUR_HAZ
A failure occurred within the TPSUI which may prevent reporting of data
inconsistency, and the TPSUI may not handle this situation.

cdata→tp_fail_count holds the number of failure conditions that have occurred on
the node for which failure related actions have been completed.

cdata→tp_env can be used to override XAP environment attributes values used as
parameters to the TP-DONE request service. If no attribute values are to be

ACSE/Presentation: Transaction Processing API (XAP-TP) 163

TP_DONE_REQ XAP-TP Primitives

overridden, cdata→tp_env may be set to NULL. Otherwise, cdata→tp_env must
point to a tp_dialog_env_t structure, and the following elements are used for this
primitive:

unsigned long mask; /* bit mask */
ap_dtnid_t dtnid; /* AP_DTNID */
ap_ttnid_t ttnid; /* AP_TTNID */

The mask element of this structure is a bit mask indicating which environment
attributes associated with this primitive are to be overridden. Values for this field
are formed by setting zero or one of the flags listed in the table below. When a bit
is set, the value of the associated parameter will be taken from cdata rather than
from the XAP environment. Specifying a value for a particular parameter in cdata
has the same effect on the value of the corresponding attribute in the XAP
environment as calling ap_set_env().

Flag Parameter Field
AP_DTNID_BIT Dialogue Tree Node Identifier dtnid
AP_TTNID_BIT Transaction Tree Node Identifier ttnid

The user may identify the transaction using one of:

• the Dialogue Tree Node Identifier AP_DTNID

• the Transaction Tree Node Identifier AP_TTNID.

If the XAP instance has the TP_DIALOGUE category selected, it is only possible to
indicate completion of commitment of the current transaction on the dialogue tree
referenced by a dialogue on the XAP instance.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
In addition to those listed in the manual page for ap_snd(), the following error conditions can be
reported for this primitive:

[AP_TP_BADCD_FAIL_COUNT]
The given tp_fail_count does not match the XAP-TP provider’s count of failure conditions.

[AP_TP_BAD_NODE]
An extant transaction node is not identified by AP_DTNID or AP_TTNID attributes.

164 X/Open CAE Specification

XAP-TP Primitives TP_END_DIALOGUE_REQ

NAME
TP_END_DIALOGUE_REQ — used to request ending of the dialogue

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_END_DIALOGUE_REQ primitive is used in conjunction with ap_snd() and the XAP
Library environment to request ending of the dialogue.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_END_DIALOGUE_REQ primitive and restrictions on its use.

To send a TP_END_DIALOGUE_REQ primitive, the arguments to ap_snd() must be set as
described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_END_DIALOGUE_REQ.

cdata The following members of cdata are used for this primitive:

long tp_options; /* confirmation requested */

cdata→tp_options is used to specify if confirmation of this primitive is required.
The possible bit settings of cdata→tp_options for this primitive are:

AP_TP_CONFIRM
If set, the recipient must confirm ending of the dialogue by issuing a
TP_END_DIALOGUE_RSP.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
In addition to the errors listed on the ap_snd() manual page, the following
TP_END_DIALOGUE_REQ errors may occur:

[AP_TP_BADCD_TP_OPTIONS]
The setting of cdata→tp_options is invalid.

ACSE/Presentation: Transaction Processing API (XAP-TP) 165

TP_END_DIALOGUE_IND XAP-TP Primitives

NAME
TP_END_DIALOGUE_IND — used to indicate ending of a dialogue

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_END_DIALOGUE_IND primitive is used in conjunction with ap_rcv() and the XAP
Library environment to indicate that the dialogue is to be ended.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_END_DIALOGUE_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_END_DIALOGUE_IND.

cdata The following members of cdata are used for this primitive:

long tp_options; /* confirmation requested */

cdata→tp_options is used to specify if confirmation of this primitive is required.
The following bit values are used for this field:

AP_TP_CONFIRM
If set, the user must confirm ending of the dialogue by issuing a
TP_END_DIALOGUE_RSP.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

166 X/Open CAE Specification

XAP-TP Primitives TP_END_DIALOGUE_RSP

NAME
TP_END_DIALOGUE_RSP — used to respond to a end dialogue request

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_END_DIALOGUE_RSP primitive is used in conjunction with ap_snd() and the XAP
Library environment to respond to a TP_END_DIALOGUE_IND which has specifically
requested confirmation via the AP_TP_CONFIRM bit setting of cdatatp_options.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_END_DIALOGUE_RSP primitive and restrictions on its use.

To send a TP_END_DIALOGUE_RSP primitive, the arguments to ap_snd() must be set as
described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_END_DIALOGUE_RSP.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
Refer to the manual page for ap_snd().

ACSE/Presentation: Transaction Processing API (XAP-TP) 167

TP_END_DIALOGUE_CNF XAP-TP Primitives

NAME
TP_END_DIALOGUE_CNF — used to confirm ending of a dialogue

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_END_DIALOGUE_CNF primitive is used in conjunction with ap_rcv() and the XAP
Library environment to confirm that a dialogue has been ended.

Confirmation must have been requested in the TP_END_DIALOGUE_REQ via the
AP_TP_CONFIRM bit setting of cdata→tp_options in order to receive this primitive.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_END_DIALOGUE_CNF primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_END_DIALOGUE_CNF.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

168 X/Open CAE Specification

XAP-TP Primitives TP_FLUSH_REQ

NAME
TP_FLUSH_REQ — used to flush internally queued pdus

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_FLUSH_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to flush any PDUs which are queued internally due to application of the TP
concatenation rules. The PDUs are passed immediately to the presentation layer. The primitive
has no effect if no PDUs are queued.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_FLUSH_REQ primitive and restrictions on its use.

To send a TP_FLUSH_REQ primitive, the arguments to ap_snd() must be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_FLUSH_REQ.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
Refer to the manual page for ap_snd().

ACSE/Presentation: Transaction Processing API (XAP-TP) 169

TP_GRANT_CONTROL_REQ XAP-TP Primitives

NAME
TP_GRANT_CONTROL_REQ — used to pass control of the dialogue

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_GRANT_CONTROL_REQ primitive is used in conjunction with ap_snd() and the XAP
Library environment to pass control of the dialogue away from the sending node.

The dialogue must have the polarised control functional unit selected, and control must
currently reside with the sending node.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_GRANT_CONTROL_REQ primitive and restrictions on its use.

To send a TP_GRANT_CONTROL_REQ primitive, the arguments to ap_snd() must be set as
described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_GRANT_CONTROL_REQ.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
Refer to the manual page for ap_snd().

170 X/Open CAE Specification

XAP-TP Primitives TP_GRANT_CONTROL_IND

NAME
TP_GRANT_CONTROL_IND — used to indicate dialogue control has passed to the user

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_GRANT_CONTROL_IND primitive is used in conjunction with ap_rcv() and the XAP
Library environment to indicate that control of the dialogue has passed to the receiving node.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_GRANT_CONTROL_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_GRANT_CONTROL_IND.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

ACSE/Presentation: Transaction Processing API (XAP-TP) 171

TP_HANDSHAKE_REQ XAP-TP Primitives

NAME
TP_HANDSHAKE_REQ — used to request a synchronising handshake

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_HANDSHAKE_REQ primitive is used in conjunction with ap_snd() and the XAP
Library environment to request a synchronising handshake on the dialogue.

The dialogue must have the handshake functional unit selected, and either the polarised control
or shared control functional unit selected.

If the shared control functional unit is selected on the dialogue, the tp_options parameter
indicates the urgency with which a response is required.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_HANDSHAKE_REQ primitive and restrictions on its use.

To send a TP_HANDSHAKE_REQ primitive, the arguments to ap_snd() must be set as
described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_HANDSHAKE_REQ.

cdata The following members of cdata are used for this primitive:

long tp_options; /* confirmation requested */

cdata→tp_options is used to specify the urgency with which confirmation is
required. This argument is only valid if the shared control functional unit is
selected on the dialogue. The following bit settings are used in this field:

AP_TP_URGENT
If set, minimal delay is requested for receiving the TP_HANDSHAKE_CNF to
complete the handshake. If unset, there is no particular delay requirement.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
In addition to the errors listed on the ap_snd() manual page, the following
TP_HANDSHAKE_REQ errors may occur:

[AP_TP_BADCD_TP_OPTIONS]
The setting of cdata→tp_options is invalid.

172 X/Open CAE Specification

XAP-TP Primitives TP_HANDSHAKE_IND

NAME
TP_HANDSHAKE_IND — used to indicate a request for a synchronising handshake

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_HANDSHAKE_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate a request to synchronise processing by a handshake exchange.

If the shared control functional unit is selected on the dialogue and the requestor indicated that
the response was urgent, by setting the AP_TP_URGENT bit of the cdata→tp_options field, the
TPSP will have recorded this, and the handshake response will be sent immediately.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_HANDSHAKE_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_HANDSHAKE_IND.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

ACSE/Presentation: Transaction Processing API (XAP-TP) 173

TP_HANDSHAKE_RSP XAP-TP Primitives

NAME
TP_HANDSHAKE_RSP — used to respond to a handshake request

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_HANDSHAKE_RSP primitive is used in conjunction with ap_snd() and the XAP Library
environment to respond to a handshake request on a dialogue.

If the shared control functional unit is selected on the dialogue and the requestor indicated that
the response was urgent, by setting the AP_TP_URGENT bit of the cdata→tp_options field when
sending the TP_HANDSHAKE_REQ, the TPSP will have recorded this, and the handshake
response will sent immediately.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_HANDSHAKE_RSP primitive and restrictions on its use.

To send a TP_HANDSHAKE_RSP primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_HANDSHAKE_RSP.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
Refer to the manual page for ap_snd().

174 X/Open CAE Specification

XAP-TP Primitives TP_HANDSHAKE_CNF

NAME
TP_HANDSHAKE_CNF — confirms a handshake request

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_HANDSHAKE_CNF primitive is used in conjunction with ap_rcv() and the XAP Library
environment to confirm completion of a handshake request.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_HANDSHAKE_CNF primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_HANDSHAKE_CNF.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

ACSE/Presentation: Transaction Processing API (XAP-TP) 175

TP_HANDSHAKE_AND_GRANT_CONTROL_REQ XAP-TP Primitives

NAME
TP_HANDSHAKE_AND_GRANT_CONTROL_REQ — used to request a synchronising
handshake and to grant control

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_HANDSHAKE_AND_GRANT_CONTROL_REQ primitive is used in conjunction with
ap_snd() and the XAP Library environment to request synchronising processing by a handshake
exchange and to simultaneously grant control of the dialogue.

The dialogue must have the polarised control and handshake functional units selected, and
control must currently reside with the sending node.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_HANDSHAKE_AND_GRANT_CONTROL_REQ primitive and restrictions on
its use.

To send a TP_HANDSHAKE_AND_GRANT_CONTROL_REQ primitive, the arguments to
ap_snd() must be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to
TP_HANDSHAKE_AND_GRANT_CONTROL_REQ.

cdata The following members of cdata are used for this primitive:

long tp_options; /* confirmation requested */

cdata→tp_options is used to specify the urgency with which confirmation is
required. This argument is only valid if the shared control functional unit is
selected on the dialogue. The following bit settings are used in this field:

AP_TP_URGENT
If set, minimal delay is requested for receiving the
TP_HANDSHAKE_AND_GRANT_CONTROL_CNF to complete the
handshake. If unset, there is no particular delay requirement.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

176 X/Open CAE Specification

XAP-TP Primitives TP_HANDSHAKE_AND_GRANT_CONTROL_REQ

ERRORS
In addition to the errors listed on the ap_snd() manual page, the following
TP_HANDSHAKE_AND_GRANT_CONTROL_REQ errors may occur:

[AP_TP_BADCD_TP_OPTIONS]
The setting of cdata→tp_options is invalid.

ACSE/Presentation: Transaction Processing API (XAP-TP) 177

TP_HANDSHAKE_AND_GRANT_CONTROL_IND XAP-TP Primitives

NAME
TP_HANDSHAKE_AND_GRANT_CONTROL_IND — used to request a synchronising
handshake and to grant control

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_HANDSHAKE_AND_GRANT_CONTROL_IND primitive is used in conjunction with
ap_rcv() and the XAP Library environment to indicate a request to synchronise processing by a
handshake exchange and to indicate that control of the dialogue has passed to the receiving
node.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_HANDSHAKE_AND_GRANT_CONTROL_IND primitive and restrictions on
its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_HANDSHAKE_AND_GRANT_CONTROL_IND.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

178 X/Open CAE Specification

XAP-TP Primitives TP_HANDSHAKE_AND_GRANT_CONTROL_RSP

NAME
TP_HANDSHAKE_AND_GRANT_CONTROL_RSP — used to respond to a handshake and
grant control request

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_HANDSHAKE_AND_GRANT_CONTROL_RSP primitive is used in conjunction with
ap_snd() and the XAP Library environment to indicate completion of the synchronisation
activity requested in a previous handshake and grant control indication on the dialogue.

If the requestor indicated that the response was urgent, by setting the AP_TP_URGENT bit of
the cdata→tp_options field when sending the
TP_HANDSHAKE_AND_GRANT_CONTROL_REQ, the TPSP will have recorded this, and the
response will sent immediately.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_HANDSHAKE_AND_GRANT_CONTROL_RSP primitive and restrictions on
its use.

To send a TP_HANDSHAKE_AND_GRANT_CONTROL_RSP primitive, the arguments to
ap_snd() must be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_HANDSHAKE_AND_GRANT_CONTROL_RSP.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
Refer to the manual page for ap_snd().

ACSE/Presentation: Transaction Processing API (XAP-TP) 179

TP_HANDSHAKE_AND_GRANT_CONTROL_CNF XAP-TP Primitives

NAME
TP_HANDSHAKE_AND_GRANT_CONTROL_CNF — used to confirm completion of a
synchronising handshake and grant control

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_HANDSHAKE_AND_GRANT_CONTROL_CNF primitive is used in conjunction with
ap_rcv() and the XAP Library environment to confirm completion of a synchronising handshake
and grant control request.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_HANDSHAKE_AND_GRANT_CONTROL_CNF primitive and restrictions on
its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_HANDSHAKE_AND_GRANT_CONTROL_CNF.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

180 X/Open CAE Specification

XAP-TP Primitives TP_HEURISTIC_REPORT_IND

NAME
TP_HEURISTIC_REPORT_IND — indicates a possible or actual heuristic condition

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_HEURISTIC_REPORT_IND primitive is used in conjunction with ap_rcv() and the XAP
Library environment to indicate a possible or actual heuristic inconsistency within the
subordinate subtree below the dialogue.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_HEURISTIC_REPORT_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_HEURISTIC_REPORT_IND.

cdata The following members of cdata are used for this primitive:

long res; /* type of inconsistency */

cdata→res is used to indicate the heuristic condition. The following values are legal
for this field:

AP_TP_HEUR_MIX
The state of the data of the subordinate subtree is inconsistent with the
outcome of the transaction, and the inconsistency cannot be corrected.

AP_TP_HEUR_HAZ
A failure has occurred which may prevent reporting of data inconsistency in
the subordinate subtree.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

ACSE/Presentation: Transaction Processing API (XAP-TP) 181

TP_LOG_DAMAGE_IND XAP-TP Primitives

NAME
TP_LOG_DAMAGE_IND — used to log a heuristic condition in the subtree

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_LOG_DAMAGE_IND primitive is used in conjunction with ap_rcv() and the XAP
Library environment to update a ready or commit log record with information about possible or
actual heuristic inconsistency in the data of the subtree. The log record to be updated is
specified by dtnid and ttnid (if set).

This primitive will only be issued on the nominated control instance for the transaction node.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_LOG_DAMAGE_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_LOG_DAMAGE_IND.

cdata The following members of cdata are used for this primitive:

tp_dialog_env_t *tp_env; /* dialogue attribute values */

cdata→tp_env can be used to retrieve the values of the XAP environment attributes
that correspond to parameters of TP-LOG-DAMAGE indication service. If the
AP_TP_COPYENV attribute in the XAP environment is FALSE, these values will
not be returned in cdata and cdata→tp_env will be set to NULL when ap_rcv()
returns. If AP_TP_COPYENV is TRUE, cdata→tp_env will point to a
tp_dialog_env_t structure, and the following elements are used for this primitive:

unsigned long mask; /* bit mask */
ap_dtnid_t dtnid; /* AP_DTNID */
ap_ttnid_t ttnid; /* AP_TTNID */

The mask element of this structure is a bit mask indicating which parameters
associated with this primitive were received. Values for this field are formed by
setting zero or one of the flags listed in the table below. When a bit is set, the
specified parameter was received. Otherwise, the parameter was not received and
the corresponding field in the tp_dialog_env_t structure is not set.

Flag Parameter Field
AP_DTNID_BIT Dialogue Tree Node Identifier dtnid
AP_TTNID_BIT Transaction Tree Node Identifier ttnid

182 X/Open CAE Specification

XAP-TP Primitives TP_LOG_DAMAGE_IND

The dialogue tree node identifier dtnid will be set to the value allocated to the
TPSUI when it was started. The transaction tree node identifier ttnid will only be
present if the user has set a value in this attribute for the node.

ubuf Updated log record.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

ACSE/Presentation: Transaction Processing API (XAP-TP) 183

TP_MANAGE_REQ XAP-TP Primitives

NAME
TP_MANAGE_REQ — changes the nominated control instance of a transaction node

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_MANAGE_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to change the nominated control instance of a transaction node. It is issued on the
control instance to which the transaction node is to be transferred.

If successful, the XAP-TP provider queues a TP_NODE_STATUS_IND primitive on the instance.
This TP_NODE_STATUS_IND primitive returns the current state of the node and current log
record (if any) to enable the user to synchronise processing with the XAP-TP provider.

Note that due to the asynchronous nature of the XAP-TP interface, previously queued commit
and log primitives may still be received on the original control instance (if still available). These
primitives may be safely ignored.

If the transaction node, whose nominated control instance is to be changed, has already
completed commitment and has queued a TP_COMMIT_COMPLETE_IND for the user, it may
have ceased to exist. If it no longer exists the user will receive the [AP_TP_BAD_NODE] error
code, from which they can infer that the transaction node has successfully completed
commitment and so they may safely delete any associated log records.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_MANAGE_REQ primitive and restrictions on its use.

To send a TP_MANAGE_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_MANAGE_REQ.

cdata The following members of cdata are used for this primitive:

tp_dialog_env_t *tp_env; /* dialogue attribute values */

cdata→tp_env can be used to override XAP environment attributes values used as
parameters to the TP-MANAGE request service. If no attribute values are to be
overridden, cdata→tp_env may be set to NULL. Otherwise, cdata→tp_env must
point to a tp_dialog_env_t structure, and the following elements are used for this
primitive:

unsigned long mask; /* bit mask */
ap_dtnid_t dtnid; /* AP_DTNID */
ap_ttnid_t ttnid; /* AP_TTNID */

The mask element of this structure is a bit mask indicating which environment
attributes associated with this primitive are to be overridden. Values for this field

184 X/Open CAE Specification

XAP-TP Primitives TP_MANAGE_REQ

are formed by setting zero or one of the flags listed in the table below. When a bit
is set, the value of the associated parameter will be taken from cdata rather than
from the XAP environment. Specifying a value for a particular parameter in cdata
has the same effect on the value of the corresponding attribute in the XAP
environment as calling ap_set_env().

Flag Parameter Field
AP_DTNID_BIT Dialogue Tree Node Identifier dtnid
AP_TTNID_BIT Transaction Tree Node Identifier ttnid

The user may identify the transaction node whose control instance is being
changed by either:

• the Dialogue Tree Node Identifier AP_DTNID

• the Transaction Tree Node Identifier AP_TTNID.

If the XAP instance has the TP_DIALOGUE category selected, the instance can
only become the control instance for a transaction node current on the dialogue
tree node referenced by the XAP instance.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
In addition to the errors listed on the ap_snd() manual page, the following errors may occur:

[AP_TP_BAD_URCH]
The node does not belong to the same recovery context group as the XAP-TP instance.

[AP_TP_BAD_NODE]
AP_TTNID or AP_DTNID does not identify an existing node.

ACSE/Presentation: Transaction Processing API (XAP-TP) 185

TP_NODE_STATUS_IND XAP-TP Primitives

NAME
TP_NODE_STATUS_IND — returns the status of a transaction node

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_NODE_STATUS_IND primitive is used in conjunction with ap_rcv() and the XAP
Library environment to return details of the current state and log record (if any) of a transaction
node. It is received during control instance resumption or as a result of a TP_MANAGE_REQ to
change the control instance of a node.

This primitive will only be issued on the nominated control instance for the transaction node.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_NODE_STATUS_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_NODE_STATUS_IND.

cdata The following members of cdata are used for this primitive:

long tp_fail_count; /* count of failure conditions */
tp_dialog_env_t *tp_env; /* dialogue attribute values */

cdata→tp_fail_count holds the number of failure conditions which have occurred on
the transaction node since the start of the transaction, and must be used when
issuing a TP_DONE_REQ primitive to acknowledge completion of any failure
related actions. The user can determine whether a TP_DONE_REQ primitive is
required for the node, to acknowledge completion of failure related actions, by
examining the node’s state returned in AP_TP_STATE attribute.

cdata→tp_env can be used to retrieve the values of the XAP environment attributes
for the node whose details are being returned. If the AP_TP_COPYENV attribute
in the XAP environment is false, these values will not be returned in cdata and
cdata→tp_env will be set to NULL when ap_rcv() returns. If AP_TP_COPYENV is
true, cdata→tp_env will point to a tp_dialog_env_t structure, and the following
elements are used for this primitive:

unsigned long mask; /* bit mask */
ap_aaid_t aaid; /* AP_AAID */
ap_brid_t brid; /* AP_BRID */
ap_dtnid_t dtnid; /* AP_DTNID */
ap_ttnid_t ttnid; /* AP_TTNID */
unsigned long tp_state; /* AP_TP_STATE */

186 X/Open CAE Specification

XAP-TP Primitives TP_NODE_STATUS_IND

The mask element of this structure is a bit mask indicating which parameters
associated with this primitive were received. Values for this field are formed by
OR’ing together zero or more of the flags listed in the table below. When a bit is
set, the specified parameter was received. Otherwise, the parameter was not
received and the corresponding field in the tp_dialog_env_t structure is not set.

Flag Parameter Field
AP_AAID_BIT Atomic Action Identifier aaid
AP_BRID_BIT Branch Identifier brid
AP_DTNID_BIT Dialogue Tree Node Identifier dtnid
AP_TTNID_BIT Transaction Tree Node Identifier ttnid
AP_TP_STATE_BIT Transaction Tree Node State tp_state

The dialogue tree node identifier dtnid will be set to the value allocated to the
TPSUI when it was started. The transaction tree node identifier ttnid will only be
present if the user has set a value in this attribute for the node.

ubuf Last issued log record for the node. NULL if none has been issued.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

ACSE/Presentation: Transaction Processing API (XAP-TP) 187

TP_P_ABORT_IND XAP-TP Primitives

NAME
TP_P_ABORT_IND — used to indicate the failure of a dialogue

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_P_ABORT_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate that the TP service provider has detected abnormal termination of the
dialogue.

If the dialogue was coordinated, the nodes updated failure count is returned and the failure is
propagated to the nominated control instance for the node, and to each other active coordinated
instance of the node, via a TP_DIALOGUE_LOST_IND primitive.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_P_ABORT_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to TP_P_ABORT_IND.

cdata The following members of cdata are used for this primitive:

long diag; /* reason for failure */
long tp_options; /* rollback transaction? */
long tp_fail_count; /* count of failure conditions */

cdata→diag indicates the reason for the failure. The possible values are:

AP_TP_PERMANENT
A permanent error condition has been encountered.

AP_TP_TRANSIENT
A transient error condition has been encountered.

AP_TP_PROTOCOL_ERROR
A protocol error has been encountered.

AP_TP_REJ_TRANSACTION
A TP_BEGIN_TRANSACTION_IND primitive was not issued because the
recipient is already involved in a transaction or because of a local condition.

AP_TP_END_CLASH
Two TP_END_DIALOGUE primitives with the confirmation parameter have
collided.

188 X/Open CAE Specification

XAP-TP Primitives TP_P_ABORT_IND

AP_TP_BEG_END_CLASH
A TP_BEGIN_TRANSACTION_REQ and a TP_END_DIALOGUE_REQ
primitive have collided.

cdata→tp_options indicates if the transaction in which the recipient is involved is to
be rolled back. The bit value in cdata→tp_options used is:

AP_TP_ROLLBACK
If set, the transaction is to be rolled back. If unset, no rollback is to occur or
rollback is already in progress.

cdata→tp_fail_count holds the number of failure conditions which have occurred on
the transaction node since the start of the transaction, and must be used when
issuing a TP_DONE_REQ primitive to acknowledge completion of any failure
related actions. Only valid if the dialogue was coordinated.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

ACSE/Presentation: Transaction Processing API (XAP-TP) 189

TP_PREPARE_REQ XAP-TP Primitives

NAME
TP_PREPARE_REQ — used to request preparation of a transaction branch

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_PREPARE_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to request a subordinate subtree to complete processing for the current transaction
and place its data in the ready to commit state.

The dialogue must be to a subordinate.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_PREPARE_REQ primitive and restrictions on its use.

To send a TP_PREPARE_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_PREPARE_REQ.

cdata The following members of cdata are used for this primitive:

long tp_options; /* data permitted ? */

cdata→tp_options is used to specify if the receiving node can issue further data
requests. The following bit settings are used in this field:

AP_TP_PERMITTED
The receiving node can issue further data requests.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
In addition to the errors listed on the ap_snd() manual page, the following TP_PREPARE_REQ
errors may occur:

[AP_TP_BADCD_TP_OPTIONS]
The setting of cdata→tp_options is invalid.

190 X/Open CAE Specification

XAP-TP Primitives TP_PREPARE_IND

NAME
TP_PREPARE_IND — used to indicate a request to commit a transaction

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_PREPARE_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate a request to the application to prepare for commitment of the current
transaction.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_PREPARE_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to TP_PREPARE_IND.

cdata The following members of cdata are used for this primitive:

long tp_options; /* data permitted ? */

cdata→tp_options is used to specify if the receiving node can issue further data
requests. The following bit settings are used in this field:

AP_TP_PERMITTED
The receiving node can issue further data requests.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

ACSE/Presentation: Transaction Processing API (XAP-TP) 191

TP_PREPARE_ALL_REQ XAP-TP Primitives

NAME
TP_PREPARE_ALL_REQ — used to perform the first phase of commit

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_PREPARE_ALL_REQ primitive is used in conjunction with ap_snd() and the XAP
Library environment to ensure that the entire subordinate subtree of the node is brought to the
ready to commit state.

It causes a prepare request to be issued on each subordinate dialogue that has not had an explicit
TP_PREPARE_REQ issued.

When the first phase is complete, a TP_READY_ALL_IND is issued indicating the nodes subtree
is in the ready to commit state.

Note that this primitive must be issued even at a leaf node (which has no subordinate dialogues)
so that a ready record is logged by the transaction manager.

The primitive must be issued on the nominated control instance for the transaction node.

The dtnid or ttnid arguments identify the node whose subtree is to be prepared.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_PREPARE_ALL_REQ primitive and restrictions on its use.

To send a TP_PREPARE_ALL_REQ primitive, the arguments to ap_snd() must be set as
described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_PREPARE_ALL_REQ.

cdata The following members of cdata are used for this primitive:

tp_dialog_env_t *tp_env; /* dialogue attribute values */

cdata→tp_env can be used to override XAP environment attributes values used as
parameters to the TP-PREPARE-ALL request service. If no attribute values are to
be overridden, cdata→tp_env may be set to NULL. Otherwise, cdata→tp_env must
point to a tp_dialog_env_t structure, and the following elements are used for this
primitive:

unsigned long mask; /* bit mask */
ap_dtnid_t dtnid; /* AP_DTNID */
ap_ttnid_t ttnid; /* AP_TTNID */

The mask element of this structure is a bit mask indicating which environment
attributes associated with this primitive are to be overridden. Values for this field
are formed by setting zero or one of the flags listed in the table below. When a bit
is set, the value of the associated parameter will be taken from cdata rather than

192 X/Open CAE Specification

XAP-TP Primitives TP_PREPARE_ALL_REQ

from the XAP environment. Specifying a value for a particular parameter in cdata
has the same effect on the value of the corresponding attribute in the XAP
environment as calling ap_set_env().

flag parameter field
AP_DTNID_BIT Dialogue Tree Node Identifier dtnid
AP_TTNID_BIT Transaction Tree Node Identifier ttnid

The user may identify the transaction to be prepared using one of:

• the Dialogue Tree Node Identifier AP_DTNID

• the Transaction Tree Node Identifier AP_TTNID.

If the XAP instance has the TP_DIALOGUE category selected and is within a
dialogue, it is only possible to request preparation of the subtree belonging to the
node to which the dialogue is attached.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
In addition to those listed in the manual page for ap_snd(), the following error conditions can be
reported for this primitive:

[AP_TP_BAD_NODE]
An extant transaction node is not identified by AP_DTNID or AP_TTNID.

ACSE/Presentation: Transaction Processing API (XAP-TP) 193

TP_READY_IND XAP-TP Primitives

NAME
TP_READY_IND — used to indicate a subtree is ready to commit

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_READY_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate that the subordinate subtree has reached the ready to commit state.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_READY_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to TP_READY_IND.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

194 X/Open CAE Specification

XAP-TP Primitives TP_READY_ALL_IND

NAME
TP_READY_ALL_IND — used to indicate all subordinates are ready to commit

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_READY_ALL_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate that all subordinate dialogs have reported ready to commit.

The dtnid or ttnid indicate which node is reporting ready to commit.

This primitive will only be issued on the nominated control instance for the transaction node.

At an intermediate or leaf node the transaction manager must secure the log record prior to
reporting its willingness to participate in commitment by issuing a TP_COMMIT_REQ. At a
root node, the transaction manager must secure the log record prior to instructing the node to
commit by issuing a TP_COMMIT_REQ primitive (typically it would convert the log record into
a log-commit record prior to securing it). If the transaction manager chooses instead to rollback
the node, it issues a TP_ROLLBACK_REQ primitive without having secured the log record.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_READY_ALL_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_READY_ALL_IND.

cdata The following members of cdata are used for this primitive:

tp_dialog_env_t *tp_env; /* dialogue attribute values */

cdata→tp_env can be used to retrieve the values of the XAP environment attributes
that correspond to parameters of TP-READY-ALL indication service. If the
AP_TP_COPYENV attribute in the XAP environment is FALSE, these values will
not be returned in cdata and cdata→tp_env will be set to NULL when ap_rcv()
returns. If AP_TP_COPYENV is TRUE, cdata→tp_env will point to a
tp_dialog_env_t structure, and the following elements are used for this primitive:

unsigned long mask; /* bit mask */
ap_dtnid_t dtnid; /* AP_DTNID */
ap_ttnid_t ttnid; /* AP_TTNID */

The mask element of this structure is a bit mask indicating which parameters
associated with this primitive were received. Values for this field are formed by
setting zero or one of the flags listed in the table below. When a bit is set, the
specified parameter was received. Otherwise, the parameter was not received and

ACSE/Presentation: Transaction Processing API (XAP-TP) 195

TP_READY_ALL_IND XAP-TP Primitives

the corresponding field in the tp_dialog_env_t structure is not set.

Flag Parameter Field
AP_DTNID_BIT Dialogue Tree Node Identifier dtnid
AP_TTNID_BIT Transaction Tree Node Identifier ttnid

The dialogue tree node identifier dtnid will be set to the value allocated to the
TPSUI when it was started. The transaction tree node identifier ttnid will only be
present if the user has set a value in this attribute for the node.

ubuf Log ready record.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

196 X/Open CAE Specification

XAP-TP Primitives TP_RECOVER_REQ

NAME
TP_RECOVER_REQ — used to pass current log records to XAP-TP

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_RECOVER_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to pass a current log record to XAP-TP during a recovery context group restart.

This primitive can only be issued on one of the control instances within the recovery context
group. If processing of a log record would result in two transaction nodes with the same
TTNID, the log record is refused with the error code [AP_TP_BAD_TTNID].

If a TPPM is successfully reconstructed, the DTNID of the node is returned.

If the user passes a log record which does not belong to the bound AE-title or to the bound
recovery context group, the XAP-TP provider will detect it and refuse the log record with the
error code [AP_TP_BAD_LOG]. No TPPM will be constructed for the log record, and the user
may continue to submit further log records in later calls.

For a log-ready or log-commit record, XAP-TP reconstructs a TPPM. For a log-damage record,
XAP-TP establishes an internal heuristic_damage entry. Recovery for a reconstructed TPPM will
not commence until the restart is successfully completed.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_RECOVER_REQ primitive and restrictions on its use.

To send a TP_RECOVER_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_RECOVER_REQ.

cdata The following members of cdata are used for this primitive:

tp_dialog_env_t *tp_env; /* dialogue attribute values */

cdata→tp_env can be used to retrieve the values of the XAP environment attributes
that correspond to parameters of the TP-RECOVER request service. If the
AP_TP_COPYENV attribute in the XAP environment is FALSE, these values will
not be returned in cdata, and cdata→tp_env is set to NULL when ap_rcv() returns. If
AP_TP_COPYENV is TRUE, cdata→tp_env points to a tp_dialog_env_t structure,
and the following elements are used for this primitive:

unsigned long mask; /* bit mask */
ap_dtnid_t dtnid; /* AP_DTNID */
ap_ttnid_t ttnid; /* AP_TTNID */

The mask element of this structure is a bit mask indicating which parameters
associated with this primitive were returned. Values for this field are formed by

ACSE/Presentation: Transaction Processing API (XAP-TP) 197

TP_RECOVER_REQ XAP-TP Primitives

setting zero or one of the flags listed in the table below. When a bit is set, the
specified parameter is present. Otherwise, the parameter was not received and the
corresponding field in the tp_dialog_env_t structure is not set.

Flag Parameter Field
AP_DTNID_BIT Dialogue Tree Node Identifier dtnid
AP_TTNID_BIT Transaction Tree Node Identifier dtnid

The dialogue tree node identifier is set to the newly allocated value. The
transaction tree node identifier will only be present if it was present in the log
record.

ubuf The log record. Note that the log record will have been passed to the transaction
manager by a previous TP_READY_ALL_IND or TP_LOG_DAMAGE_IND
primitive.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
In addition to those listed in the manual page for ap_snd(), the following error conditions can be
reported for this primitive:

[AP_TP_BAD_LOG]
The log record supplied does not belong to AE-title the instance is bound to, or does not
belong to the recovery context group the instance is bound to.

[AP_TP_BAD_TTNID]
The TTNID in the log record supplied is already in use by another transaction node in the
recovery context group.

198 X/Open CAE Specification

XAP-TP Primitives TP_REQUEST_CONTROL_REQ

NAME
TP_REQUEST_CONTROL_REQ — used to request control of the dialogue

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_REQUEST_CONTROL_REQ primitive is used in conjunction with ap_snd() and the
XAP Library environment to request control of the dialogue be passed to the caller.

The primitive can only be issued if the polarised control functional unit is selected and control
currently resides with the remote end of the dialogue.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_REQUEST_CONTROL_REQ primitive and restrictions on its use.

To send a TP_REQUEST_CONTROL_REQ primitive, the arguments to ap_snd() must be set as
described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_REQUEST_CONTROL_REQ.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
Refer to the manual page for ap_snd().

ACSE/Presentation: Transaction Processing API (XAP-TP) 199

TP_REQUEST_CONTROL_IND XAP-TP Primitives

NAME
TP_REQUEST_CONTROL_IND — indicates a request for control of the dialogue

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_REQUEST_CONTROL_IND primitive is used in conjunction with ap_rcv() and the XAP
Library environment to indicate a request for control of the dialogue.

The caller should pass control of the dialogue at a suitable point by calling either
TP_GRANT_CONTROL_REQ or TP_HANDSHAKE_AND_GRANT_CONTROL_REQ.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_REQUEST_CONTROL_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_REQUEST_CONTROL_IND.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

200 X/Open CAE Specification

XAP-TP Primitives TP_RESUME_REQ

NAME
TP_RESUME_REQ — begins resuming use of a control instance

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_RESUME_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to begin resuming use of a control instance within a recovery context group.

This must be the first primitive on a control instance after it is established.

If the recovery context group is currently unavailable, the TP_RESUME_REQ will be rejected
with the error code [AP_TP_RESTART_REQD]. The user must then perform a restart of the
recovery context group before the control instance can be used.

If the recovery context group is currently being restarted, the primitive will be rejected with the
error code [AP_TP_RESTARTING]. A resume must be performed for a recovery context group
before it can be used to process incoming and outgoing begin dialogues with the commit
functional unit selected. XAP-TP will respond retry-later to all incoming recovery requests for
the recovery context group until the resume has been successfully completed.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_RESUME_REQ primitive and restrictions on its use.

To send a TP_RESUME_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_RESUME_REQ.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
In addition to the errors listed in the manual page for ap_snd(), the following errors may occur:

[AP_TP_RESTART_REQD]
The recovery context group is currently unavailable.

[AP_TP_RESTARTING]
The recovery context group is currently restarting.

ACSE/Presentation: Transaction Processing API (XAP-TP) 201

TP_RESUME_COMPLETE_IND XAP-TP Primitives

NAME
TP_RESUME_COMPLETE_IND — indicates control instance resumption is complete

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_RESUME_COMPLETE_IND primitive is used in conjunction with ap_rcv() and the XAP
Library environment to indicate resumption of control instance usage within a recovery context
group has been successfully completed. Normal usage of the control instance commences after
receipt of this primitive.

This primitive is issued on the control instance whose resume has ended.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_RESUME_COMPLETE_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_RESUME_COMPLETE_IND.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

202 X/Open CAE Specification

XAP-TP Primitives TP_RESTART_REQ

NAME
TP_RESTART_REQ — begins the restart of a recovery context group

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_RESTART_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to begin the restart of a recovery context group.

This primitive can only be issued on a control instance within the recovery context group.

A restart must be performed for a recovery context group before it can be used to process
incoming and outgoing begin dialogues with the commit functional unit selected. XAP-TP will
respond retry-later to all incoming recovery requests for the recovery context group until the
restart has been successfully completed.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_RESTART_REQ primitive and restrictions on its use.

To send a TP_RESTART_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_RESTART_REQ.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
Refer to the manual page for ap_snd().

ACSE/Presentation: Transaction Processing API (XAP-TP) 203

TP_RESTART_COMPLETE_REQ XAP-TP Primitives

NAME
TP_RESTART_COMPLETE_REQ — ends a recovery context group restart

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_RESTART_COMPLETE_REQ primitive is used in conjunction with ap_snd() and the
XAP Library environment to indicate to XAP TP that the restart of the recovery context group is
complete on this XAP-TP instance. Once this primitive has been issued on all control instances
actively participating in restart, XAP TP will issue a TP_RESTART_COMPLETE_IND primitive
to each control instance of the recovery context group and commence normal operation
responding to incoming recovery and dialogue requests.

This primitive can only be issued on a control instance within the recovery context group.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_RESTART_COMPLETE_REQ primitive and restrictions on its use.

To send a TP_RESTART_COMPLETE_REQ primitive, the arguments to ap_snd() must be set as
described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_RESTART_COMPLETE_REQ.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
Refer to the manual page for ap_snd().

204 X/Open CAE Specification

XAP-TP Primitives TP_RESTART_COMPLETE_IND

NAME
TP_RESTART_COMPLETE_IND — indicates end of restart for a control instance

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_RESTART_COMPLETE_IND primitive is used in conjunction with ap_rcv() and the
XAP Library environment to indicate that restart of a recovery context group has been
successfully completed. Normal usage of the control instance commences after receipt of this
primitive.

This primitive is issued on each control instance of the recovery context group that has been
actively or passively participating in the restart.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_RESTART_COMPLETE_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_RESTART_COMPLETE_IND.

cdata The following members of cdata are used for this primitive:

long res; /* result of restart */

cdata→res indicates the outcome of the restart, and can take the following values:

AP_TP_ACCEPT
The restart completed successfully.

AP_TP_REJ_PROV
The restart was aborted by the XAP-TP provider.

AP_TP_REJ_USER
The restart was aborted by the user.

If cdata→res is AP_TP_ACCEPT, the state will have changed to AP_TP_IDLE after
receiving this primitive, otherwise the state will have changed to
AP_TP_WRESUMEreq.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

ACSE/Presentation: Transaction Processing API (XAP-TP) 205

TP_RESTART_COMPLETE_IND XAP-TP Primitives

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

206 X/Open CAE Specification

XAP-TP Primitives TP_ROLLBACK_REQ

NAME
TP_ROLLBACK_REQ — used to request roll back of a transaction

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_ROLLBACK_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to terminate the transaction tree node identified by dtnid or ttnid, and set the data
into the initial state.

The primitive must be issued on the nominated control instance for the transaction node.

The rollback is propagated to each active coordinated instance of the node (except when it is
also the nominated control instance). Each receives a TP_ROLLBACK_IND primitive to indicate
that the transaction node is rolling back. This allows the user to coordinate failure-related
actions between the instances.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_ROLLBACK_REQ primitive and restrictions on its use.

To send a TP_ROLLBACK_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_ROLLBACK_REQ.

cdata The following members of cdata are used for this primitive:

tp_dialog_env_t *tp_env; /* dialogue attribute values */

cdata→tp_env can be used to override XAP environment attributes values used as
parameters to the TP-ROLLBACK request service. If no attribute values are to be
overridden, cdata→tp_env may be set to NULL. Otherwise, cdata→tp_env must
point to a tp_dialog_env_t structure, and the following elements are used for this
primitive:

unsigned long mask; /* bit mask */
ap_dtnid_t dtnid; /* AP_DTNID */
ap_ttnid_t ttnid; /* AP_TTNID */

The mask element of this structure is a bit mask indicating which environment
attributes associated with this primitive are to be overridden. Values for this field
are formed by setting zero or one of the flags listed in the table below. When a bit
is set, the value of the associated parameter will be taken from cdata rather than
from the XAP environment. Specifying a value for a particular parameter in cdata
has the same effect on the value of the corresponding attribute in the XAP
environment as calling ap_set_env().

ACSE/Presentation: Transaction Processing API (XAP-TP) 207

TP_ROLLBACK_REQ XAP-TP Primitives

Flag Parameter Field
AP_DTNID_BIT Dialogue Tree Node Identifier dtnid
AP_TTNID_BIT Transaction Tree Node Identifier ttnid

The user may identify the transaction to be rolled back using one of:

• the Dialogue Tree Node Identifier AP_DTNID

• the Transaction Tree Node Identifier AP_TTNID.

If the XAP instance has the TP_DIALOGUE category selected and is within a
dialogue, it is only possible to request rollback of a transaction tree node on the
TPSUI to which this dialogue is attached.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
In addition to those listed in the manual page for ap_snd(), the following error conditions can be
reported for this primitive:

[AP_TP_BAD_NODE]
An extant transaction node is not identified by the AP_DTNID or AP_TTNID attributes.

208 X/Open CAE Specification

XAP-TP Primitives TP_ROLLBACK_IND

NAME
TP_ROLLBACK_IND — indicates a transaction is being rolled back

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_ROLLBACK_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate that the transaction tree node identified by dtnid or ttnid is being rolled
back.

This primitive is issued on the nominated control instance for the transaction node, and on each
active coordinated instance of the node (except when it is also the nominated control instance).
This allows the user to coordinate failure related actions between the instances.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_ROLLBACK_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_ROLLBACK_IND.

cdata The following members of cdata are used for this primitive:

long tp_fail_count; /* count of failure conditions */
tp_dialog_env_t *tp_env; /* dialogue attribute values */

cdata→tp_fail_count holds the number of failure conditions which have occurred on
the transaction node since the start of the transaction (in this case one), and must
be used when issuing a TP_DONE_REQ primitive to acknowledge completion of
any failure-related actions.

cdata→tp_env can be used to retrieve the values of the XAP environment attributes
that correspond to parameters of TP-ROLLBACK indication service. If the
AP_TP_COPYENV attribute in the XAP environment is FALSE, these values will
not be returned in cdata and cdata→tp_env will be set to NULL when ap_rcv()
returns. If AP_TP_COPYENV is TRUE, cdata→tp_env will point to a
tp_dialog_env_t structure, and the following elements are used for this primitive:

unsigned long mask; /* bit mask */
ap_dtnid_t dtnid; /* AP_DTNID */
ap_ttnid_t ttnid; /* AP_TTNID */

The mask element of this structure is a bit mask indicating which parameters
associated with this primitive were received. Values for this field are formed by
setting zero or one of the flags listed in the table below. When a bit is set, the
specified parameter was received. Otherwise, the parameter was not received and

ACSE/Presentation: Transaction Processing API (XAP-TP) 209

TP_ROLLBACK_IND XAP-TP Primitives

the corresponding field in the tp_dialog_env_t structure is not set.

Flag Parameter Field
AP_DTNID_BIT Dialogue Tree Node Identifier dtnid
AP_TTNID_BIT Transaction Tree Node Identifier ttnid

The dialogue tree node identifier dtnid will be set to the value allocated to the
TPSUI when it was started. The transaction tree node identifier ttnid will only be
present if the user has set a value in this attribute for the node.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

210 X/Open CAE Specification

XAP-TP Primitives TP_ROLLBACK_COMPLETE_IND

NAME
TP_ROLLBACK_COMPLETE_IND — indicates completion of a transaction rollback

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_ROLLBACK_COMPLETE_IND primitive is used in conjunction with ap_rcv() and the
XAP Library environment to indicate that the transaction tree node identified by dtnid or ttnid
has completed being rolled back.

This primitive is passed to the user on each coordinated instance of the node, and also on the
nominated control instance for the node (if it is not a coordinated instance).

Each passive coordinated instance (those for which a TP_P_ABORT_IND, TP_U_ABORT_IND,
TP_U_ABORT_REQ or TP_BEGIN_DIALOGUE_CONF(rejected) primitive has been issued)
returns to the AP_TP_IDLE state on receipt of this primitive.

The coordination level of all dialogues with the commit and unchained functional unit selected
reverts to none.

If one or more of the dialogues has the commit and chained functional unit selected, then they
are involved in another transaction.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_ROLLBACK_COMPLETE_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to
TP_ROLLBACK_COMPLETE_IND.

cdata The following members of cdata are used for this primitive:

tp_dialog_env_t *tp_env; /* dialogue attribute values */

cdata→tp_env can be used to retrieve the values of the XAP environment attributes
that correspond to parameters of TP-ROLLBACK-COMPLETE indication service.
If the AP_TP_COPYENV attribute in the XAP environment is FALSE, these values
will not be returned in cdata and cdata→tp_env will be set to NULL when ap_rcv()
returns. If AP_TP_COPYENV is TRUE, cdata→tp_env will point to a
tp_dialog_env_t structure, and the following elements are used for this primitive:

unsigned long mask; /* bit mask */
ap_dtnid_t dtnid; /* AP_DTNID */
ap_ttnid_t ttnid; /* AP_TTNID */

The mask element of this structure is a bit mask indicating which parameters
associated with this primitive were received. Values for this field are formed by

ACSE/Presentation: Transaction Processing API (XAP-TP) 211

TP_ROLLBACK_COMPLETE_IND XAP-TP Primitives

setting zero or one of the flags listed in the table below. When a bit is set, the
specified parameter was received. Otherwise, the parameter was not received and
the corresponding field in the tp_dialog_env_t structure is not set.

Flag Parameter Field
AP_DTNID_BIT Dialogue Tree Node Identifier dtnid
AP_TTNID_BIT Transaction Tree Node Identifier ttnid

The dialogue tree node identifier dtnid will be set to the value allocated to the
TPSUI when it was started. The transaction tree identifier ttnid will only be
present if the user has set a value in this attribute for the node.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

212 X/Open CAE Specification

XAP-TP Primitives TP_UPDATE_LOG_DAMAGE_REQ

NAME
TP_UPDATE_LOG_DAMAGE_REQ — used to update or forget locally-held heuristic damage
information

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_UPDATE_LOG_DAMAGE_REQ primitive is used in conjunction with ap_snd() and the
XAP Library environment to update or remove local knowledge of a heuristic log-damage
record for the transaction node specified by ttnid.

XAP-TP maintains an internal copy of heuristic log-damage information until removed by
TP_UPDATE_LOG_DAMAGE_REQ. This is used to regenerate heuristic reports in response to
recovery request from superiors.

This primitive can only be issued on the nominated control instance for the transaction node.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_UPDATE_LOG_DAMAGE_REQ primitive and restrictions on its use.

To send a TP_UPDATE_LOG_DAMAGE_REQ primitive, the arguments to ap_snd() must be set
as described below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_UPDATE_LOG_DAMAGE_REQ

cdata The following members of cdata are used for this primitive:

tp_dialog_env_t *tp_env; /* dialogue attribute values */

cdata→tp_env can be used to override XAP environment attributes values used as
parameters to the TP-UPDATE-LOG-DAMAGE request service. If no attribute
values are to be overridden, cdata→tp_env may be set to NULL. Otherwise,
cdata→tp_env must point to a tp_dialog_env_t structure, and the following
elements are used for this primitive:

unsigned long mask; /* bit mask */
ap_ttnid_t ttnid; /* AP_TTNID */

The mask element of this structure is a bit mask indicating which environment
attributes associated with this primitive are to be overridden. Values for this field
are formed by OR’ing together zero or more of the flags listed in the table below.
When a bit is set, the value of the associated parameter will be taken from cdata
rather than from the XAP environment. Specifying a value for a particular
parameter in cdata has the same effect on the value of the corresponding attribute
in the XAP environment as calling ap_set_env().

ACSE/Presentation: Transaction Processing API (XAP-TP) 213

TP_UPDATE_LOG_DAMAGE_REQ XAP-TP Primitives

Flag Parameter Field
AP_TTNID_BIT Transaction Tree Node Identifier ttnid

The user can identify the transaction using the Transaction Tree Node Identifier
AP_TTNID.

Note that it is only possible to use this primitive on an XAP instance which has the
TP_DIALOGUE category selected if it is not currently in use for a dialogue.

ubuf If set to NULL, the log-damage details for the specified transaction node are
deleted. Otherwise the contents of ubuf buffers must be an updated log-damage
record.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
In addition to the errors listed in the manual page for ap_snd(), the following error conditions
can be reported for this primitive:

[AP_TP_BAD_NODE]
An extant transaction node is not identified by the AP_DTNID or AP_TTNID attributes.

214 X/Open CAE Specification

XAP-TP Primitives TP_U_ABORT_REQ

NAME
TP_U_ABORT_REQ — used to terminate a dialogue with user data

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_U_ABORT_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to abort the dialogue passing application supplied data.

If the dialogue is coordinated and a failure condition is not outstanding, the resulting dialogue
loss will be propagated to the control instance for the node (if this is not the originating instance)
and to all other active coordinated instances of the node via TP_DIALOGUE_LOST_IND
primitives.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_U_ABORT_REQ primitive and restrictions on its use.

To send a TP_U_ABORT_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_U_ABORT_REQ.

cdata The following members of cdata are used for this primitive:

long udata_length; /* length of user-information field */

cdata→udata_length may be set to the total number of octets of user-information
that will be sent with this primitive. If the amount of data to be sent with this
primitive is not known, this field should be set to −1. In some XAP-TP
implementations, setting this field may improve performance.

ubuf Use of the ubuf argument is described on the ap_snd() manual page. Data carried
in the ubuf buffer(s) must be encoded according to the definition specified in
ISO/IEC 10026-3: 1992 (the OSI TP Protocol) ([30] IMPLICIT SEQUENCE OF
EXTERNAL).

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
Refer to the manual page for ap_snd().

ACSE/Presentation: Transaction Processing API (XAP-TP) 215

TP_U_ABORT_IND XAP-TP Primitives

NAME
TP_U_ABORT_IND — indicates a remote user abort of the dialogue

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_U_ABORT_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate that the remote user has aborted the dialogue.

If the dialogue was coordinated, the nodes updated failure count will be returned and the failure
will be propagated to the nominated control instance for the node, and to each active
coordinated instance of the node (except when it is also the nominated control instance), via
TP_DIALOGUE_LOST_IND primitives.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_U_ABORT_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to TP_U_ABORT_IND.

cdata The following members of cdata are used for this primitive:

long tp_options; /* rollback transaction? */
long tp_fail_count; /* count of failure conditions */

The argument cdata→tp_options indicates if the transaction in which the recipient is
involved is to be rolled back. The bit value in cdata→tp_options used is:

AP_TP_ROLLBACK
If set, the transaction is to be rolled back. If unset, no rollback is to occur or
rollback is already in progress

cdata→tp_fail_count holds the number of failure conditions which have occurred on
the transaction node since the start of the transaction, and must be used when
issuing a TP_DONE_REQ primitive to acknowledge completion of any failure
related actions. Only valid if the dialogue was coordinated.

ubuf Use of the ubuf argument is described on the ap_rcv() manual page.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

216 X/Open CAE Specification

XAP-TP Primitives TP_U_ABORT_IND

ERRORS
Refer to the manual page for ap_rcv().

ACSE/Presentation: Transaction Processing API (XAP-TP) 217

TP_U_ERROR_REQ XAP-TP Primitives

NAME
TP_U_ERROR_REQ — used to report a user detected processing error

SYNOPSIS
#include <xap_tp.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t *ubuf
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_U_ERROR_REQ primitive is used in conjunction with ap_snd() and the XAP Library
environment to report a user-detected processing error. Also serves as a negative response to a
TP_HANDSHAKE_IND, a TP_HANDSHAKE_AND_GRANT_CONTROL_IND, and to a
TP_END_DIALOGUE_IND requiring confirmation.

Refer to the table on the manual page for ap_snd() for information concerning the effects of
sending the TP_U_ERROR_REQ primitive and restrictions on its use.

To send a TP_U_ERROR_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd This argument identifies the XAP Library instance being used.

sptype This argument must be set to TP_U_ERROR_REQ.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_snd().

RETURN VALUE
Refer to the manual page for ap_snd().

ERRORS
Refer to the manual page for ap_snd().

218 X/Open CAE Specification

XAP-TP Primitives TP_U_ERROR_IND

NAME
TP_U_ERROR_IND — indicates a user reported processing error

SYNOPSIS
#include <xap_tp.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_tp_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The TP_U_ERROR_IND primitive is used in conjunction with ap_rcv() and the XAP Library
environment to indicate the remote user reporting a processing error. Also serves as a negative
response to a TP_HANDSHAKE_REQ, a TP_HANDSHAKE_AND_GRANT_CONTROL_REQ,
and to a TP_END_DIALOGUE_REQ requiring confirmation.

Refer to the table on the manual page for ap_rcv() for information concerning the effects of
receiving the TP_U_ERROR_IND primitive and restrictions on its use.

When issuing ap_rcv, the arguments must be set as described on the manual page for ap_rcv().
Upon return, the ap_rcv arguments will be set as described below.

fd This argument identifies the XAP Library instance being used.

sptype The unsigned long pointed to by this argument will be set to TP_U_ERROR_IND.

cdata Not used.

ubuf Not used.

flags The flags argument is used to control certain aspects of primitive processing as
described on the manual page for ap_rcv().

RETURN VALUE
Refer to the manual page for ap_rcv().

ERRORS
Refer to the manual page for ap_rcv().

ACSE/Presentation: Transaction Processing API (XAP-TP) 219

XAP-TP Primitives

220 X/Open CAE Specification

Appendix A

XAP-TP Header File

/*
* xap_tp.h
*/

#define XAP_TP
#ifndef AP_ID
#include <xap.h>
#endif

/*
* XAPTP definitions
*/

typedef struct {
int size; /* buffer size in bytes */
unsigned char *udata; /* buffer with user encoded */

/* ATOMIC-ACTION-IDENTIFIER */
} ap_aaid_t;

typedef struct {
int size; /* buffer size in bytes */
unsigned char *udata; /* buffer with user encoded BRANCH-IDENTIFIER */

} ap_brid_t;

typedef struct {
int size; /* control identifier length in bytes */
unsigned char *udata; /* buffer with control identifier */

} ap_cid_t;

typedef struct {
int size; /* buffer size in bytes */
unsigned char *udata; /* buffer with Dialogue Tree Node Identifier */

} ap_dtnid_t;

typedef struct {
int size; /* buffer size in bytes */
unsigned char *udata; /* buffer with Transaction Tree Node Id. */

} ap_ttnid_t;

typedef struct {
int size; /* buffer size in bytes */
unsigned char *udata; /* buffer with user encoded TPSU-title */

} ap_tpsut_t;

typedef struct {
int size; /* recovery context handle length in bytes */
unsigned char *udata; /* buffer with user-assigned recovery */

/* context handle */
} ap_urch_t;

ACSE/Presentation: Transaction Processing API (XAP-TP) 221

XAP-TP Header File

/* TP Address */

typedef struct {
ap_apt_t apt; /* application process title */
ap_aei_api_id_t apid; /* application process invocation id */
ap_aeq_t aeq; /* application entity qualifier */
ap_aei_api_id_t aeid; /* application entity invocation id */
long n_tpsuts; /* number of TP-User titles */
ap_tpsut_t *tpsuts; /* array of TP-User titles */

} ap_tpaddr_t;

/* Environment attributes override */

typedef struct {
unsigned long mask; /* mask */
ap_aaid_t aaid; /* atomic action identifier */
ap_brid_t brid; /* branch identifier */
ap_dtnid_t dtnid; /* dialogue tree identifier */
ap_ttnid_t ttnid; /* transaction identifier */
ap_apt_t lcl_apt; /* local application process title */
ap_aei_api_id_t lcl_apid; /* local application process invocation id */
ap_aeq_t lcl_aeq; /* local application entity qualifier */
ap_aei_api_id_t lcl_aeid; /* local application entity invocation id */
ap_tpsut_t lcl_tpsut; /* local TP-User title */
ap_apt_t rem_apt; /* remote application process title */
ap_aei_api_id_t rem_apid; /* remote application process invocation id */
ap_aeq_t rem_aeq; /* remote application entity qualifier */
ap_aei_api_id_t rem_aeid; /* remote application entity invocation id */
ap_tpsut_t rem_tpsut; /* remote TP-User title */
unsigned long tpfu_sel; /* TP functional units selected */
unsigned long tp_version_sel; /* TP version selected */
unsigned long tp_state; /* transaction node state */

} tp_dialog_env_t;

/* OSI-TP Identifier */

#define AP_TP_ID (15)

/* Values for AP_TP_AVAIL */

#define AP_TPVER1 1 /* protocol version */

/* Primitives */

#define AP_TP_WRITESIDE (1 << 8)
#define AP_TP_READSIDE (3 << 8)
#define AP_TP_MASK (AP_TP_ID << 16)

#define AP_TP_BEGIN_DIALOGUE_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x00)
#define AP_TP_BEGIN_DIALOGUE_RSP (AP_TP_MASK|AP_TP_WRITESIDE|0x01)
#define AP_TP_BEGIN_TRANSACTION_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x02)
#define AP_TP_COMMIT_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x03)
#define AP_TP_DEFERRED_END_DIALOGUE_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x05)
#define AP_TP_DEFERRED_GRANT_CONTROL_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x06)
#define AP_TP_DONE_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x07)
#define AP_TP_END_DIALOGUE_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x08)
#define AP_TP_END_DIALOGUE_RSP (AP_TP_MASK|AP_TP_WRITESIDE|0x09)
#define AP_TP_FLUSH_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x0a)
#define AP_TP_GRANT_CONTROL_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x0b)

222 X/Open CAE Specification

XAP-TP Header File

#define AP_TP_HANDSHAKE_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x0c)
#define AP_TP_HANDSHAKE_RSP (AP_TP_MASK|AP_TP_WRITESIDE|0x0d)
#define AP_TP_HANDSHAKE_AND_GRANT_CONTROL_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x0e)
#define AP_TP_HANDSHAKE_AND_GRANT_CONTROL_RSP (AP_TP_MASK|AP_TP_WRITESIDE|0x0f)
#define AP_TP_DATA_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x10)
#define AP_TP_MANAGE_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x11)
#define AP_TP_PREPARE_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x15)
#define AP_TP_PREPARE_ALL_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x16)
#define AP_TP_RESUME_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x17)
#define AP_TP_RESTART_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x18)
#define AP_TP_RECOVER_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x19)
#define AP_TP_RESTART_COMPLETE_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x1a)
#define AP_TP_UPDATE_LOG_DAMAGE_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x1b)
#define AP_TP_REQUEST_CONTROL_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x1c)
#define AP_TP_ROLLBACK_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x1d)
#define AP_TP_U_ABORT_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x1e)
#define AP_TP_U_ERROR_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x1f)

#define AP_TP_BEGIN_DIALOGUE_IND (AP_TP_MASK|AP_TP_READSIDE|0x00)
#define AP_TP_BEGIN_DIALOGUE_CNF (AP_TP_MASK|AP_TP_READSIDE|0x01)
#define AP_TP_BEGIN_TRANSACTION_IND (AP_TP_MASK|AP_TP_READSIDE|0x02)
#define AP_TP_COMMIT_IND (AP_TP_MASK|AP_TP_READSIDE|0x03)
#define AP_TP_COMMIT_COMPLETE_IND (AP_TP_MASK|AP_TP_READSIDE|0x04)
#define AP_TP_DEFERRED_END_DIALOGUE_IND (AP_TP_MASK|AP_TP_READSIDE|0x05)
#define AP_TP_DEFERRED_GRANT_CONTROL_IND (AP_TP_MASK|AP_TP_READSIDE|0x06)
#define AP_TP_END_DIALOGUE_IND (AP_TP_MASK|AP_TP_READSIDE|0x08)
#define AP_TP_END_DIALOGUE_CNF (AP_TP_MASK|AP_TP_READSIDE|0x09)
#define AP_TP_GRANT_CONTROL_IND (AP_TP_MASK|AP_TP_READSIDE|0x0b)
#define AP_TP_HANDSHAKE_IND (AP_TP_MASK|AP_TP_READSIDE|0x0c)
#define AP_TP_HANDSHAKE_CNF (AP_TP_MASK|AP_TP_READSIDE|0x0d)
#define AP_TP_HANDSHAKE_AND_GRANT_CONTROL_IND (AP_TP_MASK|AP_TP_READSIDE|0x0e)
#define AP_TP_HANDSHAKE_AND_GRANT_CONTROL_CNF (AP_TP_MASK|AP_TP_READSIDE|0x0f)
#define AP_TP_DATA_IND (AP_TP_MASK|AP_TP_READSIDE|0x10)
#define AP_TP_NODE_STATUS_IND (AP_TP_MASK|AP_TP_READSIDE|0x11)
#define AP_TP_HEURISTIC_REPORT_IND (AP_TP_MASK|AP_TP_READSIDE|0x12)
#define AP_TP_LOG_DAMAGE_IND (AP_TP_MASK|AP_TP_READSIDE|0x13)
#define AP_TP_P_ABORT_IND (AP_TP_MASK|AP_TP_READSIDE|0x14)
#define AP_TP_PREPARE_IND (AP_TP_MASK|AP_TP_READSIDE|0x15)
#define AP_TP_RESTART_COMPLETE_IND (AP_TP_MASK|AP_TP_READSIDE|0x18)
#define AP_TP_READY_IND (AP_TP_MASK|AP_TP_READSIDE|0x1a)
#define AP_TP_READY_ALL_IND (AP_TP_MASK|AP_TP_READSIDE|0x1b)
#define AP_TP_REQUEST_CONTROL_IND (AP_TP_MASK|AP_TP_READSIDE|0x1c)
#define AP_TP_ROLLBACK_IND (AP_TP_MASK|AP_TP_READSIDE|0x1d)
#define AP_TP_ROLLBACK_COMPLETE_IND (AP_TP_MASK|AP_TP_READSIDE|0x1e)
#define AP_TP_U_ABORT_IND (AP_TP_MASK|AP_TP_READSIDE|0x20)
#define AP_TP_U_ERROR_IND (AP_TP_MASK|AP_TP_READSIDE|0x21)
#define AP_TP_RESUME_COMPLETE_IND (AP_TP_MASK|AP_TP_READSIDE|0x22)
#define AP_TP_DIALOGUE_LOST_IND (AP_TP_MASK|AP_TP_READSIDE|0x2a)

/* Define APM messages */

#define AP_APM_ALLOCATE_REQ (AP_TP_MASK|AP_TP_WRITESIDE|0x2c)
#define AP_APM_ALLOCATE_CNF (AP_TP_MASK|AP_TP_READSIDE |0x26)
#define AP_APM_ASSOCIATION_LOST_IND (AP_TP_MASK|AP_TP_READSIDE |0x27)

/* Attributes */

#define AP_BIND_TPADDR ((AP_TP_ID << 16)|0x00) /* bind TP address */
#define AP_AAID ((AP_TP_ID << 16)|0x01) /* atomic action identifier */

ACSE/Presentation: Transaction Processing API (XAP-TP) 223

XAP-TP Header File

#define AP_BRID ((AP_TP_ID << 16)|0x02) /* branch identifier */
#define AP_DTNID ((AP_TP_ID << 16)|0x03) /* dialogue tree identifier */
#define AP_TTNID ((AP_TP_ID << 16)|0x04) /* transaction identifier */
#define AP_LCL_APT ((AP_TP_ID << 16)|0x05) /* local apt */
#define AP_LCL_APID ((AP_TP_ID << 16)|0x06) /* local apid */
#define AP_LCL_AEQ ((AP_TP_ID << 16)|0x07) /* local aeq */
#define AP_LCL_AEID ((AP_TP_ID << 16)|0x08) /* local aeid */
#define AP_REM_APT ((AP_TP_ID << 16)|0x09) /* remote apt */
#define AP_REM_APID ((AP_TP_ID << 16)|0x0a) /* remote apid */
#define AP_REM_AEQ ((AP_TP_ID << 16)|0x0b) /* remote aeq */
#define AP_REM_AEID ((AP_TP_ID << 16)|0x0c) /* remote aeid */
#define AP_LCL_TPSUT ((AP_TP_ID << 16)|0x0d) /* local TP user title */
#define AP_REM_TPSUT ((AP_TP_ID << 16)|0x0e) /* remote TP user title */
#define AP_TPFU_AVAIL ((AP_TP_ID << 16)|0x0f) /* TP fu’s available */
#define AP_TPFU_SEL ((AP_TP_ID << 16)|0x10) /* TP fu’s selected */
#define AP_TP_CATEGORY ((AP_TP_ID << 16)|0x11) /* primitive categories */
#define AP_TP_COPYENV ((AP_TP_ID << 16)|0x12) /* copy TP env on ind/cnf */
#define AP_NEXT_AAID ((AP_TP_ID << 16)|0x13) /* next aaid */
#define AP_NEXT_BRID ((AP_TP_ID << 16)|0x14) /* next brid */
#define AP_NEXT_TTNID ((AP_TP_ID << 16)|0x15) /* next ttnid */
#define AP_TP_SEL ((AP_TP_ID << 16)|0x16) /* selected TP version */
#define AP_TP_AVAIL ((AP_TP_ID << 16)|0x17) /* available TP version */
#define AP_TP_STATE ((AP_TP_ID << 16)|0x18) /* TP state */
#define AP_CONTROL_ID ((AP_TP_ID << 16)|0x19) /* Control instance Id. */
#define AP_URCH ((AP_TP_ID << 16)|0x1a) /* Recovery Context Handle */

/* States, available from AP_TP_STATE */

/*
* The first 25 states map exactly to the 25 states
* of the OSI TP Service specification
*/

#define AP_TP_UNBOUND ((AP_TP_ID << 16) + 0)
#define AP_TP_IDLE ((AP_TP_ID << 16) + 1)
#define AP_TP_DATA_XFER ((AP_TP_ID << 16) + 2)
#define AP_TP_RECV ((AP_TP_ID << 16) + 3)
#define AP_TP_ERROR_RECV ((AP_TP_ID << 16) + 4)
#define AP_TP_ERROR ((AP_TP_ID << 16) + 5)
#define AP_TP_WHANDcnf ((AP_TP_ID << 16) + 6)
#define AP_TP_WHANDrsp ((AP_TP_ID << 16) + 7)
#define AP_TP_WHANDrsp_WHANDcnf ((AP_TP_ID << 16) + 8)
#define AP_TP_WHANDcnf_WENDrsp ((AP_TP_ID << 16) + 9)
#define AP_TP_WHANDrsp_WENDcnf ((AP_TP_ID << 16) + 10)
#define AP_TP_WENDcnf ((AP_TP_ID << 16) + 11)
#define AP_TP_WENDrsp ((AP_TP_ID << 16) + 12)
#define AP_TP_WHAND_GCcnf ((AP_TP_ID << 16) + 13)
#define AP_TP_WHAND_GCrsp ((AP_TP_ID << 16) + 14)
#define AP_TP_WREADYind ((AP_TP_ID << 16) + 15)
#define AP_TP_WREADYind_DATAP ((AP_TP_ID << 16) + 16)
#define AP_TP_READY ((AP_TP_ID << 16) + 17)
#define AP_TP_WPREP_ALLreq ((AP_TP_ID << 16) + 18)
#define AP_TP_WPREP_ALLreq_DATAP ((AP_TP_ID << 16) + 19)
#define AP_TP_WCOMMITind ((AP_TP_ID << 16) + 20)
#define AP_TP_COMMIT_WDONEreq ((AP_TP_ID << 16) + 21)
#define AP_TP_WCOMMIT_COMPind ((AP_TP_ID << 16) + 22)
#define AP_TP_ROLL_WDONEreq ((AP_TP_ID << 16) + 23)
#define AP_TP_WROLL_COMPind ((AP_TP_ID << 16) + 24)
#define AP_TP_ZOMBIE ((AP_TP_ID << 16) + 25)

224 X/Open CAE Specification

XAP-TP Header File

/* The states below are additional to the OSI TP Service standard */

#define AP_TP_PREPARING ((AP_TP_ID << 16) + 26)
#define AP_TP_LOGGING_READY ((AP_TP_ID << 16) + 27)

/* The states for control of resume and restart */

#define AP_TP_WRESUMEreq ((AP_TP_ID << 16) + 28)
#define AP_TP_RESUME ((AP_TP_ID << 16) + 29)
#define AP_TP_WRESTARTreq ((AP_TP_ID << 16) + 30)
#define AP_TP_RESTART ((AP_TP_ID << 16) + 31)
#define AP_TP_WRESTART_COMPLETEind ((AP_TP_ID << 16) + 32)

/* The states for association allocation */

#define AP_TP_WALLOCcnf ((AP_TP_ID << 16) + 33)
#define AP_TP_ALLOCATED ((AP_TP_ID << 16) + 34)

/* The state for a log damage node */

#define AP_TP_HEURISTIC_LOG ((AP_TP_ID << 16) + 35)

/* Values for AP_TP_FU functional units */

#define AP_TP_POLARIZED_CONTROL BITL(0)
#define AP_TP_SHARED_CONTROL BITL(1)
#define AP_TP_COMMIT_AND_CHAINED BITL(2)
#define AP_TP_COMMIT_AND_UNCHAINED BITL(3)
#define AP_TP_HANDSHAKE BITL(4)
#define AP_TP_RECOVERY BITL(5)

/* Values for AP_TP_CATEGORY */.

#define AP_TP_DIALOGUE BITL(0)
#define AP_TP_CONTROL BITL(1)

/* Additional values for AP_MODE */

#define AP_TP_MODE BITL(2)

/* Constants used in ap_cdata_t */

/* Bits for tp_dialog_env_t mask */

#define AP_AAID_BIT BITL(0)
#define AP_BRID_BIT BITL(1)
#define AP_DTNID_BIT BITL(2)
#define AP_TTNID_BIT BITL(3)
#define AP_LCL_APT_BIT BITL(4)
#define AP_LCL_APID_BIT BITL(5)
#define AP_LCL_AEQ_BIT BITL(6)
#define AP_LCL_AEID_BIT BITL(7)
#define AP_LCL_TPSUT_BIT BITL(8)
#define AP_REM_APT_BIT BITL(9)
#define AP_REM_APID_BIT BITL(10)
#define AP_REM_AEQ_BIT BITL(11)
#define AP_REM_AEID_BIT BITL(12)
#define AP_REM_TPSUT_BIT BITL(13)
#define AP_TPFU_SEL_BIT BITL(14)

ACSE/Presentation: Transaction Processing API (XAP-TP) 225

XAP-TP Header File

#define AP_TP_SEL_BIT BITL(15)
#define AP_TP_STATE_BIT BITL(16)

/* Values for res */

#define AP_TP_ACCEPT (1)
#define AP_TP_REJ_PROV (2)
#define AP_TP_REJ_USER (3)

/* Values for heuristic res, and log record type field */

#define AP_TP_NONE (0)
#define AP_TP_HEUR_MIX (1)
#define AP_TP_HEUR_HAZ (2)

/* Values for log record type field */
#define AP_TP_READY_LOG (1)
#define AP_TP_COMMIT_LOG (2)

/* log record flags bit settings */
#define AP_TP_SUPERIOR_SECTION (1)

/* Values for res_src */

#define AP_TP_SERV_USER (5)
#define AP_TP_SERV_PROV (6)
#define AP_APM_SERV_PROV (7)

/* Values for diag */
#define AP_TP_NRSN (0)

/* values used for TP_BEGIN_DIALOGUE_CNF */
#define AP_TP_TPSUT_UNKNOWN (1)
#define AP_TP_TPSUT_NVAIL_PERM (2)
#define AP_TP_TPSUT_NVAIL_TRAN (3)
#define AP_TP_TPSUT_NEEDED (4)
#define AP_TP_FU_NSUP (5)
#define AP_TP_FU_COMB_NSUP (6)
#define AP_TP_ASSOC_RES (7)
#define AP_TP_RECIPIENT_UNKNOWN (8)

/* values used for APM_ALLOCATE_CNF */
#define AP_TP_CCR_V2_NAVAIL (1<<0)
#define AP_TP_VER_NAVAIL (1<<1)
#define AP_TP_CW_REJ (1<<2)
#define AP_TP_BM_REJ (1<<3)

/* APM returned values */
/* Values used for APM_ALLOCATE_CNF */
#define AP_TP_ASSOC_NVAIL (1)
#define AP_TP_BAD_AET (2)
#define AP_TP_BAD_POOL (3)
#define AP_TP_POOL_LIMIT (4)
#define AP_TP_POOL_TIMEOUT (5)
#define AP_TP_DIALOGUE_REFUSED (6)
/* Values used for APM_ASSOCIATION_LOST_IND */
#define AP_TP_IN_DIALOGUE (7)
#define AP_TP_ABORTED ((AP_TP_ID <<16) | 0)

226 X/Open CAE Specification

XAP-TP Header File

/* values used for TP_P_ABORT_IND */
#define AP_TP_PERMANENT (1)
#define AP_TP_REJ_TRANSACTION (2)
#define AP_TP_TRANSIENT (3)
#define AP_TP_PROTOCOL_ERROR (4)
#define AP_TP_END_CLASH (5)
#define AP_TP_BEG_END_CLASH (6)

/* Values for tp_options */

#define AP_TP_TRANSACTION BITL(0) /* begin transaction */
#define AP_TP_CONFIRM BITL(1) /* confirmation required */
#define AP_TP_URGENT BITL(2) /* urgency */
#define AP_TP_PERMITTED BITL(3) /* data permitted */
#define AP_TP_ROLLBACK BITL(4) /* rollback */
#define AP_TP_SYNC_ALLOC BITL(5) /* synchronous allocation */
#define AP_TP_ASSOC_ALLOCATED BITL(6) /* association allocated */
#define AP_TP_CONT_WINNER BITL(7) /* get contention winner */
#define AP_TP_SUPERIOR BITL(8) /* dialogue to superior */

typedef struct {
/* XAP members */
long udata_length; /* length of user-data field */
long rsn; /* reason for activity/abort/release */
long evt; /* event that caused abort */
long sync_p_sn; /* sync point serial number */
long sync_type; /* sync type */
long resync_type; /* resync type */
long src; /* source of abort */
long res; /* result of primitive */
long res_src; /* source of result */
long diag; /* reason for rejection (if rejected) */
unsigned long tokens; /* tokens identifier */
unsigned long token_assignment;/* tokens assignment */
ap_a_assoc_env_t *env; /* environment attribute values */
ap_octet_string_t act_id; /* activity identifier */
ap_octet_string_t old_act_id; /* old activity identifier */
ap_old_conn_id_t *old_conn_id; /* old session connection identifier */
/* XAP-TP members */
long tp_options; /* bit significant TP flags */
unsigned long user_id; /* abstract syntax or U_ASE identifier*/
long tp_fail_count; /* count of failure conditions */
tp_dialog_env_t *tp_env; /* dialogue attribute values */

} ap_tp_cdata_t;

/* Additional error codes for the ap Library Interface */

#define AP_TP_NO_PROVIDER ERRNO(AP_TP_ID, (0))
#define AP_TP_RESTART_REQD ERRNO(AP_TP_ID, (1))
#define AP_TP_RESTARTING ERRNO(AP_TP_ID, (2))
#define AP_TP_BAD_UDATA ERRNO(AP_TP_ID, (3))
#define AP_TP_BAD_URCH ERRNO(AP_TP_ID, (5))
#define AP_TP_BAD_CONTROL_ID ERRNO(AP_TP_ID, (6))
#define AP_TP_BADCD_TP_OPTIONS ERRNO(AP_TP_ID, (7))
#define AP_TP_BADCD_FAIL_COUNT ERRNO(AP_TP_ID, (8))
#define AP_TP_BAD_LOG ERRNO(AP_TP_ID, (9))
#define AP_TP_BAD_TTNID ERRNO(AP_TP_ID, (10))
#define AP_TP_BAD_NODE ERRNO(AP_TP_ID, (11))

ACSE/Presentation: Transaction Processing API (XAP-TP) 227

XAP-TP Header File

/* Macros for encoding and decoding log records */

/* return number of unsigned chars needed to hold a int field */

#define AP_TP_VP_INT_LENGTH(val) \
(((val) <= 0x7f)? 1: ((val) <= 0x3fff)? 2: 4)

/* return number of unsigned chars needed to hold an variable data value */
#define AP_TP_VP_VAL_LENGTH(len) (len)

/* encode a integer field and return pointer to next free location */

#define AP_TP_VP_ENCODE_INT(ptr, val) \
(((val) <= 0x7f)? \

*(ptr)++ = (unsigned char) (val):\
((val) <= 0x3fff)? \

(*(ptr)++ = (unsigned char) (((val) & 0x7f) | 0x80),\
*(ptr)++ = (unsigned char) ((val) >> 7)) :\

(*(ptr)++ = (unsigned char) (((val) & 0x7f) | 0x80),\
*(ptr)++ = (unsigned char) ((((val) >> 7) & 0x7f) | 0x80),\
*(ptr)++ = (unsigned char) (((val) >> 14) & 0xff),\
*(ptr)++ = (unsigned char) (((val) >> 22) & 0xff)), (ptr))

/*
* encode a variable data field and return pointer to next free location
*/

#define AP_TP_VP_ENCODE_VAL(ptr, len, val) \
(ptr = ((unsigned char *) memcpy((ptr), (val), (len))) + (len))

/*
* return the integer field from the current location referenced by ptr
* and update ptr to reference the next field
*/

#define AP_TP_VP_INT(ptr) \
(!((ptr)[0] & 0x80))? \

(unsigned int) *(ptr)++: \
(!((ptr)[1] & 0x80))? \

((ptr) += 2, ((unsigned int) (ptr)[-2] & 0x7f) | \
((ptr)[-1] << 7)): \

((ptr) += 4, ((unsigned int) (ptr)[-4] & 0x7f) | \
(((ptr)[-3] & 0x7f) << 7) | \
((ptr)[-2] << 14) | \
((ptr)[-1] << 22))

/*
* return ptr to variable length field and update ptr to reference the
* next field
*/

#define AP_TP_VP_PTR(ptr, len) \
((ptr) += (len), ((ptr) - (len)))

228 X/Open CAE Specification

Glossary

abstract syntax
The abstract description of a set of data values. Used by an application service element or
application to define the data structures to be transferred. Usually expressed using the
ASN.1 abstract syntax notation. The Application and Presentation Layers negotiate the set
of abstract syntaxes to be used to transfer data values on an association.

ACSE
Association Control Service Elements. OSI Association Control Service Element in the
Application Layer of the ISO 7-layer OSI Reference Model. The ISO entity that is
responsible for establishing and terminating associations (that is, cooperative relationships)
between two applications.

application
An application is a program, typically written by an end-user, designed to achieve some
objective.

AE
Application-entity. Defined as the aspects of an application-process pertinent to OSI. An
application may contain one or more AEs, each of which performs part of the OSI-related
functions required by the application. For example, a network management application
might contain one application entity to access an OSI directory service and another to
perform the OSI management functions.

An AE communicates with other AEs (using the services of one or more ASEs) to perform
its functions.

AET
Application-entity-title. Identifies a particular AE within an application-process. An AET is
associated with a single presentation address. An application-entity-title consists of an
application-process-title and an application-entity-qualifier \m see ISO 7498-3: 1989, Part 3,
Naming and Addressing.

application-context
The set of rules that govern the communication between two AEs. These rules include the
list of ASEs required to support that communication.

Application Layer
Seventh and highest layer in the OSI Basic Reference Model. This layer provides the means
by which application processes access the OSI environment. The Application Layer is
structured as a set of application-service-elements that an application may use to access OSI
communications capabilities.

API
Application Programming Interface. This is a set of services (such as functions in a given
programming language) by which the application program communicates with other
software components.

ACSE/Presentation: Transaction Processing API (XAP-TP) 229

Glossary

ASE
Application Service Element. A set of application-functions that provides a capability for
the interworking of application-entity-invocations for a specific purpose. Some ASEs
provide generally useful services (for example, ACSE, the connection management service
element), whilst others provide services oriented to a particular application (for example,
CMISE, the common management information service element).

CRM
Communication Resource Manager. A Resource Manager that offers communication to
other Transaction Manager domains.

DTP
In the context of X/Open transaction processing, this refers to distributed transaction
processing.

function
A programming language construct, modelled after the mathematical concept. A function
encapsulates some behaviour. It is given some arguments as input, performs some
processing, and returns some results.

ISO
International Organization for Standardization. A standards organisation with the
membership composed of the standards organisations from each participating country. OSI
working groups generate the OSI Protocol Suite standards.

interoperability
The ability of software and hardware on multiple machines and from multiple vendors to
communicate effectively.

MACF
Multiple Association Control Function.

OSI
Open Systems Interconnection. ISO standard for the interconnection of cooperative (open)
computer systems, using the ISO OSI 7-layer Reference Model.

OSI seven-layer model
The ISO Reference Model for OSI (ISO 7498: 1984). A conceptual model which provides a
common basis for describing communications protocols and services.

pdu
Protocol Data Unit. The data unit exchanged by peer protocol entities. Examples are apdu
(Application Layer), ppdu (Presentation Layer) and spdu (Session Layer).

portability
Machine-independent. Applied to software that can be readily ported to different machines.

presentation context
An association of an abstract syntax with a transfer syntax, negotiated by the Presentation
Layer when an application association is established.

The Application Layers propose the abstract syntaxes to be used on the association; the
Presentation Layer negotiates the transfer syntaxes to be used to support each of the
abstract syntaxes. When transferring data, the Application Layer identifies the presentation
context to be used to encode and decode the data.

230 X/Open CAE Specification

Glossary

Presentation Layer
Sixth layer in the OSI Basic Reference Model. This layer preserves the meaning of the data
transferred between AEs. In addition it provides access to the services of the Session Layer.
Presentation Layer functions include syntax negotiation (agreement of the abstract syntaxes
to be used for transferring data and the transfer syntaxes to be used to encode and decode
them), and syntax transformation (from local concrete syntax to transfer syntax and back
again).

primitive
An event that occurs at an interface between the user of the service and the service provider
in an open system.

protocol
A specification for an agreed procedure to enable exchange of information between
cooperating entities, via interfaces which provide the necessary capability to cover format
of messages, data checks, flow control and error handling.

A set of protocols governing the exchange of information between remote systems, and set
of interfaces covering the exchange between adjacent protocol levels, are collectively
referred to as a protocol hierarchy or protocol stack.

RPC
Remote Procedure Call. A call by one endpoint in a communications link for the other
endpoint to perform a procedure.

RM
Resource Manager. Manages a specified part of a computer’s shared resources (for example,
a database) in a transaction processing system.

RTI-SUI
Remote Task Invocation - Service User Invocation. A server that uses the RTI service
provided by the RTI Protocol Machine.

SACF
Single Association Control Function.

Session Layer
Fifth layer in the OSI Basic Reference Model. This layer provides services that allow AEs to
organise and synchronise their interactions. In addition to the connection and data transfer
services of the Transport Layer, the Session Layer provides orderly release, synchronisation,
activity management and half-duplex operation.

SQL
Structured Query Language. The X/Open SQL definition is based on ISO 9075: 1987 and the
identical American National Standard Database Language SQL ANS X3.135-1986, with
variances to meet a spectrum of existing UNIX implementations and extend capability to
reflect common usage.

transaction
A transaction is a discrete unit of work which is characterised by four basic properities
known as the ACID properties. The acronym ACID stands for Atomicity, Consistency,
Isolation and Durability. These properities express that either all or none of the operations
of a transaction are performed, that intermediate results of a transaction are not visible to
other transactions, which are executed at the same time, and that all effects of a completed
transaction are permanent.

ACSE/Presentation: Transaction Processing API (XAP-TP) 231

Glossary

TM
Transaction Manager. Manages global transactions in a transaction processing system,
including coordinating the decision to commit them or roll them back.

TP
Transaction Processing. Operations in a data processing system, in which transactions are
processed to completion as they arise.

transfer syntax
The concrete syntax used to transfer data between AEs. For a given abstract syntax, the
Presentation Layer negotiates one or more transfer syntaxes that may be used to preserve
the meaning of the data during transfer.

Transport Layer
Fourth layer in the OSI Basic Reference Model. This layer provides a transparent connection
and duplex data transfer service between OSI end systems. Transport Layer functions
include end-to-end sequencing, flow control, error detection and recovery.

TxRPC
Transactional RPC. An RPC initiated from within the scope of a transaction.

XA
The name given to the interface between Transaction Manager and Resource Manager, in a
transaction processing system. It lets the TM structure the work of RMs into global
transactions and coordinate global transaction completion and recovery.

XAP
X/Open ACSE/Presentation (XAP) application programming interface.

XAP-TP
X/Open ACSE/Presentation (XAP) programming interface, with transaction processing
extension (XAP-TP).

XTP
X/Open Distributed Transaction Processing Model.

232 X/Open CAE Specification

Index

abstract syntax ..229
ACSE ...229
AE ..229
AET..229
API...229
APM_ALLOCATE_CNF127
APM_ALLOCATE_REQ124
APM_ASSOCIATION_LOST_IND.....................130
application ...229
Application Layer...229
application-context ..229
AP_AAID

environment attribute ...74
ap_aaid_t ..82
ap_aei_api_id_t ...82
ap_aeq_t..82
AP_AGAIN flag..112
AP_ALLOC flag..103
ap_apt_t ..82
AP_BIND_TPADDR

environment attribute ...75
AP_BRID

environment attribute ...75
ap_brid_t ..82
ap_cid_t ..82
AP_CONTROL_ID

environment attribute ...75
AP_DTNID

environment attribute ...75
ap_dtnid_t ..83
ap_env_file...119
AP_FLUSH flag...111-112
AP_LCL_AEID

environment attribute ...75
AP_LCL_AEQ

environment attribute ...75
AP_LCL_APID

environment attribute ...75
AP_LCL_APT

environment attribute ...75
AP_LCL_TPSUT

environment attribute ...75
AP_LOOK flag ..103
AP_MODE_AVAIL

environment attribute ...73

AP_MODE_SEL
environment attribute ...73

AP_MORE flag..103, 111-112
AP_NDELAY flag...103, 112
AP_NEXT_AAID

environment attribute ...74
AP_NEXT_BRID

environment attribute ...76
AP_NEXT_TTNID

environment attribute ...74
ap_osi_dbuf_t..102, 111
ap_osi_vbuf_t..102, 111
ap_rcv() ..94
AP_REM_AEID

environment attribute ...76
AP_REM_AEQ

environment attribute ...76
AP_REM_APID

environment attribute ...76
AP_REM_APT

environment attribute ...76
AP_REM_TPSUT

environment attribute ...76
AP_ROLE_ALLOWED..73

environment attribute ...73
AP_ROLE_CURRENT...74

environment attribute ...74
ap_snd() ...105
AP_STATE

environment attribute ...74
ap_tpaddr_t ...83
AP_TPFU_AVAIL

environment attribute ...76
AP_TPFU_SEL

environment attribute ...76
ap_tpsut_t ..83
AP_TP_AVAIL

environment attribute ...76
AP_TP_CATEGORY

environment attribute ...76
AP_TP_COPYENV

environment attribute ...76
AP_TP_SEL

environment attribute ...76
AP_TP_STATE

environment attribute ...74

ACSE/Presentation: Transaction Processing API (XAP-TP) 233

Index

AP_TTNID
environment attribute ...74

ap_ttnid_t ...84
AP_URCH

environment attribute ...76
ap_urch_t..83
ASE ..230
attributes for initialisation120
concatenator ..68
CRM ..230
DTP..230
environment attribute

AP_AAID ...74
AP_BIND_TPADDR ..75
AP_BRID ..75
AP_CONTROL_ID...75
AP_DTNID ..75
AP_LCL_AEID..75
AP_LCL_AEQ...75
AP_LCL_APID..75
AP_LCL_APT..75
AP_LCL_TPSUT...75
AP_MODE_AVAIL...73
AP_MODE_SEL..73
AP_NEXT_AAID..74
AP_NEXT_BRID...76
AP_NEXT_TTNID ...74
AP_REM_AEID...76
AP_REM_AEQ..76
AP_REM_APID...76
AP_REM_APT...76
AP_REM_TPSUT..76
AP_STATE..74
AP_TPFU_AVAIL...76
AP_TPFU_SEL ..76
AP_TP_AVAIL ..76
AP_TP_CATEGORY ..76
AP_TP_COPYENV ..76
AP_TP_SEL..76
AP_TP_STATE...74
AP_TTNID...74
AP_URCH..76

environment file..119
environment variable ..119
file format ...119
flushing the concatenator..68
function...230
initialisation file ..119
interoperability ...230
ISO ...230
MACF..230

OSI ...230
OSI seven-layer model ..230
pdu...230
portability...230
presentation context ..230
Presentation Layer..231
primitive...231
protocol...231
RM ...231
RPC..231
RTI-SUI ...231
SACF ...231
Session Layer...231
SQL ..231
structure

ap_aaid_t ..82
ap_aei_api_id_t...82
ap_aeq_t ...82
ap_apt_t ..82
ap_brid_t ..82
ap_cid_t ..82
ap_dtnid_t..83
ap_osi_dbuf_t ...102, 111
ap_osi_vbuf_t ...102, 111
ap_tpaddr_t ...83
ap_tpsut_t ..83
ap_ttnid_t ...84
ap_urch_t ...83

TM..232
TP ...232
TP_BEGIN_DIALOGUE_CNF140
TP_BEGIN_DIALOGUE_IND.............................136
TP_BEGIN_DIALOGUE_REQ.............................132
TP_BEGIN_DIALOGUE_RSP..............................138
TP_BEGIN_TRANSACTION_IND145
TP_BEGIN_TRANSACTION_REQ....................143
TP_COMMIT_COMPLETE_IND........................151
TP_COMMIT_IND...149
TP_COMMIT_REQ ..147
TP_DATA_IND ...155
TP_DATA_REQ...153
TP_DEFERRED_END_DIALOGUE_IND.........158
TP_DEFERRED_END_DIALOGUE_REQ.........157
TP_DEFERRED_GRANT_CONTROL_IND160
TP_DEFERRED_GRANT_CONTROL_REQ159
TP_DIALOGUE_LOST_IND................................161
TP_DONE_REQ..163
TP_END_DIALOGUE_CNF168
TP_END_DIALOGUE_IND.................................166
TP_END_DIALOGUE_REQ165
TP_END_DIALOGUE_RSP..................................167

234 X/Open CAE Specification

Index

TP_FLUSH_REQ...169
TP_GRANT_CONTROL_IND171
TP_GRANT_CONTROL_REQ170
TP_HANDSHAKE_AND_GRANT_CONTROL_CNF180
TP_HANDSHAKE_AND_GRANT_CONTROL_IND178
TP_HANDSHAKE_AND_GRANT_CONTROL_REQ176
TP_HANDSHAKE_AND_GRANT_CONTROL_RSP179
TP_HANDSHAKE_CNF175
TP_HANDSHAKE_IND.......................................173
TP_HANDSHAKE_REQ172
TP_HANDSHAKE_RSP..174
TP_HEURISTIC_REPORT_IND..........................181
TP_LOG_DAMAGE_IND182
TP_MANAGE_REQ...184
TP_NODE_STATUS_IND.....................................186
TP_PREPARE_ALL_REQ192
TP_PREPARE_IND..191
TP_PREPARE_REQ..190
TP_P_ABORT_IND..188
TP_READY_ALL_IND..195
TP_READY_IND ..194
TP_RECOVER_REQ ..197
TP_REQUEST_CONTROL_IND.........................200
TP_REQUEST_CONTROL_REQ199
TP_RESTART_COMPLETE_IND205
TP_RESTART_COMPLETE_REQ.......................204
TP_RESTART_REQ..203
TP_RESUME_COMPLETE_IND.........................202
TP_RESUME_REQ...201
TP_ROLLBACK_COMPLETE_IND...................211
TP_ROLLBACK_IND..209
TP_ROLLBACK_REQ ...207
TP_UPDATE_LOG_DAMAGE_REQ.................213
TP_U_ABORT_IND ...216
TP_U_ABORT_REQ...215
TP_U_ERROR_IND ...219
TP_U_ERROR_REQ...218
transaction..231
transfer syntax...232
Transport Layer...232
TxRPC ...232
user data

buffering...111
user data buffering ...102
using XAP-TP interface ...70
XA ..232
XAP..232
XAP-TP ...232
xap-tp command ..115
xap_tp.h..221
xap_tp_osic ..116

XTP ..232

ACSE/Presentation: Transaction Processing API (XAP-TP) 235

Index

236 X/Open CAE Specification

