
X/Open CAE Specification

Remote Operations Service Element (XAP-ROSE) API

X/Open Company Ltd.

 January 1995, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

Remote Operations Service Element (XAP-ROSE) API

ISBN: 1-85912-060-1
X/Open Document Number: C408

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

ii X/Open CAE Specification

Contents

Chapter 1 Introduction... 1
 1.1 Objectives ... 1
 1.2 Relationship to the XAP Specification.. 2
 1.3 Scope and Limitations ... 2
 1.4 Overview of the ROSE Service... 3
 1.4.1 Remote Operation Model... 3
 1.4.2 Remote Operation Notation .. 4
 1.4.3 ROSE Application Service Element ... 5
 1.4.4 ROSE Protocol .. 5
 1.5 Terminology... 6
 1.6 XAP-ROSE Compliance... 7
 1.7 Future Directions .. 8

Chapter 2 Description of XAP-ROSE.. 9
 2.1 XAP-ROSE Model... 9
 2.1.1 Service User... 10
 2.1.2 Service Provider ... 10
 2.1.3 XAP-ROSE Instance .. 10
 2.1.4 XAP-ROSE Environment.. 10
 2.1.5 Service Primitive Parameters .. 11
 2.1.6 User Data ... 11
 2.2 Establishing and Releasing an XAP-ROSE Instance............................ 12
 2.3 Specifying ROSE Abstract Syntaxes ... 13
 2.4 Controlling the ROSE Protocol Machine ... 14
 2.5 Implementing ROSE Bind and Unbind Operations 16
 2.5.1 Bind and Unbind Encoding ... 16
 2.6 XAP-ROSE Events/Primitives ... 18
 2.6.1 Sending Primitives... 18
 2.6.2 Receiving Primitives ... 19
 2.6.3 Encoding User Data for ROSE Primitives... 20
 2.7 Using the XAP-ROSE Interface .. 22
 2.7.1 Obtain an XAP-ROSE Instance ... 22
 2.7.2 Initialise the XAP-ROSE Environment.. 22
 2.7.3 Bind the XAP-ROSE user to a local PSAP address 22
 2.7.4 Send or Receive AP_RO_BIND_XXX or A_ASSOC_XXX Event... 22
 2.7.5 Transferring ROSE Primitives ... 22
 2.7.6 Releasing the Application Association ... 22

Chapter 3 Environment.. 23
 3.1 Modified XAP Environment Attributes ... 23
 3.2 Environment Attributes Specific to XAP-ROSE................................... 23
 3.2.1 AP_RO_FAC_AVAIL .. 23

Remote Operations Service Element (XAP-ROSE) API iii

Contents

 3.2.2 AP_RO_PCI_LIST.. 23
 3.3 Environment Attribute Summary Table .. 24
 3.4 Environment Attribute Typedefs .. 24
 3.4.1 ap_ro_pci_list_t .. 24

Chapter 4 ROSE Functions .. 25
 4.1 Introduction ... 25
 4.1.1 Summary of ROSE Functions.. 25
 4.1.2 Structure Definitions ... 25
 ap_ro_init () .. 27
 ap_ro_release () ... 29

Chapter 5 ROSE Primitives ... 31
 5.1 Summary of ROSE Primitives .. 31
 AP_RO_BIND_REQ... 32
 AP_RO_BIND_IND ... 34
 AP_RO_BIND_RSP.. 36
 AP_RO_BIND_CNF ... 38
 AP_RO_ERROR_REQ ... 40
 AP_RO_ERROR_IND.. 42
 AP_RO_INVOKE_REQ ... 44
 AP_RO_INVOKE_IND.. 46
 AP_RO_REJECTP_IND... 48
 AP_RO_REJECTU_REQ ... 50
 AP_RO_REJECTU_IND .. 52
 AP_RO_RESULT_REQ.. 53
 AP_RO_RESULT_IND .. 55
 AP_RO_UNBIND_REQ .. 57
 AP_RO_UNBIND_IND ... 59
 AP_RO_UNBIND_RSP ... 61
 AP_RO_UNBIND_CNF .. 63

Appendix A XAP-ROSE Header File .. 65

 Glossary ... 69

 Index... 71

List of Figures

1-1 Remote Operations Model... 4
2-1 OSI Service Interfaces ... 9

List of Tables

2-1 XAP-ROSE Events/Primitives .. 18

iv X/Open CAE Specification

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

Remote Operations Service Element (XAP-ROSE) API v

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

vi X/Open CAE Specification

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:

request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.

This Document

This document is an X/Open CAE Specification. It specifies the Remote Operation Service
Element (ROSE) access method for OSI user applications using the ISO ROSE services defined in
ISO 9072-1 and ISO 9072-2. Since ISO 13712 is defined to be compatible with ISO 9072-1 and ISO
9072-2, this API also provides access to the services defined in ISO 13712.

The exposed library interface, XAP-ROSE, is composed of a set of ROSE primitives and
attributes designed to be used along with the XAP Service Library. This (ROSE) subset of Service
primitives and attributes is based on the objectives in the XAP-ACSE/Presentation Service
Library, and the standards in the ISO IS 9072 ROSE Definition & Protocol publications.

XAP-ROSE is not meant as an alternative to XAP, but rather as a superset of available services,
for those applications requiring access to the Remote Operations Service ASE. The main benefit
from these extensions is the elimination of redundant code within applications using the ISO
ROSE.

The ROSE service user referencing this document is presumed to be familiar with the X/Open
ACSE/Presentation Services (XAP) API (see reference XAP).

Structure

• Chapter 1 gives an introduction to XAP-ROSE. It includes an overview of the ROSE service,
its relationship to the XAP Specification (see reference XAP), and compliance requirements
for implemetations claiming conformance to this XAP-ROSE Specification. These
requirements include the minimum set of functions that must be provided by an
implementation of XAP-ROSE, as well as the requirements placed on the underlying ROSE,
ACSE, & Presentation protocol providers.

• Chapter 2 provides a description of XAP-ROSE, covering the ROSE model and environment,
and an outline of its usage

• Chapter 3 presents information on the XAP-ROSE environment

• Chapter 4 presents the manual page descriptions for the XAP-ROSE functions

• Chapter 5 presents the manual page descriptions for the XAP-ROSE primitives.

Remote Operations Service Element (XAP-ROSE) API vii

Preface

Intended Audience

This specification has two specific groups of implementors as its target audience:

API Implementors
System vendors who implement an OSI 7 layer protocol stack providing in addition the ISO
ROSE may use this specification to develop an XAP-ROSE compliant library interface to
their protocol providers. This provides a portability path for support of applications from
third party software vendors.

Applications Implementors
Independent Software Vendors, (ISVs), which implement OSI and Non-OSI applications
which require the use of an Invoke/Response paradigm, and which are to run in an ISO OSI
(network) compliant environment. Taking advantage of a standard interface to the ROSE
API enhances the portability of the application(s) across the different implementations of
the ISO OSI protocol stack from multiple system vendors.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— command operands, command option-arguments or variable names, for example,
substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name(). Names without parentheses are C external
variables, C function family names, utility names, command operands or command
option-arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

• The notation [EABCD] is used to identify a return value ABCD, including if this is an an error
value.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [] , are part of the syntax and do not indicate optional
items.

viii X/Open CAE Specification

Trade Marks

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of the X/Open
Company Ltd.

UNIX is a registered trade mark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

Remote Operations Service Element (XAP-ROSE) API ix

Referenced Documents

The following documents are referenced in this specification:

ISO 8326
ISO 8326: 1987, Information Processing Systems — Open Systems Interconnection — Basic
Connection-oriented Session Service Definition.

ISO 8327
ISO 8327: 1987, Information Processing Systems — Open Systems Interconnection — Basic
Connection-oriented Session Protocol Specification.

ISO 8649
ISO 8649: 1988, Information Processing Systems — Open Systems Interconnection — Service
Definition for the Association Control Service Element.

ISO 8650
ISO 8650: 1992 Information Processing Systems — Open Systems Interconnection —
Protocol Specification for the Association Control Service Element.

ISO 8822
ISO 8822: 1988, Information Processing Systems — Open Systems Interconnection —
Connection-oriented Presentation Service Definition.

ISO 8823
ISO 8823: 1988, Information Processing Systems — Open Systems Interconnection —
Connection-oriented Presentation Protocol Specification.

ISO/IEC 9072
ISO/IEC 9072: 1989, Information Processing Systems — Text Communication — Remote
Operations — Parts 1 and 2:

Part 1: Model, Notation and Service Definition
Part 2: Protocol Specification.

ISO 13712
ISO 13712, Remote Operations Service Element Specification.

XAP
X/Open CAE Specification, September 1993, ACSE/Presentation Services API (XAP) (ISBN:
1-872630-91-X, C303).

x X/Open CAE Specification

Chapter 1

Introduction

This Specification defines the X/Open ROSE programming interface (XAP-ROSE), which is an
interface to the services provided by the ISO 9072-1 and ISO 9072-2 Remote Operations Service
Elements. These reside in the Application layer of the ISO Open Systems Interconnect Reference
Model.

1.1 Objectives
X/Open has defined an API to ACSE/Presentation Services, (XAP), which provides a
programming interface to the ISO ACSE and Presentation services defined in the ISO 7-layer
Open Systems Interconnect Reference Model. The XAP specification is independent of the
implementation of the underlying protocol engines, providing a clear path for ISO application
portability.

In order to provide a consistent method of access to the ISO 9072-1 and ISO 9072-2 (and ISO
13712) Remote Operations Service (ROSE), X/Open has defined a set of extensions to the XAP
interface which allow applications to exploit the facilities provided by ROSE.

The primary benefit of these extensions is the reduction of code needed to provide each
application with ROSE facilities. A well defined interface to ROSE - (a ROSE API) - makes
available to Independent Software Vendors (ISVs) consistency of target protocol providers
which is an incentive for further application development, that is, X.500 DSP/DAP, 1988 X.400
MS & RUA.

Another motivation is to provide a base (ROSE) API for the development of higher level
procedures. These higher level procedures could be viewed as libraries of objects which are
designed to conceal the complexities of the underlying communications architecture. There is
already activity in the commercial (user) community which mandates this very requirement,
(easier/intuitive access to OSI services).

An issue considered when defining this API addresses where a ROSE API should reside, and it’s
visibility to the application developer. The XAP extensions are not intended to be a high level
interface. The XAP interface itself is not viewed as an end user interface, but simply as a well
defined entry point to the OSI Protocol Stack, (in this case, offering the ROSE Protocol access),
intended to be used by development staff that are very familiar with the requirements of the
underlying Protocol providers.

The XAP-ROSE extensions are a straightforward method of defining the use of ROSE services by
those applications which require the use of an request/response paradigm.

Remote Operations Service Element (XAP-ROSE) API 1

Relationship to the XAP Specification Introduction

1.2 Relationship to the XAP Specification
This specification defines a set of extensions to the established X/Open ACSE/Presentation
(XAP) API - see reference XAP. It is intended to be read in conjunction with the XAP
Specification, and so does not reiterate information that is already presented in the XAP
Specification.

The reader of this specification is presumed to be familiar with the first three chapters of the
XAP Specification, as well as the following ISO publications:

ISO 9072-1 Remote Operations Service Definition

ISO 9072-2 Remote Operations Protocol Specification

ISO 8649 Association Control Service Definition

ISO 8650 Association Control Protocol Specification

ISO 8822 Presentation Service Definition

ISO 8823 Presentation Protocol Specification

ISO 8326 Session Service Definition

ISO 8327 Session Protocol Specification

ISO 13712 Remote Operations Service Element Specification

Functions and Primitives which are unchanged from the XAP definition are not repeated in this
specification, and the reader is referred to XAP for clarification when necessary.

1.3 Scope and Limitations
XAP-ROSE provides an API to the services of the Remote Operations Service Element, as
defined by ISO 9072-1 and ISO 9072-2. In addition, as ISO 13712 is defined to be compatible with
ISO 9072-1 and ISO 9072-2, the API also provides access to the services defined in ISO 13712.

The ROSE service provider to which XAP-ROSE provides access is layered directly on top of the
ACSE and Presentation Service.

The P-DATA service provides an unconfirmed transfer service.

No support is provided for an implementation of ROSE services using the RTSE ASE to provide
a confirmed transfer service.

2 X/Open CAE Specification

Introduction Overview of the ROSE Service

1.4 Overview of the ROSE Service
The XAP-ROSE API provides access to the services of the Remote Operations Service Element
(ROSE), as defined in the referenced (ISO 9072-1 and ISO 9072-2) ROSE standard. The remainder
of this specification assumes that the reader is familiar with the terms and concepts defined in
the ROSE standard.

The XAP specification, upon which XAP-ROSE depends, provides an overview of the services to
which that API provides access. This section provides a similar brief overview of the concepts
associated with OSI Remote Operations.

The purpose of the ROSE standard is to support interactive applications in a distributed open
systems environment. To do this, the standards define a Remote Operation notation, the ROSE
application-service-element and the ROSE protocol.

1.4.1 Remote Operation Model

The Remote Operations Model describes a remote operation as an operation requested by one
entity (the invoker), which another entity (the performer) attempts to perform and then reports the
outcome of the attempt.

The model elaborates on this by introducing the concept of linked-operations , where the definition
of an operation may include a list of child-operations that the performer of the parent-operation
may call in order to accomplish the requested task. The performer of the child-operation is the
invoker of the parent operation. This sequence may be recursive, as required.

An operation is classified according to whether it is expected to report its outcome and, if it is,
according to whether operation invocation/reply is synchronous or asynchronous. This results
in five classes of operation. However, classes 3-5, which do not return results in all cases, are
only likely to be useful to a restricted group of specialised applications.

Operation Class 1: synchronous, reporting success or failure

Operation Class 2: asynchronous, reporting success or failure

Operation Class 3: asynchronous, reporting failure only (if any)

Operation Class 4: asynchronous, reporting success only (if any)

Operation Class 5: asynchronous, outcome not reported.

In the OSI Basic Reference Model, interaction between a pair of application processes is achieved
via application-entities . The general model of an application-entity consists of a user-element,
which uses a set of one or more application-service-elements (ASEs) to achieve the communications
functions of the application process. This communication occurs in the context of an
application-association that is created for the purposes of communication between the two
application-entities.

In the Remote Operations model, these user-elements communicate using operations which are
invoked via a conceptual operation-interface . A set of operations represents an application-
specific ASE. Such an ASE is implemented by application-specific code using the services of the
Remote Operations Service Element (ROSE) for invoking and replying to operations, and ACSE
or RTSE for the management of application-associations.

This model is illustrated in Figure 1-1, which is based upon a similar figure in the referenced
ROSE standard.

Remote Operations Service Element (XAP-ROSE) API 3

Overview of the ROSE Service Introduction

. .

Presentation
Layer

presentation-connection

ROSE-user
application-

service-element

ACSE
ROSE

RTSE
.

..

..

..

..

..

...........................

user-element

application-entity

ROSE-user
application-

service-element

ACSE
ROSE

RTSE
.

..

..

..

..

..

...........................

user-element

application-entity

. .operation-
interface

. .

Application
Layer

application-association

Figure 1-1 Remote Operations Model

The model classifies application-associations according to which of the application-entities are
allowed to invoke operations:

Association Class 1: only the association initiator.

Association Class 2: only the association responder.

Association Class 3: both application-entities.

To support linked operations, a class 3 association is required.

1.4.2 Remote Operation Notation

The referenced ROSE standards define a Remote Operation notation (RO-notation) which is
analagous to the interface definition language or notation that forms part of many remote
procedure call mechanisms. It allows an application-service-element (ASE) to be defined for the
support of a particular application or group of applications. This ASE consists of:

• a bind operation, which establishes an application-association between two application-
entities for the invocation of operations

• one or more operations that may be invoked to implement an interactive protocol between
the parties of the association

• an unbind operation, which releases the application-association.

4 X/Open CAE Specification

Introduction Overview of the ROSE Service

As part of the assocation setup, ACSE is used to establish an application-context that identifies
the set of ROSE-user ASEs and other ASEs that are to be available to the application-entities
involved in the association.

As an example, the Directory Services defines a ROSE-user application-service-element using
the RO-notation to provide a set of services such as Read and Modify-Entry for interogating or
modifying the contents of a directory.

The RO-notation makes use of the data syntax notation and macro notation of Abstract Syntax
Notation One (ASN.1). The macros provided allow the definition of the data syntax of an
optional argument that may be passed to an operation, and an optional result that it may return
when the operation is successful. They also allow the definition of the error codes that an
unsuccessful operation may return.

1.4.3 ROSE Application Service Element

The purpose of an application-service-element is to provide services that will be of use to a
number of applications. In the case of the ROSE ASE, the services support the implementation
of Remote Operations.

An application-specific function uses the services provided by ROSE to implement the
operations that are made available to the user element. In addition, the bind and unbind
operations are implemented using the services provided by ACSE - or by Reliable Transfer
Service (RTSE) if that ASE is being used to provide the transfer service for remote operations.

This application-specific function is analagous to the stub routines that are generated by some
remote procedure call mechanisms, for use by an application when the interface definition is
compiled.

ROSE provides unconfirmed services to invoke an operation, to return a reply for a successful
invocation, and to return an error code for a failed operation. In addition, ROSE provides user
and provider reject services to handle unexpected error conditions and protocol violations.

The ROSE service primitives are analagous to the remote procedure call functions that are used
to transport call invocations and replies in some remote procedure call mechanisms.

1.4.4 ROSE Protocol

The ROSE protocol defines the PDUs that are exchanged to implement the services of the ROSE
ASE, and the use of underlying services to transfer these PDUs. The ROSE uses a transfer service
which may be the unconfirmed P-DATA primitive of the Presentation Layer, or the equivalent
services of the Reliable Transfer Service ASE (RTSE).

In the case where ROSE protocol is implemented over RTSE, additional parameters passed in the
ROSE service primitives are used by the ROSE protocol machine to manage the use of the RTSE
services.

Unlike most application-service-elements, the ROSE protocol does not define a distinct abstract
syntax for the encoding of its PDUs. Instead, it provides a set of abstract syntax definitions that
are imported into the abstract syntax(es) that define the set of operations used by an application.
ROSE PDUs are then encoded, along with any argument or result data associated with the
operation being invoked or replied to, using the transfer syntax that the application has
negotiated for use with the abstract syntax.

Remote Operations Service Element (XAP-ROSE) API 5

Terminology Introduction

1.5 Terminology

Definition of Terms

The terminology used in this specification is that of the ISO standards which define the services
to which XAP-ROSE provides access. For convenience, the abbreviations have been defined in
the Glossary for this specification.

Use of Naming Prefixes

In order to preserve uniqueness, all functions, primitives, typedefs, data items and constants
defined by this specification have names that have the format ap_ro_xxx (or AP_RO_XXX). The
items that have the format ap_xxx (or AP_XXX) are defined in the XAP specification.

Alignment with ISO C

As part of aligning X/Open specifications with ISO C, this specification uses the ISO C function
declaration syntax.

6 X/Open CAE Specification

Introduction XAP-ROSE Compliance

1.6 XAP-ROSE Compliance
All XAP-ROSE functions listed in Section 4.1.1 on page 25 must be supported.

All XAP-ROSE Primitives listed in Table 2-1 on page 18 must be supported.

An implementation which complies with this Specification must also comply with the
conformance clauses of the ISO protocol specifications which this specification references:

• ISO 8822, 8823
ISO Presentation Service and Protocol definitions

• ISO 8649, 8650
ISO ACSE Service and Protocol definitions

• ISO 9072-1 and ISO 9072-2
ISO ROSE Service and Protocol definitions.

These clauses specify requirements on combinations of functional units and, by implication,
permitted sequences of primitives.

Conformance to the underlying protocols is stated in the appropriate Protocol Implementation
Conformance Statement (PICS). PICS Proforma for the ISO/IEC Presentation, ACSE and ROSE
Protocol Specifications are currently under ballot. Conformant completion of these PICS
Proforma shall also apply to implementations claiming conformance to this specification, once
these PICS have been approved by ISO/IEC.

International Standardized Profiles (ISP) allow a reduced set of underlying features to be
specified, by placing restrictions on the PICS. These restrictions are in terms of a requirements
list - effectively deltas to the (protocol) PICS status column - and contain additional questions
relevant to the profile.

International Standardized Profile ISO/IEC ISP 11183 specifies requirements on Presentation,
ACSE and ROSE Protocols when they are used for OSI Management:

• ISP 11183-1: OSI Management - Specifications of ACSE, Presentation and Session Protocols
for the use by ROSE and CMISE

• ISP 11183-2: OSI Management - Basic Management

• ISP 11183-3: OSI Management - Enhanced Management Communications.

A series of International Standardized Profiles is in preparation to specify Common Upper Layer
Requirements. When they are approved by ISO/IEC:

• ISP 11188-1 will specify ‘‘Basic connection oriented requirements’’

• ISP 11188-2 will specify ‘‘Basic connection oriented requirements with ROSE’’

• ISP 11188-3 will specify ‘‘Minimal Upper Layer Facilities’’.

These ISPs are intended to be used in conjunction with specific Application Profiles (for example
A-Profiles for the ISO Directory).

Support for specific profiles shall be declared by the vendor in the Conformance Statement
Questionnaire (CSQ).

An implementation that conforms to the requirements of this specification must also comply
with the mandatory requirements stated in the referenced XAP specification.

Remote Operations Service Element (XAP-ROSE) API 7

Future Directions Introduction

1.7 Future Directions
This XAP-ROSE CAE specification supports ROSE service providers that are implemented using
the P-DATA service of the presentation layer directly to provide an unconfirmed transfer service
for ROSE PDUs.

A future version of this specification may be produced which supports ROSE service providers
that are implemented using the services of the RTSE ASE to provide a confirmed transfer
service.

Support for RTSE-based service providers is expected to require the following facilities:

• access to the RTSE services RT-OPEN and RT-CLOSE

• use of the extended ap_ro_cdata_t parameters priority and op_class, which are defined by this
specification but currently not used.

Support of RTSE-based services is not expected to affect the portability of existing applications,
because no changes are expected to be required to the interfaces defined by this specification.

8 X/Open CAE Specification

Chapter 2

Description of XAP-ROSE

This chapter describes the ROSE extensions to XAP, XAP-ROSE. It discusses usage of its
functions, and use of the primitives associated with the XAP-ROSE interface. A brief description
of how the interface may be used to establish an application association, perform remote
operations, and release the association, is provided.

2.1 XAP-ROSE Model
Figure 2-1 shows how the interface presented by this API relates to the services of the OSI upper
layers, and to the other X/Open-defined APIs to OSI services.

OSI TRANSPORT
SERVICES

XTI

OSI UPPER
LAYERS

ROSEACSE

XAP

XAP-ROSE

OSI
APPLICATION

Figure 2-1 OSI Service Interfaces

The XAP-ROSE API is an extension of the XAP API. The model upon which that API is based
also applies to the XAP-ROSE API. The following subsections describe the relationship between
XAP and XAP-ROSE by showing how the XAP model applies to XAP-ROSE, and how XAP-
ROSE extends that model to provide access to the services of the ROSE service.

Remote Operations Service Element (XAP-ROSE) API 9

XAP-ROSE Model Description of XAP-ROSE

This section of the specification should be read in conjunction with the equivalent section of the
XAP Specification.

2.1.1 Service User

In XAP, an application program that uses the XAP API corresponds to the OSI term application-
entity. The application code which uses the API may correspond to the OSI concept of a user-
element or another application-service-element which accesses the services of the ASCE service
and the Presentation Layer by using the XAP API.

XAP-ROSE extends the model of the XAP Service User to support the Remote Operations (RO)
model defined in the referenced Remote Operations standards. In the RO model, the user of the
ACSE and ROSE services is an application-service-element that implements an application-
specific mapping of a set of remote operations onto the ACSE and ROSE services. These
operations are made available to a user-element via a conceptual operation interface.

Thus, in the XAP-ROSE model, the service-user is the application code that implements the
mapping of remote operations to ROSE services.

Note: XAP-ROSE does not constrain the structure of the application that uses the interface.
For example, the remote operations may implement the conceptual operation interface
as a set of stub functions that may be bound into an application using a remote
procedure call mechanism. Alternatively, the remote operations may form an integral
part of an application such as an implementation of a Directory Services Directory User
Agent.

2.1.2 Service Provider

In XAP-ROSE, the service provider provides access to the services of the ROSE service plus
those of the ASCE service and the Presentation Layer.

The sevice-provider-identifier, specified by the service-user when the instance is created, is used to
select a particular ROSE service provider.

Currently, XAP-ROSE only supports ROSE implementations that are layered directly on top of
the ACSE/Presentation Layers. See Section 1.7 on page 8 for information regarding possible
support of the ROSE service layered on top of an RTSE-based transfer service.

2.1.3 XAP-ROSE Instance

An XAP-ROSE instance encompasses all of the capabilities of an XAP instance, plus additional
capabilities required to support the services of the ROSE service using an existing application-
association.

2.1.4 XAP-ROSE Environment

The XAP-ROSE environment contains all the environment attributes defined by the XAP
environment, plus additional attributes that are required to support and control the operation of
the ROSE service provider.

10 X/Open CAE Specification

Description of XAP-ROSE XAP-ROSE Model

2.1.5 Service Primitive Parameters

XAP-ROSE defines additional elements of control data that are required to support and control
the operation of the ROSE service provider.

2.1.6 User Data

The user data passed to or returned from XAP-ROSE service primitives represents the argument,
result or error-parameter service primitive parameters. The actual data values passed by a
particular remote operation are defined using the RO-notation defined in the referenced ROSE
standards.

As in XAP, these data values must be encoded and decoded by the service user. However, the
rules for encoding differ from those defined for the XAP primitives.

Remote Operations Service Element (XAP-ROSE) API 11

Establishing and Releasing an XAP-ROSE Instance Description of XAP-ROSE

2.2 Establishing and Releasing an XAP-ROSE Instance
An XAP instance is established using the XAP function, ap_open(). The service provider argument
to ap_open() may be used to identify a service provider that supports ROSE. The XAP
environment variable AP_MODE_AVAIL for such an association has the AP_ROSE_MODE flag
set to indicate that this instance is capable of operating as an XAP-ROSE instance.

To use the instance as an XAP-ROSE instance, it is necessary to set the AP_ROSE_MODE flag in
the XAP environment variable AP_MODE_SEL, at which point the functions, environment
attributes and primitives defined by this specification become available to the application.
When the AP_ROSE_MODE flag in AP_MODE_SEL is set, the environment attributes defined by
XAP-ROSE are initialised to their default state.

Clearing the AP_ROSE_MODE flag in AP_MODE_SEL causes the XAP-ROSE functions,
environment attributes and primitives to become unavailable. Alternatively, the XAP-ROSE
instance can be destroyed using the XAP ap_close() function. Any state held by the ROSE service
provider for an instance is lost when the flag is cleared. If the flag is set again for the instance at a
later time, the ROSE service provider is set to its initial state and environment variables are re-
initialised to their default values.

Currently, XAP-ROSE only supports service providers that implement the ROSE service using
the services of the presentation layer directly as an unconfirmed transfer service. A future
version of this API may support Reliable Transfer (RTSE) service providers.

12 X/Open CAE Specification

Description of XAP-ROSE Specifying ROSE Abstract Syntaxes

2.3 Specifying ROSE Abstract Syntaxes
In order for the ROSE service provider to detect incoming ROSE PDUs and indicate them to the
service user, the ROPM must examine each incoming P_DATA_IND primitive to determine if it
contains a ROSE PDU.

As the abstract syntaxes that may contain ROSE PDUs are defined by the application as part of
the specification of remote operations, the service user must inform the service provider which
abstract syntaxes may contain ROSE PDUs.

To support this feature, XAP-ROSE defines an additional environment attribute
AP_RO_PCI_LIST, that allows the service user to register the list of abstract syntaxes to be
examined. The attribute consists of a list of object identifiers that are to be examined by the
ROSE service provider. This attribute may be set calling the XAP function ap_set_env():

ap_set_env(fd, AP_RO_PCI_LIST, val, aperrno_p) ;

where val is a structure of type ap_val_t, and val.v contains a pointer to a structure of type
ap_ro_pci_list_t.

Remote Operations Service Element (XAP-ROSE) API 13

Controlling the ROSE Protocol Machine Description of XAP-ROSE

2.4 Controlling the ROSE Protocol Machine
Selecting AP_ROSE_MODE in the XAP environment attribute AP_MODE_SEL for an XAP
instance makes the XAP-ROSE functions, environment attributes and primitives available to the
service user. However, to enable the ROSE Procotol Machine (ROPM) and permit ROSE
primitives to be sent and received, the service user must call the ap_ro_init() function. The user
may call the ap_ro_release() function to disable the ROPM.

For XAP-ROSE instances used only for supporting the transfer of ROSE Operations, the ROPM
may be enabled when the XAP-ROSE instance is created, and left so for the lifetime of the
instance.

The ROPM is disabled automatically when the XAP-ROSE instance is destroyed by calling
ap_close(), so it is not necessary to call ap_ro_release() for this mode of usage.

An XAP-ROSE instance may be used to support a sequence of associations. It is not necessary to
enable and disable the ROPM for each association. Once enabled, it becomes active whenever an
established association exists, and is dormant at other times.

It is possible to use a single XAP instance and/or association to transfer both ROSE PDUs and
those of other application protocols. Because examining incoming primitives for the presence of
ROSE PDUs implies at least some processing overhead, an application which uses an XAP
instance in this manner may use ap_ro_init() and ap_ro_release() to enable the ROPM only when
required.

A call to ap_ro_init () causes the list of ROSE abstract syntaxes identified by the PCI entries in the
environment attribute AP_RO_PCI_LIST to be validated.

The service user should ensure that the set of PCIs available on the association has been defined
before this call (either in AP_DCS if the association is already established, or in
AP_PCDL/AP_PCDRL in a state where the defined context set is not available). If this is not the
case, the call to ap_ro_init () returns the error [AP_RO_CNTX_NOT_PRES] and the ROPM will
not be enabled.

There are three different scenarios when ap_ro_init () can be called, and each operates as follows:

• For an initiator before connection establishment, the user sets AP_PCDL to contain the list of
proposed presentation contexts, each PCI having an abstract syntax and one or more transfer
syntaxes. The user sets AP_RO_PCI_LIST to contain the list of PCIs that identify
presentation contexts using the ROSE protocol. The user then calls ap_ro_init () and the
following checks are performed:

— Each PCI in the AP_RO_PCI_LIST is checked against the AP_PCDL. If the PCI is not in
the AP_PCDL an [AP_RO_BAD_PCI] error is returned. If the PCI is in the AP_PCDL,
then each transfer syntax is checked to see if it is supported. If not, the transfer syntax is
removed from the AP_PCDL. If no more tranfer syntaxes remain in the presentation
context, the PCI is removed from the AP_PCDL. If there are no more PCIs in the
AP_PCDL, an [AP_RO_CNTX_NOT_PRES] error is returned.

Upon successful completion, the ROPM is enabled. If an error is returned, the ROPM is
not enabled and the user may examine/modify the resulting AP_PCDL value before
retrying.

• For an initiator or responder after connection establishment, the user sets AP_RO_PCI_LIST
to contain the list of PCIs which identify presentation contexts using the ROSE protocol. The
user then calls ap_ro_init () and the following checks are performed:

— Each PCI in the AP_RO_PCI_LIST is checked against the PCIs in the AP_DCS. If the PCI
is not in the AP_DCS an [AP_RO_BAD_PCI] error is returned. If the PCI is in the

14 X/Open CAE Specification

Description of XAP-ROSE Controlling the ROSE Protocol Machine

AP_DCS, then the transfer syntax in the AP_DCS entry for this PCI is checked to see if it
is supported. If it is not supported, an [AP_RO_T_SYTX_NSUP] error is returned.

Upon successful completion, the ROPM is enabled. If an error is returned, the ROPM is
not enabled and the user may examine/modify the AP_RO_PCI_LIST value before
retrying.

• For a responder during inward connection establishment, the user sets AP_PCDRL to accept
or reject the proposed presentation contexts and tranfer syntaxes. The user then sets
AP_RO_PCI_LIST to contain the list of PCIs that identify presentation contexts using the
ROSE protocol. The user then calls ap_ro_init () and the following checks are performed:

— Each PCI in the AP_RO_PCI_LIST is checked against the AP_PCDL. If the PCI is not in
the AP_PCDL an [AP_RO_BAD_PCI] error is returned. If the PCI is in the AP_PCDL and
the context for this PCI is accepted in the AP_PCDRL, the transfer syntax is checked. If
the transfer syntax is not supported by the ROSE provider, the context is marked as
rejected in the AP_PCDRL. If no contexts with supported transfer syntaxes remain, an
[AP_RO_CNTX_NOT_PRES] error is returned.

Upon successful completion, the ROPM is enabled. If an error is returned, the ROPM is
not enabled and the user may examine/modify the AP_RO_PCI_LIST value before
retrying.

The ap_ro_init() function may be called when ROPM is already enabled, in order to validate and
install a modified list of ROSE abstract syntaxes.

XAP does not support the P-ALTER-CONTEXT service. If it is necessary to change the value of
AP_RO_PCI_LIST during the lifetime of an association, the list of abstract syntaxes negotiated
when the assocation was created must be sufficient to support the new value of
AP_RO_PCI_LIST.

Remote Operations Service Element (XAP-ROSE) API 15

Implementing ROSE Bind and Unbind Operations Description of XAP-ROSE

2.5 Implementing ROSE Bind and Unbind Operations
The ROSE service definition defines a bind operation that creates an association over which
subsequent operation requests and replies are transferred. The ROSE service definition also
defines an unbind operation that destroys the association created by the bind operation.

Depending on the version of the ROSE specification implemented by the XAP-ROSE provider,
the bind and unbind operations may either be defined as a macros using the A-ASSOCIATE and
A-RELEASE primitives, with the ROSE protocol encoded in the user information portion of
these primitives, or as the separate ROSE primitives BIND and UNBIND.

In the XAP-ROSE API, if the underlying ROSE implementation supports the BIND and UNBIND
primitives, the AP_RO_BIND_XXX and AP_RO_UNBIND_XXX primitives can be used as
described in the following sections. Their usage is similar to that of other ROSE primitives
defined through XAP-ROSE.

In the case where the A-ASSOCIATE and A-RELEASE primitives are to be used, the XAP-ROSE
API user can implement the bind/unbind operation using the ACSE primitives defined by XAP.
The rules for encoding the operation arguments for these primitives are those defined by XAP
for the relevant primitives, rather than the rules defined in this specification for encoding other
operation and reply arguments.

2.5.1 Bind and Unbind Encoding

Section 3.2.1 on page 23 describes how the user can determine availability of the ROSE
BIND/UNBIND primitives in the XAP-ROSE provider.

The ROSE service specification ISO 9071-2 has macro definitions for the bind and unbind
operations. These macros show the required tagging of the user information portion of the ACSE
A-ASSOCIATE and A-RELEASE primitives when embedded in the Association-information
EXTERNAL encoding. For each of the bind and unbind macros, an example encoding is shown
below. These encodings take precedence over the encoding shown on the ap_snd() manual page
of the XAP specification.

These example use the value syntax defined by the ASN.1 specification with the addition (for the
purposes of illustration only) of explicit tag information included within square brackets (for
example: [INTEGER] - a universal tag, [0] - a context specific tag, and so on).

• bind macro for the A_ASSOC_REQ primitive:

user-information [30] {
[EXTERNAL] { -- Association-information

direct-reference [OBJECT IDENTIFIER] { ... }
single-ASN1-type [0] { Argument-value [16] ... }

} }

• bind-accept macro for the A_ASSOC_RSP(accept) primitive:

user-information [30] {
[EXTERNAL] { -- Association-information

indirect-reference [INTEGER] { ... }
single-ASN1-type [0] { Result-value [17] ... }

} }

• bind-refuse macro for the A_ASSOC_RSP(refuse) primitive:

16 X/Open CAE Specification

Description of XAP-ROSE Implementing ROSE Bind and Unbind Operations

user-information [30] {
[EXTERNAL] { -- Association-information

direct-reference [OBJECT IDENTIFIER] { ... }
single-ASN1-type [0] { Error-value [18] ... }

} }

• unbind macro for the A_RELEASE_REQ primitive:

user-information [30] {
[EXTERNAL] { -- Association-information

indirect-reference [INTEGER] { ... }
single-ASN1-type [0] { Argument-value [19] ... }

} }

• unbind-accept macro for the A_RELEASE_RSP(accept) primitive:

user-information [30] {
[EXTERNAL] { -- Association-information

indirect-reference [INTEGER] { ... }
single-ASN1-type [0] { Result-value [20] ... }

} }

• unbind-refuse macro for the A_RELEASE_RSP(refuse) primitive:

user-information [30] {
[EXTERNAL] { -- Association-information

indirect-reference [INTEGER] { ... }
single-ASN1-type [0] { Error-value [21] ... }

} }

The ASN.1 Basic Encoding Rules (BER) must be used to encode the user-information with the
exception of the contents of the single-ASN1-type which must be encoded in the transfer syntax
identified by direct-reference or indirect-reference. The presence of the direct-reference or
indirect-reference is normally mandated by Application Profile.

Remote Operations Service Element (XAP-ROSE) API 17

XAP-ROSE Events/Primitives Description of XAP-ROSE

2.6 XAP-ROSE Events/Primitives
The following list of Events make up the Valid set of XAP-ROSE events, which drive the XAP-
ROSE and the associated ROPM (Remote Operations Protocol Machine).

XAP-ROSE Event Send Receive
AP_RO_BIND_REQ Send -
AP_RO_BIND_IND - Receive
AP_RO_BIND_RSP Send -
AP_RO_BIND_CNF - Receive
AP_RO_INVOKE_REQ Send -
AP_RO_INVOKE_IND - Receive
AP_RO_RESULT_REQ Send -
AP_RO_RESULT_IND - Receive
AP_RO_ERROR_REQ Send -
AP_RO_ERROR_IND - Receive
AP_RO_REJECTU_REQ Send -
AP_RO_REJECTU_IND - Receive
AP_RO_REJECTP_IND - Receive
AP_RO_UNBIND_REQ Send -
AP_RO_UNBIND_IND - Receive
AP_RO_UNBIND_RSP Send -
AP_RO_UNBIND_CNF - Receive

Table 2-1 XAP-ROSE Events/Primitives

2.6.1 Sending Primitives

An XAP-ROSE instance can be used to send *_REQ and *_RSP primitives defined both by this
specification and by the XAP specification (subject to limitations imposed by the underlying
ACSE or Presentation Layer service provider).

The XAP function ap_snd() is used to send all outbound primitives. The cdata argument for the
ap_snd() call points to a void *cdata instead of ap_cdata_t *cdata. This allows the use of XAP as
well as XAP-ROSE primitives to be combined in one Library. The cdata must point to an
ap_ro_cdata_t structure if any ROSE-specific information is to be included with the primitive
being sent. For specific ap_ro_cdata_t usage, refer to the primitive manual pages in Chapter 5.

When calling ap_snd() to send a ROSE primitive, the service user must indicate the abstract
syntax that defines the data values contained in the PDU (both the ROSE protocol control data
and any element which is specific to the remote operation, such as operation-argument). To do
this, the service user sets the cdata.pci element to identify one of the abstract syntaxes which was
defined as a ROSE abstract syntax using the AP_RO_PCI_LIST environment attribute.

The service provider performs the following steps to send a ROSE primitive:

• encode the ROSE-defined parts of the PDU (using the transfer syntax negotiated for the
indicated presentation context)

• if required, append the data value that the user supplied in the ubuf parameter (this is
specific to the remote operation, such as operation-argument)

18 X/Open CAE Specification

Description of XAP-ROSE XAP-ROSE Events/Primitives

• embed the resulting data value into a presentation data value (PDV) labelled with the
relevant presentation context identifier

• pass the resulting PDV to the P_DATA request primitive as the User Data parameter.

Note: A data value passed to the service provider in the ubuf paramater is passed in encoded
form. Unlike XAP primitives, no ACSE or Presentation PDU tag information is
encoded with the data value; the buffers passed contain only the encoding of the data
value itself. The reason for the deviation is that the ROSE service has to do the
encoding of the full PDU.

2.6.2 Receiving Primitives

An XAP-ROSE instance can be used to receive the *_IND and *_CNF primitives defined both by
this specification and by the XAP specification (subject to limitations imposed by the underlying
ACSE or Presentation Layer service provider).

The XAP function ap_rcv() is used to receive all incoming primitives. The cdata argument for
the ap_rcv() call points to a void *cdata instead of ap_cdata_t *cdata. This allows the use of XAP as
well as XAP-ROSE primitives to be combined in one Library. The cdata must point to an
ap_ro_cdata_t structure. For specific ap_ro_cdata_t usage, refer to the primitive manual pages in
Chapter 5.

When receiving primitives, the ROSE service provider filters incoming primitives, using the list
of abstact syntaxes defined by the environment attribute AP_RO_PCI_LIST, to detect incoming
primitives that contain ROSE PDUs:

• a TD PPDU (Transfer Data Presentation PDU) that contains a single data value from one of
the abstract syntaxes defined by the AP_RO_PCI_LIST environment attribute (where that
data value is one of the defined ROSE PDU data types) is processed by the ROSE service
provider and delivered to the service user as the appropriate ROSE primitive indication

• all other ACSE or Presentation PDUs are delivered to the service user as the appropriate
ACSE or Presentation Layer indication or confirmation primitive.

Where the incoming TD PPDU does contain a ROSE PDU, the ROSE service provider performs
the following steps to deliver the primitive to the service user:

• extract the presentation context identifier from the received presentation data value (PDV)
and use it to decode the ROSE-defined PDU parameters for return in the cdata parameter

• set the cdata.pci element to indicate the presentation context to be used by the service user to
decode any data value that is specific to the remote operation (such as operation-argument)

• set the udata parameter to return any data value that is specific to the remote operation (the
encoded data value is returned)

• return the relevant ROSE primitive indication.

Note: A data value returned by the service provider in the ubuf paramater is passed in
encoded form. Unlike XAP primitives, no ACSE or Presentation PDU tag information
is encoded with the data value, the buffers passed contain only the encoding of the data
value itself. The reason for the deviation is that the ROSE service has to do the
encoding of the full PDU.

Remote Operations Service Element (XAP-ROSE) API 19

XAP-ROSE Events/Primitives Description of XAP-ROSE

2.6.3 Encoding User Data for ROSE Primitives

The ROSE protocol specification ISO 9072-2 has ASN.1 definitions for the encodings of the ROSE
operations. It is the responsibility of the XAP-ROSE user to encode/decode the following
structure members for the following primitives:

primitive member
AP_RO_INVOKE_REQ operation-value, argument
AP_RO_RESULT_REQ operation-value, result
AP_RO_ERROR_REQ error-value, parameter

The XAP-ROSE provider is responsible for the encoding/decoding of the remainder of all
primitives.

In the case of the operation-value and error-value members, which are of the ASN.1 type OBJECT
IDENTIFIER, when passed in the global element of cdata→value , the contents should be
encoded using ASN.1 BER.

During negotiation of Transfer Syntaxes, the XAP-ROSE provider only accepts Transfer Syntaxes
supported by the implementation. However, from a practical perspective, ASN.1 BER should be
supported to allow interoperability between the two systems. For the Invoke , Result and Error
operations, the user must provide data encoded using the negotiated transfer syntax selected for
the given Presentation Context Identifier (PCI) when the ROSE primitive associated with the
operation is sent, and must decode the user data portion when a ROSE primitive is received.

The following extract from ISO 9072-1 shows the operation ASN.1 structures and shows in bold
print the portion for which the XAP-ROSE user is responsible.

• AP_RO_INVOKE_REQ operation encoding

[SEQUENCE] {
invoke-ID [INTEGER] { ... }
linked-ID [INTEGER] { ... }
operation-value [OBJECT IDENTIFIER] { ... }
-- operation-value global encoding choice
argument { ... } -- ANY DEFINED BY operation-value
-- argument is provided by the user

}

• AP_RO_RESULT_REQ operation encoding

[SEQUENCE] {
invoke-ID [INTEGER] { ... }
[SEQUENCE] {

operation-value [OBJECT IDENTIFIER] { ... }
-- operation-value global encoding choice
result { ... } -- ANY DEFINED BY operation-value
-- result is provided by the user

} -- OPTIONAL
}

• AP_RO_ERROR_REQ operation encoding

20 X/Open CAE Specification

Description of XAP-ROSE XAP-ROSE Events/Primitives

[SEQUENCE] {
invoke-ID [INTEGER] { ... }
error-value [OBJECT IDENTIFIER] { ... }
-- error-value global encoding choice
parameter { ... } -- ANY DEFINED BY error-value
-- parameter is provided by the user

}

Remote Operations Service Element (XAP-ROSE) API 21

Using the XAP-ROSE Interface Description of XAP-ROSE

2.7 Using the XAP-ROSE Interface
The following is a brief summary of the steps required to establish an association with a remote
ROSE user (application entity) using XAP-ROSE. This summary is only intended as a general
description of how the XAP-ROSE might be used, and is not intended to be viewed as the
paradigm to be followed by all ROSE user applications.

2.7.1 Obtain an XAP-ROSE Instance

An XAP-ROSE instance must be obtained/initialised by issuing an ap_open().

2.7.2 Initialise the XAP-ROSE Environment

The environment of the created instance is intialised by using either the ap_init_env() or
ap_restore() XAP functions. The set of abstract syntaxes to be examined for incoming ROSE
PDUs is defined by setting the AP_RO_PCI_LIST enviroment attribute, using the XAP function
ap_set_env().

The ROSE service provider is activated by calling the ap_ro_init() function, at which point the
service provider will begin examining received P_DATA_IND primitives to identify incoming
ROSE PDUs.

2.7.3 Bind the XAP-ROSE user to a local PSAP address

The XAP-ROSE user must bind to a local PSAP address before attempting to issue any ROSE or
ACSE service primitives. See Section 2.5 on page 16.

2.7.4 Send or Receive AP_RO_BIND_XXX or A_ASSOC_XXX Event

After the XAP-ROSE user has initialised all relevant environment attributes, it is ready to
establish an application association. This may be done by either issuing an
AP_RO_BIND_REQ/A_ASSOC_REQ, or by receiving and processing an
AP_RO_BIND_IND/A_ASSOC_IND.

2.7.5 Transferring ROSE Primitives

Once the association has been established, the Application Entities may begin transferring
information, either via the XAP-ROSE primitives, or by using the available XAP primitives, that
is:

P_DATA_REQ, P_SYNCMINOR_REQ, etc...

2.7.6 Releasing the Application Association

Upon completion of information transfer, the applications may release the association via the
AP_RO_UNBIND_REQ/A_RELEASE_REQ or the AP_RO_UNBIND_IND/A_RELEASE_IND
Services.

22 X/Open CAE Specification

Chapter 3

Environment

This chapter presents the additional environment attributes that XAP-ROSE defines in order to
support and control a ROSE service provider.

3.1 Modified XAP Environment Attributes
XAP-ROSE modifies the syntax and semantics of the following XAP environment attributes:

AP_MODE_AVAIL: an additional flag AP_ROSE_MODE is defined for this environment
attribute. If set, the service provider specified in the call to ap_open() is
capable of providing the ROSE service. If this flag is set, the equivalent
flag in AP_MODE_SEL may be set to use the XAP-ROSE features of the
service provider.

AP_MODE_SEL: an additional flag AP_ROSE_MODE is defined for this environment
attribute. Setting this flag causes the functions, environment attributes
and primitives defined by this specification are initialised to their default
state and become available to the service user.

Clearing the AP_ROSE_MODE flag in AP_MODE_SEL causes the XAP-
ROSE functions, environment attributes and primitives to become
unavailable, and, if enabled, disables the ROSE protocol machine
(ROPM).

3.2 Environment Attributes Specific to XAP-ROSE

3.2.1 AP_RO_FAC_AVAIL

The AP_RO_FAC_AVAIL attribute is used to indicate the availability of facilities in the XAP-
ROSE provider. The attribute is bit significant, and the following bit values are defined:

Name Facility
AP_RO_BIND BIND/UNBIND primitives

When a bit value is set in the attribute value the corresponding facility is available in the XAP-
ROSE provider, otherwise the facility is unavailable.

3.2.2 AP_RO_PCI_LIST

The AP_RO_PCI_LIST attribute is used to define those abstract syntaxes that the ROSE service
provider should examine for the presence of ROSE PDUs. The attribute consists of a list of
presentation context identifiers (PCIs) for abstract syntaxes. These PCIs are used to reference the
abstract syntaxes defined in the XAP environment variables AP_DCS, AP_PCDL or AP_PCDRL
(depending on the current state of the XAP_ROSE instance).

Remote Operations Service Element (XAP-ROSE) API 23

Environment Attributes Specific to XAP-ROSE Environment

A value assigned to the AP_RO_PCI_LIST environment attribute is validated only when the
ap_ro_init() function is called. At this point, if the content of the list represents valid abstract
syntaxes for the association, the list will be used by the ROSE service provider to send and
receive ROSE PDUs. Subsequent changes to the value of the AP_RO_PCI_LIST attribute will not
take effect until the ap_ro_init() function is called again.

3.3 Environment Attribute Summary Table

Attribute Type/Values Readable Writable
AP_RO_PCI_LIST ap_ro_pci_list_t always always

default: none
AP_RO_FAC_AVAIL unsigned long always never

3.4 Environment Attribute Typedefs

3.4.1 ap_ro_pci_list_t

This typedef is used to specify a list of abstract syntaxes that the ROPM is to examine to identify
incoming ROSE PDUs. It is defined as:

typedef struct {
int size_pcil, /* Number of PCIs in list */
int *pci_list, /* Pointer to an array of */

/* presentation context identifiers */
} ap_ro_pci_list_t ;

24 X/Open CAE Specification

Chapter 4

ROSE Functions

4.1 Introduction

4.1.1 Summary of ROSE Functions

The XAP-ROSE API provides the following functions in addition to those defined by the
referenced XAP specifications:

• ap_ro_init()

• ap_ro_release()

4.1.2 Structure Definitions

XAP-ROSE is used in conjunction with XAP to establish an association with a remote ROSE
service user and then pass ROSE primitives between the two ROSE service users. An include file
for the XAP-ROSE user containing structure definitions and constants is defined in
<xap_rose.h>.

The XAP-ROSE API defines an additional structure ap_ro_cdata_t that is pointed to by the cdata
argument. This structure is used to pass ROSE-specific protocol information between the service
user and the service provider. The ap_ro_cdata_t structure is defined as:

Remote Operations Service Element (XAP-ROSE) API 25

Introduction ROSE Functions

typedef struct {
long udata_length; /* length of user-data field */
long rsn; /* reason for activity or */

/* abort/release primitives */
long evt; /* event that caused abort */
long sync_p_sn; /* synchronization point */

/* serial number */
long sync_type; /* synchronization type */
long resync_type; /* resynchronization type */
long src; /* source of abort */
long res; /* result of association or */

/* release request */
long res_src; /* source of result */
long diag; /* reason for association */

/* rejection */
unsigned long tokens; /* tokens identifier: */

/* 0 => "tokens absent" */
unsigned long token_assignment; /* tokens assignment */
ap_a_assoc_env_t *env; /* environment attribute */

/* values */
ap_octet_string_t act_id; /* activity identifier */
ap_octet_string_t old_act_id; /* old activity identifier */
ap_old_conn_id_t *old_conn_id; /* old session connection */

/* identifier */
/*

* XAP-ROSE cdata
*/

long pci; /* P. context id for user data */
long priority; /* Informative to provider, */

/* (optional) */
long invoke_id_present; /* invoke id present flag */
long invoke_id; /* operation invocation identifier */
long linked_id_present; /* linked id identifier present */
long linked_id; /* invocation identifier of */

/* parent operation */
long op_class; /* class of operation */
long type; /* value/result/operation */
union {

unsigned long local;
ap_objid_t global;

} value; /* value of operation argument */
} ap_ro_cdata_t;

Note: The ROSE-specific ap_ro_cdata_t structure elements priority and op_class support an
RTSE-based implementation of ROSE which is currently not within the scope of this
API. They are defined by this specification for future use and are not currently used.

26 X/Open CAE Specification

ROSE Functions ap_ro_init()

NAME
ap_ro_init — initialise the ROSE user-environment.

SYNOPSIS
#include <xap_rose.h>

int ap_ro_init (
int fd,
unsigned long *aperrno_p)

DESCRIPTION
The ap_ro_init() function enables the operation of the ROSE service provider, allowing the API
user to send XAP-ROSE request primitives and causing the service provider to filter incoming
primitives to identify and deliver XAP-ROSE indication primitives.

If this function returns success, the ROSE service provider has been enabled. It then remains
enabled until disabled by a call to ap_ro_release(), or the XAP-ROSE instance is closed using a call
to the XAP ap_close() function. When enabled, the ROSE service provider becomes active (that
is, filters incoming PDU for the presence of ROSE PDUs) whenever an association is established,
and is dormant at other times.

When this function is called, the list of ROSE abstract syntaxes (held in the AP_RO_PCI_LIST
environment attribute) is validated to check that it contains only abstract syntaxes that are
available or will be available, and that the negotiated transfer syntaxes are supportable by the
XAP-ROSE service provider:

• If ap_ro_init() is called when an association exists, the list is validated against those abstract
syntaxes that appear in the defined context set (held in the AP_DCS environment attribute).

• If ap_ro_init() is called before an association has been fully established, the list is validated
against the proposed presentation context definition list (held in the AP_PCDL or
AP_PCDRL environment attribute).

If this validation step fails, the function returns an error and the ROSE service provider is not
enabled.

Arguments are as follows:

fd This integer value refers to the descriptor returned from a previous ap_open() call.
It identifies the library instance that supports the association.

aperrno_p In case of failure, aperrno_p must be set to point to a location which will be used to
carry an error code back to the user.

RETURN VALUE
On success, ap_ro_init () returns 0. Otherwise, a value of −1 is returned and the ;ocation pointed
to by aperrno_p is set to indicate the error.

Remote Operations Service Element (XAP-ROSE) API 27

ap_ro_init() ROSE Functions

ERRORS

[AP_RO_BAD_PCI] The PCI is not in the AP_PCDL OR AP_DCS.

[AP_RO_EMPTY_LIST] The list has no elements.

[AP_RO_CNTX_NOT_PRES] One or more of the contexts identified is not in the relevant
associations (presentation) defined context set.

[AP_RO_ILLEGAL_SIZE] The list size is not a positive value or list is greater than the size
of the AP_DCS attribute list.

[AP_RO_T_SYTX_NSUP] The transfer syntax in the AP_DCS entry for this PCI is not
supported.

[AP_NOT_SUPPORTED] The identified instance is not an XAP-ROSE instance - that is, the
service provider selected in the call to ap_open() does not
support a ROSE service provider, or the AP_ROSE_MODE flag
has not been set in the AP_MODE_SEL environment attribute.

SEE ALSO
ap_ro_release ().

28 X/Open CAE Specification

ROSE Functions ap_ro_release()

NAME
ap_ro_release — release the ROSE user-environment.

SYNOPSIS
#include <xap_rose.h>

int ap_ro_release (
int fd,
unsigned long *aperrno_p)

DESCRIPTION
The ap_ro_release() function releases an instance of the XAP-ROSE user environment from an
established application_association.

If this function returns success, the ROSE service provider has been disabled, and will no longer
be active when an application association is established.

fd This integer value refers to the descriptor returned from a previous ap_open call. It
identifies the library instance that supports the association.

aperrno_p In case of failure, aperrno_p must be set to point to a location which will be used to
carry an error code back to the user.

RETURN VALUE
On success, ap_ro_init () returns 0. Otherwise, a value of −1 is returned and the ;ocation pointed
to by aperrno_p is set to indicate the error.

ERRORS

[AP_NOT_SUPPORTED] The identified instance is not an XAP-ROSE instance - that is, the
service provider selected in the call to ap_open() does not support a
ROSE service provider, or the AP_ROSE_MODE flag has not been set
in the AP_MODE_SEL environment attribute.

SEE ALSO
ap_ro_init ().

Remote Operations Service Element (XAP-ROSE) API 29

ROSE Functions

30 X/Open CAE Specification

Chapter 5

ROSE Primitives

This chapter presents manual pages for each of the primitives of the underlying OSI services to
which XAP-ROSE provides access.

Each man-page provides a short description of an XAP-ROSE primitive, including the
circumstances under which it may be used, followed by a detailed description of the parameters
associated with it.

5.1 Summary of ROSE Primitives
The (XAP-ROSE) ROSE API includes a collection of ROSE primitives that let a user access the
Remote Operation Protocol Machine (ROPM).

The valid list of ROSE primitives is:

• AP_RO_BIND_REQ

• AP_RO_BIND_IND

• AP_RO_BIND_RSP

• AP_RO_BIND_CNF

• AP_RO_INVOKE_REQ

• AP_RO_INVOKE_IND

• AP_RO_RESULT_REQ

• AP_RO_RESULT_IND

• AP_RO_ERROR_REQ

• AP_RO_ERROR_IND

• AP_RO_REJECTU_REQ

• AP_RO_REJECTU_IND

• AP_RO_REJECTP_IND

• AP_RO_UNBIND_REQ

• AP_RO_UNBIND_IND

• AP_RO_UNBIND_RSP

• AP_RO_UNBIND_CNF

Remote Operations Service Element (XAP-ROSE) API 31

AP_RO_BIND_REQ ROSE Primitives

NAME
AP_RO_BIND_REQ — initiate establishment of an application association

SYNOPSIS
#include <xap_rose.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_ro_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p

)

DESCRIPTION
The AP_RO_BIND_REQ primitive is used with ap_snd() and the XAP-ROSE environment to
begin the establishment of an association between two application entities wishing to use ROSE
services. After sending an AP_RO_BIND_REQ primitive, no other primitives can be issued,
except A_ABORT_REQ until an AP_RO_BIND_CNF or A_PABORT_IND primitive is received.

The ROPM maps the AP_RO_BIND_REQ primitive to the A_ASSOC_REQ service directly. The
effects and restrictions of sending the AP_RO_BIND_REQ primitive are identical to the
A_ASSOC_REQ primitive.

Refer to the table on the ap_snd() manual page, under the A_ASSOC_REQ section, for these
effects and restrictions.

To send an AP_RO_BIND_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd: This integer value refers to the descriptor returned from a previous ap_open() call.
It identifies the library instance that supports the association.

sptype: This argument must be set to AP_RO_BIND_REQ.

cdata: The following members of the cdata structure are used for this primitive:

long udata_length; /* length of user-information */
long pci; /* Presentation Context Id */
ap_a_assoc_env_t *env; /* environment attribute */

/* values */

The cdata→udata_length argument must be set to the number of octets of encoded
user information that will be sent with this primitive if the primitive is issued as
more than one ap_snd() invocation. If the primitive is issued as a single ap_snd()
invocation, this field will be ignored.

The cdata→pci argument must be set to a value representing the presentation
context id of a valid abstract syntax contained in the environment attribute
AP_RO_PCI_LIST. The ROSE PDU will be encoded within a presentation data
value identified by this pci .

The cdata→env argument can be used to override XAP environment attribute
values used as parameters to the A-ASSOCIATE request which carries the RO-
BIND request service. If no attribute values are to be overridden, cdata→env may
be set to NULL. Otherwise, cdata→env must point to an ap_a_assoc_env_t
structure, and the elements defined on the A_ASSOC_REQ manual page in the

32 X/Open CAE Specification

ROSE Primitives AP_RO_BIND_REQ

XAP specification are used for this primitive.

ubuf: Use of the ubuf argument is described on the ap_snd() manual page.

flags: The flags argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() in the referenced XAP specification.

aperrno_p: This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() in the referenced XAP specification.

ERRORS
In addition to those listed in the manual page for ap_snd(), the following AP_RO_BIND_REQ
errors can occur:

[AP_BADROLE] The AP_INITIATOR bit of the AP_ROLE attribute is not set.

[AP_BADCD_TOKENS] The value of tokens is not valid.

SEE ALSO
ro_intro , ap_intro , ap_env(), ap_open(), ap_snd(), A_ASSOC_REQ.

Remote Operations Service Element (XAP-ROSE) API 33

AP_RO_BIND_IND ROSE Primitives

NAME
AP_RO_BIND_IND - show a request to establish an association

SYNOPSIS
#include <xap_rose.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_ro_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p

)

DESCRIPTION
The AP_RO_BIND_IND primitive is used with ap_rcv() and the XAP-ROSE environment to
show a request to establish an association between two application entities wishing to use ROSE
services.

The ROPM maps the AP_RO_BIND_IND primitive from the A_ASSOC_IND service directly.
The effects and restrictions of receiving the AP_RO_BIND_IND primitive are identical to the
A_ASSOC_IND primitive.

Refer to the table on the ap_rcv() manual page, under the A_ASSOC_IND section, for these
effects and restrictions.

When issuing ap_rcv(), the arguments must be set as described on the ap_rcv() manual page.
On return, the ap_rcv() arguments will be set as described below.

fd: This integer value refers to the descriptor returned from a previous ap_open() call.
It identifies the library instance that supports the association.

sptype: The value pointed to by this argument will be set to AP_RO_BIND_IND.

cdata: The following members of the cdata structure are used for this primitive:

long udata_length; /* length of */
/* user-information */

long pci; /* Presentation Context ID */
ap_a_assoc_env_t *env; /* environment attribute */

/* values */

The cdata→udata_length argument will be set to show the total number of octets of
encoded user-information received with this primitive.

The cdata→pci argument will be set to the value of the presentation context id
encoded within the presentation data value which contained the ROSE PDU.

The cdata→env argument can be used to retrieve the values of the XAP
environment attributes that correspond to parameters of the A-ASSOCIATE
indication which carries the RO-BIND indication service. If the AP_COPYENV
attribute in the XAP environment is false, these values will not be returned in the
cdata argument and cdata→env will be set to NULL when ap_rcv() returns. If
AP_COPYENV is true, the XAP library will allocate an ap_a_assoc_env_t structure
and any necessary substructures and return a pointer to it in cdata→env. The caller
can release the storage allocated for the ap_a_assoc_env_t structure and
substructures by passing a pointer to cdata to ap_free(). The A_ASSOC_IND

34 X/Open CAE Specification

ROSE Primitives AP_RO_BIND_IND

manual page in the XAP specification details the the elements of the
ap_a_assoc_env_t structure used for this primitive.

ubuf: Use of the ubuf argument is described on the ap_rcv() manual page.

flags: This argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() in the referenced XAP specification.

aperrno_p: The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() in the referenced XAP specification.

ERRORS
Refer to the manual page for ap_rcv().

SEE ALSO
ro_intro , ap_intro , ap_env(), ap_open(), ap_snd(), A_ASSOC_IND.

Remote Operations Service Element (XAP-ROSE) API 35

AP_RO_BIND_RSP ROSE Primitives

NAME
AP_RO_BIND_RSP — respond to an association request indication

SYNOPSIS
#include <xap_rose.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_ro_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p

)

DESCRIPTION
The AP_RO_BIND_RSP primitive is used with ap_snd() and the XAP-ROSE environment to
respond to an association establishment request between two application entities wishing to use
ROSE services.

The ROPM maps the AP_RO_BIND_RSP primitive to the A_ASSOC_RSP service directly. The
effects and restrictions of sending the AP_RO_BIND_RSP primitive are identical to the
A_ASSOC_RSP primitive.

Refer to the table on the ap_snd() manual page, under the A_ASSOC_RSP section, for these
effects and restrictions.

To send an AP_RO_BIND_RSP primitive, the arguments to ap_snd() must be set as described
below.

fd: This integer value refers to the descriptor returned from a previous ap_open() call.
It identifies the library instance that supports the association.

sptype: This argument must be set to AP_RO_BIND_RSP.

cdata: The following members of the cdata structure are used for this primitive:

long res; /* Result of association */
/* request */

long diag; /* Reason (if rejected) */
long udata_length; /* length of user */

/* information */
long pci; /* Presentation Context Id */
ap_a_assoc_env_t *env; /* environment attribute */

/* values */

The cdata→res argument must be one of the following:

• AP_ACCEPT
accept the association

• AP_REJ_PERM
association permanently rejected.

The cdata→diag argument is used to show the reason for the result specified by res.
Refer to the manual page A_ASSOC_RSP diag argument for acceptable values.

36 X/Open CAE Specification

ROSE Primitives AP_RO_BIND_RSP

The cdata→udata_length argument must be set to the number of octets of encoded
user-information that will be sent with this primitive if the primitive is issued as
more than one ap_snd() invocation. If the primitive is issued as a single ap_snd()
invocation, this field will be ignored.

The cdata→pci argument must be set to a value representing the presentation
context id of a valid abstract syntax contained in the environment attribute
AP_RO_PCI_LIST. The ROSE PDU will be encoded within a presentation data
value identified by this pci .

The cdata→env argument can be used to override XAP environment attribute
values used as parameters to the A-ASSOCIATE response which carries the RO-
BIND response service. If no attribute values are to be overridden, cdata→env may
be set to NULL. Otherwise, cdata→env must point to an ap_a_assoc_env_t
structure, and the elements defined on the A_ASSOC_RSP manual page in the
XAP specification are used for this primitive.

ubuf: Use of the ubuf argument is described on the ap_snd() manual page.

flags: This argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() in the referenced XAP specification.

aperrno_p: This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() in the referenced XAP specification.

ERRORS
In addition to those listed in the manual page for ap_snd(), the following error conitions are
reported for this primitive:

[AP_BADSFU] An invalid combination of Session function units was proposed.

[AP_BADCD_RES] The value of res is not valid.

[AP_BADCD_DIAG] The value of diag is not valid.

[AP_BADCD_TOKENS] The value of tokens is not valid.

SEE ALSO
ro_intro , ap_intro , ap_env(), ap_intro (), ap_open(), ap_snd(), A_ASSOC_RSP.

Remote Operations Service Element (XAP-ROSE) API 37

AP_RO_BIND_CNF ROSE Primitives

NAME
AP_RO_BIND_CNF — confirm an association request

SYNOPSIS
#include <xap_rose.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_ro_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
unsigned long *aperrno_p

)

DESCRIPTION
The AP_RO_BIND_CNF primitive is used with ap_rcv() and the XAP-ROSE environment to
confirm the establishment of an association between two application entities wishing to use
ROSE services.

The ROPM maps the AP_RO_BIND_CNF primitive from the A_ASSOC_CNF service directly.
The effects and restrictions of receiving the AP_RO_BIND_CNF primitive are identical to the
A_ASSOC_CNF primitive.

Refer to the table on the ap_snd() manual page, under the A_ASSOC_CNF section, for these
effects and restrictions.

When issuing ap_rcv(), the arguments must be set as described on the ap_rcv() manual page.
On return, the ap_rcv() arguments will be set as described below.

fd: This integer value refers to the descriptor returned previous ap_open() call. It
identifies the library instance that supports the association.

sptype: The value pointed to by this argument will be set to AP_RO_BIND_CNF.

cdata: The following members of the cdata structure are used for this primitive:

long res; /* Result of association */
/* request */

long res_src; /* Source of result */
long diag; /* Reason (if rejected) */
long udata_length; /* length of */

/* user-information field */
/* of APDU */

long pci; /* Presentation Context Id */
ap_a_assoc_env_t *env; /* environment attribute */

/* values */

The cdata→res argument will be set to show the result of the association request.
The possible values for res are:

• AP_ACCEPT
accept the association

• AP_REJ_PERM
association permanently rejected.

38 X/Open CAE Specification

ROSE Primitives AP_RO_BIND_CNF

The cdata→res_src argument shows the source of the result. The argument
diaggivesadiagnosticcode.Values for these arguments are exactly as defined for the
A_ASSOC_CNF primitive. Refer to A_ASSOC_CNF res_src and diag arguments for
acceptable values.

The cdata→udata_length argument will be set to show the total number of octets of
encoded user-information received with this primitive.

The cdata→pci argument will be set to the value of the presentation context id
encoded within the presentation data value which contained the ROSE PDU.

The cdata→env argument can be used to retrieve the values of the XAP
environment attributes that correspond to parameters of the A-ASSOCIATE
confirmation which carries the RO-BIND indication service. If the AP_COPYENV
attribute in the XAP environment is false, these values will not be returned in the
cdata argument and cdata→env will be set to NULL when ap_rcv() returns. If
AP_COPYENV is true, the XAP library will allocate an ap_a_assoc_env_t structure
and any necessary substructures and return a pointer to it in cdata→env. The
caller can release the storage allocated for the ap_a_assoc_env_t structure and
substructures by passing a pointer to cdata to ap_free(). The A_ASSOC_CNF
manual page in the XAP specification details the the elements of the
ap_a_assoc_env_t structure used for this primitive.

ubuf: Use of the ubuf argument is described on the ap_rcv() manual page.

flags: This argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() in the referenced XAP specification.

aperrno_p: The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() in the referenced XAP specification.

ERRORS
Refer to the manual page for ap_rcv().

SEE ALSO
ro_intro , ap_intro , ap_env(), ap_open(), ap_rcv(), A_ASSOC_CNF.

Remote Operations Service Element (XAP-ROSE) API 39

AP_RO_ERROR_REQ ROSE Primitives

NAME
AP_RO_ERROR_REQ — used in response to an unsuccessfully performed operation

SYNOPSIS
#include <xap_rose.h>

int ap_snd (
int fd,
unsigned long sptype,
void *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The AP_RO_ERROR_REQ primitive is used with the ap_snd() function to let an application
provide a negative result response to the remote application on negative outcome of an invoked
operation.

fd: This integer value refers to the descriptor returned from a previous ap_open call. It
identifies the library instance that supports the association.

sptype: This argument must be set to AP_RO_ERROR_REQ

cdata: The following members of the cdata structure are used for this primitive:

long udata_length;
long pci;
long priority; /* provider opt */
long invoke_id;
long type; /* must set to AP_RO_LOCAL */

/* or AP_RO_GLOBAL */
union {

unsigned long local; /* valid if type==AP_RO_LOCAL */
ap_objid_t global; /* valid if type==AP_RO_GLOBAL */

} value;

The cdata→pci argument must be set to a value representing the presentation
context id of a valid abstract syntax contained in the environment variable
ap_ro_pci_list. The ROSE PDU will be encoded within a presentation data value
identified by the pci.

Note: The ROSE-specific cdata structure element priority supports an RTSE-
based implementation of ROSE which is currently not within the scope of
this API. It is defined by this specification for future use and is not
currently used.

The cdata→type argument signals the form the error value will be sent in. If type is
set to AP_RO_LOCAL, the error value is in local format and is contained as an
unsigned long in value.local. If type is set to AP_RO_GLOBAL, the error value is in
global format.

The global element of the cdata→value element is an ap_objid_t structure
containing the contents octets of the BER encoding of the OBJECT IDENTIFIER.
See the referenced XAP specification and ISO 8825-1, Basic Encoding Rules (BER)
for details of how to use this structure.

40 X/Open CAE Specification

ROSE Primitives AP_RO_ERROR_REQ

Where this primitive is to be sent using a series of calls to ap_snd(), with the
AP_MORE flag set, the cdata→udata_length element should be set to the total
number of octets of encoded data, (representing the error-parameter parameter of
the remote operation error response) that will be sent with this primitive. If the
total number of octets of encoded data is not known, this field may be set to −1.
The way in which this element is used and its possible effect on performance is
described in the manual page for the P_DATA_REQ primitive in the referenced
XAP specification.

ubuf: This function argument is used to pass a data value that represents the error-
parameter parameter of the remote operation error response. The data value is in
encoded form: cdata→pci identifies the presentation context used to encode it. This
presentation context identifies both the abstract syntax (which defines the type of
value encoded), and the transfer syntax (which defines how it was encoded). Use
of the ubuf argument is described in the ap_snd() manual page in the referenced
XAP specification.

flags: This argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() in the referenced XAP specification.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to ap_snd() in the referenced XAP specification.

ERRORS
Refer to ap_snd() in the referenced XAP specification.

In addition to the errors listed in the ap_snd() manual page in the referenced XAP specification,
the following error code has the defined additional meaning for XAP-ROSE primitives:

[AP_BADPRIM] For XAP-ROSE primitives, this error code may also be returned if the
identified instance is not an XAP-ROSE instance - that is, the service
provider selected in the call to ap_open() does not support a ROSE
service provider, or the AP_ROSE_MODE flag has not been set in the
AP_MODE_SEL environment attribute.

SEE ALSO
ap_snd() in the referenced XAP specification.

Remote Operations Service Element (XAP-ROSE) API 41

AP_RO_ERROR_IND ROSE Primitives

NAME
AP_RO_ERROR_IND — show the unsuccesful result of an invoked operation by the remote
application.

SYNOPSIS
#include <xap_rose.h>

int ap_rcv (
int fd,
unsigned long *sptype,
void *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The AP_RO_ERROR_IND primitive is used with ap_rcv() and the XAP-ROSE environment to
show the negative result of an unsuccessfully performed remote operation.

fd: This integer value refers to the descriptor returned from a previous ap_open call. It
identifies the library instance that supports the association.

sptype: The value pointed to will be set to AP_RO_ERROR_IND.

cdata: The following members of the cdata structure are used for this primitive:

long pci;
long invoke_id;
long type; /* set to AP_RO_LOCAL or */

/* AP_RO_GLOBAL */
/* or AP_RO_NO_RESULT */

union {
unsigned long local; /* valid if */

/* value_type==AP_RO_LOCAL */
ap_objid_t global; /* valid if */

/* value_type==AP_RO_GLOBAL */
} value;

The cdata→pci argument will be set to the value of the presentation context id
encoded within the presentation data value which contained the ROSE PDU.

The cdata→type argument shows the form the error value was recieved in. If type is
set to AP_RO_LOCAL, the error value is in local format and is contained as an
unsigned long in value.local. If type is set to AP_RO_GLOBAL, the error value is in
global format.

In global format, the error value will be contained in the ap_objid_t structure
value.global. This global error value should be user encoded according to ISO 8825,
Basic Encoding Rules (BER), as an object identifier.

ubuf: This function argument is used to return a data value that represents the error-
parameter parameter of the remote operation error response. The data value is in
encoded form: cdata→pci identifies the presentation context used to encode it. This
presentation context identifies both the abstract syntax (which defines the type of
value encoded), and the transfer syntax (which defines how it was encoded). Use
of the ubuf argument is described in the ap_rcv() manual page in the referenced
XAP specification.

42 X/Open CAE Specification

ROSE Primitives AP_RO_ERROR_IND

flags: This argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() in the referenced XAP specification.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to ap_rcv() in the referenced XAP specification.

ERRORS
Refer to ap_rcv() in the referenced XAP specification.

SEE ALSO
ap_rcv() in the referenced XAP specification.

Remote Operations Service Element (XAP-ROSE) API 43

AP_RO_INVOKE_REQ ROSE Primitives

NAME
AP_RO_INVOKE_REQ — request the start of a remote operation

SYNOPSIS
#include <xap_rose.h>

int ap_snd (
int fd,
unsigned long sptype,
void *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The AP_RO_INVOKE_REQ primitive is used with ap_snd() and the XAP-ROSE environment to
request the start of a remote operation.

fd: This integer value refers to the descriptor returned from a previous ap_open call. It
identifies the library instance that supports the association.

sptype: This argument must be set to AP_RO_INVOKE_REQ.

cdata: The following members of the cdata structure are used for this primitive:

long udata_length;
long pci;
long priority; /* provider option */
long invoke_id;
long linked_id_present; /* must be set TRUE or FALSE */
long linked_id; /* invoke id of parent oper */
long op_class; /* user optional */
long type; /* must be set to AP_RO_LOCAL */

/* or AP_RO_GLOBAL */
union {

unsigned long local; /* valid if */
/* value_type==AP_RO_LOCAL */

ap_objid_t global; /* valid if */
/* value_type==AP_RO_GLOBAL */

} value;

The cdata→pci argument must be set to a value representing the presentation
context id of a valid abstract syntax contained in the environment variable
ap_ro_pci_list. The ROSE PDU will be encoded within a presentation data value
identified by the pci.

Note: The ROSE-specific cdata structure element priority and op_class support an
RTSE-based implementation of ROSE which is currently not within the
scope of this API. They are defined by this specification for future use
and are not currently used.

The cdata→type argument signals the form the operation value will be sent in. If
type is set to AP_RO_LOCAL, the operation value is in local format and is
contained as an integer in value.local. If type is set to AP_RO_GLOBAL, the
operation value is in global format.

44 X/Open CAE Specification

ROSE Primitives AP_RO_INVOKE_REQ

In global format, the operation value must be contained in the ap_objid_t structure
in value.global . This global operation value should be encoded according to ISO
8825, Basic Encoding Rules (BER), as an object identifier.

Where this primitive is to be sent using a series of calls to ap_snd(), with the
AP_MORE flag set, the cdata→udata_length element should be set to the total
number of octets of encoded data, (representing the argument parameter of the
remote operation invocation) that will be sent with this primitive. If the total
number of octets of encoded data is not known, this field may be set to −1. The
way in which this element is used and its possible effect on performance is
described in the manual page of the P_DATA_REQ primitive in the referenced
XAP specification.

ubuf: This function argument is used to pass a data value that represents the argument
parameter of the remote operation invocation. The data value is in encoded form:
cdata→pci identifies the presentation context used to encode it. This presentation
context identifies both the abstract syntax (which defines the type of value
encoded), and the transfer syntax (which defines how it was encoded). Use of the
ubuf argument is described in the ap_snd() manual page in the referenced XAP
specification.

flags: This argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() in the referenced XAP specification.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to ap_snd() in the referenced XAP specification.

ERRORS
Refer to ap_snd() in the referenced XAP specification.

In addition to the errors listed in the ap_snd() manual page in the referenced XAP specification,
the following error code has the defined additional meaning for XAP-ROSE primitives:

[AP_BADPRIM] For XAP-ROSE primitives, this error code may also be returned if the
identified instance is not an XAP-ROSE instance - that is, the service
provider selected in the call to ap_open() does not support a ROSE
service provider, or the AP_ROSE_MODE flag has not been set in the
AP_MODE_SEL environment attribute.

SEE ALSO
ap_snd() in the referenced XAP specification.

Remote Operations Service Element (XAP-ROSE) API 45

AP_RO_INVOKE_IND ROSE Primitives

NAME
AP_RO_INVOKE_IND — show the start of an operation

SYNOPSIS
#include <xap_rose.h>

int ap_rcv (
int fd,
unsigned long *sptype,
void *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The AP_RO_INVOKE_IND primitive is used with ap_rcv() and the XAP-ROSE environment to
show the start of an operation.

fd: This integer value refers to the descriptor returned from a previous ap_open call. It
identifies the library instance that supports the association.

sptype: The value pointed to will be set to AP_RO_INVOKE_IND.

cdata: The following members of the cdata structure are used for this primitive:

long pci;
long invoke_id;
long linked_id_present; /* TRUE or FALSE */
long linked_id; /* invoke id of parent oper */
long type; /* set to AP_RO_LOCAL or */

/* AP_RO_GLOBAL */
union {

unsigned long local; /* valid if */
/* value_type==AP_RO_LOCAL */

ap_objid_t global; /* valid if */
/* value_type==AP_RO_GLOBAL */

} value;

The cdata→pci argument will be set to the value of the presentation context id
encoded within the presentation data value which contained the ROSE PDU.

The cdata→type argument shows the form the operation value was recieved in. If
type is set to AP_RO_LOCAL, the operation value is in local format and is
contained as an unsigned long in value.local. If type is set to AP_RO_GLOBAL, the
operation value is in global format.

In global format, the operation value will be contained in the ap_objid_t structure
in value.global. This global operation value should be user encoded according to
ISO 8825, Basic Encoding Rules (BER), as an object identifier.

46 X/Open CAE Specification

ROSE Primitives AP_RO_INVOKE_IND

The structure cdata and values for op_class are defined in the header file <xap.h>.

ubuf: This function argument is used to return a data value that represents the argument
parameter of the remote operation invocation. The data value is in encoded form:
cdata→pci identifies the presentation context used to encode it. This presentation
context identifies both the abstract syntax (which defines the type of value
encoded), and the transfer syntax (which defines how it was encoded). Use of the
ubuf argument is described in the ap_rcv() manual page in the referenced XAP
specification.

flags: This argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() in the referenced XAP specification.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to ap_rcv() in the referenced XAP specification.

ERRORS
Refer to ap_rcv() in the referenced XAP specification.

SEE ALSO
ap_rcv() in the referenced XAP specification.

Remote Operations Service Element (XAP-ROSE) API 47

AP_RO_REJECTP_IND ROSE Primitives

NAME
AP_RO_REJECTP_IND — show a problem has been detected by the ROSE provider.

SYNOPSIS
#include <xap_rose.h>

int ap_rcv (
int fd,
unsigned long *sptype,
void *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The AP_RO_REJECTP_IND primitive is used with ap_rcv() and XAP-ROSE environment to show
the ROSE provider has detected a problem with a previous request. This request can also be
identified by the returned invoke id.

fd: This integer value refers to the descriptor returned from a previous ap_open call. It
identifies the library instance that supports the association.

sptype: The value pointed to will be set to AP_RO_REJECTP_IND.

cdata: The following members of the cdata structure are used for this primitive:

long pci;
long invoke_id_present; /* TRUE or FALSE */
long invoke_id;
long type;
long rsn;

The cdata→pci argument will be set to the value of the presentation context id
encoded within the presentation data value which contained the ROSE PDU.

A reject code will include two parts, a type, and a rsn. type will be
AP_RO_GENERAL_TYPE. Values for both type and rsn are defined in the header
file <xap_rose.h>.

ubuf: Use of the ubuf argument is described on the ap_rcv manual page.

Returned parameter information is flagged by rsn == AP_RO_RETURN_PARM.
Returned parameter information is always present when rsn ==
AP_RO_RETURN_PARM. Returned parameter information will never be present
for other reject reasons.

The returned parameter information, if present, will contain the structure pointed
to by the cdata of the primitive determined to be in error by the ROSE provider.

flags: This argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() in the referenced XAP specification.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to ap_rcv() in the referenced XAP specification.

48 X/Open CAE Specification

ROSE Primitives AP_RO_REJECTP_IND

ERRORS
Refer to ap_rcv() in the referenced XAP specification.

SEE ALSO
ap_rcv() in the referenced XAP specification.

Remote Operations Service Element (XAP-ROSE) API 49

AP_RO_REJECTU_REQ ROSE Primitives

NAME
AP_RO_REJECTU_REQ — used by the ROSE user to reject an indication

SYNOPSIS
#include <xap_rose.h>

int ap_snd (
int fd,
unsigned long sptype,
void *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The AP_RO_REJECTU_REQ primitive is used with ap_snd() and the XAP-ROSE environment to
reject a request (AP_RO_INVOKE_IND) or reply (AP_RO_RESULT_IND, AP_RO_ERROR_IND)
from the remote ROSE user when problems are detected.

fd: This integer value refers to the descriptor returned from a previous ap_open call. It
identifies the library instance that supports the association.

sptype: This argument must be set to AP_RO_REJECTU_REQ.

cdata: The following members of the cdata structure are used for this primitive:

long pci;
long invoke_id_present; /* must be set to TRUE */

/* or FALSE */
long invoke_id;
long type;
long rsn;

The cdata→pci argument must be set to a value representing the presentation
context id of a valid abstract syntax contained in the environment variable
ap_ro_pci_list. The ROSE PDU will be encoded within a presentation data value
identified by the pci.

A reject code will include two parts, a type, and a rsn. type will be either
AP_RO_INVOKE_TYPE, AP_RO_RESULT_TYPE or AP_RO_ERROR_TYPE.
Values for both type and the rsn that are valid for each type are defined in the
header file <xap_rose.h>.

ubuf: No user data is defined for this primitive, therefore ubuf should be set to NULL.

flags: No user data is defined for this primitive, therefore flags should be set to 0.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to ap_snd() in the referenced XAP specification.

50 X/Open CAE Specification

ROSE Primitives AP_RO_REJECTU_REQ

ERRORS
Refer to ap_snd() in the referenced XAP specification.

In addition to the errors listed in the ap_snd() manual page in the referenced XAP specification,
the following error code has the defined additional meaning for XAP-ROSE primitives:

[AP_BADPRIM] For XAP-ROSE primitives, this error code may also be returned if the
identified instance is not an XAP-ROSE instance - that is, the service
provider selected in the call to ap_open() does not support a ROSE
service provider, or the AP_ROSE_MODE flag has not been set in the
AP_MODE_SEL environment attribute.

SEE ALSO
ap_snd() in the referenced XAP specification.

Remote Operations Service Element (XAP-ROSE) API 51

AP_RO_REJECTU_IND ROSE Primitives

NAME
AP_RO_REJECTU_IND — show a problem has been detected by the remote ROSE user.

SYNOPSIS
#include <xap_rose.h>

int ap_rcv (
int fd,
unsigned long *sptype,
void *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The AP_RO_REJECTU_IND primitive is used with ap_rcv() and the XAP-ROSE environment to
show the remote ROSE user has detected a problem with the previously submitted request
(AP_RO_INVOKE_REQ) or reply (AP_RO_RESULT_REQ, AP_RO_ERROR_REQ). The request
can also be identified by the returned invoke id.

fd: This integer value refers to the descriptor returned from a previous ap_open call. It
identifies the library instance that supports the association.

sptype: The value pointed to will be set to AP_RO_REJECTU_IND.

cdata: The following members of the cdata structure are used for this primitive:

long pci;
long invoke_id_present; /* TRUE or FALSE */
long invoke_id;
long type;
long rsn;

The cdata→pci argument will be set to the value of the presentation context id
encoded within the presentation data value which contained the ROSE PDU.

A reject code will include two parts, a type, and a rsn. type will be either
AP_RO_INVOKE_TYPE, AP_RO_RESULT_TYPE, or AP_RO_ERROR_TYPE.
Values for both type and the rsn that are valid for each type are defined in the
header file <xap_rose.h>.

ubuf: No user data is defined for this primitive, therefore ubuf will remain unchanged.

flags: No user data is defined for this primitive, therefore flags will remain unchanged.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to ap_rcv() in the referenced XAP specification.

ERRORS
Refer to ap_rcv() in the referenced XAP specification.

SEE ALSO
ap_rcv() in the referenced XAP specification.

52 X/Open CAE Specification

ROSE Primitives AP_RO_RESULT_REQ

NAME
AP_RO_RESULT_REQ — reply to a previous AP_RO_INVOKE indication when an operation is
performed successfully

SYNOPSIS
#include <xap_rose.h>

int ap_snd (
int fd,
unsigned long sptype,
void *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p)

DESCRIPTION
The AP_RO_RESULT_REQ primitive is used with the ap_snd() and the XAP-ROSE environment to
show the AP_RO_RESULT service to the remote host. This service is in response to a
successfully performed operation on behalf of the remote application.

fd: This integer value refers to the descriptor returned from a previous ap_open call. It
identifies the library instance that supports the association.

sptype: This argument must be set to AP_RO_RESULT_REQ.

cdata: The following members of the cdata structure are used for this primitive:

long udata_length;
long pci;
long invoke_id;
long type /* AP_RO_LOCAL, AP_RO_GLOBAL */

/* or AP_RO_NO_RESULT */
union {

unsigned long local; /* valid if */
/* type == AP_RO_LOCAL */

ap_objid_t global; /* valid if */
/* type == AP_RO_GLOBAL */

} value;

The cdata→pci argument must be set to a value representing the presentation
context id of a valid abstract syntax contained in the environment variable
ap_ro_pci_list. The ROSE PDU will be encoded within a presentation data value
identified by the pci.

The cdata→type argument signals whether the optional fields of operation and
result are sent and the form they take.

If type is set to NORESULT, the optional operation-value and result sequence will
not be present in the ROSE APDU. This means that no user data may be supplied;
any attempt to provide data results in the error code [AP_BADDATA] being
returned. If type is set to AP_RO_LOCAL, the operation value is in local format
and is contained as an unsigned long in value.local. If type is AP_RO_GLOBAL, the
operation value is in global format.

In global format, the operation value must be contained in the ap_objid_t structure
value.global. This global operation value should be encoded according to ISO 8825,
Basic Encoding Rules (BER), as an object identifier.

Remote Operations Service Element (XAP-ROSE) API 53

AP_RO_RESULT_REQ ROSE Primitives

Where this primitive is to be sent using a series of calls to ap_snd(), the the
AP_MORE flag set, the cdata→udata_length element should be set to the total
number of octets of encoded data, (representing the result parameter of the remote
operation result) that will be sent with this primitive. If the total number of octets
of encoded data is not known, this field may be set to −1. The way in which this
element is used and its possible effect on performance is described in the manual
page of the P_DATA_REQ primitive in the referenced XAP specification.

The structure cdata is defined in the header file <xap_rose.h>.

ubuf: This function argument is used to pass a data value that represents the result
parameter of the remote operation result. The data value is in encoded form:
cdata→pci identifies the presentation context used to encode it. This presentation
context identifies both the abstract syntax (which defines the type of value
encoded), and the transfer syntax (which defines how it was encoded). Use of the
ubuf argument is described in the ap_snd() manual page in the referenced XAP
specification.

flags: This argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() in the referenced XAP specification.

aperrno_p This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to ap_snd() in the referenced XAP specification.

ERRORS
Refer to ap_snd() in the referenced XAP specification.

In addition to the errors listed in the ap_snd() manual page in the referenced XAP specification,
the following error code has the defined additional meaning for XAP-ROSE primitives:

[AP_BADPRIM] For XAP-ROSE primitives, this error code may also be returned if the
identified instance is not an XAP-ROSE instance - that is, the service
provider selected in the call to ap_open() does not support a ROSE
service provider, or the AP_ROSE_MODE flag has not been set in the
AP_MODE_SEL environment attribute.

SEE ALSO
ap_snd() in the referenced XAP specification.

54 X/Open CAE Specification

ROSE Primitives AP_RO_RESULT_IND

NAME
AP_RO_RESULT_IND — show the receipt of positive results from a requested operation
invocation.

SYNOPSIS
#include <xap_rose.h>

int ap_rcv (
int fd,
unsigned long *sptype,
void *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p)

DESCRIPTION
The AP_RO_RESULT_IND primitive is used with ap_rcv() and the XAP-ROSE environment to
show the successful result of a completed remote operation.

fd: This integer value refers to the descriptor returned from a previous ap_open call. It
identifies the library instance that supports the association.

sptype: The value pointed to will be set to AP_RO_RESULT_IND.

cdata: The following members of the cdata structure are used for this primitive:

long pci;
long invoke_id;
long type; /* AP_RO_LOCAL, AP_RO_GLOBAL */

/* or AP_RO_NO_RESULT */
union {

unsigned long local; /* valid if type==AP_RO_LOCAL */
ap_objid_t global; /* valid if type==AP_RO_GLOBAL */

} value;

The cdata→pci argument will be set to the value of the presentation context id
encoded within the presentation data value which contained the ROSE PDU.

The cdata→type argument shows the form the optional operation and result fields
were received in. If type is set to NO RESULT, no result was received, and the
operation and result fields are undefined. If type is set to AP_RO_LOCAL, the
operation was received in local format and is contained in value.local. If type is set
to AP_RO_GLOBAL, the operation was received in global format. In global
format, the operation value will be contained in the ap_objid_t structure in
value.local. This global operation value should be user encoded according to ISO
8825, Basic Encoding Rules (BER), as an object identifier.

The structure cdata is defined in the header file <xap_rose.h>.

ubuf: This function argument is used to return a data value that represents the result
parameter of the remote operation result. The data value is in encoded form:
cdata→pci identifies the presentation context used to encode it. This presentation
context identifies both the abstract syntax (which defines the type of value
encoded), and the transfer syntax (which defines how it was encoded). Use of the
ubuf argument is described in the ap_rcv() manual page in the referenced XAP
specification.

Remote Operations Service Element (XAP-ROSE) API 55

AP_RO_RESULT_IND ROSE Primitives

flags: This argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() in the referenced /B XAP specification.

aperrno_p The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to ap_rcv() in the referenced XAP specification.

ERRORS
Refer to ap_rcv() in the referenced XAP specification.

SEE ALSO
ap_rcv() in the referenced XAP specification.

56 X/Open CAE Specification

ROSE Primitives AP_RO_UNBIND_REQ

NAME
AP_RO_UNBIND_REQ - request the release an association

SYNOPSIS
#include <xap_rose.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_ro_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p

)

DESCRIPTION
The AP_RO_UNBIND_REQ primitive is used with ap_snd() and the XAP-ROSE environment to
request the normal release of an association between two application entities using ROSE
service.

The ROPM maps the AP_RO_UNBIND_REQ primitive to the A_RELEASE_REQ service
directly. The effects and restrictions of sending the AP_RO_UNBIND_REQ primitive are
identical to the A_RELEASE_REQ primitive.

Refer to the table on the ap_snd() manual page, under the A_RELEASE_REQ section, for these
effects and restrictions.

To send a AP_RO_UNBIND_REQ primitive, the arguments to ap_snd() must be set as described
below.

fd: This integer value refers to the descriptor returned from a previous ap_open() call.
It identifies the library instance that supports the association.

sptype: This argument must be set to AP_RO_UNBIND_REQ.

cdata: The following members of the cdata structure are used for this primitive:

long rsn; /* reason for release */
long udata_length; /* length of user information */
long pci; /* Presentation Context Id */

The cdata→rsn argument must be set to AP_REL_NORMAL.

The cdata→udata_length argument must be set to the number of octets of encoded
user-information that will be sent with this primitive if the primitive is issued as
more than one ap_snd() invocation. If the primitive is issued as a single ap_snd()
invocation, this field will be ignored.

The cdata→pci argument must be set to a value representing the presentation
context id of a valid abstract syntax contained in the environment attribute
AP_RO_PCI_LIST. The ROSE PDU will be encoded within a presentation data
value identified by this pci .

ubuf: Use of the ubuf argument is described on the ap_snd() manual page.

flags: This argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() in the referenced XAP specification.

aperrno_p: This must point to a location which will be set to an error code if a failure occurs.

Remote Operations Service Element (XAP-ROSE) API 57

AP_RO_UNBIND_REQ ROSE Primitives

RETURN VALUE
Refer to the manual page for ap_snd() in the referenced XAP specification.

ERRORS
Refer to the manual page for ap_snd().

In addition to those listed in the manual page for ap_snd(), the following
AP_RO_UNBIND_REQ errors can occur:

[AP_BADTOKEN] The token(s) required to issue this primitive are not currently held.

[AP_BADCD_RSN] The value of rsn is not valid.

SEE ALSO
ro_intro , ap_intro , ap_env(), ap_open(), ap_snd(), A_RELEASE_REQ.

58 X/Open CAE Specification

ROSE Primitives AP_RO_UNBIND_IND

NAME
AP_RO_UNBIND_IND — show an association release request

SYNOPSIS
#include <xap_rose.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_ro_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p

)

DESCRIPTION
The AP_RO_UNBIND_IND primitive is used with ap_rcv() and the XAP-ROSE environment to
show the remote service user wants to release the association which uses ROSE services.

The ROPM maps the AP_RO_UNBIND_IND primitive from the A_RELEASE_IND service
directly. The effects and restrictions of receiving the AP_RO_UNBIND_IND primitive are
identical to the A_RELEASE_IND primitive.

Refer to the table on the ap_snd() manual page under the A_RELEASE_IND section for these
effects and restrictions.

When issuing ap_rcv(), the arguments must be set as described on the ap_rcv() manual page.
On return, the ap_rcv() arguments will be set as described below.

fd: This integer value refers to the descriptor returned from a previous ap_open() call.
It identifies the library instance that supports the association.

sptype: The value pointed to by this argument will be set to AP_RO_UNBIND_IND.

cdata: The following members of the cdata structure are used for this primitive:

long rsn; /* reason for release */
long udata_length; /* length of user information */
long pci; /* Presentation Context Id */

The cdata→rsn argument will be set to AP_REL_NORMAL.

The cdata→udata_length argument will be set to show the total number of octets of
encoded user information that were received with this primitive.

The cdata→pci argument will be set to the value of the presentation context id
encoded within the presentation data value which contained the ROSE PDU. If no
user information was recieved, the value of pci will be undefined.

ubuf: Use of the ubuf argument is described on the ap_snd() manual page.

flags: This argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() in the referenced XAP specification.

aperrno_p: The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() in the referenced XAP specification.

Remote Operations Service Element (XAP-ROSE) API 59

AP_RO_UNBIND_IND ROSE Primitives

ERRORS
Refer to the manual page for ap_rcv().

SEE ALSO
ro_intro , ap_intro , ap_env(), ap_open(), ap_rcv(), A_RELEASE_IND.

60 X/Open CAE Specification

ROSE Primitives AP_RO_UNBIND_RSP

NAME
AP_RO_UNBIND_RSP — respond to an association release request

SYNOPSIS
#include <xap_rose.h>

int ap_snd (
int fd,
unsigned long sptype,
ap_ro_cdata_t *cdata,
ap_osi_vbuf_t *ubuf,
int flags,
unsigned long *aperrno_p

)

DESCRIPTION
The AP_RO_UNBIND_RSP primitive is used with ap_snd() and the XAP-ROSE environment to
respond to an association release request of an association using ROSE services.

The ROPM maps the AP_RO_UNBIND_RSP primitive to the A_RELEASE_RSP service directly.
The effects and restrictions of sending the AP_RO_UNBIND_RSP primitive are identical to the
A_RELEASE_RSP primitive.

Refer to the table on the ap_snd() manual page under the A_RELEASE_RSP section for these
effects and restrictions.

To send the AP_RO_UNBIND_RSP primitive, the arguments to ap_snd() must be set as
described below.

fd: This integer value refers to the descriptor returned from a previous ap_open() call.
It identifies the library instance that supports the association.

sptype: This argument must be set to AP_RO_UNBIND_RSP.

cdata: The following members of the cdata structure are used for this primitive:

long res; /* result */
long rsn; /* reason for the result */
long udata_length; /* length of user-information */
long pci; /* Presentation Context Id */

The cdata→res argument must be set to AP_REL_AFFIRM.

The cdata→rsn argument must be one of the following:

• AP_REL_NORMAL
Shows a normal release

• AP_REL_NOTFINISHED
Shows the rejection of the release because the user is not finished with the
association.

The cdata→udata_length argument must be set to the number of octets of encoded
user-information that will be sent with this primitive if the primitive is issued as
more than one ap_snd() invocation. If the primitive is issued as a single ap_snd()
invocation, this field will be ignored.

Remote Operations Service Element (XAP-ROSE) API 61

AP_RO_UNBIND_RSP ROSE Primitives

The cdata→pci argument must be set to a value representing the presentation
context id of a valid abstract syntax contained in the environment attribute
AP_RO_PCI_LIST. The ROSE PDU will be encoded within a presentation data
value identified by this pci .

ubuf: Use of the ubuf argument is described on the ap_snd() manual page.

flags: This argument is used to control certain aspects of primitive processing as
described in the manual page for ap_snd() in the referenced XAP specification.

aperrno_p: This must point to a location which will be set to an error code if a failure occurs.

RETURN VALUE
Refer to the manual page for ap_snd() in the referenced XAP specification.

ERRORS
Refer to the manual page for ap_snd().

In addition to those listed in the manual page for ap_snd(), the following errors can occur:

[AP_BADCD_RES] The value of res is not valid

[AP_BADCD_RSN] The value of rsn is not valid.

SEE ALSO
ro_intro , ap_intro , ap_env(), ap_open(), ap_snd(), A_RELEASE_RSP.

62 X/Open CAE Specification

ROSE Primitives AP_RO_UNBIND_CNF

NAME
AP_RO_UNBIND_CNF — confirm a release request

SYNOPSIS
#include <xap_rose.h>

int ap_rcv (
int fd,
unsigned long *sptype,
ap_ro_cdata_t *cdata,
ap_osi_vbuf_t **ubuf,
int *flags,
unsigned long *aperrno_p

)

DESCRIPTION
The AP_RO_UNBIND_CNF primitive is used with ap_rcv() and the XAP-ROSE environment to
confirm the acceptance or rejection of a previously sent release request of an association using
ROSE services.

The ROPM maps the AP_RO_UNBIND_CNF primitive from the A_RELEASE_CNF service
directly. The effects and restrictions of receiving the AP_RO_UNBIND_CNF primitive are
identical to the A_RELEASE_CNF primitive.

Refer to the table on the ap_snd() manual page under the A_RELEASE_CNF section for these
effects and restrictions.

When issuing ap_rcv(), the arguments must be set as described on the ap_rcv() manual page.
On return, the ap_rcv() arguments will be set as described below.

fd: This integer value refers to the descriptor returned from a previous ap_open call. It
identifies the library instance that supports the association.

sptype: The value pointed to by this argument will be set to AP_RO_UNBIND_CNF.

cdata: The following members of the cdata structure are used for this primitive:

long res; /* Result of the release request */
long rsn; /* Reason for the result */
long udata_length; /* length of user information */
long pci; /* Presentation Context Id */

The cdata→res argument will be set to AP_REL_AFFIRM.

The reason associated with the result will be shown by rsn. The possible values for
rsn are as follows:

• AP_REL_NORMAL
Shows a normal release.

• AP_REL_NOTFINISHED
Shows the rejection of the release because the remote user was not finished
with the association.

The cdata→udata_length argument will be set to show the total number of octets of
encoded user-information received with this primitive.

Remote Operations Service Element (XAP-ROSE) API 63

AP_RO_UNBIND_CNF ROSE Primitives

The cdata→pci argument will be set to the value of the presentation context id
encoded within the presentation data value which contained the ROSE PDU. If no
user information was received, the value of pci will be undefined.

ubuf: Use of the ubuf argument is described on the ap_rcv() manual page.

flags: This argument is used to control certain aspects of primitive processing as
described in the manual page for ap_rcv() in the referenced XAP specification.

aperrno_p: The location pointed to by the aperrno_p argument is set to an error code if a failure
has occurred.

RETURN VALUE
Refer to the manual page for ap_rcv() in the referenced XAP specification.

ERRORS
Refer to the manual page for ap_rcv().

SEE ALSO
ro_intro , ap_intro , ap_env(), ap_open(), ap_rcv(), A_RELEASE_CNF.

64 X/Open CAE Specification

Appendix A

XAP-ROSE Header File

This Appendix reproduces the contents of the <xap_rose.h> header file for the applications
which wish to use the XAP-ROSE API.

/*
* xap_rose.h
*
* Contains structures and constants needed to interface
* with the ROSE protocol machine through XAP.
*
*/

#ifndef AP_ROSE_ID
#define AP_ROSE_ID (13)

#ifndef AP_ID
#include <xap.h>

#endif

/*
* XAP-ROSE flag for AP_MODE_SEL
*/

#define AP_ROSE_MODE 0x04

/*
* Possible values for cdata->type argument
*/

#define AP_RO_LOCAL 1
#define AP_RO_GLOBAL 2
#define AP_RO_NO_RESULT 3

/*
* Flag for returned parameter information
*/

#define AP_RO_RETURN_PARM 1

/*
* Reject code type values
*/

#define AP_RO_INVOKE_TYPE 1
#define AP_RO_RESULT_TYPE 2
#define AP_RO_ERROR_TYPE 3

/*
* Primitive types
*/

#define AP_RO_INVOKE_IND ((AP_ROSE_ID<<16) | 0x01)

Remote Operations Service Element (XAP-ROSE) API 65

XAP-ROSE Header File

#define AP_RO_INVOKE_REQ ((AP_ROSE_ID<<16) | 0x02)

#define AP_RO_RESULT_IND ((AP_ROSE_ID<<16) | 0x03)
#define AP_RO_RESULT_REQ ((AP_ROSE_ID<<16) | 0x04)

#define AP_RO_ERROR_IND ((AP_ROSE_ID<<16) | 0x05)
#define AP_RO_ERROR_REQ ((AP_ROSE_ID<<16) | 0x06)

#define AP_RO_REJECTU_IND ((AP_ROSE_ID<<16) | 0x07)
#define AP_RO_REJECTU_REQ ((AP_ROSE_ID<<16) | 0x08)
#define AP_RO_REJECTP_IND ((AP_ROSE_ID<<16) | 0x09)

#define AP_RO_BIND_REQ ((AP_ROSE_ID<<16) | 0x0A)
#define AP_RO_BIND_IND ((AP_ROSE_ID<<16) | 0x0B)
#define AP_RO_BIND_RSP ((AP_ROSE_ID<<16) | 0x0C)
#define AP_RO_BIND_CNF ((AP_ROSE_ID<<16) | 0x0D)

#define AP_RO_UNBIND_REQ ((AP_ROSE_ID<<16) | 0x0E)
#define AP_RO_UNBIND_IND ((AP_ROSE_ID<<16) | 0x0F)
#define AP_RO_UNBIND_RSP ((AP_ROSE_ID<<16) | 0x10)
#define AP_RO_UNBIND_CNF ((AP_ROSE_ID<<16) | 0x11)

/*
* The following are provider primitive types
* included here for value allocation purposes
*/

#define AP_RO_INFO_REQ ((AP_ROSE_ID<<16) | 0x12)
#define AP_RO_INFO_ACK ((AP_ROSE_ID<<16) | 0x13)
#define AP_RO_INFO_ACK_XAP ((AP_ROSE_ID<<16) | 0x17)

/*
* The following are the ROSE specific error that
* the ROSE provider can return.
*/

#define AP_RO_ILLEGAL_SIZE ((AP_ROSE_ID<<16) | 0x14)
#define AP_RO_EMPTY_LIST ((AP_ROSE_ID<<16) | 0x15)
#define AP_RO_CNTX_NOT_PRES ((AP_ROSE_ID<<16) | 0x16)
#define AP_RO_BAD_PCI ((AP_ROSE_ID<<16) | 0X18)
#define AP_RO_T_SYTX_NSUP ((AP_ROSE_ID<<16) | 0X19)

/*
* Attribute identifiers
*/

#define AP_RO_FAC_AVAIL ((AP_ROSE_ID<<16) | 0x01)
#define AP_RO_PCI_LIST ((AP_ROSE_ID<<16) | 0x02)

/*
* Identifiers for use with ap_free()
*/

#define AP_RO_PCI_LIST_T AP_RO_PCI_LIST
#define AP_RO_CDATA_T ((AP_ROSE_ID<<16) | 0x03)

66 X/Open CAE Specification

XAP-ROSE Header File

/*
* Bit masks for AP_RO_FAC_AVAIL
*/

#define AP_RO_BIND (1<<0)

/*
* Environment Attribute Structure definitions special to ROSE
*/

typedef /* Abstract syntaxes containing ROSE PDUs */
struct {
int size_pcil; /* Number of PCIs in list */
int *pci_list; /* Pointer to an array of PCIs */

} ap_ro_pci_list_t;

typedef struct {
long udata_length; /* length of user-data field*/
long rsn; /* reason for activity or */

/* abort/release primitives */
long evt; /* event that caused abort */
long sync_p_sn; /* synchronization point */

/* serial number */
long sync_type; /* synchronization type */
long resync_type; /* resynchronization type */
long src; /* source of abort */
long res; /* result of association or */

/* release request */
long res_src; /* source of result */
long diag; /* reason for association */

/* rejection */
unsigned long tokens; /* tokens identifier: */

/* 0 => "tokens absent" */
unsigned long token_assignment; /* tokens assignment */
ap_a_assoc_env_t *env; /* environment attribute */

/* values */
ap_octet_string_t act_id; /* activity identifier */
ap_octet_string_t old_act_id; /* old activity identifier */
ap_old_conn_id_t *old_conn_id; /* old session connection */

/* identifier */
/*

* XAP-ROSE cdata elements
*/

long pci; /* P. context id for user data */
long priority; /* Informative to provider, */

/* (optional) */
long invoke_id_present; /* invoke id present flag */
long invoke_id; /* operation invocation identifier */
long linked_id_present; /* linked id identifier present */
long linked_id; /* invocation identifier of */

/* parent operation */
long class; /* class of operation */
long type; /* value/result/operation */

Remote Operations Service Element (XAP-ROSE) API 67

XAP-ROSE Header File

union {
unsigned long local;
ap_objid_t global;

} value; /* value of operation argument */

} ap_ro_cdata_t;

#endif /* end AP_ROSE_ID */

68 X/Open CAE Specification

Glossary

application-association
Defined by the OSI Basic Reference Model as ‘‘A cooperative relationship between two
application-entity-invocations for the purpose of communication of information and
coordination of their joint operation.’’

AE
Application Entity.

application-entity
Defined by the OSI Basic Reference Model as ‘‘The aspects of an application-process
pertinent to OSI.’’

An application may contain one or more AEs each of which performs part of the OSI-related
functions required to implement the application.

APDU
Application-Protocol-Data-Unit

ASE
Application Service Element

application-service-element
Defined by the OSI Basic Reference Model as ‘‘A set of application-functions that provides a
capability for the interworking of application-entity-invocations for a specific purpose.’’

Some ASEs provide generally useful services (for example, ACSE, which provides
connection management services to be used by all applications), while others provide
services oriented to a particular application (for example, FTAM, which provides file
tranfer, access and management services).

ACSE
Association Control Service Element

child-operation
An operation which might be invoked by the performer of a parent-operation as part of a
linked-operation

invoker
The application-entity that invokes a remote operation.

linked-operation
A set of operations consisting of a parent-operation and one or more child-operations

operation
A request by one entity (the invoker), which another entity (the performer) attempts to
perform and then reports the outcome of the attempt.

operation-interface
The (conceptual) interface between a user-element and ROSE-user ASEs. The interface is
defined as a set of remote operations using the RO-Notation.

parent-operation
An operation, during the operation of which, the performer may invoke zero or more child-
operations as part of a linked-operation .

Remote Operations Service Element (XAP-ROSE) API 69

Glossary

performer
The application-entity that attempts to perform a remote operation that has been invoked
by the other application-entity .

RO
Remote Operations

ROPM
Remote Operation Protocol State Machine

ROSE
Remote Operation Service Elements

ROSE-user ASE
The application-specific function that performs the mapping of the operations, results and
errors of a set of remote operations onto ROSE.

ROSPI
Remote Operation Service Provider Interface

RTSE
Reliable Transfer Service Element

user-element
Defined by the OSI Basic Reference Model as ‘‘The representation of that part of the
application-process which uses those application-service-elements needed to accomplish
the communications objectives of that application-process’’

XAP
ACSE/Presentation Library Interface

XAP-ROSE
Remote Operation Service Library Interface

70 X/Open CAE Specification

Index

abstract syntax ..13
ACSE ...69
AE...69
APDU..69
application-association..69
application-entity ...69
application-service-element69
AP_RO_BIND_CNF...38
AP_RO_BIND_IND ...34
AP_RO_BIND_REQ...32
AP_RO_BIND_RSP..36
AP_RO_ERROR_IND..42
AP_RO_ERROR_REQ ...40
ap_ro_init()..27
AP_RO_INVOKE_IND ...46
AP_RO_INVOKE_REQ...44
AP_RO_PCI_LIST...23
AP_RO_REJECTP_IND...48
AP_RO_REJECTU_IND ..52
AP_RO_REJECTU_REQ..50
ap_ro_release() ...29
AP_RO_RESULT_IND...55
AP_RO_RESULT_REQ ..53
AP_RO_UNBIND_CNF ..63
AP_RO_UNBIND_IND...59
AP_RO_UNBIND_REQ ..57
AP_RO_UNBIND_RSP ...61
ASE ..69
bind..16
bind encoding..16
child-operation..69
encoding user data ...20
environment ..23
environment attribute..23
establish instance..12
events/primitives ...18
functions ...25
interface usage...22
invoker ..69
linked-operation ...69
operation ..69
operation-interface ...69
parent-operation ...69
performer..70
primitive ...31
protocol machine ..14

receive primitive...19
release instance ...12
RO ..70
ROPM..70
ROSE ...70
ROSE environment...10
ROSE instance ...10
ROSE model...9
ROSE-user ASE ...70
ROSPI ..70
RTSE ..70
send primitive ...18
service provider ..10
service user ..10
structure definition...25
unbind...16
unbind encoding...16
user data ...11
user-element ..70
using XAP-ROSE ..22
XAP..70
XAP environment attributes23
XAP-ROSE..70

Remote Operations Service Element (XAP-ROSE) API 71

Index

72 X/Open CAE Specification

