
X/Open CAE Specification

X/Open Common Desktop Environment (XCDE)

Definitions and Infrastructure

X/Open Company Ltd.

 March 1995, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

X/Open Common Desktop Environment (XCDE) Definitions and Infrastructure

ISBN: 1-85912-070-9
X/Open Document Number: C324

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

ii X/Open CAE Specification

Contents

Chapter 1 Introduction... 1
 1.1 Overview .. 1
 1.2 Conformance ... 2
 1.3 Terminology... 3
 1.4 Format of Entries... 4
 1.4.1 C-Language Functions and Headers ... 4
 1.4.2 Messages.. 5
 1.4.3 Service Interfaces ... 5

Chapter 2 Glossary ... 11
 2.1 Terms Defined by XCDE... 11
 2.2 Terms From Other Standards ... 22

Chapter 3 General Definitions and Requirements................................... 25
 3.1 XCDE Data Format Naming.. 25

Chapter 4 X Windows and Motif... 27
 4.1 X Protocol ... 27
 4.2 Xlib Library .. 27
 4.3 Xt Intrinsics .. 27
 4.4 ICCCM, CT, XLFD, BDF.. 27
 4.5 Motif Libraries... 28
 4.6 X Windows and Motif Data Types.. 28
 4.7 XCDE Widgets.. 28
 DtComboBox() ... 29
 DtMenuButton() ... 32
 DtSpinBox()... 36
 4.8 XCDE Widget Convenience Functions ... 41
 DtComboBoxAddItem() .. 42
 DtComboBoxDeletePos() .. 43
 DtComboBoxSelectItem().. 44
 DtComboBoxSetItem() .. 45
 DtCreateComboBox() .. 46
 DtCreateMenuButton() .. 47
 DtCreateSpinBox().. 48
 DtSpinBoxAddItem() .. 49
 DtSpinBoxDeletePos() .. 50
 DtSpinBoxSetItem().. 51
 4.9 XCDE Widget Headers ... 52
 <Dt/ComboBox.h>.. 53
 <Dt/MenuButton.h>... 54
 <Dt/SpinBox.h>... 55

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure iii

Contents

Chapter 5 Miscellaneous Desktop Services ... 57
 5.1 Introduction ... 57
 5.2 Functions .. 57
 DtInitialize ().. 58
 5.3 Headers... 59
 <Dt/Dt.h> .. 60

Chapter 6 Message Services ... 61
 6.1 Introduction ... 61
 6.2 Functions .. 61
 tt_X_session() .. 62
 tt_bcontext_join ().. 63
 tt_bcontext_quit().. 64
 tt_close()... 65
 tt_context_join ().. 66
 tt_context_quit ().. 67
 tt_default_file() .. 68
 tt_default_file_set() ... 69
 tt_default_procid () .. 70
 tt_default_procid_set ().. 71
 tt_default_ptype ().. 72
 tt_default_ptype_set () ... 73
 tt_default_session () ... 74
 tt_default_session_set ()... 75
 tt_error_int().. 77
 tt_error_pointer() .. 78
 tt_fd().. 79
 tt_file_copy () .. 80
 tt_file_destroy() ... 81
 tt_file_join () ... 82
 tt_file_move() ... 83
 tt_file_netfile() ... 84
 tt_file_objects_query()... 85
 tt_file_quit() ... 87
 tt_free()... 88
 tt_host_file_netfile() .. 89
 tt_host_netfile_file() .. 90
 tt_icontext_join ()... 91
 tt_icontext_quit () .. 92
 tt_initial_session ()... 93
 tt_int_error().. 94
 tt_is_err() ... 95
 tt_malloc ().. 96
 tt_mark() .. 97
 tt_message_accept()... 98
 tt_message_address()... 99
 tt_message_address_set() .. 100
 tt_message_arg_add () ... 101

iv X/Open CAE Specification

Contents

 tt_message_arg_bval () .. 103
 tt_message_arg_bval_set ().. 104
 tt_message_arg_ival () ... 105
 tt_message_arg_ival_set () .. 106
 tt_message_arg_mode()... 107
 tt_message_arg_type() .. 108
 tt_message_arg_val () .. 109
 tt_message_arg_val_set ().. 110
 tt_message_arg_xval () .. 111
 tt_message_arg_xval_set () ... 112
 tt_message_args_count() .. 113
 tt_message_barg_add () ... 114
 tt_message_bcontext_set() .. 116
 tt_message_callback_add ().. 117
 tt_message_class() ... 118
 tt_message_class_set() .. 119
 tt_message_context_bval ().. 120
 tt_message_context_ival () .. 121
 tt_message_context_set() .. 122
 tt_message_context_slotname ().. 123
 tt_message_context_val () ... 124
 tt_message_context_xval () ... 125
 tt_message_contexts_count() ... 126
 tt_message_create() ... 127
 tt_message_create_super() .. 128
 tt_message_destroy()... 129
 tt_message_disposition ()... 130
 tt_message_disposition_set () .. 131
 tt_message_fail ().. 132
 tt_message_file() .. 133
 tt_message_file_set() ... 134
 tt_message_gid().. 135
 tt_message_handler() .. 136
 tt_message_handler_ptype () ... 137
 tt_message_handler_ptype_set() .. 138
 tt_message_handler_set().. 139
 tt_message_iarg_add () .. 140
 tt_message_icontext_set()... 141
 tt_message_id().. 142
 tt_message_object() ... 143
 tt_message_object_set()... 144
 tt_message_op() ... 145
 tt_message_op_set() .. 146
 tt_message_opnum() ... 147
 tt_message_otype() .. 148
 tt_message_otype_set() ... 149
 tt_message_pattern()... 150
 tt_message_print()... 151

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure v

Contents

 tt_message_receive().. 152
 tt_message_reject() .. 153
 tt_message_reply()... 154
 tt_message_scope() .. 155
 tt_message_scope_set().. 156
 tt_message_send().. 157
 tt_message_send_on_exit()... 158
 tt_message_sender() .. 159
 tt_message_sender_ptype() ... 160
 tt_message_sender_ptype_set() .. 161
 tt_message_session() ... 162
 tt_message_session_set()... 163
 tt_message_state() ... 164
 tt_message_status() ... 165
 tt_message_status_set() .. 166
 tt_message_status_string()... 167
 tt_message_status_string_set() .. 168
 tt_message_uid().. 169
 tt_message_user() .. 170
 tt_message_user_set() ... 171
 tt_message_xarg_add () ... 172
 tt_message_xcontext_join () .. 174
 tt_message_xcontext_set() .. 175
 tt_netfile_file() ... 176
 tt_objid_equal ().. 177
 tt_objid_objkey ().. 178
 tt_onotice_create () ... 179
 tt_open() ... 180
 tt_orequest_create() ... 181
 tt_otype_base()... 182
 tt_otype_derived () ... 183
 tt_otype_deriveds_count () .. 184
 tt_otype_hsig_arg_mode () .. 185
 tt_otype_hsig_arg_type ().. 186
 tt_otype_hsig_args_count ().. 187
 tt_otype_hsig_count () ... 188
 tt_otype_hsig_op ()... 189
 tt_otype_is_derived () .. 190
 tt_otype_opnum_callback_add () .. 191
 tt_otype_osig_arg_mode () .. 192
 tt_otype_osig_arg_type ().. 193
 tt_otype_osig_args_count ().. 194
 tt_otype_osig_count () ... 195
 tt_otype_osig_op ()... 196
 tt_pattern_address_add ().. 197
 tt_pattern_arg_add ()... 198
 tt_pattern_barg_add ()... 199
 tt_pattern_bcontext_add () .. 200

vi X/Open CAE Specification

Contents

 tt_pattern_callback_add ()... 201
 tt_pattern_category () .. 202
 tt_pattern_category_set () ... 203
 tt_pattern_class_add () .. 204
 tt_pattern_context_add ().. 205
 tt_pattern_create()... 206
 tt_pattern_destroy () .. 207
 tt_pattern_disposition_add ().. 208
 tt_pattern_file_add () ... 209
 tt_pattern_iarg_add () ... 210
 tt_pattern_icontext_add ()... 211
 tt_pattern_object_add ()... 212
 tt_pattern_op_add () .. 213
 tt_pattern_opnum_add () .. 214
 tt_pattern_otype_add () ... 215
 tt_pattern_print ().. 216
 tt_pattern_register().. 217
 tt_pattern_scope_add () ... 218
 tt_pattern_sender_add() ... 219
 tt_pattern_sender_ptype_add () .. 220
 tt_pattern_session_add () .. 221
 tt_pattern_state_add () .. 222
 tt_pattern_unregister() ... 223
 tt_pattern_user() ... 224
 tt_pattern_user_set()... 225
 tt_pattern_xarg_add ()... 226
 tt_pattern_xcontext_add ().. 227
 tt_pnotice_create ()... 228
 tt_pointer_error() .. 230
 tt_prequest_create()... 231
 tt_ptr_error() ... 233
 tt_ptype_declare ().. 234
 tt_ptype_exists() .. 235
 tt_ptype_opnum_callback_add () .. 236
 tt_ptype_undeclare () ... 237
 tt_release().. 238
 tt_session_bprop() ... 239
 tt_session_bprop_add () ... 240
 tt_session_bprop_set()... 241
 tt_session_join () .. 242
 tt_session_prop() ... 243
 tt_session_prop_add () ... 244
 tt_session_prop_count ().. 245
 tt_session_prop_set()... 246
 tt_session_propname() .. 247
 tt_session_propnames_count() ... 248
 tt_session_quit() .. 249
 tt_session_types_load () ... 250

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure vii

Contents

 tt_spec_bprop() .. 251
 tt_spec_bprop_add () .. 252
 tt_spec_bprop_set() ... 253
 tt_spec_create() .. 254
 tt_spec_destroy() ... 255
 tt_spec_file()... 256
 tt_spec_move() ... 257
 tt_spec_prop() .. 259
 tt_spec_prop_add ().. 260
 tt_spec_prop_count () .. 261
 tt_spec_prop_set() ... 262
 tt_spec_propname() ... 263
 tt_spec_propnames_count().. 264
 tt_spec_type()... 265
 tt_spec_type_set().. 266
 tt_spec_write() ... 267
 tt_status_message() ... 268
 tt_trace_control ()... 269
 tt_xcontext_quit () ... 270
 ttdt_Get_Modified() .. 271
 ttdt_Revert() .. 272
 ttdt_Save() ... 274
 ttdt_close () ... 276
 ttdt_file_event() ... 277
 ttdt_file_join ().. 278
 ttdt_file_notice() .. 281
 ttdt_file_quit() ... 283
 ttdt_file_request() .. 284
 ttdt_message_accept() ... 286
 ttdt_open() ... 288
 ttdt_sender_imprint_on() ... 289
 ttdt_session_join ()... 291
 ttdt_session_quit()... 295
 ttdt_subcontract_manage ()... 296
 ttmedia_Deposit ().. 297
 ttmedia_load ().. 299
 ttmedia_load_reply () ... 302
 ttmedia_ptype_declare ().. 303
 tttk_Xt_input_handler ()... 308
 tttk_block_while ().. 309
 tttk_message_abandon ().. 311
 tttk_message_create() .. 312
 tttk_message_destroy().. 313
 tttk_message_fail () .. 314
 tttk_message_reject()... 315
 tttk_op_string () ... 316
 tttk_string_op () ... 317
 6.3 Headers... 318

viii X/Open CAE Specification

Contents

 <Tt/tt_c.h>... 319
 <Tt/tttk.h>... 332
 6.4 Command-Line Interfaces .. 336
 tt_type_comp .. 337
 ttcp ... 340
 ttmv ... 343
 ttrm .. 345
 ttrmdir ... 347
 ttsession ... 349
 tttar .. 353
 6.5 Data Formats.. 358
 6.5.1 Defining Process Types... 358
 6.5.2 Defining Object Types... 360
 6.6 Protocol Message Sets.. 363
 6.6.1 Desktop Message Set... 364
 Get_Environment ... 365
 Get_Geometry ... 366
 Get_Iconified ... 367
 Get_Locale ... 368
 Get_Mapped ... 369
 Get_Modified .. 370
 Get_Situation ... 371
 Get_Status .. 372
 Get_Sysinfo ... 373
 Get_XInfo ... 374
 Lower ... 375
 Modified .. 376
 Pause ... 377
 Quit ... 378
 Raise .. 380
 Resume .. 381
 Revert .. 382
 Reverted .. 383
 Save ... 384
 Saved ... 385
 Set_Environment ... 386
 Set_Geometry ... 387
 Set_Iconified ... 388
 Set_Locale ... 389
 Set_Mapped .. 390
 Set_Situation .. 391
 Signal .. 392
 Started ... 393
 Status .. 394
 Stopped .. 395
 6.6.2 Media Exchange Message Set.. 396
 Deposit .. 397
 Display .. 398

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure ix

Contents

 Edit .. 400
 Mail ... 402
 Print .. 403
 Translate .. 405

Chapter 7 Drag and Drop ... 407
 7.1 Introduction ... 407
 7.2 Functions .. 407
 DtDndCreateSourceIcon() .. 408
 DtDndDragStart() .. 409
 DtDndDropRegister()... 414
 7.3 Headers... 419
 <Dt/Dnd.h> .. 420
 7.4 Protocols ... 423
 7.4.1 Protocol Overview... 423
 7.4.1.1 Drag and Drop API Protocol .. 423
 7.4.1.2 Export/Import Targets .. 423
 7.4.1.3 Data Transfer Protocol ... 423
 7.4.1.4 Move Completion ... 423
 7.4.2 Text Transfer Protocol ... 424
 7.4.2.1 Drag and Drop API... 424
 7.4.2.2 Export/Import Targets .. 424
 7.4.2.3 Data Transfer Protocol ... 424
 7.4.2.4 Move Completion ... 424
 7.4.3 File Name Transfer Protocol .. 424
 7.4.3.1 Drag and Drop API... 424
 7.4.3.2 Export/Import Targets .. 424
 7.4.3.3 Data Transfer Protocol ... 424
 7.4.3.4 Move Completion ... 425
 7.4.4 Buffer Transfer Protocol.. 425
 7.4.4.1 Drag and Drop API... 425
 7.4.4.2 Export/Import Targets .. 425
 7.4.4.3 Data Transfer Protocol ... 425
 7.4.4.4 Move Completion ... 425
 7.4.5 Selection Targets .. 425

Chapter 8 Data Typing... 427
 8.1 Introduction ... 427
 8.2 Functions .. 427
 DtDtsBufferToAttributeList()... 428
 DtDtsBufferToAttributeValue().. 429
 DtDtsBufferToDataType()... 430
 DtDtsDataToDataType() .. 431
 DtDtsDataTypeIsAction() .. 433
 DtDtsDataTypeNames() ... 434
 DtDtsDataTypeToAttributeList()... 435
 DtDtsDataTypeToAttributeValue().. 436
 DtDtsFileToAttributeList() .. 438

x X/Open CAE Specification

Contents

 DtDtsFileToAttributeValue() ... 439
 DtDtsFileToDataType()... 440
 DtDtsFindAttribute() ... 441
 DtDtsFreeAttributeList().. 442
 DtDtsFreeAttributeValue()... 443
 DtDtsFreeDataType().. 444
 DtDtsFreeDataTypeNames() .. 445
 DtDtsIsTrue() .. 446
 DtDtsLoadDataTypes() ... 447
 DtDtsRelease()... 448
 DtDtsSetDataType() ... 449
 8.3 Headers... 450
 <Dt/Dts.h> .. 451
 8.4 Data Formats.. 453
 8.4.1 Location of Actions and Data Types Database.................................. 453
 8.4.2 Data Types and Actions Database Syntax .. 453
 8.4.2.1 Comments .. 454
 8.4.2.2 Database Version... 454
 8.4.2.3 String Variables ... 454
 8.4.2.4 Environment Variables .. 454
 8.4.2.5 Line Continuation... 454
 8.4.2.6 Record Name ... 454
 8.4.2.7 Record Delimiters ... 455
 8.4.2.8 Fields.. 455
 8.4.2.9 Record Types.. 455
 8.4.3 Data Criteria Records.. 455
 8.4.3.1 NAME_PATTERN Field.. 455
 8.4.3.2 PATH_PATTERN Field.. 455
 8.4.3.3 CONTENT Field ... 455
 8.4.3.4 MODE Field ... 456
 8.4.3.5 LINK_NAMEField... 457
 8.4.3.6 LINK_PATH Field... 457
 8.4.3.7 DATA_ATTRIBUTES_NAME Field .. 457
 8.4.3.8 Logical Expressions.. 457
 8.4.3.9 White Space.. 457
 8.4.3.10 Escape Character... 457
 8.4.3.11 Data Criteria Format .. 458
 8.4.3.12 Data Criteria Sorting .. 459
 8.4.4 Data Attribute Records... 460
 8.4.4.1 DESCRIPTION Field.. 460
 8.4.4.2 ICON Field ... 460
 8.4.4.3 INSTANCE_ICON Field ... 460
 8.4.4.4 PROPERTIES Field ... 460
 8.4.4.5 ACTIONS Field ... 461
 8.4.4.6 NAME_TEMPLATE Field ... 461
 8.4.4.7 IS_EXECUTABLE Field.. 461
 8.4.4.8 MOVE_TO_ACTION Field... 461
 8.4.4.9 COPY_TO_ACTION Field.. 461

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure xi

Contents

 8.4.4.10 LINK_TO_ACTION Field... 461
 8.4.4.11 IS_TEXT Field .. 461
 8.4.4.12 MEDIAField .. 463
 8.4.4.13 MIME_TYPEField .. 463
 8.4.4.14 X400_TYPE Field... 463
 8.4.4.15 DATA_HOST Attribute ... 463
 8.4.4.16 Modifiers... 464
 8.4.4.17 Data Attributes Format.. 464
 8.4.4.18 Examples... 465

Chapter 9 Execution Management.. 467
 9.1 Introduction ... 467
 9.1.1 Scope... 467
 9.1.2 Components.. 467
 9.1.3 Action Database Entries ... 467
 9.1.4 Command-Line Actions ... 468
 9.2 Functions .. 468
 DtActionCallbackProc().. 469
 DtActionDescription().. 472
 DtActionExists() ... 473
 DtActionIcon() .. 474
 DtActionInvoke () .. 475
 DtActionLabel()... 480
 DtDbLoad().. 481
 DtDbReloadNotify ().. 482
 9.3 Headers... 483
 <Dt/Action.h> .. 484
 9.4 Command-Line Interfaces .. 485
 dtaction ... 486
 9.5 Data Formats.. 489
 9.5.1 Action File Syntax.. 489
 9.5.2 Classes of Actions .. 489
 9.5.2.1 Command Actions.. 489
 9.5.2.2 ToolTalk Message Actions .. 489
 9.5.2.3 Map Actions... 489
 9.5.2.4 Common Fields ... 490
 9.5.2.5 Keywords.. 490
 9.5.2.6 Argument References... 490
 9.5.2.7 Action Selection... 491
 9.5.2.8 ARG_CLASS Field.. 491
 9.5.2.9 ARG_COUNT Field .. 492
 9.5.2.10 ARG_MODE Field .. 492
 9.5.2.11 ARG_TYPE Field... 492
 9.5.2.12 CWD Field.. 493
 9.5.2.13 DESCRIPTION Field.. 493
 9.5.2.14 EXEC_HOST Field.. 493
 9.5.2.15 EXEC_STRING Field.. 493
 9.5.2.16 ICON Field ... 494

xii X/Open CAE Specification

Contents

 9.5.2.17 LABELField ... 494
 9.5.2.18 MAP_ACTION Field.. 494
 9.5.2.19 TERM_OPTS Field.. 494
 9.5.2.20 TT_ARGn_MODE Field .. 494
 9.5.2.21 TT_ARGn_REP_TYPE Field... 495
 9.5.2.22 TT_ARGn_VALUE Field ... 495
 9.5.2.23 TT_ARGn_VTYPE Field.. 495
 9.5.2.24 TT_CLASS Field.. 495
 9.5.2.25 TT_FILE Field .. 496
 9.5.2.26 TT_OPERATION Field .. 496
 9.5.2.27 TT_SCOPE Field.. 496
 9.5.2.28 TYPE Field.. 496
 9.5.2.29 WINDOW_TYPE Field.. 497
 9.5.3 Resources... 497
 9.5.4 Examples.. 499
 9.5.5 Application Usage ... 499

 Index... 501

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure xiii

Contents

xiv X/Open CAE Specification

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure xv

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

xvi X/Open CAE Specification

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:

request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.

This Document

There are two X/Open CAE Specifications (see above) defining the X/Open Common Desktop
Environment (XCDE) requirements:

• X/Open Common Desktop Environment — Definitions and Infrastructure (XCDI) (this
document)

• X/Open Common Desktop Environment — Services and Applications (XCSA)

The XCDI and XCSA documents are mutually dependent specifications, which have been split
into two volumes for convenience of use and publication.

The XCDI specification provides common definitions for the XCDI specification and the XCSA
specification; therefore, readers should be familiar with the XCDI specification before using the
XCSA specification. (Readers are also expected to be familiar with the X/Open CAE
Specification, System Interface Definitions, Issue 4, Version 2, which contains a number of
applicable definitions.)

Structure

The XCDI specification is structured as follows:

• Chapter 1 explains the targets for standardisation, requirements for conforming
implementations, and general standards terminology.

• Chapter 2 is a glossary of terms.

• Chapter 3 describes general definitions and requirements for XCDE.

• Chapter 4 describes requirements for the underlying window system and additional XCDE
interfaces (widgets).

• Chapter 5 describes miscellaneous XCDE desktop services interfaces.

• Chapter 6 describes the XCDE message services interfaces (ToolTalk).

• Chapter 7 describes the XCDE drag and drop interfaces.

• Chapter 8 describes the XCDE data typing interfaces.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure xvii

Preface

• Chapter 9 describes the XCDE execution management interfaces.

Comprehensive references are available in the index.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords and type names. It is
also used to identify brackets that surround optional items in syntax, [].

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— variable names, for example, substitutable argument prototypes

— environment variables, which are also shown in capitals

— commands or utilities

— external variables, such as errno

— X Window System widgets

— functions; these are shown as follows: name(); names without parentheses are either
external variables or function family names

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

• Ellipses, . . ., are used to show that additional arguments are optional.

• Syntax and code examples are shown in fixed width font . Brackets shown in this font,
[] , are part of the syntax and do not indicate optional items.

• Variables within syntax statements are shown in italic fixed width font .

• The names of virtual keys, such as <Help> or <Insert> are used as described by the model
keyboard section of the OSF/Motif Style Guide.

xviii X/Open CAE Specification

Trade Marks

DEC is a registered trade mark of Digital Equipment Corporation.

Helvetica is a registered trade mark of Linotype AG and/or its subsidiaries.

IBM is a registered trade mark of International Business Machines Corporation.

MotifTM is a trade mark of Open Software Foundation, Inc.

OPEN LOOK is a registered trademark of Novell, Inc.

Postscript is a registered trade mark of Adobe Systems Incorporated.

ToolTalkTM is a trade mark of Sun Microsystems, Inc.

UNIX is a registered trade mark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Ltd.

X Window SystemTM is a trade mark of the Massachusetts Institute of Technology.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure xix

Acknowledgements

X/Open gratefully acknowledges the CDE sponsoring companies who donated the materials for
this specification:

• Hewlett-Packard Company

• International Business Machines Corporation

• Novell, Incorporated.

• Sun Microsystems, Incorporated

xx X/Open CAE Specification

Referenced Documents

The following documents are referenced in this specification:

ISO C
ISO/IEC 9899: 1990, Information technology — Programming Languages — C.

ISO/IEC 6429: 1992
Information processing — ISO 7-bit and 8-bit coded character sets — Control functions for
coded character sets

ISO 8859-1: 1987
Information processing — 8-bit single-byte coded graphic character sets — Part 1: Latin
alphabet No. 1

ISO 8879: 1986
Information processing — Text and office systems — Standard Generalised Markup
Language (SGML)

ISO/IEC 9070: 1991
Information technology — SGML support facilities — Registration procedures for public
text owner identifiers

ANSI X3.64-1979
Additional Controls for Use with the American National Standard Code for Information
Interchange

RFC-822
Internet RFC 822, Crocker, D. Standard for the format of ARPA Internet text messages.

MIME RFCs
Internet RFC 1521, N. Borenstein, N. Freed, MIME (Multipurpose Internet Mail Extensions)
Part One: Mechanisms for Specifying and Describing the Format of Internet Message
Bodies.

Internet RFC 1522, K. Moore, MIME (Multipurpose Internet Mail Extensions) Part Two:
Message Header Extensions for Non-ASCII Text.

Internet RFC 1590, J. Postel, Media Type Registration Procedure.

Motif Style Guide
Open Software Foundation, OSF/Motif Style Guide, Revision 1.2 (ISBN: 0-13-643123-2).

The following X/Open documents are referenced in this specification.

XBD
X/Open CAE Specification, September 1994, System Interface Definitions, Issue 4, Version 2
(ISBN: 1-859120-36-9, C434).

XSH
X/Open CAE Specification, September 1994, System Interfaces and Headers, Issue 4,
Version 2, September 1994 (ISBN: 1-859120-37-7, C435).

XCU
X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2, September 1994
(ISBN: 1-859120-34-2, C436).

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure xxi

Referenced Documents

XIG
X/Open Guide, Internationalisation Guide, July 1993 (ISBN: 1-85912-002-4, G304).

XNFS
X/Open CAE Specification, Protocols for X/Open Interworking, September 1992, (ISBN: i-
872630-66-9, C218). This includes description of XDR (Sun Microsystems’ External Data
Representation standard), which was originally described in Internet RFC 1014.

XPG4
X/Open Single UNIX Specification (Spec. 1170) — Four Volume Set, September 1994
(ISBN: 1-85912-054-7, T405).

X Protocol
X/Open CAE Specification, Window Management (X11R5): X Window System Protocol,
April 1995 (ISBN: 1-85912-087-3, C507).

Xlib
X/Open CAE Specification, Window Management (X11R5): Xlib — C Language Binding,
April 1995 (ISBN: 1-85912-088-1, C508).

Xt
X/Open CAE Specification, Window Management (X11R5): X Toolkit Intrinsics, April 1995
(ISBN: 1-85912-089-X, C509).

ICCCM
X/Open CAE Specification, Window Management (X11R5): File Formats and Application
Conventions, April 1995 (ISBN: 1-85912-090-3, C510).

Motif
X/Open CAE Specification, X/Open Motif Toolkit API, March 1995 (ISBN: 1-85912-024-5,
C320).

XCS
X/Open CAE Specification, Calendaring and Scheduling API (XCS), March 1995 (ISBN: 1-
85912-076-8, C321).

XCSA
X/Open CAE Specification, Common Desktop Environment:— Services and Applications
(XCSA), March 1995 (ISBN: 1-85912-074-1, C323).

xxii X/Open CAE Specification

Chapter 1

Introduction

1.1 Overview
This document describes the X/Open Common Desktop Environment, a common graphical user
interface environment supported on systems supporting the X Windows System. The XCDE
specification addresses the following standardisation targets:

Application Portability
This target requires that all systems provide identical base interfaces, documenting
application program interfaces (APIs), command-line interfaces (CLIs), and data
formats. Application portability is the primary goal of this document.

The APIs are defined in terms of the source code interfaces for the C programming
language, which is defined in the ISO C standard. It is possible that some
implementations may make the interfaces available to languages other than C, but
this document does not currently define the source code interfaces for any other
language.

The CLIs are defined using the conventions defined in the X/Open CAE
Specification, Commands and Utilities, Issue 4, Version 2, making them accessible
from shell scripts or from C source code employing such functions as system() or
execlp(), defined in the X/Open CAE Specification, System Interfaces and Headers,
Issue 4, Version 2.

Some data formats are described in tabular form, others in syntactical description
languages such as BNF. The method chosen depends on the complexity of the
format.

In some cases, applications can access services via an ‘‘actions interface,’’ as
described in Chapter 9 on page 467. Both APIs and CLIs are provided to actions.

This document allows an application to be built using a set of services that are
consistent across all systems that conform to this specification (see Section 1.2 on
page 2). Such systems are termed XCDE-conformant systems. Applications written
in C or as shell scripts using only these interfaces and avoiding implementation-
dependent constructs are portable to all XCDE-conformant systems.

User Portability
This target requires that all systems provide identical base functionality with similar
look and feel or driveability.

This document attempts to provide adequate user portability by balancing two
competing priorities:

• The desire for completely identical user interfaces, down to the exact menu
structure, button placement, and pixel arrangement.

• The desire for flexibility in the interfaces to allow for innovation in future
versions or competing implementations.

This document achieves this balance by specifying or referring to detailed style
guidelines for system services (the same as those recommended for applications)
and providing detailed ‘‘capability lists’’ that describe the features to be supported

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 1

Overview Introduction

by an interactive service. The result is that a reasonably competent user would feel
comfortable and productive moving between competing XCDE-conformant
implementations.

System Interoperability
This target requires that all systems intercommunicate using common data formats
and standardised protocols. This version of this document concentrates on the
former, but includes protocols when they have achieved the level of stability
comparable to the APIs and suitable base documentation is available. Note that this
situation is similar to that of XPG4, which does not attempt to document all formats
and protocols for system interoperability. Future versions of the XCDE specification
should provide additional system interoperability details.

Component Portability/Replaceability
This target requires that the interfaces between services and service providers be
standardised so that an Independent Software vendor (ISV) can market portable
replacements for major end-user-visible components, such as the mail tool or
calendar manager. This target can be considered a special case of Application
Portability as long as there are adequate interfaces to provide comparable end-user
services; given this, the mail tool or calendar manager are themselves applications.

This document defines all of its stated interfaces and their run-time behaviour without imposing
any particular restrictions on the way in which the interfaces are implemented.

The following areas are outside the scope of this document:

Binary Portability
This target was avoided because the binary formats of compiled or linked
applications are system-dependent.

System Administration
The details of the installation, maintenance, and performance tuning of the XCDE
itself are also system-dependent.

1.2 Conformance
An implementation conforming to the X/Open Common Desktop Environment (the
combination of this document and the XCSA specification) shall meet the following criteria:

• The system shall support all the interfaces defined within the X/Open Common Desktop
Environment, including all:

— C-language functions and headers

— Command-line interfaces

— Action interfaces

— Inter-system protocols

— Externally stored or transmitted data formats

• The system may provide additional or enhanced interfaces, headers and facilities not
required by the X/Open Common Desktop Environment, provided that such additions or
enhancements do not affect the behaviour of a conforming application.

2 X/Open CAE Specification

Introduction Terminology

1.3 Terminology
The following terms are used in this specification:

can
This describes a permissible optional feature or behaviour available to the user or application; all
systems support such features or behaviour as mandatory requirements.

implementation-dependent
The value or behaviour is not consistent across all implementations. The provider of an
implementation normally documents the requirements for correct program construction and
correct data in the use of that value or behaviour. When the value or behaviour in the
implementation is designed to be variable or customisable on each instantiation of the system,
the provider of the implementation normally documents the nature and permissible ranges of
this variation. Applications that are intended to be portable must not rely on implementation-
dependent values or behaviour.

may
With respect to implementations, the feature or behaviour is optional. Applications should not
rely on the existence of the feature. To avoid ambiguity, the reverse sense of may is expressed as
need not , instead of may not .

must
This describes a requirement on the application or user.

obsolescent
Certain features are obsolescent , which means that they may be considered for withdrawal in
future revisions of this document. They are retained in this version because of their widespread
use. Their use in new applications is discouraged.

should
With respect to implementations, the feature is recommended, but it is not mandatory.
Applications should not rely on the existence of the feature.

With respect to users or applications, the word means recommended programming practice that
is necessary for maximum portability.

undefined
A value or behaviour is undefined if this document imposes no portability requirements on
applications for erroneous program constructs or erroneous data. Implementations may specify
the result of using that value or causing that behaviour, but such specifications are not
guaranteed to be consistent across all implementations. An application using such behaviour is
not fully portable to all systems.

unspecified
A value or behaviour is unspecified if this document imposes no portability requirements on
applications for correct program construct or correct data. Implementations may specify the
result of using that value or causing that behaviour, but such specifications are not guaranteed
to be consistent across all implementations. An application requiring a specific behaviour,
rather than tolerating any behaviour when using that functionality, is not fully portable to all
systems.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 3

Format of Entries Introduction

1.4 Format of Entries

1.4.1 C-Language Functions and Headers

The entries for C-language functions and headers are based on a common format.

NAME
This section gives the name or names of the entry and briefly states its purpose.

SYNOPSIS
This section summarises the use of the entry being described. If it is necessary to
include a header to use this interface, the names of such headers are shown, for
example:

#include <stdio.h>

DESCRIPTION
This section describes the functionality of the interface or header.

RETURN VALUE
This section indicates the possible return values, if any.

If the implementation can detect errors, ‘‘successful completion’’ means that no
error has been detected during execution of the function. If the implementation
does detect an error, the error will be indicated.

For functions where no errors are defined, ‘‘successful completion’’ means that if the
implementation checks for errors, no error has been detected. If the implementation
can detect errors, and an error is detected, the indicated return value will be
returned. No function in this document affects the value of the errno variable
described in the X/Open CAE Specification, System Interfaces and Headers, Issue
4, Version 2.

APPLICATION USAGE
This section gives warnings and advice to application writers about the entry.

EXAMPLES
This section gives examples of usage, where appropriate.

FUTURE DIRECTIONS
This section provides comments which should be used as a guide to current
thinking; there is not necessarily a commitment to adopt these future directions.

SEE ALSO
This section gives references to related information.

CHANGE HISTORY
This section shows the derivation of the entry and any significant changes that have
been made to it.

The only sections relating to conformance are the SYNOPSIS, DESCRIPTION and RETURN
VALUE sections.

4 X/Open CAE Specification

Introduction Format of Entries

1.4.2 Messages

The ToolTalk desktop message set (see Section 6.6 on page 364) and media exchange message set
(see Section 6.6.2 on page 396) descriptions use a modified version of the SYNOPSIS notation
used for C-language functions. Despite the similarity of its appearance to a C-language function
prototype, it represents a message created by the tt_create_message() function (or one of the
related message functions), and its arguments are typically added using separate calls to
functions such as tt_message_arg_ival_set (). Within the synopsis, the square brackets ([])
surround optional arguments.

1.4.3 Service Interfaces

In addition to C-language APIs, this document describes services available to the user and to
applications. Such services are often represented by a specific utility program, but are
sometimes described in more general terms. Services are described using the following
categories, expressed in order of increasing specificity:

Capabilities
A service is required to provide all of the capabilities within a bulleted list. These
general capabilities are expressed in a manner that promotes user portability
without sacrificing the ability of implementors to innovate by providing additional
or improved interfaces.

Actions
An application can generally access a XCDE service through an action interface; see
Chapter 9 on page 467. When available, the action interface is the preferred means
for a XCDE application to access a service. Actions are described in a format
identical to that used for C-language functions; see Section 1.4.1 on page 4.

Messages
An application can generally access a XCDE service by sending ToolTalk messages
to it and receiving messages in response. A list is presented of the ToolTalk
messages that are sent by, or can be received by, the service. (These ToolTalk
messages are described in Section 6.6 on page 364 and Section 6.6.2 on page 396).

Command-Line Interfaces
A service may include one or more utilities. Some utilities are described with a
combination of a Capability List (described earlier) and a CLI. The CLI is a subset of
the sections described under Utility Descriptions .

Utility Descriptions
Some utilities are expected to be used primarily by portable shell scripts and are
presented using the full template introduced by X/Open CAE Specification,
Commands and Utilities, Issue 4, Version 2, enhanced as follows:

NAME
This section gives the name or names of the entry and briefly states its
purpose.

SYNOPSIS
The SYNOPSIS section summarises the syntax of the calling sequence
for the utility, including options, option-arguments and operands.

DESCRIPTION
The DESCRIPTION section describes the actions of the utility. If the
utility has a very complex set of subcommands or its own procedural
language, an EXTENDED DESCRIPTION section is also provided.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 5

Format of Entries Introduction

Most explanations of optional functionality are omitted here, as they
are usually explained in the OPTIONS section.

OPTIONS
The OPTIONS section describes the utility options and option-
arguments, and how they modify the actions of the utility.

Default Behaviour: When this section is listed as ‘‘None’’, it means
that the implementation need not support any options.

OPERANDS
The OPERANDS section describes the utility operands, and how they
affect the actions of the utility.

Default Behaviour: When this section is listed as ‘‘None’’, it means
that the implementation need not support any operands.

STDIN
The STDIN section describes the standard input of the utility. This
section is frequently merely a reference to the following section, as
many utilities treat standard input and input files in the same manner.
Unless otherwise stated, all restrictions described in INPUT FILES
apply to this section as well.

Default Behaviour: When this section is listed as ‘‘Not used,’’ it means
that the standard input will not be read when the utility is used as
described by this document.

INPUT FILES
The INPUT FILES section describes the files, other than the standard
input, used as input by the utility. It includes files named as operands
and option-arguments as well as other files that are referred to, such as
startup and initialisation files, databases, etc. Commonly-used files are
generally described in one place and cross-referenced by other utilities.

Record formats are described in a notation similar to that used by the
C-language function, printf(). See X/Open CAE Specification,
Commands and Utilities, Issue 4, Version 2 for a description of this
notation.

Default Behaviour: When this section is listed as ‘‘None’’, it means
that no input files are required to be supplied when the utility is used
as described by this document.

RESOURCES
This section, which has no corresponding section in the X/Open CAE
Specification, Commands and Utilities, Issue 4, Version 2, lists the X
Window System resources that affect the operation of the utility.

ENVIRONMENT VARIABLES
The ENVIRONMENT VARIABLES section lists what variables affect
the utility’s execution.

Default Behaviour: When this section is listed as ‘‘None’’, it means
that the behaviour of the utility is not directly affected by environment
variables described by this document when the utility is used as
described by this document.

6 X/Open CAE Specification

Introduction Format of Entries

ASYNCHRONOUS EVENTS
The ASYNCHRONOUS EVENTS section lists how the utility reacts to
such events as signals and what signals are caught.

Default Behaviour: When this section is listed as ‘‘Default’’, or it refers
to ‘‘the standard action for all other signals,’’ it means that the action
taken as a result of the signal is one of the following:

1. The action is that inherited from the parent according to the rules
of inheritance of signal actions defined in the X/Open CAE
Specification, System Interfaces and Headers, Issue 4, Version 2.

2. When no action has been taken to change the default, the default
action is that specified by the X/Open CAE Specification, System
Interfaces and Headers, Issue 4, Version 2.

3. The result of the utility’s execution is as if default actions had
been taken.

A utility is permitted to catch a signal, perform some additional
processing (such as deleting temporary files), restore the default signal
action (or action inherited from the parent process) and resignal itself.

STDOUT
The STDOUT section describes the standard output of the utility.

Default Behaviour: When this section is listed as ‘‘Not used’’, it means
that the standard output will not be written when the utility is used as
described by this document.

STDERR
The STDERR section describes the standard error output of the utility.
Only those messages that are purposely sent by the utility are
described.

Default Behaviour: When this section is listed as ‘‘Used only for
diagnostic messages,’’ it means that, unless otherwise stated, the
diagnostic messages are sent to the standard error only when the exit
status is non-zero and the utility is used as described by this document.

When this section is listed as ‘‘Not used’’, it means that the standard
error will not be used when the utility is used as described in this
document.

OUTPUT FILES
The OUTPUT FILES section describes the files created or modified by
the utility.

Record formats are described in a notation similar to that used by the
C-language function, printf(). See the X/Open CAE Specification,
Commands and Utilities, Issue 4, Version 2 for a description of this
notation.

Default Behaviour: When this section is listed as ‘‘None’’, it means
that no files are created or modified as a consequence of direct action
on the part of the utility when the utility is used as described by this
document. However, the utility may create or modify system files,
such as log files, that are outside the utility’s normal execution
environment.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 7

Format of Entries Introduction

EXTENDED DESCRIPTION
The EXTENDED DESCRIPTION section provides a place for
describing the actions of very complicated utilities, such as text editors
or language processors, which typically have elaborate command
languages.

Default Behaviour: When this section is listed as ‘‘None’’, no further
description is necessary.

EXIT STATUS
The EXIT STATUS section describes the values the utility will return to
the calling program, or shell, and the conditions that cause these values
to be returned. Usually, utilities return zero for successful completion
and values greater than zero for various error conditions. If specific
numeric values are listed in this section, the system will use those
values for the errors described. In some cases, status values are listed
more loosely, such as ‘‘>0’’. A portable application cannot rely on any
specific value in the range shown and must be prepared to receive any
value in the range.

CONSEQUENCES OF ERRORS
The CONSEQUENCES OF ERRORS section describes the effects on
the environment, file systems, process state, and so on, when error
conditions occur. It does not describe error messages produced or exit
status values used.

When a utility encounters an error condition several actions are
possible, depending on the severity of the error and the state of the
utility. Included in the possible actions of various utilities are: deletion
of temporary or intermediate work files; deletion of incomplete files;
validity checking of the file system or directory.

Default Behaviour: When this section is listed as ‘‘Default’’, it means
that any changes to the environment are unspecified.

APPLICATION USAGE
The APPLICATION USAGE section gives advice to the application
programmer or user about the way the utility should be used.

EXAMPLES
The EXAMPLES section gives one or more examples of usage, where
appropriate.

FUTURE DIRECTIONS
The FUTURE DIRECTIONS section should be used as a guide to
current thinking; there is not necessarily a commitment to implement
all of these future directions in their entirety.

SEE ALSO
The SEE ALSO section lists related entries.

CHANGE HISTORY
This section shows the derivation of the entry and any significant
changes that have been made to it.

8 X/Open CAE Specification

Introduction Format of Entries

In this list, all sections other than APPLICATION USAGE, EXAMPLES, FUTURE
DIRECTIONS, SEE ALSO and CHANGE HISTORY are related to conformance.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 9

Introduction

10 X/Open CAE Specification

Chapter 2

Glossary

2.1 Terms Defined by XCDE

The following terms are used in this document:

abandoned action
(Execution Management Services) An action that is no longer managed by the execution service.

action label
(Execution Management Services) A localised string that provides a textual identification of the
action to the user.

action
(Execution Management Services) A desktop construct that provides a method for running
applications, sending messages and executing commands.

actions and data types database
(Execution Management, Data Typing) The text files used to control the XCDE data typing
(Chapter 8 on page 427) and execution management (Chapter 9 on page 467) services.

actions table
(Execution Management Services) The portion of the actions and data types database that
describes actions.

attachment
(Mail Services) An encapsulated data object inside a document. In the XCDE mail services, an
attachment is a data object within an electronic mail message that is displayed as an icon in the
Attachments list. An attachment can be text, sound or graphic. Multiple messages can be added
(attached) to a single email message. An attached message is displayed or activated by selecting
it with the mouse button.

auto wraparound
(Terminal Emulation Services) A special mode in which text automatically moves to the next line
when it reaches the right margin.

auto-repeat key
(Terminal Emulation Services) A keyboard character that keeps repeating as long as the key is
pressed.

backdrop
(Workspace Management Services) A background the user selects via the style manager to make
the workspace visually distinctive.

base height
(Terminal Emulation Services) The height of the terminal window before accounting for the total
height of the lines of text to be displayed.

base width
(Terminal Emulation Services) The width of the terminal window before accounting for the total
width of the columns of text to be displayed.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 11

Terms Defined by XCDE Glossary

bell
(Terminal Emulation Services) An indicator that a special event has taken place. It can be an
audible beep from the computer or a visual indicator.

blanking mode
(Terminal Emulation Services) A special mode for terminal emulator windows to avoid visual
clutter. In this mode the pointer is made invisible if it remains stationary for a period of time.
The pointer re-appears when it is moved (usually by a mouse) and disappears after a selectable
number of seconds or when keyboard input begins.

bounding box
(Terminal Emulation Services) A rectangle used as a guide when designing fonts. Characters in
a font are designed to fit generally inside their font’s bounding box.

buffer argument
(Execution Management Services) An argument that specifies an object in memory. This
contrasts with a file argument, which specifies a file generally located on disk.

category
(ToolTalk) Attribute of a pattern that indicates whether the application is prepared to handle
requests that match the pattern or only observe the requests.

character protection attribute
(Terminal Emulation Services) An attribute that applies to text displayed in a terminal emulator
window. Text characters for which this attribute is set cannot be erased.

character-spaced font
(Terminal Emulation Services) A special kind of monospaced font whose characters each fit into
the font’s bounding box.

client data
(Execution Management Services) Data supplied by the client and associated with a callback
function. The meaning of the data depends entirely on the client. Client data is often used by a
client to send data that it will receive again later.

colour set
(Workspace Management Services) A set of five colours used to represent a single logical colour
in the Motif toolkit. For each background colour (the ‘‘logical’’ colour), there are associated top
shadow, bottom shadow, foreground and select colours, all generated from the background
colour. These associated colours are the mechanism for giving widgets their three-dimensional
appearance.

contexts
(ToolTalk) Sets of <name.value> explicitly included in both messages and patterns. ToolTalk
contexts allow fine-grain matching.

The application can use contexts to associate arbitrary pairs with ToolTalk messages and
patterns, and to restrict the set of possible recipients of a message. One common use of the
restricted pattern matching provided by ToolTalk context attributes is to create sub-sessions. For
example, two different programs could be debugged simultaneously with tools such as a
browser, an editor, a debugger, and a configuration manager active for each program. The
message and pattern context slots for each set of tools contain different values; the normal
ToolTalk pattern matching of these values keep the two sub-sessions separate.

Another use for the restricted pattern matching provided by ToolTalk context attributes is to
provide information in environment variables and command-line arguments to tools started by
the ToolTalk service.

12 X/Open CAE Specification

Glossary Terms Defined by XCDE

current session
(Session Management Services) The collection of applications, settings and resources that are
currently present on the user’s desktop. If a user selects to restore the current session upon
login, the desktop will be restored to the same state it was in when that user ended the previous
session and logged out.

current workspace
(Workspace Management Services) The workspace whose windows are currently visible to the
user.

data attributes
(Data Typing) The attributes that determine user-visible interfaces to file or byte-stream data: a
human-readable description of the type, the icon to represent it graphically and the actions that
apply to it.

data attributes table
(Data Typing) The portion of the actions and data types database that describes data attributes.
See Section 8.4.4 on page 460.

data criteria table
(Data Typing) The portion of the actions and data types database that describes data criteria. See
Section 8.4.3 on page 455.

data type
(Data Typing) A name characterising the data in a file or byte vector. A data type is named by
the value of the DATA_ATTRIBUTES_NAME field in the matching record of the data criteria
table of the actions and data types database.

data types database
(Data Typing) See actions and data types database on page 11.

data typing
A method of determining the data attributes of a file or byte vector, based on its name, file
permissions, symbolic links and content.

display area
(Help Services) An area in help dialogs that shows a help topic.

drag
(Drag and Drop) A user interaction in which elements or their representations change their
position or appearance in conjunction with the movement of the pointer.

drag and drop
(Drag and Drop) A user interaction in which a user drags source elements to a target element on
which they are dropped.

drop
(Drag and Drop) A user action that terminates a drag, identifying the destination of the drag and
drop interaction as the element under the pointer.

drop zone
(Drag and Drop) An area of the workspace, including the Trash Can, Print Manager and Mailer
controls, that accepts a dropped icon. Icons can be dropped on the workspace for quick access.

dynamic message patterns
(ToolTalk) A message pattern provided by the application that is created while the application is
running. See tt_pattern_create() and tt_pattern_register() in Chapter 6.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 13

Terms Defined by XCDE Glossary

deserialise
(ToolTalk) Decode a data structure from an architecturally neutral stream of bytes.

edict
(ToolTalk) A notice that looks like a request. For example, if a request returns no data (or if the
sender does not care about the returned data), the application can use an edict to broadcast that
request to a set of tools. Since the message is a notice, no data will be returned, no replies will be
received, and the sender is not told whether any tool receives the message.

escape character
(Terminal Emulation Services) A character that generally indicates the beginning of a command
to be performed, not text to be displayed or passed to the application. The character code in the
referenced ISO/IEC 646: 1983 standard is decimal 27.

execution host
(Execution Management Services) A host computer that runs an application invoked by an
action. This may be the same computer where the action resides, or it may be another computer
on the network.

execution string
(Execution Management Services) A string that specifies the command to invoke.

fail a request
(ToolTalk) Inform a sending application that the requested operation cannot be performed, by
calling tt_message_fail () in Chapter 6. This is a voluntary failure, as opposed to a message not
being sendable.

folder
(File Management Services) A representation of a directory in the underlying file system.

front panel
(Front Panel Services) A centrally located window containing controls for accessing applications
and utilities. The front panel occupies all workspaces.

general help dialog
(Help Services) A window that displays help information and provides full navigation
capabilities. See also quick help dialog on page 18, which offers more limited capabilities.

handler
(ToolTalk) The distinguished recipient procid of a message.

handle a request
(ToolTalk) Perform the operation requested by the sending application.

hard reset
(Terminal Emulation Services) An operation that fully restores the terminal emulator to a
specific startup state, as defined by the emulation. This includes everything done by a soft reset.

height increment
(Terminal Emulation Services) The height in pixels of a single line of text. It is used to calculate
the height of the terminal emulator window

HelpTag
(Help Services) The markup language used for creating XCDE help volumes. HelpTag complies
with the referenced SGML standard.

14 X/Open CAE Specification

Glossary Terms Defined by XCDE

help topic
(Help Services) The smallest addressable piece of help information. It may be authored in
HelpTag or system manual-page macros, or be a text file or string in the referenced ISO/IEC
646: 1983 standard codeset. Help topics authored in HelpTag may reference additional topics.

help type
(Help Services) The format of the data in a given help topic. Formats include HelpTag topic,
string data, system manual page and text file.

help volume
(Help Services) A collection of help topics authored in HelpTag.

home session
(Session Management Services) The collection of applications, settings and resources on the
desktop. If a user selects to restore the home session upon login, the desktop is restored to the
same initial state every time the user logs in, regardless of its state when the user last logged out.

icon name
(Execution Management Services) The name of a field in the action database. It is generally used
by applications to construct the location where the bitmap of the icon is located.

initial session
(ToolTalk) The ToolTalk session in which the application was started.

jump scrolling
(Terminal Emulation Services) A specific scrolling behaviour in which the screen may be scrolled
by more than one line at a time.

location ID
(Help Services) The identifier for a particular location in a help topic that can be accessed
directly.

login shell
(Terminal Emulation Services) The initial shell invoked when a user logs in. For ksh and sh users,
the login shell startup is controlled by the system profile and the user .profile files.

mail header
(Mail Services) The lines in a mail message that precede the empty line that marks the beginning
of the message text, as described in the referenced RFC-822 specification.

margin bell
(Terminal Emulation Services) An indicator that user input has reached the right margin of the
window.

mark
(ToolTalk) An integer that represents a location on the API storage stack; see tt_mark() and
tt_release() in Chapter 6.

message
(ToolTalk) A structure that the ToolTalk service delivers to processes. A ToolTalk message
consists of an operation name, a vector of type arguments, a status value or string pair, and
ancillary addressing information.

message callback
(ToolTalk) A client function. The ToolTalk service invokes this function to report information
about the specified message back to the sending application; for example, the message failed or
the message caused a tool to start.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 15

Terms Defined by XCDE Glossary

message pattern
(ToolTalk) Defines the message the application is prepared to receive.

message protocol
(ToolTalk) A set of ToolTalk messages that describe operations the applications agree to perform.

module
(Application Building Services) An arbitrary subdivision of a project; see project on page 17.
Projects can be subdivided into modules for clarity of architectural structure, for ease of
controlling multiple programmers on the same project, and so forth.

monospaced font
(Terminal Emulation Services) A font composed of characters that are all of the same width.

netfilename
(ToolTalk) A canonical form of a pathname that can be passed to other hosts on the network and
converted back to a local pathname for the same file. See tt_file_netfile() in Chapter 6.

notice
(ToolTalk) An informational message used by an application to announce an event. Zero or
more tools may receive a given notice. The sender is not informed whether any tools receive its
notice because replies cannot be sent for a notice.

object
(File Management Services) A representation of a file in the underlying file system. Examples of
objects are text files, actions or directories.

object content
(ToolTalk) A piece, or pieces, of an ordinary file, managed by the application that creates or
manages the object; for example, a paragraph, a source code function or a range of spreadsheet
cells.

object-oriented messages
(ToolTalk) Messages addressed to objects managed by applications.

object specification (spec)
(ToolTalk) Standard properties of an object, such as the type of object, the name of the file in
which the object contents are located, and the object owner.

object type (otype)
(ToolTalk) Addressing information that the ToolTalk service uses when delivering object-
oriented messages to an application.

object type identifier (otid)
(ToolTalk) Identifies the object type.

objid
(ToolTalk) The identifier for a ToolTalk object. The same ToolTalk object can have different
objids as it is moved from one file system to another; see tt_objid_equal () in Chapter 6. Objids are
returned by tt_spec_create().

observe a message
(ToolTalk) View a message without performing any operation that may be requested.

observe promise
(ToolTalk) Guarantee that the ToolTalk service will deliver a copy of each matching message to
ptypes with an observer signature of start or queue disposition. The ToolTalk service will
deliver the message either to a running instance of the ptype, by starting an instance, or by
queueing the message for the ptype.

16 X/Open CAE Specification

Glossary Terms Defined by XCDE

opaque
(ToolTalk, Terminal Emulation Services) A value or structure that has meaning only when
passed through a particular interface.

opname (op)
(ToolTalk) The name of the message.

opnum
(ToolTalk) A mechanism for indicating the static pattern that caused the message to be received.
Opnums and opnum callbacks are to static patterns as pattern callbacks are to dynamic patterns.

option argument keyword
(Execution Management Services) A special symbolic name that refers to a value determined at
run time. For example, %Arg_1% refers to the first argument passed to DtActionInvoke ().

option string
(Execution Management Services) A string containing command-line options to an execution
string.

overstriking
(Terminal Emulation Services) Rendering the same characters several times at close to the same
position. This technique originated to emulate bold fonts on a typewriter.

palette object
(Application Building Services) A user interface object that is included in an application by
dragging it from the object palette of the application building services.

paragraph
(Text Editing Services) One or more words preceded by a blank line or the beginning of the text
and followed by a blank line or the end of the text.

pattern callback
(ToolTalk) A client function. The ToolTalk service invokes this function when a message is
received that matches the specified pattern.

pixel offset
(Terminal Emulation Services) The distance in pixels between two locations.

procedural message
(ToolTalk) A message addressed by operation name.

procid
(ToolTalk) The process identifier. The procid is a principal that can send and receive ToolTalk
messages. It is an identity, created and passed by the ToolTalk service, that a process must
assume to send and receive messages. A single operating system process can use multiple
procids. A procid is the value returned by tt_open() in Chapter 6.

project
(Application Building Services) An application under construction by the application building
services. A project can consist of zero or more modules.

proportional font
(Terminal Emulation Services) A font whose characters are various widths.

pseudo-terminal
(Terminal Emulation Services) An implementation-dependent driver that simulates the action of
a terminal device; a software abstraction of the communications path between the system and a

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 17

Terms Defined by XCDE Glossary

terminal. A pseudo-terminal connection can be used between an application or shell and a
terminal emulation window.

ptid
(ToolTalk) The process type identifier.

ptype
(ToolTalk) The process type.

quick help dialog
(Help Services) A window that displays a help topic. See also general help dialog on page 14,
which offers additional capabilities.

registration context
(Workspace Management Services) A handle that uniquely identifies a callback function. A
registration context is returned when a workspace callback function is added. It must be saved
if the callback function is to be removed.

reject a request
(ToolTalk) Tell the ToolTalk service, using tt_message_reject() in Chapter 6, that the receiving
application is unable to perform the requested operation and that the message should be given
to another tool.

reparenting window manager
(Terminal Emulation Services) Applications create toplevel windows that they request to be
children of the root window. A reparenting window manager makes toplevel windows children
of its windows instead. The window manager windows generally act as a frame around the
application’s toplevel window and contain such elements as resize handles and title bars.

request
(ToolTalk) A call for an action. The results of the action are recorded in the message, and the
message is returned to the sender as a reply. A request asks that an operation be performed. It
has a distinguished recipient (handler) responsible for performing the indicated operation.

reverse wraparound
(Terminal Emulation Services) The cursor movement that wraps the cursor up to the previous
line if the cursor is located at the left margin and the user presses backspace.

rpc.ttdbserverd
(ToolTalk) The ToolTalk database server process.

scope
(ToolTalk) The attribute of a message or pattern that determines how widely the ToolTalk service
looks for matching messages or patterns.

selection extension
(Terminal Emulation Services) An increase in the amount of text selected.

serialise
(ToolTalk) Encode a data structure into an architecturally neutral stream of bytes.

sessid
(ToolTalk) The identifier for a ToolTalk session. It is an opaque character string.

session
(ToolTalk) A group of ToolTalk processes that are related either by being in the same desktop or
the same process tree.

18 X/Open CAE Specification

Glossary Terms Defined by XCDE

signal handler
(Terminal Emulation Services) A software routine that deals with signals the application may
receive.

signature
(ToolTalk) A pattern in a ptype or otype. A signature can contain values for disposition and
operation numbers.

• A ptype signature (psignature) describes the procedural messages that the application is
prepared to receive.

• An otype signature (osignature) defines the messages that can be addressed to objects of the
type.

slave device
(Terminal Emulation Services) A system device that provides to application processes a terminal
device interface as described in the General Terminal Interface (termios) of the X/Open CAE
Specification, System Interface Definitions, Issue 4, Version 2.

slotname
(ToolTalk) The name of a ToolTalk context. See contexts on page 12.

soft reset
(Terminal Emulation Services) An operation that partially restores the terminal emulator to a
specific startup state, as defined by the emulation. It is a subset of a hard reset.

source
(Drag and Drop) The object that is selected, dragged and dropped in a drag-and-drop action.

source indicator
(Drag and Drop) The part of the pointer displayed during drag and drop that describes the
source.

spec
(ToolTalk) See object specification (spec) on page 16.

starting shell
(Terminal Emulation Services) The initial shell controlling interaction when the terminal
window appears.

state indicator
(Drag and Drop) The part of the pointer displayed during drag and drop that indicates whether
the pointer is at a place where a drop is likely to result in a successful operation.

static message pattern
(ToolTalk) A signature. See signature.

subpanel
(Front Panel Services) A component associated with a control on the front panel. It provides
additional elements associated with that control.

terminal emulator
(Terminal Emulation Services) A window that emulates a particular type of terminal for running
non-window programs. Terminal emulator windows are most commonly used for typing
commands to interact with the computer’s operating system.

text rendering
(Terminal Emulation Services) Drawing text on a video screen.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 19

Terms Defined by XCDE Glossary

tool
(ToolTalk) An application or utility that can be manipulated using ToolTalk services.

ToolTalk API
(ToolTalk) The functions and headers in Chapter 6.

ToolTalk service
(ToolTalk) The implementation of the ToolTalk API and components.

ToolTalk types database
(ToolTalk) The database that stores ToolTalk type information.

topic tree
(Help Services) An area in the general help dialog that aids navigation of topics that can be
browsed in the current help volume.

underscore
(Terminal Emulation Services) The character ‘‘_’’.

value type (vtype)
(ToolTalk) An application-defined string that describes what kind of data a message argument
contains. The ToolTalk service only uses vtypes to match sent message instances with registered
message patterns.

virtual keys
(Terminal Emulation Services) Logical key translations, as defined by the X/Open CAE
Specification, Motif Toolkit API.

width increment
(Terminal Emulation Services) The width in pixels of a single column of text. It is used to
calculate the width of the terminal emulator window.

window menu
(Workspace Management Services) The menu displayed by choosing the Window menu button.
The menu provides choices that manipulate the location or size of the window, such as Move,
Size, Minimise and Maximise.

word
(Text Editing Services) One or more non-white-space characters preceded by the beginning of
the text, the beginning of a line, or a white-space character and trailed by the end of the text, the
end of a line, or a white-space character.

workspace
(Workspace Management Services) A ‘‘virtual screen’’ that contains a set of windows.
Workspaces provide a way of grouping together logically related windows. Each workspace is
shown independent of the other workspaces so that only those windows related to the
immediate task are visible. Workspaces organise windows by task and efficiently use screen
space.

workspace identifier
(Workspace Management Services) An X atom that indicates the name of the workspace.

workspace functions
(Workspace Management Services) Capabilities that appear in a window menu to allow the user
to specify which workspace a window occupies.

workspace manager
(Workspace Management Services) A program that implements workspaces.

20 X/Open CAE Specification

Glossary Terms Defined by XCDE

workspace name
(Workspace Management Services) The resource name for a workspace. This name is converted
to an X atom and used in the workspace management API. The workspace name is generated
dynamically by the workspace manager. Since it is a resource name, the characters are limited to
those in the X Portable Character Set. (See workspace title.)

workspace title
(Workspace Management Services) The user-visible title associated with a workspace. It is
displayed in the workspace button in the front panel. It is interpreted in the locale in which the
workspace manager is running. The user can change the workspace title.

XNFS
The Protocols for X/Open Interworking (X/Open CAE Specification) includes description of
ToolTalk, to serialise data for transmission using the External Data Representation data
description language and data representation protocol; this was originally described in RFC
1014.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 21

Terms From Other Standards Glossary

2.2 Terms From Other Standards
The following terms used in this document are defined in X/Open CAE Specification, System
Interface Definitions, Issue 4, Version 2:

absolute pathname
appropriate privileges
argument
assignment
asterisk
backquote
backslash
backspace character
basename
blank character
blank line
block special file
byte
carriage-return character
character
character special file
character string
child process
codeset
collation
collation sequence
command
command language interpreter
current working directory
cursor position
device
directory
directory entry (link)
dot
dot-dot
double-quote
effective group ID
effective user ID
empty directory
empty line
empty string (null string)
executable file

file
file access permissions
file descriptor
file hierarchy
file mode
file permission bits
file system
file type
filename
form-feed character
group ID
group name
home directory
internationalisation
line
locale
localisation
login
login name
message catalogue
mode
mount point
negative response
newline character
NUL
null byte
null pointer
null string
operand
operator
option
option-argument
parameter
parent directory
parent process
path prefix
pathname

pathname component
pathname resolution
period
permissions
pipe
positional parameter
privilege
process
program
radix character
redirection
regular expression
regular file
relative pathname
root directory
scroll
shell
shell script
signal
slash
space character
standard error
standard input
standard output
stream
string
system
tab character
terminal
terminal device
text file
user ID
user name
utility
white space
working directory

22 X/Open CAE Specification

Glossary Terms From Other Standards

The following terms used in this document are defined in the X/Open CAE Specification,
Window Management: File Formats and Application Conventions, the X/Open CAE
Specification, Window Management: Xlib — C Language Binding, and the X/Open CAE
Specification, Window Management: X Toolkit Intrinsics.

access control list
active grab
ancestors
API
application
application programmer
atom
background
backing store
BDF
bit gravity
bit plane
bitmap
border
button grabbing
byte order
children
class
client
clipping region
colormap
compound text
connection
containment
coordinate system
cursor
depth
device
directColor
display
drawable
event
event mask
event propagation
event source
event synchronisation
exposure event
extension
focus window
font
gadget
GContext

glyph
grab
graphics context
gravity
grayScale
GUI
hotspot
ICCCM
identifier
inferiors
input focus
input manager
InputOnly window
InputOutput window
instance
key grabbing
keyboard grabbing
KEYSYM
mapped
method
modifier keys
monochrome
object
obscure
occlude
padding
parent window
passive grab
pixel
pixel value
pixmap
plane
plane mask
pointer
pointer grabbing
pointing device
policy
property
property list
pseudoColor
redirecting control
reply

request
resource
RGB values
root
root window
save set
scanline
scanline order
screen
selection
server
server grabbing
session manager
sibling
stacking order
staticColor
staticGray
stipple
string equivalence
style guide
tile
timestamp
TrueColor
type
UI platform
UI specification
UIDL
user
user interface
viewable
visible
widget
widget programmer
window gravity
window manager
X Protocol
XLFD
Xlib
Xt Intrinsics
XYFormat
ZFormat

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 23

Terms From Other Standards Glossary

The following terms used in this document are defined in the X/Open CAE Specification, Motif
Toolkit API:

atom icon pointer scrollbar
border menu protocol widget
class Motif Resource window
compound text object scroll window manager
drag and drop

24 X/Open CAE Specification

Chapter 3

General Definitions and Requirements

3.1 XCDE Data Format Naming
The X/Open Common Desktop Environment supports a common name space to describe file
formats that can be interchanged between applications—the Media name space. The names in
the Media name space describe the form of the data itself. Media names are used as ICCCM
selection targets (see the X/Open CAE Specification, Window Management: File Formats and
Application Conventions); they are named in the MEDIA field of data type records (see Chapter
8 on page 427); and they are used in the type parameter of Media Exchange messages (see Section
6.6.2 on page 396).

The Media name space is a subset of the space of selection target atoms as defined by the
ICCCM. All selection targets that specify a data format are valid Media names, and all valid
Media names can be used directly as selection targets. Some selection targets specify an
attribute of the selection (for example, LIST_LENGTH) or a side effect to occur (for example,
DELETE), rather than a data format. These selection targets are not part of the Media name
space.

The space of Media names follows the ICCCM conventions for selection target atoms. Names
typically are in all uppercase, with words separated by underscores. Media names should
follow this convention where possible.

The following Media names have the meanings indicated on all XCDE systems. It is
implementation dependent whether facilities are provided to manipulate any of these formats.

ADOBE_PORTABLE_DOCUMENT_FORMAT
Adobe Systems, Incorporated. Portable Document Format Reference Manual. Addison-Wesley,
ISBN 0-201-62628-4.

APPLE_PICT
Apple Computer, Incorporated. Inside Macintosh, Volume V. Chapter 4, ‘‘Color
QuickDraw,’’ Color Picture Format. ISBN 0-201-17719-6.

COMPOUND_TEXT
Scheifler, Robert W. Compound Text Encoding, Version 1.1. MIT X Consortium Standard. X
Version 11, Release 5, 1991.

ENCAPSULATED_POSTSCRIPT
ENCAPSULATED_POSTSCRIPT_INTERCHANGE

Adobe Systems, Incorporated. PostScript Language Reference Manual. Appendix H.
Addison-Wesley, ISBN 0-201-18127-4.

GIF87 Graphics Interchange Format. June 15, 1987. CompuServe, Incorporated, 1987.

CompuServe, Incorporated
5000 Arlington Centre Blvd.
Columbus, OH 43220

GIF89 Graphics Interchange Format, Version 89a. 31 July 1990. CompuServe, Incorporated,
1987-1990.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 25

XCDE Data Format Naming General Definitions and Requirements

JFIF Hamilton, Eric. JPEG File Interchange Format, Version 1.02. September 1, 1992.

C-Cube Microsystems
1778 McCarthy Blvd.
Milpitas, CA 95035

POSTSCRIPT
Adobe Systems, Incorporated. PostScript Language Reference Manual. Appendix H.
Addison-Wesley, ISBN 0-201-18127-4.

RFC_822_MESSAGE
A mail message formatted in accordance with the referenced RFC-822 and the referenced
MIME RFCs.

SND Apple Computer, Incorporated. Inside Macintosh, Volume V. Chapter 27, ‘‘Sound
Resources.’’ ISBN 0-201-17719-6.

STRING Text encoded in the printable characters, plus <tab> and <newline>, of the Latin-1
codeset (see the referenced ISO/IEC 8859-1: 1987 standard)

SUN_AUDIO_DATA
Solaris 2.3 SUNBIN CD-ROM part number 258-3779. Sun Microsystems, Inc., 1993. Audio
demo (SUNWaudmo) package: manual pages audio_intro (3) and audio_filehdr(3).

SUN_RASTER
OpenWindows 3.3 Reference Manual Sun Microsystems, Inc., 1990-1993. Manual page
rasterfile(5).

TIFF TIFF Revision 6.0, June 3, 1992.

Aldus Corporation
411 First Avenue South
Seattle, WA 98104-2871

WAV IBM PC sound file format — Multimedia Programming Interface and Data Specifications 1.0, a
joint design by IBM Corporation and Microsoft Corporation, August 1991.

Microsoft Corporation
Multimedia Systems Group
Product Marketing
One Microsoft Way
Redmond, WA 98052-6399

XBM X/Open CAE Specification, Window Management: Xlib — C Language Binding, Section
11.10, ‘‘Manipulating Bitmaps.’’

XPM Le Hors, Arnaud. XPM Manual: The X PixMap Format, Version 3.0. Groupe Bull, 1990-1991.
Contributed Software. X Version 11, Release 5.

26 X/Open CAE Specification

Chapter 4

X Windows and Motif

This chapter describes the dependencies on X Windows and Motif as underlying
implementations and defines additional widget interfaces that promote portability of historical
applications into the XCDE environment.

4.1 X Protocol
The interfaces in this document require an underlying implementation that support the
protocols defined in the X/Open CAE Specification, Window Management: X Window System
Protocol.

4.2 Xlib Library
The interfaces in this document require an underlying implementation that support the
interfaces defined in the X/Open CAE Specification, Window Management: Xlib — C Language
Binding. The version of that document based on X Windows Version 11, Release 5 is required
for XCDE.

4.3 Xt Intrinsics
The interfaces in this document require an underlying implementation that support the
interfaces defined in the X/Open CAE Specification, Window Management: X Toolkit
Intrinsics. The version of that document based on X Windows Version 11, Release 5 is required
for XCDE.

4.4 ICCCM, CT, XLFD, BDF
The interfaces in this document require an underlying implementation that support the
interfaces defined in the X/Open CAE Specification, Window Management: File Formats and
Application Conventions. The version of that document based on X Windows Version 11,
Release 5 is required for XCDE.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 27

Motif Libraries X Windows and Motif

4.5 Motif Libraries
The interfaces in this document require an underlying implementation that support the
interfaces defined in the X/Open CAE Specification, Motif Toolkit API.

4.6 X Windows and Motif Data Types
The following data types are defined in X11 and Motif headers (see the X/Open CAE
Specification, Window Management: Xlib — C Language Binding, the X/Open CAE
Specification, Window Management: X Toolkit Intrinsics, and the X/Open CAE Specification,
Motif Toolkit API):

ArgList Pixel XEvent
Atom Pixmap XmFontList
Boolean Position XmString
Cardinal String XmStringDirection
Colormap Time XmStringTable
Cursor Widget XmTextPosition
Dimension WidgetClass XtCallbackList
Display XButtonPressedEvent XtPointer

4.7 XCDE Widgets
This section defines the widget classes that provide the XCDE-specific widgets to support
application portability at the C-language source level.

28 X/Open CAE Specification

X Windows and Motif DtComboBox()

NAME
DtComboBox — the ComboBox widget class

SYNOPSIS
#include <Dt/ComboBox.h>

DESCRIPTION
The DtComboBox widget is a combination of a TextField and a List widget that provides a list of
valid choices for the TextField. Selecting an item from this list automatically fills in the TextField
with that list item.

Widget subclassing is not supported for the DtComboBox widget class.

The resources for the XmList and XmTextField widgets that are created by the DtComboBox are
accessible by using the XtNameToWidget() function. The names of these widgets are ∗List and
Text, respectively. (The ∗List notation is required because the List widget is not an immediate
descendant of the DtComboBox. See XtNameToWidget() in the X/Open CAE Specification,
Window Management: X Toolkit Intrinsics.)

Classes

The DtComboBox widget inherits behaviour and resources from the Core , Composite and
XmManager classes.

The class pointer is dtComboBoxWidgetClass.

The class name is DtComboBoxWidget .

New Resources

The following table defines a set of widget resources used by the application to specify data.
The application can also set the resource values for the inherited classes to set attributes for this
widget. To reference a resource by name or by class in a .Xdefaults file, the application must
remove the DtN or DtC prefix and use the remaining letters. To specify one of the defined
values for a resource in a .Xdefaults file, the application must remove the Dt prefix and use the
remaining letters (in either lower case or upper case, but including any underscores between
words). The codes in the access column indicate if the given resource can be set at creation time
(C), set by using XtSetValues() (S), retrieved by using XtGetValues() (G), or is not applicable
(N/A).

DtComboBox Resource Set
Name Class Type Default Access
DtNmarginHeight DtCMarginHeight Dimension 2 CSG
DtNmarginWidth DtCMarginWidth Dimension 2 CSG
DtNselectedItem DtCSelectedItem XmString dynamic CSG
DtNselectedPosition DtCSelectedPosition int dynamic CSG
DtNselectionCallback DtCCallback XtCallbackList NULL C
DtNcomboBoxType DtCComboBoxType unsigned int DtDROP_DOWN_LIST C

DtNmarginHeight
Specifies the number of pixels added between the top and bottom of the text widget
and the start of the shadow.

DtNmarginWidth
Specifies the number of pixels added between the right and left sides of the text
widget and the start of the shadow.

DtNselectedItem
This resource is passed through to the XmList to set the XmNselectedItemCount

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 29

DtComboBox() X Windows and Motif

and XmNselectedItems as the single item in the XmNitems that matches this
specified XmString in the List. Setting both DtNselectedItem and
DtNselectedPosition in the same argument list produces undefined behaviour.

DtNselectedPosition
This resource is passed through to the XmList to set the XmNselectedItemCount
and XmNselectedItems as the single item at this specified position in the List.
Setting both DtNselectedItem and DtNselectedPosition in the same argument list
produces undefined behaviour.

DtNselectionCallback
This callback list is issued when an item is selected from the DtComboBox widget’s
List. The call_data structure contains a DtComboBoxCallbackStruct with the reason
DtCR_SELECT.

DtNcomboBoxType
This resource determines the style of the DtComboBox. There are two choices:

DtDROP_DOWN_COMBO_BOX
Provides an editable text area.

DtDROP_DOWN_LIST
Provides a static text area.

Inherited Resources

The DtComboBox widget inherits behaviour and resources from the following named
superclasses. For a complete description of each resource, see the entry in X/Open CAE
Specification, Motif Toolkit API for that superclass.

XmManager Resource Set
Name Class Type Default Access
XmNbottom- XmCBottom- Pixel dynamic CSG

ShadowColor ShadowColor
XmNbottom- XmCBottom- Pixmap XmUNSPECIFIED- CSG

ShadowPixmap ShadowPixmap _PIXMAP
XmNforeground XmCForeground Pixel dynamic CSG
XmNhelpCallback XmCCallback XtCallbackList NULL C
XmNhighlightColor XmCHighlightColor Pixel dynamic CSG
XmNhighlightPixmap XmCHighlightPixmap Pixmap dynamic CSG
XmNinitialFocus XmCInitialFocus Widget NULL CSG
XmNnavigationType XmCNavigationType XmNavigationType dynamic CSG
XmNshadowThickness XmCShadowThickness Dimension dynamic CSG
XmNstringDirection XmCStringDirection XmStringDirection dynamic CG
XmNtopShadowColor XmCTopShadowColor Pixel dynamic CSG
XmNtopShadowPixmap XmCTopShadowPixmap Pixmap dynamic CSG
XmNtraversalOn XmCTraversalOn Boolean dynamic CSG
XmNunitType XmCUnitType unsigned char dynamic CSG
XmNuserData XmCUserData XtPointer NULL CSG

Composite Resource Set
Name Class Type Default Access
XmNchildren XmCReadOnly WidgetList NULL G
XmNinsertPosition XmCInsertPosition XtOrderProc default procedure CSG
XmNnumChildren XmCReadOnly Cardinal 0 G

30 X/Open CAE Specification

X Windows and Motif DtComboBox()

Core Resource Set
Name Class Type Default Access
XmNaccelerators XmCAccelerators XtAccelerators dynamic CSG
XmNancestorSensitive XmCSensitive Boolean dynamic G
XmNbackground XmCBackground Pixel dynamic CSG
XmNbackgroundPixmap XmCPixmap Pixmap XmUNSPECIFIED- CSG

_PIXMAP
XmNborderColor XmCBorderColor Pixel XtDefaultForeground CSG
XmNborderPixmap XmCPixmap Pixmap XmUNSPECIFIED- CSG

_PIXMAP
XmNborderWidth XmCBorderWidth Dimension 0 CSG
XmNcolormap XmCColormap Colormap dynamic CG
XmNdepth XmCDepth int dynamic CG
XmNdestroyCallback XmCCallback XtCallbackList NULL C
XmNheight XmCHeight Dimension dynamic CSG
XmNinitial- XmCInitial- Boolean True C

ResourcesPersistent ResourcesPersistent
XmNmappedWhen- XmCMappedWhen- Boolean True CSG

Managed Managed
XmNscreen XmCScreen Screen ∗ dynamic CG
XmNsensitive XmCSensitive Boolean True CSG
XmNtranslations XmCTranslations XtTranslations dynamic CSG
XmNwidth XmCWidth Dimension dynamic CSG
XmNx XmCPosition Position 0 CSG
XmNy XmCPosition Position 0 CSG

Callback Information

A pointer to the following structure is passed to each DtComboBox callback:

typedef struct {
int reason ;
XEvent ∗event ;
XmString item_or_text ;
int item_position ;

} DtComboBoxCallbackStruct;

The reason argument indicates why the callback was invoked; it is always DtCR_SELECT.

The event argument points to the XEvent that triggered the callback, or NULL if the callback was
not triggered by an XEvent.

The item_or_text argument is the contents of the Text widget at the time the event caused the
callback to be invoked. This data is only valid within the scope of the call_data structure, so the
application must copy it when it is used outside of this scope.

The item_position argument is the new value of the DtNselectedPosition resource in the
DtComboBox’s List. If this is zero, it means the user entered a value in the XmTextField widget.

SEE ALSO
DtComboBoxAddItem(), DtComboBoxDeletePos(), DtComboBoxSelectItem(), DtComboBoxSetItem(),
DtCreateComboBox(); Composite , Constraint , Core , XmList, XmManager, XmText, XmTextField in the
X/Open CAE Specification, Motif Toolkit API; XtGetValues(), XtSetValues() in the X/Open CAE
Specification, Window Management: X Toolkit Intrinsics.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 31

DtMenuButton() X Windows and Motif

NAME
DtMenuButton — the MenuButton widget class

SYNOPSIS
#include <Dt/MenuButton.h>

DESCRIPTION
The DtMenuButton widget is a command widget that complements the menu cascading
functionality of an XmCascadeButton widget. As a complement to the XmCascadeButton
widget, DtMenuButton can only be instantiated outside a MenuPane; the application must use
XmCascadeButton widget inside a MenuPane.

The DtMenuButton widget belongs to a subclass of the XmLabel class. Visually, the
DtMenuButton widget consists of a label string and a menu glyph. The menu glyph always
appears on the right end of the widget and, by default, is a downward pointing arrow.

The DtMenuButton widget has an implicitly created submenu attached to it. The submenu is a
popup MenuPane and has this DtMenuButton widget as its parent. The name of the implicitly
created submenu is obtained by adding submenu_ as a prefix to the name of this DtMenuButton
widget. The widget ID of the submenu can be obtained by doing an XtGetValues() on the
DtNsubMenuId resource of this DtMenuButton widget. The implicitly created submenu must
not be destroyed by the user of this widget.

The submenu can be popped up by pressing the menu post Button (see the XmNmenuPost
resource of the XmRowColumn widget) anywhere on the DtMenuButton widget.

Widget subclassing is not supported for the DtMenuButton widget class.

Classes

The DtMenuButton widget inherits behaviour and resources from the Core , Composite ,
XmPrimitive and XmLabel classes.

The class pointer is dtMenuButtonWidgetClass.

The class name is DtMenuButtonWidget .

New Resources

The following table defines a set of widget resources used by the application to specify data.
The application can also set the resource values for the inherited classes to set attributes for this
widget. To reference a resource by name or by class in a .Xdefaults file, the application must
remove the DtN or DtC prefix and use the remaining letters. To specify one of the defined
values for a resource in a .Xdefaults file, the application must remove the Dt prefix and use the
remaining letters (in either lower case or upper case, but including any underscores between
words). The codes in the access column indicate if the given resource can be set at creation time
(C), set by using XtSetValues() (S), retrieved by using XtGetValues() (G), or is not applicable
(N/A).

DtMenuButton Resource Set
Name Class Type Default Access
DtNcascadingCallback DtCCallback XtCallbackList NULL C
DtNcascadePixmap DtCPixmap Pixmap XmUNSPECIFIED- CSG

_PIXMAP
DtNsubMenuId DtCMenuWidget Widget NULL SG

32 X/Open CAE Specification

X Windows and Motif DtMenuButton()

DtNcascadingCallback
Specifies the list of callbacks that is called before the popping up of the attached
submenu. The reason for the callback is DtCR_CASCADING.

DtNcascadePixmap
Specifies the pixmap displayed as the menu glyph. If no pixmap is specified, a
downward pointing arrow is displayed.

DtNsubMenuId
Specifies the widget ID of the popup MenuPane to be associated with this
DtMenuButton widget. The popup MenuPane must be created with this
DtMenuButton as its parent. This resource cannot be specified at the time of widget
creation. The implicit submenu is automatically destroyed by DtMenuButton when
this resource is set.

Inherited Resources

The DtMenuButton widget inherits behaviour and resources from the following named
superclasses. For a complete description of each resource, see the entry in X/Open CAE
Specification, Motif Toolkit API for that superclass.

XmLabel Resource Set
Name Class Type Default Access
XmNaccelerator XmCAccelerator String NULL CSG
XmNacceleratorText XmCAcceleratorText XmString NULL CSG
XmNalignment XmCAlignment unsigned char dynamic CSG
XmNfontList XmCFontList XmFontList dynamic CSG
XmNlabelInsensitive- XmCLabelInsensitive- Pixmap XmUNSPECIFIED- CSG

Pixmap Pixmap _PIXMAP
XmNlabelPixmap XmCLabelPixmap Pixmap XmUNSPECIFIED- CSG

_PIXMAP
XmNlabelString XmCXmString XmString dynamic CSG
XmNlabelType XmCLabelType unsigned char XmSTRING CSG
XmNmarginBottom XmCMarginBottom Dimension 0 CSG
XmNmarginHeight XmCMarginHeight Dimension 2 CSG
XmNmarginLeft XmCMarginLeft Dimension 0 CSG
XmNmarginRight XmCMarginRight Dimension 0 CSG
XmNmarginTop XmCMarginTop Dimension 0 CSG
XmNmarginWidth XmCMarginWidth Dimension 2 CSG
XmNmnemonic XmCMnemonic KeySym NULL CSG
XmNmnemonicCharSet XmCMnemonicCharSet String XmFONTLIST- CSG

_DEFAULT_TAG
XmNrecomputeSize XmCRecomputeSize Boolean True CSG
XmNstringDirection XmCStringDirection XmStringDirection dynamic CSG

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 33

DtMenuButton() X Windows and Motif

XmPrimitive Resource Set
Name Class Type Default Access
XmNbottom- XmCBottom- Pixel dynamic CSG

ShadowColor ShadowColor
XmNbottom- XmCBottom- Pixmap XmUNSPECIFIED- CSG

ShadowPixmap ShadowPixmap _PIXMAP
XmNforeground XmCForeground Pixel dynamic CSG
XmNhelpCallback XmCCallback XtCallbackList NULL C
XmNhighlightColor XmCHighlightColor Pixel dynamic CSG
XmNhighlightOnEnter XmCHighlightOnEnter Boolean False CSG
XmNhighlightPixmap XmCHighlightPixmap Pixmap dynamic CSG
XmNhighlightThickness XmCHighlightThickness Dimension 0 CSG
XmNnavigationType XmCNavigationType XmNavigationType XmNONE CSG
XmNshadowThickness XmCShadowThickness Dimension 0 CSG
XmNtopShadowColor XmCTopShadowColor Pixel dynamic CSG
XmNtopShadowPixmap XmCTopShadowPixmap Pixmap dynamic CSG
XmNtraversalOn XmCTraversalOn Boolean False CSG
XmNunitType XmCUnitType unsigned char dynamic CSG
XmNuserData XmCUserData XtPointer NULL CSG

Core Resource Set
Name Class Type Default Access
XmNaccelerators XmCAccelerators XtAccelerators dynamic CSG
XmNancestorSensitive XmCSensitive Boolean dynamic G
XmNbackground XmCBackground Pixel dynamic CSG
XmNbackgroundPixmap XmCPixmap Pixmap XmUNSPECIFIED- CSG

_PIXMAP
XmNborderColor XmCBorderColor Pixel XtDefaultForeground CSG
XmNborderPixmap XmCPixmap Pixmap XmUNSPECIFIED- CSG

_PIXMAP
XmNborderWidth XmCBorderWidth Dimension 0 CSG
XmNcolormap XmCColormap Colormap dynamic CG
XmNdepth XmCDepth int dynamic CG
XmNdestroyCallback XmCCallback XtCallbackList NULL C
XmNheight XmCHeight Dimension dynamic CSG
XmNinitialResources- XmCInitialResources- Boolean True C

Persistent Persistent
XmNmappedWhen- XmCMappedWhen- Boolean True CSG

Managed Managed
XmNscreen XmCScreen Screen ∗ dynamic CG
XmNsensitive XmCSensitive Boolean True CSG
XmNtranslations XmCTranslations XtTranslations dynamic CSG
XmNwidth XmCWidth Dimension dynamic CSG
XmNx XmCPosition Position 0 CSG
XmNy XmCPosition Position 0 CSG

Callback Information

A pointer to the following structure is passed to each DtMenuButton callback:

typedef struct {
int reason ;
XEvent ∗event ;

} XmAnyCallbackStruct;

The reason argument indicates why the callback was invoked; it is always DtCR_CASCADING
when the DtNcascadingCallback is issued.

34 X/Open CAE Specification

X Windows and Motif DtMenuButton()

The event argument points to the XEvent that triggered the callback or NULL if the callback was
not triggered by an XEvent.

SEE ALSO
DtCreateMenuButton(); Core , XmLabel, XmPrimitive , XmRowColumn , in the X/Open CAE
Specification, Motif Toolkit API; XtGetValues(), XtSetValues() in the X/Open CAE Specification,
Window Management: X Toolkit Intrinsics.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 35

DtSpinBox() X Windows and Motif

NAME
DtSpinBox — the SpinBox widget class

SYNOPSIS
#include <Dt/SpinBox.h>

DESCRIPTION
The DtSpinBox widget is a user interface control to increment and decrement an arbitrary
TextField. For example, it can be used to cycle through the months of the year or days of the
month.

Widget subclassing is not supported for the DtSpinBox widget class.

Classes

The DtSpinBox widget inherits behaviour and resources from the Core , Composite and
XmManager classes.

The class pointer is dtSpinBoxWidgetClass.

The class name is DtSpinBoxWidget .

New Resources

The following table defines a set of widget resources used by the application to specify data.
The application can also set the resource values for the inherited classes to set attributes for this
widget. To reference a resource by name or by class in a .Xdefaults file, the application must
remove the DtN or DtC prefix and use the remaining letters. To specify one of the defined
values for a resource in a .Xdefaults file, the application must remove the Dt prefix and use the
remaining letters (in either lower case or upper case, but including any underscores between
words). The codes in the access column indicate if the given resource can be set at creation time
(C), set by using XtSetValues() (S), retrieved by using XtGetValues() (G), or is not applicable
(N/A).

DtSpinBox Resource Set
Name Class Type Default Access
DtNarrowLayout DtCArrowLayout unsigned char DtARROWS_END CSG
DtNarrowSensitivity DtCArrowSensitivity unsigned char DtARROWS- CSG

_SENSITIVE
DtNdecimalPoints DtCDecimalPoints short 0 CSG
DtNincrementValue DtCIncrementValue int 1 CSG
DtNinitialDelay DtCInitialDelay unsigned int 250 CSG
DtNmaximumValue DtCMaximumValue int 10 CSG
DtNminimumValue DtCMinimumValue int 0 CSG
DtNmodifyVerifyCallback DtCCallback XtCallbackList NULL C
DtNnumValues DtCNumValues int 0 CSG
DtNposition DtCPosition int 0 CSG
DtNrepeatDelay DtCRepeatDelay unsigned int 200 CSG
DtNspinBoxChildType DtCSpinBoxChildType unsigned char XmSTRING CG
DtNvalueChangedCallback DtCCallback XtCallbackList NULL C
DtNvalues DtCValues XmStringTable NULL CSG

DtNarrowLayout
Specifies the style and position of the SpinBox arrows. The following values are
supported:

DtARROWS_FLAT_BEGINNING
The arrows are placed side by side to the right of the TextField.

36 X/Open CAE Specification

X Windows and Motif DtSpinBox()

DtARROWS_FLAT_END
The arrows are placed side by side to the left of the TextField.

DtARROWS_SPLIT
The down arrow is on the left and the up arrow is on the right of the
TextField.

DtARROWS_BEGINNING
The arrows are stacked and placed on the left of the TextField.

DtARROWS_END
The arrows are stacked and placed on the right of the TextField.

DtNarrowSensitivity
Specifies the sensitivity of the arrows in the DtSpinBox. The following values are
supported:

DtARROWS_SENSITIVE
Both arrows are active to user selection.

DtARROWS_DECREMENT_SENSITIVE
The down arrow is active and the up arrow is inactive to user selection.

DtARROWS_INCREMENT_SENSITIVE
The up arrow is active and the down arrow is inactive to user selection.

DtARROWS_INSENSITIVE
Both arrows are inactive to user selection.

DtNdecimalPoints
Specifies the position of the radix character within the numeric value when
DtNspinBoxChildType is DtNUMERIC. This resource is used to allow for floating
point values in the DtSpinBox widget.

DtNincrementValue
Specifies the amount to increment or decrement the DtNposition when the
DtNspinBoxChildType is DtNUMERIC. When the Up action is activated, the
DtNincrementValue is added to the DtNposition value; when the Down action is
activated, the DtNincrementValue is subtracted from the DtNposition value.
When DtNspinBoxChildType is DtSTRING, this resource is ignored.

DtNinitialDelay
Specifies the amount of time in milliseconds before the Arrow buttons will begin to
spin continuously.

DtNnumValues
Specifies the number of items in the DtNvalues list when the
DtNspinBoxChildType resource is DtSTRING. The value of this resource must be
a positive integer. The DtNnumValues is maintained by the DtSpinBox widget
when items are added or deleted from the DtNvalues list. When
DtNspinBoxChildType is not DtSTRING, this resource is ignored.

DtNvalues
Supplies the list of strings to cycle through when the DtNspinButtonChildType
resource is DtSTRING. When DtNspinBoxChildType is not DtSTRING, this
resource is ignored.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 37

DtSpinBox() X Windows and Motif

DtNmaximumValue
Specifies the upper bound on the DtSpinBox’s range when DtNspinBoxChildType
is DtNUMERIC.

DtNminimumValue
Specifies the lower bound on the DtSpinBox’s range when DtNspinBoxChildType
is DtNUMERIC.

DtNmodifyVerifyCallback
Specifies the callback to be invoked just before the DtSpinBox position changes.
The application can use this callback to implement new application-related logic
(including setting new position spinning to, or canceling the impending action). For
example, this callback can be used to stop the spinning just before wrapping at the
upper and lower position boundaries. If the application sets the doit member of the
DtSpinBoxCallbackStruct to False, nothing happens. Otherwise, the position
changes. Reasons sent by the callback are DtCR_SPIN_NEXT, or
DtCR_SPIN_PRIOR.

DtNposition
The DtNposition resource has a different value based on the
DtNspinBoxChildType resource. When DtNspinBoxChildType is DtSTRING, the
DtNposition is the index into the DtNvalues list for the current item. When the
DtNspinBoxChildType resource is DtNUMERIC, the DtNposition is the integer
value of the DtSpinBox that falls within the range of DtNmaximumValue and
DtNminimumValue.

DtNrepeatDelay
Specifies the number of milliseconds between repeated calls to the
DtNvalueChangedCallback while the user is spinning the DtSpinBox.

DtNspinBoxChildType
Specifies the style of the DtSpinBox. The following values are supported:

DtSTRING
The child is a string value that is specified through the DtNvalues
resource and incremented and decremented by changing the
DtNposition resource.

DtNUMERIC
The child is a numeric value that is specified through the DtNposition
resource and incremented according to the DtNincrementValue
resource.

DtNvalueChangedCallback
Specifies the callback to be invoked whenever the value of the DtNposition
resource is changed through the use of the spinner arrows. The
DtNvalueChangedCallback passes the DtSpinBoxCallbackStruct call_data structure.

Inherited Resources

The DtSpinBox widget inherits behaviour and resources from the following named superclasses.
For a complete description of each resource, see the entry in X/Open CAE Specification, Motif
Toolkit API for that superclass.

38 X/Open CAE Specification

X Windows and Motif DtSpinBox()

XmManager Resource Set
Name Class Type Default Access
XmNbottom- XmCBottom- Pixel dynamic CSG

ShadowColor ShadowColor
XmNbottom- XmCBottom- Pixmap XmUNSPECIFIED- CSG

ShadowPixmap ShadowPixmap _PIXMAP
XmNforeground XmCForeground Pixel dynamic CSG
XmNhelpCallback XmCCallback XtCallbackList NULL C
XmNhighlightColor XmCHighlightColor Pixel dynamic CSG
XmNhighlightPixmap XmCHighlightPixmap Pixmap dynamic CSG
XmNinitialFocus XmCInitialFocus Widget NULL CSG
XmNnavigationType XmCNavigationType XmNavigationType dynamic CSG
XmNshadowThickness XmCShadowThickness Dimension dynamic CSG
XmNstringDirection XmCStringDirection XmStringDirection dynamic CG
XmNtopShadowColor XmCTopShadowColor Pixel dynamic CSG
XmNtopShadowPixmap XmCTopShadowPixmap Pixmap dynamic CSG
XmNtraversalOn XmCTraversalOn Boolean dynamic CSG
XmNunitType XmCUnitType unsigned char dynamic CSG
XmNuserData XmCUserData XtPointer NULL CSG

Composite Resource Set
Name Class Type Default Access
XmNchildren XmCReadOnly WidgetList NULL G
XmNinsertPosition XmCInsertPosition XtOrderProc default procedure CSG
XmNnumChildren XmCReadOnly Cardinal 0 G

Core Resource Set
Name Class Type Default Access
XmNaccelerators XmCAccelerators XtAccelerators dynamic CSG
XmNancestorSensitive XmCSensitive Boolean dynamic G
XmNbackground XmCBackground Pixel dynamic CSG
XmNbackgroundPixmap XmCPixmap Pixmap XmUNSPECIFIED- CSG

_PIXMAP
XmNborderColor XmCBorderColor Pixel XtDefaultForeground CSG
XmNborderPixmap XmCPixmap Pixmap XmUNSPECIFIED- CSG

_PIXMAP
XmNborderWidth XmCBorderWidth Dimension 0 CSG
XmNcolormap XmCColormap Colormap dynamic CG
XmNdepth XmCDepth int dynamic CG
XmNdestroyCallback XmCCallback XtCallbackList NULL C
XmNheight XmCHeight Dimension dynamic CSG
XmNinitialResources- XmCInitialResources- Boolean True C

Persistent Persistent
XmNmappedWhen- XmCMappedWhen- Boolean True CSG

Managed Managed
XmNscreen XmCScreen Screen ∗ dynamic CG
XmNsensitive XmCSensitive Boolean True CSG
XmNtranslations XmCTranslations XtTranslations dynamic CSG
XmNwidth XmCWidth Dimension dynamic CSG
XmNx XmCPosition Position 0 CSG
XmNy XmCPosition Position 0 CSG

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 39

DtSpinBox() X Windows and Motif

Callback Information

A pointer to the following structure is passed to each DtSpinBox callback:

typedef struct {
int reason ;
XEvent ∗event ;
Widget widget ;
Boolean doit ;
int position ;
XmString value ;
Boolean crossed_boundary ;

} DtSpinBoxCallbackStruct;

The reason argument indicates why the callback was invoked. There are three possible reasons
for this callback to be issued. The reason is DtCR_OK when this is the first call to the callback at
the beginning of a spin or if it is a single activation of the spin arrows. If the DtSpinBox is in the
process of being continuously spun, then the reason will be DtCR_SPIN_NEXT or
DtCR_SPIN_PRIOR, depending on the arrow that is spinning.

The event argument points to the XEvent that triggered the callback. It can be NULL when the
DtSpinBox is continuously spinning.

The widget argument is the widget identifier for the text widget that has been affected by the
spin.

The doit argument is set only when the call_data comes from the DtNmodifyVerifyCallback. It
indicates that the action that caused the callback to be called should be performed. The action is
not performed if doit is set to False.

The position argument is the new value of the DtNposition resource as a result of the spin.

The value argument is the new XmString value displayed in the Text widget as a result of the
spin. The application must copy this string if it is used beyond the scope of the call_data
structure.

The crossed_boundary argument is True when the spinbox cycles. This is the case when a
DtNspinBoxChildType of DtSTRING wraps from the first item to the last or the last item to the
first. In the case of the DtNspinBoxChildType of DtNUMERIC, the boundary is crossed when
the DtSpinBox cycles from the maximum value to the minimum or vice versa.

SEE ALSO
DtCreateSpinButton(), DtSpinButtonAddItem(), DtSpinButtonDeletePos(), DtSpinButtonSetItem();
Composite , Core , XmManager, XmText, XmTextField , in the X/Open CAE Specification, Motif
Toolkit API; XtGetValues(), XtSetValues() in the X/Open CAE Specification, Window
Management: X Toolkit Intrinsics.

CHANGE HISTORY
First released in Issue 1.

40 X/Open CAE Specification

X Windows and Motif XCDE Widget Convenience Functions

4.8 XCDE Widget Convenience Functions
This section defines the functions, macros and external variables that provide XCDE convenience
functions for the XCDE-specific widgets to support application portability at the C-language
source level.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 41

DtComboBoxAddItem() X Windows and Motif

NAME
DtComboBoxAddItem — add an item to the ComboBox widget

SYNOPSIS
#include <Dt/ComboBox.h>

void DtComboBoxAddItem(Widget w,
XmString item ,
int pos ,
Boolean unique);

DESCRIPTION
The DtComboBoxAddItem() function adds the given item to the DtComboBox at the given
position.

The w argument specifies the DtComboBox widget ID.

The item argument specifies the XmString for the new item.

The pos argument specifies the position of the new item.

The unique argument specifies if this item should duplicate an identical item or not.

RETURN VALUE
The DtComboBoxAddItem() function returns no value.

APPLICATION USAGE
The functions DtComboBoxAddItem() and DtComboBoxDeletePos() have different naming
conventions (Item versus Pos) because of the objects they are manipulating. The Item is a string
to be added, the Pos is a numeric position number.

SEE ALSO
DtComboBox , DtComboBoxDelPos(), DtComboBoxSetItem(), DtComboBoxSelectItem().

CHANGE HISTORY
First released in Issue 1.

42 X/Open CAE Specification

X Windows and Motif DtComboBoxDeletePos()

NAME
DtComboBoxDeletePos — delete a DtComboBox item

SYNOPSIS
#include <Dt/ComboBox.h>

void DtComboBoxDeletePos(Widget w,
int pos);

DESCRIPTION
The DtComboBoxDeletePos() function deletes a specified item from a DtComboBox widget.

The w argument specifies the DtComboBox widget ID.

The pos argument specifies the position of the item to be deleted.

RETURN VALUE
The DtComboBoxDeletePos() function returns no value.

APPLICATION USAGE
The functions DtComboBoxAddItem() and DtComboBoxDeletePos() have different naming
conventions (Item versus Pos) because of the objects they are manipulating. The Item is a string
to be added, the Pos is a numeric position number.

SEE ALSO
DtComboBox , DtComboBoxAddItem(), DtComboBoxSetItem(), DtComboBoxSelectItem().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 43

DtComboBoxSelectItem() X Windows and Motif

NAME
DtComboBoxSelectItem — select a DtComboBox item

SYNOPSIS
#include <Dt/ComboBox.h>

void DtComboBoxSelectItem(Widget w,
XmString item);

DESCRIPTION
The DtComboBoxSelectItem() function selects an item in the XmList of the DtComboBox widget.

The w argument specifies the DtComboBox widget ID.

The item argument specifies the XmString of the item to be selected. If the item is not found on
the list, DtComboBoxSelectItem() notifies the user via the XtWarning() function.

RETURN VALUE
The DtComboBoxSelectItem() function returns no value.

SEE ALSO
DtComboBox , DtComboBoxAddItem(), DtComboBoxDeletePos(), DtComboBoxSetItem();
XtWarning() in the X/Open CAE Specification, Window Management: X Toolkit Intrinsics.

CHANGE HISTORY
First released in Issue 1.

44 X/Open CAE Specification

X Windows and Motif DtComboBoxSetItem()

NAME
DtComboBoxSetItem — set an item in the DtComboBox list

SYNOPSIS
#include <Dt/ComboBox.h>

void DtComboBoxSetItem(Widget w,
XmString item);

DESCRIPTION
The DtComboBoxSetItem() function selects an item in the XmList of the given DtComboBox
widget and makes it the first visible item in the list.

The w argument specifies the DtComboBox widget ID.

The item argument specifies the XmString for the item to be set in the DtComboBox. If the item
is not found on the list, DtComboBoxSetItem() notifies the user via the XtWarning() function.

RETURN VALUE
The DtComboBoxSetItem() function returns no value.

SEE ALSO
DtComboBox , DtComboBoxAddItem(), DtComboBoxDeletePos(), DtComboBoxSelectItem();
XtWarning() in the X/Open CAE Specification, Window Management: X Toolkit Intrinsics.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 45

DtCreateComboBox() X Windows and Motif

NAME
DtCreateComboBox — the ComboBox widget creation function

SYNOPSIS
#include <Dt/ComboBox.h>

Widget DtCreateComboBox(Widget parent ,
String name,
ArgList arglist ,
Cardinal argcount);

DESCRIPTION
The DtCreateComboBox() function creates an instance of a ComboBox widget and returns the
associated widget ID.

The parent argument specifies the parent widget ID.

The name argument specifies the name of the created widget.

The arglist argument specifies the argument list.

The argcount argument specifies the number of attribute/value pairs in the argument list.

RETURN VALUE
Upon successful completion, the DtCreateComboBox() function returns the ComboBox widget
ID.

SEE ALSO
DtComboBox .

CHANGE HISTORY
First released in Issue 1.

46 X/Open CAE Specification

X Windows and Motif DtCreateMenuButton()

NAME
DtCreateMenuButton — the MenuButton widget creation function

SYNOPSIS
#include <Dt/MenuButton.h>

Widget DtCreateMenuButton(Widget parent ,
String name,
ArgList arglist ,
Cardinal argcount);

DESCRIPTION
The DtCreateMenuButton() function creates an instance of a MenuButton widget and returns the
associated widget ID.

The parent argument specifies the parent widget ID.

The name argument specifies the name of the created widget.

The arglist argument specifies the argument list.

The argcount argument specifies the number of attribute/value pairs in the argument list.

RETURN VALUE
Upon successful completion, the DtCreateMenuButton() function returns the MenuButton widget
ID.

SEE ALSO
DtMenuButton.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 47

DtCreateSpinBox() X Windows and Motif

NAME
DtCreateSpinBox — the SpinBox widget creation function

SYNOPSIS
#include <Dt/SpinBox.h>

Widget DtCreateSpinBox(Widget parent ,
String name,
ArgList arglist ,
Cardinal argcount);

DESCRIPTION
The DtCreateSpinBox() function creates an instance of a SpinBox widget and returns the
associated widget ID.

The parent argument specifies the parent widget ID.

The name argument specifies the name of the created widget.

The arglist argument specifies the argument list.

The argcount argument specifies the number of attribute/value pairs in the argument list.

RETURN VALUE
Upon successful completion, the DtCreateSpinBox() function returns the SpinBox widget ID.

SEE ALSO
DtSpinBox .

CHANGE HISTORY
First released in Issue 1.

48 X/Open CAE Specification

X Windows and Motif DtSpinBoxAddItem()

NAME
DtSpinBoxAddItem — add an item to the DtSpinBox

SYNOPSIS
#include <Dt/SpinBox.h>

void DtSpinBoxAddItem(Widget w,
XmString item ,
int pos);

DESCRIPTION
The DtSpinBoxAddItem() function adds the given item to the DtSpinBox at the given position.

The w argument specifies the widget ID.

The item argument specifies the XmString for the new item.

The pos argument specifies the position of the new item.

RETURN VALUE
The DtSpinBoxAddItem() function returns no value.

SEE ALSO
DtSpinBox , DtSpinBoxDeletePos(), DtSpinBoxSetItem().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 49

DtSpinBoxDeletePos() X Windows and Motif

NAME
DtSpinBoxDeletePos — delete a DtSpinBox item

SYNOPSIS
#include <Dt/SpinBox.h>

void DtSpinBoxDeletePos(Widget w,
int pos);

DESCRIPTION
The DtSpinBoxDeletePos() function deletes a specified item from a DtSpinBox widget.

The w argument specifies the widget ID.

The pos argument specifies the position of the item to be deleted. A value of 1 means the first
item in the list; zero means the last item.

RETURN VALUE
The DtSpinBoxDeletePos() function returns no value.

SEE ALSO
DtSpinBox , DtSpinBoxAddItem(), DtSpinBoxSetItem().

CHANGE HISTORY
First released in Issue 1.

50 X/Open CAE Specification

X Windows and Motif DtSpinBoxSetItem()

NAME
DtSpinBoxSetItem — set an item in the DtSpinBox list

SYNOPSIS
#include <Dt/SpinBox.h>

void DtSpinBoxSetItem(Widget w,
XmString item);

DESCRIPTION
The DtSpinBoxSetItem() function selects an item in the list of the given DtSpinBox widget and
makes it the current value.

The w argument specifies the widget ID.

The item argument specifies the XmString for the item to be set in the DtSpinBox. If the item is
not found on the list, DtSpinBoxSetItem() notifies the user via the XtWarning() function.

RETURN VALUE
The DtSpinBoxSetItem() function returns no value.

SEE ALSO
DtSpinBox , DtSpinBoxAddItem(), DtSpinBoxDeletePos(); XtWarning() in the X/Open CAE
Specification, Window Management: X Toolkit Intrinsics.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 51

XCDE Widget Headers X Windows and Motif

4.9 XCDE Widget Headers
This section describes the contents of headers used by the XCDE drag and drop functions,
macros and external variables.

Headers contain the definition of symbolic constants, common structures, preprocessor macros
and defined types. Each function in Section 4.8 specifies the headers that an application must
include in order to use that function. In most cases only one header is required. These headers
are present on an application development system; they do not have to be present on the target
execution system.

52 X/Open CAE Specification

X Windows and Motif <Dt/ComboBox.h>

NAME
Dt/ComboBox.h — DtComboBox widget definitions

SYNOPSIS
#include <Dt/ComboBox.h>

DESCRIPTION
The <Dt/ComboBox.h> header defines the following structure:

typedef struct {
int reason ;
XEvent ∗event ;
XmString item_or_text ;
int item_position ;

} DtComboBoxCallbackStruct;

The header declares the following constants:

DtALIGNMENT_BEGINNING
DtALIGNMENT_CENTER
DtALIGNMENT_END
DtCR_SELECT
DtDROP_DOWN_COMBO_BOX
DtDROP_DOWN_LIST

The header declares the following as functions:

void DtComboBoxAddItem(Widget w,
XmString item ,
int pos ,
Boolean unique);

void DtComboBoxDeletePos(Widget w,
int pos);

void DtComboBoxSelectItem(Widget w,
XmString item);

void DtComboBoxSetItem(Widget w,
XmString item);

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 53

<Dt/MenuButton.h> X Windows and Motif

NAME
Dt/MenuButton.h — DtMenuButton widget definitions

SYNOPSIS
#include <Dt/MenuButton.h>

DESCRIPTION
The <Dt/MenuButton.h> header defines the following constant:

DtCR_CASCADING

The header declares the following as a function:

Widget DtCreateMenuButton(Widget parent ,
String name,
ArgList arglist ,
Cardinal argcount);

CHANGE HISTORY
First released in Issue 1.

54 X/Open CAE Specification

X Windows and Motif <Dt/SpinBox.h>

NAME
Dt/SpinBox.h — DtSpinBox widget definitions

SYNOPSIS
#include <Dt/SpinBox.h>

DESCRIPTION
The <Dt/SpinBox.h> header defines the following structure:

typedef struct {
int reason ;
XEvent ∗event ;
Widget widget ;
Boolean doit ;
int position ;
XmString value ;
Boolean crossed_boundary ;

} DtSpinBoxCallbackStruct;

The header declares the following constants:

DtARROWS_FLAT_BEGINNING
DtARROWS_FLAT_END
DtARROWS_SPLIT
DtARROWS_BEGINNING
DtARROWS_END
DtARROWS_SENSITIVE
DtARROWS_DECREMENT_SENSITIVE
DtARROWS_INCREMENT_SENSITIVE
DtARROWS_INSENSITIVE
DtNUMERIC
DtALIGNMENT_BEGINNING
DtALIGNMENT_CENTER
DtALIGNMENT_END
DtCR_SPIN_NEXT
DtCR_SPIN_PRIOR

The header declares the following as functions:

void DtSpinBoxAddItem(Widget w,
XmString item ,
int pos);

void DtSpinBoxDeletePos(Widget w,
int pos);

void DtSpinBoxSetItem(Widget w,
XmString item);

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 55

X Windows and Motif

56 X/Open CAE Specification

Chapter 5

Miscellaneous Desktop Services

5.1 Introduction
This section defines the functions, macros and external variables that provide miscellaneous
XCDE services to support application portability at the C-language source level.

5.2 Functions
The following functions initialise the Desktop Services library.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 57

DtInitialize() Miscellaneous Desktop Services

NAME
DtInitialize, DtAppInitialize — initialise the Desktop Services library

SYNOPSIS
#include <Dt/Dt.h>

Boolean DtInitialize(Display ∗display ,
Widget widget ,
char ∗name,
char ∗tool_class)

Boolean DtAppInitialize(XtAppContext app_context ,
Display ∗display ,
Widget widget ,
char ∗name,
char ∗tool_class)

DESCRIPTION
These functions perform the one-time initialisation in the Desktop Services library. Applications
must call either DtInitialize () or DtAppInitialize () before calling any other Desktop Services
library routines.

The difference between these two functions is whether app_context is specified. DtInitialize ()
uses the default Intrinsic XtAppContext .

The app_context argument is the application context, display is the X display connection, widget is
the application’s top-level Widget, name is the application name and tool_class is the application
class.

RETURN VALUES
Upon successful completion, DtAppInitialize () and DtInitialize () return True if the library has
been correctly initialised; otherwise, they return False.

SEE ALSO
<Dt/Dt.h>; XtAppInitialize (), XtToolkitInitialize (), XtCreateApplicationContext () in the X/Open
CAE Specification, Window Management: X Toolkit Intrinsics.

CHANGE HISTORY
First released in Issue 1.

58 X/Open CAE Specification

Miscellaneous Desktop Services Headers

5.3 Headers
This section describes the contents of the header used by miscellaneous XCDE message service
functions, macros and external variables.

Headers contain the definition of symbolic constants, common structures, preprocessor macros
and defined types. Each function in Section 5.2 specifies the headers that an application must
include in order to use that function. In most cases only one header is required. These headers
are present on an application development system; they do not have to be present on the target
execution system.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 59

<Dt/Dt.h> Miscellaneous Desktop Services

NAME
Dt/Dt.h — miscellaneous desktop definitions

SYNOPSIS
#include <Dt/Dt.h>

DESCRIPTION
The <Dt/Dt.h> header contains miscellaneous public constant and function declaration for the
XCDE library.

The header defines several constants that can be used to determine the version of the library
used to compile an application and the version of the library with which an application is
currently linked.

The header defines the following constants that represent the library compile-time version:

DtVERSION An integer specifying the major version number

DtREVISION An integer specifying the minor version number

DtUPDATE_LEVEL An integer specifying the patch release level

DtVERSION_NUMBER An integer combining the major, minor and patch release
numbers. It is derived from the following formula:

(10000 ∗ DtVERSION + 100 ∗
DtRevision + DtUPDATE_LEVEL)

DtVERSION_STRING A string containing a description of the version and the version
number

The header defines the following constants that represent the library run-time version:

extern int DtVersion
extern char ∗DtVersionString

DtVersion is an integer equivalent to DtVERSION_NUMBER at the time the library was created.
DtVersionString is a string equivalent to DtVERSION_STRING at the time the library was
created.

The header declares the following as functions:

Boolean DtInitialize(Display ∗display ,
Widget widget ,
char ∗name,
char ∗tool_class)

Boolean DtAppInitialize(XtAppContext app_context ,
Display ∗display ,
Widget widget ,
char ∗name,
char ∗tool_class)

CHANGE HISTORY
First released in Issue 1.

60 X/Open CAE Specification

Chapter 6

Message Services

6.1 Introduction
The XCDE messaging service provides APIs and supporting components for passing multicast
and point-to-point messages between desktop applications, both across networks and within
hosts. Message protocols, defined in Section 6.6 on page 363, use the messaging service to
achieve control and data integration between desktop applications.

The messaging service is based on pattern matching: applications wishing to receive messages
register patterns that describe the desired messages; applications sending messages format the
message as a description of the service being requested or the event being announced. The
messaging service then routes the messages to the interested application. Since applications
need not directly address each other, this provides the ability to restructure applications and
swap in different implementations without modifying other applications.

The messaging service supports messaging both within a single user’s session (session-scoped
messaging) and between users (file-scoped messaging). The messaging service explicitly
supports messages that ask for services (requests, and the associated replies), and messages that
announce events (notices).

The messaging service permits applications to register patterns at installation time; by
consulting these patterns, the messaging service can determine that an application not currently
running is interested in the message, and start the application.

The XCDE messaging service is based on the ToolTalk facilities from Sun Microsystems, Inc.; this
document generally refers to the messaging service as ‘‘the ToolTalk service.’’

6.2 Functions
This section defines the functions, macros and external variables that provide XCDE message
services to support application portability at the C-language source level.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 61

tt_X_session() Message Services

NAME
tt_X_session — return the session associated with an X window system display

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_X_session(const char ∗xdisplaystring);

DESCRIPTION
The tt_X_session() function returns the session associated with the named X window system
display.

The application can call tt_X_session() before it calls tt_open().

The xdisplaystring argument is the name of an X display server; for example, somehost:0 or :0.

RETURN VALUE
Upon successful completion, the tt_X_session() function returns the identifier for the ToolTalk
session associated with the named X window system display. The application can use
tt_ptr_error() to extract one of the following Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_SESSION
The xdisplaystring does not name an X display.

TT_ERR_POINTER
The xdisplaystring is NULL.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_open(), tt_free().

CHANGE HISTORY
First released in Issue 1.

62 X/Open CAE Specification

Message Services tt_bcontext_join()

NAME
tt_bcontext_join — add a byte-array value to the list of values

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_bcontext_join(const char ∗slotname ,
const unsigned char ∗value ,
int length);

DESCRIPTION
The tt_bcontext_join () function adds the given byte-array value to the list of values for the
named contexts of all patterns. The context is compared to currently registered patterns for the
procid. If a pattern has a slot with the specified name, the given byte-array value is added to the
list of values for that slot.

The slotname argument is the name of the context. The value argument is the value to be added.
The length argument is the length in bytes of the value.

RETURN VALUE
Upon successful completion, the tt_bcontext_join () function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_SLOTNAME
The specified slotname is syntactically invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 63

tt_bcontext_quit() Message Services

NAME
tt_bcontext_quit — remove a byte-array value from the list of values

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_bcontext_quit(const char ∗slotname ,
const unsigned char ∗value ,
int length);

DESCRIPTION
The tt_bcontext_quit() function removes the given byte-array value from the list of values for the
contexts of all patterns. The context is compared to currently registered patterns for the procid.
If a pattern has a slot with the specified name, the given byte string value is removed from the
list of values for that slot. If there are duplicate values, only one value is removed.

The slotname argument is the name of the context. The value argument is the value to be
removed. The length argument is the length in bytes of the value.

RETURN VALUE
Upon successful completion, the tt_bcontext_quit() function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_SLOTNAME
The specified slotname is syntactically invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

64 X/Open CAE Specification

Message Services tt_close()

NAME
tt_close — close the current default procid

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_close(void);

DESCRIPTION
The tt_close() function closes the current default procid.

RETURN VALUE
Upon successful completion, the tt_close() function returns the status of the operation as one of
the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PROCID
The current default process identifier is out of date or invalid.

APPLICATION USAGE
When the tt_close() function call is successful, the procid will no longer be active. For any
subsequent API calls the process must, therefore, first call tt_default_procid_set () to specify a
procid.

SEE ALSO
<Tt/tt_c.h>, tt_open(), tt_context_join ().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 65

tt_context_join() Message Services

NAME
tt_context_join — add a string value to the list of values

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_context_join(const char ∗slotname ,
const char ∗value);

DESCRIPTION
The tt_context_join () function adds the given string value to the list of values for the context of
all patterns.

The context is compared to currently registered patterns for the procid. If a pattern has a slot
with the specified name, the given string value is added to the list of values for that slot.

The slotname argument is the name of the context. The value argument is the value to be added.

RETURN VALUE
Upon successful completion, the tt_context_join () function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_SLOTNAME
The specified slotname is syntactically invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

66 X/Open CAE Specification

Message Services tt_context_quit()

NAME
tt_context_quit — remove a string value from the list of values

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_context_quit(const char ∗slotname ,
const char ∗value);

DESCRIPTION
The tt_context_quit () function removes the given string value from the list of values for the
contexts of all patterns.

The context is compared to currently registered patterns for the procid. If a pattern has a slot
with the specified name, tt_context_quit () removes the given string value from the list of values
for that slot. If there are duplicate values, only one value is removed.

The slotname argument is the name of the context. The value argument is the value to be added.

RETURN VALUE
Upon successful completion, the tt_context_quit () function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_SLOTNAME
The specified slotname is syntactically invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 67

tt_default_file() Message Services

NAME
tt_default_file — return the current default file

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_default_file(void);

DESCRIPTION
The tt_default_file() function returns the current default file.

When the application joins a file, the file becomes the default.

RETURN VALUE
Upon successful completion, the tt_default_file() function returns the pointer to a character string
that specifies the current default file. If the pointer is NULL, no default file is set. The
application can use tt_ptr_error() to extract one of the following Tt_status values from the
returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PROCID
The current default process identifier is out of date or invalid.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_file_join (), tt_default_file_set(), tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

68 X/Open CAE Specification

Message Services tt_default_file_set()

NAME
tt_default_file_set — set the default file to a file

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_default_file_set(const char ∗docid);

DESCRIPTION
The tt_default_file_set() function sets the default file to the specified file.

The docid argument is a pointer to a character string that specifies the file that is to be the default
file.

RETURN VALUE
Upon successful completion, the tt_default_file_set() function returns the status of the operation
as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PROCID
The current default process identifier is out of date or invalid.

TT_ERR_FILE
The specified file does not exist or it is inaccessible.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 69

tt_default_procid() Message Services

NAME
tt_default_procid — identify the current default process

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_default_procid(void);

DESCRIPTION
The tt_default_procid () function retrieves the current default procid for the process.

RETURN VALUE
Upon successful completion, the tt_default_procid () function returns the pointer to a character
string that uniquely identifies the current default process. The application can use tt_ptr_error()
to extract one of the following Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PROCID
The current default process identifier is out of date or invalid.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

70 X/Open CAE Specification

Message Services tt_default_procid_set()

NAME
tt_default_procid_set — set the current default procid

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_default_procid_set(const char ∗procid);

DESCRIPTION
The tt_default_procid_set () function sets the current default procid.

The procid argument is the name of process that is to be the default process.

RETURN VALUE
Upon successful completion, the tt_default_procid_set () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

SEE ALSO
<Tt/tt_c.h>, tt_open().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 71

tt_default_ptype() Message Services

NAME
tt_default_ptype — retrieve the current default ptype

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_default_ptype(void);

DESCRIPTION
The tt_default_ptype () function retrieves the current default ptype.

When the application declares a ptype, the ptype becomes the default.

RETURN VALUE
Upon successful completion, the tt_default_ptype () function returns a pointer to a character
string that uniquely identifies the current default process type. If the pointer is NULL, no
default ptype is set. The application can use tt_ptr_error() to extract one of the following
Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PROCID
The current default process identifier is out of date or invalid.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptype_declare (), tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

72 X/Open CAE Specification

Message Services tt_default_ptype_set()

NAME
tt_default_ptype_set — set the default ptype

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_default_ptype_set(const char ∗ptid);

DESCRIPTION
The tt_default_ptype_set () function sets the default ptype.

The ptid argument must be the character string that uniquely identifies the process that is to be
the default process.

RETURN VALUE
Upon successful completion, the tt_default_ptype_set () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PROCID
The current default process identifier is out of date or invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 73

tt_default_session() Message Services

NAME
tt_default_session — retrieve the current default session identifier

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_default_session(void);

DESCRIPTION
The tt_default_session () function retrieves the current default session identifier.

RETURN VALUE
Upon successful completion, the tt_default_session () function returns the pointer to the unique
identifier for the current default session. If the pointer is NULL, no default session is set. The
application can use tt_ptr_error() to extract one of the following Tt_status values from the
returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PROCID
The current default process identifier is out of date or invalid.

APPLICATION USAGE
A session can have more than one session identifier. This means that the application cannot
compare the result of tt_default_session () with the result of tt_message_session() to verify that the
message was sent in the default session.

The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

74 X/Open CAE Specification

Message Services tt_default_session_set()

NAME
tt_default_session_set — set the current default session identifier

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_default_session_set(const char ∗sessid);

DESCRIPTION
The tt_default_session_set () function sets the current default session identifier.

The ToolTalk service uses the initial user session as the default session and supports one session
per procid. The application can make this call before it calls tt_open() to specify the session to
which it wants to connect.

The sessid argument is a pointer to the unique identifier for the session in which the procid is
interested.

RETURN VALUE
Upon successful completion, the tt_default_session_set () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PROCID
The current default process identifier is out of date or invalid.

TT_ERR_SESSION
The specified ToolTalk session is out of date or invalid.

APPLICATION USAGE
To change to another opened session, the application must use the tt_default_procid_set ()
function.

To join other sessions, the procid must first set the new session as the default session, and then
initialise and register with the ToolTalk service. The calls required must be in the following
order:

tt_default_session_set ()
tt_open()

The tt_open() may create another ToolTalk procid, the connection to which is identified by a
procid. Only one ToolTalk session per procid is allowed. (However, multiple procids are
allowed in a client.) There are no API calls to determine to which session a particular procid is
connected. If it is important for the application to know the session to which it is connected, it
must make the following calls in the indicated order:

tt_open()
tt_default_session ()

The application can then store the information by indexing it by the procid returned by the
tt_open() call.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 75

tt_default_session_set() Message Services

SEE ALSO
<Tt/tt_c.h>, tt_open(), tt_default_procid (), tt_default_session ().

CHANGE HISTORY
First released in Issue 1.

76 X/Open CAE Specification

Message Services tt_error_int()

NAME
tt_error_int — return an integer error object that encodes the code

SYNOPSIS
#include <Tt/tt_c.h>

int tt_error_int(Tt_status ttrc);

DESCRIPTION
The tt_error_int() function returns an integer error object that encodes a Tt_status return value.

The ttrc argument is the Tt_status code that is to be encoded.

RETURN VALUE
Upon successful completion, the tt_error_int() function returns the encoded Tt_status code.

APPLICATION USAGE
The integer error objects are negative integers; an application should use this call only when the
valid integer values are non-negative.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 77

tt_error_pointer() Message Services

NAME
tt_error_pointer — return a pointer to an error object that encodes the code

SYNOPSIS
#include <Tt/tt_c.h>

void ∗tt_error_pointer(Tt_status ttrc);

DESCRIPTION
The tt_error_pointer() function returns a pointer to an error object that encodes a Tt_status return
value.

The ttrc argument is the Tt_status code that is to be encoded.

RETURN VALUE
Upon successful completion, the tt_error_pointer() function returns a pointer to the encoded
Tt_status code.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

78 X/Open CAE Specification

Message Services tt_fd()

NAME
tt_fd — return a file descriptor

SYNOPSIS
#include <Tt/tt_c.h>

int tt_fd(void);

DESCRIPTION
The tt_fd() function returns a file descriptor. The returned file descriptor alerts the process that
a message has arrived for the default procid in the default session.

File descriptors are either active or inactive. When the file descriptor becomes active, the
process must call tt_message_receive() to receive the message.

RETURN VALUE
Upon successful completion, the tt_fd() function returns the file descriptor for the current
procid. The application can use tt_int_error() to extract one of the following Tt_status values
from the returned integer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PROCID
The current default process identifier is out of date or invalid.

TT_ERR_SESSION
The specified ToolTalk session is out of date or invalid.

APPLICATION USAGE
The application must have a separate file descriptor for each procid. To get an associated file
descriptor, the application should use tt_fd() each time it calls tt_open().

SEE ALSO
<Tt/tt_c.h>, tt_open(), tt_int_error(), tt_message_receive().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 79

tt_file_copy() Message Services

NAME
tt_file_copy — copy objects from one file to a new file

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_file_copy(const char ∗oldfilepath ,
const char ∗newfilepath);

DESCRIPTION
The tt_file_copy () function copies all objects that exist on the specified file to a new file. If any
objects already exist on newfilepath , they are not overwritten by the copy (that is, they are not
removed.)

The oldfilepath argument is a pointer to the name of the file whose objects are to be copied. The
newfilepath argument is a pointer to the name of the file on which to create the copied objects.

RETURN VALUE
Upon successful completion, the tt_file_copy () function returns the status of the operation as one
of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_FILE
The specified file does not exist or it is inaccessible.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PATH
The specified pathname included an unsearchable directory.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_file_move(), tt_file_destroy().

CHANGE HISTORY
First released in Issue 1.

80 X/Open CAE Specification

Message Services tt_file_destroy()

NAME
tt_file_destroy — remove objected rooted on a file

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_file_destroy(const char ∗filepath);

DESCRIPTION
The tt_file_destroy() function removes all objects that exist on the files and directories rooted at
filepath . The application must call this function when the application unlinks a file or removes a
directory.

The filepath argument is a pointer to the pathname of the file or directory to be removed.

RETURN VALUE
Upon successful completion, the tt_file_destroy() function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_ACCESS
The user does not have the necessary access to the object and/or the process.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_FILE
The specified file does not exist or it is inaccessible.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PATH
The specified pathname included an unsearchable directory.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_file_copy (), tt_file_move(); rmdir, unlink() in the X/Open CAE Specification,
System Interface Definitions, Issue 4, Version 2.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 81

tt_file_join() Message Services

NAME
tt_file_join — register interest in messages involving a file

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_file_join(const char ∗filepath);

DESCRIPTION
The tt_file_join () function informs the ToolTalk service that the process is interested in messages
that involve the specified file.

The ToolTalk service adds this file value to any currently registered patterns. The named file
becomes the default file.

When the process joins a file, the ToolTalk service updates the file field of its registered patterns.
The tt_file_join () call causes the pattern’s ToolTalk session to be stored in the database.

The filepath argument is a pointer to the pathname of the file in which the process is interested.

RETURN VALUE
Upon successful completion, the tt_file_join () function returns the status of the operation as one
of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PATH
The specified pathname included an unsearchable directory.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

82 X/Open CAE Specification

Message Services tt_file_move()

NAME
tt_file_move — move objects from one file to another

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_file_move(const char ∗oldfilepath ,
const char ∗newfilepath);

DESCRIPTION
The tt_file_move() function destroys all objects that exist on the files and directories rooted at
newfilepath , then moves all objects that exist on oldfilepath to newfilepath .

If oldfilepath and newfilepath reside in the same file system, tt_file_move() replaces oldfilepath with
newfilepath in the path associated with every object in that file system; that is, all the objects in
the directory tree rooted at oldfilepath are overlaid onto newfilepath . In this mode, the behaviour
of tt_file_move() is similar to rename().

If oldfilepath and newfilepath reside in different file systems, neither can be a directory.

The oldfilepath argument is the name of the file or directory whose objects are to be moved. The
newfilepath argument is the name of the file or directory to which the objects are to be moved.

RETURN VALUE
Upon successful completion, the tt_file_move() function returns the status of the operation as one
of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_ACCESS
The user does not have the necessary access to the object and/or the process.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_FILE
The specified file does not exist or it is inaccessible.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PATH
The specified pathname included an unsearchable directory, or oldfilepath and
newfilepath reside in different file systems, and either is a directory.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_file_copy (), tt_file_destroy(); rename() in the X/Open CAE Specification, System
Interface Definitions, Issue 4, Version 2.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 83

tt_file_netfile() Message Services

NAME
tt_file_netfile — map between local and canonical pathnames on the local host

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_file_netfile(const char ∗filename);

DESCRIPTION
The tt_file_netfile() function converts a local pathname to a netfilename, a form that can be passed
to other hosts on the network and converted back to a local pathname for the same file with
tt_netfile_file().

The filename argument is a pathname (absolute or relative) that is valid on the local host. Every
component of filename must exist, except that the last component need not exist.

RETURN VALUE
Upon successful completion, the tt_file_netfile() function returns a freshly allocated null-
terminated string of unspecified format, which can be passed to tt_netfile_file() or
tt_host_netfile_file(); otherwise, it returns an error pointer. The application can use tt_ptr_error()
to extract one of the following Tt_status values from the returned pointer:

TT_ERR_PATH
The filename argument is a path that is not valid on this host.

APPLICATION USAGE
The tt_file_netfile(), tt_netfile_file(), tt_host_file_netfile() and tt_host_netfile_file() functions allow
an application to determine a path valid on remote hosts, perhaps for purposes of constructing a
command string valid for remote execution on that host. By composing the two calls, paths for
files not accessible from the current host can be constructed. For example, if path /sample/file is
valid on host A, a program running on host B can use

tt_host_netfile_file("C", tt_host_file_netfile("A", "/sample/file"))

to determine a path to the same file valid on host C, if such a path is possible.

The netfile string returned by tt_file_netfile() should be considered opaque; the content and
format of the strings are not a public interface. These strings can be safely copied (with strcpy()
or similar methods), written to files, or transmitted to other processes, perhaps on other hosts.

Allocated strings should be freed using either tt_free() or tt_release().

The tt_open() function need not be called before tt_file_netfile().

SEE ALSO
<Tt/tt_c.h>, tt_netfile_file(), tt_host_file_netfile(), tt_host_netfile_file(), tt_open(), tt_free(),
tt_release().

CHANGE HISTORY
First released in Issue 1.

84 X/Open CAE Specification

Message Services tt_file_objects_query()

NAME
tt_file_objects_query — find all objects in the named file

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_file_objects_query(const char ∗filepath ,
Tt_filter_function filter ,
void ∗context ,
void ∗accumulator);

DESCRIPTION
The tt_file_objects_query() function instructs the ToolTalk service to find all objects in the named
file and pass the objids to the filter function. The context pointer and accumulator pointer
initially specified are also passed to the filter function.

As the ToolTalk service finds each object, it calls the filter function, passing the objid of the object
and the two application-supplied pointers. The filter function performs its computation and
returns a Tt_filter_action value that tells the query function whether to continue or to stop.
Tt_filter_action values are:

TT_FILTER_CONTINUE
The query function should continue.

TT_FILTER_STOP
The query function should stop.

The filepath argument is the name of the file to be searched for objects. The filter argument is the
filter function to which the objids are to be passed. The context argument is a pointer to any
information the filter needs to execute. The ToolTalk service does not interpret this argument,
but passes it directly to the filter function. The accumulator argument is a pointer to where the
filter is to store the results of the query and filter operations. The ToolTalk service does not
interpret this argument, but passes it directly to the filter function.

RETURN VALUE
Upon successful completion, the tt_file_objects_query() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PATH
The specified pathname included an unsearchable directory.

TT_WRN_STOPPED
The query operation being performed was halted by Tt_filter_function.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 85

tt_file_objects_query() Message Services

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

86 X/Open CAE Specification

Message Services tt_file_quit()

NAME
tt_file_quit — register lack of interest in messages that involve a file

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_file_quit(const char ∗filepath);

DESCRIPTION
The tt_file_quit() function informs the ToolTalk service that the process is no longer interested in
messages that involve the specified file.

The ToolTalk service removes this file value from any currently registered patterns and sets the
default file to NULL.

The filepath argument is the name of the file in which the process is no longer interested.

RETURN VALUE
Upon successful completion, the tt_file_quit() function returns the status of the operation as one
of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_PATH
The specified pathname included an unsearchable directory.

SEE ALSO
<Tt/tt_c.h>, tt_default_file().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 87

tt_free() Message Services

NAME
tt_free — free storage from the ToolTalk API allocation stack

SYNOPSIS
#include <Tt/tt_c.h>

void tt_free(caddr_t p);

DESCRIPTION
The tt_free() function frees storage from the ToolTalk API allocation stack.

The p argument is the address of the storage in the ToolTalk API allocation stack to be freed.

RETURN VALUE
The tt_free() function returns no value.

APPLICATION USAGE
The application should use the tt_free() function instead of tt_mark() and tt_release() if, for
example, the process is in a loop (that is, it obtains strings from the ToolTalk service and
processes each in turn).

SEE ALSO
<Tt/tt_c.h>, tt_malloc (), tt_mark(), tt_release(), tt_free().

CHANGE HISTORY
First released in Issue 1.

88 X/Open CAE Specification

Message Services tt_host_file_netfile()

NAME
tt_host_file_netfile — map between local and canonical pathnames on a remote host

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_host_file_netfile(const char ∗host ,
const char ∗filename);

DESCRIPTION
The tt_host_file_netfile() function performs a conversion equivalent to that of the tt_file_netfile()
function, but performs it on a remote host.

The filename argument is a pathname (absolute or relative) that is valid on the remote host.
Every component of filename must exist, except for the last component. The host argument is a
name of a remote host.

RETURN VALUE
Upon successful completion, the tt_host_file_netfile() function returns a freshly allocated null-
terminated string of unspecified format, which can be passed to tt_netfile_file() or
tt_host_netfile_file(); otherwise, it returns an error pointer. The application can use tt_ptr_error()
to extract one of the following Tt_status values from the returned pointer:

TT_ERR_PATH
The filename argument is a path that is not valid on the remote host.

TT_ERR_DBAVAIL
The ToolTalk database server could not be reached on host , perhaps because the
host is unavailable or cannot be reached through the network.

TT_ERR_DBEXIST
The ToolTalk database server is not properly installed on host .

TT_ERR_UNIMP
The ToolTalk database server contacted is of a version that does not support
tt_host_file_netfile().

APPLICATION USAGE
The tt_file_netfile(), tt_netfile_file(), tt_host_file_netfile() and tt_host_netfile_file() functions allow
an application to determine a path valid on remote hosts, perhaps for purposes of constructing a
command string valid for remote execution on that host. By composing the two calls, paths for
files not accessible from the current host can be constructed. For example, if path /sample/file is
valid on host A, a program running on host B can use

tt_host_netfile_file("C", tt_host_file_netfile("A", "/sample/file"))

to determine a path to the same file valid on host C, if such a path is possible.

Allocated strings should be freed using either tt_free() or tt_release().

The tt_open() function need not be called before tt_host_file_netfile().

SEE ALSO
<Tt/tt_c.h>, tt_file_netfile(), tt_netfile_file(), tt_host_netfile_file(), tt_open(), tt_free(), tt_release().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 89

tt_host_netfile_file() Message Services

NAME
tt_host_netfile_file — map between canonical and local pathnames on a remote host

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_host_netfile_file(const char ∗host ,
const char ∗netfilename);

DESCRIPTION
The tt_host_netfile_file() function performs a conversion equivalent to that of the tt_netfile_file()
function, but performs it on a remote host.

The host argument is the host on which the file resides. The netfilename argument is a copy of a
null-terminated string returned by tt_netfile_file() or tt_host_netfile_file().

RETURN VALUE
Upon successful completion, the tt_host_netfile_file() function returns a freshly allocated null-
terminated string of unspecified format, which can be passed to tt_host_netfile_file(); otherwise, it
returns an error pointer. The application can use tt_ptr_error() to extract one of the following
Tt_status values from the returned pointer:

TT_ERR_DBAVAIL
The ToolTalk database server could not be reached on host , perhaps because the
host is unavailable or cannot be reached through the network.

TT_ERR_DBEXIST
The ToolTalk database server is not properly installed on host .

TT_ERR_NETFILE
The netfilename is not a valid netfilename.

TT_ERR_UNIMP
The ToolTalk database server contacted is of a version that does not support
tt_host_netfile_file().

APPLICATION USAGE
The tt_file_netfile(), tt_netfile_file(), tt_host_file_netfile() and tt_host_netfile_file() functions allow
an application to determine a path valid on remote hosts, perhaps for purposes of constructing a
command string valid for remote execution on that host. By composing the two calls, paths for
files not accessible from the current host can be constructed. For example, if path /sample/file is
valid on host A, a program running on host B can use

tt_host_netfile_file("C", tt_host_file_netfile("A", "/sample/file"))

to determine a path to the same file valid on host C, if such a path is possible.

Allocated strings should be freed using either tt_free() or tt_release().

The tt_open() function need not be called before tt_host_netfile_file().

SEE ALSO
<Tt/tt_c.h>, tt_file_netfile(), tt_netfile_file(), tt_host_file_netfile(), tt_open(), tt_free(), tt_release().

CHANGE HISTORY
First released in Issue 1.

90 X/Open CAE Specification

Message Services tt_icontext_join()

NAME
tt_icontext_join — add an integer value to the list of values

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_icontext_join(const char ∗slotname , int value);

DESCRIPTION
The tt_icontext_join () function adds the given integer value to the list of values for the contexts
of all patterns.

The context is compared to currently registered patterns for the procid. If a pattern has a slot
with the specified name, the given integer value is added to the list of values for that slot.

The slotname argument is the name of the context. The value argument is the value to be added.

RETURN VALUE
Upon successful completion, the tt_icontext_join () function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_SLOTNAME
The specified slotname is syntactically invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 91

tt_icontext_quit() Message Services

NAME
tt_icontext_quit — remove an integer value from the list of values

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_icontext_quit(const char ∗slotname , int value);

DESCRIPTION
The tt_icontext_quit () function removes the given integer value from the list of values for the
contexts of all patterns.

The context is compared to currently registered patterns for the procid. If a pattern has a slot
with the specified name, the given integer value is removed from the list of values for that slot.

If there are duplicate values, only one value is removed.

The slotname argument is the name of the context. The value argument is the value to be added.

RETURN VALUE
Upon successful completion, the tt_icontext_quit () function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_SLOTNAME
The specified slotname is syntactically invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

92 X/Open CAE Specification

Message Services tt_initial_session()

NAME
tt_initial_session — return the initial session identifier

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_initial_session(void);

DESCRIPTION
The tt_initial_session () function returns the initial session identifier of the ttsession with which
the current process identifier is associated.

The current process identifier is obtained by calling tt_open().

RETURN VALUE
Upon successful completion, the tt_initial_session () function returns the identifier for the current
ToolTalk session. The application can use tt_ptr_error() to extract one of the following Tt_status
values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_open(), tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 93

tt_int_error() Message Services

NAME
tt_int_error — return the status of an error object

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_int_error(int return_val);

DESCRIPTION
The tt_int_error() function returns the status of an error object.

The return_val argument is the integer returned by a ToolTalk function.

RETURN VALUE
Upon successful completion, the tt_int_error() function returns either TT_OK, if the integer is
not an error object, or the encoded Tt_status value if the integer is an error object.

SEE ALSO
<Tt/tt_c.h>, tt_int_error().

CHANGE HISTORY
First released in Issue 1.

94 X/Open CAE Specification

Message Services tt_is_err()

NAME
tt_is_err — check status value

SYNOPSIS
#include <Tt/tt_c.h>

int tt_is_err(Tt_status s);

DESCRIPTION
The tt_is_err() function checks whether a status value is a warning or an error.

The s argument is the Tt_status code to check.

RETURN VALUE
Upon successful completion, the tt_is_err() function returns one of the following integers:

0 The Tt_status is either a warning or TT_OK.

1 The Tt_status is an error.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 95

tt_malloc() Message Services

NAME
tt_malloc — allocate storage on the ToolTalk API allocation stack

SYNOPSIS
#include <Tt/tt_c.h>

caddr_t tt_malloc(size_t s);

DESCRIPTION
The tt_malloc () function allocates storage on the ToolTalk API allocation stack.

The s argument is the amount of storage to be allocated in bytes.

RETURN VALUE
Upon successful completion, the tt_malloc () function returns the address of the storage in the
ToolTalk API allocation stack that is to be allocated. If NULL is returned, no storage is available.

APPLICATION USAGE
This function allows the application-provided callback routines to take advantage of the
allocation stack; for example, a query filter function can allocate storage to accumulate a result.

SEE ALSO
<Tt/tt_c.h>, tt_free().

CHANGE HISTORY
First released in Issue 1.

96 X/Open CAE Specification

Message Services tt_mark()

NAME
tt_mark — mark a storage position in the ToolTalk API allocation stack

SYNOPSIS
#include <Tt/tt_c.h>

int tt_mark(void);

DESCRIPTION
The tt_mark() function marks a storage position in the ToolTalk API allocation stack.

RETURN VALUE
Upon successful completion, the tt_mark() function returns an integer that marks the storage
position in the ToolTalk API allocation stack.

SEE ALSO
<Tt/tt_c.h>, tt_release().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 97

tt_message_accept() Message Services

NAME
tt_message_accept — declare that the process has been initialised and can accept messages

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_accept(Tt_message m);

DESCRIPTION
The tt_message_accept() function declares that the process has been initialised and can accept
messages.

The ToolTalk service invokes this function for start messages.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_accept() function returns the status of the operation
as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_UNIMP
The ToolTalk function called is not implemented.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

98 X/Open CAE Specification

Message Services tt_message_address()

NAME
tt_message_address — retrieve the address attribute from a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_address tt_message_address(Tt_message m);

DESCRIPTION
The tt_message_address() function retrieves the address attribute from the specified message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_address() function returns a value that specifies
which message attributes form the address of this message. The tt_message_address() function
returns one of the following Tt_address values:

TT_HANDLER
The message is addressed to a specific handler that can perform this operation
with these arguments.

TT_OBJECT
The message is addressed to a specific object that can perform this operation with
these arguments.

TT_OTYPE
The message is addressed to the type of object that can perform this operation
with these arguments.

TT_PROCEDURE
The message is addressed to any process that can perform this operation with
these arguments.

The application can use tt_int_error() to extract one of the following Tt_status values from the
returned integer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_int_error().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 99

tt_message_address_set() Message Services

NAME
tt_message_address_set — set the address attribute for a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_address_set(Tt_message m, Tt_address a);

DESCRIPTION
The tt_message_address_set() function sets the address attribute for the specified message.

The m argument is the opaque handle for the message involved in this operation. The a
argument specifies which message attributes form the address to which the message will be
delivered. The following values are defined:

TT_HANDLER
The message is addressed to a specific handler that can perform this operation
with these arguments.

TT_OBJECT
The message is addressed to a specific object that can perform this operation with
these arguments.

TT_OTYPE
The message is addressed to the type of object that can perform this operation
with these arguments.

TT_PROCEDURE
The message is addressed to any process that can perform this operation with
these arguments.

RETURN VALUE
Upon successful completion, the tt_message_address_set() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

100 X/Open CAE Specification

Message Services tt_message_arg_add()

NAME
tt_message_arg_add — add a new argument to a message object

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_arg_add(Tt_message m,
Tt_mode n,
const char ∗vtype ,
const char ∗value);

DESCRIPTION
The tt_message_arg_add () function adds a new argument to a message object.

The application must add all arguments before the message is sent. To change existing
argument values, the application must use only modes TT_OUT or TT_INOUT.

Adding arguments when replying to a message produces undefined results.

The m argument is the opaque handle for the message involved in this operation. The n
argument specifies who (sender, handler, observers) writes and reads a message argument. The
following modes are defined:

TT_IN The argument is written by the sender and read by the handler and any observers.

TT_OUT
The argument is written by the handler and read by the sender and any reply
observers.

TT_INOUT
The argument is written by the sender and the handler and read by all.

The vtype argument describes the type of argument data being added. The value argument is the
contents for the message argument attribute. The application can use NULL either for values of
mode TT_OUT, or if the value is to be filled in later with one of the following:

tt_message_arg_val_set ()
tt_message_barg_val_set ()
tt_message_iarg_val_set ()

RETURN VALUE
Upon successful completion, the tt_message_arg_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_MODE
The specified Tt_mode is invalid.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_message_arg_val_set (), tt_message_barg_add (), tt_message_iarg_add ().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 101

tt_message_arg_add() Message Services

102 X/Open CAE Specification

Message Services tt_message_arg_bval()

NAME
tt_message_arg_bval — retrieve the byte-array value of a message argument

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_arg_bval(Tt_message m,
int n,
unsigned char ∗∗value ,
int ∗len);

DESCRIPTION
The tt_message_arg_bval () function retrieves the byte-array value of the nth message argument.

The m argument is the opaque handle for the message involved in this operation. The n
argument is the number of the argument to be retrieved. The first argument is numbered zero.
The value argument is the address of a character pointer to which the ToolTalk service is to point
a string that contains the contents of the argument. The len argument is the address of an integer
to which the ToolTalk service is to set the length of the value in bytes.

RETURN VALUE
Upon successful completion, the tt_message_arg_bval () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 103

tt_message_arg_bval_set() Message Services

NAME
tt_message_arg_bval_set — set the byte-array value and type of a message argument

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_arg_bval_set(Tt_message m,
int n,
const unsigned char ∗value ,
int len);

DESCRIPTION
The tt_message_arg_bval_set () function sets the byte-array value and the type of the nth message
argument.

This function also changes the value of an existing nth message argument to a byte string.

The m argument is the opaque handle for the message involved in this operation. The n
argument is the number of the argument to set. The first argument is numbered zero. The value
argument is the byte string with the contents for the message argument. The len argument is the
length of the value in bytes.

RETURN VALUE
Upon successful completion, the tt_message_arg_bval_set () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The sending process can use tt_message_arg_bval_set () to fill in opaque data.

SEE ALSO
<Tt/tt_c.h>, tt_message_barg_add (), tt_message_arg_val_set (), tt_message_arg_ival_set ().

CHANGE HISTORY
First released in Issue 1.

104 X/Open CAE Specification

Message Services tt_message_arg_ival()

NAME
tt_message_arg_ival — retrieve the integer value of a message argument

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_arg_ival(Tt_message m,
int n,
int ∗value);

DESCRIPTION
The tt_message_arg_ival () function retrieves the integer value of the nth message argument.

The m argument is the opaque handle for the message involved in this operation. The n
argument is the number of the argument to be retrieved. The first argument is numbered zero.
The value argument is a pointer to an integer where the ToolTalk service is to store the contents
of the argument.

RETURN VALUE
Upon successful completion, the tt_message_arg_ival () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 105

tt_message_arg_ival_set() Message Services

NAME
tt_message_arg_ival_set — add an integer value in a message argument

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_arg_ival_set(Tt_message m,
int n,
int value);

DESCRIPTION
The tt_message_arg_ival_set () function adds an integer value in the nth message argument.

This function also changes the value of an existing nth message argument to an integer.

The m argument is the opaque handle for the message involved in this operation. The n
argument is the number of the argument to be set. The first argument is numbered zero. The
value argument is the contents for the message argument.

RETURN VALUE
Upon successful completion, the tt_message_arg_ival_set () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_message_iarg_add (), tt_message_arg_val_set (), tt_message_arg_bval_set ().

CHANGE HISTORY
First released in Issue 1.

106 X/Open CAE Specification

Message Services tt_message_arg_mode()

NAME
tt_message_arg_mode — return the mode of a message argument

SYNOPSIS
#include <Tt/tt_c.h>

Tt_mode tt_message_arg_mode(Tt_message m,
int n);

DESCRIPTION
The tt_message_arg_mode() function returns the mode of the nth message argument.

The m argument is the opaque handle for the message involved in this operation. The n
argument is the number of the argument to be returned. The first argument is numbered zero.

RETURN VALUE
Upon successful completion, the tt_message_arg_mode() function returns a value that specifies
who (sender, handler, observers) writes and reads a message argument. The following modes
are defined:

TT_IN The argument is written by the sender and read by the handler and any observers.

TT_OUT
The argument is written by the handler and read by the sender and any reply
observers.

TT_INOUT
The argument is written by the sender and the handler and read by all.

The application can use tt_int_error() to extract one of the following Tt_status values from the
Tt_mode integer return value:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_int_error().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 107

tt_message_arg_type() Message Services

NAME
tt_message_arg_type — retrieve the type of a message argument

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_message_arg_type(Tt_message m,
int n);

DESCRIPTION
The tt_message_arg_type() function retrieves the type of the nth message argument.

The m argument is the opaque handle for the message involved in this operation. The n
argument is the number of the argument to be retrieved. The first argument is numbered zero.

RETURN VALUE
Upon successful completion, the tt_message_arg_type() function returns the type of the nth
message argument. The application can use tt_ptr_error() to extract one of the following
Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The application can use tt_free() to free any data stored in the address returned by the ToolTalk
API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

108 X/Open CAE Specification

Message Services tt_message_arg_val()

NAME
tt_message_arg_val — return a pointer to the value of a message argument

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_message_arg_val(Tt_message m,
int n);

DESCRIPTION
The tt_message_arg_val () function returns a pointer to the value of the nth message argument.

The m argument is the opaque handle for the message involved in this operation. The n
argument is the number of the argument to be returned. The first argument is numbered zero.

RETURN VALUE
Upon successful completion, the tt_message_arg_val () function returns the contents for the
message argument. The application can use tt_ptr_error() to extract one of the following
Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The application can use tt_free() to free any data stored in the address returned by the ToolTalk
API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 109

tt_message_arg_val_set() Message Services

NAME
tt_message_arg_val_set — change the value of a message argument

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_arg_val_set(Tt_message m,
int n,
const char ∗value);

DESCRIPTION
The tt_message_arg_val_set () function changes the value of the nth message argument.

The m argument is the opaque handle for the message involved in this operation. The n
argument is the number of the argument to be changed. The first argument is numbered zero.
The value argument is the contents for the message argument.

RETURN VALUE
Upon successful completion, the tt_message_arg_val_set () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

110 X/Open CAE Specification

Message Services tt_message_arg_xval()

NAME
tt_message_arg_xval — retrieve and deserialise the data from a message argument

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_arg_xval(Tt_message m,
int n,
xdrproc_t xdr_proc ,
void ∗∗value);

DESCRIPTION
The tt_message_arg_xval () function retrieves and deserialises the data from a message argument.
This function uses an XDR routine that is supplied by the client.

The m argument is the opaque handle for the message involved in this operation. The n
argument is the number of the argument to be returned. The first argument is numbered zero.
The xdr_proc argument points to the XDR procedure to be used to deserialise the data in the nth
argument into newly allocated storage, the address of which will be stored in the pointer whose
address is value .

The value argument is the data to be deserialised.

RETURN VALUE
Upon successful completion, the tt_message_arg_xval () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_MODE
The specified Tt_mode is invalid.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_XDR
The XDR procedure failed on the given data, or evaluated to a zero-length
structure.

APPLICATION USAGE
The allocation calls are made by the XDR procedure; therefore, any storage allocated is not
allocated from the ToolTalk allocation stack. The application should use the xdr_free() call to
free this storage.

SEE ALSO
<Tt/tt_c.h>; the referenced XDR specification.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 111

tt_message_arg_xval_set() Message Services

NAME
tt_message_arg_xval_set — serialise and set data into an existing message argument

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_arg_xval_set(Tt_message m,
int n,
xdrproc_t xdr_proc ,
void ∗value);

DESCRIPTION
The tt_message_arg_xval_set () function serialises and sets data into an existing message
argument.

The m argument is the opaque handle for the message involved in this operation. The n
argument is the number of the argument to be changed. The first argument is numbered zero.
The xdr_proc argument causes tt_message_arg_xval_set () to serialise the data pointed to by value
and store it as a byte string value of the nth argument of the message. The value argument is the
data to be serialised.

RETURN VALUE
Upon successful completion, the tt_message_arg_xval_set () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_MODE
The specified Tt_mode is invalid.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_XDR
The XDR procedure failed on the given data, or evaluated to a zero-length
expression.

SEE ALSO
<Tt/tt_c.h>; the referenced XDR specification.

CHANGE HISTORY
First released in Issue 1.

112 X/Open CAE Specification

Message Services tt_message_args_count()

NAME
tt_message_args_count — return the number of arguments in the message

SYNOPSIS
#include <Tt/tt_c.h>

int tt_message_args_count(Tt_message m);

DESCRIPTION
The tt_message_args_count() function returns the number of arguments in the message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_args_count() function returns the total number of
arguments in the message. The application can use tt_int_error() to extract one of the following
Tt_status values from the returned integer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_int_error().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 113

tt_message_barg_add() Message Services

NAME
tt_message_barg_add — add an argument to a pattern

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_barg_add(Tt_message m,
Tt_mode n,
const char ∗vtype ,
const unsigned char ∗value ,
int len);

DESCRIPTION
The tt_message_barg_add () function adds an argument to a pattern that may have a byte-array
value that contains embedded nulls.

To change existing argument values, the application must use only modes TT_OUT or
TT_INOUT.

Adding arguments when replying to a message produces undefined results.

The m argument is the opaque handle for the message involved in this operation. The n
argument specifies who (sender, handler, observers) writes and reads a message argument. The
following modes are defined:

TT_IN The argument is written by the sender and read by the handler and any observers.

TT_OUT
The argument is written by the handler and read by the sender and any reply
observers.

TT_INOUT
The argument is written by the sender and the handler and read by all.

The vtype argument describes the type of argument data being added.

The ToolTalk service treats the value as an opaque byte string. To pass structured data, the
application and the receiving application must encode and decode these opaque byte strings.
The most common method to do this is XDR.

The value argument is the value to be added. The len argument is the length of the value in
bytes.

RETURN VALUE
Upon successful completion, the tt_message_barg_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

114 X/Open CAE Specification

Message Services tt_message_barg_add()

SEE ALSO
<Tt/tt_c.h>, tt_message_barg_val_set (), tt_message_arg_add (), tt_message_iarg_add (); the
referenced XDR specification.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 115

tt_message_bcontext_set() Message Services

NAME
tt_message_bcontext_set — set the byte-array value of a message’s context

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_bcontext_set(Tt_message m,
const char ∗slotname ,
const unsigned char ∗value ,
int length);

DESCRIPTION
The tt_message_bcontext_set() function sets the byte-array value of a message’s context.

This function overwrites any previous value associated with slotname .

The m argument is the opaque handle for the message involved in this operation. The slotname
argument describes the slotname in this message. The value argument is the byte string with the
contents for the message argument. The length argument is the length of the value in bytes.

RETURN VALUE
Upon successful completion, the tt_message_bcontext_set() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_SLOTNAME
The specified slotname is syntactically invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

116 X/Open CAE Specification

Message Services tt_message_callback_add()

NAME
tt_message_callback_add — register a callback function

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_callback_add(Tt_message m,
Tt_message_callback f);

DESCRIPTION
The tt_message_callback_add () function registers a callback function to be automatically invoked
by tt_message_receive() whenever a reply or other state-change to this message is returned.

The callback is defined in <Tt/tt_c.h>. If the callback returns TT_CALLBACK_CONTINUE,
other callbacks will be run; if no callback returns TT_CALLBACK_PROCESSED,
tt_message_receive() returns the message. If the callback returns TT_CALLBACK_PROCESSED,
no further callbacks are invoked for this event; tt_message_receive() does not return the message.

The m argument is the opaque handle for the message involved in this operation. The f
argument is the message callback to be run.

The pattern handle will be NULL if the message did not match a dynamic pattern. This is
usually the case for message callbacks.

RETURN VALUE
Upon successful completion, the tt_message_callback_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
These callbacks are invoked from tt_message_receive(); the program must, therefore, call
tt_message_receive() when the file descriptor returned by tt_fd() becomes active.

The application can use tt_message_callback_add () to create wrappers for ToolTalk messages. For
example, a library routine can construct a request, attach a callback to the message, send the
message, and process the reply in the callback. When the callback returns
TT_CALLBACK_PROCESSED, the message reply is not returned to the main program; the
message and reply are, therefore, completely hidden.

SEE ALSO
<Tt/tt_c.h>, tt_message_receive().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 117

tt_message_class() Message Services

NAME
tt_message_class — retrieve the class attribute from a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_class tt_message_class(Tt_message m);

DESCRIPTION
The tt_message_class() function retrieves the class attribute from the specified message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_class() function returns a value that indicates
whether the sender wants an action to take place after the message is received. The
tt_message_class() function returns one of the following Tt_status values:

TT_NOTICE
A notice of an event. The sender does not want feedback on this message.

TT_REQUEST
A request for some action to be taken. The sender must be notified of progress,
success or failure, and must receive any return values.

The application can use tt_int_error() to extract one of the following Tt_status values from the
Tt_class integer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_int_error().

CHANGE HISTORY
First released in Issue 1.

118 X/Open CAE Specification

Message Services tt_message_class_set()

NAME
tt_message_class_set — set the class attribute for a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_class_set(Tt_message m,
Tt_class c);

DESCRIPTION
The tt_message_class_set() function sets the class attribute for the specified message.

The m argument is the opaque handle for the message involved in this operation. The c
argument indicates whether an action is to take place after the message is received. The
following values are defined:

TT_NOTICE
A notice of an event. The sender does not want feedback on this message.

TT_REQUEST
A request for some action to be taken. The sender must be notified of progress,
success or failure, and must receive any return values.

RETURN VALUE
Upon successful completion, the tt_message_class_set() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 119

tt_message_context_bval() Message Services

NAME
tt_message_context_bval — retrieve the byte-array value and length of a message’s context

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_context_bval(Tt_message m,
const char ∗slotname ,
unsigned char ∗∗value ,
int ∗len);

DESCRIPTION
The tt_message_context_bval () function retrieves the byte-array value and length of a message’s
context.

If there is no context slot associated with slotname , tt_message_context_bval () returns zero in
slotname and zero in len.

The m argument is the opaque handle for the message involved in this operation. The slotname
argument describes the context of this message. The value argument points to the location to
return the value. The len argument is the length of the value in bytes.

RETURN VALUE
Upon successful completion, the tt_message_context_bval () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_SLOTNAME
The specified slotname is syntactically invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

120 X/Open CAE Specification

Message Services tt_message_context_ival()

NAME
tt_message_context_ival — retrieve the integer value of a message’s context

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_context_ival(Tt_message m,
const char ∗slotname ,
int ∗value);

DESCRIPTION
The tt_message_context_ival () function retrieves the integer value of a message’s context.

The m argument is the opaque handle for the message involved in this operation. The slotname
argument describes the context of this message. The value argument points to the location to
return the value.

If there is no context slot associated with slotname , tt_message_context_ival () returns a NULL
pointer in ∗value .

RETURN VALUE
Upon successful completion, the tt_message_context_ival () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_SLOTNAME
The specified slotname is syntactically invalid.

TT_WRN_NOTFOUND
The named context does not exist on the specified message.

APPLICATION USAGE
The application can use tt_free() to free any data stored in the address returned by the ToolTalk
API.

SEE ALSO
<Tt/tt_c.h>, tt_free().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 121

tt_message_context_set() Message Services

NAME
tt_message_context_set — set the character string value of a message’s context

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_context_set(Tt_message m,
const char ∗slotname ,
const char ∗value);

DESCRIPTION
The tt_message_context_set() function sets the character string value of a message’s context.

The m argument is the opaque handle for the message involved in this operation. The slotname
argument describes the context of this message. This function overwrites any previous value
associated with slotname . The value argument is the character string to be set.

RETURN VALUE
Upon successful completion, the tt_message_context_set() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_SLOTNAME
The specified slotname is syntactically invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

122 X/Open CAE Specification

Message Services tt_message_context_slotname()

NAME
tt_message_context_slotname — return the name of a message’s nth context

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_message_context_slotname(Tt_message m,
int n);

DESCRIPTION
The tt_message_context_slotname () function returns the name of a message’s nth context.

The m argument is the opaque handle for the message involved in this operation. The n
argument is the number of the context to be retrieved. The first context is numbered zero.

RETURN VALUE
Upon successful completion, the tt_message_context_slotname () function returns the contents for
the message argument. The application can use tt_ptr_error() to extract one of the following
Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The application can use tt_free() to free any data stored in the address returned by the ToolTalk
API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 123

tt_message_context_val() Message Services

NAME
tt_message_context_val — retrieve the character string of a message’s context

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_message_context_val(Tt_message m,
const char ∗slotname);

DESCRIPTION
The tt_message_context_val () function retrieves the character string of a message’s context.

The m argument is the opaque handle for the message involved in this operation. The slotname
argument describes the context of this message.

If there is no context slot associated with slotname , tt_message_context_val () returns a NULL
pointer.

RETURN VALUE
Upon successful completion, the tt_message_context_val () function returns the contents for the
message argument. The application can use tt_ptr_error() to extract one of the following
Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_SLOTNAME
The specified slotname is syntactically invalid.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

124 X/Open CAE Specification

Message Services tt_message_context_xval()

NAME
tt_message_context_xval — retrieve and deserialise the data from a message’s context

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_context_xval(Tt_message m,
const char ∗slotname ,
xdrproc_t xdr_proc ,
void ∗∗value);

DESCRIPTION
The tt_message_context_xval () function retrieves and deserialises the data from a message’s
context.

The m argument is the opaque handle for the message involved in this operation. The slotname
argument describes the context of this message. The xdr_proc argument points to the XDR
procedure to be used to deserialise the data in the nth argument into newly allocated storage,
the address of which will be stored in the pointer whose address is value .

The value argument is the data to be deserialised.

RETURN VALUE
Upon successful completion, the tt_message_context_xval () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_MODE
The specified Tt_mode is invalid.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_XDR
The XDR procedure failed on the given data, or evaluated to a zero-length
expression.

APPLICATION USAGE
The allocation calls are made by the XDR procedure; therefore, any storage allocated is not
allocated from the ToolTalk allocation stack. The application should use the xdr_free() call to
free this storage.

SEE ALSO
<Tt/tt_c.h>; the referenced XDR specification.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 125

tt_message_contexts_count() Message Services

NAME
tt_message_contexts_count — return the number of contexts in a message

SYNOPSIS
#include <Tt/tt_c.h>

int tt_message_contexts_count(Tt_message m);

DESCRIPTION
The tt_message_contexts_count() function returns the number of contexts in a message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_contexts_count() function returns the total number
of contexts in the message. The application can use tt_int_error() to extract one of the following
Tt_status values from the returned integer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_int_error().

CHANGE HISTORY
First released in Issue 1.

126 X/Open CAE Specification

Message Services tt_message_create()

NAME
tt_message_create — create a new message object

SYNOPSIS
#include <Tt/tt_c.h>

Tt_message tt_message_create(void);

DESCRIPTION
The tt_message_create() function creates a new message object.

The ToolTalk service returns a message handle that is an opaque pointer to a ToolTalk structure.

RETURN VALUE
Upon successful completion, the tt_message_create() function returns the unique opaque handle
that identifies the message object. The application can use tt_ptr_error() to extract one of the
following Tt_status values from the returned handle:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PROCID
The process identification is not valid.

APPLICATION USAGE
A return value of TT_ERR_PROCID implies that tt_open() was not issued before
tt_message_create().

If the ToolTalk service is unable to create a message when requested, tt_message_create() returns
an invalid handle. When the application attempts to use this handle with another ToolTalk
function, the ToolTalk service will return TT_ERR_POINTER.

SEE ALSO
<Tt/tt_c.h>, tt_open(), tt_message_send(), tt_message_destroy().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 127

tt_message_create_super() Message Services

NAME
tt_message_create_super — create and re-address a copy of a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_message tt_message_create_super(Tt_message m);

DESCRIPTION
The tt_message_create_super() function creates a copy of the specified message and re-addresses
the copy of the message to the parent of the otype contained within the message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_create_super() function returns the opaque unique
handle for the re-addressed message. The application can use tt_ptr_error() to extract one of the
following Tt_status values from the returned handle:

TT_OK The operation completed successfully.

TT_ERR_ADDRESS
The specified Tt_address is invalid.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OBJID
The objid passed to the ToolTalk service does not reference an existing object
spec.

TT_ERR_OTYPE
The specified object type is not the name of an installed object type.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The otype of the message m can be determined using the tt_message_otype() function.

SEE ALSO
<Tt/tt_c.h>, tt_message_otype(), tt_message_send(), tt_message_destroy().

CHANGE HISTORY
First released in Issue 1.

128 X/Open CAE Specification

Message Services tt_message_destroy()

NAME
tt_message_destroy — destroy a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_destroy(Tt_message m);

DESCRIPTION
The tt_message_destroy() function destroys the message.

Destroying a message has no effect on the delivery of a message already sent.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_destroy() function returns the status of the operation
as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
If the application sent a request and is expecting a reply with return values, the application
should destroy the message after it have received the reply. If the application sends a notice, the
application can destroy the message immediately after it sends the notice.

SEE ALSO
<Tt/tt_c.h>, tt_message_create(), tt_message_create_super().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 129

tt_message_disposition() Message Services

NAME
tt_message_disposition — retrieve the disposition attribute from a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_disposition tt_message_disposition(Tt_message m);

DESCRIPTION
The tt_message_disposition () function retrieves the disposition attribute from the specified
message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_disposition () function returns a value that indicates
whether an instance of the receiving process should be started to receive the message
immediately, or whether the message is to be queued until the receiving process is started at a
later time. The tt_message_disposition () function returns one of the following Tt_disposition
values:

TT_DISCARD
There is no receiver for this message. The message will be returned to the sender
with the Tt_status field containing TT_FAILED.

TT_QUEUE
Queue the message until a process of the proper ptype receives the message.

TT_START
Attempt to start a process of the proper ptype if none is running.

TT_QUEUE+TT_START
Queue the message and attempt to start a process of the proper ptype if none is
running.

The application can use tt_int_error() to extract one of the following Tt_status values from the
Tt_disposition integer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_int_error().

CHANGE HISTORY
First released in Issue 1.

130 X/Open CAE Specification

Message Services tt_message_disposition_set()

NAME
tt_message_disposition_set — set the disposition attribute for a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_disposition_set(Tt_message m,
Tt_disposition r);

DESCRIPTION
The tt_message_disposition_set () function sets the disposition attribute for the specified message.

The m argument is the opaque handle for the message involved in this operation. The r
argument indicates whether an instance of the receiving process is to be started to receive the
message immediately, or whether the message is to be queued until the receiving process is
started at a later time. The following values are defined:

TT_DISCARD
There is no receiver for this message. The message will be returned to the sender
with the Tt_status field containing TT_FAILED.

TT_QUEUE
Queue the message until a process of the proper ptype receives the message.

TT_START
Attempt to start a process of the proper ptype if none is running.

TT_QUEUE+TT_START
Queue the message and attempt to start a process of the proper ptype if none is
running.

RETURN VALUE
Upon successful completion, the tt_message_disposition_set () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 131

tt_message_fail() Message Services

NAME
tt_message_fail — indicate a message cannot be handled

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_fail(Tt_message m);

DESCRIPTION
The tt_message_fail () function informs the ToolTalk service that the process cannot handle the
request just received.

This function also informs the ToolTalk service that the message is not be offered to other
processes of the same ptype. The ToolTalk service will send the message back to the sender with
state TT_FAILED.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_fail () function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NOTHANDLER
This application is not the handler for this message.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

The status value must be greater than TT_ERR_LAST to avoid confusion with the ToolTalk
service status values.

APPLICATION USAGE
To distinguish this case from the case where a message failed because no matching handler
could be found, the application should place an explanatory message code in the status attribute
of the message with tt_message_status_set() and tt_message_status_string_set() before calling
tt_message_fail ().

SEE ALSO
<Tt/tt_c.h>, tt_message_status_set(), tt_message_status_string_set().

CHANGE HISTORY
First released in Issue 1.

132 X/Open CAE Specification

Message Services tt_message_file()

NAME
tt_message_file — retrieves the file attribute from a message

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_message_file(Tt_message m);

DESCRIPTION
The tt_message_file() function retrieves the file attribute from the specified message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_file() function returns a string containing the file
attribute of the specified message. The application can use tt_ptr_error() to extract one of the
following Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 133

tt_message_file_set() Message Services

NAME
tt_message_file_set — set the file attribute for a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_file_set(Tt_message m,
const char ∗file);

DESCRIPTION
The tt_message_file_set() function sets the file attribute for the specified message.

The m argument is the opaque handle for the message involved in this operation. The file
argument is the name of the file involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_file_set() function returns the status of the operation
as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_FILE
The specified file does not exist or it is inaccessible.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

134 X/Open CAE Specification

Message Services tt_message_gid()

NAME
tt_message_gid — retrieve the group identifier attribute from a message

SYNOPSIS
#include <Tt/tt_c.h>

gid_t tt_message_gid(Tt_message m);

DESCRIPTION
The tt_message_gid() function retrieves the group identifier attribute from the specified message.

The ToolTalk service automatically sets the group identifier of a message with the group
identifier of the process that created the message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_gid() function returns the group identifier of the
message. If the group nobody is returned, the message handle is not valid.

SEE ALSO
<Tt/tt_c.h>, tt_message_uid().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 135

tt_message_handler() Message Services

NAME
tt_message_handler — retrieve the handler attribute from a message

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_message_handler(Tt_message m);

DESCRIPTION
The tt_message_handler() function retrieves the handler attribute from the specified message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_handler() function returns the character value that
uniquely identifies the process that is to handle the message (Tt_state = TT_CREATED or
TT_SENT) or the process that did handle the message (Tt_state = TT_SENT or TT_HANDLED).
The application can use tt_ptr_error() to extract one of the following Tt_status values from the
returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

136 X/Open CAE Specification

Message Services tt_message_handler_ptype()

NAME
tt_message_handler_ptype — retrieve the handler ptype attribute from a message

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_message_handler_ptype(Tt_message m);

DESCRIPTION
The tt_message_handler_ptype () function retrieves the handler ptype attribute from the specified
message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_handler_ptype () function returns the type of process
that should handle this message. The application can use tt_ptr_error() to extract one of the
following Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 137

tt_message_handler_ptype_set() Message Services

NAME
tt_message_handler_ptype_set — set the handler ptype attribute for a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_handler_ptype_set(Tt_message m,
const char ∗ptid);

DESCRIPTION
The tt_message_handler_ptype_set() function sets the handler ptype attribute for the specified
message.

The m argument is the opaque handle for the message involved in this operation. The ptid
argument is the type of process that is to handle this message.

RETURN VALUE
Upon successful completion, the tt_message_handler_ptype_set() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

138 X/Open CAE Specification

Message Services tt_message_handler_set()

NAME
tt_message_handler_set — set the handler attribute for a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_handler_set(Tt_message m,
const char ∗procid);

DESCRIPTION
The tt_message_handler_set() function sets the handler attribute for the specified message.

The m argument is the opaque handle for the message involved in this operation. The procid
argument is the character value that uniquely identifies the process that is to handle the
message.

RETURN VALUE
Upon successful completion, the tt_message_handler_set() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 139

tt_message_iarg_add() Message Services

NAME
tt_message_iarg_add — add a new argument to a message object

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_iarg_add(Tt_message m,
Tt_mode n,
const char ∗vtype ,
int value);

DESCRIPTION
The tt_message_iarg_add () function adds a new argument to a message object and sets the value
to a given integer.

Add all arguments before the message is sent. To change existing argument values, the
application must use only modes TT_OUT or TT_INOUT.

Adding arguments when replying to a message produces undefined results.

The m argument is the opaque handle for the message involved in this operation. The n
argument specifies who (sender, handler, observers) writes and reads a message argument. The
following modes are defined:

TT_IN The argument is written by the sender and read by the handler and any observers.

TT_OUT
The argument is written by the handler and read by the sender and any reply
observers.

TT_INOUT
The argument is written by the sender and the handler and read by all.

The vtype argument describes the type of argument data being added. The value argument is the
value to be added.

RETURN VALUE
Upon successful completion, the tt_message_iarg_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_MODE
The specified Tt_mode is invalid.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_message_arg_ival_set (), tt_message_arg_add (), tt_message_barg_add ().

CHANGE HISTORY
First released in Issue 1.

140 X/Open CAE Specification

Message Services tt_message_icontext_set()

NAME
tt_message_icontext_set — set the integer value of a message’s context

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_icontext_set(Tt_message m,
const char ∗slotname ,
int value);

DESCRIPTION
The tt_message_icontext_set() function sets the integer value of a message’s context.

This function overwrites any previous value associated with slotname .

The m argument is the opaque handle for the message involved in this operation. The slotname
argument describes the context of this message. The value argument is the integer value to be
set.

RETURN VALUE
Upon successful completion, the tt_message_icontext_set() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_SLOTNAME
The specified slotname is syntactically invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 141

tt_message_id() Message Services

NAME
tt_message_id — retrieve the identifier of a message

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_message_id(Tt_message m);

DESCRIPTION
The tt_message_id() function retrieves the identifier of the specified message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_id() function returns the character string value that
uniquely identifies the message across all running ToolTalk sessions. The identifier of the
message is set at its creation and never changes. The application can use tt_ptr_error() to extract
one of the following Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

142 X/Open CAE Specification

Message Services tt_message_object()

NAME
tt_message_object — retrieve the object attribute from a message

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_message_object(Tt_message m);

DESCRIPTION
The tt_message_object() function retrieves the object attribute from the specified message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_object() function returns the object involved in this
message. The application can use tt_ptr_error() to extract one of the following Tt_status values
from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OBJID
The objid passed to the ToolTalk service does not reference an existing object
spec.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 143

tt_message_object_set() Message Services

NAME
tt_message_object_set — set the object attribute for a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_object_set(Tt_message m,
const char ∗objid);

DESCRIPTION
The tt_message_object_set() function sets the object attribute for the specified message.

The m argument is the opaque handle for the message involved in this operation. The objid
argument is the identifier of the specified object.

RETURN VALUE
Upon successful completion, the tt_message_object_set() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

144 X/Open CAE Specification

Message Services tt_message_op()

NAME
tt_message_op — retrieve the operation attribute from a message

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_message_op(Tt_message m);

DESCRIPTION
The tt_message_op() function retrieves the operation attribute from the specified message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_op() function returns the operation which the
receiving process is to perform. The application can use tt_ptr_error() to extract one of the
following Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 145

tt_message_op_set() Message Services

NAME
tt_message_op_set — set the operation attribute for a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_op_set(Tt_message m,
const char ∗opname);

DESCRIPTION
The tt_message_op_set() function sets the operation attribute for the specified message.

The m argument is the opaque handle for the message involved in this operation. The opname
argument is the operation that the receiving process is to perform.

RETURN VALUE
Upon successful completion, the tt_message_op_set() function returns the status of the operation
as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

146 X/Open CAE Specification

Message Services tt_message_opnum()

NAME
tt_message_opnum — retrieve the operation number attribute from a message

SYNOPSIS
#include <Tt/tt_c.h>

int tt_message_opnum(Tt_message m);

DESCRIPTION
The tt_message_opnum() function retrieves the operation number attribute from the specified
message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_opnum() function returns the number of the
operation involved in this message. The application can use tt_int_error() to extract one of the
following Tt_status values from the returned integer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_int_error().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 147

tt_message_otype() Message Services

NAME
tt_message_otype — retrieve the object type attribute from a message

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_message_otype(Tt_message m);

DESCRIPTION
The tt_message_otype() function retrieves the object type attribute from the specified message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_otype() function returns the type of the object
involved in this message. The application can use tt_ptr_error() to extract one of the following
Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

148 X/Open CAE Specification

Message Services tt_message_otype_set()

NAME
tt_message_otype_set — set the otype attribute for a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_otype_set(Tt_message m,
const char ∗otype);

DESCRIPTION
The tt_message_otype_set() function sets the object type (otype) attribute for the specified
message.

The m argument is the opaque handle for the message involved in this operation. The otype
argument is the type of the object involved in this message.

RETURN VALUE
Upon successful completion, the tt_message_otype_set() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OTYPE
The specified object type is not the name of an installed object type.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 149

tt_message_pattern() Message Services

NAME
tt_message_pattern — return the pattern matched by a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_pattern tt_message_pattern(Tt_message m);

DESCRIPTION
The tt_message_pattern() function returns the pattern that the specified message matched.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_pattern() function returns the opaque handle for a
message pattern. The application can use tt_ptr_error() to determine if the handle is valid. The
tt_message_pattern() function returns one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

150 X/Open CAE Specification

Message Services tt_message_print()

NAME
tt_message_print — format a message

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_message_print(Tt_message ∗m);

DESCRIPTION
The tt_message_print() function formats a message in the same way a message is formatted for
the ttsession trace and returns a string containing it.

The m argument is the message to be formatted.

RETURN VALUE
Upon successful completion, the tt_message_print() function returns the formatted string. The
application can use tt_ptr_error() to extract one of the following Tt_status values from the
returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMEM
There is insufficient memory available to perform the function.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The tt_message_print() function allows an application to dump out messages that are received
but not understood.

The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_free(), tt_ptr_error().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 151

tt_message_receive() Message Services

NAME
tt_message_receive — receive a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_message tt_message_receive(void);

DESCRIPTION
The tt_message_receive() function returns a handle for the next message queued to be delivered to
the process and also runs any message or pattern callbacks applicable to the queued message.

If the return value of tt_message_status() for this message is TT_WRN_START_MESSAGE, the
ToolTalk service started the process to deliver the queued message; the process must reply to
this message. If the return value of tt_message_receive() is zero, no message is available.

RETURN VALUE
Upon successful completion, the tt_message_receive() function returns the handle for the message
object. The application can use tt_ptr_error() to extract one of the following Tt_status values
from the returned handle:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

APPLICATION USAGE
A zero value can occur if a message or pattern callback processes the message. It can also occur
if the interval is too long between the time the file descriptor became active and the
tt_message_receive() call was made. In the latter case, the ToolTalk service will time out and offer
the message to another process.

The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

152 X/Open CAE Specification

Message Services tt_message_reject()

NAME
tt_message_reject — reject a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_reject(Tt_message m);

DESCRIPTION
The tt_message_reject() function informs the ToolTalk service that the process cannot handle this
message. The ToolTalk service will attempt to deliver the message to other handlers.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_reject() function returns the status of the operation
as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NOTHANDLER
This application is not the handler for this message.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 153

tt_message_reply() Message Services

NAME
tt_message_reply — reply to a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_reply(Tt_message m);

DESCRIPTION
The tt_message_reply() function informs the ToolTalk service that the process has handled the
message and filled in all return values.

The ToolTalk service sends the message back to the sending process and fills in the state
attribute with TT_HANDLED.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_reply() function returns the status of the operation
as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NOTHANDLER
This application is not the handler for this message.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

154 X/Open CAE Specification

Message Services tt_message_scope()

NAME
tt_message_scope — retrieve the scope attribute from a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_scope tt_message_scope(Tt_message m);

DESCRIPTION
The tt_message_scope() function retrieves the scope attribute from the specified message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_scope() function returns a value that identifies the
set of processes eligible to receive the message. The following values are defined:

TT_SESSION
All processes joined to the indicated session are eligible.

TT_FILE
All processes joined to the indicated file are eligible.

TT_BOTH
All processes joined to either indicated file or the indicated session are eligible.

TT_FILE_IN_SESSION
All processes joined to both the indicated file and the indicated session are
eligible.

The application can use tt_int_error() to extract one of the following Tt_status values from the
Tt_scope integer return value:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_int_error().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 155

tt_message_scope_set() Message Services

NAME
tt_message_scope_set — set the scope attribute for a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_scope_set(Tt_message m,
Tt_scope s);

DESCRIPTION
The tt_message_scope_set() function sets the scope attribute for the specified message.

The m argument is the opaque handle for the message involved in this operation. The s
argument identifies the set of processes eligible to receive the message. The following values are
defined:

TT_SESSION
All processes joined to the indicated session are eligible.

TT_FILE
All processes joined to the indicated file are eligible.

TT_BOTH
All processes joined to either indicated file or the indicated session are eligible.

TT_FILE_IN_SESSION
All processes joined to both the indicated file and the indicated session are
eligible.

RETURN VALUE
Upon successful completion, the tt_message_scope_set() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

156 X/Open CAE Specification

Message Services tt_message_send()

NAME
tt_message_send — send a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_send(Tt_message m);

DESCRIPTION
The tt_message_send() function sends the specified message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_send() function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_ADDRESS
The specified Tt_address is invalid.

TT_ERR_CLASS
The specified Tt_class is invalid.

TT_ERR_FILE
The specified file does not exist or it is inaccessible.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OBJID
The objid passed to the ToolTalk service does not reference an existing object
spec.

TT_ERR_OTYPE
The specified object type is not the name of an installed object type.

TT_ERR_OVERFLOW
The ToolTalk service has more active messages than it can handle. (The
maximum number of active messages is implementation specific, but is at least
2000.)

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

TT_ERR_SESSION
The specified ToolTalk session is out of date or invalid.

TT_WRN_STALE_OBJID
The object attribute in the message has been replaced with a newer one.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 157

tt_message_send_on_exit() Message Services

NAME
tt_message_send_on_exit — set up a message to send upon unexpected exit

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_send_on_exit(Tt_message m);

DESCRIPTION
The tt_message_send_on_exit() function requests that the ToolTalk service send this message if
the process exits unexpectedly. The message is sent to the ToolTalk service, which queues the
message internally until either of two events occur:

1. The procid that sent the tt_message_send_on_exit() message to the ToolTalk service
calls tt_close(). In this case, the queued message is deleted.

2. The connection between the ttsession server and the process that sent the
tt_message_send_on_exit() message to the ToolTalk service is broken; for example, if
the application has crashed.

In this case, the ToolTalk service matches the queued message to its patterns and delivers it in
the same manner as if the process had sent the message normally before exiting.

If a process sends a normal termination message but exits without calling tt_close(), both the
normal termination message and the on_exit message are delivered.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_send_on_exit() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_ADDRESS
The specified Tt_address is invalid.

TT_ERR_CLASS
The specified Tt_class is invalid.

TT_ERR_FILE
The specified file does not exist or it is inaccessible.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OBJID
The objid passed to the ToolTalk service does not reference an existing object
spec.

SEE ALSO
<Tt/tt_c.h>, tt_close().

CHANGE HISTORY
First released in Issue 1.

158 X/Open CAE Specification

Message Services tt_message_sender()

NAME
tt_message_sender — retrieve the sender attribute from a message

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_message_sender(Tt_message m);

DESCRIPTION
The tt_message_sender() function retrieves the sender attribute from the specified message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_sender() function returns the character value that
uniquely identifies the sending process. The application can use tt_ptr_error() to extract one of
the following Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 159

tt_message_sender_ptype() Message Services

NAME
tt_message_sender_ptype — retrieve the sender ptype attribute from a message

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_message_sender_ptype(Tt_message m);

DESCRIPTION
The tt_message_sender_ptype() function retrieves the sender ptype attribute from the specified
message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_sender_ptype() function returns the sending process.
The application can use tt_ptr_error() to extract one of the following Tt_status values from the
returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

160 X/Open CAE Specification

Message Services tt_message_sender_ptype_set()

NAME
tt_message_sender_ptype_set — set the sender ptype attribute for a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_sender_ptype_set(Tt_message m,
const char ∗ptid);

DESCRIPTION
The tt_message_sender_ptype_set() function sets the sender ptype attribute for the specified
message.

The m argument is the opaque handle for the message involved in this operation. The ptid
argument is the type of process that is sending this message.

RETURN VALUE
Upon successful completion, the tt_message_sender_ptype_set() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 161

tt_message_session() Message Services

NAME
tt_message_session — retrieve the session attribute from a message

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_message_session(Tt_message m);

DESCRIPTION
The tt_message_session() function retrieves the session attribute from the specified message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_session() function returns the identifier of the
session to which this message applies. The application can use tt_ptr_error() to extract one of
the following Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

162 X/Open CAE Specification

Message Services tt_message_session_set()

NAME
tt_message_session_set — set the session attribute for a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_session_set(Tt_message m,
const char ∗sessid);

DESCRIPTION
The tt_message_session_set() function sets the session attribute for the specified message.

The m argument is the opaque handle for the message involved in this operation. The sessid
argument is the identifier of the session in which the process is interested.

RETURN VALUE
Upon successful completion, the tt_message_session_set() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 163

tt_message_state() Message Services

NAME
tt_message_state — retrieve the state attribute from a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_state tt_message_state(Tt_message m);

DESCRIPTION
The tt_message_state() function retrieves the state attribute from the specified message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_state() function returns a value that indicates the
current delivery state of the message. The tt_message_state() function returns one of the
following Tt_status values:

TT_CREATED
The message has been created, but not yet sent.

TT_SENT
The message has been sent, but not yet handled.

TT_HANDLED
The message has been handled; return values are valid.

TT_FAILED
The message could not be delivered to a handler.

TT_QUEUED
The message has been queued for delivery.

TT_STARTED
The ToolTalk service is attempting to start a process to handle the message.

TT_REJECTED
The message has been rejected by a possible handler.

The application can use tt_int_error() to extract one of the following Tt_status values from the
Tt_state integer return value:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_int_error().

CHANGE HISTORY
First released in Issue 1.

164 X/Open CAE Specification

Message Services tt_message_status()

NAME
tt_message_status — retrieve the status attribute from a message

SYNOPSIS
#include <Tt/tt_c.h>

int tt_message_status(Tt_message m);

DESCRIPTION
The tt_message_status() function retrieves the status attribute from the specified message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_status() function returns an integer that describes
the status stored in the status attribute of this message. The application can use tt_int_error() to
extract one of the following Tt_status values from the returned integer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_message_status_string(), tt_int_error().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 165

tt_message_status_set() Message Services

NAME
tt_message_status_set — set the status attribute for a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_status_set(Tt_message m,
int status);

DESCRIPTION
The tt_message_status_set() function sets the status attribute for the specified message.

The m argument is the opaque handle for the message involved in this operation. The status
argument is the status to be stored in this message.

RETURN VALUE
Upon successful completion, the tt_message_status_set() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

The status value must be greater than TT_ERR_LAST to avoid confusion with the ToolTalk
service status values.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

166 X/Open CAE Specification

Message Services tt_message_status_string()

NAME
tt_message_status_string — retrieve the character string stored with the status attribute for a
message

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_message_status_string(Tt_message m);

DESCRIPTION
The tt_message_status_string() function retrieves the character string stored with the status
attribute for the specified message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_status_string() function returns the status string
stored in this message. The application can use tt_ptr_error() to extract one of the following
Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_message_status(), tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 167

tt_message_status_string_set() Message Services

NAME
tt_message_status_string_set — set a character string with the status attribute for a message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_status_string_set(Tt_message m,
const char ∗status_str);

DESCRIPTION
The tt_message_status_string_set() function sets status string of the specified message.

The m argument is the opaque handle for the message involved in this operation. The status_str
argument is the status string to be stored in this message.

RETURN VALUE
Upon successful completion, the tt_message_status_string_set() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The status string should be used by the application developer to amplify on, for example, why
the application is failing a message.

SEE ALSO
<Tt/tt_c.h>, tt_message_status_set().

CHANGE HISTORY
First released in Issue 1.

168 X/Open CAE Specification

Message Services tt_message_uid()

NAME
tt_message_uid — retrieve the user identifier attribute from a message

SYNOPSIS
#include <Tt/tt_c.h>

uid_t tt_message_uid(Tt_message m);

DESCRIPTION
The tt_message_uid() function retrieves the user identifier attribute from the specified message.

The ToolTalk service automatically sets the user identifier of a message with the user identifier of
the process that created the message.

The m argument is the opaque handle for the message involved in this operation.

RETURN VALUE
Upon successful completion, the tt_message_uid() function returns the user identifier of the
message. If the group nobody is returned, the message handle is not valid.

SEE ALSO
<Tt/tt_c.h>, tt_message_gid().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 169

tt_message_user() Message Services

NAME
tt_message_user — retrieve the user information associated with a message object

SYNOPSIS
#include <Tt/tt_c.h>

void ∗tt_message_user(Tt_message m,
int key);

DESCRIPTION
The tt_message_user() function retrieves the user information stored in data cells associated with
the specified message object.

The user data is part of the message object (that is, the storage buffer in the application); it is not
a part of the actual message. The application can, therefore, only retrieve user information that
the application placed in the message.

The m argument is the opaque handle for the message involved in this operation. The key
argument is the user data cell to be retrieved. The user data cell must be unique for this
message.

RETURN VALUE
Upon successful completion, the tt_message_user() function returns the data cell, a piece of
arbitrary user data that can hold a void ∗. The application can use tt_ptr_error() to extract one of
the following Tt_status values from the returned data:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

The user data cell is intended to hold an address. If the address selected is equal to one of the
Tt_status enumerated values, the result of the tt_ptr_error() function will not be reliable.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

170 X/Open CAE Specification

Message Services tt_message_user_set()

NAME
tt_message_user_set — stores user information associated with a message object

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_user_set(Tt_message m,
int key ,
void ∗v);

DESCRIPTION
The tt_message_user_set() function stores user information in data cells associated with the
specified message object.

The user data is part of the message object (that is, the storage buffer in the application); it is not
part of the actual message. Data stored by the sending process in user data cells is not seen by
handlers and observers. The application can use arguments for data that needs to be seen by
handlers or observers.

The m argument is the opaque handle for the message involved in this operation. The key
argument is the user data cell in which user information is to be stored. The v argument is the
data cell, a piece of arbitrary user data that can hold a void ∗.

RETURN VALUE
Upon successful completion, the tt_message_user_set() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

SEE ALSO
<Tt/tt_c.h>, tt_message_arg_add ().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 171

tt_message_xarg_add() Message Services

NAME
tt_message_xarg_add — add an argument with an XDR-interpreted value to a message object

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_xarg_add(Tt_message m,
Tt_mode n,
const char ∗vtype ,
xdrproc_t xdr_proc ,
void ∗value);

DESCRIPTION
The tt_message_xarg_add () function adds an argument with an XDR-interpreted value to a
message object.

To change existing argument values, the application must use only modes TT_OUT or
TT_INOUT.

Adding arguments when replying to a message produces undefined results.

The m argument is the opaque handle for the message involved in this operation. The n
argument specifies who (sender, handler, observers) writes and reads a message argument. The
following modes are defined:

TT_IN The argument is written by the sender and read by the handler and any observers.

TT_OUT
The argument is written by the handler and read by the sender and any reply
observers.

TT_INOUT
The argument is written by the sender and the handler and read by all.

The vtype argument describes the type of argument data being added. The xdr_proc argument
points to the XDR procedure to be used to serialise the data pointed to by value . The value
argument is the data to be serialised.

RETURN VALUE
Upon successful completion, the tt_message_xarg_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_MODE
The specified Tt_mode is invalid.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_XDR
The XDR procedure failed on the given data, or evaluated to a zero-length
expression.

172 X/Open CAE Specification

Message Services tt_message_xarg_add()

SEE ALSO
<Tt/tt_c.h>; the referenced XDR specification.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 173

tt_message_xcontext_join() Message Services

NAME
tt_message_xcontext_join — add an XDR-interpreted byte-array to the list of values

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_xcontext_join(const char ∗slotname ,
xdrproc_t xdr_proc ,
void ∗value);

DESCRIPTION
The tt_message_xcontext_join () function adds the given XDR-interpreted byte-array value to the
list of values for the named contexts of all patterns.

The slotname argument describes the slotname in this message. The xdr_proc argument points to
the XDR procedure to be used to serialise the data pointed to by value . The value argument is the
data to be serialised.

RETURN VALUE
Upon successful completion, the tt_message_xcontext_join () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_SLOTNAME
The specified slotname is syntactically invalid.

TT_ERR_XDR
The XDR procedure failed on the given data, or evaluated to a zero-length
expression.

SEE ALSO
<Tt/tt_c.h>; the referenced XDR specification.

CHANGE HISTORY
First released in Issue 1.

174 X/Open CAE Specification

Message Services tt_message_xcontext_set()

NAME
tt_message_xcontext_set — set the XDR-interpreted byte-array value of a message’s context

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_message_xcontext_set(Tt_message m,
const char ∗slotname ,
xdrproc_t xdr_proc ,
void ∗value);

DESCRIPTION
The tt_message_xcontext_set() function sets the XDR-interpreted byte-array value of a message’s
context.

The m argument is the opaque handle for the message involved in this operation. The slotname
argument describes the slotname in this message. The value argument is the byte string with the
contents for the message argument. The xdr_proc argument points to the XDR procedure to be
used to serialise the data pointed to by value . The value argument is the data to be serialised.

RETURN VALUE
Upon successful completion, the tt_message_xcontext_set() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer does not point at an object of the correct type for this operation.

TT_ERR_SLOTNAME
The specified slotname is syntactically invalid.

TT_ERR_XDR
The XDR procedure failed on the given data, or evaluated to a zero-length
expression.

SEE ALSO
<Tt/tt_c.h>; the referenced XDR specification.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 175

tt_netfile_file() Message Services

NAME
tt_netfile_file — map between canonical and local pathnames on the local host

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_netfile_file(const char ∗netfilename);

DESCRIPTION
The tt_netfile_file() function converts a netfilename of the format returned by tt_file_netfile() to a
pathname that is valid on the local host. If the file is not currently mounted on the local host,
tt_netfile_file() constructs a pathname of the form:

/mountpoint/host/filepath

where mountpoint is the mount point pathname in the environment variable DTMOUNTPOINT,
or /net if the variable is null or unset.

The netfilename argument is a copy of a null-terminated string returned by tt_netfile_file() or
tt_host_netfile_file().

RETURN VALUE
Upon successful completion, the tt_netfile_file() function returns a null-terminated local
filename; otherwise, it returns an error pointer. The application can use tt_ptr_error() to extract
one of the following Tt_status values from the returned pointer:

TT_ERR_NETFILE
The netfilename argument is not a valid netfilename.

APPLICATION USAGE
The tt_file_netfile(), tt_netfile_file(), tt_host_file_netfile() and tt_host_netfile_file() functions allow
an application to determine a path valid on remote hosts, perhaps for purposes of constructing a
command string valid for remote execution on that host. By composing the two calls, paths for
files not accessible from the current host can be constructed. For example, if path /sample/file is
valid on host A, a program running on host B can use

tt_host_netfile_file("C", tt_host_file_netfile("A", "/sample/file"))

to determine a path to the same file valid on host C, if such a path is possible.

The netfilename string input to tt_netfile_file() should be considered opaque; the content and
format of the strings are not a public interface. These strings can be safely copied (with strcpy()
or similar methods), written to files, or transmitted to other processes, perhaps on other hosts.

The mountpoint value is intended to be the mount point for the automounter’s host map on those
systems supporting automounting services.

Allocated strings should be freed using either tt_free() or tt_release().

The tt_open() function need not be called before tt_netfile_file().

SEE ALSO
<Tt/tt_c.h>, tt_file_netfile(), tt_host_file_netfile(), tt_host_netfile_file(), tt_open(), tt_free(),
tt_release().

CHANGE HISTORY
First released in Issue 1.

176 X/Open CAE Specification

Message Services tt_objid_equal()

NAME
tt_objid_equal — test whether two objids are equal

SYNOPSIS
#include <Tt/tt_c.h>

int tt_objid_equal(const char ∗objid1 ,
const char ∗objid2);

DESCRIPTION
The tt_objid_equal () function tests whether two objids are equal.

The tt_objid_equal () function is recommended rather than strcmp() for this purpose because the
tt_objid_equal () function returns 1 even in the case where one objid is a forwarding pointer for
the other.

The objid1 argument is the identifier of the first object involved in this operation. The objid2
argument is the identifier of the second object involved in this operation.

RETURN VALUE
Upon successful completion, the tt_objid_equal () function returns an integer that indicates
whether the objids are equal. The application can use tt_int_error() to extract one of the
following Tt_status values from the returned integer:

0 The objid1 and objid2 objects are not equal.

1 The objid1 and objid2 objects are equal.

The application can use tt_int_error() to determine if the integer is valid. The tt_objid_equal ()
function returns one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OBJID
The objid passed to the ToolTalk service does not reference an existing object
spec.

SEE ALSO
<Tt/tt_c.h>, tt_int_error().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 177

tt_objid_objkey() Message Services

NAME
tt_objid_objkey — return the unique key of an objid

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_objid_objkey(const char ∗objid);

DESCRIPTION
The tt_objid_objkey () function returns the unique key of an objid.

The objid argument is the identifier of the object involved in this operation.

RETURN VALUE
Upon successful completion, the tt_objid_objkey () function returns the unique key of the objid .
No two objids have the same unique key. The application can use tt_ptr_error() to extract one of
the following Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_OBJID
The objid passed to the ToolTalk service does not reference an existing object spec.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

178 X/Open CAE Specification

Message Services tt_onotice_create()

NAME
tt_onotice_create — create a notice

SYNOPSIS
#include <Tt/tt_c.h>

Tt_message tt_onotice_create(const char ∗objid ,
const char ∗op);

DESCRIPTION
The tt_onotice_create () function creates a message. The created message contains the following:

Tt_address = TT_OBJECT
Tt_class = TT_NOTICE

The application can use the returned handle to add arguments and other attributes, and to send
the message.

The objid argument is the identifier of the specified object. The op argument is the operation to
be performed by the receiving process.

RETURN VALUE
Upon successful completion, the tt_onotice_create () function returns the unique handle that
identifies the message. The application can use tt_ptr_error() to extract one of the following
Tt_status values from the returned handle:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 179

tt_open() Message Services

NAME
tt_open — return the process identifier for the calling process

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_open(void);

DESCRIPTION
The tt_open() function returns the process identifier for the calling process.

RETURN VALUE
The tt_open() function also sets this identifier as the default procid for the process. The tt_open()
function is typically the first ToolTalk function called by a process.

The application must call tt_open() before other tt_ calls are made. However, there are two
exceptions: tt_default_session_set () and tt_X_session() can be called before tt_open().

A process can call tt_open() more than once to obtain multiple procids. To open another session,
the process must make the following calls in the order specified:

tt_default_session_set ()
tt_open()

RETURN VALUE
Upon successful completion, the tt_open() function returns the character value that uniquely
identifies the process. The application can use tt_ptr_error() to extract one of the following
Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

Each procid has its own associated file descriptor, and can join another session. To switch to
another procid, the application should call tt_default_procid_set ().

SEE ALSO
<Tt/tt_c.h>, tt_fd(), tt_default_procid (), tt_default_procid_set (), tt_default_session (),
tt_default_session_set (), tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

180 X/Open CAE Specification

Message Services tt_orequest_create()

NAME
tt_orequest_create — create a request message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_message tt_orequest_create(const char ∗objid ,
const char ∗op);

DESCRIPTION
The tt_orequest_create() function creates a message. The created message contains the following:

Tt_address = TT_OBJECT
Tt_class = TT_REQUEST

The application can use the returned handle to add arguments and other attributes, and to send
the message.

The objid argument is the identifier of the specified object. The op argument is the operation to
be performed by the receiving process.

RETURN VALUE
Upon successful completion, the tt_orequest_create() function returns the unique handle that
identifies the message. The application can use tt_ptr_error() to extract one of the following
Tt_status values from the returned handle:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 181

tt_otype_base() Message Services

NAME
tt_otype_base — return the base otype of an otype

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_otype_base(const char ∗otype);

DESCRIPTION
The tt_otype_base() function returns the base otype of the given otype, or NULL if the given
otype is not derived.

The otype argument is the object type involved in this operation.

RETURN VALUE
Upon successful completion, the tt_otype_base() function returns the name of the base otype; if
the given otype is not derived, this value is NULL. The application can use tt_ptr_error() to
extract one of the following Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OTYPE
The specified object type is not the name of an installed object type.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_otype_is_derived (), tt_otype_derived (), tt_otype_deriveds_count (), tt_spec_type(),
tt_message_otype(), tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

182 X/Open CAE Specification

Message Services tt_otype_derived()

NAME
tt_otype_derived — return the ith otype derived from the given otype

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_otype_derived(const char ∗otype ,
int i);

DESCRIPTION
The tt_otype_derived () function returns the ith otype derived from the given otype.

The otype argument is the object type involved in this operation. The i argument is the zero-
based index into the otypes derived from the given otype.

RETURN VALUE
Upon successful completion, the tt_otype_derived () function returns the name of the ith otype
derived from the given otype. The application can use tt_ptr_error() to extract one of the
following Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OTYPE
The specified object type is not the name of an installed object type.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_otype_is_derived (), tt_otype_base(), tt_otype_deriveds_count (), tt_spec_type(),
tt_message_otype(), tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 183

tt_otype_deriveds_count() Message Services

NAME
tt_otype_deriveds_count — return the number of otypes derived from an otype

SYNOPSIS
#include <Tt/tt_c.h>

int tt_otype_deriveds_count(const char ∗otype);

DESCRIPTION
The tt_otype_deriveds_count () function returns the number of otypes derived from the given
otype.

The otype argument is the object type involved in this operation.

RETURN VALUE
Upon successful completion, the tt_otype_deriveds_count () function returns the number of otypes
derived from the given otype. The application can use tt_int_error() to extract one of the
following Tt_status values from the returned integer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OTYPE
The specified object type is not the name of an installed object type.

SEE ALSO
<Tt/tt_c.h>, tt_otype_is_derived (), tt_otype_base(), tt_otype_derived (), tt_spec_type(),
tt_message_otype(), tt_int_error().

CHANGE HISTORY
First released in Issue 1.

184 X/Open CAE Specification

Message Services tt_otype_hsig_arg_mode()

NAME
tt_otype_hsig_arg_mode — return the mode of an argument of a request signature of an otype

SYNOPSIS
#include <Tt/tt_c.h>

Tt_mode tt_otype_hsig_arg_mode(const char ∗otype ,
int sig ,
int arg);

DESCRIPTION
The tt_otype_hsig_arg_mode () function returns the mode of the argth argument of the sigth
request signature of the given otype.

The otype argument is the object type involved in this operation. The sig argument is the zero-
based index into the request signatures of the specified otype. The arg argument is the zero-
based index into the arguments of the specified signature.

RETURN VALUE
Upon successful completion, the tt_otype_hsig_arg_mode () function returns a value that
determines who (sender or handler) writes and reads a message argument. The following
modes are defined:

TT_IN The argument is written by the sender and read by the handler and any observers.

TT_OUT
The argument is written by the handler and read by the sender and any reply
observers.

TT_INOUT
The argument is written by the sender and the handler and read by all.

The application can use tt_int_error() to extract one of the following Tt_status values from the
Tt_mode integer return value:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_OTYPE
The specified object type is not the name of an installed object type.

SEE ALSO
<Tt/tt_c.h>, tt_otype_hsig_arg_type (), tt_otype_hsig_count (), tt_otype_hsig_args_count (),
tt_otype_hsig_op (), tt_int_error().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 185

tt_otype_hsig_arg_type() Message Services

NAME
tt_otype_hsig_arg_type — return the data type of an argument of a request signature of an
otype

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_otype_hsig_arg_type(const char ∗otype ,
int sig ,
int arg);

DESCRIPTION
The tt_otype_hsig_arg_type () function returns the data type of the argth argument of the sigth
request signature of the given otype.

The otype argument is the object type involved in this operation. The sig argument is the zero-
based index into the request signatures of the specified otype. The arg argument is the zero-
based index into the arguments of the specified signature.

RETURN VALUE
Upon successful completion, the tt_otype_hsig_arg_type () function returns the data type of the
specified argument. The application can use tt_ptr_error() to extract one of the following
Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_OTYPE
The specified object type is not the name of an installed object type.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_otype_hsig_arg_mode (), tt_otype_hsig_count (), tt_otype_hsig_args_count (),
tt_otype_hsig_op (), tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

186 X/Open CAE Specification

Message Services tt_otype_hsig_args_count()

NAME
tt_otype_hsig_args_count — return the number of arguments of a request signature of an otype

SYNOPSIS
#include <Tt/tt_c.h>

int tt_otype_hsig_args_count(const char ∗otype ,
int sig);

DESCRIPTION
The tt_otype_hsig_args_count () function returns the number of arguments of the sigth request
signature of the given otype.

The otype argument is the object type involved in this operation. The sig argument is the zero-
based index into the request signatures of the specified otype.

RETURN VALUE
Upon successful completion, the tt_otype_hsig_args_count () function returns the number of
arguments of the sigth request signature of the given otype. The application can use
tt_int_error() to extract one of the following Tt_status values from the returned integer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_OTYPE
The specified object type is not the name of an installed object type.

SEE ALSO
<Tt/tt_c.h>, tt_otype_hsig_arg_type (), tt_otype_hsig_arg_mode (), tt_otype_hsig_count (),
tt_otype_hsig_op (), tt_int_error().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 187

tt_otype_hsig_count() Message Services

NAME
tt_otype_hsig_count — return the number of request signatures for an otype

SYNOPSIS
#include <Tt/tt_c.h>

int tt_otype_hsig_count(const char ∗otype);

DESCRIPTION
The tt_otype_hsig_count () function returns the number of request signatures for the given otype.

The otype argument is the object type involved in this operation.

RETURN VALUE
Upon successful completion, the tt_otype_hsig_count () function returns the number of request
signatures for the given otype. The application can use tt_int_error() to extract one of the
following Tt_status values from the returned integer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OTYPE
The specified object type is not the name of an installed object type.

SEE ALSO
<Tt/tt_c.h>, tt_otype_hsig_arg_type (), tt_otype_hsig_arg_mode (), tt_otype_hsig_args_count (),
tt_otype_hsig_op (), tt_int_error().

CHANGE HISTORY
First released in Issue 1.

188 X/Open CAE Specification

Message Services tt_otype_hsig_op()

NAME
tt_otype_hsig_op — return the operation name of a request signature of an otype

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_otype_hsig_op(const char ∗otype ,
int sig);

DESCRIPTION
The tt_otype_hsig_op () function returns the operation name of the sigth request signature of the
given otype.

The otype argument is the object type involved in this operation. The sig argument is the zero-
based index into the request signatures of the given otype.

RETURN VALUE
Upon successful completion, the tt_otype_hsig_op () function returns the operation attribute of
the specified request signature. The application can use tt_ptr_error() to extract one of the
following Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_OTYPE
The specified object type is not the name of an installed object type.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_otype_hsig_arg_type (), tt_otype_hsig_arg_mode (), tt_otype_hsig_args_count (),
tt_otype_hsig_count (), tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 189

tt_otype_is_derived() Message Services

NAME
tt_otype_is_derived — indicate the otype derivations

SYNOPSIS
#include <Tt/tt_c.h>

int tt_otype_is_derived(const char ∗derivedotype ,
const char ∗baseotype);

DESCRIPTION
The tt_otype_is_derived () function specifies whether the derived otype is derived directly or
indirectly from the base otype.

The derivedotype argument is the specified derived otype. The baseotype argument is the specified
base otype.

RETURN VALUE
Upon successful completion, the tt_otype_is_derived () function returns 1 if the derivedotype is
derived directly or indirectly from baseotype ; otherwise, it returns zero.

The application can use tt_int_error() to extract one of the following Tt_status values from the
returned integer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OTYPE
The specified object type is not the name of an installed object type.

SEE ALSO
<Tt/tt_c.h>, tt_otype_deriveds_count (), tt_otype_base(), tt_otype_derived (), tt_spec_type(),
tt_message_otype(), tt_int_error().

CHANGE HISTORY
First released in Issue 1.

190 X/Open CAE Specification

Message Services tt_otype_opnum_callback_add()

NAME
tt_otype_opnum_callback_add — return a callback if two opnums are equal

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_otype_opnum_callback_add(const char ∗otid ,
int opnum,
Tt_message_callback f);

DESCRIPTION
The tt_otype_opnum_callback_add () function adds a callback that is automatically invoked when
a message is delivered because it matched a pattern derived from a signature in the named
otype with an opnum equal to the specified one. The callback is defined in <Tt/tt_c.h>.

The otid argument is the identifier of the object type involved in this operation. The opnum
argument is the opnum of the specified otype. The f argument is the message callback to be run.

RETURN VALUE
Upon successful completion, the tt_otype_opnum_callback_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_OTYPE
The specified object type is not the name of an installed object type.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

APPLICATION USAGE
The tt_otype_opnum_callback_add () function will only be called for messages delivered by virtue
of matching handler signatures. The callback cannot be called for observer signatures because
the observer ptype is not recorded in the incoming message.

SEE ALSO
<Tt/tt_c.h>, tt_message_callback_add ().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 191

tt_otype_osig_arg_mode() Message Services

NAME
tt_otype_osig_arg_mode — return the mode of an argument of a notice signature of an otype

SYNOPSIS
#include <Tt/tt_c.h>

Tt_mode tt_otype_osig_arg_mode(const char ∗otype ,
int sig ,
int arg);

DESCRIPTION
The tt_otype_osig_arg_mode () function returns the mode of the argth argument of the sigth notice
signature of the given otype.

The otype argument is the object type involved in this operation. The sig argument is the zero-
based index into the notice signatures of the specified otype. The arg argument is the zero-based
index into the arguments of the specified signature.

RETURN VALUE
Upon successful completion, the tt_otype_osig_arg_mode () function returns a value that
determines who (sender or handler) writes and reads a message argument. The following
modes are defined:

TT_IN The argument is written by the sender and read by the handler and any observers.

TT_OUT
The argument is written by the handler and read by the sender and any reply
observers.

TT_INOUT
The argument is written by the sender and the handler and read by all.

The application can use tt_int_error() to extract one of the following Tt_status values from the
Tt_mode integer return value:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_OTYPE
The specified object type is not the name of an installed object type.

SEE ALSO
<Tt/tt_c.h>, tt_otype_osig_arg_type (), tt_otype_osig_count (), tt_otype_osig_args_count (),
tt_otype_osig_op (), tt_int_error().

CHANGE HISTORY
First released in Issue 1.

192 X/Open CAE Specification

Message Services tt_otype_osig_arg_type()

NAME
tt_otype_osig_arg_type — return the data type of an argument of a notice signature of an otype

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_otype_osig_arg_type(const char ∗otype ,
int sig ,
int arg);

DESCRIPTION
The tt_otype_osig_arg_type () function returns the data type of the argth argument of the sigth
notice signature of the given otype.

The otype argument is the object type involved in this operation. The sig argument is the zero-
based index into the notice signatures of the specified otype. The arg argument is the zero-based
index into the arguments of the specified signature.

RETURN VALUE
Upon successful completion, the tt_otype_osig_arg_type () function returns the data type of the
specified argument. The application can use tt_ptr_error() to extract one of the following
Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_OTYPE
The specified object type is not the name of an installed object type.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_otype_osig_arg_mode (), tt_otype_osig_count (), tt_otype_osig_args_count (),
tt_otype_osig_op (), tt_free().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 193

tt_otype_osig_args_count() Message Services

NAME
tt_otype_osig_args_count — returns the number of arguments of a notice signature of an otype

SYNOPSIS
#include <Tt/tt_c.h>

int tt_otype_osig_args_count(const char ∗otype ,
int sig);

DESCRIPTION
The tt_otype_osig_args_count () function returns the number of arguments of the sigth notice
signature of the given otype.

The otype argument is the object type involved in this operation. The sig argument is the zero-
based index into the notice signatures of the specified otype.

RETURN VALUE
Upon successful completion, the tt_otype_osig_args_count () function returns the number of
arguments of the sigth notice signature of the given otype. The application can use tt_int_error()
to extract one of the following Tt_status values from the returned integer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_OTYPE
The specified object type is not the name of an installed object type.

SEE ALSO
<Tt/tt_c.h>, tt_otype_osig_arg_type (), tt_otype_osig_arg_mode (), tt_otype_osig_count (),
tt_otype_osig_op (), tt_int_error().

CHANGE HISTORY
First released in Issue 1.

194 X/Open CAE Specification

Message Services tt_otype_osig_count()

NAME
tt_otype_osig_count — return the number of notice signatures for an otype

SYNOPSIS
#include <Tt/tt_c.h>

int tt_otype_osig_count(const char ∗otype);

DESCRIPTION
The tt_otype_osig_count () function returns the number of notice signatures for the given otype.

The otype argument is the object type involved in this operation.

RETURN VALUE
Upon successful completion, the tt_otype_osig_count () function returns the number of notice
signatures for the given otype. The application can use tt_int_error() to extract one of the
following Tt_status values from the returned integer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OTYPE
The specified object type is not the name of an installed object type.

SEE ALSO
<Tt/tt_c.h>, tt_otype_osig_arg_type (), tt_otype_osig_arg_mode (), tt_otype_osig_args_count (),
tt_otype_osig_op (), tt_int_error().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 195

tt_otype_osig_op() Message Services

NAME
tt_otype_osig_op — return the op name of a notice signature of an otype

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_otype_osig_op(const char ∗otype ,
int sig);

DESCRIPTION
The tt_otype_osig_op () function returns the op name of the sigth notice signature of the given
otype.

The otype argument is the object type involved in this operation. The sig argument is the zero-
based index into the notice signatures of the given otype.

RETURN VALUE
Upon successful completion, the tt_otype_osig_op () function returns the operation attribute of
the specified notice signature. The application can use tt_ptr_error() to extract one of the
following Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_OTYPE
The specified object type is not the name of an installed object type.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_otype_osig_arg_type (), tt_otype_osig_arg_mode (), tt_otype_osig_args_count (),
tt_otype_osig_count (), tt_free().

CHANGE HISTORY
First released in Issue 1.

196 X/Open CAE Specification

Message Services tt_pattern_address_add()

NAME
tt_pattern_address_add — add a value to the address field for a pattern

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_address_add(Tt_pattern p,
Tt_address d);

DESCRIPTION
The tt_pattern_address_add () function adds a value to the address field for the specified pattern.

The p argument is a unique handle for a message pattern. This handle is returned after a
tt_pattern_create() call has been made.

The d argument specifies which pattern attributes form the address that messages will be
matched against. The following values are defined:

TT_HANDLER
The message is addressed to a specific handler that can perform this operation
with these arguments.

TT_OBJECT
The message is addressed to a specific object that can perform this operation with
these arguments.

TT_OTYPE
The message is addressed to the type of object that can perform this operation
with these arguments.

TT_PROCEDURE
The message is addressed to any process that can perform this operation with
these arguments.

RETURN VALUE
Upon successful completion, the tt_pattern_address_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_create().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 197

tt_pattern_arg_add() Message Services

NAME
tt_pattern_arg_add — add an argument to a pattern

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_arg_add(Tt_pattern p,
Tt_mode n,
const char ∗vtype ,
const char ∗value);

DESCRIPTION
The tt_pattern_arg_add () function adds an argument to a pattern. The application must add
pattern arguments before it registers the pattern with the ToolTalk service.

The p argument is the opaque handle for the pattern involved in this operation The n argument
specifies who (sender, handler, observers) writes and reads a message argument. The following
modes are defined:

TT_IN The argument is written by the sender and read by the handler and any observers.

TT_OUT
The argument is written by the handler and read by the sender and any reply
observers.

TT_INOUT
The argument is written by the sender and the handler and read by all.

The vtype argument describes the type of argument data being added. The type ALL matches
any argument value type. The value argument is the value to fill in. This value must be an
unsigned character string. A NULL matches any value.

RETURN VALUE
Upon successful completion, the tt_pattern_arg_add () function returns the status of the operation
as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_register(), tt_pattern_barg_add (), tt_pattern_iarg_add ().

CHANGE HISTORY
First released in Issue 1.

198 X/Open CAE Specification

Message Services tt_pattern_barg_add()

NAME
tt_pattern_barg_add — add an argument with a value that contains embedded nulls to a pattern

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_barg_add(Tt_pattern m,
Tt_mode n,
const char ∗vtype ,
const unsigned char ∗value ,
int len);

DESCRIPTION
The tt_pattern_barg_add () function adds an argument with a value that contains embedded nulls
to a pattern.

The m argument is the opaque handle for the pattern involved in this operation. The n argument
specifies who (sender, handler, observers) writes and reads a message argument. The following
modes are defined:

TT_IN The argument is written by the sender and read by the handler and any observers.

TT_OUT
The argument is written by the handler and read by the sender and any reply
observers.

TT_INOUT
The argument is written by the sender and the handler and read by all.

The vtype argument describes the type of argument data being added. Type ALL matches any
argument value type.

The ToolTalk service treats the value as an opaque byte string. To pass structured data, the
application and the receiving application must encode and decode these unique values. The
most common method to use is XDR.

The value argument is the value to be added. NULL matches any value.

The len argument is the length of the value in bytes.

RETURN VALUE
Upon successful completion, the tt_pattern_barg_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_register(), tt_pattern_arg_add (), tt_pattern_iarg_add (); the referenced XDR
specification.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 199

tt_pattern_bcontext_add() Message Services

NAME
tt_pattern_bcontext_add — add a byte-array value to the values in this pattern’s named context

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_bcontext_add(Tt_pattern p,
const char ∗slotname ,
const unsigned char ∗value ,
int length);

DESCRIPTION
The tt_pattern_bcontext_add () function adds a byte-array value to the values in this pattern’s
named context.

The p argument is the opaque handle for the pattern involved in this operation. The slotname
argument describes the context for this pattern. The value argument is the byte string with the
contents for the message context. The length argument is the length of the value in bytes.

RETURN VALUE
Upon successful completion, the tt_pattern_bcontext_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_UNIMP
The ToolTalk function called is not implemented.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_SLOTNAME
The specified slotname is syntactically invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

200 X/Open CAE Specification

Message Services tt_pattern_callback_add()

NAME
tt_pattern_callback_add — register a message-matching callback function

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_callback_add(Tt_pattern m,
Tt_message_callback f);

DESCRIPTION
The tt_pattern_callback_add () function registers a callback function that will be automatically
invoked by tt_message_receive() whenever a message matches the pattern.

The callback is defined in <Tt/tt_c.h>. If the callback returns TT_CALLBACK_CONTINUE,
other callbacks will be run; if no callback returns TT_CALLBACK_PROCESSED,
tt_message_receive() returns the message. If the callback returns TT_CALLBACK_PROCESSED,
no further callbacks will be invoked for this event; tt_message_receive() does not return the
message.

The m argument is the opaque handle for the pattern involved in this operation.

The f argument is the message callback to be run.

RETURN VALUE
Upon successful completion, the tt_pattern_callback_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_register(), tt_message_receive().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 201

tt_pattern_category() Message Services

NAME
tt_pattern_category — return the category value of a pattern

SYNOPSIS
#include <Tt/tt_c.h>

Tt_category tt_pattern_category(Tt_pattern p);

DESCRIPTION
The tt_pattern_category () function returns the category value of the specified pattern.

The p argument is the opaque handle for a message pattern.

RETURN VALUE
Upon successful completion, the tt_pattern_category () function returns a value that indicates
whether the receiving process will observe or handle messages. The tt_pattern_category ()
function returns one of the following Tt_status values:

TT_OBSERVE
The receiving process will observe messages.

TT_HANDLE
The receiving process will handle messages.

The application can use tt_int_error() to extract one of the following Tt_status values from the
Tt_category integer return value:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_category_set (), tt_int_error().

CHANGE HISTORY
First released in Issue 1.

202 X/Open CAE Specification

Message Services tt_pattern_category_set()

NAME
tt_pattern_category_set — fill in the category field for a pattern

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_category_set(Tt_pattern p,
Tt_category c);

DESCRIPTION
The tt_pattern_category_set () function fills in the category field for the specified pattern.

The p argument is a unique handle for a message pattern. This handle is returned after
tt_pattern_create() is called.

The c argument indicates whether the receiving process will observe or handle messages. The
following values are defined:

TT_OBSERVE
The receiving process will observe messages.

TT_HANDLE
The receiving process will handle messages.

RETURN VALUE
Upon successful completion, the tt_pattern_category_set () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_CATEGORY
The pattern object has no category set.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_category (), tt_pattern_create().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 203

tt_pattern_class_add() Message Services

NAME
tt_pattern_class_add — add a value to the class information for a pattern

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_class_add(Tt_pattern p,
Tt_class c);

DESCRIPTION
The tt_pattern_class_add () function adds a value to the class information for the specified
pattern.

If the class is TT_REQUEST, the sending process expects a reply to the message.

If the class is TT_NOTICE, the sending process does not expect a reply to the message.

The p argument is a unique handle for a message pattern. This handle is returned after
tt_pattern_create() is called. The c argument indicates whether the receiving process is to take
action after the message is received. The following values are defined:

TT_NOTICE
A notice of an event. The sender does not want feedback on this message.

TT_REQUEST
A request for some action to be taken. The sender must be notified of progress,
success or failure, and must receive any return values.

RETURN VALUE
Upon successful completion, the tt_pattern_class_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_create().

CHANGE HISTORY
First released in Issue 1.

204 X/Open CAE Specification

Message Services tt_pattern_context_add()

NAME
tt_pattern_context_add — add a string value to the values of this pattern’s context

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_context_add(Tt_pattern p,
const char ∗slotname ,
const char ∗value);

DESCRIPTION
The tt_pattern_context_add () function adds a string value to the values of this pattern’s context.

If the value pointer is NULL, a slot is created with the specified name but no value is added.

The p argument is the opaque handle for the pattern involved in this operation. The slotname
argument describes the context of this pattern. The value argument is the value to be added.

RETURN VALUE
Upon successful completion, the tt_pattern_context_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_UNIMP
The ToolTalk function called is not implemented.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_SLOTNAME
The specified slotname is syntactically invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 205

tt_pattern_create() Message Services

NAME
tt_pattern_create — request a new pattern object

SYNOPSIS
#include <Tt/tt_c.h>

Tt_pattern tt_pattern_create(void);

DESCRIPTION
The tt_pattern_create() function requests a new pattern object.

After receiving the pattern object, the application fills in the message pattern fields to indicate
what type of messages the process wants to receive and then registers the pattern with the
ToolTalk service.

The application can supply multiple values for each attribute added to a pattern (although some
attributes are set and can only have one value). The pattern attribute matches a message
attribute if any of the values in the pattern match the value in the message. If no value is
specified for an attribute, the ToolTalk service assumes that any value will match.

RETURN VALUE
Upon successful completion, the tt_pattern_create() function returns the opaque handle for a
message pattern. The application can use this handle in future calls to identify the pattern
object. The application can use tt_ptr_error() to extract one of the following Tt_status values
from the returned handle:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_register(), tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

206 X/Open CAE Specification

Message Services tt_pattern_destroy()

NAME
tt_pattern_destroy — destroy a pattern object

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_destroy(Tt_pattern p);

DESCRIPTION
The tt_pattern_destroy () function destroys a pattern object.

Destroying a pattern object automatically unregisters the pattern with the ToolTalk service.

The p argument is a unique handle for a message pattern. This handle is returned after
tt_pattern_create() is called.

RETURN VALUE
Upon successful completion, the tt_pattern_destroy () function returns the status of the operation
as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_register(), tt_pattern_create().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 207

tt_pattern_disposition_add() Message Services

NAME
tt_pattern_disposition_add — add a value to the disposition field for a pattern

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_disposition_add(Tt_pattern p,
Tt_disposition r);

DESCRIPTION
The tt_pattern_disposition_add () function adds a value to the disposition field for the specified
pattern.

The p argument is a unique handle for a message pattern. This handle is returned after
tt_pattern_create() is called.

The r argument indicates whether an instance of the receiver is to be started to receive the
message immediately, or whether the message is to be queued until the receiving process is
started at a later time or discarded if the receiver is not started. The following values are
defined:

TT_DISCARD
There is no receiver for this message. The message will be returned to the sender
with the Tt_status field containing TT_FAILED.

TT_QUEUE
Queue the message until a process of the proper ptype receives the message.

TT_START
Attempt to start a process of the proper ptype if none is running.

TT_QUEUE+TT_START
Queue the message and attempt to start a process of the proper ptype if none is
running.

RETURN VALUE
Upon successful completion, the tt_pattern_disposition_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_create().

CHANGE HISTORY
First released in Issue 1.

208 X/Open CAE Specification

Message Services tt_pattern_file_add()

NAME
tt_pattern_file_add — add a value to the file field of a pattern

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_file_add(Tt_pattern p,
const char ∗file);

DESCRIPTION
The tt_pattern_file_add () function adds a value to the file field of the specified pattern.

The application can use this call to set individual files on individual patterns.

The p argument is a unique handle for a message pattern. This handle is returned after
tt_pattern_create() is called. The file argument is the name of the file of the specified pattern.

RETURN VALUE
Upon successful completion, the tt_pattern_file_add () function returns the status of the operation
as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
However, this call does not cause the pattern’s ToolTalk session to be stored in the database.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_create().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 209

tt_pattern_iarg_add() Message Services

NAME
tt_pattern_iarg_add — add a new integer argument to a pattern

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_iarg_add(Tt_pattern m,
Tt_mode n,
const char ∗vtype ,
int value);

DESCRIPTION
The tt_pattern_iarg_add () function adds a new argument to a pattern and sets the value to a
given integer.

Add all arguments before the pattern is registered with the ToolTalk service.

The m argument is the opaque handle for the pattern involved in this operation. The n argument
specifies who (sender, handler, observers) writes and reads a message argument. The following
modes are defined:

TT_IN The argument is written by the sender and read by the handler and any observers.

TT_OUT
The argument is written by the handler and read by the sender and any reply
observers.

TT_INOUT
The argument is written by the sender and the handler and read by all.

The vtype argument describes the type of argument data being added. NULL matches any value.
The value argument is the value to be added.

RETURN VALUE
Upon successful completion, the tt_pattern_iarg_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_MODE
The specified Tt_mode is invalid.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_register().

CHANGE HISTORY
First released in Issue 1.

210 X/Open CAE Specification

Message Services tt_pattern_icontext_add()

NAME
tt_pattern_icontext_add — add an integer value to the values of this pattern’s context

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_icontext_add(Tt_pattern p,
const char ∗slotname ,
int value);

DESCRIPTION
The tt_pattern_icontext_add () function adds an integer value to the values of this pattern’s
context.

The p argument is the opaque handle for the pattern involved in this operation. The slotname
argument describes the slotname in this pattern. The value argument is the value to be added.

RETURN VALUE
Tt_status Upon successful completion, the tt_pattern_icontext_add () function returns the status
of the operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_UNIMP
The ToolTalk function called is not implemented.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_SLOTNAME
The specified slotname is syntactically invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 211

tt_pattern_object_add() Message Services

NAME
tt_pattern_object_add — add a value to the object field of a pattern

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_object_add(Tt_pattern p,
const char ∗objid);

DESCRIPTION
The tt_pattern_object_add () function adds a value to the object field of the specified pattern.

The p argument is a unique handle for a message pattern. This handle is returned after
tt_pattern_create() is called. The objid argument is the identifier for the specified object. Both
tt_spec_create() and tt_spec_move() return objids.

RETURN VALUE
Upon successful completion, the tt_pattern_object_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_create().

CHANGE HISTORY
First released in Issue 1.

212 X/Open CAE Specification

Message Services tt_pattern_op_add()

NAME
tt_pattern_op_add — add a value to the operation field of a pattern

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_op_add(Tt_pattern p,
const char ∗opname);

DESCRIPTION
The tt_pattern_op_add () function adds a value to the operation field of the specified pattern.

The p argument is a unique handle for a message pattern. This handle is returned after
tt_pattern_create() is called. The opname argument is the name of the operation the process can
perform.

RETURN VALUE
Upon successful completion, the tt_pattern_op_add () function returns the status of the operation
as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_create().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 213

tt_pattern_opnum_add() Message Services

NAME
tt_pattern_opnum_add — add an operation number to a pattern

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_opnum_add(Tt_pattern p,
int opnum);

DESCRIPTION
The tt_pattern_opnum_add () function adds an operation number to the specified pattern.

The p argument is a unique handle for a message pattern. This handle is returned after
tt_pattern_create() is called. The opnum argument is the operation number to be added.

RETURN VALUE
Upon successful completion, the tt_pattern_opnum_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_create().

CHANGE HISTORY
First released in Issue 1.

214 X/Open CAE Specification

Message Services tt_pattern_otype_add()

NAME
tt_pattern_otype_add — add a value to the object type field for a pattern

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_otype_add(Tt_pattern p,
const char ∗otype);

DESCRIPTION
The tt_pattern_otype_add () function adds a value to the object type field for the specified pattern.

The p argument is a unique handle for a message pattern. This handle is returned after
tt_pattern_create() is called. The otype argument is the name of the object type the application
manages.

RETURN VALUE
Upon successful completion, the tt_pattern_otype_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OTYPE
The specified object type is not the name of an installed object type.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_create().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 215

tt_pattern_print() Message Services

NAME
tt_pattern_print — format a pattern

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_pattern_print(Tt_pattern ∗p);

DESCRIPTION
The tt_pattern_print () function formats a pattern in the same way a message is formatted for the
ttsession trace and returns a string containing it.

The p argument is the pattern to be formatted.

RETURN VALUE
Upon successful completion, the tt_pattern_print () function returns the formatted string. The
application can use tt_ptr_error() to extract one of the following Tt_status values from the
returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMEM
There is insufficient memory available to perform the function.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The tt_pattern_print () function allows an application writer to dump out patterns for debugging.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error().

CHANGE HISTORY
First released in Issue 1.

216 X/Open CAE Specification

Message Services tt_pattern_register()

NAME
tt_pattern_register — register a pattern with the ToolTalk service

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_register(Tt_pattern p);

DESCRIPTION
The tt_pattern_register() function registers a pattern with the ToolTalk service.

When the process is registered, it will start receiving messages that match the specified pattern.
Once a pattern is registered, no further changes can be made in the pattern.

When the process joins a session or file, the ToolTalk service updates the file and session field of
its registered patterns.

The p argument is a unique handle for a message pattern. This handle is returned after
tt_pattern_create() is called.

RETURN VALUE
Upon successful completion, the tt_pattern_register() function returns the status of the operation
as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_unregister(), tt_pattern_create().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 217

tt_pattern_scope_add() Message Services

NAME
tt_pattern_scope_add — add a value to the scope field for a pattern

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_scope_add(Tt_pattern p,
Tt_scope s);

DESCRIPTION
The tt_pattern_scope_add () function adds a value to the scope field for the specified pattern.

The p argument is a unique handle for a message pattern. This handle is returned after
tt_pattern_create() is called. The s argument specifies what processes are eligible to receive the
message. The following values are defined:

TT_SESSION
All processes joined to the indicated session are eligible.

TT_FILE
All processes joined to the indicated file are eligible.

TT_BOTH
All processes joined to either indicated file or the indicated session are eligible.

TT_FILE_IN_SESSION
All processes joined to both the indicated file and the indicated session are
eligible.

RETURN VALUE
Upon successful completion, the tt_pattern_scope_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_create().

CHANGE HISTORY
First released in Issue 1.

218 X/Open CAE Specification

Message Services tt_pattern_sender_add()

NAME
tt_pattern_sender_add — add a value to the sender field for a pattern

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_sender_add(Tt_pattern p,
const char ∗procid);

DESCRIPTION
The tt_pattern_sender_add() function adds a value to the sender field for the specified pattern.

The p argument is a unique handle for a message pattern. This handle is returned after
tt_pattern_create() is called. The procid argument is the character value that uniquely identifies
the process of interest.

RETURN VALUE
Upon successful completion, the tt_pattern_sender_add() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_create().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 219

tt_pattern_sender_ptype_add() Message Services

NAME
tt_pattern_sender_ptype_add — add a value to the sending process’s ptype field for a pattern

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_sender_ptype_add(Tt_pattern p,
const char ∗ptid);

DESCRIPTION
The tt_pattern_sender_ptype_add () function adds a value to the sending process’s ptype field for
the specified pattern.

The p argument is a unique handle for a message pattern. This handle is returned after
tt_pattern_create() is called. The ptid argument is the character string that uniquely identifies the
type of process in which the application is interested.

RETURN VALUE
Upon successful completion, the tt_pattern_sender_ptype_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_create().

CHANGE HISTORY
First released in Issue 1.

220 X/Open CAE Specification

Message Services tt_pattern_session_add()

NAME
tt_pattern_session_add — adds a value to the session field for a pattern

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_session_add(Tt_pattern p,
const char ∗sessid);

DESCRIPTION
The tt_pattern_session_add () function adds a value to the session field for the specified pattern.

When the process joins a session, the ToolTalk service updates the session field of its registered
patterns.

The p argument is a unique handle for a message pattern. This handle is returned after
tt_pattern_create() is called. The sessid argument is the session of interest.

RETURN VALUE
Upon successful completion, the tt_pattern_session_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_create().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 221

tt_pattern_state_add() Message Services

NAME
tt_pattern_state_add — add a value to the state field for a pattern

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_state_add(Tt_pattern p,
Tt_state s);

DESCRIPTION
The tt_pattern_state_add () function adds a value to the state field for the specified pattern.

The p argument is a unique handle for a message pattern. This handle is returned after
tt_pattern_create() is called. The s argument indicates the current delivery state of a message.
The following values are defined:

TT_CREATED
The message has been created, but not yet sent.

TT_SENT
The message has been sent, but not yet handled.

TT_HANDLED
The message has been handled; return values are valid.

TT_FAILED
The message could not be delivered to a handler.

TT_QUEUED
The message has been queued for delivery.

TT_STARTED
The ToolTalk service is attempting to start a process to handle the message.

TT_REJECTED
The message has been rejected by a possible handler.

RETURN VALUE
Upon successful completion, the tt_pattern_state_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_create().

CHANGE HISTORY
First released in Issue 1.

222 X/Open CAE Specification

Message Services tt_pattern_unregister()

NAME
tt_pattern_unregister — unregister a pattern from the ToolTalk service

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_unregister(Tt_pattern p);

DESCRIPTION
The tt_pattern_unregister() function unregisters the specified pattern from the ToolTalk service.
The process will stop receiving messages that match this pattern.

The p argument is a unique handle for a message pattern. This handle is returned after
tt_pattern_create() is called.

RETURN VALUE
Upon successful completion, the tt_pattern_unregister() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_register(), tt_pattern_create().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 223

tt_pattern_user() Message Services

NAME
tt_pattern_user — return the value in a user data cell for a pattern object

SYNOPSIS
#include <Tt/tt_c.h>

void ∗tt_pattern_user(Tt_pattern p,
int key);

DESCRIPTION
The tt_pattern_user() function returns the value in the indicated user data cell for the specified
pattern object.

Every pattern object allows an arbitrary number of user data cells that are each one word in size.
The user data cells are identified by integer keys. The tool can use these keys in any manner to
associate arbitrary data with a pattern object.

The user data is part of the pattern object (that is, the storage buffer in the application); it is not
part of the actual pattern. The content of user cells has no effect on pattern matching.

The p argument is a unique handle for a message pattern. This handle is returned after
tt_pattern_create() is called. The key argument is the specified user data cell. The application can
use tt_pattern_user_set() to assign the keys to the user data cells that are part of the pattern
object. The value of each data cell must be unique for this pattern.

RETURN VALUE
Upon successful completion, the tt_pattern_user() function returns the data cell, a piece of
arbitrary user data that can hold a void ∗. The application can use tt_ptr_error() to extract one of
the following Tt_status values from the returned data:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

APPLICATION USAGE
The user data cell is intended to hold an address. If the address selected is equal to one of the
Tt_status enumerated values, the result of the tt_ptr_error() function will not be reliable.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_user_set(), tt_pattern_create(), tt_ptr_error().

CHANGE HISTORY
First released in Issue 1.

224 X/Open CAE Specification

Message Services tt_pattern_user_set()

NAME
tt_pattern_user_set — store information in the user data cells of a pattern object

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_user_set(Tt_pattern p,
int key ,
void ∗v);

DESCRIPTION
The tt_pattern_user_set() function stores information in the user data cells associated with the
specified pattern object.

The p argument is a unique handle for a message pattern. This handle is returned after
tt_pattern_create() is called. The key argument is the specified user data cell. The value for each
data cell must be unique for this pattern. The v argument is the data cell, a piece of arbitrary
user data that can hold a void ∗.

RETURN VALUE
Upon successful completion, the tt_pattern_user_set() function returns the status of the operation
as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_pattern_user(), tt_pattern_create().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 225

tt_pattern_xarg_add() Message Services

NAME
tt_pattern_xarg_add — add a new argument with an interpreted XDR value to a pattern object

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_xarg_add(Tt_pattern m,
Tt_mode n,
const char ∗vtype ,
xdrproc_t xdr_proc ,
void ∗value);

DESCRIPTION
The tt_pattern_xarg_add () function adds a new argument with an interpreted XDR value to a
pattern object.

The m argument is the opaque handle for the pattern involved in this operation. The n argument
specifies who (sender, handler, observers) writes and reads a pattern argument. The following
modes are defined:

TT_IN The argument is written by the sender and read by the handler and any observers.

TT_OUT
The argument is written by the handler and read by the sender and any reply
observers.

TT_INOUT
The argument is written by the sender and the handler and read by all.

The vtype argument describes the type of argument data being added. The xdr_proc argument
points to the XDR procedure to be used to serialise the data pointed to by value . The value
argument is the data to be serialised.

RETURN VALUE
Upon successful completion, the tt_pattern_xarg_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_MODE
The specified Tt_mode is invalid.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_XDR
The XDR procedure failed on the given data, or evaluated to a zero-length
expression.

SEE ALSO
<Tt/tt_c.h>; the referenced XDR specification.

CHANGE HISTORY
First released in Issue 1.

226 X/Open CAE Specification

Message Services tt_pattern_xcontext_add()

NAME
tt_pattern_xcontext_add — add an XDR-interpreted byte-array value to this pattern’s named
context

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pattern_xcontext_add(Tt_pattern p,
const char ∗slotname ,
xdrproc_t xdr_proc ,
void ∗value);

DESCRIPTION
The tt_pattern_xcontext_add () function adds an XDR-interpreted byte-array value to the values in
this pattern’s named context.

The p argument is the opaque handle for the pattern involved in this operation. The slotname
argument describes the context for this pattern. The xdr_proc argument points to the XDR
procedure to be used to serialise the data pointed to by value. The value argument is the data to
be serialised.

RETURN VALUE
Upon successful completion, the tt_pattern_xcontext_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_UNIMP
The ToolTalk function called is not implemented.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_SLOTNAME
The specified slotname is syntactically invalid.

TT_ERR_XDR
The XDR procedure failed on the given data, or evaluated to a zero-length
expression.

SEE ALSO
<Tt/tt_c.h>; the referenced XDR specification.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 227

tt_pnotice_create() Message Services

NAME
tt_pnotice_create — create a procedure notice

SYNOPSIS
#include <Tt/tt_c.h>

Tt_message tt_pnotice_create(Tt_scope scope ,
const char ∗op);

DESCRIPTION
The tt_pnotice_create () function creates a message. The created message contains the following:

Tt_address = TT_PROCEDURE
Tt_class = TT_NOTICE

The application can use the returned handle to add arguments and other attributes, and to send
the message.

The scope argument determines which processes are eligible to receive the message. The
following values are defined:

TT_SESSION
All processes joined to the indicated session are eligible.

TT_FILE
All processes joined to the indicated file are eligible.

TT_BOTH
All processes joined to either indicated file or the indicated session are eligible.

TT_FILE_IN_SESSION
All processes joined to both the indicated file and the indicated session are
eligible.

The op argument is the operation to be performed by the receiving process.

RETURN VALUE
Upon successful completion, the tt_pnotice_create () function returns the unique handle that
identifies this message. The application can use tt_ptr_error() to extract one of the following
Tt_status values from the returned handle:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

If the ToolTalk service is unable to create a message when requested, tt_pnotice_create () returns
an invalid handle. When the application attempts to use this handle with another ToolTalk
function, the ToolTalk service will return TT_ERR_POINTER.

228 X/Open CAE Specification

Message Services tt_pnotice_create()

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 229

tt_pointer_error() Message Services

NAME
tt_pointer_error — return the status of a pointer

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_pointer_error(void ∗pointer);

DESCRIPTION
The tt_pointer_error() function returns the status of the specified pointer.

If an opaque pointer (Tt_message or Tt_pattern) or character pointer (char ∗) is specified, this
function returns TT_OK if the pointer is valid or the encoded Tt_status value if the pointer is an
error object.

The pointer argument is the opaque pointer or character pointer to be checked.

RETURN VALUE
Upon successful completion, the tt_pointer_error() function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_ptr_error().

CHANGE HISTORY
First released in Issue 1.

230 X/Open CAE Specification

Message Services tt_prequest_create()

NAME
tt_prequest_create — create a procedure request message

SYNOPSIS
#include <Tt/tt_c.h>

Tt_message tt_prequest_create(Tt_scope scope ,
const char ∗op);

DESCRIPTION
The tt_prequest_create() function creates a message. The created message created contains the
following:

Tt_address = TT_PROCEDURE
Tt_class = TT_REQUEST

The application can use the returned handle to add arguments and other attributes, and to send
the message.

The scope argument determines which processes are eligible to receive the message. The
following values are defined:

TT_SESSION
All processes joined to the indicated session are eligible.

TT_FILE
All processes joined to the indicated file are eligible.

TT_BOTH
All processes joined to either indicated file or the indicated session are eligible.

TT_FILE_IN_SESSION
All processes joined to both the indicated file and the indicated session are
eligible.

The op argument is the operation to be performed by the receiving process.

RETURN VALUE
Upon successful completion, the tt_prequest_create() function returns the unique handle that
identifies this message. The application can use tt_ptr_error() to extract one of the following
Tt_status values from the returned handle:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

If the ToolTalk service is unable to create a message when requested, tt_prequest_create() returns
an invalid handle. When the application attempts to use this handle with another ToolTalk
function, the ToolTalk service will return TT_ERR_POINTER.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 231

tt_prequest_create() Message Services

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

232 X/Open CAE Specification

Message Services tt_ptr_error()

NAME
tt_ptr_error — pointer error macro

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_ptr_error(pointer);

DESCRIPTION
The tt_ptr_error() macro expands to tt_pointer_error((void ∗)(p)).

The pointer argument is the opaque pointer or character pointer to be checked.

RETURN VALUE
Upon successful completion, the tt_ptr_error() function returns the status of the operation as one
of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 233

tt_ptype_declare() Message Services

NAME
tt_ptype_declare — register the process type with the ToolTalk service

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_ptype_declare(const char ∗ptid);

DESCRIPTION
The tt_ptype_declare () function registers the process type with the ToolTalk service.

The ptid argument is the character string specified in the ptype that uniquely identifies this
process.

RETURN VALUE
Upon successful completion, the tt_ptype_declare () function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PTYPE
The specified process type is not the name of an installed process type.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

234 X/Open CAE Specification

Message Services tt_ptype_exists()

NAME
tt_ptype_exists — indicate whether a ptype is already installed

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_ptype_exists(const char ∗ptid);

DESCRIPTION
The tt_ptype_exists() function returns an indication of whether a ptype is already installed.

The ptid argument is the character string specifying the ptype.

RETURN VALUE
Upon successful completion, the tt_ptype_exists() function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully and the ptype is already installed.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PTYPE
The specified process type is not the name of an installed process type.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 235

tt_ptype_opnum_callback_add() Message Services

NAME
tt_ptype_opnum_callback_add — return a callback if two opnums are equal

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_ptype_opnum_callback_add(const char ∗ptid ,
int opnum,
Tt_message_callback f);

DESCRIPTION
The tt_ptype_opnum_callback_add () function returns a callback if the specified opnums are equal.
The callback is defined in <Tt/tt_c.h>.

When a message is delivered because it matched a pattern derived from a signature in the
named ptype with an opnum equal to the specified one, the given callback is run in the usual
ToolTalk way.

The ptid argument is the identifier of the ptype involved in this operation. The opnum argument
is the opnum of the specified ptype. The f argument is the message callback to be run.

RETURN VALUE
Upon successful completion, the tt_ptype_opnum_callback_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_PTYPE
The specified process type is not the name of an installed process type.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

APPLICATION USAGE
The tt_ptype_opnum_callback_add () function will only be called for messages delivered by virtue
of matching handler signatures. The callback cannot be called for observer signatures because
the observer ptype is not recorded in the incoming message.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

236 X/Open CAE Specification

Message Services tt_ptype_undeclare()

NAME
tt_ptype_undeclare — undeclare a ptype

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_ptype_undeclare(const char ∗ptid);

DESCRIPTION
The tt_ptype_undeclare () function undeclares the indicated ptype and unregisters the patterns
associated with the indicated ptype from the ToolTalk service.

The ptid argument is the character string specifying the ptype.

RETURN VALUE
Upon successful completion, the tt_ptype_undeclare () function returns the status of the operation
as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PTYPE
The specified process type is not the name of an installed process type.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 237

tt_release() Message Services

NAME
tt_release — free storage allocated on the ToolTalk API allocation stack

SYNOPSIS
#include <Tt/tt_c.h>

void tt_release(int mark);

DESCRIPTION
The tt_release() function frees all storage allocated on the ToolTalk API allocation stack since
mark was returned by tt_mark().

The mark argument is an integer that marks the application’s storage position in the ToolTalk
API allocation stack.

APPLICATION USAGE
This function frees all storage allocated since the tt_mark() call that returned mark and is
typically called at the end of a procedure to release all storage allocated within the procedure.

SEE ALSO
<Tt/tt_c.h>, tt_mark().

CHANGE HISTORY
First released in Issue 1.

238 X/Open CAE Specification

Message Services tt_session_bprop()

NAME
tt_session_bprop — retrieve the ith value of the named property of a session

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_session_bprop(const char ∗sessid ,
const char ∗propname ,
int i ,
unsigned char ∗∗value ,
int ∗length);

DESCRIPTION
The tt_session_bprop() function retrieves the ith value of the named property of the specified
session.

If there are i values or fewer, both the returned value and the returned length are set to zero.

The sessid argument is the session joined. The application can use the sessid value returned when
tt_default_session () is called. The propname argument is the name of the property from which
values are to be obtained. The i argument is the number of the item in the property list from
which the value is to be obtained. The list numbering begins with zero. The value argument is
the address of a character pointer to which the ToolTalk service is to point a string that contains
the contents of the property. The len argument is the address of an integer to which the ToolTalk
service is to set the length of the value in bytes.

RETURN VALUE
Upon successful completion, the tt_session_bprop() function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMEM
There is insufficient memory available to perform the function.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_PROPNAME
The specified property name is syntactically invalid.

TT_ERR_SESSION
The specified ToolTalk session is out of date or invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 239

tt_session_bprop_add() Message Services

NAME
tt_session_bprop_add — add a new byte-string value to the end of the list of values

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_session_bprop_add(const char ∗sessid ,
const char ∗propname ,
const unsigned char ∗value ,
int length);

DESCRIPTION
The tt_session_bprop_add () function adds a new byte-string value to the end of the list of values
for the named property of the specified session.

The sessid argument is the name of the session joined. The application can use the sessid value
returned when tt_default_session () is called. The propname argument is the name of the property
to which to add values. The value argument is the value to add to the session property. The
length argument is the size of the value in bytes.

RETURN VALUE
Upon successful completion, the tt_session_bprop_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PROPLEN
The specified property value is too long. (The maximum size is implementation
specific, but is at least 2048.)

TT_ERR_PROPNAME
The specified property name is syntactically invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

240 X/Open CAE Specification

Message Services tt_session_bprop_set()

NAME
tt_session_bprop_set — replace current values stored under the named property of a session

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_session_bprop_set(const char ∗sessid ,
const char ∗propname ,
const unsigned char ∗value ,
int length);

DESCRIPTION
The tt_session_bprop_set() function replaces any current values stored under the named property
of the specified session with the given byte-string value.

The sessid argument is the name of the session joined. The application can use the sessid value
returned when tt_default_session () is called. The propname argument is the name of the property
whose value is to be replaced. The value argument is the value to which the session property is
set. If value is NULL, the property is removed entirely. The length argument is the size of the
value in bytes.

RETURN VALUE
Upon successful completion, the tt_session_bprop_set() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PROPLEN
The specified property value is too long. (The maximum size is implementation
specific, but is at least 2048.)

TT_ERR_PROPNAME
The specified property name is syntactically invalid.

TT_ERR_SESSION
The specified ToolTalk session is out of date or invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 241

tt_session_join() Message Services

NAME
tt_session_join — join a session and make it the default

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_session_join(const char ∗sessid);

DESCRIPTION
The tt_session_join () function joins the named session and makes it the default session.

The sessid argument is the name of the session to join.

RETURN VALUE
Upon successful completion, the tt_session_join () function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

APPLICATION USAGE
The application can use the sessid value returned by tt_default_session (), tt_X_session(), or
tt_initial_session ().

SEE ALSO
<Tt/tt_c.h>, tt_X_session(), tt_default_session (), tt_initial_session ().

CHANGE HISTORY
First released in Issue 1.

242 X/Open CAE Specification

Message Services tt_session_prop()

NAME
tt_session_prop — return the ith value of a session property

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_session_prop(const char ∗sessid ,
const char ∗propname ,
int i);

DESCRIPTION
The tt_session_prop() function returns the ith value of the specified session property.

The sessid argument is the name of the session joined. The application can use the sessid value
returned when tt_default_session () is called. The propname argument is the name of the property
from which a value is to be retrieved. The name must be less than 64 bytes. The i argument is
the number of the item in the property name list for which the value is to be obtained. The list
numbering begins with zero.

RETURN VALUE
Upon successful completion, the tt_session_prop() function returns the value of the requested
property. If there are i values or fewer, it returns NULL. The application can use tt_ptr_error()
to extract one of the following Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_PROPNAME
The specified property name is syntactically invalid.

TT_ERR_SESSION
The specified ToolTalk session is out of date or invalid.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

If the returned value has embedded nulls, it is impossible to determine how long it is. The
application can use tt_session_bprop() for values with embedded nulls.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 243

tt_session_prop_add() Message Services

NAME
tt_session_prop_add — add a new character-string value to the end of the list of values

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_session_prop_add(const char ∗sessid ,
const char ∗propname ,
const char ∗value);

DESCRIPTION
The tt_session_prop_add () function adds a new character-string value to the end of the list of
values for the property of the specified session.

The sessid argument is the name of the session joined. The application can use the sessid value
returned when tt_default_session () is called. The propname argument is the name of the property
to which a value is to be added. The name must be less than 64 bytes. The value argument is the
character string to add to the property name list.

RETURN VALUE
Upon successful completion, the tt_session_prop_add () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PROPLEN
The specified property value is too long. (The maximum size is implementation
specific, but is at least 64.)

TT_ERR_PROPNAME
The specified property name is syntactically invalid.

TT_ERR_SESSION
The specified ToolTalk session is out of date or invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

244 X/Open CAE Specification

Message Services tt_session_prop_count()

NAME
tt_session_prop_count — return the number of values stored under a property of a session

SYNOPSIS
#include <Tt/tt_c.h>

int tt_session_prop_count(const char ∗sessid ,
const char ∗propname);

DESCRIPTION
The tt_session_prop_count () function returns the number of values stored under the named
property of the specified session.

The sessid argument is the name of the session joined. The application can use the sessid value
returned when tt_default_session () is called. The propname argument is the name of the property
to be examined.

RETURN VALUE
Upon successful completion, the tt_session_prop_count () function returns the number of values
in the specified property list. The application can use tt_int_error() to extract one of the
following Tt_status values from the returned integer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PROPNAME
The specified property name is syntactically invalid.

TT_ERR_SESSION
The specified ToolTalk session is out of date or invalid.

SEE ALSO
<Tt/tt_c.h>, tt_int_error().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 245

tt_session_prop_set() Message Services

NAME
tt_session_prop_set — replace current values for a property of a session with a character-string
value

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_session_prop_set(const char ∗sessid ,
const char ∗propname ,
const char ∗value);

DESCRIPTION
The tt_session_prop_set() function replaces all current values stored under the named property of
the specified session with the given character-string value.

The sessid argument is the name of the session joined. The application can use the sessid value
returned when tt_default_session () is called. The propname argument is the name of the property
to be examined. The value argument is the new value to be inserted. NULL removes a value
from the property list.

RETURN VALUE
Upon successful completion, the tt_session_prop_set() function returns the status of the operation
as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PROPLEN
The specified property value is too long. (The maximum size is implementation
specific, but is at least 64.)

TT_ERR_PROPNAME
The specified property name is syntactically invalid.

TT_ERR_SESSION
The specified ToolTalk session is out of date or invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

246 X/Open CAE Specification

Message Services tt_session_propname()

NAME
tt_session_propname — returns an element of the list of property names for a session

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_session_propname(const char ∗sessid ,
int n);

DESCRIPTION
The tt_session_propname() function returns the nth element of the list of currently defined
property names for the specified session.

The sessid argument is the name of the session joined. The application can use the sessid value
returned when tt_default_session () is called. The n argument is the number of the item in the
property name list for which a name is to be obtained. The list numbering begins with zero.

RETURN VALUE
Upon successful completion, the tt_session_propname() function returns the name of the specified
property from the session property list. If there are n properties or fewer, tt_session_propname()
returns NULL. The application can use tt_ptr_error() to extract one of the following Tt_status
values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_SESSION
The specified ToolTalk session is out of date or invalid.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 247

tt_session_propnames_count() Message Services

NAME
tt_session_propnames_count — return the number of property names for the session

SYNOPSIS
#include <Tt/tt_c.h>

int tt_session_propnames_count(const char ∗sessid);

DESCRIPTION
The tt_session_propnames_count() function returns the number of currently defined property
names for the session.

The sessid argument is the name of the session joined. The application can use the sessid value
returned when tt_default_session () is called.

RETURN VALUE
Upon successful completion, the tt_session_propnames_count() function returns the number of
property names for the session. The application can use tt_int_error() to extract one of the
following Tt_status values from the returned integer:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_SESSION
The specified ToolTalk session is out of date or invalid.

SEE ALSO
<Tt/tt_c.h>, tt_int_error().

CHANGE HISTORY
First released in Issue 1.

248 X/Open CAE Specification

Message Services tt_session_quit()

NAME
tt_session_quit — quit the session

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_session_quit(const char ∗sessid);

DESCRIPTION
The tt_session_quit() function informs the ToolTalk service that the process is no longer
interested in this ToolTalk session. The ToolTalk service stops delivering messages scoped to
this session.

The sessid argument is the name of the session to quit.

RETURN VALUE
Upon successful completion, the tt_session_quit() function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_SESSION
The specified ToolTalk session is out of date or invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 249

tt_session_types_load() Message Services

NAME
tt_session_types_load — merge a compiled ToolTalk types file into the running ttsession

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_session_types_load(const char ∗session ,
const char ∗filename);

DESCRIPTION
The tt_session_types_load () function merges a compiled ToolTalk types file into the running
ttsession.

The session argument is the name of the running session. The filename argument is the name of
the compiled ToolTalk types file.

RETURN VALUE
Upon successful completion, the tt_session_types_load () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_SESSION
The specified ToolTalk session is out of date or invalid.

TT_ERR_FILE
The specified file does not exist or it is inaccessible.

TT_ERR_UNIMP
The ToolTalk function called is not implemented.

SEE ALSO
<Tt/tt_c.h>, ttsession.

CHANGE HISTORY
First released in Issue 1.

250 X/Open CAE Specification

Message Services tt_spec_bprop()

NAME
tt_spec_bprop — retrieve the ith value of a property

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_spec_bprop(const char ∗objid ,
const char ∗propname ,
int i ,
unsigned char ∗∗value ,
int ∗length);

DESCRIPTION
The tt_spec_bprop() function retrieves the ith value of the specified property.

The objid argument is the identifier of the object involved in this operation. The propname
argument is the name of the property whose value is to be retrieved. The name must be less
than 64 characters. The i argument is the item of the list for which a value is to be obtained. The
list numbering begins with zero. The value argument is the address of a character pointer to
which the ToolTalk service is to point a string that contains the contents of the spec’s property. If
there are i values or fewer, the pointer is set to zero. The length argument is the address of an
integer to which the ToolTalk service is to set the length of the value in bytes.

RETURN VALUE
Upon successful completion, the tt_spec_bprop() function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_OBJID
The objid passed to the ToolTalk service does not reference an existing object spec.

TT_ERR_PROPNAME
The specified property name is syntactically invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 251

tt_spec_bprop_add() Message Services

NAME
tt_spec_bprop_add — add a new byte-string to the end of the list of values

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_spec_bprop_add(const char ∗objid ,
const char ∗propname ,
const unsigned char ∗value ,
int length);

DESCRIPTION
The tt_spec_bprop_add () function adds a new byte-string to the end of the list of values
associated with the specified spec property.

The objid argument is the identifier of the object involved in this operation. The propname
argument is the name of the property to which the byte-string is to be added. The value
argument is the byte-string to be added to the property value list. The length argument is the
length in bytes of the byte-string.

RETURN VALUE
Upon successful completion, the tt_spec_bprop_add () function returns the status of the operation
as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OBJID
The objid passed to the ToolTalk service does not reference an existing object spec.

TT_ERR_PROPLEN
The specified property value is too long. (The maximum size is implementation
specific, but is at least 64.)

TT_ERR_PROPNAME
The specified property name is syntactically invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

252 X/Open CAE Specification

Message Services tt_spec_bprop_set()

NAME
tt_spec_bprop_set — replace any current values stored under this spec property with a new
byte-string

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_spec_bprop_set(const char ∗objid ,
const char ∗propname ,
const unsigned char ∗value ,
int length);

DESCRIPTION
The tt_spec_bprop_set() function replaces any current values stored under this spec property
with a new byte-string.

The objid argument is the identifier of the object involved in this operation. The propname
argument is the name of the property which stores the values. The value argument is the byte-
string to be added to the property value list. If the value is NULL, the property is removed
entirely. The length argument is the length of the value in bytes.

RETURN VALUE
Upon successful completion, the tt_spec_bprop_set() function returns the status of the operation
as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OBJID
The objid passed to the ToolTalk service does not reference an existing object spec.

TT_ERR_PROPLEN
The specified property value is too long. (The maximum size is implementation
specific, but is at least 64.)

TT_ERR_PROPNAME
The specified property name is syntactically invalid.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 253

tt_spec_create() Message Services

NAME
tt_spec_create — create an in-memory spec for an object

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_spec_create(const char ∗filepath);

DESCRIPTION
The tt_spec_create() function creates a spec (in memory) for an object.

The application can use the objid returned in future calls to manipulate the object.

The filepath argument is the name of the file.

RETURN VALUE
Upon successful completion, the tt_spec_create() function returns the identifier for this object.
The application can use tt_ptr_error() to extract one of the following Tt_status values from the
returned pointer:

TT_OK The operation completed successfully.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OTYPE
The specified object type is not the name of an installed object type.

TT_ERR_PATH
The specified pathname included an unsearchable directory.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

To make the object a permanent ToolTalk item or one visible to other processes, the creating
process must call tt_spec_write().

SEE ALSO
<Tt/tt_c.h>, tt_spec_type_set(), tt_spec_write(), tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

254 X/Open CAE Specification

Message Services tt_spec_destroy()

NAME
tt_spec_destroy — destroy an object’s spec

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_spec_destroy(const char ∗objid);

DESCRIPTION
The tt_spec_destroy() function destroys an object’s spec immediately.

The objid argument is the identifier of the object involved in this operation.

RETURN VALUE
Upon successful completion, the tt_spec_destroy() function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OBJID
The objid passed to the ToolTalk service does not reference an existing object spec.

SEE ALSO
<Tt/tt_c.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 255

tt_spec_file() Message Services

NAME
tt_spec_file — retrieve the name of the file that contains the object described by the spec

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_spec_file(const char ∗objid);

DESCRIPTION
The tt_spec_file() function retrieves the name of the file that contains the object described by the
spec.

The objid argument is the identifier of the object involved in this operation.

RETURN VALUE
Upon successful completion, the tt_spec_file() function returns the absolute pathname of the file.
The application can use tt_ptr_error() to extract one of the following Tt_status values from the
returned pointer:

TT_OK The operation completed successfully.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OBJID
The objid passed to the ToolTalk service does not reference an existing object spec.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

256 X/Open CAE Specification

Message Services tt_spec_move()

NAME
tt_spec_move — notify the ToolTalk service that an object has moved to a different file

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_spec_move(const char ∗objid ,
const char ∗newfilepath);

DESCRIPTION
The tt_spec_move() function notifies the ToolTalk service that this object has moved to a different
file.

The ToolTalk service returns a new objid for the object and leaves a forwarding pointer from the
old objid to the new one.

If a new objid is not required (for example, because the new and old files are in the same file
system), tt_spec_move() returns TT_WRN_SAME_OBJID.

The objid argument is the identifier of the object involved in this operation.

The newfilepath argument is the new file name.

RETURN VALUE
Upon successful completion, the tt_spec_move() function returns the new unique identifier of the
object involved in this operation. The application can use tt_ptr_error() to extract one of the
following Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OBJID
The objid passed to the ToolTalk service does not reference an existing object spec.

TT_ERR_PATH
The specified pathname included an unsearchable directory.

TT_WRN_SAME_OBJID
A new objid is not required.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

For efficiency and reliability, the application should replace any references in the application to
the old objid with references to the new one.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 257

tt_spec_move() Message Services

CHANGE HISTORY
First released in Issue 1.

258 X/Open CAE Specification

Message Services tt_spec_prop()

NAME
tt_spec_prop — retrieve the ith value of the property associated with an object spec

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_spec_prop(const char ∗objid ,
const char ∗propname ,
int i);

DESCRIPTION
The tt_spec_prop() function retrieves the ith value of the property associated with this object
spec.

The objid argument is the identifier of the object involved in this operation. The propname
argument is the name of the property associated with the object spec. The i argument is the item
of the list whose value is to be retrieved. The list numbering begins with zero.

RETURN VALUE
Upon successful completion, the tt_spec_prop() function returns the contents of the property
value. If there are i values or less, tt_spec_prop() returns NULL. The application can use
tt_ptr_error() to extract one of the following Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_OBJID
The objid passed to the ToolTalk service does not reference an existing object spec.

TT_ERR_PROPNAME
The specified property name is syntactically invalid.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

If the returned value has embedded nulls, its length cannot be determined.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 259

tt_spec_prop_add() Message Services

NAME
tt_spec_prop_add — add a new item to the end of the list of values

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_spec_prop_add(const char ∗objid ,
const char ∗propname ,
const char ∗value);

DESCRIPTION
The tt_spec_prop_add () function adds a new item to the end of the list of values associated with
this spec property.

The objid argument is the identifier of the object involved in this operation. The propname
argument is the property to which the item is to be added. The value argument is the new
character-string to be added to the property value list.

RETURN VALUE
Upon successful completion, the tt_spec_prop_add () function returns the status of the operation
as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OBJID
The objid passed to the ToolTalk service does not reference an existing object spec.

TT_ERR_PROPLEN
The specified property value is too long. (The maximum size is implementation
specific, but is at least 2048.)

TT_ERR_PROPNAME
The specified property name is syntactically invalid.

SEE ALSO
<Tt/tt_c.h>, tt_spec_prop_set().

CHANGE HISTORY
First released in Issue 1.

260 X/Open CAE Specification

Message Services tt_spec_prop_count()

NAME
tt_spec_prop_count — return the number of values listed in this spec property

SYNOPSIS
#include <Tt/tt_c.h>

int tt_spec_prop_count(const char ∗objid ,
const char ∗propname);

DESCRIPTION
The tt_spec_prop_count () function returns the number of values listed in this spec property.

The objid argument is the identifier of the object involved in this operation. The propname
argument is the name of the property that contains the value to be returned.

RETURN VALUE
Upon successful completion, the tt_spec_prop_count () function returns the number of values
listed in the spec property. The application can use tt_int_error() to extract one of the following
Tt_status values from the returned integer:

TT_OK The operation completed successfully.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OBJID
The objid passed to the ToolTalk service does not reference an existing object spec.

TT_ERR_PROPNAME
The specified property name is syntactically invalid.

SEE ALSO
<Tt/tt_c.h>, tt_int_error().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 261

tt_spec_prop_set() Message Services

NAME
tt_spec_prop_set — replace property values

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_spec_prop_set(const char ∗objid ,
const char ∗propname ,
const char ∗value);

DESCRIPTION
The tt_spec_prop_set() function replaces any values currently stored under this property of the
object spec with a new value.

The objid argument is the identifier of the object involved in this operation. The propname
argument is the name of the property which stores the values. The value argument is the value
to be placed in the property value list. If value is NULL, the property is removed entirely.

RETURN VALUE
Upon successful completion, the tt_spec_prop_set() function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OBJID
The objid passed to the ToolTalk service does not reference an existing object spec.

TT_ERR_PROPLEN
The specified property value is too long. (The maximum size is implementation
specific, but is at least 2048.)

TT_ERR_PROPNAME
The specified property name is syntactically invalid.

SEE ALSO
<Tt/tt_c.h>, tt_spec_prop_add ().

CHANGE HISTORY
First released in Issue 1.

262 X/Open CAE Specification

Message Services tt_spec_propname()

NAME
tt_spec_propname — return an element of the property name list for an object spec

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_spec_propname(const char ∗objid ,
int n);

DESCRIPTION
The tt_spec_propname() function returns the nth element of the property name list for this object
spec.

The objid argument is the identifier of the object involved in this operation. The n argument is
the item of the list whose element is to be returned. The list numbering begins with zero.

RETURN VALUE
Upon successful completion, the tt_spec_propname() function returns the property name. If there
are n properties or less, tt_spec_propname() returns NULL. The application can use tt_ptr_error()
to extract one of the following Tt_status values from the returned pointer:

TT_OK The operation completed successfully.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_OBJID
The objid passed to the ToolTalk service does not reference an existing object spec.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 263

tt_spec_propnames_count() Message Services

NAME
tt_spec_propnames_count — return the number of property names for an object

SYNOPSIS
#include <Tt/tt_c.h>

int tt_spec_propnames_count(const char ∗objid);

DESCRIPTION
The tt_spec_propnames_count() function returns the number of property names for this object.

The objid argument is the identifier of the object involved in this operation.

RETURN VALUE
Upon successful completion, the tt_spec_propnames_count() function returns the number of
values listed in the spec property. The application can use tt_int_error() to extract one of the
following Tt_status values from the returned integer:

TT_OK The operation completed successfully.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OBJID
The objid passed to the ToolTalk service does not reference an existing object spec.

SEE ALSO
<Tt/tt_c.h>, tt_int_error().

CHANGE HISTORY
First released in Issue 1.

264 X/Open CAE Specification

Message Services tt_spec_type()

NAME
tt_spec_type — return the name of the object type

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_spec_type(const char ∗objid);

DESCRIPTION
The tt_spec_type() function returns the name of the object type.

The objid argument is the identifier of the object involved in this operation.

RETURN VALUE
Upon successful completion, the tt_spec_type() function returns the type of this object. The
application can use tt_ptr_error() to extract one of the following Tt_status values from the
returned pointer:

TT_OK The operation completed successfully.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OBJID
The objid passed to the ToolTalk service does not reference an existing object spec.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 265

tt_spec_type_set() Message Services

NAME
tt_spec_type_set — assign an object type value to an object spec

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_spec_type_set(const char ∗objid ,
const char ∗otid);

DESCRIPTION
The tt_spec_type_set() function assigns an object type value to the object spec.

The type must be set before the spec is written for the first time and cannot be set thereafter.

The objid argument is the identifier of the object involved in this operation. The otid argument is
the otype to be assigned to the spec.

RETURN VALUE
Upon successful completion, the tt_spec_type_set() function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OBJID
The objid passed to the ToolTalk service does not reference an existing object spec.

TT_ERR_READONLY
The attribute the application is trying to change is not owned or writable by the
current user.

SEE ALSO
<Tt/tt_c.h>, tt_spec_create(), tt_spec_write().

CHANGE HISTORY
First released in Issue 1.

266 X/Open CAE Specification

Message Services tt_spec_write()

NAME
tt_spec_write — write the spec and any associated properties to the ToolTalk database

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_spec_write(const char ∗objid);

DESCRIPTION
The tt_spec_write() function writes the spec and any associated properties to the ToolTalk
database. The type must be set before the spec is written for the first time.

The objid argument is the identifier of the object involved in this operation.

RETURN VALUE
Upon successful completion, the tt_spec_write() function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OBJID
The objid passed to the ToolTalk service does not reference an existing object spec.

TT_ERR_OTYPE
The specified object type is not the name of an installed object type.

APPLICATION USAGE
It is not necessary to perform a write operation after a destroy operation.

Several changes can be batched between write calls; for example, the application can create an
object spec, set some properties, and then write all the changes at once with one write call.

SEE ALSO
<Tt/tt_c.h>, tt_spec_create(), tt_spec_type_set().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 267

tt_status_message() Message Services

NAME
tt_status_message — provide a message for a problem status code

SYNOPSIS
#include <Tt/tt_c.h>

char ∗tt_status_message(Tt_status ttrc);

DESCRIPTION
The tt_status_message() function returns a pointer to a message that describes the problem
indicated by this status code.

The ttrc argument is the status code received during an operation.

RETURN VALUE
Upon successful completion, the tt_status_message() function returns a pointer to a character
string that describes the status code, which is one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_xxx Any other TT_ status code is explained in the returned string.

APPLICATION USAGE
The application should use tt_free() to free any data stored in the address returned by the
ToolTalk API.

SEE ALSO
<Tt/tt_c.h>, tt_ptr_error(), tt_free().

CHANGE HISTORY
First released in Issue 1.

268 X/Open CAE Specification

Message Services tt_trace_control()

NAME
tt_trace_control — control client-side tracing

SYNOPSIS
#include <Tt/tt_c.h>

int tt_trace_control(int onoff);

DESCRIPTION
The tt_trace_control () function sets or clears an internal flag controlling all client-side tracing.
The intent of this is to be called from debugger breakpoints, allowing a programmer to narrow
the trace to the suspect area.

The value of the onoff argument affects tracing as follows:

0 Tracing is turned off.

1 Tracing is turned on.

−1 Tracing is turned on if it was off and vice-versa.

RETURN VALUE
The tt_trace_control () function returns the previous setting of the trace flag.

APPLICATION USAGE
This call does not return one of the TT_xxx type of errors or warnings, but only the numbers 1 or
zero.

SEE ALSO
<Tt/tt_c.h>, ttsession.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 269

tt_xcontext_quit() Message Services

NAME
tt_xcontext_quit — remove an XDR-interpreted byte-array value from the list of values

SYNOPSIS
#include <Tt/tt_c.h>

Tt_status tt_xcontext_quit(const char ∗slotname ,
xdrproc_t xdr_proc ,
void ∗value);

DESCRIPTION
The tt_xcontext_quit () function removes the given XDR-interpreted byte-array value from the list
of values for the contexts of all patterns.

The slotname argument describes the slotname in this message. The xdr_proc argument points to
the XDR procedure to be used to serialise the data pointed to by value .

The value argument is the data to be serialised.

RETURN VALUE
Upon successful completion, the tt_xcontext_quit () function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_SLOTNAME
The specified slotname is syntactically invalid.

TT_ERR_XDR
The XDR procedure failed on the given data, or evaluated to a zero-length
expression.

SEE ALSO
<Tt/tt_c.h>; the referenced XDR specification.

CHANGE HISTORY
First released in Issue 1.

270 X/Open CAE Specification

Message Services ttdt_Get_Modified()

NAME
ttdt_Get_Modified — ask if any ToolTalk client has changes pending on a file

SYNOPSIS
#include <Tt/tttk.h>

int ttdt_Get_Modified(Tt_message context ,
const char ∗pathname ,
Tt_scope the_scope ,
XtAppContext app2run ,
int ms_timeout);

DESCRIPTION
The ttdt_Get_Modified() function sends a Get_Modified request in the scope the_scope and waits
for the reply. A Get_Modified request asks if any ToolTalk client has changes pending on
pathname that it intends to make persistent.

The context argument describes the environment to use. If context is not zero, messages created
by ttdt_Get_Modified() inherit from context all contexts whose slotname begins with the
characters ENV_. That is, the environment described in context is propagated to messages
created by ttdt_Get_Modified().

The pathname argument is a pointer to a pathname on which the client is operating.

The the_scope argument identifies the scope of the request. If the_scope is TT_SCOPE_NONE,
ttdt_Get_Modified() tries TT_BOTH, and falls back to TT_FILE_IN_SESSION if, for example, the
ToolTalk database server is not installed on the file server that owns pathname .

The ttdt_Get_Modified() function passes app2run and ms_timeout to tttk_block_while (), blocking
on the reply to the Get_Modified request it sends.

RETURN VALUE
Upon successful completion, the ttdt_Get_Modified() function returns non-zero if the
Get_Modified request receives an affirmative reply within ms_timeout milliseconds; otherwise, it
returns zero.

SEE ALSO
<Tt/tttk.h>, ttdt_file_join (), ttdt_file_event(), tttk_block_while ().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 271

ttdt_Revert() Message Services

NAME
ttdt_Revert — request a ToolTalk client to revert a file

SYNOPSIS
#include <Tt/tttk.h>

Tt_status ttdt_Revert(Tt_message context ,
const char ∗pathname ,
Tt_scope the_scope ,
XtAppContext app2run ,
int ms_timeout);

DESCRIPTION
The ttdt_Revert() function sends a Revert request in the the_scope argument and waits for the
reply. A Revert request asks the handling ToolTalk client to discard any changes pending on
pathname .

The context argument describes the environment to use. If context is not zero, messages created
by ttdt_Revert() inherit from context all contexts whose slotname begins with the characters
ENV_.

The the_scope argument identifies the scope of the request. If the_scope is TT_SCOPE_NONE,
ttdt_Revert() tries TT_BOTH, and falls back to TT_FILE_IN_SESSION if, for example, the
ToolTalk database server is not installed on the file server that owns pathname .

The ttdt_Revert() function passes app2run and ms_timeout to tttk_block_while (), blocking on the
reply to the Save request it sends.

RETURN VALUE
Upon successful completion, the ttdt_Revert() function returns the status of the operation as one
of the following Tt_status values:

TT_OK The sent request received an affirmative reply within ms_timeout milliseconds.

TT_DESKTOP_ETIMEDOUT
No reply was received within ms_timeout milliseconds.

TT_DESKTOP_EPROTO
The request was failed, but the handler set the tt_message_status() of the failure
reply to TT_OK, instead of a specific error status.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_NOMEM
There is insufficient memory available to perform the function.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OVERFLOW
The ToolTalk service has more active messages than it can handle. (The
maximum number of active messages is implementation specific, but is at least
2000.)

272 X/Open CAE Specification

Message Services ttdt_Revert()

TT_ERR_POINTER
The pathname argument was NULL or was a ToolTalk error pointer.

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

SEE ALSO
<Tt/tttk.h>, ttdt_Save(), ttdt_file_join (), ttdt_file_event(), tttk_block_while ().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 273

ttdt_Save() Message Services

NAME
ttdt_Save — request a ToolTalk client to save a file

SYNOPSIS
#include <Tt/tttk.h>

Tt_status ttdt_Save(Tt_message context ,
const char ∗pathname ,
Tt_scope the_scope ,
XtAppContext app2run ,
int ms_timeout);

DESCRIPTION
The ttdt_Save() function sends a Save request in the the_scope argument and waits for the reply.
A Save request asks the handling ToolTalk client to save any changes pending on pathname .

The context argument describes the environment to use. If context is not zero, messages created
by ttdt_Save() inherit from context all contexts whose slotname begins with the characters ENV_.

The the_scope argument identifies the scope of the request. If the_scope is TT_SCOPE_NONE,
ttdt_Save() tries TT_BOTH, and falls back to TT_FILE_IN_SESSION if, for example, the ToolTalk
database server is not installed on the file server that owns pathname .

The ttdt_Save() function passes app2run and ms_timeout to tttk_block_while (), blocking on the
reply to the Save request it sends.

RETURN VALUE
Upon successful completion, the ttdt_Save() function returns the status of the operation as one
of the following Tt_status values:

TT_OK The sent request received an affirmative reply within ms_timeout milliseconds.

TT_DESKTOP_ETIMEDOUT
No reply was received within ms_timeout milliseconds.

TT_DESKTOP_EPROTO
The request was failed, but the handler set the tt_message_status() of the failure
reply to TT_OK, instead of a specific error status.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_NOMEM
There is insufficient memory available to perform the function.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OVERFLOW
The ToolTalk service has more active messages than it can handle. (The
maximum number of active messages is implementation specific, but is at least
2000.)

TT_ERR_POINTER
The pathname argument was NULL or was a ToolTalk error pointer.

274 X/Open CAE Specification

Message Services ttdt_Save()

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

SEE ALSO
<Tt/tttk.h>, ttdt_Revert(), ttdt_file_join (), ttdt_file_event(), tttk_block_while ().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 275

ttdt_close() Message Services

NAME
ttdt_close — destroy a ToolTalk communication endpoint

SYNOPSIS
#include <Tt/tttk.h>

Tt_status ttdt_close(const char ∗procid ,
const char ∗new_procid ,
int sendStopped);

DESCRIPTION
The ttdt_close () function destroys a ToolTalk communication endpoint.

If sendStopped is True, the ttdt_close () function sends a Stopped notice; otherwise, it sends no
notice. If procid is not NULL, ttdt_close () calls tt_default_procid_set () with a procid argument and
then calls tt_close(); otherwise, it closes the current default procid. If new_procid is not NULL,
ttdt_close () calls tt_default_procid_set () with a new_procid argument.

RETURN VALUE
The ttdt_close () function may return any of the errors returned by tt_default_procid_set () and
tt_close().

No errors are propagated if sending the Stopped notice fails.

SEE ALSO
<Tt/tttk.h>, ttdt_open(), tt_default_procid_set (), tt_close().

CHANGE HISTORY
First released in Issue 1.

276 X/Open CAE Specification

Message Services ttdt_file_event()

NAME
ttdt_file_event — use ToolTalk to announce an event about a file

SYNOPSIS
#include <Tt/tttk.h>

Tt_status ttdt_file_event(Tt_message context ,
Tttk_op event ,
Tt_pattern ∗patterns ,
int send);

DESCRIPTION
The ttdt_file_event() function is used to create and send a ToolTalk notice announcing an event
pertaining to a file. The file is indicated by the pathname argument that was passed to
ttdt_file_join () when patterns was created.

The event argument identifies the event. If event is TTDT_MODIFIED, ttdt_file_event() registers
in the the_scope argument passed to ttdt_file_join () to handle Get_Modified, Save , and Revert
requests. Get_Modified is handled transparently by associating the modified state of the file with
patterns. Save and Revert requests are passed to the Ttdt_file_cb that was given to ttdt_file_join ().
If send is True, ttdt_file_event() sends Modified in the_scope . If event is TTDT_SAVED or
TTDT_REVERTED, ttdt_file_event() unregisters handler patterns for Get_Modified, Save , and
Revert requests. If send is True, ttdt_file_event() sends Saved or Reverted, respectively, in the_scope .

The context argument describes the environment to use. If context is not zero, messages created
by ttdt_file_event() inherit from context all contexts whose slotname begins with the characters
ENV_.

RETURN VALUE
Upon successful completion, the ttdt_file_event() function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OVERFLOW
The ToolTalk service has more active messages than it can handle. (The
maximum number of active messages is implementation specific, but is at least
2000.)

TT_ERR_POINTER
The patterns argument was NULL.

SEE ALSO
<Tt/tttk.h>, ttdt_file_join (), ttdt_Get_Modified(), ttdt_file_quit().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 277

ttdt_file_join() Message Services

NAME
ttdt_file_join — register to observe ToolTalk events on a file

SYNOPSIS
#include <Tt/tttk.h>

Tt_pattern ∗ttdt_file_join(const char ∗pathname ,
Tt_scope the_scope ,
int join ,
Ttdt_file_cb cb ,
void ∗clientdata);

DESCRIPTION
The ttdt_file_join () function registers to observe Deleted, Modified, Reverted, Moved , and Saved
notices.

If join is True, ttdt_file_join () calls tt_file_join () with a pathname argument.

The the_scope argument identifies the scope of the request. If the_scope is TT_SCOPE_NONE, it
tries TT_BOTH, and falls back to TT_FILE_IN_SESSION if, for example, the ToolTalk database
server is not installed on the file server that owns pathname .

The ttdt_file_join () function associates the_scope and a copy of pathname with the Tt_patterns
returned, so that ttdt_file_quit() can access them. Thus, the caller is free to modify or free
pathname after ttdt_file_join () returns.

The clientdata argument points to arbitrary data that will be passed into the callback unmodified.

The Ttdt_file_cb argument is a callback defined as:

Tt_message (∗Ttdt_file_cb)(Tt_message msg,
Tttk_op op,
char ∗pathname ,
void ∗clientdata ,
int same_euid_egid ,
int same_procid);

The message argument is the message. The op argument is the operation. The pathname
argument is the pathname of the file the message is about. The clientdata argument is the client
data passed into ttdt_file_join (). The same_euid_egid argument is True if the sender can be
trusted; otherwise it is False. The same_procid argument is True if the sender is the same procid
as the receiver; otherwise it is False. A Ttdt_file_cb must return the message if it does not
consume the message. (Consuming means replying, rejecting or failing a request, and then
destroying the message.) Otherwise, it must consume the message and return either zero or a
tt_error_pointer() cast to Tt_message.

RETURN VALUE
Upon successful completion, the ttdt_file_join () function returns a null-terminated array of
Tt_pattern, which can be passed to ttdt_file_event() to register for requests that the application
should handle once it begins to modify the file; otherwise, it returns an error pointer. The
application can use tt_ptr_error() to extract one of the following Tt_status values from the
returned handle:

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

278 X/Open CAE Specification

Message Services ttdt_file_join()

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_NOMEM
There is insufficient memory available to perform the function.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PATH
The specified pathname included an unsearchable directory.

APPLICATION USAGE
The null-terminated array of Tt_pattern returned by ttdt_file_join () should be destroyed by
passing the array to ttdt_file_quit().

The pathname argument to Ttdt_file_cb is a copy that can be freed using tt_free().

EXAMPLES
This is the typical algorithm of a Ttdt_file_cb:

Tt_message myFileCB(Tt_message msg,
Tttk_op op,
char ∗pathname,
int trust,
int isMe)

{
tt_free(pathname);
Tt_status status = TT_OK;
switch(op) {

case TTDT_MODIFIED:
if ((_modifiedByMe)&&(! isMe)) {

/ ∗ Hmm, the other editor either does not know or
∗ does not care that we are already modifying the
∗ file, so the last saver will win.
∗/

} else {
/ ∗ Interrogate user if she ever modifies the buffer ∗/
_modifiedByOther = 1;
XtAddCallback(myTextWidget, XmNmodifyVerifyCallback,

myTextModifyCB, 0);
}
break;
case TTDT_GET_MODIFIED:
tt_message_arg_ival_set(msg, 1, _modifiedByMe);
tt_message_reply(msg);
break;
case TTDT_SAVE:
status = mySave(trust);
if (status == TT_OK) {

tt_message_reply(msg);
} else {

tttk_message_fail(msg, status, 0, 0);
}

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 279

ttdt_file_join() Message Services

break;
case TTDT_REVERT:
status = myRevert(trust);
if (status == TT_OK) {

tt_message_reply(msg);
} else {

tttk_message_fail(msg, status, 0, 0);
}
break;
case TTDT_REVERTED:
if (! isMe) {

_modifiedByOther = 0;
}
break;
case TTDT_SAVED:
if (! isMe) {

_modifiedByOther = 0;
int choice = myUserChoice(myContext, myBaseFrame,

"Another tool has saved "
"this file.", 2, "Ignore",
"Revert");

switch(choice) {
case 1:
myRevert(1);
break;

}
}
break;
case TTDT_MOVED:
case TTDT_DELETED:
/ ∗ Do something appropriate ∗/
break;

}
tttk_message_destroy(msg);
return 0;

}

SEE ALSO
<Tt/tttk.h>, ttdt_file_quit(), ttdt_file_event(), ttdt_Get_Modified(), ttdt_Save(), ttdt_Revert(),
tt_file_join (), tt_free().

CHANGE HISTORY
First released in Issue 1.

280 X/Open CAE Specification

Message Services ttdt_file_notice()

NAME
ttdt_file_notice — create and send a standard ToolTalk notice about a file

SYNOPSIS
#include <Tt/tttk.h>

Tt_message ttdt_file_notice(Tt_message context ,
Tttk_op op,
Tt_scope scope ,
const char ∗pathname ,
int send_and_destroy);

DESCRIPTION
The ttdt_file_notice() function is used to create (and optionally send) any of the standard file
notices: Created , Deleted, Moved , Reverted, Saved , and Modified.

The ttdt_file_notice() function creates a notice with the specified op and scope , and sets its file
attribute to pathname . The function adds an unset argument of Tt_mode TT_IN and vtype File to
the notice, per the Desktop messaging conventions. If send_and_destroy is True, ttdt_file_notice()
sends the message and then destroys it; otherwise, it only creates the message.

The context argument describes the environment to use. If context is not zero, messages created
by ttdt_file_notice() inherit from context all contexts whose slotname begins with the characters
ENV_.

RETURN VALUE
If send_and_destroy is False, the ttdt_file_notice() function returns the created Tt_message. If
send_and_destroy is True, it returns zero; otherwise, it returns an error pointer. The application
can use tt_ptr_error() to extract one of the following Tt_status values from the returned handle:

TT_DESKTOP_EINVAL
The op argument was TTDT_MOVED and send_and_destroy was True.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_NOMEM
There is insufficient memory available to perform the function.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OVERFLOW
The ToolTalk service has more active messages than it can handle. (The
maximum number of active messages is implementation specific, but is at least
2000.)

TT_ERR_POINTER
The pathname argument was NULL or was a ToolTalk error pointer.

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 281

ttdt_file_notice() Message Services

APPLICATION USAGE
The ttdt_file_event() function is a higher-level interface than ttdt_file_notice(), and is the preferred
way to send all but the Moved notice.

SEE ALSO
<Tt/tttk.h>, ttdt_file_event().

CHANGE HISTORY
First released in Issue 1.

282 X/Open CAE Specification

Message Services ttdt_file_quit()

NAME
ttdt_file_quit — unregister interest in ToolTalk events about a file

SYNOPSIS
#include <Tt/tttk.h>

Tt_status ttdt_file_quit(Tt_pattern ∗patterns ,
int quit);

DESCRIPTION
The ttdt_file_quit() function is used to unregister interest in the pathname that was passed to
ttdt_file_join () when patterns was created. The ttdt_file_quit() function destroys patterns and sets
the default file to NULL.

If quit is True, ttdt_file_quit() calls tt_file_quit() with a pathname argument; otherwise, it returns
without quitting.

RETURN VALUE
Upon successful completion, the ttdt_file_quit() function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The patterns argument was NULL or otherwise invalid.

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

SEE ALSO
<Tt/tttk.h>, ttdt_file_join (), tt_default_file(), tt_file_quit().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 283

ttdt_file_request() Message Services

NAME
ttdt_file_request — create and send a standard ToolTalk request about a file

SYNOPSIS
#include <Tt/tttk.h>

Tt_message ttdt_file_request(Tt_message context ,
Tttk_op op,
Tt_scope scope ,
const char ∗pathname ,
Ttdt_file_cb cb ,
void ∗client_data ,
int send_and_destroy);

DESCRIPTION
The ttdt_file_request() function is used to create (and optionally send) any of the standard
Desktop file requests defined in Section 6.6 on page 364, such as Get_Modified, Save , and Revert.

The ttdt_file_request() function creates a request with the specified op and scope , and sets its file
attribute to pathname . The function adds an unset argument of Tt_mode TT_IN and vtype File to
the request, per the Desktop messaging conventions. If op is TTDT_GET_MODIFIED,
ttdt_file_request() also adds an unset TT_OUT argument of vtype Boolean to the request. The
ttdt_file_request() function installs cb as a message callback for the created request, and ensures
that client_data will be passed into the callback. (The Ttdt_file_cb callback is described under
ttdt_file_join ()). If send is True, ttdt_file_request() sends the request before returning the handle to
it; otherwise, it only creates the request.

The context argument describes the environment to use. If context is not zero, messages created
by ttdt_file_request() inherit from context all contexts whose slotname begins with the characters
ENV_.

RETURN VALUE
Upon successful completion, the ttdt_file_request() function returns the created Tt_message;
otherwise, it returns an error pointer. The application can use tt_ptr_error() to extract one of the
following Tt_status values from the returned handle:

TT_ERR_DBAVAIL
The ToolTalk service could not access the ToolTalk database needed for this
operation.

TT_ERR_DBEXIST
The ToolTalk service could not access the specified ToolTalk database in the
expected place.

TT_ERR_NOMEM
There is insufficient memory available to perform the function.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OVERFLOW
The ToolTalk service has more active messages than it can handle. (The
maximum number of active messages is implementation specific, but is at least
2000.)

TT_ERR_POINTER
The pathname argument was NULL or was a ToolTalk error pointer.

284 X/Open CAE Specification

Message Services ttdt_file_request()

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

APPLICATION USAGE
The ttdt_file_request() function is a lower-level interface than ttdt_Get_Modified(), ttdt_Save(),
and ttdt_Revert(), since the latter functions create and send the request and then block on its
reply.

SEE ALSO
<Tt/tttk.h>, ttdt_Get_Modified(), ttdt_Save(), ttdt_Revert(), ttdt_file_join ().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 285

ttdt_message_accept() Message Services

NAME
ttdt_message_accept — accept a contract to handle a ToolTalk request

SYNOPSIS
#include <Tt/tttk.h>

Tt_pattern ∗ttdt_message_accept(Tt_message contract ,
Ttdt_contract_cb cb ,
Widget shell ,
void ∗clientdata ,
int accept ,
int sendStatus);

DESCRIPTION
The ttdt_message_accept() function registers in the default session for TT_HANDLER-addressed
requests:

(1) Get_Geometry, Set_Geometry, Get_Iconified, Set_Iconified, Get_Mapped , Set_Mapped ,
Raise , Lower, Get_XInfo

(2) Pause, Resume

(3) Quit, Get_Status

If the shell argument is not NULL, the ToolTalk service handles messages in (1) transparently;
otherwise, it treats them like messages in (3).

If shell is non-NULL and cb is NULL, then the ToolTalk service handles messages in (2)
transparently by passing shell and the appropriate boolean value to XtSetSensitive(). If cb is
NULL, then the ToolTalk service treats messages in (2) like (3).

If cb is not NULL, ttdt_message_accept() passes messages in (3) to the cb callback; otherwise it
fails with TT_DESKTOP_ENOTSUP.

If accept is True, ttdt_message_accept() calls tt_message_accept() with a contract argument. If
contract has a returned value from tt_message_status() of TT_WRN_START_MESSAGE, it is the
message that caused the tool to be started. The tool should join any scopes it wants to serve
before accepting contract , so that it will receive any other messages already dispatched to its
ptype. Otherwise, those messages will cause other instances of the ptype to be started. If that is
in fact desired (for example, because the tool can only service one message at a time), then the
tool should undeclare its ptype while it is busy.

If sendStatus is True, ttdt_message_accept() sends a Status notice to the requester, using the
arguments (if any) passed to ttdt_open().

RETURN VALUE
Upon successful completion, the ttdt_message_accept() function returns a null-terminated array
of Tt_pattern, and associates this array with contract ; otherwise, it returns an error pointer. The
application can use tt_ptr_error() to extract one of the following Tt_status values from the
returned handle:

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

286 X/Open CAE Specification

Message Services ttdt_message_accept()

TT_ERR_UNIMP
The ttsession for the default session is of a version that does not support
tt_message_accept(). If contract is a TT_WRN_START_MESSAGE, messages to the
tool’s ptype will remain blocked until contract is rejected, replied to, or failed.

APPLICATION USAGE
The ttdt_message_accept() function is what a tool calls when it wants to accept responsibility for
handling (that is, failing or rejecting) a request.

If contract is destroyed by tttk_message_destroy(), then the patterns will also be destroyed.
Otherwise, the caller is responsible for iterating over the array and destroying each pattern.

EXAMPLES
See ttdt_session_join () for an example of a Ttdt_contract_cb callback that can be used with
ttdt_message_accept().

SEE ALSO
<Tt/tttk.h>, ttdt_open(), ttmedia_ptype_declare (), tt_ptype_declare (), ttdt_session_join (),
ttdt_file_join (), tt_ptype_undeclare (), tt_ptype_undeclare (); XtSetSensitive() in the X/Open CAE
Specification, Window Management: X Toolkit Intrinsics.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 287

ttdt_open() Message Services

NAME
ttdt_open — create a ToolTalk communication endpoint

SYNOPSIS
#include <Tt/tttk.h>

char ∗ttdt_open(int ∗ttfd ,
const char ∗toolname ,
const char ∗vendor ,
const char ∗version ,
int sendStarted);

DESCRIPTION
The ttdt_open() function calls tt_open() and tt_fd(). It associates toolname , vendor and version
with the created procid, and initialises the new procid’s default contexts from the process
environment. If sendStarted is True, ttdt_open() sends a Started notice.

RETURN VALUE
Upon successful completion, the ttdt_open() function returns the created procid in a string that
can be freed with tt_free(); otherwise, the ttdt_open() function may return any of the errors
returned by tt_open() and tt_fd().

No errors are propagated if sending the Started notice fails.

SEE ALSO
<Tt/tttk.h>, ttdt_close (), tt_open(), tt_fd(), tt_free().

CHANGE HISTORY
First released in Issue 1.

288 X/Open CAE Specification

Message Services ttdt_sender_imprint_on()

NAME
ttdt_sender_imprint_on — act like a child of the specified tool

SYNOPSIS
#include <Tt/tttk.h>

Tt_status ttdt_sender_imprint_on(const char ∗handler ,
Tt_message contract ,
char ∗∗display ,
int ∗width ,
int ∗height ,
int ∗xoffset ,
int ∗yoffset ,
XtAppContext app2run ,
int ms_timeout);

DESCRIPTION
The ttdt_sender_imprint_on() function is used to make the calling tool act equivalently to a child
of another specified tool. The calling tool adopts the other tool’s X11 display, locale, and current
working directory. It also learns the other tool’s X11 geometry, so that it may position itself
appropriately.

If the handler argument is non-NULL, the requests are addressed to that procid using
TT_HANDLER. If handler is NULL and the contract argument is non-NULL, the requests are
addressed to the tt_message_sender() of the contract, using TT_HANDLER.

The contract argument is passed to tttk_message_create() as the context argument.

If the display argument is not NULL, ttdt_sender_imprint_on() returns the other tool’s display in
∗display . If display is NULL, ttdt_sender_imprint_on() sets the DISPLAY environment variable to
the other tool’s display.

If each of the width , height , xoffset, and yoffset arguments are NULL, then ttdt_sender_imprint_on()
does not send the other tool a Get_Geometry request.

The ttdt_sender_imprint_on() function passes the app2run and ms_timeout arguments to
tttk_block_while (), blocking on the replies to the requests it sends.

If the display argument is not NULL, ttdt_sender_imprint_on() sets ∗display to a string that can be
freed with tt_free().

If for some reason no width or height is returned by the other tool, ttdt_sender_imprint_on() sets
∗width or ∗height to −1. If no positional information is returned, ttdt_sender_imprint_on() sets
∗xoffset and ∗yoffset to {INT_MAX}.

RETURN VALUE
Upon successful completion, the ttdt_sender_imprint_on() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_DESKTOP_ETIMEDOUT
One or more of the sent requests did not complete within ms_timeout
milliseconds.

TT_ERR_NOMEM
There is insufficient memory available to perform the function.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 289

ttdt_sender_imprint_on() Message Services

TT_ERR_OVERFLOW
The ToolTalk service has more active messages than it can handle. (The
maximum number of active messages is implementation specific, but is at least
2000.)

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

APPLICATION USAGE
If both the handler and contract are zero, the requests are addressed to no tool in particular, using
TT_PROCEDURE; this is not recommended.

SEE ALSO
<Tt/tttk.h>, tt_free(), tt_message_sender(), tttk_block_while (), tttk_message_create().

CHANGE HISTORY
First released in Issue 1.

290 X/Open CAE Specification

Message Services ttdt_session_join()

NAME
ttdt_session_join — join a ToolTalk session

SYNOPSIS
#include <Tt/tttk.h>

Tt_pattern ∗ttdt_session_join(const char ∗sessid ,
Ttdt_contract_cb cb ,
Widget shell ,
void ∗clientdata ,
int join);

DESCRIPTION
The ttdt_session_join () function joins the session sessid, registering patterns and default callbacks
for many standard Desktop message interfaces. If sessid is NULL, the default session is joined.

The ttdt_session_join () function registers for the following TT_HANDLER-addressed requests:

(1) Get_Environment, Set_Environment, Get_Locale , Set_Locale , Get_Situation , Set_Situation ,
Signal , Get_Sysinfo

(2) Get_Geometry, Set_Geometry, Get_Iconified, Set_Iconified, Get_Mapped , Set_Mapped ,
Raise , Lower, Get_XInfo

(3) Pause, Resume, Quit

(4) Get_Status , Do_Command

If join is True, ttdt_session_join () actually joins the indicated session.

The ToolTalk service handles messages in (1) transparently.

If shell is non-NULL, then it is expected to be a realised mappedWhenManaged
applicationShellWidget , and the ToolTalk service handles messages in (2) transparently. (If shell is
merely a realised widget, then the ToolTalk service handles only the Get_XInfo request, and
ttdt_session_join () fails the rest of (2) with TT_DESKTOP_ENOTSUP.) If shell is NULL, then the
ToolTalk service treats messages in (2) equivalently to those in (4).

If shell is non-NULL and cb is NULL, then the ToolTalk service handles messages in (3)
transparently as follows; otherwise, it treats them as equivalent to those in (4). The Quit request
results in a WM_DELETE_WINDOW event on shell if the silent and force arguments of the Quit
request are both False. In other words, if shell is supplied without a cb, then a Quit request may
imply that the user quit the application’s top-level window using the window manager. Pause
and Resume requests result in the ToolTalk service passing shell and the appropriate boolean
value to XtSetSensitive().

If cb is not NULL, the ToolTalk service passes messages in (4) to cb; otherwise, ttdt_session_join ()
fails with TT_DESKTOP_ENOTSUP.

The Ttdt_contract_cb argument is a callback defined as:

Tt_message (∗Ttdt_contract_cb)(Tt_message msg,
void ∗clientdata ,
Tt_message contract);

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 291

ttdt_session_join() Message Services

The msg argument is a message in Tt_state TT_SENT. If msg is a TT_REQUEST, the client
program becomes responsible for either failing, rejecting or replying to msg. After doing so, the
client program may dispose of msg with tttk_message_destroy(). The clientdata argument is the
clientdata passed to ttdt_session_join () or ttdt_message_accept(). The contract argument is the
contract passed to ttdt_message_accept(). For callbacks installed by ttdt_session_join (), contract is
always zero.

RETURN VALUE
Upon successful completion, the ttdt_session_join () function returns a null-terminated array of
Tt_pattern; otherwise, it returns an error pointer. The application can use tt_ptr_error() to
extract one of the following Tt_status values from the returned handle:

TT_ERR_NOMEM
There is insufficient memory available to perform the function.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

TT_ERR_SESSION
The specified ToolTalk session is out of date or invalid.

APPLICATION USAGE
The null-terminated array of Tt_pattern returned by ttdt_session_join () should be destroyed by
passing the array to ttdt_file_quit().

The ToolTalk service will reply to the Quit request before generating the
WM_DELETE_WINDOW event. If the application catches and cancels this event, then the
sender of the Quit request will be misled into thinking the application actually quit.
Applications that can cancel WM_DELETE_WINDOW should install a real Ttdt_contract_cb.

The ToolTalk service handles the Pause and Resume requests by setting the sensitivity of widget .
If widget is the parent of any top-level pop-up shells, XtSetSensitive() will not affect them.
Applications that can have such pop-ups should install a real Ttdt_contract_cb.

A Ttdt_contract_cb should return zero if it processes msg successfully, or a tt_error_pointer() cast
to Tt_message if processing results in an error. It should return the msg if it does not consume it.
If msg is returned, then the ToolTalk service passes TT_CALLBACK_CONTINUE down the call
stack, so that msg will be offered to other callbacks or (more likely) be returned from
tt_message_receive(). Applications will rarely want msg to get processed by other callbacks or in
the main event loop.

EXAMPLES
This is the typical algorithm of a Ttdt_contract_cb for an application that handles Pause, Resume
or Quit requests for itself, but lets the ToolTalk service handle the X11-related requests listed in
(2). Since this example callback deals with the case when contract is not zero, it can also be used
as the Ttdt_contract_cb passed to ttdt_message_accept().

Tt_message myContractCB(Tt_message msg,
void ∗clientdata,
Tt_message contract)

{

292 X/Open CAE Specification

Message Services ttdt_session_join()

char ∗opString = tt_message_op(msg);
Tttk_op op = tttk_string_op(opString);
tt_free(opString);
int silent = 0;
int force = 0;
Boolean cancel = False;
Boolean sensitive = True;
char ∗status, command;
switch(op) {

case TTDT_QUIT:
tt_message_arg_ival(msg, 0, &silent);
tt_message_arg_ival(msg, 1, &force);
if (contract == 0) {

/ ∗ Quit entire application ∗/
cance l = ! myQuitWholeApp(silent, force);

} else {
/ ∗ Quit just the specified request being

worked on ∗/
cance l = ! myCancelThisRequest(contract,

silent, force);
}
if (cancel) {

/ ∗ User canceled Quit; fail the Quit request ∗/
tttk_message_fail(msg, TT_DESKTOP_ECANCELED, 0, 1);

} else {
tt_message_reply(msg);
tttk_message_destroy(msg);

}
return 0;

case TTDT_PAUSE:
sensitive = False;

case TTDT_RESUME:
if (contract == 0) {

int already = 1;
if (XtIsSensitive(myTopShell) != sensitive) {

already = 0;
XtSetSensitive(myTopShell, sensitive);

}
if (already) {

tt_message_status_set(msg,
TT_DESKTOP_EALREADY);

}
} else {

if (XtIsSensitive(thisShell) == sensitive) {
tt_message_status_set(msg,

TT_DESKTOP_EALREADY);
} else {

XtSetSensitive(thisShell, sensitive);
}

}
tt_message_reply(msg);
tttk_message_destroy(msg);

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 293

ttdt_session_join() Message Services

return 0;
case TTDT_GET_STATUS:

if (contract == 0) {
status = "Message about status of entire app";

} else {
status = "Message about status of this request";

}
tt_message_arg_val_set(msg, 0, status);
tt_message_reply(msg);
tttk_message_destroy(msg);
return 0;

case TTDT_DO_COMMAND:
if (! haveExtensionLanguage) {

tttk_message_fail(msg, TT_DESKTOP_ENOTSUP, 0, 1);
return 0;

}
command = tt_message_arg_val(msg, 0);
result = myEval(command);
tt_free(command);
tt_message_status_set(msg, result);
if (tt_is_err(result)) {

tttk_message_fail(msg, result, 0, 1);
} else {

tt_message_reply(msg);
tttk_message_destroy(msg);

}
return 0;

}
/ ∗ Unrecognized message; do not consume it ∗/
return msg;

}

SEE ALSO
<Tt/tttk.h>, ttdt_session_quit(), tt_session_join (), XtSetSensitive() in the X/Open CAE
Specification, Window Management: X Toolkit Intrinsics,

CHANGE HISTORY
First released in Issue 1.

294 X/Open CAE Specification

Message Services ttdt_session_quit()

NAME
ttdt_session_quit — quit a ToolTalk session

SYNOPSIS
#include <Tt/tttk.h>

Tt_status ttdt_session_quit(const char ∗sessid ,
Tt_pattern ∗sess_pats ,
int quit);

DESCRIPTION
The ttdt_session_quit() function destroys the patterns in sess_pats. If quit is True, it quits the
session sessid, or the default session if sessid is NULL.

RETURN VALUE
Upon successful completion, the ttdt_session_quit() function returns the status of the operation
as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

TT_ERR_SESSION
The specified ToolTalk session is out of date or invalid.

SEE ALSO
<Tt/tttk.h>, ttdt_session_join (), tt_session_quit().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 295

ttdt_subcontract_manage() Message Services

NAME
ttdt_subcontract_manage — manage an outstanding request

SYNOPSIS
#include <Tt/tttk.h>

Tt_pattern ∗ttdt_subcontract_manage(Tt_message subcontract ,
Ttdt_contract_cb cb ,
Widget shell ,
void ∗clientdata);

DESCRIPTION
The ttdt_subcontract_manage () function allows a requester to manage the standard Desktop
interactions with the tool that is handling the request. The ttdt_subcontract_manage () function
registers in the default session for TT_HANDLER-addressed requests Get_Geometry and
Get_XInfo , and Status notices.

If shell is not NULL, the ToolTalk service handles the Get_Geometry and Get_XInfo notices
transparently; otherwise, it passes them to cb. The Status notice is always passed to the callback.

See ttdt_session_join () for a description of a Ttdt_contract_cb callback.

If subcontract is destroyed by tttk_message_destroy(), then the patterns will also be destroyed;
otherwise, the caller is responsible for iterating over the array and destroying each pattern.

RETURN VALUE
Upon successful completion, the ttdt_subcontract_manage () function returns a null-terminated
array of Tt_pattern, and associates this array with subcontract ; otherwise, it returns an error
pointer. The application can use tt_ptr_error() to extract one of the following Tt_status values
from the returned handle:

TT_DESKTOP_EINVAL
Both the shell and cb arguments were NULL.

TT_ERR_NOMEM
There is insufficient memory available to perform the function.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The subcontract argument was not a valid Tt_message.

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

SEE ALSO
<Tt/tttk.h>, ttdt_session_join (), tttk_message_destroy().

CHANGE HISTORY
First released in Issue 1.

296 X/Open CAE Specification

Message Services ttmedia_Deposit()

NAME
ttmedia_Deposit — send a Deposit request to checkpoint a document

SYNOPSIS
#include <Tt/tttk.h>

Tt_status ttmedia_Deposit(Tt_message load_contract ,
const char ∗buffer_id ,
const char ∗media_type ,
const unsigned char ∗new_contents ,
int new_len ,
const char ∗pathname ,
XtAppContext app2run ,
int ms_timeout);

DESCRIPTION
The ttmedia_Deposit () function is used to perform a checkpoint save on a document that was the
subject of a Media Exchange load_contract request such as Edit , Compose , or Open. (See Section
6.6.2 on page 396.) To carry out a checkpoint save, the editor must send the new document
contents back to the sender of load_contract .

The ttmedia_Deposit () function creates and sends a Deposit request and returns the success or
failure of that request. The load_contract argument is the request that caused this editor to load
the document. The buffer_id argument is the identifier of the buffer this editor created if the
document was loaded via an Open request. If buffer_id is NULL, the the ToolTalk service gives
the Deposit request a Tt_address of TT_HANDLER and sends it directly to the
tt_message_sender() of load_contract ; otherwise, the the ToolTalk service will address it as a
TT_PROCEDURE and insert buffer_id into the request to match the pattern registered by the
sender of the load_contract .

The ttmedia_Deposit () function uses the media_type argument as the vtype of the contents
argument of the sent request, and new_contents and new_len as its value. The latter two must be
zero if pathname is used to name a temporary file into which the editor will place the
checkpointed document. The editor is free to remove the temporary file after the reply to the
Deposit request is received; that is, after ttmedia_Deposit () has returned.

After the request is sent, ttmedia_Deposit () passes app2run and ms_timeout to tttk_block_while () to
wait for the reply.

RETURN VALUE
Upon successful completion, the ttmedia_Deposit () function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_DESKTOP_ETIMEDOUT
No reply was received within ms_timeout milliseconds.

TT_ERR_NOMEM
There is insufficient memory available to perform the function.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OVERFLOW
The ToolTalk service has more active messages than it can handle. (The
maximum number of active messages is implementation specific, but is at least
2000.)

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 297

ttmedia_Deposit() Message Services

TT_ERR_POINTER
The pathname argument was NULL or was a ToolTalk error pointer.

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

SEE ALSO
<Tt/tttk.h>, ttmedia_load (), ttmedia_load_reply (), ttmedia_ptype_declare (), ttdt_Save(),
tttk_block_while ().

CHANGE HISTORY
First released in Issue 1.

298 X/Open CAE Specification

Message Services ttmedia_load()

NAME
ttmedia_load — send a Display, Edit or Compose request

SYNOPSIS
#include <Tt/tttk.h>

Tt_message ttmedia_load(Tt_message context ,
Ttmedia_load_msg_cb cb ,
void ∗clientdata ,
Tttk_op op,
const char ∗media_type ,
const unsigned char ∗contents ,
int len ,
const char ∗file ,
const char ∗docname,
int send);

DESCRIPTION
The ttmedia_load () function is used to create and optionally send a Media Exchange request to
display, edit or compose a document.

The cb argument will be passed clientdata when the reply is received, or when intermediate
versions of the document are checkpointed through Deposit requests. The op argument must be
one of TTME_DISPLAY, TTME_EDIT or TTME_COMPOSE. The media_type argument names the
data format of the document, and is usually the primary determinant of which application will
be chosen to handle the request. The contents and len arguments specify the document; if they
are NULL and zero, respectively, and file is not NULL, then the document is assumed to be
contained in file . If docname is not NULL, then ttmedia_load () uses it as the title of the document.
If send is True, the message is sent before being returned.

The context argument describes the environment to use. If context is not zero, messages created
by ttmedia_load () inherit from context all contexts whose slotname begins with the characters
ENV_.

The Ttmedia_load_msg_cb argument is a callback defined as:

Tt_message (∗Ttmedia_load_msg_cb)(Tt_message msg,
void ∗clientdata),
Tttk_op op,
unsigned char ∗contents ,
int len ,
char ∗file);

The msg argument is the reply to the load request, or a Deposit request with a messageID
argument naming the identifier (see tt_message_id()) of the load request. In the latter case, the
client program becomes responsible for either failing or replying to the request. In either case,
msg should be destroyed after being processed.

The op argument is the op of msg. It must be either TTME_DEPOSIT or the op passed to
ttmedia_load ().

The contents, len and file arguments represent the contents of the arriving document. If len is
zero, then the document is contained in file . If contents or file are non-NULL, they can be freed
using tt_free().

The clientdata argument is the clientdata passed to ttmedia_load ().

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 299

ttmedia_load() Message Services

RETURN VALUE
Upon successful completion, the ttmedia_load () function returns the request it was asked to
build; otherwise, it returns an error pointer. The application can use tt_ptr_error() to extract one
of the following Tt_status values from the returned handle:

TT_ERR_NOMEM
There is insufficient memory available to perform the function.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_OVERFLOW
The ToolTalk service has more active messages than it can handle. (The
maximum number of active messages is implementation specific, but is at least
2000.)

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

APPLICATION USAGE
After the request created by ttmedia_load () is sent, the application will probably want to use
ttdt_subcontract_manage () immediately afterwards to manage the standard interactions with the
handler of the request.

A Ttmedia_load_msg_cb callback should return NULL if it processes msg successfully, or a
tt_error_pointer() cast to Tt_message if processing results in an error. It should return the msg if
it does not consume it, in which case the ToolTalk service will pass
TT_CALLBACK_CONTINUE down the call stack, so that msg will be offered to other callbacks
or (more likely) be returned from tt_message_receive(). Applications will rarely want msg to get
processed by other callbacks or in the main event loop.

EXAMPLES
This is the typical algorithm of a Ttmedia_load_msg_cb:

Tt_message
myLoadMsgCB(Tt_message msg,

void ∗clientData,
Tttk_op op,
unsigned char ∗contents,
int len,
char ∗file)

{
if (len > 0) {

/ ∗ Replace data with len bytes in contents ∗/
} else if (file != 0) {

/ ∗ Replace data with data read from file ∗/
}
if (op == TTME_DEPOSIT) {

tt_message_reply(msg);
}
tttk_message_destroy(msg);
return 0;

}

300 X/Open CAE Specification

Message Services ttmedia_load()

SEE ALSO
<Tt/tttk.h>, ttmedia_load_reply (), ttmedia_ptype_declare (), ttmedia_Deposit (), tt_free(),
tt_message_receive().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 301

ttmedia_load_reply() Message Services

NAME
ttmedia_load_reply — reply to a Display, Edit or Compose request

SYNOPSIS
#include <Tt/tttk.h>

Tt_message ttmedia_load_reply(Tt_message contract ,
const unsigned char ∗new_contents ,
int new_len ,
int reply_and_destroy);

DESCRIPTION
The ttmedia_load_reply () function is used to reply to a Media Exchange request to display, edit or
compose a document. The editor working on the request usually calls ttmedia_load_reply () when
the user has indicated in some way that he or she is finished viewing or modifying the
document.

If new_contents and new_len are non-NULL and non-zero, respectively, ttmedia_load_reply () uses
their values to set the new contents of the document back in the appropriate output argument of
contract . If reply_and_destroy is True, ttmedia_load_reply () replies to contract and then destroys it.

RETURN VALUE
Upon successful completion, the ttmedia_load_reply () function returns the created Tt_message;
otherwise, it returns an error pointer. The application can use tt_ptr_error() to extract one of the
following Tt_status values from the returned handle:

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NOTHANDLER
This application is not the handler for this message.

TT_ERR_NUM
The integer value passed was invalid (out of range).

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

APPLICATION USAGE
If contract is a Display request, then new_contents and new_len should be zero.

SEE ALSO
<Tt/tttk.h>, ttmedia_load (), ttmedia_ptype_declare (), ttmedia_Deposit ().

CHANGE HISTORY
First released in Issue 1.

302 X/Open CAE Specification

Message Services ttmedia_ptype_declare()

NAME
ttmedia_ptype_declare — declare the ptype of a Media Exchange media editor

SYNOPSIS
#include <Tt/tttk.h>

Tt_status ttmedia_ptype_declare(const char ∗ptype ,
int base_opnum ,
Ttmedia_load_pat_cb cb ,
void ∗clientdata ,
int declare);

DESCRIPTION
The ttmedia_ptype_declare () function is used to initialise an editor that implements the Media
Exchange message interface for a particular media type. The ttmedia_ptype_declare () function
notifies the ToolTalk service that the cb callback is to be called when the editor is asked to edit a
document of the kind supported by ptype. The ttmedia_ptype_declare () function installs an
implementation-specific opnum callback on a series of signatures that ptype is assumed to
contain. These signatures are listed below, with their corresponding opnum offsets. Opnums in
ptype for these signatures start at base_opnum, which must be zero or a multiple of 1000. The
implementation-specific opnum callback will pass clientdata to cb when a request is received that
matches one of these signatures.

If declare is True, ttmedia_ptype_declare () calls tt_ptype_declare () with the ptype argument. If
ptype implements Media Exchange for several different media types, then
ttmedia_ptype_declare () can be called multiple times, with a different base_opnum each time, and
with declare being True only once.

The Ttmedia_load_pat_cb argument is a callback defined as:

Tt_message (∗Ttmedia_load_pat_cb)(Tt_message msg,
void ∗clientdata ,
Tttk_op op,
Tt_status diagnosis ,
unsigned char ∗contents ,
int len ,
char ∗file ,
char ∗docname);

The msg argument is a TT_REQUEST in Tt_state TT_SENT. The client program becomes
responsible for either failing, rejecting or replying to it. This can either be done inside the
callback, or the message can be saved and dismissed later (that is, after the callback returns).
Usually, the callback will either immediately reject/fail the request, or it will start processing the
request, perhaps by associating it with a new window. When the request is finally dismissed, it
should be destroyed, for example, using tt_message_destroy().

If the callback knows it will handle the request (either fail or reply to it, but not reject it), then it
should call ttdt_message_accept(). But if the return value of tt_message_status() of msg is
TT_WRN_START_MESSAGE, then the callback should probably do ttdt_session_join (), and
perhaps a ttdt_file_join (), before accepting the message. The op argument is the op of the
incoming request, one of TTME_COMPOSE, TTME_EDIT or TTME_DISPLAY. The diagnosis
argument is the recommended error code; if the ToolTalk service detects a problem with the
request (for example, TT_DESKTOP_ENODATA), then it passes in the error code that it
recommends the request should be failed with. If diagnosis was not TT_OK and the
Ttmedia_load_pat_cb returns msg, then the ToolTalk service will fail and destroy msg.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 303

ttmedia_ptype_declare() Message Services

The ToolTalk service does not simply fail the request transparently, because the request may be
the reason that the client process was started by ToolTalk in the first place. So if diagnosis is not
TT_OK and the tt_message_status() of msg is TT_WRN_START_MESSAGE, then many
applications will decide that they have no reason to continue running. If such an application
chooses to exit in the callback, then it should first dismiss the request. Otherwise, it can set some
global flag, return msg (thus allowing the ToolTalk service to dismiss the message), and then
have main() check the flag and exit before even entering the event loop. (Exiting without
dismissing the request would fail it with status TT_ERR_PROCID, instead of with diagnostic .)

The contents, len, and file arguments represent the contents of the arriving document. If len is
zero, then the document is contained in file . If contents or file are non-NULL, they can be freed
using tt_free().

The docname argument is the name of the document, if any. The clientdata argument is the
clientdata passed to ttmedia_ptype_declare ().

A Ttmedia_load_pat_cb should return zero if it processes msg successfully, or a
tt_error_pointer() cast to Tt_message if processing results in an error. It should return the msg if
it does not consume it. If diagnosis is not TT_OK and msg is returned, then the ToolTalk service
will consume (namely, fail and destroy) it. If diagnosis is TT_OK and msg is returned, then the
ToolTalk service will pass TT_CALLBACK_CONTINUE down the call stack, so that msg will be
offered to other callbacks or (more likely) be returned from tt_message_receive(). Applications
will rarely want msg to get processed by other callbacks or in the main event loop.

RETURN VALUE
Upon successful completion, the ttmedia_ptype_declare () function returns the status of the
operation. The application can use tt_ptr_error() to extract one of the following Tt_status values
from the returned handle:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

TT_ERR_PTYPE
The specified process type is not the name of an installed process type.

EXAMPLES
This is the typical algorithm of a Ttmedia_load_pat_cb:

Tt_message
myAcmeSheetLoadCB(

Tt_message msg,
void ∗client_data,
Tttk_op op,
Tt_status diagnosis,
unsigned char ∗contents,
int len,
char ∗file,
char ∗docname

)
{

304 X/Open CAE Specification

Message Services ttmedia_ptype_declare()

Tt_status status = TT_OK;
if (diagnosis != TT_OK) {

/ ∗ toolkit detected an error ∗/
if (tt_message_status(msg) == TT_WRN_START_MESSAGE) {

/ ∗
∗ Error is in start message! We now have no
∗ reason to live, so tell main() to exit().
∗/

myAbortCode = 2;
}
/ ∗ let toolkit handle the error ∗/
return msg;

}
if ((op == TTME_COMPOSE)& &(file == 0)) {

/ ∗ open empty new buffer ∗/
} else if (len > 0) {

/ ∗ load contents into new buffer ∗/
} else if (file != 0) {

if (ttdt_Get_Modified(msg, file, TT_BOTH, myCntxt, 5000)) {
switch(myUserChoice("Save, Revert, Ignore?")) {

case 0:
ttdt_Save(msg, file, TT_BOTH, myCntxt, 5000);
break;

case 1:
ttdt_Revert(msg, file, TT_BOTH, myCntxt, 5000);
break;

}
}
/ ∗ load file into new buffer ∗/

} else {
tttk_message_fail(msg, TT_DESKTOP_ENODATA, 0, 1);
tt_free(contents); tt_free(file); tt_free(docname);
return 0;

}
int w, h, x, y = INT_MAX;
ttdt_sender_imprint_on(0, msg, 0, &w, &h, &x, &y, myCntxt, 5000);
positionMyWindowRelativeTo(w, h, x, y);
if (maxBuffersAreNowOpen) {

/ ∗ Un-volunteer to handle future requests until less busy ∗/
tt_ptype_undeclare("Acme_Calc");

}
if (tt_message_status(msg) == TT_WRN_START_MESSAGE) {

/ ∗
∗ Join session before accepting start message,
∗ to prevent unnecessary starts of our ptype
∗/

ttdt_session_join(0, myContractCB, myShell, 0, 1);
}
ttdt_message_accept(msg, myContractCB, myShell, 0, 1, 1);
tt_free(contents); tt_free(file); tt_free(docname);
return 0;

}

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 305

ttmedia_ptype_declare() Message Services

This is the signature layout to which ptype should conform:

ptype Acme_Calc {
start "acalc";
handle:

/ ∗
∗ Display Acme_Sheet
∗ Include in tool’s ptype if tool can display a document.
∗/

session Display(in Acme_Sheet contents) => start opnum = 1;
session Display(in Acme_Sheet contents,

in messageID counterfoil) => start opnum = 2;
session Display(in Acme_Sheet contents,

in title docName) => start opnum = 3;
session Display(in Acme_Sheet contents,

in messageID counterfoil,
in title docName) => start opnum = 4;

/ ∗
∗ Edit Acme_Sheet
∗ Include in tool’s ptype if tool can edit a document.
∗/

session Edit(inout Acme_Sheet contents) => start opnum = 101;
session Edit(inout Acme_Sheet contents,

in messageID counterfoil) => start opnum = 102;
session Edit(inout Acme_Sheet contents,

in title docName) => start opnum = 103;
session Edit(inout Acme_Sheet contents,

in messageID counterfoil,
in title docName) => start opnum = 104;

/ ∗
∗ Compose Acme_Sheet
∗ Include in tool’s ptype if tool can compose a document from scratch.
∗/

session Edit(out Acme_Sheet contents) => start opnum = 201;
session Edit(out Acme_Sheet contents,

in messageID counterfoil) => start opnum = 202;
session Edit(out Acme_Sheet contents,

in title docName) => start opnum = 203;
session Edit(out Acme_Sheet contents,

in messageID counterfoil,
in title docName) => start opnum = 204;

/ ∗
∗ Mail Acme_Sheet
∗ Include in tool’s ptype if tool can mail a document.
∗/

session Mail(in Acme_Sheet contents) => start opnum = 301;
session Mail(inout Acme_Sheet contents) => start opnum = 311;
session Mail(inout Acme_Sheet contents,

in title docName) => start opnum = 313;
session Mail(out Acme_Sheet contents) => start opnum = 321;
session Mail(out Acme_Sheet contents,

in messageID counterfoil) => start opnum = 323;
};

SEE ALSO
<Tt/tttk.h>, tt_ptype_declare (), tt_ptype_undeclare (), ttdt_message_accept(), ttdt_session_join (),
ttdt_file_join (), tt_free(), tt_message_receive().

306 X/Open CAE Specification

Message Services ttmedia_ptype_declare()

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 307

tttk_Xt_input_handler() Message Services

NAME
tttk_Xt_input_handler — Process ToolTalk events for Xt clients

SYNOPSIS
#include <Tt/tttk.h>

void tttk_Xt_input_handler(XtPointer procid ,
int ∗source ,
XtInputId ∗id);

DESCRIPTION
If procid is not NULL, tttk_Xt_input_handler () passes it to tt_default_procid_set (). The
tttk_Xt_input_handler () function then calls tt_message_receive(), which retrieves the next message
available, if any, for the default procid. If tt_message_receive() returns TT_ERR_NOMP, then
tttk_Xt_input_handler () closes the default procid with ttdt_close (), and removes the input source
∗id with XtRemoveInput() if id is not zero. If a message is available and tt_message_receive()
returns it (indicating it was not consumed by any message or pattern callback), then the ToolTalk
service passes the message to tttk_message_abandon ().

RETURN VALUE
The tttk_Xt_input_handler () function returns no value.

APPLICATION USAGE
The application should use tttk_Xt_input_handler () as its Xt input handler unless some messages
are expected not to be consumed by callbacks. (The only messages that absolutely cannot be
intercepted and consumed by callbacks are those that match observe signatures in a ptype or
otype.)

EXAMPLES

int myTtFd;
char ∗myProcID;
myProcID = ttdt_open(&myTtFd, "WhizzyCalc", "Acme", "1.0", 1);
/ ∗ ... ∗/
/ ∗ Process the message that started us, if any ∗/
tttk_Xt_input_handler(myProcID, 0, 0);
/ ∗ ... ∗/
XtAppAddInput(myContext, myTtFd, (XtPointer)XtInputReadMask,

tttk_Xt_input_handler, myProcID);

SEE ALSO
<Tt/tttk.h>, ttdt_close (), tttk_message_abandon (), tt_default_procid_set (), tt_message_receive(),
XtAppAddInput(), XtRemoveInput() in the X/Open CAE Specification, Window Management: X
Toolkit Intrinsics.

CHANGE HISTORY
First released in Issue 1.

308 X/Open CAE Specification

Message Services tttk_block_while()

NAME
tttk_block_while — block while a counter is greater than zero

SYNOPSIS
#include <Tt/tttk.h>

Tt_status tttk_block_while(XtAppContext app2run ,
const int ∗blocked ,
int ms_timeout);

DESCRIPTION
The tttk_block_while () function is used to process asynchronous events, such as ToolTalk
messages or window system events, while waiting for a condition or timeout.

If app2run is not zero, then an event loop is run for that application context, by repeatedly calling
XtAppProcessEvent() with ms_timeout being effected using XtAppAddTimeOut(). If app2run is
zero, then the file descriptor (as returned by tt_fd()) of the default procid is polled (using the
poll () function) and tttk_Xt_input_handler () is called whenever the file descriptor is active.

If blocked is zero, then tttk_block_while () runs until ms_timeout occurs. If blocked is non-zero, then
the loop is run until either ms_timeout occurs, or ∗blocked is less than 1.

If ms_timeout is zero, tttk_block_while () checks once for events, processes the first one, and then
returns. If ms_timeout is negative, no timeout is in effect.

RETURN VALUE
Upon successful completion, the tttk_block_while () function returns the status of the operation as
one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_DESKTOP_ETIMEDOUT
The timeout occurred within ms_timeout milliseconds, or ms_timeout was zero and
no input was available.

TT_DESKTOP_EINTR
The app2run argument was zero, and poll () was interrupted by a signal.

TT_DESKTOP_EAGAIN
The app2run argument was zero, and poll () returned EAGAIN.

If app2run is not zero and ms_timeout is negative, then tttk_block_while () will only return when
∗blocked is less than 1, with TT_OK being returned.

If app2run is not zero, ms_timeout is negative, and blocked is zero, then tttk_block_while () behaves
equivalent to XtAppMainLoop (), and will never return.

APPLICATION USAGE
If app2run is zero, then only messaging events for the default procid will be serviced. Events for
other procids will be blocked, as will window system events, so that the graphical user interface
of the application will not update itself even, for example, after expose events.

On the other hand, if the application passes its Xt context in as app2run , then window system
events will continue to be handled, as will message activity for all procids for which an
XtAppAddInput() has been done. Since the window system event loop is fully operational in this
case, the application should take care to disable any user interface controls that the user should
not operate while the application is waiting for tttk_block_while () to return.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 309

tttk_block_while() Message Services

SEE ALSO
<Tt/tttk.h>, tttk_Xt_input_handler (); poll () in the X/Open CAE Specification, System Interfaces
and Headers, Issue 4, Version 2; XtAppPending(), XtAppAddTimeOut(), XtAppNextEvent(),
XtDispatchEvent() in the X/Open CAE Specification, Window Management: X Toolkit
Intrinsics.

CHANGE HISTORY
First released in Issue 1.

310 X/Open CAE Specification

Message Services tttk_message_abandon()

NAME
tttk_message_abandon — finalise a message properly

SYNOPSIS
#include <Tt/tttk.h>

Tt_status tttk_message_abandon(Tt_message msg);

DESCRIPTION
The tttk_message_abandon () function is used by an application when it does not understand a
message and wants to get rid of it. The tttk_message_abandon () function fails or rejects msg if
appropriate, and then destroys it. The tttk_message_abandon () will reject or fail the message only
if msg is a TT_REQUEST in Tt_state TT_SENT. If it has a Tt_address of TT_HANDLER or a
tt_message_status() of TT_WRN_START_MESSAGE, then it fails the message; otherwise, it
rejects it. In either case, tttk_message_abandon () gives msg a message status (see
tt_message_status()) of TT_DESKTOP_ENOTSUP.

RETURN VALUE
Upon successful completion, the tttk_message_abandon () function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NOTHANDLER
This application is not the handler for this message.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tttk.h>, tt_message_status(), tttk_message_fail (), tttk_message_reject().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 311

tttk_message_create() Message Services

NAME
tttk_message_create — create a message conforming to the XCDE conventions

SYNOPSIS
#include <Tt/tttk.h>

Tt_message tttk_message_create(Tt_message context ,
Tt_class the_class ,
Tt_scope the_scope ,
const char ∗handler ,
const char ∗op,
Tt_message_callback callback);

DESCRIPTION
The tttk_message_create() function creates a message that propagates inherited contexts from one
message to another. The tttk_message_create() function creates a message and copies onto it all
the context slots from context whose slotname begins with the characters ENV_. It gives the
created message a Tt_class of the_class and a Tt_scope of the_scope . If handler is not NULL, then
tttk_message_create() addresses the message as a TT_HANDLER to that procid; otherwise, it
gives the message a Tt_address of TT_PROCEDURE. It sets the message’s op to op if op is not
NULL. If callback is not NULL, tttk_message_create() adds it to the message as a message
callback.

RETURN VALUE
Upon successful completion, the tttk_message_create() function returns the created Tt_message,
which can be modified, sent, and destroyed like any other Tt_message; otherwise, it returns an
error pointer. The application can use tt_ptr_error() to extract one of the following Tt_status
values from the returned handle:

TT_ERR_NOMEM
There is insufficient memory available to perform the function.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_PROCID
The specified process identifier is out of date or invalid.

SEE ALSO
<Tt/tttk.h>, tt_message_create(), tttk_message_create(), ttdt_file_notice(), ttdt_file_request().

CHANGE HISTORY
First released in Issue 1.

312 X/Open CAE Specification

Message Services tttk_message_destroy()

NAME
tttk_message_destroy — destroy a message conforming to the XCDE conventions

SYNOPSIS
#include <Tt/tttk.h>

Tt_status tttk_message_destroy(Tt_message msg);

DESCRIPTION
The tttk_message_destroy() function can be used in place of tt_message_destroy(). It destroys any
patterns that may have been stored on msg by ttdt_message_accept() or ttdt_subcontract_manage ().
Then it passes msg to tt_message_destroy().

RETURN VALUE
Upon successful completion, the tttk_message_destroy() function returns the status of the
operation as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

TT_WRN_STOPPED
The message is not actually destroyed. (A message is not destroyed if it is in a
non-final state; for example, a request for which the reply has not been received.)

SEE ALSO
<Tt/tttk.h>, tt_message_create(), tt_message_destroy(), ttdt_file_notice(), ttdt_file_request().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 313

tttk_message_fail() Message Services

NAME
tttk_message_fail — fail a message

SYNOPSIS
#include <Tt/tttk.h>

Tt_status tttk_message_fail(Tt_message msg,
Tt_status status ,
const char ∗status_string ,
int destroy);

DESCRIPTION
The tttk_message_fail () function sets the status and status string of the TT_REQUEST msg, fails
msg, and then destroys msg if destroy is True.

RETURN VALUE
Upon successful completion, the tttk_message_fail () function returns the status of the operation
as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NOTHANDLER
This application is not the handler for this message.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tttk.h>, tt_message_fail (), tttk_message_abandon (), tttk_message_reject().

CHANGE HISTORY
First released in Issue 1.

314 X/Open CAE Specification

Message Services tttk_message_reject()

NAME
tttk_message_reject — reject a message

SYNOPSIS
#include <Tt/tttk.h>

Tt_status tttk_message_reject(Tt_message msg,
Tt_status status ,
const char ∗status_string ,
int destroy);

DESCRIPTION
The tttk_message_reject() function sets the status and status string of the TT_REQUEST msg,
rejects the msg, and then destroys msg if destroy is True.

RETURN VALUE
Upon successful completion, the tttk_message_reject() function returns the status of the operation
as one of the following Tt_status values:

TT_OK The operation completed successfully.

TT_ERR_NOMP
The ttsession process is not running and the ToolTalk service cannot restart it.

TT_ERR_NOTHANDLER
This application is not the handler for this message.

TT_ERR_POINTER
The pointer passed does not point to an object of the correct type for this
operation.

SEE ALSO
<Tt/tttk.h>, tt_message_reject(), tttk_message_fail (), tttk_message_abandon (), tttk_message_fail ().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 315

tttk_op_string() Message Services

NAME
tttk_op_string — map a ToolTalk op code to a string

SYNOPSIS
#include <Tt/tttk.h>

char ∗tttk_op_string(Tttk_op opcode);

DESCRIPTION
The tttk_op_string () function returns a string containing the op for opcode .

RETURN VALUE
Upon successful completion, the tttk_op_string () function returns a string that can be freed using
tt_free(); otherwise, it returns NULL.

APPLICATION USAGE
The distinctions in the Tttk_op enumerated type are for programmer convenience, and elements
of Tttk_op do not necessarily map one-to-one with op strings, since ToolTalk allows ops to be
overloaded. For example, TTME_EDIT and TTME_COMPOSE are overloaded on the same op
(Edit), and the messages only vary by the Tt_mode of the first argument.

SEE ALSO
<Tt/tttk.h>, tt_message_op(), tt_free().

CHANGE HISTORY
First released in Issue 1.

316 X/Open CAE Specification

Message Services tttk_string_op()

NAME
tttk_string_op — map a string to a ToolTalk op code

SYNOPSIS
#include <Tt/tttk.h>

Tttk_op tttk_string_op(const char ∗opstring);

DESCRIPTION
The tttk_string_op () function returns the Tttk_op named by opstring .

RETURN VALUE
Upon successful completion, the tttk_string_op () function a Tttk_op value; otherwise, it returns
TTDT_OP_NONE.

APPLICATION USAGE
See tttk_op_string ().

SEE ALSO
<Tt/tttk.h>, tttk_op_string (), tt_message_op().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 317

Headers Message Services

6.3 Headers
This section describes the contents of headers used by the XCDE message service functions,
macros and external variables.

Headers contain the definition of symbolic constants, common structures, preprocessor macros
and defined types. Each function in Section 6.2 specifies the headers that an application must
include in order to use that function. In most cases only one header is required. These headers
are present on an application development system; they do not have to be present on the target
execution system.

318 X/Open CAE Specification

Message Services <Tt/tt_c.h>

NAME
Tt/tt_c.h — ToolTalk definitions

SYNOPSIS
#include <Tt/tt_c.h>

DESCRIPTION
The <Tt/tt_c.h> header includes typedefs for the following callback functions:

typedef Tt_filter_action (∗Tt_filter_function)(const char ∗nodeid ,
void ∗context ,
void ∗accumulator);

typedef Tt_callback_action (∗Tt_message_callback)(Tt_message m,
Tt_pattern p);

The header defines the TT_VERSION constant with the value 10200, indicating the version of the
ToolTalk API.

The header defines the Tt_status enumeration data type, with the following members and
specific values:

typedef enum tt_status {
TT_OK = 0,
TT_WRN_NOTFOUND = 1,
TT_WRN_STALE_OBJID = 2,
TT_WRN_STOPPED = 3,
TT_WRN_SAME_OBJID = 4,
TT_WRN_START_MESSAGE = 5,
TT_WRN_APPFIRST = 512,
TT_WRN_LAST = 1024,
TT_ERR_CLASS = 1025,
TT_ERR_DBAVAIL = 1026,
TT_ERR_DBEXIST = 1027,
TT_ERR_FILE = 1028,
TT_ERR_INVALID = 1029,
TT_ERR_MODE = 1031,
TT_ERR_ACCESS = 1032,
TT_ERR_NOMP = 1033,
TT_ERR_NOTHANDLER = 1034,
TT_ERR_NUM = 1035,
TT_ERR_OBJID = 1036,
TT_ERR_OP = 1037,
TT_ERR_OTYPE = 1038,
TT_ERR_ADDRESS = 1039,
TT_ERR_PATH = 1040,
TT_ERR_POINTER = 1041,
TT_ERR_PROCID = 1042,
TT_ERR_PROPLEN = 1043,
TT_ERR_PROPNAME = 1044,
TT_ERR_PTYPE = 1045,
TT_ERR_DISPOSITION = 1046,
TT_ERR_SCOPE = 1047,
TT_ERR_SESSION = 1048,
TT_ERR_VTYPE = 1049,
TT_ERR_NO_VALUE = 1050,

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 319

<Tt/tt_c.h> Message Services

TT_ERR_INTERNAL = 1051,
TT_ERR_READONLY = 1052,
TT_ERR_NO_MATCH = 1053,
TT_ERR_UNIMP = 1054,
TT_ERR_OVERFLOW = 1055,
TT_ERR_PTYPE_START = 1056,
TT_ERR_CATEGORY = 1057,
TT_ERR_DBUPDATE = 1058,
TT_ERR_DBFULL = 1059,
TT_ERR_DBCONSIST = 1060,
TT_ERR_STATE = 1061,
TT_ERR_NOMEM = 1062,
TT_ERR_SLOTNAME = 1063,
TT_ERR_XDR = 1064,
TT_ERR_NETFILE = 1065,
TT_DESKTOP_ = 1100,
TT_DESKTOP_EPERM = 1101,
TT_DESKTOP_ENOENT = 1102,
TT_DESKTOP_EINTR = 1104,
TT_DESKTOP_EIO = 1105,
TT_DESKTOP_EAGAIN = 1111,
TT_DESKTOP_ENOMEM = 1112,
TT_DESKTOP_EACCES = 1113,
TT_DESKTOP_EFAULT = 1114,
TT_DESKTOP_EEXIST = 1117,
TT_DESKTOP_ENODEV = 1119,
TT_DESKTOP_ENOTDIR = 1120,
TT_DESKTOP_EISDIR = 1121,
TT_DESKTOP_EINVAL = 1122,
TT_DESKTOP_ENFILE = 1123,
TT_DESKTOP_EMFILE = 1124,
TT_DESKTOP_ETXTBSY = 1126,
TT_DESKTOP_EFBIG = 1127,
TT_DESKTOP_ENOSPC = 1128,
TT_DESKTOP_EROFS = 1130,
TT_DESKTOP_EMLINK = 1131,
TT_DESKTOP_EPIPE = 1132,
TT_DESKTOP_ENOMSG = 1135,
TT_DESKTOP_EDEADLK = 1145,
TT_DESKTOP_ECANCELED = 1147,
TT_DESKTOP_ENOTSUP = 1148,
TT_DESKTOP_ENODATA = 1161,
TT_DESKTOP_EPROTO = 1171,
TT_DESKTOP_ENOTEMPTY = 1193,
TT_DESKTOP_ETIMEDOUT = 1245,
TT_DESKTOP_EALREADY = 1249,
TT_DESKTOP_UNMODIFIED = 1299,
TT_MEDIA_ERR_SIZE = 1300,
TT_MEDIA_ERR_FORMAT = 1301,
TT_ERR_APPFIRST = 1536,
TT_ERR_LAST = 2047,
TT_STATUS_LAST = 2048

320 X/Open CAE Specification

Message Services <Tt/tt_c.h>

} Tt_status;

Note: Specific values are required because they can be communicated between ToolTalk
clients on different platforms, usually via tt_message_status_set() and
tt_message_status().

The header defines the following enumeration data types, with at least the following members:

Tt_filter_action
TT_FILTER_CONTINUE, TT_FILTER_LAST, TT_FILTER_STOP

Tt_callback_action
TT_CALLBACK_CONTINUE, TT_CALLBACK_LAST,
TT_CALLBACK_PROCESSED

Tt_mode
TT_IN, TT_INOUT, TT_MODE_LAST, TT_MODE_UNDEFINED, TT_OUT

Tt_scope
TT_BOTH, TT_FILE, TT_FILE_IN_SESSION, TT_SCOPE_NONE, TT_SESSION

Tt_class
TT_CLASS_LAST, TT_CLASS_UNDEFINED, TT_NOTICE, TT_REQUEST

Tt_category
TT_CATEGORY_LAST, TT_CATEGORY_UNDEFINED, TT_HANDLE,
TT_OBSERVE

Tt_address
TT_ADDRESS_LAST, TT_HANDLER, TT_OBJECT, TT_OTYPE, TT_PROCEDURE

Tt_disposition
TT_DISCARD, TT_QUEUE, TT_START

Tt_state
TT_CREATED, TT_FAILED, TT_HANDLED, TT_QUEUED, TT_REJECTED,
TT_SENT, TT_STARTED, TT_STATE_LAST

The header defines the following as opaque data types: Tt_message, Tt_pattern.

The header declares the following as functions:

char ∗tt_X_session(const char ∗xdisplaystring);

Tt_status tt_bcontext_join(const char ∗slotname ,
const unsigned char ∗value ,
int length);

Tt_status tt_bcontext_quit(const char ∗slotname ,
const unsigned char ∗value ,
int length);

Tt_status tt_close(void);

Tt_status tt_context_join(const char ∗slotname ,
const char ∗value);

Tt_status tt_context_quit(const char ∗slotname ,
const char ∗value);

char ∗tt_default_file(void);

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 321

<Tt/tt_c.h> Message Services

Tt_status tt_default_file_set(const char ∗docid);

char ∗tt_default_procid(void);

Tt_status tt_default_procid_set(const char ∗procid);

char ∗tt_default_ptype(void);

Tt_status tt_default_ptype_set(const char ∗ptid);

char ∗tt_default_session(void);

Tt_status tt_default_session_set(const char ∗sessid);

int tt_error_int(Tt_status ttrc);

void ∗tt_error_pointer(Tt_status ttrc);

int tt_fd(void);

Tt_status tt_file_copy(const char ∗oldfilepath ,
const char ∗newfilepath);

Tt_status tt_file_destroy(const char ∗filepath);

Tt_status tt_file_join(const char ∗filepath);

Tt_status tt_file_move(const char ∗oldfilepath ,
const char ∗newfilepath);

char ∗tt_file_netfile(const char ∗filename);

Tt_status tt_file_objects_query(const char ∗filepath ,
Tt_filter_function filter ,
void ∗context ,
void ∗accumulator);

Tt_status tt_file_quit(const char ∗filepath);

void tt_free(caddr_t p);

char ∗tt_host_file_netfile(const char ∗host ,
const char ∗filename);

char ∗tt_host_netfile_file(const char ∗host ,
const char ∗netfilename);

Tt_status tt_icontext_join(const char ∗slotname , int value);

Tt_status tt_icontext_quit(const char ∗slotname , int value);

char ∗tt_initial_session(void);

Tt_status tt_int_error(int return_val);

int tt_is_err(Tt_status s);

caddr_t tt_malloc(size_t s);

int tt_mark(void);

Tt_status tt_message_accept(Tt_message m);

Tt_address tt_message_address(Tt_message m);

Tt_status tt_message_address_set(Tt_message m, Tt_address a);

322 X/Open CAE Specification

Message Services <Tt/tt_c.h>

Tt_status tt_message_arg_add(Tt_message m,
Tt_mode n,
const char ∗vtype ,
const char ∗value);

Tt_status tt_message_arg_bval(Tt_message m,
int n,
unsigned char ∗∗value ,
int ∗len);

Tt_status tt_message_arg_bval_set(Tt_message m,
int n,
const unsigned char ∗value ,
int len);

Tt_status tt_message_arg_ival(Tt_message m,
int n,
int ∗value);

Tt_status tt_message_arg_ival_set(Tt_message m,
int n,
int value);

Tt_mode tt_message_arg_mode(Tt_message m,
int n);

char ∗tt_message_arg_type(Tt_message m,
int n);

char ∗tt_message_arg_val(Tt_message m,
int n);

Tt_status tt_message_arg_val_set(Tt_message m,
int n,
const char ∗value);

Tt_status tt_message_arg_xval(Tt_message m,
int n,
xdrproc_t xdr_proc ,
void ∗∗value);

Tt_status tt_message_arg_xval_set(Tt_message m,
int n,
xdrproc_t xdr_proc ,
void ∗value);

int tt_message_args_count(Tt_message m);

Tt_status tt_message_barg_add(Tt_message m,
Tt_mode n,
const char ∗vtype ,
const unsigned char ∗value ,
int len);

Tt_status tt_message_bcontext_set(Tt_message m,
const char ∗slotname ,
const unsigned char ∗value ,
int length);

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 323

<Tt/tt_c.h> Message Services

Tt_status tt_message_callback_add(Tt_message m,
Tt_message_callback f);

Tt_class tt_message_class(Tt_message m);

Tt_status tt_message_class_set(Tt_message m,
Tt_class c);

Tt_status tt_message_context_bval(Tt_message m,
const char ∗slotname ,
unsigned char ∗∗value ,
int ∗len);

Tt_status tt_message_context_ival(Tt_message m,
const char ∗slotname ,
int ∗value);

Tt_status tt_message_context_set(Tt_message m,
const char ∗slotname ,
const char ∗value);

char ∗tt_message_context_slotname(Tt_message m,
int n);

char ∗tt_message_context_val(Tt_message m,
const char ∗slotname);

Tt_status tt_message_context_xval(Tt_message m,
const char ∗slotname ,
xdrproc_t xdr_proc ,
void ∗∗value);

int tt_message_contexts_count(Tt_message m);

Tt_message tt_message_create(void);

Tt_message tt_message_create_super(Tt_message m);

Tt_status tt_message_destroy(Tt_message m);

Tt_disposition tt_message_disposition(Tt_message m);

Tt_status tt_message_disposition_set(Tt_message m,
Tt_disposition r);

Tt_status tt_message_fail(Tt_message m);

char ∗tt_message_file(Tt_message m);

Tt_status tt_message_file_set(Tt_message m,
const char ∗file);

gid_t tt_message_gid(Tt_message m);

char ∗tt_message_handler(Tt_message m);

char ∗tt_message_handler_ptype(Tt_message m);

Tt_status tt_message_handler_ptype_set(Tt_message m,
const char ∗ptid);

Tt_status tt_message_handler_set(Tt_message m,
const char ∗procid);

324 X/Open CAE Specification

Message Services <Tt/tt_c.h>

Tt_status tt_message_iarg_add(Tt_message m,
Tt_mode n,
const char ∗vtype ,
int value);

Tt_status tt_message_icontext_set(Tt_message m,
const char ∗slotname ,
int value);

char ∗tt_message_id(Tt_message m);

char ∗tt_message_object(Tt_message m);

Tt_status tt_message_object_set(Tt_message m,
const char ∗objid);

char ∗tt_message_op(Tt_message m);

Tt_status tt_message_op_set(Tt_message m,
const char ∗opname);

int tt_message_opnum(Tt_message m);

char ∗tt_message_otype(Tt_message m);

Tt_status tt_message_otype_set(Tt_message m,
const char ∗otype);

Tt_pattern tt_message_pattern(Tt_message m);

char ∗tt_message_print(Tt_message ∗m);

Tt_message tt_message_receive(void);

Tt_status tt_message_reject(Tt_message m);

Tt_status tt_message_reply(Tt_message m);

Tt_scope tt_message_scope(Tt_message m);

Tt_status tt_message_scope_set(Tt_message m,
Tt_scope s);

Tt_status tt_message_send(Tt_message m);

Tt_status tt_message_send_on_exit(Tt_message m);

char ∗tt_message_sender(Tt_message m);

char ∗tt_message_sender_ptype(Tt_message m);

Tt_status tt_message_sender_ptype_set(Tt_message m,
const char ∗ptid);

char ∗tt_message_session(Tt_message m);

Tt_status tt_message_session_set(Tt_message m,
const char ∗sessid);

Tt_state tt_message_state(Tt_message m);

int tt_message_status(Tt_message m);

Tt_status tt_message_status_set(Tt_message m,
int status);

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 325

<Tt/tt_c.h> Message Services

char ∗tt_message_status_string(Tt_message m);

Tt_status tt_message_status_string_set(Tt_message m,
const char ∗status_str);

uid_t tt_message_uid(Tt_message m);

void ∗tt_message_user(Tt_message m,
int key);

Tt_status tt_message_user_set(Tt_message m,
int key ,
void ∗v);

Tt_status tt_message_xarg_add(Tt_message m,
Tt_mode n,
const char ∗vtype ,
xdrproc_t xdr_proc ,
void ∗value);

Tt_status tt_message_xcontext_join(const char ∗slotname ,
xdrproc_t xdr_proc ,
void ∗value);

Tt_status tt_message_xcontext_set(Tt_message m,
const char ∗slotname ,
xdrproc_t xdr_proc ,
void ∗value);

char ∗tt_netfile_file(const char ∗netfilename);

int tt_objid_equal(const char ∗objid1 ,
const char ∗objid2);

char ∗tt_objid_objkey(const char ∗objid);

Tt_message tt_onotice_create(const char ∗objid ,
const char ∗op);

char ∗tt_open(void);

Tt_message tt_orequest_create(const char ∗objid ,
const char ∗op);

char ∗tt_otype_base(const char ∗otype);

char ∗tt_otype_derived(const char ∗otype ,
int i);

int tt_otype_deriveds_count(const char ∗otype);

Tt_mode tt_otype_hsig_arg_mode(const char ∗otype ,
int sig ,
int arg);

char ∗tt_otype_hsig_arg_type(const char ∗otype ,
int sig ,
int arg);

int tt_otype_hsig_args_count(const char ∗otype ,
int sig);

326 X/Open CAE Specification

Message Services <Tt/tt_c.h>

int tt_otype_hsig_count(const char ∗otype);

char ∗tt_otype_hsig_op(const char ∗otype ,
int sig);

int tt_otype_is_derived(const char ∗derivedotype ,
const char ∗baseotype);

Tt_status tt_otype_opnum_callback_add(const char ∗otid ,
int opnum,
Tt_message_callback f);

Tt_mode tt_otype_osig_arg_mode(const char ∗otype ,
int sig ,
int arg);

char ∗tt_otype_osig_arg_type(const char ∗otype ,
int sig ,
int arg);

int tt_otype_osig_args_count(const char ∗otype ,
int sig);

int tt_otype_osig_count(const char ∗otype);

char ∗tt_otype_osig_op(const char ∗otype ,
int sig);

Tt_status tt_pattern_address_add(Tt_pattern p,
Tt_address d);

Tt_status tt_pattern_arg_add(Tt_pattern p,
Tt_mode n,
const char ∗vtype ,
const char ∗value);

Tt_status tt_pattern_barg_add(Tt_pattern m,
Tt_mode n,
const char ∗vtype ,
const unsigned char ∗value ,
int len);

Tt_status tt_pattern_bcontext_add(Tt_pattern p,
const char ∗slotname ,
const unsigned char ∗value ,
int length);

Tt_status tt_pattern_callback_add(Tt_pattern m,
Tt_message_callback f);

Tt_category tt_pattern_category(Tt_pattern p);

Tt_status tt_pattern_category_set(Tt_pattern p,
Tt_category c);

Tt_status tt_pattern_class_add(Tt_pattern p,
Tt_class c);

Tt_status tt_pattern_context_add(Tt_pattern p,
const char ∗slotname ,
const char ∗value);

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 327

<Tt/tt_c.h> Message Services

Tt_pattern tt_pattern_create(void);

Tt_status tt_pattern_destroy(Tt_pattern p);

Tt_status tt_pattern_disposition_add(Tt_pattern p,
Tt_disposition r);

Tt_status tt_pattern_file_add(Tt_pattern p,
const char ∗file);

Tt_status tt_pattern_iarg_add(Tt_pattern m,
Tt_mode n,
const char ∗vtype ,
int value);

Tt_status tt_pattern_icontext_add(Tt_pattern p,
const char ∗slotname ,
int value);

Tt_status tt_pattern_object_add(Tt_pattern p,
const char ∗objid);

Tt_status tt_pattern_op_add(Tt_pattern p,
const char ∗opname);

Tt_status tt_pattern_opnum_add(Tt_pattern p,
int opnum);

Tt_status tt_pattern_otype_add(Tt_pattern p,
const char ∗otype);

char ∗tt_pattern_print(Tt_pattern ∗p);

Tt_status tt_pattern_register(Tt_pattern p);

Tt_status tt_pattern_scope_add(Tt_pattern p,
Tt_scope s);

Tt_status tt_pattern_sender_add(Tt_pattern p,
const char ∗procid);

Tt_status tt_pattern_sender_ptype_add(Tt_pattern p,
const char ∗ptid);

Tt_status tt_pattern_session_add(Tt_pattern p,
const char ∗sessid);

Tt_status tt_pattern_state_add(Tt_pattern p,
Tt_state s);

Tt_status tt_pattern_unregister(Tt_pattern p);

void ∗tt_pattern_user(Tt_pattern p,
int key);

Tt_status tt_pattern_user_set(Tt_pattern p,
int key ,
void ∗v);

Tt_status tt_pattern_xarg_add(Tt_pattern m,
Tt_mode n,
const char ∗vtype ,

328 X/Open CAE Specification

Message Services <Tt/tt_c.h>

xdrproc_t xdr_proc ,
void ∗value);

Tt_status tt_pattern_xcontext_add(Tt_pattern p,
const char ∗slotname ,
xdrproc_t xdr_proc ,
void ∗value);

Tt_message tt_pnotice_create(Tt_scope scope ,
const char ∗op);

Tt_status tt_pointer_error(void ∗pointer);

Tt_message tt_prequest_create(Tt_scope scope ,
const char ∗op);

Tt_status tt_ptr_error(pointer);

Tt_status tt_ptype_declare(const char ∗ptid);

Tt_status tt_ptype_exists(const char ∗ptid);

Tt_status tt_ptype_opnum_callback_add(const char ∗ptid ,
int opnum,
Tt_message_callback f);

Tt_status tt_ptype_undeclare(const char ∗ptid);

void tt_release(int mark);

Tt_status tt_session_bprop(const char ∗sessid ,
const char ∗propname ,
int i ,
unsigned char ∗∗value ,
int ∗length);

Tt_status tt_session_bprop_add(const char ∗sessid ,
const char ∗propname ,
const unsigned char ∗value ,
int length);

Tt_status tt_session_bprop_set(const char ∗sessid ,
const char ∗propname ,
const unsigned char ∗value ,
int length);

Tt_status tt_session_join(const char ∗sessid);

char ∗tt_session_prop(const char ∗sessid ,
const char ∗propname ,
int i);

Tt_status tt_session_prop_add(const char ∗sessid ,
const char ∗propname ,
const char ∗value);

int tt_session_prop_count(const char ∗sessid ,
const char ∗propname);

Tt_status tt_session_prop_set(const char ∗sessid ,
const char ∗propname ,

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 329

<Tt/tt_c.h> Message Services

const char ∗value);

char ∗tt_session_propname(const char ∗sessid ,
int n);

int tt_session_propnames_count(const char ∗sessid);

Tt_status tt_session_quit(const char ∗sessid);

Tt_status tt_session_types_load(const char ∗session ,
const char ∗filename);

Tt_status tt_spec_bprop(const char ∗objid ,
const char ∗propname ,
int i ,
unsigned char ∗∗value ,
int ∗length);

Tt_status tt_spec_bprop_add(const char ∗objid ,
const char ∗propname ,
const unsigned char ∗value ,
int length);

Tt_status tt_spec_bprop_set(const char ∗objid ,
const char ∗propname ,
const unsigned char ∗value ,
int length);

char ∗tt_spec_create(const char ∗filepath);

Tt_status tt_spec_destroy(const char ∗objid);

char ∗tt_spec_file(const char ∗objid);

char ∗tt_spec_move(const char ∗objid ,
const char ∗newfilepath);

char ∗tt_spec_prop(const char ∗objid ,
const char ∗propname ,
int i);

Tt_status tt_spec_prop_add(const char ∗objid ,
const char ∗propname ,
const char ∗value);

int tt_spec_prop_count(const char ∗objid ,
const char ∗propname);

Tt_status tt_spec_prop_set(const char ∗objid ,
const char ∗propname ,
const char ∗value);

char ∗tt_spec_propname(const char ∗objid ,
int n);

int tt_spec_propnames_count(const char ∗objid);

char ∗tt_spec_type(const char ∗objid);

Tt_status tt_spec_type_set(const char ∗objid ,
const char ∗otid);

330 X/Open CAE Specification

Message Services <Tt/tt_c.h>

Tt_status tt_spec_write(const char ∗objid);

char ∗tt_status_message(Tt_status ttrc);

int tt_trace_control(int onoff);

Tt_status tt_xcontext_quit(const char ∗slotname ,
xdrproc_t xdr_proc ,
void ∗value);

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 331

<Tt/tttk.h> Message Services

NAME
Tt/tttk.h — ToolTalk definitions

SYNOPSIS
#include <Tt/tttk.h>

DESCRIPTION

The <Tt/tttk.h> header defines the following enumeration data type, with at least the following
members:

Tttk_op
TTDT_CREATED, TTDT_DELETED, TTDT_DO_COMMAND,
TTDT_GET_ENVIRONMENT, TTDT_GET_GEOMETRY, TTDT_GET_ICONIFIED,
TTDT_GET_LOCALE, TTDT_GET_MAPPED, TTDT_GET_MODIFIED,
TTDT_GET_SITUATION, TTDT_GET_STATUS, TTDT_GET_SYSINFO,
TTDT_GET_XINFO, TTDT_LOWER, TTDT_MODIFIED, TTDT_MOVED,
TTDT_OP_LAST, TTDT_OP_NONE, TTDT_PAUSE, TTDT_QUIT, TTDT_RAISE,
TTDT_RESUME, TTDT_REVERT, TTDT_REVERTED, TTDT_SAVE, TTDT_SAVED,
TTDT_SET_ENVIRONMENT, TTDT_SET_GEOMETRY, TTDT_SET_ICONIFIED,
TTDT_SET_LOCALE, TTDT_SET_MAPPED, TTDT_SET_SITUATION,
TTDT_SET_XINFO, TTDT_SIGNAL, TTDT_STARTED, TTDT_STATUS,
TTDT_STOPPED, TTME_ABSTRACT, TTME_COMPOSE, TTME_DEPOSIT,
TTME_DISPLAY, TTME_EDIT, TTME_INTERPRET, TTME_MAIL,
TTME_MAIL_COMPOSE, TTME_MAIL_EDIT, TTME_PRINT, TTME_TRANSLATE

The header declares the following global string constants for some standard vtypes:

extern const char ∗Tttk_boolean:
extern const char ∗Tttk_file:
extern const char ∗Tttk_height:
extern const char ∗Tttk_integer:
extern const char ∗Tttk_message_id:
extern const char ∗Tttk_string:
extern const char ∗Tttk_title:
extern const char ∗Tttk_width:
extern const char ∗Tttk_xoffset:
extern const char ∗Tttk_yoffset:

The header declares the following as functions:

int ttdt_Get_Modified(Tt_message context ,
const char ∗pathname ,
Tt_scope the_scope ,
XtAppContext app2run ,
int ms_timeout);

Tt_status ttdt_Revert(Tt_message context ,
const char ∗pathname ,
Tt_scope the_scope ,
XtAppContext app2run ,
int ms_timeout);

Tt_status ttdt_Save(Tt_message context ,
const char ∗pathname ,
Tt_scope the_scope ,
XtAppContext app2run ,

332 X/Open CAE Specification

Message Services <Tt/tttk.h>

int ms_timeout);

Tt_status ttdt_close(const char ∗procid ,
const char ∗new_procid ,
int sendStopped);

Tt_status ttdt_file_event(Tt_message context ,
Tttk_op event ,
Tt_pattern ∗patterns ,
int send);

Tt_pattern ∗ttdt_file_join(const char ∗pathname ,
Tt_scope the_scope ,
int join ,
Ttdt_file_cb cb ,
void ∗clientdata);

Tt_message ttdt_file_notice(Tt_message context ,
Tttk_op op,
Tt_scope scope ,
const char ∗pathname ,
int send_and_destroy);

Tt_status ttdt_file_quit(Tt_pattern ∗patterns ,
int quit);

Tt_message ttdt_file_request(Tt_message context ,
Tttk_op op,
Tt_scope scope ,
const char ∗pathname ,
Ttdt_file_cb cb ,
void ∗client_data ,
int send_and_destroy);

Tt_pattern ∗ttdt_message_accept(Tt_message contract ,
Ttdt_contract_cb cb ,
Widget shell ,
void ∗clientdata ,
int accept ,
int sendStatus);

char ∗ttdt_open(int ∗ttfd ,
const char ∗toolname ,
const char ∗vendor ,
const char ∗version ,
int sendStarted);

Tt_status ttdt_sender_imprint_on(const char ∗handler ,
Tt_message contract ,
char ∗∗display ,
int ∗width ,
int ∗height ,
int ∗xoffset ,
int ∗yoffset ,
XtAppContext app2run ,
int ms_timeout);

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 333

<Tt/tttk.h> Message Services

Tt_pattern ∗ttdt_session_join(const char ∗sessid ,
Ttdt_contract_cb cb ,
Widget shell ,
void ∗clientdata ,
int join);

Tt_status ttdt_session_quit(const char ∗sessid ,
Tt_pattern ∗sess_pats ,
int quit);

Tt_pattern ∗ttdt_subcontract_manage(Tt_message subcontract ,
Ttdt_contract_cb cb ,
Widget shell ,
void ∗clientdata);

Tt_status ttmedia_Deposit(Tt_message load_contract ,
const char ∗buffer_id ,
const char ∗media_type ,
const unsigned char ∗new_contents ,
int new_len ,
const char ∗pathname ,
XtAppContext app2run ,
int ms_timeout);

Tt_message ttmedia_load(Tt_message context ,
Ttmedia_load_msg_cb cb ,
void ∗clientdata ,
Tttk_op op,
const char ∗media_type ,
const unsigned char ∗contents ,
int len ,
const char ∗file ,
const char ∗docname,
int send);

Tt_message ttmedia_load_reply(Tt_message contract ,
const unsigned char ∗new_contents ,
int new_len ,
int reply_and_destroy);

Tt_status ttmedia_ptype_declare(const char ∗ptype ,
int base_opnum ,
Ttmedia_load_pat_cb cb ,
void ∗clientdata ,
int declare);

void tttk_Xt_input_handler(XtPointer procid ,
int ∗source ,
XtInputId ∗id);

Tt_status tttk_block_while(XtAppContext app2run ,
const int ∗blocked ,
int ms_timeout);

Tt_status tttk_message_abandon(Tt_message msg);

334 X/Open CAE Specification

Message Services <Tt/tttk.h>

Tt_message tttk_message_create(Tt_message context ,
Tt_class the_class ,
Tt_scope the_scope ,
const char ∗handler ,
const char ∗op,
Tt_message_callback callback);

Tt_status tttk_message_destroy(Tt_message msg);

Tt_status tttk_message_fail(Tt_message msg,
Tt_status status ,
const char ∗status_string ,
int destroy);

Tt_status tttk_message_reject(Tt_message msg,
Tt_status status ,
const char ∗status_string ,
int destroy);

char ∗tttk_op_string(Tttk_op opcode);

Tttk_op tttk_string_op(const char ∗opstring);

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 335

Command-Line Interfaces Message Services

6.4 Command-Line Interfaces
This section defines the utilities that provide XCDE message services.

336 X/Open CAE Specification

Message Services tt_type_comp

NAME
tt_type_comp — compile ToolTalk otypes and ptypes

SYNOPSIS
tt_type_comp [−mMs] source_file
tt_type_comp −r [−s] type . . .
tt_type_comp −p A −O A −P [−s]
tt_type_comp −p A −O A −P [−s] source_file
tt_type_comp −x [−s] [−o compiled_file] source_file
tt_type_comp [−hv]

DESCRIPTION
The tt_type_comp utility processes otypes and ptypes. The default action of tt_type_comp is to
compile types from source form into compiled form and then merge the compiled types into the
standard ToolTalk types databases. The tt_type_comp utility preprocesses the source types with
cpp, and can optionally write out the compiled types instead of merging them into the standard
databases. The tt_type_comp utility can also remove types from the standard databases or write
out the contents of these databases.

OPTIONS
The tt_type_comp utility supports the X/Open Utility Syntax Guidelines. The following options
are available:

−h Write a help message for invoking tt_type_comp and then exit.

−m Merge types into the specified database, updating any existing type with the new
definition given. This is the default action. The specified database is the first
element from the TTPATH environment variable, or $HOME/.tt/types.xdr if
TTPATH is NULL or not set. If TTPATH is NULL or not set, it is considered to be:

$HOME/.tt/types.xdr:\
/etc/tt/types.xdr:\
/usr/dt/appconfig/tttypes/types.xdr

−M Merge types into the specified database (see −m), but only if they do not already
exist in that database.

−O Write the names of all otypes read.

−p Write the ToolTalk types read in a source format suitable for recompilation with
tt_type_comp.

−P Write the names of all ptypes read.

−o compiled_file
Write the compiled types into the specified file, or to standard output if compiled_file
is −.

−r Remove the given ptypes or otypes from the specified database, as indicated by the
type operands.

−s Silent mode. Write nothing to standard output.

−v Write the version number of tt_type_comp and then exit.

−x Compile source types into a compiled types file, instead of merging them into the
standard types databases.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 337

tt_type_comp Message Services

OPERANDS
The following operands are supported:

source_file
A pathname of a text file containing ToolTalk source code. If source_file is −,
standard input is used.

type A name of a type to be removed by the −r option.

STDIN
The standard input is used only if a source_file operand is −.

INPUT FILES
The input file named by source_file is a text file containing ToolTalk source code, which must
conform to the format described in Section 6.5 on page 358.

ENVIRONMENT VARIABLES
The following environment variables affect the execution of tt_type_comp:

LANG Provide a default value for the internationalisation variables that are
unset or null. If LANG is unset or null, the corresponding value from the
implementation-specific default locale will be used. If any of the
internationalisation variables contains an invalid setting, the utility
behaves as if none of the variables had been defined.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalisation variables.

LC_MESSAGES Determine the locale that is used to affect the format and contents of
diagnostic messages written to standard error and informative messages
written to standard output.

NLSPATH Determine the location of message catalogues for the processing of
LC_MESSAGES.

TTPATH A colon-separated list of directories that tells the ToolTalk service where
to find the ToolTalk types databases.

RESOURCES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When the −h option is used, tt_type_comp writes to standard output a help message in an
unspecified format.

When the −o option is used, tt_type_comp writes to standard output a listing of all otypes read.

When the −p option is used, tt_type_comp writes to standard output a listing of all the ToolTalk
types read, in a source format suitable for recompilation with tt_type_comp.

When the −P option is used, tt_type_comp writes to standard output a listing of all ptypes read.

When the −v option is used, tt_type_comp writes to standard output a version number in an
unspecified format.

STDERR
Used only for diagnostic messages.

338 X/Open CAE Specification

Message Services tt_type_comp

OUTPUT FILES
When the −x or −d user option is used, tt_type_comp writes the compiled types in an unspecified
format into a user-specified file. Otherwise, it writes the compiled types into the databases
described under −d.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values are returned:

0 Successful completion.

1 Usage; tt_type_comp was given invalid command line options.

2 A syntax error was found in the source types given to tt_type_comp.

3 System error; tt_type_comp was interrupted by SIGINT, or encountered some system
or internal error.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

SEE ALSO
ttsession, cpp.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 339

ttcp Message Services

NAME
ttcp — copy files and inform the ToolTalk service

SYNOPSIS
ttcp [−pL] filename1 filename2
ttcp −r [−pL] directory1 directory2
ttcp [−prL] filename . . . directory
ttcp −h A −v

DESCRIPTION
The ttcp utility invokes the cp utility to copy files and directories, and informs ToolTalk about its
actions so that the ToolTalk objects associated with those files and directories can also be copied.

OPTIONS
The ttcp utility supports the X/Open Utility Syntax Guidelines. The following options are
available:

−h Write a help message for invoking ttcp and then exit.

−L Copy the ToolTalk objects of the files, but do not invoke cp to copy the actual files.

−p Preserve. Invoke cp with the −p option, which duplicates not only the contents of
the original files or directories, but also the modification time and permission
modes. The modification times of ToolTalk objects are preserved only if the
invoking process has appropriate privileges.

−r Recursively copy the ToolTalk objects of any directories named, along with their
files (including any subdirectories and their files), and pass the −r option to cp.

−v Write the version number of ttcp and then exit.

It is unspecified whether the −f, −i or −R options to cp are supported.

OPERANDS
The following operands are supported:

filename
filename1

A pathname of a file to be copied.

filename2
A pathname of an existing or nonexisting file, used for the output when a single file
is copied.

directory
directory2

A pathname of a directory to contain the copied files.

directory1
A pathname of a file hierarchy to be copied with −r.

STDIN
Not used.

INPUT FILES
The input files specified as operands can be of any file type.

340 X/Open CAE Specification

Message Services ttcp

ENVIRONMENT VARIABLES
The following environment variables affect the execution of ttcp:

LANG Provide a default value for the internationalisation variables that are
unset or null. If LANG is unset or null, the corresponding value from the
implementation-specific default locale will be used. If any of the
internationalisation variables contains an invalid setting, the utility
behaves as if none of the variables had been defined.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalisation variables.

LC_MESSAGES Determine the locale that is used to affect the format and contents of
diagnostic messages written to standard error and informative messages
written to standard output.

NLSPATH Determine the location of message catalogues for the processing of
LC_MESSAGES.

RESOURCES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When the −h option is used, ttcp writes to standard output a help message in an unspecified
format.

When the −v option is used, ttcp writes to standard output a version number in an unspecified
format.

STDERR
Used only for diagnostic messages.

OUTPUT FILES
The output files can be of any type.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values are returned:

0 All files and ToolTalk objects were copied successfully.

>0 An error occurred or the invoked cp command exited with a non-zero value.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

SEE ALSO
cp in the X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2; ttmv, tttar,
ttsession.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 341

ttcp Message Services

CHANGE HISTORY
First released in Issue 1.

342 X/Open CAE Specification

Message Services ttmv

NAME
ttmv — move or rename files and inform the ToolTalk service

SYNOPSIS
ttmv [−fL] pathname1 pathname2
ttmv [−fL] pathname . . . directory
ttmv −h A −v

DESCRIPTION
The ttmv utility invokes mv to move files and directories around in the file system and informs
ToolTalk about its actions so that the ToolTalk objects associated with those files and directories
can also be moved.

The ttmv utility moves the ToolTalk objects before it moves the files and does not check whether
the file-moving operation will succeed before performing the object-moving operation.

OPTIONS
The ttmv utility supports the X/Open Utility Syntax Guidelines. The following options are
available:

−f Force. Do not report any errors, and pass the −f option to mv.

−h Write a help message for invoking ttmv and then exit.

−L Move the ToolTalk objects of the files, but do not invoke mv to move the actual files.

−v Write the version number of ttmv and then exit.

It is unspecified whether the −i option to mv is supported.

OPERANDS
The following operands are supported:

pathname1
A pathname of a file to be moved.

pathname2
A pathname of an existing or nonexisting file, used for the output when a single file
is moved.

directory
A pathname of a directory to contain the moved files.

STDIN
Not used.

INPUT FILES
The input files specified as operands can be of any file type.

ENVIRONMENT VARIABLES
The following environment variables affect the execution of ttmv:

LANG Provide a default value for the internationalisation variables that are
unset or null. If LANG is unset or null, the corresponding value from the
implementation-specific default locale will be used. If any of the
internationalisation variables contains an invalid setting, the utility
behaves as if none of the variables had been defined.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalisation variables.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 343

ttmv Message Services

LC_MESSAGES Determine the locale that is used to affect the format and contents of
diagnostic messages written to standard error and informative messages
written to standard output.

NLSPATH Determine the location of message catalogues for the processing of
LC_MESSAGES.

RESOURCES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When the −h option is used, ttmv writes to standard output a help message in an unspecified
format.

When the −v option is used, ttmv writes to standard output a version number in an unspecified
format.

STDERR
Used only for diagnostic messages.

OUTPUT FILES
The output files can be of any type.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values are returned:

0 All files and ToolTalk objects were moved successfully.

>0 An error occurred or the invoked mv command exited with a non-zero value.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

SEE ALSO
mv in the X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2; ttsession.

CHANGE HISTORY
First released in Issue 1.

344 X/Open CAE Specification

Message Services ttrm

NAME
ttrm — remove files or directories and inform the ToolTalk service

SYNOPSIS
ttrm [−frL] pathname . . .
ttrm −h A −v

DESCRIPTION
The ttrm utility invokes rm to remove files and directories and informs ToolTalk about its actions
so that the ToolTalk objects associated with the deleted files and directories can also be deleted.

The ttrm utility removes the ToolTalk objects before it removes the files and does not check
whether the file-removing operation will succeed before performing the object-removing
operation.

OPTIONS
The ttrm utility supports the X/Open Utility Syntax Guidelines. The following options are
available:

−f Force. Do not report any errors, and pass the −f option to rm.

−h Write a help message for invoking ttrm and then exit.

−L Remove the ToolTalk objects of the files or directories, but do not invoke rm to
remove the actual files or directories.

−r Recursively remove the ToolTalk objects of any directories named, along with their
files (including any subdirectories and their files), and pass the −r option to rm.

−v Write the version number of ttrm and then exit.

It is unspecified whether the −i or −R options to rm are supported.

OPERANDS
The following operand is supported:

pathname
A pathname of a file to be removed.

STDIN
Not used.

INPUT FILES
The input files specified as operands can be of any file type.

ENVIRONMENT VARIABLES
The following environment variables affect the execution of ttrm:

LANG Provide a default value for the internationalisation variables that are
unset or null. If LANG is unset or null, the corresponding value from the
implementation-specific default locale will be used. If any of the
internationalisation variables contains an invalid setting, the utility
behaves as if none of the variables had been defined.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalisation variables.

LC_MESSAGES Determine the locale that is used to affect the format and contents of
diagnostic messages written to standard error and informative messages
written to standard output.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 345

ttrm Message Services

NLSPATH Determine the location of message catalogues for the processing of
LC_MESSAGES.

RESOURCES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When the −h option is used, ttrm writes to standard output a help message in an unspecified
format.

When the −v option is used, ttrm writes to standard output a version number in an unspecified
format.

STDERR
Used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values are returned:

0 All files and ToolTalk objects were removed successfully.

>0 An error occurred or the invoked rm command exited with a non-zero value.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

SEE ALSO
rm in the X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2; ttrmdir,
ttsession.

CHANGE HISTORY
First released in Issue 1.

346 X/Open CAE Specification

Message Services ttrmdir

NAME
ttrmdir — remove empty directories and inform the ToolTalk service

SYNOPSIS
ttrmdir [−L] directory . . .
ttrmdir −h A −v

DESCRIPTION
The ttrmdir utility invokes rmdir to remove empty directories and informs ToolTalk about its
actions so that the ToolTalk objects associated with the deleted directories can also be deleted.

The ttrmdir utility removes the ToolTalk objects before it removes the directories and does not
check whether a directory is empty or whether the directory-removing operation will succeed
before performing the object-removing operation.

OPTIONS
The ttrmdir utility supports the X/Open Utility Syntax Guidelines. The following options are
available:

−h Write a help message for invoking ttrmdir and then exit.

−L Remove the ToolTalk objects of the directories, but do not invoke rmdir to remove
the actual directories.

−v Write the version number of ttrmdir and then exit.

It is unspecified whether the −p option to cp is supported.

OPERANDS
The following operand is supported:

directory
A pathname of an empty directory to be removed.

STDIN
Not used.

INPUT FILES
The input files specified as operands can be of any file type.

ENVIRONMENT VARIABLES
The following environment variables affect the execution of ttrmdir:

LANG Provide a default value for the internationalisation variables that are
unset or null. If LANG is unset or null, the corresponding value from the
implementation-specific default locale will be used. If any of the
internationalisation variables contains an invalid setting, the utility
behaves as if none of the variables had been defined.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalisation variables.

LC_MESSAGES Determine the locale that is used to affect the format and contents of
diagnostic messages written to standard error and informative messages
written to standard output.

NLSPATH Determine the location of message catalogues for the processing of
LC_MESSAGES.

RESOURCES
None.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 347

ttrmdir Message Services

ASYNCHRONOUS EVENTS
Default.

STDOUT
When the −h option is used, ttrmdir writes to standard output a help message in an unspecified
format.

When the −v option is used, ttrmdir writes to standard output a version number in an
unspecified format.

STDERR
Used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values are returned:

0 All directories and ToolTalk objects were removed successfully.

>0 An error occurred or the invoked rmdir command exited with a non-zero value.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
The definition of an empty directory is one that contains, at most, directory entries for dot and
dot-dot.

EXAMPLES
None.

SEE ALSO
rmdir in the X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2; ttrm,
ttsession.

CHANGE HISTORY
First released in Issue 1.

348 X/Open CAE Specification

Message Services ttsession

NAME
ttsession — the ToolTalk message server

SYNOPSIS
ttsession [−hNpsStv] [−E A −X] [−a level] [−d display] [−c [command]]

DESCRIPTION
The ttsession utility is the ToolTalk message server. This background process must be running
before any messages can be sent or received. Each message server defines a session.

The message server has no user interface and typically runs in the background, started either by
the user’s .xinitrc file or automatically by any program that needs to send or receive a message.

OPTIONS
The ttsession utility supports the X/Open Utility Syntax Guidelines, except that the −c option has
an optional option-argument, which treats all of the following command-line arguments as a
string to be passed to another shell invocation. The following options are available:

−a level
Set the server authentication level. The following level string values are supported:

unix The sender and receiver must have the same user ID.

des The underlying RPC calls use AUTH_DES.

−c [command]
Start a process tree session and run the given command. The ttsession utility sets the
environment variable TT_SESSION to the name of this session. Any process started
with this variable in the environment defaults to being in this session. If command is
omitted, ttsession invokes the shell named by the SHELL environment variable.
Everything after −c on the command line is used as the command to be executed.

−d display
Specify an X Windows display. The ToolTalk session will consist of those
applications displaying on the named display. The default display is identified by
the DISPLAY environment variable.

−E Read in the types from the Classing Engine database. If neither −E nor −X is given,
−X is assumed.

−h Write a help message to standard error that describes the command syntax of
ttsession, and exit.

−N Maximise the number of clients allowed to connect to (in other words, open procids
in) this session by attempting to raise the limit of open file descriptors. The precise
number of clients is system-dependent; on some systems this option may have no
effect.

−p Write the name of a new process tree session to standard output, and then fork a
background instance of ttsession to manage this new session.

−s Silent. Do not write any warning messages to standard error.

−S Do not fork a background instance to manage the ttsession session.

−t Turn on trace mode. See ASYNCHRONOUS EVENTS for how to turn tracing on
and off during execution. Tracing displays the state of a message when it is first
seen by ttsession. The lifetime of the message is then shown by showing the result of
matching the message against type signatures (dispatch stage) and then showing
the result of matching the message against any registered message patterns

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 349

ttsession Message Services

(delivery stage). Any attempt to send the message to a given process is also shown
together with the success of that attempt.

−v Write the version number to standard output and exit.

−X Read in the types from the following XDR format databases:

$HOME/.tt/types.xdr
<implementation-specific system and network databases >
/usr/dt/appconfig/tttypes/types.xdr

The databases are listed order of decreasing precedence. Entries in
$HOME/.tt/types.xdr override any like entries in the databases lower in the list, and
so forth.

These locations can be overridden by setting the TTPATH environment variable.
See ENVIRONMENT VARIABLES.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
The XDR format databases listed by the −X option are serialised ToolTalk data structures of an
unspecified format, except that it is the same as the format of tt_type_comp output files.

ENVIRONMENT VARIABLES
The following environment variables affect the execution of ttsession:

DISPLAY If TT_SESSION is not set and DISPLAY is set, then the value of DISPLAY
will be used by all ToolTalk clients to identify the ttsession process serving
their X display. If no such process is running, the ToolTalk service will
auto-start one.

If ttsession is run with the −d option and DISPLAY is not set, ttsession sets
DISPLAY to be the value of the −d option for itself and all processes it
forks. This helps ToolTalk clients to find the right X display when they
are auto-started by ttsession.

LANG Provide a default value for the internationalisation variables that are
unset or null. If LANG is unset or null, the corresponding value from the
implementation-specific default locale will be used. If any of the
internationalisation variables contains an invalid setting, the utility
behaves as if none of the variables had been defined.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalisation variables.

LC_MESSAGES Determine the locale that is used to affect the format and contents of
diagnostic messages written to standard error and informative messages
written to standard output.

NLSPATH Determine the location of message catalogues for the processing of
LC_MESSAGES.

TT_ARG_TRACE_WIDTH
Specify the number of bytes of argument and context values to write
when in trace mode. The default is to print the first 40 bytes.

350 X/Open CAE Specification

Message Services ttsession

TTPATH A colon-separated list of directories that tells ToolTalk where to find the
ToolTalk types databases. The format of this variable is:

userDir [:systemDir [:networkDir]]

TTSESSION_CMD
Specify the shell command to be used by all ToolTalk clients for auto-
starting ttsession.

The ttsession utility creates the following variable when it invokes another process:

TT_FILE When ttsession invokes a tool to receive a message, it copies the file
attribute (if any) of the message into this variable, formatted in the same
manner as returned by the tt_message_file() function.

TT_SESSION The ttsession utility uses this variable to communicate its session ID to the
tools that it starts. The format of the variable is implementation specific.
If this variable is set, the ToolTalk client library uses its value as the
default session ID.

TT_TOKEN Inform the ToolTalk client library that it has been invoked by ttsession, so
that the client can confirm to ttsession that it started successfully. The
format of the variable is implementation specific.

A tool started by ttsession must ensure that the TT_SESSION and TT_TOKEN are present in the
environment of any processes it invokes.

RESOURCES
None.

ASYNCHRONOUS EVENTS
The ttsession utility reacts to two signals. If it receives the SIGUSR1 signal, it toggles trace mode
on or off (see the −t option). If it receives the SIGUSR2 signal, it rereads the types file. The
ttsession utility takes the standard action for all other signals.

STDOUT
When the −v option is used, ttsession writes the version number in an unspecified format. When
−p is used, ttsession writes the name of a new process tree session.

STDERR
Used only for diagnostic messages and the help message written by the −h option.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
When the −c child process exits, ttsession exits with the status of the exited child. Otherwise, the
following exit values are returned:

0 Normal termination. Without the −c or −S options, a zero exit status means ttsession
has successfully forked an instance of itself that has begun serving the session.

1 Abnormal termination. The ttsession utility was given invalid command line options,
was interrupted by SIGINT, or encountered some internal error.

2 Collision. Another ttsession was found to be serving the session already.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 351

ttsession Message Services

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
Since everything after −c on the command line is used as the command to be executed, −c should
be the last option.

Tracing is helpful for seeing how messages are dispatched and delivered, but the output may be
voluminous.

EXAMPLES
None.

SEE ALSO
tt_type_comp, tt_message_file().

CHANGE HISTORY
First released in Issue 1.

352 X/Open CAE Specification

Message Services tttar

NAME
tttar — process files and ToolTalk objects in an archive

SYNOPSIS
tttar c A t A x [EfhpSv] [tarfile] pathname . . .

tttar c A t A xfL [EhpRSv] tttarfile [[−rename oldname newname] . . .]
pathname . . .

tttar −h A −help

tttar −v

DESCRIPTION
The tttar utility has two fundamentally different modes.

• Without the L function modifier, tttar acts as a ToolTalk-aware wrapper for tar,
archiving (or extracting) multiple files and their ToolTalk objects onto (or from) a single
archive, called a tarfile .

• With the L function modifier, tttar does not invoke tar to archive actual files, but
instead archives (or extracts) only ToolTalk objects onto (or from) a single archive,
called a tttarfile . Since without the L function modifier tttar acts like an ToolTalk-aware
tar, the description below is phrased as if the L function modifier is in effect. That is,
the text refers to tttarfiles instead of tarfiles, and it describes archiving and de-archiving
only ‘‘the ToolTalk objects of the named files’’ rather than archiving and de-archiving
both ‘‘the named files and their ToolTalk objects.’’

The actions of tttar are controlled by the first argument, the key , a string of characters containing
exactly one function letter from the set ctx, and one or more of the optional function modifiers
listed under OPERANDS. Other arguments to tttar are file or directory names that specify
which files to archive or extract ToolTalk objects for. By default, the appearance of a directory
name refers recursively to the files and subdirectories of that directory.

A file does not have to exist for a ToolTalk object to be associated with its pathname. When tttar
descends into a directory, it does not attempt to archive the objects associated with any files that
do not exist in the directory.

When extracting from a tar archive that is given to tttar either on magnetic tape or on the
standard input, the current working directory must be writable, so that the tttarfile can be placed
there temporarily.

OPTIONS
The tttar utility supports the X/Open Utility Syntax Guidelines, except that the −help and
−rename options are full words, which cannot be combined with the other options, and −rename
can only be used after the first operand, tttarfile . The following options are available:

−h
−help Write a help message for invoking tttar and then exit.

−rename oldname newname
Interpret the next two arguments as an oldname and a newname, respectively, and
rename any entry archived as oldname to newname. If oldname is a directory, then
tttar recursively renames the entries as well. If more than one −rename option
applies to an entry (because of one or more parent directories being renamed), the
most specific −rename option applies.

−v Write the version number of tttar and then exit.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 353

tttar Message Services

OPERANDS
The following operands are supported:

key The key operand consists of a function letter followed immediately by zero or more
modifying letters.

The function letter is one of the following:

c Create a new archive and write the ToolTalk objects of the named files
onto it.

t Write to standard output the names of all the files in the archive.

x Extract the ToolTalk objects of the named files from the archive. If a
named file matches a directory with contents in the archive, this
directory is (recursively) extracted. The owner and modification time
of the ToolTalk objects are restored (if possible). If no filename
arguments are given, the ToolTalk objects of all files named in the
archive are extracted.

The following characters can be appended to the function letter. Appending the
same character more than once produces undefined results.

f Use the next argument as the name of the tttarfile . If tttarfile is given as
‘−’, tttar writes to the standard output or reads from the standard input,
whichever is appropriate.

h Follow symbolic links as if they were normal files or directories.
Normally, tttar does not follow symbolic links.

p Preserve. Restore the named files to their original modes, ignoring the
present umask value (see umask()).

L Do not invoke tar.

R Do not recurse into directories.

v Verbose. Write to standard error the name of each file processed,
preceded by a string indicating the operation being performed, as
follows:

Key Letter String
c "a "
x "x "

The file name may be followed by additional information, such as the
size of the file in the archive or file system, in an unspecified format.
When used with the t function letter, v writes to standard output more
information about the archive entries than just the name.

It is unspecified whether the following functions and modifiers are supported:

• The r and u function letters of tar, for incrementally updating an archive.

• The X and F function modifiers and the −I option of tar, for including or
excluding files from being archived based on SCCS status or being listed in
a special file.

• The w function modifier and the −C option of tar, for pausing or changing
directories between the files listed on the command line.

354 X/Open CAE Specification

Message Services tttar

• Writing and reading tttarfiles (that is, archives produced with the L
function modifier) directly to and from magnetic tape.

pathname
A pathname of a regular file or directory to be archived (when the c function letter is
used), extracted (x) or listed (t). When pathname is the pathname of a directory, the
action applies to all of the files and (recursively) subdirectories of that directory.
When the f letter is used in the key operand, the initial pathname operand is
interpreted as an archive name, as described previously.

tarfile
A pathname of a regular file to be read or written as an archive of files.

ttarfile
A pathname of a regular file to be read or written as an archive of ToolTalk objects.

STDIN
When the f modifier is used with the t or x function letter and the pathname is −, the standard
input is an archive file formatted as described in EXTENDED DESCRIPTION. Otherwise, the
standard input is not used.

INPUT FILES
The files identified by the pathname operands are regular files or directories. The file identified
by the tarfile operand is a regular file formatted as described in tar in the X/Open CAE
Specification, Commands and Utilities, Issue 4, Version 2. The file identified by the tttarfile
operand is a regular file formatted as described in EXTENDED DESCRIPTION.

ENVIRONMENT VARIABLES
The following environment variables affect the execution of tttar:

LANG Provide a default value for the internationalisation variables that are
unset or null. If LANG is unset or null, the corresponding value from the
implementation-specific default locale will be used. If any of the
internationalisation variables contains an invalid setting, the utility
behaves as if none of the variables had been defined.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalisation variables.

LC_MESSAGES Determine the locale that is used to affect the format and contents of
diagnostic messages written to standard error and informative messages
written to standard output.

NLSPATH Determine the location of message catalogues for the processing of
LC_MESSAGES.

TZ Determine the timezone used with date and time strings.

RESOURCES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When the −h option is used, tttar writes to standard output a help message in an unspecified
format.

When the −v option is used, tttar writes to standard output a version number in an unspecified
format.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 355

tttar Message Services

When the f modifier is used with the c function letter and the pathname is −, the standard output
is an archive file formatted as described in EXTENDED DESCRIPTION.

Otherwise, the standard output is not used.

STDERR
The standard error is used for diagnostic messages and the file name output described under the
v modifier (when the t function letter is not used).

OUTPUT FILES
Output files are created, as specified by the archive, when the x function letter is used.

EXTENDED DESCRIPTION
The archive file produced and read by tttar is formatted as described in tar, with the addition of
one extra file named tttarfile. (If one of the user files being archived is also named tttarfile, the
results are unspecified.) The tttarfile contains all the ToolTalk spec information for the ToolTalk
objects in the other files in the archive. The contents of tttarfile are written according to the
referenced XDR specification (RFC 1014). The only XDR data types used are:

int A four-octet signed integer, most significant octet first

string A four-octet unsigned integer length, most significant octet first, followed by
the characters of the string, followed by sufficient (0 to 3) residual zero octets to
make the total number of octets a multiple of four.

The tttarfile starts with two integers. The first is always 1, to mark this as the header record.
The second is always 1, indicating this is version 1 of the tttarfile format.

The end of the tttarfile is a integer 3, marking the end-of-file record.

In between, there is one logical record for each spec. Each logical record starts with an integer 2,
marking it as a spec record. Other integer values are reserved for assignment to future data
types.

After the record identifier, the spec record contains, in sequence:

1. A string giving the Tooltalk object identifier (objid) of the object represented by the spec

2. A string giving the name of the file (as found in the archive table of contents) that
contains the contents of the ToolTalk object represented by the spec

3. A string giving the ToolTalk object type identifier (otid) of the ToolTalk object
represented by the spec

4. An integer giving the number of properties for this object

The properties of the object immediately follow the number of properties. Each property
consists of:

1. A string giving the name of the property

2. An integer, which is always zero (for historical compatibility)

3. An integer giving the number of values for this property

4. A string for each value

After the values, the next property is found, until all properties for the object have been
accounted for; then the next spec is found, until all specs for objects associated with files in the
archive are accounted for.

356 X/Open CAE Specification

Message Services tttar

EXIT STATUS
The following exit values are returned:

0 All files and ToolTalk objects were moved successfully.

>0 An error occurred or the invoked tar command exited with a non-zero value.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

SEE ALSO
tar in the X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2; ttcp, ttsession.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 357

Data Formats Message Services

6.5 Data Formats
This section defines the data formats of static message patterns, iX "data formats" "static message
patterns" iX "static message patterns" used in ptype and otype files.

The static messaging method allows an application to specify the message pattern information if
it wants to receive a defined set of messages. To use the static method, the application must
define its process types and object types and compile them with the ToolTalk type compiler,
tt_type_comp. When the application declares its process type, the ToolTalk service creates
message patterns based on that type. These static message patterns remain in effect until the
application closes communication with the ToolTalk service.

6.5.1 Defining Process Types

An application can be considered a potential message receiver even when no process is running
the application. To do this, the application developer must provide message patterns and
instructions on how to start the application in a process type (ptype) file. These instructions tell
the ToolTalk service to perform one of the following actions when a message is available for an
application but the application is not running:

• Start the application and deliver the message

• Queue the message until the application is running

• Discard the message

To make the information available to the ToolTalk service, the ptype file must be compiled with
the ToolTalk type compiler, tt_type_comp, at application installation time.

When an application registers a ptype with the ToolTalk service, the message patterns listed in it
are automatically registered, too.

Ptypes provide application information that the ToolTalk service can use when the application is
not running. This information is used to start your process if necessary to receive a message or
queue messages until the process starts.

A ptype begins with a process-type identifier (ptid). Following the ptid are:

1. An optional start command string, which the ToolTalk service will execute, if necessary, to
start a process running the program.

2. Signatures, which describe the TT_PROCEDURE-addressed messages that the program
wants to receive. Messages to be observed are described separately from messages to be
handled.

Signatures

Signatures describe the messages that the program wants to receive. A signature is divided by
an arrow (the two characters =>) into two parts. The first part of a signature specifies matching
attribute values. The more attribute values specified in a signature, the fewer messages the
signature will match. The second part of a signature specifies receiver values that the ToolTalk
service will copy into messages that match the first part of the signature.

A ptype signature can contain values for disposition and operation numbers (opnums). The
ToolTalk service uses the disposition value (start, queue or the default discard) to determine
what to do with a message that matches the signature when no process is running the program.
The opnum value is provided as a convenience to message receivers. When two signatures have
the same operation name but different arguments, different opnums makes incoming messages
easy to identify.

358 X/Open CAE Specification

Message Services Data Formats

The following is the syntax for a ptype file.

ptype ::= ’ptype’ ptid ‘{’
property ∗
[‘observe:’ psignature ∗]
[‘handle:’ psignature ∗]
‘}’ [‘;’]

property ::= property_id value ‘;’
property_id ::= ‘start’
value ::= string
ptid ::= identifier
psignature ::= [scope] op args [contextdcl]

[‘=>’
[‘start’][‘queue’]
[‘opnum=’ number]]
‘;’

scope ::= ‘file’
| ‘session’
| ‘file_in_session’

args ::= ‘(’ argspec {, argspec } ∗ ‘)’
| ‘(void)’
| ‘()’

contextdcl ::= ‘context’ ‘(’ identifier {, identifier } ∗ ‘)’ ‘;’
argspec ::= mode type name
mode ::= ‘in’ | ‘out’ | ‘inout’
type ::= identifier
name ::= identifier

Property_id Information

ptid The process type identifier (ptid) identifies the process type. A ptid must be unique for
every implementation. It is recommended that the name selected include the
trademarked name of the application product or company as a prefix. The ptid cannot
exceed 32 bytes and must not be one of the reserved identifiers: ptype, otype, start,
opnum, queue, file, session, observe or handle.

start The start string for the process. If the ToolTalk service needs to start a process, it
executes this command using the shell described in the X/Open CAE Specification,
Commands and Utilities, Issue 4, Version 2.

Before executing the command, the ToolTalk service defines TT_FILE as an
environment variable with the value of the file attribute of the message that started the
application. This command runs in the environment of ttsession, not in the
environment of the sender of the message that started the application, so any context
information must be carried by message arguments or contexts.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 359

Data Formats Message Services

Psignature Matching Information

scope This pattern attribute is matched against the scope attribute in messages.

op Operation name. This name is matched against the op attribute in messages.

Note: If the application specifies message signatures in both its ptype and otypes, it
must use unique operation names in each. For example, it cannot specify a
display operation in both its ptype and otype.

args Arguments for the operation. If the argument list is (void), the signature matches only
messages with no arguments. If the argument list is empty (that is, ‘‘()’’), the signature
matches without regard to the arguments.

contextdcl
The context name. When a pattern with this named context is generated from the
signature, it contains an empty value list.

Psignature Actions Information

start If the psignature matches a message and no running process of this ptype has a pattern
that matches the message, the ToolTalk service starts a process of this ptype.

queue If the psignature matches a message and no running process of this ptype has a pattern
that matches the message, the ToolTalk service queues the message until a process of
this ptype registers a pattern that matches it.

opnum The application should fill in the message’s opnum attribute with the specified number
to enable it to identify the signature that matched the message. When the message
matches the signature, the the ToolTalk service fills the opnum from the signature into
the message. The application can then retrieve the opnum with the tt_message_opnum()
call. By giving each signature a unique opnum, the application can determine which
signature matched the message. It can attach a callback routine to the opnum with the
tt_ptype_opnum_callback_add () call. When the message is matched, the ToolTalk service
will check for any callbacks attached to the opnum and, if any are found, run them.

6.5.2 Defining Object Types

When a message is addressed to a specific object or a type of object, the ToolTalk service must be
able to determine to which application the message is to be delivered. Applications provide this
information in an object type (otype). An otype names the ptype of the application that manages
the object and describes message patterns that pertain to the object. These message patterns also
contain instructions that tell the ToolTalk service what to do if a message is available but the
application is not running. In this case, the ToolTalk service performs one of the following
instructions:

• Start the application and deliver the message

• Queue the message until the application is running

• Discard the message

To make the information available to the ToolTalk service, the otype file must be compiled with
the ToolTalk type compiler tt_type_comp at application installation time. When an application
that manages objects registers with the ToolTalk service, it declares its ptype. When a ptype is
registered, the ToolTalk service checks for otypes that mention the ptype and registers the
patterns found in these otypes. The otype for the application provides addressing information
that the ToolTalk service uses when delivering object-oriented messages. The number of otypes,
and what they represent, depends on the nature of the application. For example, a word

360 X/Open CAE Specification

Message Services Data Formats

processing application might have otypes for characters, words, paragraphs and documents; a
diagram editing application might have otypes for nodes, arcs, annotation boxes and diagrams.

An otype begins with an object-type identifier (otid). Following the otid are:

1. An optional start command string, which the ToolTalk service will execute, if necessary, to
start a process running the program.

2. Signatures, which define the messages that can be addressed to objects of the type (that is,
the operations that can be invoked on objects of the type).

Signatures

Signatures define the messages that can be addressed to objects of the type. A signature is
divided by an arrow (the two characters =>) into two parts. The first part of a signature define
matching criteria for incoming messages. The second part of a signature defines receiver values
that the ToolTalk service adds to each message that matches the first part of the signature. These
values specify the ptid of the program that implements the operation and the message’s scope
and disposition.

Creating Otype Files

The following is the syntax for an otype file:

otype ::= obj_header ’{’ objbody ∗ ’}’ [’;’]
obj_header ::= ’otype’ otid [’:’ otid +]
objbody ::= ‘observe:’ osignature ∗

| ‘handle:’ osignature ∗

osignature ::= op args [contextdcl] [rhs][inherit] ‘;’
rhs ::= [‘=>’ ptid [scope]]

[‘start’][‘queue’]
[‘opnum=’ number]

inherit ::= ‘from’ otid
args ::= ‘(’ argspec {, argspec } ∗ ‘)’

| ‘(void)’
| ‘()’

contextdcl ::= ‘context’ ‘(’ identifier {, identifier } ∗ ‘)’ ‘;’
argspec ::= mode type name
mode ::= ‘in’ | ‘out’ | ‘inout’
type ::= identifier
name ::= identifier
otid ::= identifier
ptid ::= identifier

Obj_Header Information

otid The object type identifier (otid) identifies the object type. A otid must be unique for
every implementation. It is recommended that the identifier begin with the ptid of the
tool that implements the otype. The otid is limited to 64 bytes and must not be one of
the reserved identifiers: ptype, otype, start, opnum, start, queue, file, session, observe
or handle.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 361

Data Formats Message Services

Osignature Information

The object body portion of the otype definition is a list of osignatures for messages about the
object that the application wants to observe and handle.

op Operation name. This name is matched against the op attribute in messages.

args Arguments for the operation. If the argument list is (void), the signature matches only
messages with no arguments. If the argument list is empty (just ‘‘()’’), the signature
matches messages without regard to the arguments.

contextdcl
Context name. When a pattern with this named context is generated from the
signature, it contains an empty value list.

ptid The process type identifier for the application that manages this type of object.

opnum The application should fill in the message’s opnum attribute with the specified number
to enable it to identify the signature that matched the message. When the message
matches the signature, the the ToolTalk service fills the opnum from the signature into
the message. The application can then retrieve the opnum with the tt_message_opnum()
call. By giving each signature a unique opnum, the application can determine which
signature matched the message. It can attach a callback routine to the opnum with the
tt_ptype_opnum_callback_add () call. When the message is matched, the ToolTalk service
will check for any callbacks attached to the opnum and, if any are found, run them.

inherit Otypes form an inheritance hierarchy in which operations can be inherited from base
types. The ToolTalk service requires the otype definer to name explicitly all inherited
operations and the otype from which to inherit. This explicit naming prevents later
changes (such as adding a new level to the hierarchy, or adding new operations to base
types) from unexpectedly affecting the behaviour of an otype.

scope This pattern attribute is matched against the scope attribute in messages. It appears on
the rightmost side of the arrow and is filled in by the ToolTalk service during message
dispatch. This means the definer of the otype can specify the attributes instead of
requiring the message sender to know how the message should be delivered.

Osignature Actions Information

start If the osignature matches a message and no running process of this otype has a pattern
that matches the message, the ToolTalk service will start a process of this otype.

queue If the osignature matches a message and no running process of this otype has a pattern
that matches the message, the ToolTalk service will queue the message until a process
of this otype registers a pattern that matches it.

362 X/Open CAE Specification

Message Services Protocol Message Sets

6.6 Protocol Message Sets
This section describes standard ToolTalk messages. Many of the XCDE services can be controlled
or accessed by sending them ToolTalk messages; those services that do support ToolTalk
interaction list the messages in a section named ‘‘Messages’’ in the appropriate chapters of the
XCSA specification.

Each message is described on a separate reference page, similar to the format used for a C-
language function. The SYNOPSIS section is a representation of the message in a syntax similar
to that understood by the ToolTalk type compiler, tt_type_comp(). The synopsis format is:

[file] opName(requiredArgs , [optionalArgs]);

The components of the synopsis are as follows:

file If the synopsis begins with [file], this is an indication that the file attribute of the message
can or should be set. ToolTalk allows each message to refer to a file, and has a mechanism
(called file-scoping) for delivering messages to clients who are ‘‘interested’’ in the named
file. See the tt_message_file_set() function.

opName
The name of the operation or event.

requiredArgs, optionalArgs
In the synopsis, arguments are expressed as:

mode vtype argumentName

The mode part is one of in, out or inout, indicating the direction(s) in which the data of
that argument flow.

The vtype and argumentName parts describe a particular argument. The vtype is a
programmer-defined string that describes what kind of data a message argument
contains. ToolTalk uses vtypes for the sole purpose of matching sent message instances
with registered message patterns. Every vtype should by convention map to a single,
well-known data type. The data type of a ToolTalk argument is either integer, string or
bytes. The data type of a message or pattern argument is determined by the ToolTalk API
function used to set its value. The argumentName is merely a comment hinting to human
readers at the semantics of the argument, much like a parameter name in an ISO C
function prototype.

The requiredArgs shown without [] brackets are required to form a valid message. The
optionalArgs shown enclosed in [] brackets are optional. The extra arguments that may be
included in a message. Any optional arguments in a message must be in the specified
order, and must follow the required arguments.

The ERRORS section describes integer status codes that can be extracted from a reply via
tt_message_status(). This status defaults to zero (TT_OK), or can be set by the handler via
tt_message_status_set(). In extraordinary circumstances such as no matching handler, ToolTalk
itself sets the message status to a Tt_status code.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 363

Protocol Message Sets Message Services

6.6.1 Desktop Message Set

The Desktop message policies apply to any tool in an XPG4 or X Window System environment.
In addition to standard messages for these environments, the Desktop policies define data types
and error codes that apply to all of the ToolTalk message policies.

The following types and argument names are used in message SYNOPSIS descriptions:

boolean
A vtype for logical values. The underlying data type of boolean is integer; that is,
arguments of this vtype should be manipulated with tt_∗_arg_ival[_set]() and
tt_∗_iarg_add() functions. Zero means false; non-zero means true.

string
A vtype for character strings. Arguments of this vtype should be manipulated with
tt_∗_arg_val[_set]() and tt_∗_arg_add () functions.

messageID
A vtype for uniquely identifying messages. The underlying data type of messageID is
string. The messageID of a Tt_message is returned by tt_message_id().

width
height
xOffset
yOffset

Vtypes for integer geometry values, in pixels.

type Any of the vtypes that are the name of the kind of objects in a particular system of
persistent objects. For example, the vtype for the kind of objects in file systems is File.
The vtype for ToolTalk objects is ToolTalk_Object.

364 X/Open CAE Specification

Message Services Get_Environment

NAME
Get_Environment request — get a tool’s environment

SYNOPSIS
Get_Environment(in string variable ,

out string value
[...]);

DESCRIPTION
The Get_Environment request reports the value of the indicated environment variable(s).

The variable argument is the name of the environment variable to get.

The value argument is the value of the environment variable. If no value (in other words,
(char ∗)0) is returned for this argument, then the variable was not present in the handler’s
environment. This condition is not an error. If an empty string (in other words, " ") is returned
for this argument, then the variable was present in the handler’s environment, but had a null
value.

APPLICATION USAGE
The ttdt_session_join (), function can be used to register for, and transparently process, the
Get_Environment request.

SEE ALSO
ttdt_session_join (); Set_Environment request.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 365

Get_Geometry Message Services

NAME
Get_Geometry request — get a tool’s on-screen geometry

SYNOPSIS
Get_Geometry(out width w,

out height h,
out xOffset x,
out yOffset y
[in messageID commission]);

DESCRIPTION
The Get_Geometry request reports the on-screen geometry of the optionally specified window, or
of the window primarily associated with the recipient procid (if no window is specified).

The w, h , x and y arguments are integer geometry values, in pixels, representing width, height,
x-coordinate and y-coordinate, respectively. Negative offset values are interpreted according to
the X/Open CAE Specification, Window Management: Xlib — C Language Binding.

The commission argument is the ID of the ongoing request, if any, that resulted in the creation of
the window in question.

APPLICATION USAGE
The ttdt_session_join (), and ttdt_message_accept(), functions can be used by Xt applications to
register for, and transparently process, the Get_Geometry request. Also, Get_Geometry can be sent
by ttdt_sender_imprint_on().

SEE ALSO
ttdt_message_accept(), ttdt_sender_imprint_on(), ttdt_session_join (); Set_Geometry request.

CHANGE HISTORY
First released in Issue 1.

366 X/Open CAE Specification

Message Services Get_Iconified

NAME
Get_Iconified request — get a tool’s iconic state

SYNOPSIS
Get_Iconified(out boolean iconic

[in messageID commission]);

DESCRIPTION
The Get_Iconified request reports the iconic state of the optionally specified window, or of the
window primarily associated with the handling procid (if no window is specified).

The iconic argument is a Boolean value indicating whether the specified window is (to be)
iconified.

The commission argument is the ID of the ongoing request, if any, that resulted in the creation of
the window(s) in question.

APPLICATION USAGE
The ttdt_session_join (), and ttdt_message_accept(), functions can be used by Xt applications to
register for, and transparently process, the Get_Iconified request.

SEE ALSO
ttdt_message_accept(), ttdt_session_join (); Set_Iconified request.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 367

Get_Locale Message Services

NAME
Get_Locale request — get a tool’s locale

SYNOPSIS
Get_Locale(in string category ,

out string locale
[...]);

DESCRIPTION
The Get_Locale request reports the XPG4 locale of the indicated locale categories.

The category argument is the locale category to get. A locale category is a group of data types
whose output formatting varies according to locale in a similar way. ISO C and X/Open locale
categories are:

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME

The locale argument is the name of the current locale of the indicated category. The value of
locale is implementation-defined.

ERRORS
The ToolTalk service may return the following error in processing the Get_Locale request:

TT_DESKTOP_EINVAL
The locale argument is not valid on the handler’s host.

APPLICATION USAGE
The ttdt_session_join (), function can be used to register for, and transparently process, the
Get_Locale request.

Also, Get_Locale can be sent by ttdt_sender_imprint_on(), with the reply being handled
transparently.

SEE ALSO
setlocale () in the , ttdt_sender_imprint_on(), ttdt_session_join (); Set_Locale request.

CHANGE HISTORY
First released in Issue 1.

368 X/Open CAE Specification

Message Services Get_Mapped

NAME
Get_Mapped request — get whether a tool is mapped to the screen

SYNOPSIS
Get_Mapped(out boolean mapped

[in messageID commission]);

DESCRIPTION
The Get_Mapped request reports the mapped state of the optionally specified window, or of the
window primarily associated with the handling procid (if no window is specified).

The mapped argument is a Boolean value indicating whether the specified window is (to be)
mapped to the screen.

The commission argument is the ID of the ongoing request, if any, that resulted in the creation of
the window in question.

APPLICATION USAGE
The ttdt_session_join (), and ttdt_message_accept(), functions can be used by Xt applications to
register for, and transparently process, the Get_Mapped request.

SEE ALSO
ttdt_message_accept(), ttdt_session_join (); Set_Mapped request.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 369

Get_Modified Message Services

NAME
Get_Modified request — ask whether an entity has been modified

SYNOPSIS
[file] Get_Modified(in type ID ,

out boolean modified);

DESCRIPTION
The Get_Modified request asks whether any tool has modified a volatile, non-shared (for
example, in-memory) representation of the persistent state of an entity (such as a file) with the
intention of eventually making that representation persistent.

Thus, a tool should register a dynamic pattern for this request when it has modified an entity of
possible shared interest.

The ID argument is the identity of the persistent entity being asked about. When its type is File,
then ID is unset (in other words, has a value of (char ∗)0), and it refers to the file or directory
named in the message’s file attribute.

The modified argument argument is a Boolean value indicating whether a volatile, non-shared
(for example, in-memory) representation of the entity has been modified with the intention of
eventually making that representation persistent.

ERRORS
The ToolTalk service may return one of the following errors in processing the Get_Modified
request:

TT_ERR_NO_MATCH
Since no handler could be found, the entity in question can be assumed not to be
modified.

APPLICATION USAGE
The ttdt_file_join (), function can be used to register for, and transparently process, the
Get_Modified request.

The Get_Modified request can be sent with ttdt_file_request(); ttdt_Get_Modified(), can send the
Get_Modified request and block on the reply.

SEE ALSO
ttdt_file_join (), ttdt_file_request(), ttdt_file_request(), ttdt_Get_Modified(); Set_Modified request.

CHANGE HISTORY
First released in Issue 1.

370 X/Open CAE Specification

Message Services Get_Situation

NAME
Get_Situation request — get a tool’s current working directory

SYNOPSIS
Get_Situation(out string path);

DESCRIPTION
The Get_Situation request reports the current working directory.

The path argument is the pathname of the working directory that the recipient is using.

APPLICATION USAGE
The ttdt_session_join (), function can be used to register for, and transparently process, the
Get_Situation request.

SEE ALSO
ttdt_session_join (); Set_Situation request.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 371

Get_Status Message Services

NAME
Get_Status request — retrieve a tool’s current status

SYNOPSIS
Get_Status(out string status ,

out string vendor ,
out string toolName ,
out string toolVersion
[in messageID operation2Query]);

DESCRIPTION
The Get_Status request retrieves the current status of a tool (or, optionally, of a specific operation
being performed by a tool).

The status argument is the status retrieved.

The vendor argument is the name of the vendor of the handling tool.

The toolName argument is the name of the handling tool.

The toolVersion argument is the version of the handling tool.

OPTIONAL

The operation2Query argument is the ID of the request that initiated the operation the status of
which is being requested.

APPLICATION USAGE
The ttdt_session_join (), and ttdt_message_accept(), functions can be used to register for, and help
process, the Get_Status request.

EXAMPLES
After sending a TT_REQUEST and storing its handle in Tt_message request_I_sent, if the handler
identifies itself with a Status notice saved in Tt_message status_msg_from_handler , then the status
of request_I_sent can be queried as in the following example:

Tt_message msg = tttk_message_create(0, TT_REQUEST, TT_SESSION,
tt_message_sender(status_msg_from_handler),
TTDT_GET_STATUS, my_callback);

tt_message_arg_add(msg, TT_OUT, Tttk_string, 0);
tt_message_arg_add(msg, TT_OUT, Tttk_string, 0);
tt_message_arg_add(msg, TT_OUT, Tttk_string, 0);
tt_message_arg_add(msg, TT_OUT, Tttk_string, 0);
tt_message_arg_add(msg, TT_IN, Tttk_string,

tt_message_id(request_I_sent));
tt_message_send(msg);

SEE ALSO
tt_message_arg_add (), tt_message_id(), tt_message_send(), ttdt_message_accept(),
tt_message_sender(), ttdt_session_join ().

CHANGE HISTORY
First released in Issue 1.

372 X/Open CAE Specification

Message Services Get_Sysinfo

NAME
Get_Sysinfo request — get information about a tool’s host

SYNOPSIS
Get_Sysinfo(out string sysname ,

out string nodename,
out string release ,
out string version ,
out string machine);

DESCRIPTION
The Get_Sysinfo request gets information about the handler’s host.

The sysname argument is the name of the host’s operating system.

The nodename argument is the name of the host.

The release and version arguments are implementation-specific information about the host’s
operating system.

The machine argument is an implementation-specific name that identifies the hardware on which
the operating system is running.

APPLICATION USAGE
The ttdt_session_join (), function can be used to register for, and transparently process, the
Get_Sysinfo request.

EXAMPLES
The Get_Sysinfo message can be sent as in the following example:

Tt_message msg = tttk_message_create(0, TT_REQUEST, TT_SESSION,
the_recipient_procid, TTDT_GET_SYSINFO,
my_callback);

tt_message_arg_add(msg, TT_OUT, Tttk_string, 0);
tt_message_arg_add(msg, TT_OUT, Tttk_string, 0);
tt_message_arg_add(msg, TT_OUT, Tttk_string, 0);
tt_message_arg_add(msg, TT_OUT, Tttk_string, 0);
tt_message_arg_add(msg, TT_OUT, Tttk_string, 0);
tt_message_send(msg);

SEE ALSO
uname() in the X/Open CAE Specification, System Interfaces and Headers, Issue 4, Version 2,
tt_message_arg_add (), tt_message_send(), ttdt_session_join ().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 373

Get_XInfo Message Services

NAME
Get_XInfo request — get a tool’s X11 attributes

SYNOPSIS
Get_XInfo(out string display ,

out string visual ,
out integer depth
[in messageID commission]);

DESCRIPTION
The Get_XInfo request reports the X11 attributes of the optionally specified window, or of the
window primarily associated with the recipient procid (if no window is specified).

The display argument is an X11 display.

The visual argument is an X11 visual class (which determines how a pixel will be displayed as a
colour). Valid values are:

DirectColor PseudoColor StaticGray
GrayScale StaticColor TrueColor

The depth argument is the number of bits in a pixel.

The commission argument is the ID of the ongoing request with respect to which X11 attributes
are being set or reported.

APPLICATION USAGE
The ttdt_session_join (), and ttdt_message_accept(), functions can be used by Xt applications to
register for, and transparently process, the Get_XInfo request. Also, Get_XInfo can be sent by
ttdt_sender_imprint_on().

Since the handler may be running on a different host, it is almost always better to return a display
value of hostname:n[.n] instead of :n[.n].)

The commission argument is useful to the extent that the handler employs different attributes for
the different operations it may be carrying out.

EXAMPLES
The Get_XInfo request can be sent as in the following example:

Tt_message msg = tttk_message_create(0, TT_REQUEST, TT_SESSION,
the_recipient_procid, TTDT_GET_XINFO,
my_callback);

tt_message_arg_add(msg, TT_OUT, Tttk_string, 0);
tt_message_arg_add(msg, TT_OUT, Tttk_string, 0);
tt_message_iarg_add(msg, TT_OUT, Tttk_integer, 0);
tt_message_send(msg);

SEE ALSO
tt_message_iarg_add (), tt_message_send(), ttdt_message_accept(), ttdt_sender_imprint_on(),
ttdt_session_join ().

CHANGE HISTORY
First released in Issue 1.

374 X/Open CAE Specification

Message Services Lower

NAME
Lower request — lower a tool’s window(s) to the back

SYNOPSIS
Lower([in messageID commission]);

DESCRIPTION
The Lower request lowers the window(s) associated with the handling procid. If any optional
arguments are present, then it lowers only the indicated window(s).

The commission argument is the ID of the message, if any, that resulted in the creation of the
window(s) that should be lowered.

APPLICATION USAGE
The ttdt_session_join (), and ttdt_message_accept(), functions can be used by Xt applications to
register for, and transparently process, the Lower request.

SEE ALSO
ttdt_message_accept(), ttdt_session_join (); Raise request.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 375

Modified Message Services

NAME
Modified notice — an entity has been modified

SYNOPSIS
[file] Modified(in type ID);

DESCRIPTION
The Modified notice is sent whenever a tool first modifies a volatile, non-shared (for example, in-
memory) representation of the persistent state of an entity (such as a file), with the intention of
eventually making that representation persistent.

The ID argument is the identity of the modified entity. When its type is File, then the ID
argument is unset (in other words, has a value of (char ∗)0), and it refers to the file or directory
named in the message’s file attribute.

APPLICATION USAGE
The ttdt_file_join (), function can be used to register for, and help process, the Modified request.

The Modified request can be sent with ttdt_file_event().

SEE ALSO
ttdt_file_event(). ttdt_file_join (); Reverted notice.

CHANGE HISTORY
First released in Issue 1.

376 X/Open CAE Specification

Message Services Pause

NAME
Pause request — pause a tool, operation or data performance

SYNOPSIS
Pause([in messageID operation]);

DESCRIPTION
The Pause request pauses the specified tool, operation or data performance.

If the optional operation argument is included, the handler should pause the operation that was
invoked by the specified request.

The operation argument is the request that should be paused. For a request to be eligible for
pausing, the handler must have sent a Status notice back to the requester (thus identifying itself
to the requester).

ERRORS
The ToolTalk service may return the following error in processing the Pause request:

TT_DESKTOP_ENOMSG
The operation argument does not refer to any message currently known by the
handler.

APPLICATION USAGE
The ttdt_session_join (), and ttdt_message_accept(), functions can be used to register for, and help
process, the Pause request.

EXAMPLES
The Pause message can be sent as in the following example:

Tt_message msg = tttk_message_create(0, TT_REQUEST, TT_SESSION,
the_recipient_procid, TTDT_PAUSE,
my_callback);

tt_message_send(msg);

SEE ALSO
tt_message_send(), ttdt_message_accept(), ttdt_session_join (); Resume request.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 377

Quit Message Services

NAME
Quit request — terminate an operation or an entire tool

SYNOPSIS
Quit(in boolean silent ,

in boolean force
[in messageID operation2Quit]);

DESCRIPTION
The Quit request terminates an operation or an entire tool. Without the optional operation2Quit
argument, this request asks the handling procid to quit. If the request succeeds, one or more
ToolTalk procids should call tt_close(), and zero or more processes should exit.

With the optional operation2Quit argument, this request asks the handler to terminate the
indicated request. (Whether the terminated request must therefore be failed depends on its
semantics. Often, termination can be considered to mean that the requested operation has been
carried out to the requester’s satisfaction.)

The Quit request should be failed (and the status code set appropriately) when the termination is
not performed—for example, because the silent argument was false and the user canceled the
quit.

The silent argument affects user notification of termination. If silent is True, the handler is not
allowed to block on user input before terminating itself (or the indicated operation). If it is False,
however, the handler may seek such input.

The force argument is a Boolean value indicating whether the handler should terminate itself (or
the indicated operation) even if circumstances are such that the tool ordinarily would not
perform the termination.

For example, a tool might have a policy of not quitting with unsaved changes unless the user has
been asked whether the changes should be saved. When force is true, such a tool should
terminate even when doing so would lose changes that the user has not been asked by the tool
about saving.

The operation2Quit argument is the request that should be terminated. For a request to be
terminable, the handler must have sent a Status notice back to the requester (thus identifying
itself to the requester).

ERRORS
The ToolTalk service may return one of the following errors in processing the Quit request:

TT_DESKTOP_ECANCELED
The user overrode the Quit request.

TT_DESKTOP_ENOMSG
The operation2Quit argument does not refer to any message currently known by the
handler.

APPLICATION USAGE
The ttdt_session_join (), and ttdt_message_accept(), functions can be used to register for, and help
process, the Quit request.

In the successful case, ‘‘zero or more’’ procids are cited because a single process can instantiate
multiple independent procids, and a single procid can conceivably be implemented by a set of
cooperating processes.

378 X/Open CAE Specification

Message Services Quit

EXAMPLES
The Quit request can be sent as in the following example:

Tt_message msg = tttk_message_create(0, TT_REQUEST, TT_SESSION,
the_recipient_procid, TTDT_QUIT,
my_callback);

tt_message_iarg_add(msg, TT_IN, Tttk_boolean, 0);
tt_message_iarg_add(msg, TT_IN, Tttk_boolean, 0);
tt_message_send(msg);

SEE ALSO
tt_close(), tt_message_iarg_add (), tt_message_send(), ttdt_message_accept(), ttdt_session_join ().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 379

Raise Message Services

NAME
Raise request — raise a tool’s window(s) to the front

SYNOPSIS
Raise([in messageID commission]);

DESCRIPTION
The Raise request raises the window(s) associated with the handling procid. If any optional
arguments are present, then it raises only the indicated window(s).

The commission argument is the ID of the message, if any, that resulted in the creation of the
window(s) that should be raised.

APPLICATION USAGE
The ttdt_session_join (), and ttdt_message_accept(), functions can be used by Xt applications to
register for, and transparently process, the Raise request.

EXAMPLES
The Raise request can be sent as in the following example:

Tt_message msg = tttk_message_create(0, TT_REQUEST, TT_SESSION,
the_recipient_procid, TTDT_RAISE,
my_callback);

tt_message_send(msg);

SEE ALSO
tt_message_send(), ttdt_message_accept(), ttdt_session_join (); Lower request.

CHANGE HISTORY
First released in Issue 1.

380 X/Open CAE Specification

Message Services Resume

NAME
Resume request — resume a tool, operation or data performance

SYNOPSIS
Resume([in messageID operation]);

DESCRIPTION
The Resume request resumes the specified tool, operation or data performance.

If the optional operation argument is included, the handler should resume the operation that was
invoked by the specified request.

The operation argument is the request that should be resumed.

ERRORS
The ToolTalk service may return the following error in processing the Resume request:

TT_DESKTOP_ENOMSG
The operation argument does not refer to any message currently known by the
handler.

APPLICATION USAGE
The ttdt_session_join (), and ttdt_message_accept(), functions can be used to register for, and help
process, the Resume request.

SEE ALSO
ttdt_message_accept(), ttdt_session_join (); Pause request.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 381

Revert Message Services

NAME
Revert notice — discard any modifications to an entity

SYNOPSIS
[file] Revert(in type ID);

DESCRIPTION
The Revert notice asks that any pending, unsaved modifications to a persistent entity (such as a
file) be discarded.

The ID argument is the identity of the entity to revert. When its type is File, then the ID
argument is unset (in other words, has a value of (char ∗)0), and it refers to the file or directory
named in the message’s file attribute.

ERRORS
The ToolTalk service may return one of the following errors in processing the Revert notice:

TT_DESKTOP_UNMODIFIED
The entity had no pending, unsaved modifications.

TT_DESKTOP_ENOENT
The file to save/revert does not exist.

APPLICATION USAGE
The ttdt_file_join (), function can be used to register for, and help process, the Revert request.

The Revert request can be sent with ttdt_file_request(). Also, ttdt_Revert(), can send the relevant
message and block on the reply.

SEE ALSO
ttdt_Revert(), ttdt_file_join (), ttdt_file_request(); Save notice.

CHANGE HISTORY
First released in Issue 1.

382 X/Open CAE Specification

Message Services Reverted

NAME
Reverted notice — an entity has been reverted

SYNOPSIS
[file] Reverted(in type ID);

DESCRIPTION
The Reverted notice is sent when all the modifications (see the Modified notice) to an entity have
been discarded.

The ID argument is the identity of the modified or reverted entity. When its type is File, then the
ID argument is unset (in other words, has a value of (char ∗)0), and it refers to the file or
directory named in the message’s file attribute.

APPLICATION USAGE
The ttdt_file_join (), function can be used to register for, and help process, the Reverted request.

The Reverted request can be sent with ttdt_file_event().

SEE ALSO
ttdt_file_event(), ttdt_file_join (); Saved notice.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 383

Save Message Services

NAME
Save notice — save any modifications to an entity

SYNOPSIS
[file] Save(in type ID);

DESCRIPTION
The Save notice asks that any pending, unsaved modifications to a persistent entity (such as a
file) be saved.

The ID argument is the identity of the entity to save. When its type is File, then the ID argument
is unset (in other words, has a value of (char ∗)0), and it refers to the file or directory named in
the message’s file attribute.

ERRORS
The ToolTalk service may return one of the following errors in processing the Save notice:

TT_DESKTOP_UNMODIFIED
The entity had no pending, unsaved modifications.

TT_DESKTOP_ENOENT
The file to save/revert does not exist.

APPLICATION USAGE
The ttdt_file_join (), function can be used to register for, and help process, the Save request.

The Save request can be sent with ttdt_file_request(). Also, ttdt_Save(), can send the relevant
message and block on the reply.

SEE ALSO
ttdt_Save(), ttdt_file_join (), ttdt_file_request(); Revert notice.

CHANGE HISTORY
First released in Issue 1.

384 X/Open CAE Specification

Message Services Saved

NAME
Saved notice — an entity has been saved to persistent storage

SYNOPSIS
[file] Saved(in type ID);

DESCRIPTION
The Saved notice announces that the persistent storage for an entity (such as a file) has been
updated.

The ID argument is the identity of the saved entity. When its type is File, then the ID argument
is unset (in other words, has a value of (char ∗)0), and it refers to the file or directory named in
the message’s file attribute.

APPLICATION USAGE
The ttdt_file_join (), function can be used to register for, and help process, the Saved request.

The Saved request can be sent with ttdt_file_event().

SEE ALSO
ttdt_file_event(), ttdt_file_join ().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 385

Set_Environment Message Services

NAME
Set_Environment request — set a tool’s environment

SYNOPSIS
Set_Environment(in string variable ,

in string value
[...]);

DESCRIPTION
The Set_Environment request replaces the value of the indicated environment variable(s).

The variable argument is the name of the environment variable to set.

The value argument is the value of the environment variable. If this argument is unset (in other
words, has a value of (char ∗)0), then the variable should be removed from the environment. It
is not an error for the variable not to have existed in the first place.

APPLICATION USAGE
The ttdt_session_join (), function can be used to register for, and transparently process, the
Set_Environment request.

EXAMPLES
The Set_Environment request can be sent as in the following example:

Tt_message msg = tttk_message_create(0, TT_REQUEST, TT_SESSION,
the_recipient_procid, TTDT_SET_ENVIRONMENT,
my_callback);

tt_message_arg_add(msg, TT_IN, Tttk_string, "PATH");
tt_message_arg_add(msg, TT_IN, Tttk_string, "/bin:/usr/ucb");
tt_message_send(msg);

SEE ALSO
tt_message_arg_add (), tt_message_send(), ttdt_session_join (); Get_Environment request.

CHANGE HISTORY
First released in Issue 1.

386 X/Open CAE Specification

Message Services Set_Geometry

NAME
Set_Geometry request — set a tool’s on-screen geometry

SYNOPSIS
Set_Geometry(inout width w,

inout height h,
inout xOffset x,
inout yOffset y
[in messageID commission]);

DESCRIPTION
The Set_Geometry request sets the on-screen geometry of the optionally specified window, or of
the window primarily associated with the recipient procid (if no window is specified).

The w, h , x and y arguments are integer geometry values, in pixels, representing width, height,
x-coordinate and y-coordinate, respectively. Negative offset values are interpreted according to
the X/Open CAE Specification, Window Management: Xlib — C Language Binding. If any of
these arguments are unset, that part of the geometry need not be changed. The return values are
the actual new values, in case they differ from the requested new values.

The commission argument is the ID of the ongoing request, if any, that resulted in the creation of
the window in question.

APPLICATION USAGE
The ttdt_session_join (), and ttdt_message_accept(), functions can be used by Xt applications to
register for, and transparently process, the Set_Geometry request.

EXAMPLES
The Set_Geometry request can be sent as in the following example:

Tt_message msg = tttk_message_create(0, TT_REQUEST, TT_SESSION,
the_recipient_procid, TTDT_SET_GEOMETRY,
my_callback);

tt_message_iarg_add(msg, TT_INOUT, Tttk_width, 500);
tt_message_iarg_add(msg, TT_INOUT, Tttk_height, 500);
tt_message_arg_add(msg, TT_INOUT, Tttk_xoffset, 0); / ∗ no value ∗/
tt_message_arg_add(msg, TT_INOUT, Tttk_yoffset, 0); / ∗ no value ∗/
tt_message_send(msg);

SEE ALSO
tt_message_arg_add (), tt_message_iarg_add (), tt_message_send(), ttdt_message_accept(),
ttdt_session_join (); Get_Geometry request.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 387

Set_Iconified Message Services

NAME
Set_Iconified request — set a tool’s iconic state

SYNOPSIS
Set_Iconified(in boolean iconic

[in messageID commission]);

DESCRIPTION
The Set_Iconified request sets the iconic state of the optionally specified window, or of the
window primarily associated with the handling procid (if no window is specified).

The iconic argument is a Boolean value indicating whether the specified window is (to be)
iconified.

The commission argument is the ID of the ongoing request, if any, that resulted in the creation of
the window(s) in question.

APPLICATION USAGE
The ttdt_session_join (), and ttdt_message_accept(), functions can be used by Xt applications to
register for, and transparently process, the Set_Iconified request.

If the handler does not map window-system windows one-to-one to commissions or procids,
then it may interpret ‘‘iconic state’’ liberally. For example, consider a Display request on an
ISO_Latin_1 file, handled by a gnuemacs instance that then devotes an emacs ‘‘window’’ to the
file. ‘‘Windows’’ in gnuemacs are not separate X11 windows, and are not separately iconifiable.
However, a Set_Iconified request issued with respect to the ongoing Display request could be
liberally interpreted by gnuemacs to mean it should minimise the screen real estate devoted to
the operation, perhaps by ‘‘burying’’ the buffer or dividing its window’s real estate among
neighbouring windows. And, if the Display request happens to be the only thing emacs is
working on at the moment, it could instead take a literal interpretation, and actually iconify
itself.

EXAMPLES
The Set_Iconified request can be sent as in the following example:

Tt_message msg = tttk_message_create(0, TT_REQUEST, TT_SESSION,
the_recipient_procid, TTDT_SET_ICONIFIED,
my_callback);

tt_message_iarg_add(msg, TT_IN, Tttk_boolean, 1);
tt_message_send(msg);

SEE ALSO
tt_message_iarg_add (), tt_message_send(), ttdt_message_accept(), ttdt_session_join (); Get_Iconified
request.

CHANGE HISTORY
First released in Issue 1.

388 X/Open CAE Specification

Message Services Set_Locale

NAME
Set_Locale request — set a tool’s locale

SYNOPSIS
Set_Locale(in string category ,

in string locale
[...]);

DESCRIPTION
The Set_Locale request reports the XPG4 locale of the indicated locale categories.

The category argument is the locale category to set. A locale category is a group of data types
whose output formatting varies according to locale in a similar way. ISO C and X/Open locale
categories are:

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME

The locale argument is the name of the locale to set the indicated category to. The value of locale
is implementation-defined.

ERRORS
The ToolTalk service may return the following error in processing the Set_Locale request:

TT_DESKTOP_EINVAL
The locale argument is not valid on the handler’s host.

APPLICATION USAGE
The ttdt_session_join (), function can be used to register for, and transparently process, the
Set_Locale request.

EXAMPLES
The Set_Locale request can be sent as in the following example:

Tt_message msg = tttk_message_create(0, TT_REQUEST, TT_SESSION,
the_recipient_procid, TTDT_SET_LOCALE,
my_callback);

tt_message_arg_add(msg, TT_IN, Tttk_string, "LC_MONETARY");
tt_message_arg_add(msg, TT_IN, Tttk_string, "de");
tt_message_send(msg);

SEE ALSO
setlocale () in the , tt_message_arg_add (), tt_message_send(), ttdt_sender_imprint_on(),
ttdt_session_join (); Get_Locale request.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 389

Set_Mapped Message Services

NAME
Set_Mapped request — set whether a tool is mapped to the screen

SYNOPSIS
Set_Mapped(in boolean mapped

[in messageID commission]);

DESCRIPTION
The Set_Mapped request sets the mapped state of the optionally specified window, or of the
window primarily associated with the handling procid (if no window is specified).

The mapped argument is a Boolean value indicating whether the specified window is (to be)
mapped to the screen.

The commission argument is the ID of the ongoing request, if any, that resulted in the creation of
the window in question.

APPLICATION USAGE
The ttdt_session_join (), and ttdt_message_accept(), functions can be used by Xt applications to
register for, and transparently process, the Set_Mapped request.

EXAMPLES
The Set_Mapped request can be sent as in the following example:

Tt_message msg = tttk_message_create(0, TT_REQUEST, TT_SESSION,
the_recipient_procid, TTDT_SET_MAPPED,
my_callback);

tt_message_iarg_add(msg, TT_IN, Tttk_boolean, 1);
tt_message_send(msg);

SEE ALSO
tt_message_iarg_add (), tt_message_send(), ttdt_message_accept(), ttdt_session_join (); Get_Mapped
request.

CHANGE HISTORY
First released in Issue 1.

390 X/Open CAE Specification

Message Services Set_Situation

NAME
Set_Situation request — set a tool’s current working directory

SYNOPSIS
Set_Situation(in string path);

DESCRIPTION
The Set_Situation request sets the current working directory.

The path argument is the pathname of the working directory that the recipient should use.

APPLICATION USAGE
The ttdt_session_join (), function can be used to register for, and transparently process, the
Set_Situation request.

EXAMPLES
The Set_Situation request can be sent as in the following example:

Tt_message msg = tttk_message_create(0, TT_REQUEST, TT_SESSION,
the_recipient_procid, TTDT_SET_SITUATION,
my_callback);

tt_message_arg_add(msg, TT_OUT, Tttk_string, 0);
tt_message_send(msg);

SEE ALSO
tt_message_arg_add (), tt_message_send(), ttdt_session_join (); Get_Situation request.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 391

Signal Message Services

NAME
Signal request — send a (POSIX-style) signal to a tool

SYNOPSIS
Signal(in string theSignal);

DESCRIPTION
The Signal request asks the handling procid to send itself the indicated POSIX signal.

The theSignal argument is the signal to send.

APPLICATION USAGE
The ttdt_session_join (), function can be used to register for, and transparently process, the Signal
request.

EXAMPLES
The Signal request can be sent as in the following example:

Tt_message msg = tttk_message_create(0, TT_REQUEST, TT_SESSION,
the_recipient_procid, TTDT_SIGNAL,
my_callback);

tt_message_arg_add(msg, TT_IN, Tttk_string, "SIGHUP");
tt_message_send(msg);

SEE ALSO
sigaction () in the X/Open CAE Specification, System Interfaces and Headers, Issue 4, Version 2;
tt_message_arg_add (), tt_message_send(), ttdt_session_join ().

CHANGE HISTORY
First released in Issue 1.

392 X/Open CAE Specification

Message Services Started

NAME
Started notice — a tool has started

SYNOPSIS
Started(in string vendor ,

in string toolName ,
in string toolVersion);

DESCRIPTION
The Started notice announces that a tool has started.

The vendor argument is the vendor of the started tool.

The toolName argument is the name of the started tool.

The toolVersion argument is the version of the started tool.

APPLICATION USAGE

EXAMPLES
A pattern observing the Started request can be registered as in the following example:

Tt_pattern pat = tt_pattern_create();
tt_pattern_category_set(pat, TT_OBSERVE);
tt_pattern_scope_add(pat, TT_SESSION);
char ∗ses = tt_default_session();
tt_pattern_session_add(pat, ses);
tt_free(ses);
tt_pattern_op_add(pat, Tttk_Started);
tt_pattern_op_add(pat, Tttk_Stopped);
tt_pattern_callback_add(pat, my_callback);
tt_pattern_register(pat);

The Started request can be sent with ttdt_open().

SEE ALSO
tt_free(), tt_pattern_callback_add (), tt_pattern_category_set (), tt_pattern_op_add (),
tt_pattern_register(), tt_pattern_scope_add (), tt_pattern_session_add (), ttdt_open(); Stopped notice.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 393

Status Message Services

NAME
Status notice — a tool has some status information to announce

SYNOPSIS
Status(in string status ,

in string vendor ,
in string toolName ,
in string toolVersion
[in messageID commission]);

DESCRIPTION
The Status notice indicates that a tool has status information to announce.

The status argument is the status being announced.

The vendor argument is the vendor of the sending tool.

The toolName argument is the name of the sending tool.

The toolVersion argument is the version of the sending tool.

The commission argument is the ID of the request, if any, that initiated the operation the status of
which is being announced.

APPLICATION USAGE
The ttdt_subcontract_manage (), function can be used to register for, and help process, the Status
request.

The Status request can be sent with ttdt_message_accept().

The Status notice can be used by handlers of requests invoking protracted operations to provide
periodic point-to-point status reports to the requester. Doing so has the nice side effect of
identifying the handler to the requester, so that the requester can issue a Quit request if it wants
to.

SEE ALSO
ttdt_message_accept(), ttdt_subcontract_manage (); Quit request.

CHANGE HISTORY
First released in Issue 1.

394 X/Open CAE Specification

Message Services Stopped

NAME
Stopped notice — a tool has terminated

SYNOPSIS
Stopped(in string vendor ,

in string toolName ,
in string toolVersion);

DESCRIPTION
The Stopped notice announces that a tool has exited.

The vendor argument is the vendor of the terminated tool.

The toolName argument is the name of the terminated tool.

The toolVersion argument is the version of the terminated tool.

EXAMPLES
A pattern observing the Stopped request can be registered as in the following example:

Tt_pattern pat = tt_pattern_create();
tt_pattern_category_set(pat, TT_OBSERVE);
tt_pattern_scope_add(pat, TT_SESSION);
char ∗ses = tt_default_session();
tt_pattern_session_add(pat, ses);
tt_free(ses);
tt_pattern_op_add(pat, Tttk_Started);
tt_pattern_op_add(pat, Tttk_Stopped);
tt_pattern_callback_add(pat, my_callback);
tt_pattern_register(pat);

The Stopped request can be sent with ttdt_close ().

SEE ALSO
tt_free(), tt_pattern_callback_add (), tt_pattern_category_set (), tt_pattern_op_add (),
tt_pattern_register(), tt_pattern_scope_add (), tt_pattern_session_add (), ttdt_close (); Started notice.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 395

Media Exchange Message Set Message Services

6.6.2 Media Exchange Message Set

The Media conventions allow a tool to be a container for arbitrary media, or to be a media
player/editor that can be driven from such a container. These conventions allow a container
application to compose, display, edit, print or transform a document of an arbitrary media type,
without understanding anything about the format of that media type. The ToolTalk service
routes container requests to the user’s preferred tool for the given media type and operation.
This includes routing the request to an already-running instance of the tool if that instance is
best-positioned to handle the request.

The following types and argument names are used in message SYNOPSIS descriptions:

boolean
A vtype for logical values. The underlying data type of boolean is integer; that is,
arguments of this vtype should be manipulated with tt_∗_arg_ival[_set]() and
tt_∗_iarg_add() functions. Zero means false; non-zero means true.

string
A vtype for character strings. Arguments of this vtype should be manipulated with
tt_∗_arg_val[_set]() and tt_∗_arg_add () functions.

bytes A vtype for character strings that can include null characters.

messageID
A vtype for uniquely identifying messages. The underlying data type of messageID is
string. The messageID of a Tt_message is returned by tt_message_id().

title A vtype for character strings intended to be used for document names or titles.

mediaType
The name of a media format. The media type of a document allows messages about that
document to be dispatched to the appropriate tool. XCDE conforming systems support at
least the media types in Section 3.1 on page 25.

396 X/Open CAE Specification

Message Services Deposit

NAME
Deposit request — save a document to its backing store

SYNOPSIS
[file] Deposit(in mediaType contents

[in messageID commission]);

DESCRIPTION
The Deposit request saves a document to its backing store. This request is different from the Save
request in that the requester (not the handler) has the data to be saved.

The contents argument is the contents of the document. If this argument is unset (in other words,
has a value of (char ∗)0), then the contents of the document are in the file named in the message’s
file attribute. The data type (mediaType) of the contents argument should be string, unless nulls
are valid in the given media type, in which case the data type must be bytes.

The commission argument contains the message ID of the Edit request that caused the creation of
this buffer.

APPLICATION USAGE
The ttmedia_load () function can be used to register for, and help process, this message.

This message can be sent with the ttmedia_Deposit () function.

The Deposit request is useful for cases where the user may perform an intermediate save of
modifications to a document that is the subject of an Edit or Display request in progress. In the
latter case, the Deposit may fail on a TT_DESKTOP_EACCES error if the handler does not allow
updates to the document being displayed.

Handlers receiving this request should reply before deleting any file named in the message’s file
attribute, but this is optional and applications should not rely on this.

ERRORS
The ToolTalk service may return one of the following errors in processing the Deposit request:

TT_DESKTOP_EACCES
The document is read-only.

TT_DESKTOP_ENOENT
The file that was alleged to contain the document does not exist.

TT_DESKTOP_ENODATA
The in-mode contents argument had no value and the file attribute of the message
was not set.

TT_MEDIA_ERR_FORMAT
The document is not a valid instance of the media type.

SEE ALSO
ttmedia_load (), ttmedia_Deposit (); Intro , Display , Edit , Status requests.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 397

Display Message Services

NAME
Display request — display a document

SYNOPSIS
[file] Display(in mediaType contents

[in title docName]);

DESCRIPTION
The Display request causes the handler to display (present or manifest) a document to the user.
For example, an audio manipulation utility would be said to ‘‘display’’ audio documents when it
plays them.

The handler must decide issues such as:

• When the display operation can be deemed completed

• What user gesture signals the completion of the display

• What the handling tool should do with itself after replying

The contents argument is the contents of the document. If this argument is unset (in other words,
has a value of (char ∗)0), then the contents of the document are in the file named in the message’s
file attribute. The data type (mediaType) of the contents argument should be string, unless nulls
are valid in the given media type, in which case the data type must be bytes.

The docName argument contains the name of the document. If the docName argument is absent
and the file attribute is set, the file name is considered to be the title of the document. This string
would be suitable for display in a window title bar, for example.

APPLICATION USAGE
The ttmedia_ptype_declare () function can be used to register for, and help process, this message.

This message can be sent with the ttmedia_load () function.

When the document to be displayed is read-only or unlikely to be modified the Display message
is frequently used instead of the Edit message.

EXAMPLES
To display a PostScript document, the application can send a Display request with a first
argument whose vtype is PostScript, and whose value is a vector of bytes such as:

%!\n/inch {72 mul} def...

The \n in the example represents the newline character. The notation is the same as in the ISO C
standard.

To display a PostScript document contained in a file, the application can send a Display request
with the file attribute set to that file and with an unset first argument whose vtype is PostScript.

ERRORS
The ToolTalk service may return one of the following errors in processing the Display request:

TT_DESKTOP_ENOENT
The file that was alleged to contain the document does not exist.

TT_DESKTOP_ENODATA
The in-mode contents argument had no value and the file attribute of the message
was not set.

TT_MEDIA_ERR_FORMAT
The document is not a valid instance of the media type.

398 X/Open CAE Specification

Message Services Display

SEE ALSO
ttmedia_ptype_declare (), ttmedia_load (); Intro , Deposit , Edit , Status requests.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 399

Edit Message Services

NAME
Edit request — compose or edit a document

SYNOPSIS
[file] Edit([out A inout] mediaType contents

[in title docName]);

DESCRIPTION
The Edit request causes the handler to edit a document and reply with the new contents when
the editing is completed.

It is up to the handler to decide issues such as:

• When the editing operation can be deemed completed

• What user gesture signals the completion of the editing

• What the handling tool should do with itself after replying

If the handling tool supports some form of intermediate save operation during editing, it must
send a Deposit request back to the tool that requested the Edit .

The contents argument is the contents of the document. If this argument is unset (in other words,
has a value of (char ∗)0), then the contents of the document are in the file named in the message’s
file attribute. The data type (mediaType) of the contents argument should be string, unless nulls
are valid in the given media type, in which case the data type must be bytes.

If the contents argument is of mode out, then a new document must be composed and its
contents returned in this argument.

The docName argument contains the name of the document. If the docName argument is absent
and the file attribute is set, the file name is considered to be the title of the document. This string
would be suitable for display in a window title bar, for example.

APPLICATION USAGE
The ttmedia_ptype_declare () function can be used to register for, and help process, this message.

This message can be sent with the ttmedia_load () function.

EXAMPLES
To edit an X11 XBM bitmap, the application can send an Edit request with a first argument
whose vtype is XBM, and whose value is a string such as:

#define foo_width 44\n#define foo_height 94\n

The \n in the example represents the newline character. The notation is the same as in the ISO C
standard.

To edit an X11 XBM bitmap contained in a file, the application can send an Edit request naming
that file in its file attribute, with a first argument whose vtype is XBM, and whose value is not
set.

ERRORS
The ToolTalk service may return one of the following errors in processing the Edit request:

TT_DESKTOP_ECANCELED
The user overrode the Edit request. When an Edit request is failed with
TT_DESKTOP_ECANCELED, the document should not be updated as a result, but
rather should remain as it was before the failure reply was received.

TT_DESKTOP_ENOENT
The file that was alleged to contain the document does not exist.

400 X/Open CAE Specification

Message Services Edit

TT_DESKTOP_ENODATA
The in-mode contents argument had no value and the file attribute of the message
was not set.

TT_MEDIA_ERR_FORMAT
The document is not a valid instance of the media type.

SEE ALSO
ttmedia_ptype_declare (), ttmedia_load (); Intro , Display requests.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 401

Mail Message Services

NAME
Mail request — compose or mail a document

SYNOPSIS
[file] Mail(in mediaType contents);

[file] Mail([out A inout] mediaType contents
[in title docName]);

DESCRIPTION
The Mail request causes the handler to route a document to a destination using the mail message
handling system. The handler is responsible for finding routing information in the document.

When the contents argument is of mode in, the handler must deliver the document as is, without
interacting with the user.

When the contents argument is of mode inout or out, the handler must allow the user to compose
or edit the document (and any embedded routing information) before it is delivered. If the
handling tool supports some form of intermediate ‘‘save’’ operation, it must send a Deposit
request back to the tool that initiated the Mail request.

The contents argument is the contents of the document. If this argument is unset (in other words,
has a value of (char ∗)0), then the contents of the document are in the file named in the message’s
file attribute. The data type (mediaType) of the contents argument should be string, unless nulls
are valid in the given media type, in which case the data type must be bytes.

The docName argument contains the name of the document. If the docName argument is absent
and the file attribute is set, the file name is considered to be the title of the document. This string
would be suitable for display in a window title bar, for example.

APPLICATION USAGE
The ttmedia_ptype_declare () function can be used to register for, and help process, this message.

This message can be sent with the ttmedia_load () function.

ERRORS
The ToolTalk service may return one of the following errors in processing the Mail request:

TT_DESKTOP_ENOENT
The file that was alleged to contain the document does not exist.

TT_DESKTOP_ENODATA
The in-mode contents argument had no value and the file attribute of the message
was not set.

TT_MEDIA_ERR_FORMAT
The document is not a valid instance of the media type.

SEE ALSO
ttmedia_ptype_declare (), ttmedia_load (); Intro , Edit requests.

CHANGE HISTORY
First released in Issue 1.

402 X/Open CAE Specification

Message Services Print

NAME
Print request — print a document

SYNOPSIS
[file] Print(in mediaType contents ,

in boolean inquisitive ,
in boolean covert
[in title docName]);

DESCRIPTION
The Print request causes the handler to print a document. The handler must act as if the user
had issued, (via the handler’s user interface) either a ‘‘Print One’’ or ‘‘Print...’’ command,
depending on the value of the inquisitive argument.

The contents argument is the contents of the document. If this argument is unset (in other words,
has a value of (char ∗)0), then the contents of the document are in the file named in the message’s
file attribute. The data type (mediaType) of the contents argument should be string, unless nulls
are valid in the given media type, in which case the data type must be bytes.

The inquisitive argument is a boolean value indicating whether the handler is allowed to block
on user input while carrying out the request. However, even if inquisitive is True, the handler is
not required to seek such input.

The covert argument is a boolean value indicating whether the handler may make itself apparent
to the user as it carries out the request. If False, the recipient need not make itself apparent.

If both the inquisitive argument and the covert argument are True, the recipient should attempt to
limit its presence to the minimum needed to receive any user input desired; for example,
through iconification.

The docName argument contains the name of the document. If the docName argument is absent
and the file attribute is set, the file name is considered to be the title of the document. This string
would be suitable for display in a window title bar, for example.

APPLICATION USAGE
The ttmedia_ptype_declare () function can be used to register for, and help process, this message.

This message can be sent with the ttmedia_load () function.

EXAMPLES
To print a PostScript document, the application can send a request of the form:

Print(in PostScript contents ,
in boolean inquisitive ,
in boolean covert);

with a first argument whose value is a vector of bytes such as:

%!\n/inch {72 mul} def...

The \n in the example represents the newline character. The notation is the same as in the ISO C
standard.

To print a PostScript document contained in a file, the application can send the Print request as
above, with the file attribute set to the relevant file and with the value of the first argument not
set.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 403

Print Message Services

ERRORS
The ToolTalk service may return one of the following errors in processing the Print request:

TT_DESKTOP_ENOENT
The file that was alleged to contain the document does not exist.

TT_DESKTOP_ENODATA
The in-mode contents argument had no value and the file attribute of the message
was not set.

TT_MEDIA_ERR_FORMAT
The document is not a valid instance of the media type.

SEE ALSO
ttmedia_ptype_declare (), ttmedia_load (); Intro , Status requests.

CHANGE HISTORY
First released in Issue 1.

404 X/Open CAE Specification

Message Services Translate

NAME
Translate request — translate a document from one media type to another

SYNOPSIS
[file] Translate(in mediaType contents ,

out mediaType output ,
in boolean inquisitive ,
in boolean covert
[in messageID counterfoil]);

DESCRIPTION
The Translate request causes the handler to translate a document from one media type to another
and return the translation. The translation must be the best possible representation of the
document in the target media type, even if the resulting representation cannot be exactly
translated back into the original document.

The contents argument is the contents of the document. If this argument is unset (in other words,
has a value of (char ∗)0), then the contents of the document are in the file named in the message’s
file attribute. The data type (mediaType) of the contents argument should be string, unless nulls
are valid in the given media type, in which case the data type must be bytes.

The output argument is the translation of the document.

The inquisitive argument is a boolean value indicating whether the handler is allowed to block
on user input while carrying out the request. However, even if inquisitive is True, the handler is
not required to seek such input.

The covert argument is a boolean value indicating whether the handler may make itself apparent
to the user as it carries out the request. If False, the recipient need not make itself apparent.

If both the inquisitive argument and the covert argument are True, the recipient should attempt to
limit its presence to the minimum needed to receive any user input desired; for example,
through iconification.

The counterfoil argument is a unique string created by the message sender to give both sender
and receiver a way to refer to this request in other correspondence. Typically this string is
created by concatenating a process ID and a counter. This argument should be included if the
sender anticipates a need to communicate with the handler about this request before it is
completed; for example, to cancel it. When this argument is included, and the handler
determines that an immediate reply is not possible, the handler must immediately send at least
one Status notice point-to-point back to the requester, so as to identify itself to the requester.

APPLICATION USAGE
To provide a speech-to-text service, a tool can handle requests of the form:

Translate(in Sun_Audio contents ,
out ISO_Latin_1 output ,
...);

To provide an OCR (optical character recognition) service, a tool can handle requests of the
form:

Translate(in GIF contents ,
out ISO_Latin_1 output ,
...);

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 405

Translate Message Services

ERRORS
The ToolTalk service may return one of the following errors in processing the Translate request:

TT_DESKTOP_ENOENT
The file that was alleged to contain the document does not exist.

TT_DESKTOP_ENODATA
The in-mode contents argument had no value and the file attribute of the message
was not set.

TT_MEDIA_ERR_FORMAT
The document is not a valid instance of the media type.

SEE ALSO
Intro , Abstract, Interpret, Status requests.

CHANGE HISTORY
First released in Issue 1.

406 X/Open CAE Specification

Chapter 7

Drag and Drop

7.1 Introduction
The XCDE drag and drop services defined in this chapter are an extension of the Motif drag and
drop services defined in the X/Open CAE Specification, Motif Toolkit API. Convenience APIs
are included that reduce programming complexity for common operations, such as the dragging
of files.

7.2 Functions
This section defines the functions, macros and external variables that provide XCDE drag and
drop services to support application portability at the C-language source level.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 407

DtDndCreateSourceIcon() Drag and Drop

NAME
DtDndCreateSourceIcon — create a drag source icon

SYNOPSIS
#include <Dt/Dnd.h>

Widget DtDndCreateSourceIcon(Widget parent ,
Pixmap pixmap ,
Pixmap mask);

DESCRIPTION
The DtDndCreateSourceIcon() function creates a Motif drag icon, named sourceIcon, based on the
characteristics of the pixmap argument. The resulting drag icon is suitable for use with
DtDndDragStart().

The parent argument is the parent of the drag icon. Typically this widget is the drag source.

The pixmap argument is the pixmap representation of the data to be dragged.

The mask argument is the mask for the pixmap .

When it calls XmCreateDragIcon(), the DtDndCreateSourceIcon() function sets Motif resources in
the drag icon; the application must not modify the values of any of these resources:

XmNwidth
XmNheight
XmNpixmap
XmNmask
XmNdepth

RETURN VALUE
Upon successful completion, the DtDndCreateSourceIcon() function returns a drag icon created
by calling XmCreateDragIcon() with the characteristics of the pixmap ; otherwise, it returns NULL.

SEE ALSO
<Dt/Dnd.h>, DtDndDragStart(); XmCreateDragIcon(), XmDragIcon(), XmDragStart() in the
X/Open CAE Specification, Motif Toolkit API; XtDestroyWidget() in the X/Open CAE
Specification, Window Management: X Toolkit Intrinsics.

CHANGE HISTORY
First released in Issue 1.

408 X/Open CAE Specification

Drag and Drop DtDndDragStart()

NAME
DtDndDragStart, DtDndVaDragStart — initiate a drag

SYNOPSIS
#include <Dt/Dnd.h>

Widget DtDndDragStart(Widget dragSource ,
XEvent ∗event ,
DtDndProtocol protocol ,
Cardinal numItems ,
unsigned char operations ,
XtCallbackList convertCallback ,
XtCallbackList dragFinishCallback ,
ArgList argList ,
Cardinal argCount);

Widget DtDndVaDragStart(Widget dragSource ,
XEvent ∗event ,
DtDndProtocol protocol ,
Cardinal numItems ,
unsigned char operations ,
XtCallbackList convertCallback ,
XtCallbackList dragFinishCallback ,
...);

DESCRIPTION
The DtDndDragStart() and DtDndVaDragStart() functions initiate a Motif drag, with drag
visuals appropriate to the type of data being dragged, and updates the translation table of the
drag context. Either of the functions is called from the application’s event handler, which
interprets mouse events to determine when a drag should begin.

The only difference between DtDndDragStart() and DtDndVaDragStart() is how the argument
list is passed. The argument list is passed as an ArgList to DtDndDragStart() and using varargs
for DtDndVaDragStart().

The dragSource argument is the widget that received the event that triggered the drag.

The event argument is the button press or button motion event that triggered the drag.

The protocol argument specifies the protocol used for the data transfer. Valid values are:

DtDND_TEXT_TRANSFER
A list of text is being transferred.

DtDND_FILENAME_TRANSFER
A list of file names is being transferred.

DtDND_BUFFER_TRANSFER
A list of memory buffers is being transferred.

The numItems argument specifies the number of items being dragged.

The operations argument indicates which operations the dragSource supports. The operations are:

XmDROP_COPY
Copy operations are valid.

XmDROP_LINK
Link operations are valid.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 409

DtDndDragStart() Drag and Drop

XmDROP_MOVE
Move operations are valid.

A drag source can support any combination of these operations. A combination of operations is
specified by the bitwise inclusive OR of several operation values. For example, to support the
move and copy operations, the application can specify:

XmDROP_MOVE | XmDROP_COPY

The convertCallback argument is a callback function that is invoked when a drop has started and
the drop site has requested data from the drag source. The convertCallback is responsible for
providing the data that is transferred to the drop site.

The dragFinishCallback argument is a callback function that is invoked when the drag and drop
transaction is complete. The dragFinishCallback is called after the convertCallback , if applicable.
(The convertCallback is called only after a drop has started on an eligible drop site, whereas
dragFinishCallback is called after the drag finishes, whether or not a drop occurred.) The
dragFinishCallback should reset any drag motion handler and free any memory allocated by the
drag source during the drag and drop transaction.

Argument Value Pairs

The DtDndDragStart() and DtDndVaDragStart() functions support the following optional
argument-value pairs. Motif resources can be set via the argument list as well, provided they
are not resources that are used by the drag and drop subsystem; see Motif Resources.

DtNsourceIcon (Widget)
Specifies the XmDragIcon used to represent the data being dragged. This icon is
created using either DtDndCreateSourceIcon() or XmCreateDragIcon(). If
DtNsourceIcon is NULL, then a default icon is used, which is appropriate for the data
begin dragged. The default value is NULL.

DtNbufferIsText (Boolean)
Specifies whether the dragged buffer should also be sourced as text, allowing the
buffer to be dropped onto text widgets. This attribute is only valid if protocol
DtDND_BUFFER_TRANSFER and is ignored for other transfers. If
DtNbufferIsText is True, the buffer is sourced as text in addition to being sourced as
buffers; if it is False, the buffers are sourced only as buffers.

Callbacks

Once the rendezvous with the drop site has been accomplished, the application-provided
callback functions are called to perform the transfer of the dragged data.

First, the convertCallback is called with a reason of DtCR_DND_CONVERT_DATA. The
application must set the DtDndContext fields appropriate to the transfer protocol to provide the
data to be transferred to the drop site.

If the drag operation is XmDROP_MOVE and the drop site requests that the move be completed,
the convertCallback is called again with a reason of DtCR_DND_CONVERT_DELETE. The
application should delete its version of the dragged data.

Once the data transfer is complete, the dragFinishCallback is called with a reason of
DtCR_DND_DRAG_FINISH. The application should free any memory allocated in the
convertCallback and restore any application state.

410 X/Open CAE Specification

Drag and Drop DtDndDragStart()

Callback Information

Each of the callbacks for DtDndDragStart() and DtDndVaDragStart() has an associated callback
structure. These callbacks cannot be used with the XtAddCallback () interface.

A pointer to the following structure is passed to the convertCallback :

typedef struct {
int reason ;
XEvent ∗event ;
DtDndContext ∗dragData ;
DtDndStatus status ;

} DtDndConvertCallbackStruct, ∗DtDndConvertCallback;

The reason argument indicates why the callback was invoked. The possible reasons for this
callback are:

DtCR_DND_CONVERT_DATA
The callback provides the requested data by setting appropriate fields in the
dragData structure.

DtCR_DND_CONVERT_DELETE
The callback completes the XmDROP_MOVE operation by deleting its copy of the
dragged data.

The event argument points to the XEvent that triggered the callback.

The dragData argument specifies the DtDndContext that contains the data to be dragged. If the
reason argument is DtCR_DND_CONVERT_DATA, the application must provide the data by
setting the relevant fields in the DtDndContext, as described in the following Structures section.
If the reason argument is DtCR_DND_CONVERT_DELETE, the application must delete the
original data that completes a move operation.

The status argument indicates the status of the conversion. The application can set this to
DtDND_FAILURE to cancel the conversion and consequently the drag and drop operation. The
value of status is normally DtDND_SUCCESS.

A pointer to the following structure is passed to the dragFinishCallback :

typedef struct {
int reason ;
XEvent ∗event ;
DtDndContext ∗dragData ;
Widget sourceIcon ;

} DtDndDragFinishCallbackStruct, ∗DtDndDragFinishCallback;

The reason argument indicates why the callback was invoked. The valid reason for this callback
is DtCR_DND_DRAG_FINISH.

The event argument points to the XEvent that triggered the callback.

The sourceIcon argument specifies the source icon registered in the call to DtDndDragStart. This
widget is provided to allow the application to free data associated with the source icon and
optionally destroy the source icon.

The dragData argument specifies the DtDndContext that contains the data that was dragged. The
application should free any data it associated with the dragData .

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 411

DtDndDragStart() Drag and Drop

Structures

The following structures are used by the drag source in the convertCallback and
dragFinishCallback to communicate data between the application and the drag and drop
subsystem. The DtDndContext structure is passed to these callbacks as dragData in the callback
structure appropriate to the callback.

In the convertCallback , the application that is acting as the drag source is responsible for filling in
the DtDndContext structure with the data being transferred.

In the dragFinishCallback , the application acting as the drag source is responsible for freeing any
data it allocated for use in the DtDndContext structure.

typedef struct _DtDndContext {
DtDndProtocol protocol ;
int numItems ;
union {

XmString ∗strings ;
String ∗files ;
DtDndBuffer ∗buffers ;

} data ;
} DtDndContext;

The protocol argument indicates the data transfer protocol under which the data in the
DtDndContext is being transferred. Valid values are:

DtDND_TEXT_TRANSFER
A list of text is being transferred.

DtDND_FILENAME_TRANSFER
A list of file names is being transferred.

DtDND_BUFFER_TRANSFER
A list of memory buffers is being transferred.

The numItems argument indicates the number of items being transferred.

The data argument is a union containing data that should be stored and read in the format
corresponding to the specified protocol . The data structures corresponding to the transfer
protocols are as follows.

The strings argument is valid if the protocol is DtDND_TEXT_TRANSFER. The strings argument
is an array of pointers to Motif strings containing the text being transferred.

The files argument is valid if the protocol is DtDND_FILENAME_TRANSFER. It is an array of
pointers to the names of the files being transferred. The file names have been converted to local
host file names where possible.

The buffers argument is valid if the protocol is DtDND_BUFFER_TRANSFER. It is an array of
pointers to DtDndBuffer structures containing the meory buffers being transferred.

The following structure is used with DtDND_FILENAME_TRANSFER:

typedef struct _DtDndBuffer {
void ∗bp;
int size ;
string name;

} DtDndBuffer;

412 X/Open CAE Specification

Drag and Drop DtDndDragStart()

The bp argument points to the buffer data being transferred.

The size argument indicates the number of bytes in the buffer.

The name argument points to the name of the buffer.

Motif Resources

When it calls XmDragStart(), the DtDndDragStart() function sets Motif resources; the
application must not modify the values of any of these resources. Resources other than those
listed here can be used and are passed through to the underlying XmDragStart() call.

The following resources are modified by DtDndDragStart() and DtDndVaDragStart() in the
Motif Drag Context:

XmNblendModel
XmNclientData
XmNconvertProc
XmNcursorBackground
XmNcursorForeground
XmNdragDropFinishCallback
XmNdragOperations
XmNdropFinishCallback
XmNdropStartCallback
XmNexportTargets
XmNnumExportTargets
XmNsourcePixmapIcon
XmNtopLevelEnterCallback

The following resources are modified by DtDndDragStart() and DtDndVaDragStart() in the
Motif Drag Icon:

XmNattachment
XmNdepth
XmNheight
XmNhotX
XmNhotY
XmNmask
XmNoffsetX
XmNoffsetY
XmNpixmap
XmNwidth

RETURN VALUE
Upon successful completion, the DtDndDragStart() function returns the drag context widget
created when the Motif drag is started; otherwise, it returns NULL if the drag could not be
started.

SEE ALSO
<Dt/Dnd.h>, DtDtsFileToDataType(), DtDndCreateSourceIcon(), DtDndDropRegister(),
DtDndVaDropRegister(), DtDndDropUnregister(); XmCreateDragIcon(), XmDragContext(),
XmDragIcon(), XmDragStart() in the X/Open CAE Specification, Motif Toolkit API.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 413

DtDndDropRegister() Drag and Drop

NAME
DtDndDropRegister, DtDndVaDropRegister — specify a drop site

SYNOPSIS
#include <Dt/Dnd.h>

void DtDndDropRegister(Widget dropSite ,
DtDndProtocol protocols ,
unsigned char operations ,
XtCallbackList transferCallback ,
ArgList argList ,
Cardinal argCount);

void DtDndVaDropRegister(Widget dropSite ,
DtDndProtocol protocols ,
unsigned char operations ,
XtCallbackList transferCallback ,
...);

DESCRIPTION
The DtDndDropRegister() and DtDndVaDropRegister() functions register a Motif drop site with
import targets based on the specified data transfer protocols. DtDndDropRegister() may be
called to register a widget as a drop site at any time, typically soon after the widget is created.

The only difference between DtDndDropRegister() and DtDndVaDropRegister() is how the
argument list is passed. The argument list is passed as an ArgList to DtDndDropRegister() and
using VarArgs for DtDndVaDropRegister().

The dropSite argument specifies the widget to register as the drop site.

The protocol argument specifies the set of data transfer protocols in which the drop site is able to
participate. Valid values are:

DtDND_TEXT_TRANSFER
The drop site can transfer a list of text.

DtDND_FILENAME_TRANSFER
The drop site can transfer a list of file names.

DtDND_BUFFER_TRANSFER
The drop site can transfer a list of memory buffers.

A drop site can support any combination of these protocols. A combination of protocols is
specified by the bitwise inclusive OR of several protocol values.

The operations argument specifies the set of valid operations associated with a drop site. The
operations are:

XmDROP_COPY
Copy operations are valid. The data will be copied from the drag source.

XmDROP_LINK
Link operations are valid. The data will be linked using an alternative method.

XmDROP_MOVE
Move operations are valid. The data will be copied, and optionally deleted, from
the drag source.

A drop site can support any combination of these operations. A combination of operations is
specified by the bitwise inclusive OR of several operation values.

414 X/Open CAE Specification

Drag and Drop DtDndDropRegister()

The transferCallback argument specifies the callback to be called when the dropped data object
has been received by the drop site. The transferCallback is responsible for transferring the data
from the dropData to the appropriate internal data structures at the drop site.

The argList argument specifies the optional argument list.

The argCount argument specifies the number of arguments in argList .

Argument Value Pairs

The DtDndDragStart() and DtDndVaDragStart() functions support the following optional
argument-value pairs. Motif resources can be set via the argument list as well, provided they
are not resources that are used by the drag and drop subsystem; see Motif Resources.

DtNregisterChildren (Boolean)
Specifies whether children of a composite drop site widget should be registered. If
True, then the composite dropSite widget and its children are registered as a single
drop site. If False, then only the dropSite widget itself is registered as the drop site.
The default is False.

DtNtextIsBuffer (Boolean)
Specifies whether the drops of text selections should be treated as buffer drops.
This attribute is only valid if protocols includes DtDND_BUFFER_TRANSFER. If
DtNtextIsBuffer is True, text drops are accepted as unnamed buffers; if it is False,
only drops of the specified protocols are accepted. The default is False.

DtNpreserveRegistration (Boolean)
Specifies whether to preserve any existing drop site registration for the dropSite
widget. The application can disable preserving the drop site registration if the
dropSite widget is known not to be registered as a drop site or that registration is not
desired. This may improve drop site registration performance. If
DtNpreserveRegistration is True, existing drop site registration is preserved; if it is
False, the existing drop site registration is replaced. The default is True.

DtNdropAnimateCallback (XtCallbackList)
Specifies the callback to be called when the drop is complete. This enables graphical
animation upon successful completion of a drop. This callback is called after the
transferCallback is called and after Motif performs the ‘‘melt’’ effect. The Motif Drag
Context is in the process of being destroyed at this point so the application must not
use it or any of its values in the dropAnimateCallback . The default is NULL.

Callbacks

Once the rendezvous with the drag source has been accomplished, the application-provided
callback functions are called to perform the data transfer.

First, the transferCallback is called with a reason of DtCR_DND_TRANSFER_DATA. The
application should access the DtDndContext fields appropriate for the transfer protocol. The
application should parse or type the dropped data to determine whether it is acceptable. If the
dropped data is not acceptable, the status field of the DtDndTransferCallbackStruct should be set
to DtDND_FAILURE.

If the DtNdropAnimateCallback attribute has been specified, the dropAnimateCallback is then
called with a reason of DtCR_DND_DROP_ANIMATE. The application should perform any
application-provided animations for the drop.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 415

DtDndDropRegister() Drag and Drop

When the transferCallback (or the dropAnimateCallback , if specified) returns, all memory
associated with the drop transfer is freed. Any data in the callback structures that will be used
after the drop transfer is complete must be copied by the application.

Callback Information

Each of the callbacks for DtDndDropRegister() and DtDndVaDropRegister() has an associated
callback structure. These callbacks cannot be used with the XtAddCallback () interface.

A pointer to the following structure is passed to the transferCallback :

typedef struct {
int reason ;
XEvent ∗event ;
Position x, y;
unsigned char operation ;
DtDndContext ∗dropData ;
Boolean completeMove ;
DtDndStatus status ;

} DtDndTransferCallbackStruct, ∗DtDndTransferCallback;

The reason argument indicates why the callback was invoked: DtCR_DND_TRANSFER_DATA.

The event argument is always set to NULL by Motif drag and drop.

The x and y arguments indicate the coordinates of the dropped item in relation to the origin of
the drop site widget.

The operation argument indicates the type of drop: XmDROP_COPY, XmDROP_MOVE or
XmDROP_LINK.

The dropData argument contains the data that has been dropped.

The dragContext argument specifies the ID of the Motif Drag Context widget associated with this
drag and drop transaction.

The completeMove argument indicates whether a move operation needs to be completed. If the
operation is XmDROP_MOVE and completeMove is set to False in the transferCallback , a delete
does not occur. By default, completeMove is True and a delete occurs to complete the move
operation. The completeMove field should be set to False if an alternative method will be used to
complete the move.

The status argument indicates the success or failure of the data transfer. If the data could not be
appropriately moved, copied or linked, the status field must be set to DtDND_FAILURE. By
default, the status field is set to DtDND_SUCCESS.

A pointer to the following structure is passed to the dropAnimateCallback :

typedef struct {
int reason ;
XEvent ∗event ;
Position x, y;
unsigned char operation ;
DtDndContext ∗dropData ;

} DtDndDropAnimateCallbackStruct, ∗DtDndDropAnimateCallback;

The reason argument indicates why the callback was invoked. The valid reason is
DtCR_DND_DROP_ANIMATE.

416 X/Open CAE Specification

Drag and Drop DtDndDropRegister()

The event argument is always set to NULL by Motif drag and drop.

The x and y arguments indicate the coordinates of the dropped item in relation to the origin of
the drop site widget.

The operation argument indicates the type of drop: XmDROP_COPY, XmDROP_MOVE or
XmDROP_LINK.

The dropData argument contains the data that has been dropped.

Structures

The following structures are used by the drop site in the transferCallback to get the transferred
data from the drag and drop subsystem. The DtDndContext structure is passed as dropData in
the DtDndTransferCallbackStruct structure.

typedef struct {
DtDndProtocol protocol ;
int numItems ;
union {

XmString ∗strings ;
String ∗files ;
DtDndBuffer ∗buffers ;

} data ;
} DtDndContext;

The protocol argument indicates the data transfer protocol under which the data in the
DtDndContext is being transferred. Valid values are:

DtDND_TEXT_TRANSFER
A list of text is being transferred.

DtDND_FILENAME_TRANSFER
A list of file names is being transferred.

DtDND_BUFFER_TRANSFER
A list of memory buffers is being transferred.

The numItems argument indicates the number of items being transferred.

The data argument is a union containing data that the drop site should access in the format
corresponding to the specified protocol . The data structures corresponding to the transfer
protocols are as follows.

The strings argument is valid if the protocol is DtDND_TEXT_TRANSFER. The strings argument
is an array of pointers to Motif strings containing the text being transferred.

The files argument is valid if the protocol is DtDND_FILENAME_TRANSFER. It is an array of
pointers to the names of the files being transferred. The file names have been converted to local
host file names where possible.

The buffers argument is valid if the protocol is DtDND_BUFFER_TRANSFER. It is an array of
pointers to DtDndBuffer structures containing the meory buffers being transferred.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 417

DtDndDropRegister() Drag and Drop

The following structure is used with DtDND_FILENAME_TRANSFER:

typedef struct _DtDndBuffer {
void ∗bp;
int size ;
string name;

} DtDndBuffer;

The bp argument points to the buffer data being transferred.

The size argument indicates the number of bytes in the buffer.

The name argument points to the name of the buffer.

Motif Resources

When it calls XmDropSiteRegister(), the DtDndDropRegister() and DtDndVaDropRegister()
functions set Motif resources; the application must not modify the values of any of these
resources. Resources other than those listed here can be used and are passed through to the
underlying XmDropRegister(). call.

The following resources are modified by DtDndDropRegister() and DtDndVaDropRegister() in the
Motif Drag Context.

XmNdestroyCallback
XmNdropTransfers
XmNnumDropTransfers
XmNtransferProc
XmNtransferStatus

The following resources are modified by DtDndDropRegister() and DtDndVaDropRegister() in the
Motif Drop Site.

XmNdropProc
XmNdropSiteOperations
XmNdropSiteType
XmNimportTargets
XmNnumImportTargets

RETURN VALUE
The DtDndDropRegister() and DtDndVaDropRegister() functions return no value.

SEE ALSO
<Dt/Dnd.h>, DtDtsDataTypeToAttributeValue(), DtDndDragStart(), DtDndVaDragStart(),
DtDndDropUnregister(); XmDragContext(), XmDropSite(), XmDropSiteRegister(),
XmDropSiteUpdate(), XmDropTransfer(), XmDropTransferStart() in the X/Open CAE
Specification, Motif Toolkit API.

CHANGE HISTORY
First released in Issue 1.

418 X/Open CAE Specification

Drag and Drop Headers

7.3 Headers
This section describes the contents of headers used by the XCDE drag and drop functions,
macros and external variables.

Headers contain the definition of symbolic constants, common structures, preprocessor macros
and defined types. Each function in Section 7.2 specifies the headers that an application must
include in order to use that function. In most cases only one header is required. These headers
are present on an application development system; they do not have to be present on the target
execution system.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 419

<Dt/Dnd.h> Drag and Drop

NAME
Dt/Dnd.h — Drag and drop definitions

SYNOPSIS
#include <Dt/Dnd.h>

DESCRIPTION
The <Dt/Dnd.h> header defines the following enumeration types:

DtCR_DND_CONVERT_DATA
DtCR_DND_CONVERT_DELETE
DtCR_DND_DRAG_FINISH
DtCR_DND_TRANSFER_DATA
DtCR_DND_DROP_ANIMATE

The header defines the following enumeration data types, with at least the following members:

DtDndStatus
DtDND_SUCCESS, DtDND_FAILURE

DtDndProtocol

DtDND_TEXT_TRANSFER = (1L << 0)
DtDND_FILENAME_TRANSFER = (1L << 1)
DtDND_BUFFER_TRANSFER = (1L << 2)

The header declares the following structures:

typedef struct _DtDndBuffer {
void ∗bp;
int size ;
string name;

} DtDndBuffer;

typedef struct _DtDndContext {
DtDndProtocol protocol ;
int numItems ;
union {

XmString ∗strings ;
String ∗files ;
DtDndBuffer ∗buffers ;

} data ;
} DtDndContext;

typedef struct _DtDndConvertCallbackStruct {
int reason ;
XEvent ∗event ;
DtDndContext ∗dragData ;
DtDndStatus status ;

} DtDndConvertCallbackStruct, ∗DtDndConvertCallback;

typedef struct _DtDndDragFinishCallbackStruct {
int reason ;
XEvent ∗event ;
DtDndContext ∗dragData ;
Widget sourceIcon ;

} DtDndDragFinishCallbackStruct, ∗DtDndDragFinishCallback;

420 X/Open CAE Specification

Drag and Drop <Dt/Dnd.h>

typedef struct _DtDndTransferCallbackStruct {
int reason ;
XEvent ∗event ;
Position x, y;
unsigned char operation ;
DtDndContext ∗dropData ;
Boolean completeMove ;
DtDndStatus status ;

} DtDndTransferCallbackStruct, ∗DtDndTransferCallback;

typedef struct _DtDndDropAnimateCallbackStruct {
int reason ;
XEvent ∗event ;
Position x, y;
unsigned char operation ;
DtDndContext ∗dropData ;

} DtDndDropAnimateCallbackStruct, ∗DtDndDropAnimateCallback;

The header declares the following as functions:

Widget DtDndCreateSourceIcon(Widget parent ,
Pixmap pixmap ,
Pixmap mask);

Widget DtDndDragStart(Widget dragSource ,
XEvent ∗event ,
DtDndProtocol protocol ,
Cardinal numItems ,
unsigned char operations ,
XtCallbackList convertCallback ,
XtCallbackList dragFinishCallback ,
ArgList argList ,
Cardinal argCount);

Widget DtDndVaDragStart(Widget dragSource ,
XEvent ∗event ,
DtDndProtocol protocol ,
Cardinal numItems ,
unsigned char operations ,
XtCallbackList convertCallback ,
XtCallbackList dragFinishCallback ,
...);

void DtDndDropRegister(Widget dropSite ,
DtDndProtocol protocols ,
unsigned char operations ,
XtCallbackList transferCallback ,
ArgList argList ,
Cardinal argCount);

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 421

<Dt/Dnd.h> Drag and Drop

void DtDndVaDropRegister(Widget dropSite ,
DtDndProtocol protocols ,
unsigned char operations ,
XtCallbackList transferCallback ,
...);

void DtDndDropUnregister(Widget dropSite);

CHANGE HISTORY
First released in Issue 1.

422 X/Open CAE Specification

Drag and Drop Protocols

7.4 Protocols
The drag and drop protocols provide policy for matching and data transfer between the drag
initiator and the drop receiver of file names, selected text spans and application-defined
structured data formats.

The drag and drop protocols use the standard X11 selection targets, where available, with the
addition of several new selection targets where required.

These protocols provide for the transfer of the following types of data:

• Selected Text

• File Names

• Buffers

7.4.1 Protocol Overview

Each protocol consists of the following:

7.4.1.1 Drag and Drop API Protocol

Each protocol described corresponds to a specific DtDndProtocol enumeration value.

7.4.1.2 Export/Import Targets

The Motif drag and drop API provides support for matching of the data transfer protocol
between the drag initiator and the various drop receivers. This allows the user to determine
readily which drop sites will accept the dragged data.

The drag initiator sets the XmNexportTargets resource of the XmDragContext to the list of
target atoms that describe the data being dragged. The drop receiver sets the
XmNimportTargets resource of the XmDropSite to the list of target atoms that describe the data
that it will accept. The Motif drag and drop subsystem allows drops when the
XmNexportTargets and XmNimportTargets have at least one target in common.

7.4.1.3 Data Transfer Protocol

Once the drag initiator has dropped on the drop receiver, the transfer of data is begun. The
transfer is accomplished using X selections and is controlled by the drop receiver.

The drop receiver starts all transfers by converting the selection into the ICCCM TARGETS
target to get the set of available selection targets. (See the X/Open CAE Specification, Window
Management: File Formats and Application Conventions for a description of converting
targets.) It then chooses the appropriate selections from that set and requests that the drag
initiator convert each requested selection. Each protocol has a set of selection targets that are
used to transfer all the necessary data. These target conversions are usually initiated by calling
XmDropTransferStart().

7.4.1.4 Move Completion

When the operation of the drop is XmDROP_MOVE, the drop receiver must complete the move
using an appropriate method. For most data transfers, this is accomplished by converting the
selection into the ICCCM DELETE target to tell the drag initiator that it may delete the data. For
most file name transfers, this is accomplished via the file system.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 423

Protocols Drag and Drop

7.4.2 Text Transfer Protocol

The text transfer protocol is used to exchange text selections.

7.4.2.1 Drag and Drop API

This is the protocol used when a DtDndProtocol of DtDND_TEXT_TRANSFER is specified.

7.4.2.2 Export/Import Targets

The export or import targets are any of the following; the target describing the character
encoding of the text selection, COMPOUND_TEXT, STRING or TEXT.

7.4.2.3 Data Transfer Protocol

The transfer of text selections follows the protocols described in the ICCCM section of the
X/Open CAE Specification, Window Management: File Formats and Application Conventions.
If the character encoding of the drag initiator and drop receiver are the same, that target should
be converted to get the text selection. If the character encoding are different, the drop receiver
should attempt to convert the standard text targets in the following order: COMPOUND_TEXT,
STRING or TEXT.

7.4.2.4 Move Completion

The move is completed by converting the selection into the ICCCM DELETE target.

7.4.3 File Name Transfer Protocol

The transfer protocol is used to exchange file names.

7.4.3.1 Drag and Drop API

This is the protocol used when a DtDndProtocol of DtDND_FILENAME_TRANSFER is
specified.

7.4.3.2 Export/Import Targets

The export or import targets are FILE_NAME and, optionally, _DT_NETFILE if capable of
providing the file name in network canonical form using tt_file_netfile() and tt_netfile_file().

7.4.3.3 Data Transfer Protocol

If the ICCCM HOST_NAME target is in the list of target atoms, it is converted. If the returned
host name is different than the host name for the drop receiver and the _DT_NETFILE target is
in the list of target atoms, it is converted. The drag initiator uses tt_file_netfile() to encode the file
names and the drop receiver uses tt_netfile_file() to decode the file names.

If the hosts are the same for both the drag initiator and the drop receiver or either the
HOST_NAME or the _DT_NETFILE targets are not in the list of target atoms from the drag
initiator, the drop receiver converts the ICCCM FILE_NAME target. No encoding of the file
names occurs in this case.

424 X/Open CAE Specification

Drag and Drop Protocols

7.4.3.4 Move Completion

Moves of file names can be accomplished atomically using standard file system operations.
Drop receivers are encouraged to use the file system. The drop receiver may alternatively
choose to use the ICCCM DELETE target to complete the XmDROP_MOVE and the drag
initiator must be ready to comply.

7.4.4 Buffer Transfer Protocol

The transfer protocol is used to exchange memory buffers.

7.4.4.1 Drag and Drop API

This is the protocol used when a DtDndProtocol of DtDND_BUFFER_TRANSFER is specified.

7.4.4.2 Export/Import Targets

The export and import targets are _DT_BUFFER_DATA, _DT_BUFFER_LENGTHS and,
optionally, _DT_BUFFER_NAMES.

7.4.4.3 Data Transfer Protocol

The _DT_BUFFER_DATA and _DT_BUFFER_LENGTHS targets are converted to transfer the
buffer data.

The data of the buffers is encoded into the _DT_BUFFER_DATA target as an array of bytes. The
lengths in bytes of each buffer are encoded into _DT_BUFFER_LENGTHS. Each length is used
to index into the _DT_BUFFER_DATA array.

If the _DT_BUFFER_NAMES target is available, it is converted to transfer the names of the
buffers.

7.4.4.4 Move Completion

The move is completed by converting the selection into the ICCCM DELETE target.

7.4.5 Selection Targets

The following table describes the selection targets used in the drag and drop data matching and
transfer protocols.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 425

Protocols Drag and Drop

Atom Type Description
A list of valid target atoms. See section 3.6.2 of
the X/Open CAE Specification, Window
Management: File Formats and Application
Conventions.

TARGETS ATOM

Used to delete the dropped data. If the drop
receiver wishes to perform a move operation on
the data, after copying the data it should
request conversion of the DELETE target. See
section 3.6.3 of the X/Open CAE Specification,
Window Management: File Formats and
Application Conventions.

DELETE NULL

The text selection in compound text format. See
section 3.7.1 of the X/Open CAE Specification,
Window Management: File Formats and
Application Conventions.

COMPOUND_TEXT COMPOUND_TEXT

The text selection in ISO Latin-1 format. See
section 3.7.1 of the X/Open CAE Specification,
Window Management: File Formats and
Application Conventions.

STRING STRING

The text selection in the format preferred by the
selection holder. See section 3.7.1 of the
X/Open CAE Specification, Window
Management: File Formats and Application
Conventions.

TEXT TEXT

The name of the machine running the client as
seen from the machine running the server. See
section 3.6.2 of the X/Open CAE Specification,
Window Management: File Formats and
Application Conventions.

HOST_NAME TEXT

The full path name of the files. See section 3.6.2
of the X/Open CAE Specification, Window
Management: File Formats and Application
Conventions.

FILE_NAME TEXT

The full pathname of the files, each encoded
using tt_file_netfile() and decoded using
tt_netfile_file().

_DT_NETFILE TEXT

The buffer data in an array of bytes._DT_BUFFER_DATA _DT_BUFFER_DATA
The lengths in bytes of each buffer in the
_DT_BUFFER_NAMES array.

_DT_BUFFER_LENGTHS INTEGER

The names of each buffer, suitable for use as a
file name.

_DT_BUFFER_NAMES STRING

426 X/Open CAE Specification

Chapter 8

Data Typing

8.1 Introduction
The XCDE data typing services provide data capabilities that enhance the use of traditional file
systems. These capabilities includes typing and attribute management.

The data typing services consist of the data criteria table, the data attributes table and the API
used to access the tables. Data typing, using data criteria, can determine the data attributes of a
file or byte vector, based on its name, file permissions, symbolic links and content. Data
attributes determine user-visible interfaces to data: a human-readable description of the type,
the icon to represent it graphically and the actions that apply to it. An object’s data attributes
also indicate the unique string that names the data interchange format to which the data’s
contents conform.

8.2 Functions
This section defines the functions, macros and external variables that provide XCDE data typing
services to support application portability at the C-language source level.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 427

DtDtsBufferToAttributeList() Data Typing

NAME
DtDtsBufferToAttributeList — get a list of data attributes for a byte stream

SYNOPSIS
#include <Dt/Dts.h>

DtDtsAttribute ∗∗DtDtsBufferToAttributeList(const void ∗buffer ,
const int size ,
const char ∗opt_name);

DESCRIPTION
The DtDtsBufferToAttributeList() function returns a list of data attributes for a given byte stream.

The buffer argument is a pointer to the buffer of the data to be typed.

The size argument is the size of the buffer in bytes.

The opt_name argument can be used to specify a name to be associated with the buffer. If the
opt_name argument is not NULL, it is used as a pseudo file name in typing; otherwise, certain
attributes may be returned as NULL because the filename components could not be determined.

RETURN VALUE
Upon successful completion, the DtDtsBufferToAttributeList() function returns a NULL-
terminated array of pointers of ∗DtDtsAttribute. If no value could be determined, it returns
NULL.

APPLICATION USAGE
The application should use the DtDtsFreeAttributeList() function to release the memory for the
returned value.

The DtDtsBufferToAttributeList() function assumes that the buffer is readable and writable by the
user, group and other file classes and selects a type accordingly. An application requiring a type
based on read-only permissions should use DtDtsDataToDataType().

SEE ALSO
<Dt/Dts.h>, DtDtsDataToDataType(), DtDtsLoadDataTypes(), DtDtsFreeAttributeList().

CHANGE HISTORY
First released in Issue 1.

428 X/Open CAE Specification

Data Typing DtDtsBufferToAttributeValue()

NAME
DtDtsBufferToAttributeValue — get a single data attribute value for a byte stream

SYNOPSIS
#include <Dt/Dts.h>

char ∗DtDtsBufferToAttributeValue(const void ∗buffer ,
const int size ,
const char ∗attr_name ,
const char ∗opt_name);

DESCRIPTION
The DtDtsBufferToAttributeValue() function returns a data attribute value for a given byte stream.
The buffer argument is a pointer to the buffer of the data to be typed.

The size argument is the size of the buffer in bytes.

The attr_name argument is a name of the attribute.

The opt_name argument can be used to specify a name to be associated with the buffer. If the
opt_name argument is not NULL, it is used as a pseudo file name in typing; otherwise, certain
attributes may be returned as NULL because the filename components could not be determined.

RETURN VALUE
Upon successful completion, the DtDtsBufferToAttributeValue() function returns a pointer to a
data attribute value string, or NULL if no value could be determined.

APPLICATION USAGE
The application should use the DtDtsFreeAttributeValue() function to release the memory for the
returned value.

The DtDtsBufferToAttributeValue() function assumes that the buffer is readable and writable by
the user, group and other file classes and selects a type accordingly. An application requiring a
type based on read-only permissions should use DtDtsDataToDataType().

SEE ALSO
<Dt/Dts.h>, DtDtsDataToDataType(), DtDtsLoadDataTypes(), DtDtsFreeAttributeValue().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 429

DtDtsBufferToDataType() Data Typing

NAME
DtDtsBufferToDataType — get the data type for a byte stream

SYNOPSIS
#include <Dt/Dts.h>

char ∗DtDtsBufferToDataType(const void ∗buffer ,
const int size ,
const char ∗opt_name);

DESCRIPTION
The DtDtsBufferToDataType() function returns the data type name for a given byte stream.

The buffer argument is a pointer to the buffer of the data to be typed.

The size argument is the size of the buffer in bytes.

The opt_name argument can be used to specify a name to be associated with the buffer. If the
opt_name argument is not NULL, it is used as a pseudo file name in typing; otherwise, certain
attributes may be returned as NULL because the filename components could not be determined.

RETURN VALUE
Upon successful completion, the DtDtsBufferToDataType() function returns a pointer to a data
type name string, or NULL if no value could be determined.

APPLICATION USAGE
The application should use the DtDtsFreeDataType() function to release the memory for the
returned value.

The DtDtsBufferToDataType() function assumes that the buffer is readable and writable by the
user, group and other file classes and selects a type accordingly. An application requiring a type
based on read-only permissions should use DtDtsDataToDataType().

SEE ALSO
<Dt/Dts.h>, DtDtsDataToDataType(), DtDtsLoadDataTypes(), DtDtsFreeDataType().

CHANGE HISTORY
First released in Issue 1.

430 X/Open CAE Specification

Data Typing DtDtsDataToDataType()

NAME
DtDtsDataToDataType — get the data type for a set of data

SYNOPSIS
#include <Dt/Dts.h>

char ∗DtDtsDataToDataType(const char ∗filepath ,
const void ∗buffer ,
const int size ,
const struct stat ∗stat_buff ,
const char ∗link_path ,
const struct stat ∗link_stat_buff ,
const char ∗opt_name);

DESCRIPTION
The DtDtsDataToDataType() function determines the data type of a set of data, based on the
information given in the non-NULL pointer arguments to the function. The function gathers any
additional information, if it is needed, to compensate for the NULL arguments. For example, if
the filepath argument is given, but the stat_buff argument is NULL and a stat_buff value is
required to determine the data type, DtDtsDataToDataType() calls the stat() function to obtain
the information.

The filepath argument is the pathname of a file.

The buffer argument is a pointer to the buffer of the data to be typed.

The size argument is the size of the buffer in bytes.

The stat_buff argument is the buffer returned from a stat() or fstat() call for use in typing.

The link_path argument is the pathname of the target file pointed to by a symbolic link.

The link_stat_buff argument is the buffer returned from an lstat() call for use in typing.

The opt_name argument can be used to specify a name to be associated with the buffer. If the
opt_name argument is not NULL, it is used as a pseudo file name in typing; otherwise, certain
attributes may be returned as NULL because the filename components could not be determined.

RETURN VALUE
Upon successful completion, the DtDtsDataToDataType() function returns a pointer to a data
type string, or NULL if no value could be determined.

APPLICATION USAGE
The DtDtsDataToDataType() function is generally used by applications such as file managers to
improve performance. Typical applications should probably use DtDtsFileToDataType() or
DtDtsBufferToDataType() instead.

The DtDtsBuffer∗ functions assume that the buffer is readable and writable by the user, group
and other file classes and select a type accordingly. An application requiring a type based on
read-only permissions should use DtDtsDataToDataType() with a stat_buff value created for this
purpose: all fields should NULL except for the st_mode field, which should be set to:

S_IFREG | S_IROTH | S_IRGRP | S_IRUSR

SEE ALSO
<Dt/Dts.h>, DtDtsLoadDataTypes(), DtDtsFileToDataType(), DtDtsBufferToDataType(); fstat(),
lstat(), stat() in the X/Open CAE Specification, System Interfaces and Headers, Issue 4, Version
2.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 431

DtDtsDataToDataType() Data Typing

CHANGE HISTORY
First released in Issue 1.

432 X/Open CAE Specification

Data Typing DtDtsDataTypeIsAction()

NAME
DtDtsDataTypeIsAction — determine if the data type is an action

SYNOPSIS
#include <Dt/Dts.h>

int DtDtsDataTypeIsAction(const char ∗datatype);

DESCRIPTION
The DtDtsDataTypeIsAction() function determines if the specified data type is an action—a data
type that was loaded from the action tables of the actions and data types database.

The datatype argument is a pointer to a data type name string.

RETURN VALUE
Upon successful completion, the DtDtsDataTypeIsAction() function returns non-zero if the data
type is an action; otherwise, it returns zero.

SEE ALSO
<Dt/Dts.h>, DtDtsLoadDataTypes().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 433

DtDtsDataTypeNames() Data Typing

NAME
DtDtsDataTypeNames — get a list of available data types

SYNOPSIS
#include <Dt/Dts.h>

char ∗∗DtDtsDataTypeNames(void);

DESCRIPTION
The DtDtsDataTypeNames() function returns a list of all available data types that are currently
loaded into the data types database.

RETURN VALUE
Upon successful completion, the DtDtsDataTypeNames() function returns a NULL-terminated
array of pointers to data type name strings.

APPLICATION USAGE
The application should use the DtDtsFreeDataTypeNames() function to release the memory for
the returned value.

SEE ALSO
<Dt/Dts.h>, DtDtsLoadDataTypes(), DtDtsFreeDataTypeNames().

CHANGE HISTORY
First released in Issue 1.

434 X/Open CAE Specification

Data Typing DtDtsDataTypeToAttributeList()

NAME
DtDtsDataTypeToAttributeList — get a list of attributes for a data type

SYNOPSIS
#include <Dt/Dts.h>

DtDtsAttribute ∗∗DtDtsDataTypeToAttributeList(const char ∗datatype ,
const char ∗opt_name);

DESCRIPTION
The DtDtsDataTypeToAttributeList() function returns a list of attributes for a data type.

The datatype argument is a pointer to a data type name string.

The opt_name argument can be used to specify a name to be associated with the data type. If the
opt_name argument is not NULL, it is used as a pseudo file name in typing; otherwise, certain
attributes may be returned as NULL because the filename components could not be determined.

RETURN VALUE
Upon successful completion, the DtDtsDataTypeToAttributeList() function returns a NULL-
terminated array of pointers of ∗DtDtsAttribute, or NULL if no value could be determined.

APPLICATION USAGE
The application should use the DtDtsFreeAttributeList() function to release the memory for the
returned value.

The opt_name argument is useful when the attribute being returned contains a modifier string
that depends on having a file name included. For example, if the INSTANCE_ICON attribute
had the value %name%.icon, opt_name would be used to derive the %name% portion of the
attribute value. See Section 8.4.4.16 on page 464.

SEE ALSO
<Dt/Dts.h>, DtDtsLoadDataTypes(), DtDtsFreeAttributeList().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 435

DtDtsDataTypeToAttributeValue() Data Typing

NAME
DtDtsDataTypeToAttributeValue — get an attribute value for a specified data type

SYNOPSIS
#include <Dt/Dts.h>

char ∗DtDtsDataTypeToAttributeValue(const char ∗datatype ,
const char ∗attr_name ,
const char ∗opt_name);

DESCRIPTION
The DtDtsDataTypeToAttributeValue() returns an attribute value for the specified data type name.

The datatype argument is a pointer to a data type name string.

The attr_name argument is a name of the attribute.

The opt_name argument can be used to specify a name to be associated with the data type. If the
opt_name argument is not NULL, it is used as a pseudo file name in typing; otherwise, certain
attributes may be returned as NULL because the filename components could not be determined.

RETURN VALUE
Upon successful completion, the DtDtsDataTypeToAttributeValue() function returns a pointer to a
data attribute value string, or NULL if no value could be determined.

APPLICATION USAGE
The application should use the DtDtsFreeAttributeValue() function to release the memory for the
returned value.

The opt_name argument is useful when the attribute being returned contains a modifier string
that depends on having a file name included. For example, if the INSTANCE_ICON attribute
had the value %name%.icon, opt_name would be used to derive the %name% portion of the
attribute value. See Section 8.4.4.16 on page 464.

EXAMPLES
The following takes a list of files as arguments and determines the description and actions for
each file:

#include <Dt/Dts.h>

#define ATTRIBUTE1 "DESCRIPTION"
#define ATTRIBUTE2 "ACTIONS"

main (int argc, char ∗∗argv)
{

char ∗attribute;
char ∗datatype;

/ ∗ load data types database ∗/
DtDtsLoadDataTypes();

argv++;
while (∗argv) {

/ ∗ get data type file file ∗/
datatype = DtDtsFileToDataType(∗argv);

/ ∗ get first attribute for datatype ∗/
attribute = DtDtsDataTypeToAttributeValue(datatype,

ATTRIBUTE1, ∗argv);
if (attribute)

436 X/Open CAE Specification

Data Typing DtDtsDataTypeToAttributeValue()

printf("%s for file %s is %s\n",
ATTRIBUTE1, ∗argv, attribute);

/ ∗ get second attribute for datatype ∗/
attribute = DtDtsDataTypeToAttributeValue(datatype,

ATTRIBUTE2, NULL);
if (attribute)

printf("%s for file %s is %s\n",
ATTRIBUTE2, ∗argv, attribute);

argv++;
}
DtDtsRelease();
exit(0);

}

SEE ALSO
<Dt/Dts.h>, DtDtsFileToDataType(), DtDtsLoadDataTypes(), DtDtsRelease(),
DtDtsFreeAttributeValue().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 437

DtDtsFileToAttributeList() Data Typing

NAME
DtDtsFileToAttributeList — get a list of attributes for a file

SYNOPSIS
#include <Dt/Dts.h>

DtDtsAttribute ∗∗DtDtsFileToAttributeList(const char ∗filepath);

DESCRIPTION
The DtDtsFileToAttributeList() function returns a list of attributes for the specified file.

The filepath argument is the pathname of the file.

RETURN VALUE
Upon successful completion, the DtDtsFileToAttributeList() function returns a NULL-terminated
array of pointers of ∗DtDtsAttribute, or NULL if no values could be determined.

APPLICATION USAGE
The application should use the DtDtsFreeAttributeList() function to release the memory for the
returned value.

SEE ALSO
<Dt/Dts.h>, DtDtsLoadDataTypes(), DtDtsFreeAttributeList().

CHANGE HISTORY
First released in Issue 1.

438 X/Open CAE Specification

Data Typing DtDtsFileToAttributeValue()

NAME
DtDtsFileToAttributeValue — get a specified attribute value for a file

SYNOPSIS
#include <Dt/Dts.h>

char ∗DtDtsFileToAttributeValue(const char ∗filepath ,
const char ∗attr_name);

DESCRIPTION
The DtDtsFileToAttributeValue() function returns a data attribute value for the specified file.

The filepath argument is the pathname of the file.

The attr_name argument is a pointer to an attribute name string.

RETURN VALUE
Upon successful completion, the DtDtsFileToAttributeValue() function returns a pointer to a data
attribute value string, or NULL if no value could be determined.

APPLICATION USAGE
The application should use the DtDtsFreeAttributeValue() function to release the memory for the
returned value.

EXAMPLES
The following takes a list of files as arguments and determines the description of the data type
for each file:

#include <Dt/Dts.h>

#define ATTRIBUTE "DESCRIPTION"

main (int argc, char ∗∗argv)
{

char ∗attribute;

/ ∗ load data types database ∗/
DtDtsLoadDataTypes();

argv++;
while (∗argv) {

/ ∗ get attribute for file ∗/
attribute = DtDtsFileToAttributeValue(∗argv, ATTRIBUTE);

if (attribute)
printf("%s: %s\n", ∗argv, attribute);

argv++;
}
DtDtsRelease();
exit(0);

}

SEE ALSO
<Dt/Dts.h>, DtDtsLoadDataTypes(), DtDtsRelease(), DtDtsFreeAttributeValue().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 439

DtDtsFileToDataType() Data Typing

NAME
DtDtsFileToDataType — get a data type for a file

SYNOPSIS
#include <Dt/Dts.h>

char ∗DtDtsFileToDataType(const char ∗filepath);

DESCRIPTION
The function DtDtsFileToDataType() returns a data type name for the specified file.

The filepath argument is the pathname of the file.

RETURN VALUE
Upon successful completion, the DtDtsFileToDataType() function returns a pointer to a data type
name string, or NULL if no value could be determined.

APPLICATION USAGE
The application should use the DtDtsFreeDataType() function to release the memory for the
returned value.

SEE ALSO
<Dt/Dts.h>, DtDtsLoadDataTypes(), DtDtsFreeDataType().

CHANGE HISTORY
First released in Issue 1.

440 X/Open CAE Specification

Data Typing DtDtsFindAttribute()

NAME
DtDtsFindAttribute — get a specified list of data types

SYNOPSIS
#include <Dt/Dts.h>

char ∗∗DtDtsFindAttribute(const char ∗attr_name ,
const char ∗attr_value);

DESCRIPTION
The DtDtsFindAttribute() function returns the list of data types that have an attribute name that
equals the specified value.

The attr_name argument is the attribute name.

The attr_value argument is the value of an attribute to be matched.

RETURN VALUE
Upon successful completion, the DtDtsFindAttribute() function returns a NULL-terminated
array of data types, or NULL if no value could be determined.

APPLICATION USAGE
The application should use the DtDtsFreeDataTypeNames() function to release the memory for
the returned value.

SEE ALSO
<Dt/Dts.h>, DtDtsLoadDataTypes(), DtDtsFreeDataTypeNames().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 441

DtDtsFreeAttributeList() Data Typing

NAME
DtDtsFreeAttributeList — free a list of data attributes

SYNOPSIS
#include <Dt/Dts.h>

void DtDtsFreeAttributeList(DtDtsAttribute ∗∗attr_list);

DESCRIPTION
The DtDtsFreeAttributeList() function frees the memory used for an attribute list.

The attr_list argument is a list of attribute and value pairs defined by the DtDtsAttribute
structure.

RETURN VALUE
The DtDtsFreeAttributeList() function returns no value.

SEE ALSO
<Dt/Dts.h>, DtDtsLoadDataTypes().

CHANGE HISTORY
First released in Issue 1.

442 X/Open CAE Specification

Data Typing DtDtsFreeAttributeValue()

NAME
DtDtsFreeAttributeValue — free a data attribute value

SYNOPSIS
#include <Dt/Dts.h>

void DtDtsFreeAttributeValue(char ∗attr_value);

DESCRIPTION
The DtDtsFreeAttributeValue() function frees the memory used for an attribute value.

The attr_value argument is the value of an attribute.

RETURN VALUE
The DtDtsFreeAttributeValue() function returns no value.

SEE ALSO
<Dt/Dts.h>, DtDtsLoadDataTypes().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 443

DtDtsFreeDataType() Data Typing

NAME
DtDtsFreeDataType — free data type pointer memory

SYNOPSIS
#include <Dt/Dts.h>

void DtDtsFreeDataType(char ∗datatype);

DESCRIPTION
The DtDtsFreeDataType() function frees the memory used for a data type name.

The datatype argument is a pointer to a data type name string.

RETURN VALUE
The DtDtsFreeDataType() function returns no value.

SEE ALSO
<Dt/Dts.h>, DtDtsLoadDataTypes().

CHANGE HISTORY
First released in Issue 1.

444 X/Open CAE Specification

Data Typing DtDtsFreeDataTypeNames()

NAME
DtDtsFreeDataTypeNames — free a list of data type names

SYNOPSIS
#include <Dt/Dts.h>

void DtDtsFreeDataTypeNames(char ∗∗namelist);

DESCRIPTION
The DtDtsFreeDataTypeNames() function frees the memory used for a list of data type names.

The namelist argument is a list of data type names.

RETURN VALUE
The DtDtsFreeDataTypeNames() function returns no value.

SEE ALSO
<Dt/Dts.h>, DtDtsLoadDataTypes().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 445

DtDtsIsTrue() Data Typing

NAME
DtDtsIsTrue — return a Boolean value associated with a string

SYNOPSIS
#include <Dt/Dts.h>

Boolean DtDtsIsTrue(const char ∗string);

DESCRIPTION
The DtDtsIsTrue() function tests a string for a Boolean value. Any of the following string values,
without regard to case, causes a return value of True:

true
yes
on
1

RETURN VALUE
The DtDtsIsTrue() function returns True if the string represents a true value; otherwise, it returns
False.

SEE ALSO
<Dt/Dts.h>, DtDtsBufferToAttributeList(), DtDtsBufferToAttributeValue(),
DtDtsFileToAttributeList(), DtDtsFileToAttributeValue(), DtDtsDataTypeToAttributeList(),
DtDtsDataTypeToAttributeValue().

CHANGE HISTORY
First released in Issue 1.

446 X/Open CAE Specification

Data Typing DtDtsLoadDataTypes()

NAME
DtDtsLoadDataTypes — load and initialise the data types database

SYNOPSIS
#include <Dt/Dts.h>

void DtDtsLoadDataTypes(void);

DESCRIPTION
The DtDtsLoadDataTypes() function initialises and loads the database fields for the data typing
functions.

APPLICATION USAGE
An alternative method to initialise and load the database is DtDbLoad().

RETURN VALUE
The DtDtsLoadDataTypes() function returns no value.

SEE ALSO
<Dt/Dts.h>, DtDbLoad().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 447

DtDtsRelease() Data Typing

NAME
DtDtsRelease — free memory associated with the data types database

SYNOPSIS
#include <Dt/Dts.h>

void DtDtsRelease(void);

DESCRIPTION
The DtDtsRelease() function releases the data structures and data associated with the data types
database, generally in preparation for a reload.

RETURN VALUE
The DtDtsRelease() function returns no value.

SEE ALSO
<Dt/Dts.h>, DtDtsLoadDataTypes(), DtDbLoad().

CHANGE HISTORY
First released in Issue 1.

448 X/Open CAE Specification

Data Typing DtDtsSetDataType()

NAME
DtDtsSetDataType — set the data type of a directory

SYNOPSIS
#include <Dt/Dts.h>

char ∗DtDtsSetDataType(const char ∗dirpath ,
const char ∗datatype ,
const int override);

DESCRIPTION
The DtDtsSetDataType() function sets the data type of a directory. This may be accomplished by
adding a file named with a leading dot to the directory.

The dirpath argument is a pathname of the directory.

The datatype argument is a data type.

If the value is already set, DtDtsSetDataType() does not change the value unless the override
argument is set to True.

RETURN VALUE
Upon successful completion, the DtDtsSetDataType() function returns a pointer to a data type
string, or NULL if it was unable to set or retrieve the data type.

APPLICATION USAGE
Directories can have data types associated with them, just as regular files can. For example, a
file manager may choose to alter the appearance of the directory’s icon based on this data type or
a system may use a directory of files as an means of supporting a complex form of data, such as
a compund document.

SEE ALSO
<Dt/Dts.h>, DtDtsLoadDataTypes().

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 449

Headers Data Typing

8.3 Headers
This section describes the contents of headers used by the XCDE data typing functions, macros
and external variables.

Headers contain the definition of symbolic constants, common structures, preprocessor macros
and defined types. Each function in Section 8.2 specifies the headers that an application must
include in order to use that function. In most cases only one header is required. These headers
are present on an application development system; they do not have to be present on the target
execution system.

450 X/Open CAE Specification

Data Typing <Dt/Dts.h>

NAME
Dt/Dts.h — data typing definitions

SYNOPSIS
#include <Dt/Dts.h>

DESCRIPTION
The <Dt/Dts.h> header declares the following structure:

typedef struct _DtDtsAttribute {
char ∗name;
char ∗value ;

} DtDtsAttribute;

The header declares the following as functions:

DtDtsAttribute ∗∗DtDtsBufferToAttributeList(const void ∗buffer ,
const int size ,
const char ∗opt_name);

char ∗DtDtsBufferToAttributeValue(const void ∗buffer ,
const int size ,
const char ∗attr_name ,
const char ∗opt_name);

char ∗DtDtsBufferToDataType(const void ∗buffer ,
const int size ,
const char ∗opt_name);

char ∗DtDtsDataToDataType(const char ∗filepath ,
const void ∗buffer ,
const int size ,
const struct stat ∗stat_buff ,
const char ∗link_path ,
const struct stat ∗link_stat_buff ,
const char ∗opt_name);

int DtDtsDataTypeIsAction(const char ∗datatype);

char ∗∗DtDtsDataTypeNames(void);

DtDtsAttribute ∗∗DtDtsDataTypeToAttributeList(const char ∗datatype ,
const char ∗opt_name);

char ∗DtDtsDataTypeToAttributeValue(const char ∗datatype ,
const char ∗attr_name ,
const char ∗opt_name);

DtDtsAttribute ∗∗DtDtsFileToAttributeList(const char ∗filepath);

char ∗DtDtsFileToAttributeValue(const char ∗filepath ,
const char ∗attr_name);

char ∗DtDtsFileToDataType(const char ∗filepath);

char ∗∗DtDtsFindAttribute(const char ∗attr_name ,
const char ∗attr_value);

void DtDtsFreeAttributeList(DtDtsAttribute ∗∗attr_list);

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 451

<Dt/Dts.h> Data Typing

void DtDtsFreeAttributeValue(char ∗attr_value);

void DtDtsFreeDataType(char ∗datatype);

void DtDtsFreeDataTypeNames(char ∗∗namelist);

void DtDtsLoadDataTypes(void);

void DtDtsRelease(void);

char ∗DtDtsSetDataType(const char ∗dirpath ,
const char ∗datatype ,
const int override);

CHANGE HISTORY
First released in Issue 1.

452 X/Open CAE Specification

Data Typing Data Formats

8.4 Data Formats

8.4.1 Location of Actions and Data Types Database

The actions and data types database provides definitions for the actions and data types XCDE
clients recognise. Files containing actions and data type definitions must end with the .dt suffix.
The database is constructed by reading all files ending in the .dt suffix that are found in the
search path specified by the DTDATABASESEARCHPATH environment variable.

The DTDATABASESEARCHPATH environment variable contains a comma-separated list of
directories specified in [host:]/path format. The host : portion is optional, but if specified, /path is
interpreted relative to host . In addition, host defines the DatabaseHost for records defined by files
in the /path directory. Otherwise, the DatabaseHost is the same as the LocalHost . To allow for
localised action definitions, the data base search path supports the string %L within the
pathname string. The logic that parses DTDATABASESEARCHPATH substitutes the value of the
current locale as stored in the LANG environment variable for the string %L (or no characters if
LANG is not set). Other uses of % within the DTDATABASESEARCHPATH pathnames produce
unspecified results. Directories can be set up for various locales. Each directory contains
localised action definitions for a single locale. For examples, see the default search path shown
below. The local system administrator or the user (in $HOME/.dtprofile) can modify the actual
value of the search path. The default search path includes the following directories, searched in
the following sequence:

$HOME/.dt/types/
personal user-defined database files

/etc/dt/appconfig/types/%L
locally defined language-specific database files

/etc/dt/appconfig/types/C
locally defined default database files

/usr/dt/appconfig/types/%L
language-specific database files

/usr/dt/appconfig/types/C
implementation-default database files

The XCDE data types database provides definitions for the data types and actions recognised by
XCDE clients.

8.4.2 Data Types and Actions Database Syntax

The general syntax of the data types files is as follows:

set DtDbVersion= version_number
set VariableName =variable_value

RecordType record_name
{

Comment
FieldName field_value
FieldName field_value

.

.

.
}

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 453

Data Formats Data Typing

The set of general constructs composing the database entries is as follows:

8.4.2.1 Comments

Any line whose first non-space character is # is treated as a comment line, and is ignored during
the reading of the database file.

8.4.2.2 Database Version

The database loader supports a version number, which indicates the version of the database
syntax used by a particular database file. If a database version number is not specified, then the
database loader assumes that the file uses the version 1.0 syntax, described here. If a database
file specifies a version number, then it must be the first non-blank, non-comment line in the
database file; if the version is specified anywhere else in the file, then an error message is
generated, and the remainder of that database file is ignored. The database version number is
specified using the following syntax:

set DtDbVersion= version_number

8.4.2.3 String Variables

Database records can reference string variables that are set within the database file. The scope of
a string variable is restricted to only those record definitions within the database file defining the
string variable. A string variable is defined using the following syntax:

set VariableName =variable_value

String variables are referenced using either of the standard shell variable referencing syntaxes:
$variable_name or ${variable_name}. A variable name can be made up of any of the alphanumeric
characters and the underscore. (See section 2.6.2 in the X/Open CAE Specification, Commands
and Utilities, Issue 4, Version 2.)

8.4.2.4 Environment Variables

Database records may refer to environment variables, using either of the standard shell variable
referencing syntaxes: $environment_variable or ${environment_variable}. If the environment
variable name conflicts with a string variable name, the string variable takes precedence.

8.4.2.5 Line Continuation

Any field within a record can be continued onto another line by ending the line with a \
character. The \ and any <blank>s following the \ and preceding the newline are discarded;
leading <blank>s on the following line are preserved in the continued field.

8.4.2.6 Record Name

The first line of a record is made up of the record type, RecordType (one of: DATA_ATTRIBUTES,
DATA_CRITERIA or ACTION), followed by the record name, record_name, which is henceforth
used to identify this record. The record_name string must be coded in the codeset described in
the referenced ISO/IEC 646: 1983 standard and must be uniquely named across the data
attributes, data criteria and actions tables.

454 X/Open CAE Specification

Data Typing Data Formats

8.4.2.7 Record Delimiters

After the record name has been located, the set of corresponding fields is delimited by the { and }
characters. Each of these characters must appear on a line by itself.

8.4.2.8 Fields

The fields are all of the non-comment lines found between the record delimiters. They are
composed of keyword/value pairs. The FieldName string must be coded in the codeset described
in the referenced ISO/IEC 646: 1983 standard. The field_value may be coded in additional,
implementation-dependent, code sets, except that any literal string values shown in Section
8.4.3.11 on page 458 string must be coded in the codeset described in the referenced ISO/IEC
646: 1983 standard.

8.4.2.9 Record Types

There are three recognised record types in database files used for data types (and actions):

• DATA_CRITERIA

• DATA_ATTRIBUTES

• ACTION

These three kinds of database record can appear together in the same file or they can be
segregated into separate files. See Section 9.5 on page 489 for the file format of ACTION records.

8.4.3 Data Criteria Records

The first seven subsections of this section describe the FieldNames supported for data criteria
records. The remaining subsections describe formatting and sorting information for data criteria
records.

8.4.3.1 NAME_PATTERN Field

A shell pattern-matching expression describing the file names that could match this data. See
section 2.13 of the X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2. The
default is an empty string, which means to ignore file patterns in matching.

If the data to be matched is in a buffer, rather than a file, the NAME_PATTERN expression is
evaluated against the opt_name value given to DtDtsBufferToDataType() and related functions.

8.4.3.2 PATH_PATTERN Field

A shell pattern-matching expression describing the absolute pathnames that could match this
data. See section 2.13 of the X/Open CAE Specification, Commands and Utilities, Issue 4,
Version 2. The default is an empty string, which means to ignore path patterns in matching.

The PATH_PATTERN expression is used only for matching data in files; it does not affect
matching of data in buffers.

8.4.3.3 CONTENT Field

Strings that match on the contents of a file, buffer or directory:

offset type value(s)

The offset string is a positive decimal integer number of octets from the beginning of the file or
buffer, where the first value is tested. The offset value is ignored for the filename type .

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 455

Data Formats Data Typing

The type string is one of the following:

string The value is a single string that is compared against the data starting at the
offset location.

byte
short
long Each <blank>-separated value is an unsigned integer: decimal, octal (leading

0) or hexadecimal (leading 0x or 0X). Multiple values are matched against
multiple byte (octet), short (two octets) or long (four octets) locations starting
at offset octets from the beginning of the file or data.

filename The value is a string that is compared against the filenames located anywhere
in a directory. The use of filename on non-directory data produces undefined
results.

The default CONTENT is an empty field, which means to ignore contents in matching.

The CONTENT field applies to data in both files and buffers.

Examples of two data criteria records with CONTENT fields are:

DATA_CRITERIA PCL1
{

DATA_ATTRIBUTES_NAME PCL
CONTENT 0 byte 033 0105
MODE f&!x

}

DATA_CRITERIA POSTSCRIPT3
{

DATA_ATTRIBUTES_NAME POSTSCRIPT
CONTENT 0 string %!
MODE f&!x

}

8.4.3.4 MODE Field

A string of zero to four characters that match the mode field of a stat structure (see <sys/stat.h>
in the X/Open CAE Specification, System Interfaces and Headers, Issue 4, Version 2). The first
character indicates:

d match a directory

s match a socket

l match a symbolic link

f match a regular file

b match a block file

c match a character special file

The first, or subsequent characters, can also be:

r match any file with any of its user, group, or other read permission bits set

w match any file with any of its user, group, or other write permission bits set

x match any file with any of its user, group, or other execute or directory-search
permission bits set

456 X/Open CAE Specification

Data Typing Data Formats

For example, the MODE field of frw matches any regular file that is readable or writable; x
matches any file with any of its executable or search bits set.

The default is an empty field, which means to ignore the mode in matching.

If the data to be matched is in a buffer, rather than a file, the buffer is processed as if it had a
mode of fr.

8.4.3.5 LINK_NAME Field

A shell pattern-matching expression describing the filename component (basename) of the
filename the symbolic link points to that could match this data. See section 2.13 of the X/Open
CAE Specification, Commands and Utilities, Issue 4, Version 2. The default is an empty
expression, which means to ignore symbolic link names in matching. LINK_NAME points to
the file itself, not to the name of the file.

The LINK_NAME expression is used only for matching data in files; it does not affect matching
of data in buffers.

8.4.3.6 LINK_PATH Field

A shell pattern-matching expression describing the absolute pathname of the file pointed to by
the symbolic link that could match this data. See section 2.13 of the X/Open CAE Specification,
Commands and Utilities, Issue 4, Version 2. The default is an empty expression, which means
to ignore symbolic link name in matching.

The LINK_PATH expression is used only for matching data in files; it does not affect matching of
data in buffers.

8.4.3.7 DATA_ATTRIBUTES_NAME Field

The name of this type of data. This value is a record_name in the data attributes table.

8.4.3.8 Logical Expressions

The logical operators AND (&), OR (|) and NOT (!) can be used in any of the data criteria
fields, except for DATA_ATTRIBUTES_NAME, as shown in Section 8.4.3.11 on page 458. The
resultant expressions are evaluated from left to right.

8.4.3.9 White Space

White space is used to delimit tokens, as shown by the blanks and newline terminals in Section
8.4.3.11 on page 458. Within the pattern terminal, however, leading and trailing white space not
explicitly shown in the grammar is significant to the expression. For example,

NAME_PATTERN abc | def

is matched by either ‘‘abc ’’ (with a trailing <space>) or ‘‘ def’’ (with a leading <space>).

8.4.3.10 Escape Character

Shell pattern-matching and logical expression characters can be escaped and used as literal
characters by preceding the character with a backslash (\). For example, \∗ is interpreted as an
asterisk, \? as a question mark and \[\] as square brackets. Backslash itself can be escaped by
preceding it with a backslash (\\).

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 457

Data Formats Data Typing

8.4.3.11 Data Criteria Format

The following pseudo-BNF describes the data criteria variable definition:

DataCriteriaDefn ::= ‘DATA_CRITERIA’ blanks record_name
{

data_criteria_defn
}

data_criteria_defn ::= (
‘PATH_PATTERN’ blanks pattern_datas newline

| ‘NAME_PATTERN’ blanks pattern_datas newline
| ‘LINK_PATH’ blanks pattern_datas newline
| ‘LINK_NAME’ blanks pattern_datas newline
| ‘CONTENT’ blanks content_fields newline
| ‘MODE’ blanks mode_specs newline
| ‘DATA_ATTRIBUTES_NAME’ blanks name newline

)

pattern_datas ::= pattern_data [(‘&’ | ‘|’) pattern_datas]
pattern_data ::= [‘!’] pattern

a shell pattern matching expression, as defined in section 2.13
of the X/Open CAE Specification, Commands and Utilities,
Issue 4, Version 2

pattern ::=

mode_specs ::= mode_spec [(‘&’ | ‘|’) mode_specs]
mode_spec ::= (

type_spec [permission_spec]
| type_spec (‘&’ | ‘|’) permission_spec

)
type_spec ::= [‘!’] type_char { type_char }
type_char ::= (‘d’ | ‘l’ | ‘f’ | ‘s’ | ‘b’ | ‘c’)
permission_spec ::= [‘!’] permission_char { permission_char }
permission_char ::= (‘r’ | ‘w’ | ‘x’)
content_fields ::= content_field [(‘&’ | ‘|’) content_fields]
content_field ::= (

[‘!’] offset blanks ‘string’ blanks string
| [‘!’] offset blanks ‘byte’ blanks data_values
| [‘!’] offset blanks ‘short’ blanks data_values
| [‘!’] offset blanks ‘long’ blanks data_values
| [‘!’] offset blanks ‘filename’ blanks string

)
offset ::= an unsigned decimal integer
data_values ::= data_value [blanks data_values]

an unsigned integer: decimal, octal (leading 0) or hexadecimal
(leading 0x or 0X)

data_value ::=

name ::= ("A-Z" | "a-z") [name_char]
name_char ::= { "A-Z" | "a-z" | "0-9" | "-" }

a character string, not including <newline>string ::=

newline ::= ‘\n’
one or more <blank>sblanks ::=

458 X/Open CAE Specification

Data Typing Data Formats

8.4.3.12 Data Criteria Sorting

There may be multiple data criteria records that could match a file or data. This subsection
describes the sorting process used by the XCDE data typing services. The more specific criteria
are sorted toward the top of the list and the more general criteria toward the bottom. The data
criteria record selected is the first match found on the resulting sorted list.

The following sorting rules are applied in sequence to each possible pair of data criteria records.
If a rule determines that one data criteria record is more specific than another, the two records
are positioned in the list so that the more specific comes before the less specific; otherwise, the
next rule in sequence is applied.

1. Records are ordered by the fields specified within them:

a. Records with both content and pattern fields (most specific)

b. Records with only pattern fields

c. Records with only content fields

d. Records with neither content nor pattern fields (least specific)

2. Records are ordered based on the presence of any shell pattern-matching characters in
their file name patterns (NAME_PATTERN or PATH_PATTERN):

a. File names with no shell pattern-matching characters (most specific)

b. File names with no shell pattern-matching characters in the final suffix (such
as ∗.c)

c. Others (least specific)

3. Records with a path pattern are more specific than records with a name pattern.

4. Records with a name pattern of ∗ are treated as if they have no name pattern.

5. Records are ordered based on the types of shell pattern-matching characters in their
patterns:

a. Patterns with any ? (most specific)

b. Patterns with any []

c. Patterns with any ∗ (least specific)

6. Records with path patterns that share leading pathname components are ordered as
follows:

a. The leading pathname components without shell pattern-matching characters
are selected for comparison. (For example, /foo/bar/bam/baz.? and
/foo/bar/∗/baz are evaluated as /foo/bar/bam and /foo/bar for this rule.)

b. The selected paths are ordered so that the longest is more specific.

c. If the selected paths are equal, the full path patterns are ordered based on the
number and types of shell pattern-matching characters in their patterns, in the
following sequence:

i. Path patterns with fewer ∗ characters are more specific.

ii. Path patterns with fewer [] characters are more specific.

iii. Path patterns with fewer ? characters are more specific.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 459

Data Formats Data Typing

d. If the path patterns are still of equal specificity, the one with the larger number
of literal characters (those not used as shell pattern-matching special
characters) in its pattern after the first non-literal character is more specific.

7. Records are ordered based on a character sorting of the path patterns, with the lowest
value in collation sequence being more specific.

8. Records are ordered so that the one with more criteria is more specific. (For example, a
record with a PATH_PATTERN, CONTENT and MODE is more specific than one with
only a PATH_PATTERN.)

Two records still equal after executing the preceding rules are ordered in an unspecified
sequence.

8.4.4 Data Attribute Records

The following FieldNames are supported for data attribute records. Each of the FieldNames is
identical to the corresponding name member string of a DtDtsAttribute structure; see <Dt/Dts.h>.

8.4.4.1 DESCRIPTION Field

A textual description of the data that is suitable for presentation to a user requesting information
about the data. The description should contain no formatting information such as tab or newline
characters. The application that presents the information to the user formats the information. If
this field is NULL or is not included in the data attribute record, the name of the data attribute
should be used.

8.4.4.2 ICON Field

The name of the icon to use for this data. If this field is NULL or is not included in the data
attribute record, a default value (Dtactn for an executable file or Dtdata for other data) should be
used.

Icons are found by using the standard XCDE icon search path, so the value can be either an
absolute pathname (for example, /foo/icons/myicon.bm), a relative pathname (for example,
icons/myicon.bm) or a partial filename (for example, myicon). Partial filenames are preferred
because they allow the XCDE icon search path to find the icon with the optimum size and depth
for the current environment. See the XCSA specification, Section 19.2, Icon Conventions.

8.4.4.3 INSTANCE_ICON Field

The name of the icon to use for this instance of data. The contents of this field are as described in
Section 8.4.4.2. If INSTANCE_ICON is set, the application should use it instead of ICON. If this
field is NULL or is not included in the data attribute record, the ICON field should be used.

An example value of INSTANCE_ICON is %name%.icon, which would select an icon based on
a specific filename, rather than on a generic data type. (See Section 8.4.4.16 on page 464.)

8.4.4.4 PROPERTIES Field

Keywords to indicate properties for this data. Valid values are visible and invisible. These
provide guidance to an application such as a file manager about whether a file should be visibly
displayed to the user.

If this field is NULL or is not included in the data attribute record, the visible property should be
assumed.

460 X/Open CAE Specification

Data Typing Data Formats

8.4.4.5 ACTIONS Field

A comma-separated list of actions that can be performed on this data. This list refers to names
in the action table for actions that can be performed on this data. If this field is NULL or is not
included in the data attribute record, no action is available.

8.4.4.6 NAME_TEMPLATE Field

A string used to create a new file for data of this type. The string is intended to be passed to
sprintf() with the file name as the single argument. For example: %s.mif. (See sprintf() in the
X/Open CAE Specification, System Interfaces and Headers, Issue 4, Version 2.) The default is
empty. (This field is contrasted with the NAME_PATTERN field of the data criteria table in that
the template is used to create a specific file, such as %s.c, whereas the pattern is used to find
files, such as ∗.c).

8.4.4.7 IS_EXECUTABLE Field

A string-Boolean value that tells users of this data type that it can be executed as an application.
If IS_EXECUTABLE is a true value (as determined by the DtDtsIsTrue() function), the data is
executable; if this field is NULL, is not included in the data attribute record or is not true, then
the data is considered not executable.

8.4.4.8 MOVE_TO_ACTION Field

The name of an action to be invoked when an object is moved to the current object using a drag
and drop operation.

The MOVE_TO_ACTION, COPY_TO_ACTION and LINK_TO_ACTION fields cause an action
to be invoked with the drop target as the first of the DtActionArg arguments to the
DtActionInvoke () function, and the drag sources as the remaining DtActionArg arguments.
However, if the drop target is an action itself, it is omitted from the DtActionArg list. For
example, using the syntax of the dtaction utility, if objects A and B are dropped onto non-action
object C:

dtaction action-name C A B

If C is an action:

dtaction action-name A B

8.4.4.9 COPY_TO_ACTION Field

The name of an action to be invoked when an object is copied to the current object using a drag
and drop operation.

8.4.4.10 LINK_TO_ACTION Field

The name of an action to be invoked when an object is linked to the current object using a drag
and drop operation.

8.4.4.11 IS_TEXT Field

A string-Boolean value that tells users of this data type that it is suitable for manipulation
(viewing or editing) in a text editor or text widget. The IS_TEXT field should be set to a true
value (as determined by the DtDtsIsTrue() function) if the data is textual in nature and if it
should be presented to the user in textual form.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 461

Data Formats Data Typing

Criteria for making this determination include whether the data:

• consists of human language, or

• is generated and maintained manually, or

• is usefully viewable and editable in a text editor, or

• contains no (or only minimal) structuring and formatting information.

If the IS_TEXT field is a true value, this indicates that the data is eligible to be displayed directly
by an application. That is, the application can load the data directly into a text editing widget
(for example, XmText) instead of invoking an action on the data. An example of this occurs in
the XCDE mail services: if the first part of a multipart message has IS_TEXT true, then it is
displayed in the text area of the message view window. Otherwise, the text area will contain
only message headers and the first part of the message will be displayed as an icon in the
attachment pane. It is immaterial whether the data can be loaded into an XmText widget—even
binary data can be—but rather whether the data should be loaded into an XmText widget.

Note that the IS_TEXT field differs from the text attribute of the MIME_TYPE field, which is the
MIME content-type, as described in the referenced MIME RFCs. The MIME content-type
determines whether the data consists of textual characters or byte values. If the data consists of
textual characters and is labelled as text/∗, the IS_TEXT field determines whether it is
appropriate for the data to be presented to users in textual form.

Examples of common data types include recommendations of the appropriate value of IS_TEXT:

• Human language encoded in ASCII:

MIME_TYPE text/plain
IS_TEXT true

Note, however, that not everything that is ASCII should be presented directly to the user.

• Human language encoded in EUC, JIS, Unicode, or an ISO Latin charset:

MIME_TYPE text/plain; charset=XXX
IS_TEXT true

• CalendarAppointmentAttrs:

MIME_TYPE text/plain
IS_TEXT false

Calendar appointments should be treated as opaque objects (editable only by the
appointment editor) and not shown to the user as text.

• HTML (HyperText Markup Language):

MIME_TYPE text/html
IS_TEXT true

• PostScript:

MIME_TYPE application/postscript
IS_TEXT false

• C program source (C_SRC):

MIME_TYPE text/plain
IS_TEXT true

462 X/Open CAE Specification

Data Typing Data Formats

• Bitmaps and pixmaps (XBM and XPM):

MIME_TYPE text/plain
IS_TEXT false

• Project or module files for the XCDE application building services:

MIME_TYPE text/plain
IS_TEXT false

• Shell scripts:

MIME_TYPE text/plain
IS_TEXT false

• Encoded text produced by uuencode (see the X/Open CAE Specification, Commands and
Utilities, Issue 4, Version 2):

MIME_TYPE text/plain
IS_TEXT false

• Manual pages:

MIME_TYPE text/plain
IS_TEXT false

8.4.4.12 MEDIA Field

The names in the MEDIA name space describe the form of the data itself. MEDIA names are
used as ICCCM selection targets; they are named in the MEDIA field of data type records; and
they are used in the type parameter of ToolTalk Media Exchange messages.

The MEDIA name space is a subset of the name space of selection target atoms as defined by the
ICCCM; see X/Open CAE Specification, Window Management: File Formats and Application
Conventions. All selection targets that specify a data format are valid MEDIA names, and all
valid MEDIA names can be used directly as selection targets. Some selection targets specify an
attribute of the selection (for example, LIST_LENGTH) or a side effect to occur (for example,
DELETE), rather than a data format. These attribute selection targets are not part of the MEDIA
name space.

8.4.4.13 MIME_TYPE Field

MEDIA is the XCDE internal, unique name for data types. However, other external naming
authorities have also established name spaces. MIME (Multipurpose Internet Message
Extensions), as described in the referenced MIME RFCs, is one of those external registries, and is
the standard type name space for the XCDE mail system.

8.4.4.14 X400_TYPE Field

X.400 types are similar in structure to the MEDIA type, but are formatted using different rules
and have different naming authorities.

8.4.4.15 DATA_HOST Attribute

The DATA_HOST attribute is not a field that can be added to the data attributes table when it is
in a file, but it may be returned to an application reading attributes from the table. The data
typing service adds this attribute automatically to indicate the host system from which the data
type was loaded. If this field is NULL or is not included in the data attribute record, the data
type was loaded from the local system.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 463

Data Formats Data Typing

8.4.4.16 Modifiers

The following modifiers can be used in the values of the data attributes to modify the runtime
values:

%file% The full pathname of the file.

%dir% The directory component of the pathname. For example, for /usr/src/file.c,
%dir% is /usr/src.

%name% The filename of the file. For example, for /usr/src/file.c, %name% is file.c.

%suffix% The suffix of the file. For example, for /usr/src/file.c, %suffix% is c.

%base% The basename of the file. For example, for /usr/src/file.c, %base% is file.

Strings enclosed in backquotes (‘) are processed with the popen() function (see X/Open CAE
Specification, System Interfaces and Headers, Issue 4, Version 2) and the output replaces the
backquotes and string.

8.4.4.17 Data Attributes Format

The following pseudo-BNF describes the data attributes variable definition:

DataAttributesDefn ::= ‘DATA_ATTRIBUTES’ blanks record_name
{

data_attributes_defn
}

data_attributes_defn ::= (
‘DESCRIPTION’ blanks string newline

| ‘ICON’ blanks string newline
| ‘INSTANCE_ICON’ blanks string newline
| ‘PROPERTIES’ blanks string {‘,’ string } newline
| ‘ACTIONS’ blanks name {‘,’ name} newline
| ‘NAME_TEMPLATE’ blanks string newline
| ‘IS_EXECUTABLE’ blanks string newline
| ‘MOVE_TO_ACTION’ blanks string newline
| ‘COPY_TO_ACTION’ blanks string newline
| ‘LINK_TO_ACTION’ blanks string newline
| ‘IS_TEXT’ blanks string newline
| ‘MEDIA’ blanks string newline
| ‘MIME_TYPE’ blanks string newline
| ‘X400_TYPE’ blanks string newline
| unique_string blanks string newline
| ‘#’ string newline

)

a character string, not including <newline>string ::=

newline ::= ‘\n’
a uniquely named string for implementation extensionsunique_string ::=

one or more <blank>sblanks ::=

464 X/Open CAE Specification

Data Typing Data Formats

8.4.4.18 Examples

The following are examples of data attribute and data criteria entries in the data typing database:

DATA_ATTRIBUTES C_SRC
{

ACTIONS Open,Make,Print
ICON DtdotC
IS_TEXT true
NAME_TEMPLATE %s.c
DESCRIPTION A C_SRC file is a source file in the C \

programming language.
}

DATA_CRITERIA C_SRC1
{

DATA_ATTRIBUTES_NAME C_SRC
MODE f
NAME_PATTERN ∗.c

}

DATA_ATTRIBUTES POSTSCRIPT
{

ACTIONS Open,Print
ICON Dtps
NAME_TEMPLATE %s.ps
MEDIA POSTSCRIPT
MIME_TYPE application/postscript

}

DATA_CRITERIA POSTSCRIPT1
{

DATA_ATTRIBUTES_NAME POSTSCRIPT
MODE fr
NAME_PATTERN ∗.ps

}

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 465

Data Typing

466 X/Open CAE Specification

Chapter 9

Execution Management

9.1 Introduction
The XCDE execution management service is the infrastructure and API that can send a message
to, or invoke a process on, the appropriate system with the necessary supporting environment
(for example, running inside a terminal emulator).

9.1.1 Scope

The execution management service allows existing command-line or message-based
applications and utilities to be encapsulated in an object-oriented manner such that they can be
accessed from the desktop or other software.

9.1.2 Components

The major components of the XCDE execution management service are:

action database
The database that defines actions that encapsulate applications and utilities. This
database can be distributed across multiple systems and customised on a network,
system or personal scope.

action invocation library
The client-side library that provides an API for loading the database, querying the
database and invoking actions.

dtexec client
The utility that controls processes spawned as the result of invoking an action and
reports changes in their status. The interface to the dtexec client is implementation-
specific.

9.1.3 Action Database Entries

Entries in the action database provide the following information:

icon The icons that represent the action.

arguments
The number and kind of arguments that the action accepts.

description
A textual description of the action.

type Whether the action encapsulates a command line or a message.

Message-based actions provide additional information that specifies the type of message to be
sent and the details of the message.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 467

Introduction Execution Management

9.1.4 Command-Line Actions

Command-line actions provide some or all of the following additional information:

window type
The type of window support (for example, none or a terminal emulator) required by
the command.

directory
The current working directory where the command must execute.

execution host
The host (or list of possible hosts) where the command must execute.

command
The command line that is to be executed.

9.2 Functions
This section defines the functions, macros and external variables that provide XCDE execution
management services to support application portability at the C-language source level.

468 X/Open CAE Specification

Execution Management DtActionCallbackProc()

NAME
DtActionCallbackProc — notify application that the status of an application has changed

SYNOPSIS
#include <Dt/Action.h>

DESCRIPTION
The <Dt/Action.h> header defines the DtActionCallbackProc() callback prototype as follows:

typedef void (∗DtActionCallbackProc)(DtActionInvocationID id ,
XtPointer client_data ,
DtActionArg ∗args ,
int argCount ,
DtActionStatus status);

If registered when invoking an action with DtActionInvoke (), a DtActionCallbackProc() procedure
is called whenever an action has a status update, such as action termination. Depending on
status , modified action arguments may be returned using args .

The id argument specifies an invocation ID as returned by DtActionInvoke ().

The client_data argument specifies the client data that was registered with DtActionInvoke ().

The args argument is an array of updated action argument structures, if there are any.
Individual arguments have their argClass set to one of the standard argument classes, or
DtACTION_NULLARG, to indicate that the current status update is not providing an update for
the given argument. If the object has been removed (for example, dropped on the trash), the
return argClass is set to DtACTION_NULLARG to indicate that it no longer exists.

The args array has been allocated by XtMalloc (), as have any of the char∗ or void∗ elements
contained in each of the args . The application is responsible for calling XtFree() on all elements
contained in each of the args , and then calling XtFree() on args .

The argCount argument specifies the total number of arguments in args . This number equals the
number of arguments originally provided to DtActionInvoke ().

The nth argument in the original action argument array corresponds to the nth argument in an
updated action argument array.

The status argument specifies the purpose of the status update. The status codes listed here and
in <Dt/Action.h>, may be returned in a DtActionCallbackProc():

DtACTION_INVOKED
The corresponding DtActionInvoke (), which is asynchronous and does not block
when starting actions, has finished starting the requested actions. For all
DtActionInvoke () calls that include a DtactionCallbackProc(), this status code is
guaranteed to be returned. When returned, no additional prompts for data will
appear from the action service.

DtACTION_DONE
The actions that were the result of the original DtActionInvoke () call have
terminated normally. Once this status value is returned, all registered callbacks are
invalidated, and id can no longer be used in subsequent action service calls.
Returned args data may accompany the DtACTION_DONE status code. For all
DtActionInvoke () calls that include a DtActionCallbackProc(), this status code or an
equivalent status code (for example, DtACTION_CANCELED or
DtACTION_FAILED) is guaranteed to be returned.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 469

DtActionCallbackProc() Execution Management

DtACTION_CANCELED
The actions that were the result of the original DtActionInvoke () call were canceled
and have terminated normally. Once this status value is returned, all registered
callbacks are invalidated, and id can no longer be used in subsequent action service
calls. No args data will accompany the DtACTION_CANCELED status code.

DtACTION_FAILED
An error occured and a normal termination is no longer possible. The action service
may have failed to start the action or lost contact with and abandoned the action.
Once this status value is returned, an error dialog may be posted by the action
service, all registered callbacks are invalidated, and id can no longer be used in
subsequent action service calls. No args data will accompany the
DtACTION_FAILED status code.

DtACTION_STATUS_UPDATE
The actions associated with id have generated a status update, such as returning
modified args . Updates occur in several ways.

If several actions were started from a single DtActionInvoke (), then as each
individual action terminates, a DtACTION_STATUS_UPDATE with return args is
returned, and when the final action terminates, a DtACTION_DONE or equivalent
status code is returned, possibly with return arguments.

Other actions may have the capability to generate updates (for example, Tooltalk-
based actions doing a Media Exchange Deposit (Request)).

In most cases, a DtActionArg argument array accompanying a
DtACTION_STATUS_UPDATE only has updated data for a few of the arguments;
the remaining arguments are set to DtACTION_NULLARG.

EXAMPLES
The following shows how a DtActionCallbackProc() might be coded.

DtActionCallbackProc myCallback(
DtActionInvocationID id,
XtPointer client_data,
DtActionArg ∗actionArgPtr,
int actionArgCount,
DtActionStatus status);

{
extern DtActionArg ∗myUpdatedArgs; / ∗ global hook for new data ∗/
extern int myDoneFlag; / ∗ global done flag ∗/

switch (status) {
case DtACTION_INVOKED:

/ ∗
∗ All the arguments to the original DtActionInvoke
∗ have been consumed by actions, and the actions have
∗ been started. Among other things, we will not see
∗ any more prompts for user input.
∗/

break;
case DtACTION_DONE:

myUpdatedArgs = (DtActionArg ∗) actionArgPtr;
myDoneFlag = TRUE;
break;

470 X/Open CAE Specification

Execution Management DtActionCallbackProc()

case DtACTION_CANCELED:
case DtACTION_FAILED:

if ((actionArgCount != 0) && actionArgPtr) {
/ ∗

∗ If not a normal shutdown, throw away returned
∗ information.
∗/

for (i=0 ; i < actionArgCount; i++) {
if (actionArgPtr[i].argClass == DtACTION_FILE) {

XtFree(actionArgPtr[i].u.file.name);
} else if (actionArgPtr[i].argClass ==

DtACTION_BUFFER) {
XtFree(actionArgPtr[i].u.buffer.bp);
XtFree(actionArgPtr[i].u.buffer.type);
XtFree(actionArgPtr[i].u.buffer.name);

}
}
XtFree(actionArgPtr);

}
myUpdatedArgs = (DtActionArg ∗) NULL;
myDoneFlag = FALSE;
break;

case DtACTION_STATUS_UPDATE:
myUpdatedArgs = (DtActionArg ∗) actionArgPtr;
myDoneFlag = FALSE;
break;

default:
/ ∗ ignore ∗/
break;

}
}

SEE ALSO
<Dt/Action.h>, DtDbLoad(), DtActionLabel(), DtActionDescription(), DtActionExists(),
DtActionInvoke (), DtActionType(); XtMalloc (), XtFree() in the X/Open CAE Specification,
Window Management: X Toolkit Intrinsics; Section 9.5 on page 489.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 471

DtActionDescription() Execution Management

NAME
DtActionDescription — obtain the descriptive text for a given action

SYNOPSIS
#include <Dt/Action.h>

char ∗DtActionDescription(char ∗actionName);

DESCRIPTION
The DtActionDescription() function looks up and returns the descriptive text associated with the
actionName action. The actionName argument is the name of the action. If there are multiple
actionName actions, the string returned is the description of the most general. The most general
action is the one with the lowest precedence, as described in Section 9.5.2.7 on page 491.

RETURN VALUE
Upon successful completion, the DtActionDescription() function returns a newly allocated copy
of the description string associated with the action; otherwise, it returns NULL.

APPLICATION USAGE
The DtActionDescription() function is useful for applications that wish to present information to
the user about a particular action.

The application should use XtFree() to free the description string returned by
DtActionDescription().

SEE ALSO
<Dt/Action.h>, XtFree() in the X/Open CAE Specification, Window Management: X Toolkit
Intrinsics; Section 9.5 on page 489, Section 8.4.1 on page 453.

CHANGE HISTORY
First released in Issue 1.

472 X/Open CAE Specification

Execution Management DtActionExists()

NAME
DtActionExists — determine if a string corresponds to an action name

SYNOPSIS
#include <Dt/Action.h>

Boolean DtActionExists(char ∗name);

DESCRIPTION
The DtActionExists() function checks whether a given name corresponds to an action name. The
name argument is the name of the action.

RETURN VALUE
Upon successful completion, the DtActionExists() function returns True if name corresponds to
an existing action name; otherwise, it returns False.

APPLICATION USAGE
The DtActionExists() function is useful for applications that need to verify that an action name is
valid before attempting to invoke it.

SEE ALSO
<Dt/Action.h>, Section 9.5 on page 489, Section 8.4.1 on page 453.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 473

DtActionIcon() Execution Management

NAME
DtActionIcon — get the icon information for an action

SYNOPSIS
#include <Dt/Action.h>

char ∗DtActionIcon(char ∗actionName);

DESCRIPTION
The DtActionIcon() function gets the icon information for an action. The actionName argument is
the name of the action. DtActionIcon() returns the name of the icon associated with an
actionName action. If the action definition does not explicitly identify an icon name, this function
returns the default action icon name, as described in Section 9.5.2.7 on page 491. The default
action icon name can be customised using the actionIcon X resource.

If there are multiple actionName actions, the string returned is the icon associated with the most
general action. The most general action is the one with the lowest precedence, as described in
Section 9.5.2.7 on page 491.

RETURN VALUE
Upon successful completion, the DtActionIcon() function returns a newly allocated copy of the
icon name string (ICON field) associated with the action; otherwise, it returns NULL.

APPLICATION USAGE
The DtActionIcon() function is useful for applications that provide a graphical interface to
actions.

The application should use XtFree() to free the icon name string returned by the DtActionIcon()
function.

SEE ALSO
<Dt/Action.h>, XtFree() in the X/Open CAE Specification, Window Management: X Toolkit
Intrinsics; Section 9.5 on page 489, Section 8.4.1 on page 453.

CHANGE HISTORY
First released in Issue 1.

474 X/Open CAE Specification

Execution Management DtActionInvoke()

NAME
DtActionInvoke — invoke an XCDE action

SYNOPSIS
#include <Dt/Action.h>

DtActionInvocationID
DtActionInvoke(Widget w,

char ∗action ,
DtActionArg ∗args ,
int argCount ,
char ∗termOpts ,
char ∗execHost ,
char ∗contextDir ,
int useIndicator ,
DtActionCallbackProc statusUpdateCb ,
XtPointer client_data);

DESCRIPTION
The DtActionInvoke () function provides a way for applications to invoke desktop actions on file
or buffer arguments. Applications can register a callback for receiving action-done status and
return arguments.

The actions and data types databases must be initialised and loaded (using DtInitialize () and
DtDbLoad()) before DtActionInvoke () can run successfully.

The w argument is a widget that becomes the parent of any dialogs or error messages resulting
from action invocation. This widget should be a top-level application shell widget that
continues to exist for the action’s expected lifetime. This argument must have a non-NULL
value.

The action argument is the name of the action to be invoked. The action database may define
more than one action with the same name. The action selected for a particular invocation
depends on the class, type, and number of arguments provided (as described in Section 9.5 on
page 489). This argument must have a non-NULL value.

The args argument is an array of action argument structures containing information about the
arguments for this action invocation. If there are no arguments, the value of args must be NULL.
The items in this array are assigned to the option argument keywords referenced in the action
definition (see Section 9.5 on page 489). The nth item is assigned to keyword %Arg_n%. For
example, the second item is assigned to %Arg_2%.

The argCount argument is the number of action arguments provided in the array args references.

The termOpts argument is a string providing special execution information for the terminal
emulator used for COMMAND actions of WINDOW_TYPE TERMINAL or PERM_TERMINAL.
(See Section 9.5 on page 489). This string must be quoted if it contains embedded blanks. The
application uses this string to pass on title, geometry, colour and font information to the
terminal emulator. This information must be in a form the expected terminal emulator
recognises. This argument can be NULL.

The execHost argument is a string identifying a preferred execution host for this action. The
execHost specified here, supersedes the list of execution hosts defined in the action definition. If
execHost is NULL, the execution host for the action is obtained from the action definition as
described in Section 9.5 on page 489.

The contextDir argument is a string identifying a fallback working directory for the action. File
name arguments are interpreted relative to this directory, which must reside in the local file

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 475

DtActionInvoke() Execution Management

name space (for example, /usr/tmp or /net/hostb/tmp). This value is only used if the action
definition does not explicitly specify a working directory in the CWD field of the action
definition. If contextDir is NULL, the current working directory of the action is obtained from
the action definition, as described in Section 9.5 on page 489.

If the useIndicator flag is zero, DtActionInvoke () does not provide any direct indication to the user
that an action has been invoked. If the useIndicator flag is non-zero, the user is notified via some
activity indicator (for example, a flashing light in the front panel) that an action has been
invoked. This indication persists only until the invocation of the action completes (in other
words, until the action begins running).

The statusUpdateCb callback may be activated if the invoked actions have returnable status (for
example, a TT_MSG(TT_REQUEST) returning DtACTION_DONE). At a minimum, a
DtACTION_INVOKED status is returned when DtActionInvoked () has finished processing and
has completely invoked any resulting actions, and a DtACTION_DONE or equivalent done
status is returned when all actions terminate. If statusUpdateCb is set to NULL, subsequent
action status is not returned. (See <DtAction.h> for a list of all DtActionStatus codes, and see
DtActionCallbackProc() for details on statusUpdateCb and a list of specific DtActionStatus codes
it can return.)

The client_data argument is optional data to be passed to the statusUpdateCb callback when
invoked.

The DtActionInvoke () function searches the action database for an entry that matches the
specified action name, and accepts arguments of the class, type and count provided.

If DtActionInvoke () finds a matching action, the supplied arguments are inserted into the
indicated action fields. If any missing action arguments have an associated prompt string, then
a dialog box prompts the user to supply the arguments; otherwise, missing arguments are
ignored. If too many arguments are supplied to an action requiring more than a single
argument, a warning dialog is posted, allowing the action to be cancelled or continued, ignoring
the extra arguments. If too many arguments are supplied to an action requiring zero or one
arguments, then that action is invoked once for each of the supplied arguments. Arguments in
the DtActionArg structure that may have been modified by the action are returned by the
callback if a statusUpdateCb callback is provided. For DtActionBuffer arguments, the writable
flag acts as a hint that the buffer is allowed to be modified and returned.

The DtActionBuffer structure contains at least the following members:

location of buffervoid ∗bp

size of buffer in bytesint size

optional type of bufferchar ∗type

optional name of bufferchar ∗name

action is allowed to modify and return the bufferBoolean writable

The DtActionFile structure contains at least the following member:

name of filechar ∗name

The DtActionArg structure contains at least the following members:

476 X/Open CAE Specification

Execution Management DtActionInvoke()

see argument class types (ARG_CLASS field)int argClass

union to a DtActionFile structureDtActionFile u.file

union to a DtActionBuffer structureDtActionBuffer u.buffer

where argClass is DtACTION_FILE or DtACTION_BUFFER. The action service may set argClass
to DtACTION_NULLARG for action arguments returned by a statusUpdateCb to indicate that
the argument is not being updated or has been removed. DtACTION_NULLARG cannot be
present in action arguments passed to DtActionInvoke ().

The DtActionInvoke () function accepts a pointer to an array of DtActionArg structures
describing the objects to be provided as arguments to the action. The args structure can be
modified or freed after DtActionInvoke () returns.

A single call to DtActionInvoke () may initiate several actions or messages. For example, if an
action is given three files, but only needs one, three instances of the action are started, one for
each file. As a result, a single returned DtActionInvocationID may represent a group of running
actions, and subsequent execution management services calls operate on that group of actions.

For DtACTION_BUFFER arguments, the action service first tries to type the buffer ∗bp using the
name field (see Section 8.4 on page 453). The name field would typically contain a value
resembling a file name with an optional extension describing its type. If the name field is NULL,
then the action service uses the type specified in the type field. If the type field is NULL, then the
action service types the buffer ∗bp by content (see Section 8.4 on page 453). If the name and type
fields are both non-NULL, then the action service uses the name field for typing and ignores the
type field. If the buffer pointer bp is NULL or size is equal to zero, a buffer with no contents is
used in the resulting action. If returned, the buffer pointer bp is defined, and size is equal to or
greater than zero.

When necessary, DtACTION_BUFFER arguments are automatically converted to temporary
files prior to actual action invocation, and reconverted back to buffers after action termination
(this is transparent to the caller). If a non-NULL name field is given, it is used in the construction
of the temporary file name (for example, /myhome/.dt/tmp/name). If the use of name would
cause a conflict with an existing file, or name is NULL, the action service generates a temporary
file name. The permission bits on the temporary file are set according to the writable field and
the IS_EXECUTABLE attribute from the action service associated with the type field.

For DtACTION_FILE arguments, name is required.

For DtACTION_BUFFER arguments, name cannot contain slash characters.

Errors encountered are either displayed to the user in a dialog box or reported in the desktop
errorlog file ($HOME/.dt/errorlog, unless configured otherwise).

RESOURCES
This section describes the X11 resources the DtActionInvoke () function recognises. The resource
class string always begins with an upper-case letter. The corresponding resource name string
begins with the lower case of the same letter. These resources can be defined for all clients using
the Action Library API by specifying ∗resourceName: value.

X11 Resources
Name Class Value Type Default
localterminal LocalTerminal string ‘‘Dtterm’’
remoteTerminals RemoteTerminals string ‘‘Dtterm’’
waitTime WaitTime number 3

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 477

DtActionInvoke() Execution Management

LocalTerminal
Defines an alternative local terminal emulator for Command actions of
WINDOW_TYPE TERMINAL or PERM_TERMINAL to use. The default terminal
emulator is dtterm.

RemoteTerminals
Defines a comma-separated list of host and terminal emulator pairs. When a
remote COMMAND action is executed on one of the hosts in the list, the terminal
emulator associated with that host is used for that command. The list is passed to
the terminal emulator using the −e argument. (Thus, if another terminal emulator
than dtterm is used, it must support the −e argument.

WaitTime
Used to assign an alternative integer value, in seconds, to the threshold successful
return time interval. If a COMMAND action of WINDOW_TYPE TERMINAL fails,
the terminal emulator may be unmapped before the user has a chance to read the
standard error from the failed command. This resource provides a workaround to
this problem. If a TERMINAL window command exits before WaitTime seconds
have elapsed, the terminal emulator window is forced to remain open, as if it were
of TYPE PERM_TERMINAL. The default value of WaitTime is 3 seconds.

RETURN VALUE
Upon successful completion, the DtActionInvoke () function returns a DtActionInvocationID.
The ID can be used in subsequent execution management services calls to manipulate the
actions while they are running. DtActionInvocationIDs are only recycled after many have been
generated.

APPLICATION USAGE
The caller should allocate space for the array of structures describing the objects to be provided
as arguments to the action. The caller can free the memory after DtActionInvoke () returns.

Since DtActionInvoke () spawns subprocesses to start local actions, the caller should use waitpid ()
instead of wait() to distinguish between processes started by the action service and those the
caller starts.

EXAMPLES
Given the following action definition:

ACTION Edit
{

LABEL "Text Edit Action"
ARG_CLASS BUFFER, FILE
ARG_TYPE TEXT
TYPE COMMAND
WINDOW_TYPE TERMINAL
EXEC_STRING "textedit %Args%"
DESCRIPTION This action invokes the "textedit" command on

an arbitrary number of arguments. A terminal
emulator is provided for this action’s I/O.
EXEC_HOST and CWD are not specified so the
defaults are used for both quantities.

}

478 X/Open CAE Specification

Execution Management DtActionInvoke()

The following call invokes the action Edit on the arguments aap supplies:

DtActionInvoke(w, "Edit", aap, 3, NULL, NULL, NULL, 1,
myCallback, myClientData);

The working directory for the action defaults to the current working directory. The execution
host is the default execution host.

If the variable aap points to an array of ActionArg data structures containing the following
information:

{
argClass = DtACTION_FILE;
struct {

name="/myhome/file1.txt";
} file;

}

{
argClass = DtACTION_FILE;
struct {

name="file2.txt";
} file;

}

{
argClass = DtACTION_BUFFER;
struct {

bp=(void ∗) myEditBuffer;
size=lengthOfMyEditBuffer;
type=NULL;
name="Doc1.txt"
writable=TRUE;

} buffer;
}

and the current working directory is /cwd, then the Edit action results in the execution string:

textedit /myhome/file1.txt /cwd/file2.txt /myhome/.dt/tmp/Doc1.txt

When the action completes, myCallback is called and the callback returns the buffer argument.

SEE ALSO
<Dt/Action.h>, XtFree(), XtMalloc () in the X/Open CAE Specification, Window Management: X
Toolkit Intrinsics; DtDbLoad(), DtInitialize (), DtActionCallbackProc(), Section 9.5 on page 489,
Section 8.4.1 on page 453, Section 8.4 on page 453.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 479

DtActionLabel() Execution Management

NAME
DtActionLabel — get the localizable label string for an action

SYNOPSIS
#include <Dt/Action.h>

char ∗DtActionLabel(char ∗actionName);

DESCRIPTION
The DtActionLabel() function provides access to the localizable label string associated with an
action named actionName . The actionName argument is the name of the action. The localizable
label string is the string that all components should display to identify the action. If the action
definition does not specify a label string, the action name itself is returned.

The label string associated with an action is localizable, but the action name is not.

If there are multiple actionName actions, the label string returned is the label associated with the
most general action. The most general action is the one with the lowest precedence, as described
in Section 9.5.2.7 on page 491.

RETURN VALUE
Upon successful completion, the DtActionLabel() function returns a newly allocated copy of the
localizable label string associated with the action if an action named actionName is found;
otherwise, it returns NULL. It is up to the caller to free the memory associated with this new
copy of the label. The default value for an action label is the action name itself.

APPLICATION USAGE
All applications displaying action names should use the action label to identify an action.

SEE ALSO
<Dt/Action.h>, Section 9.5 on page 489, Section 8.4.1 on page 453.

CHANGE HISTORY
First released in Issue 1.

480 X/Open CAE Specification

Execution Management DtDbLoad()

NAME
DtDbLoad — load actions and data types database

SYNOPSIS
#include <Dt/Action.h>

void DtDbLoad(void);

DESCRIPTION
The DtDbLoad() function loads the actions and data types database into the application. When
the function returns, the database has been loaded. See Section 8.4.1 on page 453 for the general
syntax and location of the actions and data types database.)

RETURN VALUE
The DtDbLoad() function returns no value.

APPLICATION USAGE
If this function is used in a long-lived application, the application must dynamically reload the
databases when they are modified. To do this, the client must register to receive notification
whenever the actions and data types database needs to be modified. It is up to the application to
recall DtDbLoad() after receiving notification. This is done with a call to DtDbReloadNotify ().

If errors are encountered when reading the database files, error messages are written to the
user’s errorlog file ($HOME/.dt/errorlog). Records containing errors are not incorporated into
the internal database.

SEE ALSO
<Dt/Action.h>, DtDbReloadNotify (), Section 8.4.1 on page 453.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 481

DtDbReloadNotify() Execution Management

NAME
DtDbReloadNotify — reload the Dt actions and data typing services database

SYNOPSIS
#include <Dt/Action.h>

void DtDbReloadNotify(DtDbReloadCallbackProc callback_proc ,
XtPointer client_data);

DESCRIPTION
The DtDbReloadNotify () function registers an application callback function that is called
whenever the actions and data types database needs to be reloaded; the conditions that trigger
this callback are implementation-dependent. The callback_proc must flush any actions and data
type information that the application has cached and then call DtDbLoad() to reload the
database. The client_data argument passes additional application information to the callback
routine.

RETURN VALUE
The DtDbReloadNotify () function returns no value.

If errors are encountered when reading the database files, error messages are written to the
user’s errorlog file ($HOME/.dt/errorlog). Records containing errors are not incorporated into
the internal database.

SEE ALSO
<Dt/Action.h>, DtDbLoad(), Section 9.5 on page 489, Section 8.4.1 on page 453.

CHANGE HISTORY
First released in Issue 1.

482 X/Open CAE Specification

Execution Management Headers

9.3 Headers
This section describes the contents of headers used by the XCDE execution management
functions, macros and external variables.

Headers contain the definition of symbolic constants, common structures, preprocessor macros
and defined types. Each function in Section 9.2 specifies the headers that an application must
include in order to use that function. In most cases only one header is required. These headers
are present on an application development system; they do not have to be present on the target
execution system.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 483

<Dt/Action.h> Execution Management

NAME
Dt/Action.h — action service definitions

SYNOPSIS
#include <Dt/Action.h>

DESCRIPTION
The <Dt/Action.h> header defines the following DtActionStatus constants:

DtACTION_OK
DtACTION_INVALID_ID
DtACTION_INVOKED
DtACTION_DONE
DtACTION_CANCELED
DtACTION_FAILED
DtACTION_STATUS_UPDATE

The header defines the following data type through typedef:

typedef unsigned long DtActionInvocationID;

The header defines the following callback prototypes:

typedef void (∗DtActionCallbackProc)(DtActionInvocationID id ,
XtPointer client_data ,
DtActionArg ∗args ,
int argCount ,
DtActionStatus status);

typedef void (∗DtDbReloadCallbackProc)(XtPointer clientData);

The header defines the following as functions:

void DtDbReloadNotify(DtDbReloadCallbackProc proc ,
XtPointer clientData);

void DtDbLoad(void);

Boolean DtActionExists(char ∗s);

char ∗DtActionLabel(char ∗s);

char ∗DtActionDescription(char ∗actionName);

char ∗DtActionIcon(char ∗actionName);

DtActionInvocationID
DtActionInvoke(Widget w,

char ∗action ,
DtActionArg ∗args ,
int argCount ,
char ∗termOpts ,
char ∗execHost ,
char ∗contextDir ,
int useIndicator ,
DtActionCallbackProc statusUpdateCb ,
XtPointer client_data);

CHANGE HISTORY
First released in Issue 1.

484 X/Open CAE Specification

Execution Management Command-Line Interfaces

9.4 Command-Line Interfaces
This section defines the utilities that provide XCDE execution management services.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 485

dtaction Execution Management

NAME
dtaction — invoke an XCDE action with specified arguments

SYNOPSIS
dtaction [−contextDir context_dir] [−execHost host_name]
[−termOpts terminal_arguments] [−user user_name] action_name
[action_arg] ...

DESCRIPTION
The dtaction utility allows applications or shell scripts, which are otherwise not connected into
the XCDE development environment, to invoke action requests.

The action called action_name is invoked with the action_arg provided on the command line. A
single action_name is required; the user may provide any number of action_args. Interpretation of
the action_name and action_args depends on the definition of the action in the action database
(see Section 9.5 on page 489). The action may be defined in one of the system action database
files, or in one of the user’s private action database files.

The action_args are absolute or relative pathnames of files. The utility passes this list of files on
to the specified action.

Error dialogs are posted when the following conditions are detected:

• could not initialise desktop environment

• invalid user or password

• unable to change ID to the desired user

• no action name specified

OPTIONS
The dtaction utility does not support the X/Open Utility Syntax Guidelines because it uses the X
Window System convention of full-word options. The following options are available:

−contextDir context_dir
If the definition of action_name does not define a current working directory (see
CWD in Section 9.5 on page 489) for command actions, the user can use this option
to specify a default directory context.

−execHost host_name
The user can use this option to specify an alternative execution host, host_name , for
a command action. If the action is not a command action, the dtaction utility ignores
this option. The action is attempted on host_name instead of the hosts specified in
the action’s EXEC_HOST (see Section 9.5 on page 489) specification. An error dialog
is posted if it is not possible to invoke the specified action on any eligible host.

−termOpts terminal_arguments
This option allows the user to specify arguments intended for the terminal emulator
that is provided for command actions that are not of type NO_STDIO. If there are
white-space characters in the terminal_arguments string, that string must be quoted
to protect it from the shell. These arguments are passed unchanged to the terminal
emulator. The user must ensure that they are reasonable; in particular,
terminal_arguments does not allow the argument that specifies the command to be
run in a terminal emulator window (that is, −e for dtterm).

−user user_name
The −user option allows a user to specify a user name. If dtaction is not currently
running as that user, a prompt dialog collects the indicated user password, or the

486 X/Open CAE Specification

Execution Management dtaction

root user password. Once a valid password is entered, the dtaction utility changes
so that it is running as the requested user and then initiates the requested action.

OPERANDS
The following operands are supported:

action_name
The name of the action to be invoked.

action_arg
The absolute or relative file names of files.

STDIN
Not used.

INPUT FILES
The input files named as action_arg arguments are absolute or relative names of files.

The action database files found on DTDATABASESEARCHPATH conform to the format specified
in Section 9.5 on page 489.

ENVIRONMENT VARIABLES
The following environment variable affects the execution of dtaction:

DTDATABASESEARCHPATH
A comma-separated list of directories (with optional host: prefix) that tells the
action service where to find the action databases.

RESOURCES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
The dtaction utility writes diagnostic error messages to standard error, which is redirected to
$HOME/.dt/errorlog.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An invocation error was detected.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 487

dtaction Execution Management

SEE ALSO
Section 9.5 on page 489, dtterm, dtaction.

CHANGE HISTORY
First released in Issue 1.

488 X/Open CAE Specification

Execution Management Data Formats

9.5 Data Formats
XCDE actions define the behaviour of icons, front panel controls and operations on data objects.
Actions are defined in a set of text files with the .dt suffix. Each action definition consists of the
word ACTION followed by an action name and a list of Field and Value pairs (one per line) on
lines by themselves and enclosed in brackets.

9.5.1 Action File Syntax

The general syntax of the actions files is as follows:

set DtDbVersion= version_number
set VariableName =variable_value

ACTION action_name
{

Comment
FieldName field_value
FieldName field_value

.

.

.
}

These text files may also contain data typing information as described in Section 8.4 on page 453.
(See Section 8.4.1 on page 453 for the general syntax and location of the actions and data types
database.)

9.5.2 Classes of Actions

Actions are of one of the following classes: command actions, ToolTalk message actions or map
actions. These action classes are described in the following sections.

9.5.2.1 Command Actions

Command actions are identified by a TYPE COMMAND field. This field defines an execution
string to invoke and a set of related information, such as the current working directory for the
command and the host where the command should be executed. The following field names are
unique to command actions: EXEC_STRING, EXEC_HOST, CWD, WINDOW_TYPE and
TERM_OPTS.

9.5.2.2 ToolTalk Message Actions

ToolTalk message actions are identified by a TYPE TT_MSG field. This field defines a ToolTalk
message to be sent. The following fields are unique to ToolTalk message actions: TT_CLASS,
TT_SCOPE, TT_OPERATION, TT_FILE, TT_ARGn_MODE, TT_ARGn_VTYPE,
TT_ARGn_REP_TYPE and TT_ARGn_VALUE.

9.5.2.3 Map Actions

Map actions are identified by a TYPE MAP field. This field does not define any specific
behaviour; instead, this field specifies a different action name that should be invoked in place of
the original action. Multiple map actions can be chained together, but the chain must ultimately
terminate in a non-map action. The following field is unique to map actions: MAP_ACTION.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 489

Data Formats Execution Management

9.5.2.4 Common Fields

In addition to the unique action fields listed above, all actions support the following fields:
LABEL, ICON, DESCRIPTION, ARG_CLASS, ARG_MODE, ARG_TYPE, ARG_COUNT and
TYPE.

9.5.2.5 Keywords

The value string for certain action fields may reference special keywords enclosed within
percentage character (%) delimiters. These keywords are evaluated when the action is invoked
and replaced with the appropriate value. In fields that do not evaluate keywords, the keyword
is taken literally. The valid keywords are:

%DatabaseHost%
The name of the host where the action definition file is located. This hostname is
specified by the host portion of the host:/path searchpath used to find the action.

%DisplayHost%
The name of the host where the X server displaying the XCDE session is running.

%LocalHost%
The name of the host where the application invoking the action is executing.

%SessionHost%
The name of the host where the controlling login manager (dtlogin) runs.

9.5.2.6 Argument References

Arguments passed to actions can be referenced in certain action fields using special argument
keywords enclosed within percent character (%) delimiters. These argument keywords are
evaluated when the action is invoked and replaced with the appropriate value. In fields that do
not evaluate keywords, the keyword is taken literally. The valid argument keywords are:

%Arg_n%
The nth (starting with 1) argument of the action. If the action was invoked with
fewer than n arguments, the value of the keyword is NULL.

%Args%
All remaining arguments of the action. If any arguments of the action have already
been referenced within this field by an %Arg_n% keyword, those arguments are not
referenced a second time by %Args%.

%"prompt"%
Prompt the user for a value, using prompt as the label of a text field.

%Arg_n"prompt"%
The nth (starting with 1) argument of the action. If the action was invoked with
fewer than n arguments, prompt the user for a value using prompt as the label of a
text field.

If a keyword references the name of a file argument, the value of the keyword is expanded to an
absolute pathname prior to substitution. In addition, if the file name is to be passed to a remote
system, the file name is first mapped appropriately (see tt_file_netfile() and tt_netfile_file()).

If the keyword references a buffer argument, the buffer data is placed in a temporary file and the
name of the temporary file is substituted, as described above. Some action fields provide direct
support for data buffers and do not require use of a temporary file. This behaviour is noted in
the description of the appropriate fields.

490 X/Open CAE Specification

Execution Management Data Formats

If the keyword references a string obtained from the user, it is treated as a simple string and the
value substituted without any transformation.

Argument references can be forced to be treated as file names or simple strings by using the
(File) or (String) qualifier immediately after the opening % of the keyword. For example:

%(String)Arg_ n%
%(File)" prompt "%

If an action is invoked with more than one argument, and the action definition only references
one or zero arguments, the action is iteratively invoked with each of the supplied arguments. If
the action definition references more than one argument, any extra arguments are ignored.

9.5.2.7 Action Selection

Multiple actions can be defined with the same name. When the action is invoked, the
appropriate action definition is chosen based on the number and class of arguments supplied.
For example, the Open action may invoke dtpad if a text file is supplied as an argument, or it
may invoke dticon if a bitmap file argument is supplied. The ARG_COUNT, ARG_CLASS,
ARG_MODE and ARG_TYPE fields specify the number, mode and types of arguments that are
accepted by a particular action. Because these fields can have shell pattern-matching values
such as ∗, it is possible that the action database contains multiple actions that have the same
name and are all capable of accepting the arguments that are supplied. In this case, the
following precedence rules are used to choose a single action definition to invoke:

• Actions with more specific attribute values take precedence over more general attribute
values.

• For the ARG_COUNT field, an exact numerical value (N) is more specific than a less-than
range (<N). A less-than range (<N) is more specific than a greater-than range (>N). And a
greater-than range (>N) is more specific than a shell pattern-matching character (∗).

• For the ARG_CLASS and ARG_TYPE fields, a single item is more specific than a list of items
and a list of items is more specific than a shell pattern-matching ∗.

• For the ARG_MODE field, w (writable) and !w (not writable) are more specific than a shell
pattern-matching ∗.

• The fields have the following precedence, from high to low: ARG_CLASS, ARG_TYPE,
ARG_MODE, ARG_COUNT.

• If two action definitions have equal specificity, the action definition appearing first in the
database load order takes precedence. Database directories are loaded in the order specified
by the DTDATABASESEARCHPATH environment variable, and are loaded in the collation
order of their file names.

9.5.2.8 ARG_CLASS Field

The ARG_CLASS field is optional for all types of actions. This field specifies the class of
arguments the action accepts. If an action is invoked with more than one argument, the class of
only the first argument is checked against the value of the ARG_CLASS field. The valid values
for this field are:

BUFFER The action accepts arguments that are blocks of data held in memory.

FILE The action accepts arguments that are file names.

∗ The action is defined for all classes of arguments.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 491

Data Formats Execution Management

A comma-separated list of valid values is also allowed and specifies that the action accepts
arguments of any of the listed classes.

If an action is defined to accept a buffer argument, yet the implementation of the action requires
a file name, the buffer is automatically converted into a temporary file for the action to use. See
the description of the DtTmpDir resource (Section 9.5.3 on page 497) for information on
configuring the location of these temporary files.

Keywords are not evaluated in the ARG_CLASS field. The default value of the ARG_CLASS
field is ∗.

9.5.2.9 ARG_COUNT Field

The ARG_COUNT field is optional for all types of actions. The ARG_COUNT field specifies the
number of arguments that the action accepts. The valid values for this field (where N denotes
any non-negative integer) are:

N The action accepts exactly N arguments.

<N The action accepts any number of arguments less than N.

>N The action accepts any number of arguments greater than N.

∗ The action accepts any number of arguments.

Keywords are not evaluated in the ARG_COUNT field. The default value of the ARG_COUNT
field is ∗.

9.5.2.10 ARG_MODE Field

The ARG_MODE field is optional for all types of actions. This field specifies the mode of
arguments the action accepts. If an action is invoked with more than one argument, the mode of
only the first argument is checked against the value of the ARG_MODE field. The valid values
for this field are:

w The action accepts arguments that writable by the user.

!w The action accepts arguments that are not writable by the user.

∗ The action is defined for all classes of arguments.

Keywords are not evaluated in the ARG_MODE field. The default value of the ARG_MODE
field is ∗.

9.5.2.11 ARG_TYPE Field

The ARG_TYPE field is optional for all types of actions. This field specifies the types of
arguments the action accepts. If the action is invoked with more than one argument, the type of
only the first argument is checked against the value of this field. Valid values for this field are ∗
(all data types are accepted), a single data type name or a comma-separated list of data types.
The set of valid data types are those defined by DATA_ATTRIBUTE records in the data typing
database. (See Section 8.4 on page 453 for more information.)

Keywords are not evaluated in the ARG_TYPE field. The default value of the ARG_TYPE field is
∗.

492 X/Open CAE Specification

Execution Management Data Formats

9.5.2.12 CWD Field

The CWD field is optional for all types of actions. This field specifies the current working
directory to be used when the execution string is invoked. Valid values include any absolute
pathname. If this field is not specified, the current working directory for the execution string is
determined by the following:

• If the application invoking the action specifies a current working directory, that directory is
used.

• If arguments are supplied to the action and the first argument is a directory, that directory is
used.

• If arguments are supplied to the action and the first argument is a file, the directory where
the file is located is used.

• The current working directory of the application invoking the action is used.

Keywords are not evaluated in the CWD field.

9.5.2.13 DESCRIPTION Field

The DESCRIPTION field is optional for COMMAND actions. This field specifies a textual
description of the action that is suitable for presentation to a user requesting information about
the action. The description should contain no formatting information such as tab or newline
characters. The application that presents the information to the user formats the information.

Keywords are not evaluated in the DESCRIPTION field. There is no default value for the
DESCRIPTION field.

9.5.2.14 EXEC_HOST Field

The EXEC_HOST field is optional for COMMAND actions. This field specifies the host where
the execution string should be invoked. Valid values for this field include actual hostnames, as
well as any of the hostname keywords. If a comma-separated list of hostnames is provided,
execution is attempted on each of the hosts in the order specified until execution succeeds.

Keywords are evaluated in the EXEC_HOST field. The default value of the EXEC_HOST field is
%DatabaseHost%,%LocalHost%. (See the description of the ExecutionHosts resource in
Section 9.5.3 on page 497 for information on how to change this default value.)

9.5.2.15 EXEC_STRING Field

The EXEC_STRING field is required for COMMAND actions. This field specifies an execution
string to be invoked. The string is parsed using the same quoting rules as defined by sh in the
X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2; however, the execution
string is not automatically passed to any shell. Therefore, if the execution string requires shell
features such as redirection of standard input, redirection of standard output, or pipes, the
appropriate shell must be specified explicitly in the execution string. For example:

EXEC_STRING sh −c ’ls −l | more’

Keywords are evaluated in the EXEC_STRING field. There is no default value for the
EXEC_STRING field.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 493

Data Formats Execution Management

9.5.2.16 ICON Field

The ICON field is optional for all types of actions. This field specifies the name of an icon that
represents the action.

Icons are found by using the standard XCDE icon search path, so the value can be either an
absolute pathname (for example, /foo/icons/myicon.bm), a relative pathname (for example,
icons/myicon.bm) or a partial filename (for example, myicon). Partial filenames are preferred
because they allow the XCDE icon search path to find the icon with the optimum size and depth
for the current environment.

Keywords are not evaluated in the ICON field. The default value of the ICON field is Dtactn.
(See the description of the ActionIcon resource in Section 9.5.3 on page 497 for information on
how to change this default value.)

9.5.2.17 LABEL Field

The LABEL field is optional for all types of actions. This field specifies a user-visible label for the
action. When actions are presented to the user, the localised LABEL field is used to identify the
action instead of the non-localised action name.

Keywords are not evaluated in the LABEL field. The default value of the LABEL field is the
name of the action.

9.5.2.18 MAP_ACTION Field

The MAP_ACTION field is required for MAP actions. This field specifies the name of an action
that should be invoked in place of the current action. The specified action is invoked with the
same set of arguments that were passed to the original action.

Keywords are not evaluated in the MAP_ACTION field. There is no default value for the
MAP_ACTION field.

9.5.2.19 TERM_OPTS Field

The TERM_OPTS field is optional for COMMAND actions. This field specifies command-line
options that are passed to the terminal emulator for all COMMAND actions that are terminal
based. (That is, any COMMAND action other than those that specify WINDOW_TYPE
NO_STDIO.) These command-line options are typically used to specify a unique terminal-
window geometry, font, colour or title.

The value of the TERM_OPTS field must be an option string in a form the terminal emulator
supports and it must only affect the appearance of the terminal window. For example, options
such as −e, which affect the behaviour of the terminal window, must not be used.

Keywords are evaluated in the TERM_OPTS field. The default value of the TERM_OPTS field is

−title action_label

where action_label is the LABEL field for the action. See dtterm for the meaning of −title.

9.5.2.20 TT_ARGn_MODE Field

The TT_ARGn_MODE field is optional for TT_MSG actions. This field specifies the value of the
ToolTalk mode attribute for the nth message argument, where n is zero for the first message
argument. The valid values for this field are: TT_IN, TT_INOUT and TT_OUT.

(See <Tt/tt_c.h> in Section 6.3 on page 318 for a description of these values.)

494 X/Open CAE Specification

Execution Management Data Formats

Keywords are not evaluated in the TT_ARGn_MODE field. There is no default value for the
TT_ARGn_MODE field.

9.5.2.21 TT_ARGn_REP_TYPE Field

The TT_ARGn_REP_TYPE field is optional for TT_MSG actions. This field specifies the
representation type of the nth ToolTalk message argument, where n is zero for the first message
argument. The valid values for this field are:

TT_REP_UNDEFINED
If TT_ARGn_VALUE references a buffer argument, the representation type is a
buffer; otherwise, it is a string.

TT_REP_INTEGER
The representation type is an integer.

TT_REP_BUFFER
The representation type is a buffer.

TT_REP_STRING
The representation type is string.

Keywords are not evaluated in the TT_ARGn_REP_TYPE field. The default value of the
TT_ARGn_REP_TYPE field is TT_REP_UNDEFINED.

9.5.2.22 TT_ARGn_VALUE Field

The TT_ARGn_VALUE field is optional for TT_MSG actions. If there is no corresponding
TT_ARGn_MODE field, the TT_ARGn_VALUE field is ignored. If there is a TT_ARGn_MODE
field, the TT_ARGn_VALUE field specifies the value of the nth ToolTalk message argument,
where n is zero for the first message argument. If there is a TT_ARGn_MODE field with no
corresponding TT_ARGn_VALUE field, the value of the nth ToolTalk message argument is set to
NULL.

The value of the TT_ARGn_VALUE field must be a single string or action argument. Keywords
that reference a single action argument are evaluated in the TT_ARGn_VALUE field, however
%Args% is not allowed as it references multiple action arguments. There is no default value for
the TT_ARGn_VALUE field.

9.5.2.23 TT_ARGn_VTYPE Field

The TT_ARGn_VTYPE field is required to accompany any TT_ARGn_MODE fields in TT_MSG
actions. This field specifies the value of the ToolTalk vtype attribute of the nth message
argument, where n is zero for the first message argument. If this field references an argument
keyword, the MEDIA attribute of the specified argument is used. If the MEDIA attribute is not
defined, the DATA_ATTRIBUTE name of the data type is used.

Keywords are evaluated in the TT_ARGn_VTYPE field. There is no default value for the
TT_ARGn_VTYPE field.

9.5.2.24 TT_CLASS Field

The TT_CLASS field is required for TT_MSG actions. This field specifies the value of the
ToolTalk class message field. The valid values for this field are:

TT_NOTICE
The action defines a ToolTalk notification message.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 495

Data Formats Execution Management

TT_REQUEST
The action defines a ToolTalk request message.

Keywords are not evaluated in the TT_CLASS field. There is no default value for the TT_CLASS
field.

9.5.2.25 TT_FILE Field

The TT_FILE field is optional for TT_MSG actions. This field specifies the value of the ToolTalk
file message field. The value of this field must be a single file name and can either be a specific
file name (for example, /tmp/foo) or an argument keyword (for example, %Arg_1%). %Args% is
not allowed because it references multiple action arguments. If an argument keyword is
specified and the corresponding argument is not a file (that is, it is a buffer), the action
invocation fails.

Keywords are evaluated in the TT_FILE field. There is no default value for the TT_FILE field; if
it is not set, the file attribute of the ToolTalk message is set to NULL.

9.5.2.26 TT_OPERATION Field

The TT_OPERATION field is required for TT_MSG actions. This field specifies the value of the
ToolTalk operation message field. Typical values are operations such as Display or Edit that are
defined by the Media Exchange Message Set.

Keywords are not evaluated in the TT_OPERATION field. There is no default value for the
TT_OPERATION field.

9.5.2.27 TT_SCOPE Field

The TT_SCOPE field is required for TT_MSG actions. This field specifies the value of the
ToolTalk scope message field. (See <Tt/tt_c.h> for a description of these values.) The valid
values for this field are: TT_BOTH, TT_FILE, TT_FILE_IN_SESSION and TT_SESSION.

Keywords are not evaluated in the TT_SCOPE field. There is no default value for the TT_SCOPE
field.

9.5.2.28 TYPE Field

The TYPE field is optional for COMMAND actions and required for MAP or TT_MSG actions.
This field specifies the type of behaviour defined by the action. Valid values for this field are:

COMMAND
The action invokes a command.

MAP The action specifies a different action name to invoke in place of the current action.

TT_MSG
The action defines a ToolTalk message to be sent.

Keywords are not evaluated in the TYPE field. The default value of the TYPE field is
COMMAND.

496 X/Open CAE Specification

Execution Management Data Formats

9.5.2.29 WINDOW_TYPE Field

The WINDOW_TYPE field is optional for COMMAND actions. This field specifies the type of
windowing support the execution string requires. Valid values for this field are:

NO_STDIO
No windowing support is required. This value is appropriate for execution strings
that have no output or are X Windows applications.

PERM_TERMINAL
The execution string requires a terminal window. When the execution string exits,
the terminal window is left open until the user explicitly closes it. This value is
appropriate for applications that write their output to standard output and then
terminate, such as ls.

TERMINAL
The execution string requires a terminal window. When the execution string exits,
the terminal window is closed. If the execution string exits ‘‘quickly’’ (see the
description of the waitTime resource), the terminal window is left open to allow the
user to view any error messages that were written to standard output or standard
error. This value is appropriate for full-screen terminal applications such as the vi
editor.

Keywords are not evaluated in the WINDOW_TYPE field. The default value of the
WINDOW_TYPE field is PERM_TERMINAL.

9.5.3 Resources

The following resources are available to control the behaviour of actions. These resources must
be set for the application that is invoking the action. They can be set for all applications that
invoke actions by omitting the application name or class name.

X11 Resources That Modify Action Behaviour
Name Class Type Default
actionIcon ActionIcon string ‘‘Dtactn’’
dtEnvMap- DtEnvMap- string ‘‘DTAPPSEARCHPATH:

ForRemote ForRemote DTHELPSEARCHPATH:
DTDATABASESEARCHPATH:
XMICONSEARCHPATH:
XMICONBMSEARCHPATH’’

dtexecPath DtexecPath string ‘‘/usr/dt/bin/dtexec’’
dtTmpDir DtTempDir string ‘‘$HOME/.dt/tmp’’
executionHost- ExecutionHost- string ‘‘False’’

Logging Logging
‘‘%DatabaseHost%,
%LocalHost%’’

executionHosts ExecutionHosts string

localTerminal LocalTerminal string ‘‘dtterm’’
remoteTerminals RemoteTerminals string None
waitTime WaitTime number 3

actionIcon
Specifies the default value of the ICON field for actions that do not define the field.
The default value of this resource is Dtactn.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 497

Data Formats Execution Management

dtEnvMapForRemote
Specifies a colon-separated list of environment variables names. Each variable
contains a colon-separated list of pathnames to be mapped for remote actions (see
tt_file_netfile() and tt_netfile_file()).

Only environment variables in the user’s current environment are mapped.

If a pathname contains substitution characters, only the portion of the path up to
the first percent character is mapped, with the remaining portion appended to the
resulting mapped portion. For example, if NLSPATH is set to
/system/nlslib/%L/%N.cat, it maps to /net/host/system/nlslib/%L/%N.cat.

dtexecPath
Specifies the location of the dtexec command that is used for terminal-based actions.
The default value is /usr/dt/bin/dtexec.

dtTmpDir
Specifies the full pathname of the directory to be used for holding temporary files
created during action invocation. The directory must be visible to remote hosts
used for action execution.

executionHostLogging
Turns on and off detailed logging to the user’s $HOME/.dt/errorlog of action
invocation events. The default value is False, which disables logging. Logging is
enabled if this resource is set to True.

executionHosts
Specifies the default value of the EXEC_HOST field for COMMAND actions that do
not define the field. The default value is %DatabaseHost%,%LocalHost%.

localTerminal
Specifies an alternative terminal emulator for terminal-based actions that execute
locally. Any terminal emulator specified by this resource must support the −title
and −e options as described in dtterm. The default value is dtterm.

remoteTerminals
Specifies the terminal emulator to use for terminal-based actions that execute on the
named system. The value of this resource is a comma-separated list of the form
host:terminal-path where terminal-path is the terminal emulator used when invoking
terminal-based actions on host host. The default terminal emulator used for any
host not specified by this resource is the emulator specified by the localTerminal
resource.

waitTime
Specifies the time threshold used for COMMAND actions that specify
WINDOW_TYPE TERMINAL. If the command exits in less than waitTime seconds,
the terminal window is left open. The default value is 3.

498 X/Open CAE Specification

Execution Management Data Formats

9.5.4 Examples

The following action is defined to pipe its argument through the pr and lp commands:

ACTION PrintText
{

ICON printer
DESCRIPTION Paginate and print a text file to the \

default printer.

ARG_TYPE Text

TYPE COMMAND
EXEC_STRING sh −c ’pr %Arg_1"File to print:"% | lp’
WINDOW_TYPE NO_STDIO

}

The following action defines that Open on Text files use the EditText action:

ACTION Open
{

ARG_TYPE Text
TYPE MAP
MAP_ACTION EditText

}

The following action is defined to send the ToolTalk Display request message for non-writable
objects:

ACTION Display
{

ARG_CLASS BUFFER
ARG_MODE !w

TYPE TT_MSG
TT_CLASS TT_REQUEST
TT_SCOPE TT_SESSION
TT_OPERATION Display
TT_ARG0_MODE TT_IN
TT_ARG0_VTYPE %Arg_1%
TT_ARG0_VALUE %Arg_1%

}

9.5.5 Application Usage

Errors encountered when loading database files are written to the user’s $HOME/.dt/errorlog.
Errors encountered in the value of an action field cause the field to be rejected. If the field is a
required field, the entire action definition is rejected. Errors encountered when an action is
invoked cause an error dialog to be displayed to the user.

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 499

Execution Management

500 X/Open CAE Specification

Index

<Dt/Action.h>...484
<Dt/ComboBox.h> ..53
<Dt/Dnd.h>...420
<Dt/Dt.h>..60
<Dt/Dts.h> ..451
<Dt/MenuButton.h> ...54
<Dt/SpinBox.h> ...55
<Tt/tttk.h>...332
<Tt/tt_c.h> ..319
abandoned action ...11
action ...11
action label ...11
actions and data types database............................11
actions table ...11
attachment ...11
auto wraparound..11
auto-repeat key ...11
backdrop...11
base height ...11
base width ..11
bell..12
blanking mode...12
bounding box...12
buffer argument ..12
can..3
category ..12
character protection attribute12
character-spaced font...12
client data ...12
colour set ..12
command-line interfaces.......................................336
conformance ..2
contexts ...12
current session...13
current workspace..13
data attributes ...13
data attributes table ...13
data criteria table ..13
data formats...453
data type...13
data types database..13
data typing...13
data typing data formats.......................................453
data typing services ...427
Deposit..397
deserialise...14

desktop message set ..364
Display..398
display area..13
drag..13
drag and drop..13
drag and drop functions407
drag and drop services ..407
drop ...13
drop zone..13
dtaction ...486
DtActionCallbackProc()469
DtActionDescription() ..472
DtActionExists()...473
DtActionIcon()..474
DtActionInvoke()...475
DtActionLabel()..480
DtComboBox()..29
DtComboBoxAddItem()...42
DtComboBoxDeletePos()43
DtComboBoxSelectItem()44
DtComboBoxSetItem() ...45
DtCreateComboBox() ...46
DtCreateMenuButton()...47
DtCreateSpinBox()...48
DtDbLoad() ...481
DtDbReloadNotify()..482
DtDndCreateSourceIcon()408
DtDndDragStart() ..409
DtDndDropRegister() ...414
DtDtsBufferToAttributeList()428
DtDtsBufferToAttributeValue()...........................429
DtDtsBufferToDataType()430
DtDtsDataToDataType().......................................431
DtDtsDataTypeIsAction()433
DtDtsDataTypeNames().......................................434
DtDtsDataTypeToAttributeList()........................435
DtDtsDataTypeToAttributeValue()436
DtDtsFileToAttributeList()...................................438
DtDtsFileToAttributeValue()439
DtDtsFileToDataType()...440
DtDtsFindAttribute() ..441
DtDtsFreeAttributeList()442
DtDtsFreeAttributeValue()...................................443
DtDtsFreeDataType() ..444
DtDtsFreeDataTypeNames()445
DtDtsIsTrue() ..446

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 501

Index

DtDtsLoadDataTypes()...447
DtDtsRelease()..448
DtDtsSetDataType() ..449
DtInitialize() ..58
DtMenuButton()...32
DtSpinBox()...36
DtSpinBoxAddItem() ..49
DtSpinBoxDeletePos()...50
DtSpinBoxSetItem()...51
dynamic message patterns13
edict ...14
Edit...400
escape character ..14
execution host ...14
execution management ...467

action database entries......................................467
command-line actions468

execution management data formats.................489
execution management functions.......................468
execution string...14
fail a request...14
folder ...14
format of entries..4
front panel..14
functions

data typing services ...427
drag and drop..407
execution management468
message services...61

general help dialog...14
Get_Environment ...365
Get_Geometry ...366
Get_Iconified ...367
Get_Locale ...368
Get_Mapped..369
Get_Modified...370
Get_Situation...371
Get_Status ..372
Get_Sysinfo..373
Get_XInfo ...374
handle a request..14
handler..14
hard reset..14
headers

data typing...450
drag and drop..419
execution management483
message services...318

height increment...14
help topic..15
help type...15

help volume ...15
HelpTag...14
home session..15
icon name ...15
implementation-dependent......................................3
initial session ...15
jump scrolling..15
location ID..15
login shell ...15
Lower ..375
Mail..402
mail header ..15
manual pages format ...4
margin bell ...15
mark...15
may ..3
media exchange message set396
message...15
message callback...15
message pattern ..16
message protocol ..16
message services...61
message services functions.....................................61
Modified ...376
module ..16
monospaced font ..16
must ...3
netfilename...16
notice ...16
object ...16
object content...16
object specification (spec)16
object type ..360
object type (otype)..16
object type identifier (otid)16
object-oriented messages ..16
objid...16
observe a message ..16
observe promise..16
obsolescent ...3
opaque...17
opname (op)...17
opnum...17
option argument keyword......................................17
option string ..17
osignature...362
otype files ...361
overstriking..17
palette object..17
paragraph...17
pattern callback...17

502 X/Open CAE Specification

Index

Pause ...377
pixel offset ..17
Print ...403
procedural message ...17
process type identifier ...359
process types ...358
procid ..17
project..17
proportional font ..17
protocol

drag and drop..423
protocol message set..363
pseudo-terminal..17
ptid ..18, 359
ptype..18
quick help dialog ..18
Quit..378
Raise ..380
registration context ..18
reject a request...18
reparenting window manager18
request...18
Resume ...381
reverse wraparound...18
Revert ..382
Reverted ...383
rpc.ttdbserverd..18
Save ...384
Saved...385
scope..18
selection extension ...18
serialise ...18
sessid ...18
session ...18
Set_Environment ..386
Set_Geometry ..387
Set_Iconified ..388
Set_Locale ..389
Set_Mapped...390
Set_Situation..391
should..3
Signal...392
signal handler..19
signature ..19, 358, 361
slave device..19
slotname ...19
soft reset..19
source ..19
source indicator...19
spec ..19
Started...393

starting shell ..19
state indicator..19
static message pattern ...19
Status...394
Stopped...395
subpanel ...19
terminal emulator...19
text rendering ..19
tool ...20
ToolTalk API ..20
ToolTalk service ..20
ToolTalk types database ..20
topic tree...20
Translate ...405
ttcp ...340
ttdt_close()...276
ttdt_file_event()..277
ttdt_file_join() ...278
ttdt_file_notice()...281
ttdt_file_quit()...283
ttdt_file_request() ..284
ttdt_Get_Modified() ..271
ttdt_message_accept() ..286
ttdt_open()...288
ttdt_Revert()..272
ttdt_Save() ...274
ttdt_sender_imprint_on().....................................289
ttdt_session_join()..291
ttdt_session_quit() ...295
ttdt_subcontract_manage()..................................296
ttmedia_Deposit()..297
ttmedia_load() ..299
ttmedia_load_reply() ..302
ttmedia_ptype_declare()303
ttmv ...343
ttrm ..345
ttrmdir...347
ttsession ..349
tttar ..353
tttk_block_while()..309
tttk_message_abandon()311
tttk_message_create() ...312
tttk_message_destroy() ..313
tttk_message_fail() ..314
tttk_message_reject() ..315
tttk_op_string() ..316
tttk_string_op() ..317
tttk_Xt_input_handler()308
tt_bcontext_join() ...63
tt_bcontext_quit() ..64
tt_close()...65

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 503

Index

tt_context_join() ...66
tt_context_quit()...67
tt_default_file() ...68
tt_default_file_set()..69
tt_default_procid()...70
tt_default_procid_set() ...71
tt_default_ptype() ..72
tt_default_ptype_set()...73
tt_default_session() ...74
tt_default_session_set() ..75
tt_error_int()..77
tt_error_pointer() ...78
tt_fd() ..79
tt_file_copy() ...80
tt_file_destroy() ..81
tt_file_join() ...82
tt_file_move()..83
tt_file_netfile()...84
tt_file_objects_query()...85
tt_file_quit()...87
tt_free()...88
tt_host_file_netfile()...89
tt_host_netfile_file()...90
tt_icontext_join() ..91
tt_icontext_quit()..92
tt_initial_session()..93
tt_int_error()..94
tt_is_err()..95
tt_malloc() ...96
tt_mark() ..97
tt_message_accept() ..98
tt_message_address()..99
tt_message_address_set()100
tt_message_args_count()......................................113
tt_message_arg_add()...101
tt_message_arg_bval()..103
tt_message_arg_bval_set()...................................104
tt_message_arg_ival() ...105
tt_message_arg_ival_set()....................................106
tt_message_arg_mode()107
tt_message_arg_type()..108
tt_message_arg_val() ..109
tt_message_arg_val_set().....................................110
tt_message_arg_xval() ..111
tt_message_arg_xval_set()...................................112
tt_message_barg_add() ..114
tt_message_bcontext_set()...................................116
tt_message_callback_add()..................................117
tt_message_class() ...118
tt_message_class_set()..119
tt_message_contexts_count()126

tt_message_context_bval()120
tt_message_context_ival()121
tt_message_context_set()122
tt_message_context_slotname()123
tt_message_context_val().....................................124
tt_message_context_xval()125
tt_message_create() ...127
tt_message_create_super()128
tt_message_destroy() ..129
tt_message_disposition()130
tt_message_disposition_set()131
tt_message_fail() ..132
tt_message_file() ..133
tt_message_file_set() ...134
tt_message_gid() ..135
tt_message_handler()..136
tt_message_handler_ptype()137
tt_message_handler_ptype_set()........................138
tt_message_handler_set()139
tt_message_iarg_add()..140
tt_message_icontext_set()....................................141
tt_message_id() ..142
tt_message_object() ...143
tt_message_object_set()..144
tt_message_op() ...145
tt_message_opnum()...147
tt_message_op_set()..146
tt_message_otype() ...148
tt_message_otype_set() ..149
tt_message_pattern()...150
tt_message_print()...151
tt_message_receive()...152
tt_message_reject() ..153
tt_message_reply() ..154
tt_message_scope() ...155
tt_message_scope_set() ..156
tt_message_send() ...157
tt_message_sender()..159
tt_message_sender_ptype().................................160
tt_message_sender_ptype_set()..........................161
tt_message_send_on_exit()..................................158
tt_message_session()...162
tt_message_session_set()163
tt_message_state() ...164
tt_message_status() ...165
tt_message_status_set()..166
tt_message_status_string()167
tt_message_status_string_set()...........................168
tt_message_uid()..169
tt_message_user() ..170
tt_message_user_set()...171

504 X/Open CAE Specification

Index

tt_message_xarg_add()...172
tt_message_xcontext_join()174
tt_message_xcontext_set()...................................175
tt_netfile_file() ..176
tt_objid_equal() ..177
tt_objid_objkey() ..178
tt_onotice_create() ...179
tt_open()...180
tt_orequest_create()...181
tt_otype_base() ...182
tt_otype_derived() ...183
tt_otype_deriveds_count()...................................184
tt_otype_hsig_args_count()187
tt_otype_hsig_arg_mode()...................................185
tt_otype_hsig_arg_type()186
tt_otype_hsig_count()...188
tt_otype_hsig_op()...189
tt_otype_is_derived()..190
tt_otype_opnum_callback_add()191
tt_otype_osig_args_count()194
tt_otype_osig_arg_mode()...................................192
tt_otype_osig_arg_type()193
tt_otype_osig_count() ...195
tt_otype_osig_op()...196
tt_pattern_address_add().....................................197
tt_pattern_arg_add() ...198
tt_pattern_barg_add()...199
tt_pattern_bcontext_add()200
tt_pattern_callback_add()201
tt_pattern_category() ..202
tt_pattern_category_set()203
tt_pattern_class_add() ..204
tt_pattern_context_add()205
tt_pattern_create() ...206
tt_pattern_destroy() ..207
tt_pattern_disposition_add()208
tt_pattern_file_add() ...209
tt_pattern_iarg_add()..210
tt_pattern_icontext_add()211
tt_pattern_object_add() ..212
tt_pattern_opnum_add()......................................214
tt_pattern_op_add() ..213
tt_pattern_otype_add()...215
tt_pattern_print() ...216
tt_pattern_register() ..217
tt_pattern_scope_add()...218
tt_pattern_sender_add().......................................219
tt_pattern_sender_ptype_add()220
tt_pattern_session_add()......................................221
tt_pattern_state_add() ..222
tt_pattern_unregister() ...223

tt_pattern_user() ..224
tt_pattern_user_set() ...225
tt_pattern_xarg_add()...226
tt_pattern_xcontext_add()227
tt_pnotice_create() ...228
tt_pointer_error() ...230
tt_prequest_create()...231
tt_ptr_error() ...233
tt_ptype_declare()..234
tt_ptype_exists()...235
tt_ptype_opnum_callback_add()236
tt_ptype_undeclare()...237
tt_release() ...238
tt_session_bprop() ...239
tt_session_bprop_add() ..240
tt_session_bprop_set()..241
tt_session_join() ...242
tt_session_prop() ...243
tt_session_propname() ...247
tt_session_propnames_count()...........................248
tt_session_prop_add() ..244
tt_session_prop_count().......................................245
tt_session_prop_set() ..246
tt_session_quit() ...249
tt_session_types_load() ..250
tt_spec_bprop() ..251
tt_spec_bprop_add() ...252
tt_spec_bprop_set() ...253
tt_spec_create() ..254
tt_spec_destroy()..255
tt_spec_file()..256
tt_spec_move() ...257
tt_spec_prop()...259
tt_spec_propname() ..263
tt_spec_propnames_count()264
tt_spec_prop_add() ...260
tt_spec_prop_count() ..261
tt_spec_prop_set() ...262
tt_spec_type() ...265
tt_spec_type_set() ..266
tt_spec_write()..267
tt_status_message() ...268
tt_trace_control()..269
tt_type_comp...337
tt_xcontext_quit() ..270
tt_X_session()..62
undefined..3
underscore..20
unspecified...3
value type (vtype) ..20
virtual keys ..20

X/Open Common Desktop Environment (XCDE) De finitions and Infrastructure 505

Index

width increment..20
window menu ...20
word ..20
workspace ..20
workspace functions ..20
workspace identifier ..20
workspace manager ...20
workspace name...21
workspace title ..21
XNFS ...21

506 X/Open CAE Specification

