
X/Open CAE Specification

X/Open Common Desktop Environment (XCDE)

Services and Applications

X/Open Company Ltd.



 March 1995, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

X/Open Common Desktop Environment (XCDE) Services and Applications

ISBN: 1-85912-074-1
X/Open Document Number: C323

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

ii X/Open CAE Specification



Contents

Chapter 1 Window Management Services..................................................... 1
  1.1    Introduction ................................................................................................. 1
  1.2    Data Formats................................................................................................ 2

Chapter 2 Workspace Management Services ............................................... 3
  2.1    Introduction ................................................................................................. 3
  2.2    Functions ...................................................................................................... 3
    DtWsmAddCurrentWorkspaceCallback ( ) ..................................................... 4
    DtWsmAddWorkspaceFunctions( )................................................................. 5
    DtWsmAddWorkspaceModifiedCallback ( ) .................................................... 6
    DtWsmFreeWorkspaceInfo ( ) ........................................................................... 8
    DtWsmGetCurrentBackdropWindow( ) ......................................................... 9
    DtWsmGetCurrentWorkspace( ) ..................................................................... 10
    DtWsmGetWorkspaceInfo ( )............................................................................ 11
    DtWsmGetWorkspaceList ( ) ............................................................................ 13
    DtWsmGetWorkspacesOccupied( ) ................................................................. 14
    DtWsmOccupyAllWorkspaces( )..................................................................... 15
    DtWsmRemoveWorkspaceCallback ( ) ............................................................. 16
    DtWsmRemoveWorkspaceFunctions( )........................................................... 17
    DtWsmSetCurrentWorkspace( )...................................................................... 18
    DtWsmSetWorkspacesOccupied( ).................................................................. 19
  2.3    Headers......................................................................................................... 20
    <Dt/Wsm.h> ................................................................................................... 21

Chapter 3 Session Management Services....................................................... 23
  3.1    Introduction ................................................................................................. 23
  3.2    Functions ...................................................................................................... 23
    DtSaverGetWindows( ).................................................................................... 24
    DtSessionRestorePath( ) .................................................................................. 25
    DtSessionSavePath( ) ....................................................................................... 26
  3.3    Headers......................................................................................................... 27
    <Dt/Saver.h> .................................................................................................. 28
    <Dt/Session.h> .............................................................................................. 29
  3.4    Actions .......................................................................................................... 30
    <dtsessionaction> ......................................................................................... 31
  3.5    Capabilities................................................................................................... 32

Chapter 4 Help Services ............................................................................................ 33
  4.1    Introduction ................................................................................................. 33
  4.2    Widgets ......................................................................................................... 33
    DtHelpDialog ( )................................................................................................ 34
    DtHelpQuickDialog ( ) ..................................................................................... 42

X/Open Common Desktop Environment (XCDE) Services and Applications iii



Contents

  4.3    Functions ...................................................................................................... 51
    DtCreateHelpDialog ( )..................................................................................... 52
    DtCreateHelpQuickDialog ( ) .......................................................................... 53
    DtHelpQuickDialogGetChild ( )...................................................................... 54
    DtHelpReturnSelectedWidgetId( ).................................................................. 55
    DtHelpSetCatalogName ( )............................................................................... 56
  4.4    Headers......................................................................................................... 57
    <Dt/Help.h> ................................................................................................... 58
    <Dt/HelpDialog.h> ...................................................................................... 60
    <Dt/HelpQuickD.h> .................................................................................... 61
  4.5    Actions .......................................................................................................... 62
    <dtmanaction>............................................................................................... 63
    <dthelpaction>............................................................................................... 64
  4.6    Formats ......................................................................................................... 65
  4.7    Capabilities................................................................................................... 72
  4.7.1       Presentation in the Quick Help Window............................................ 72
  4.7.2       Navigation in the Quick Help Window.............................................. 72
  4.7.3       Presentation for the General Help Window....................................... 72
  4.7.4       Navigation for the General Help Window......................................... 73

Chapter 5 Calendar and Appointment Services ......................................... 75
  5.1    Introduction ................................................................................................. 75
  5.2    Functions ...................................................................................................... 75
    csa_x_process_updates ( ) ................................................................................. 76
  5.3    Headers......................................................................................................... 77
  5.4    Command-Line Interfaces ........................................................................ 77
    dtcm_admin ...................................................................................................... 78
    dtcm_delete ....................................................................................................... 81
    dtcm_insert ....................................................................................................... 83
    dtcm_lookup ..................................................................................................... 86
  5.5    Actions .......................................................................................................... 88
    <dtcalendaraction>....................................................................................... 89
  5.6    Messages....................................................................................................... 90
  5.7    Formats ......................................................................................................... 90
  5.7.1       Calendar Archive File Format ............................................................... 90
  5.7.1.1          Attribute Definition.............................................................................. 91
  5.7.1.2          Long Values............................................................................................ 92
  5.7.2       Calendar Entry Format ........................................................................... 92
  5.8    Capabilities................................................................................................... 94
  5.8.1       Calendar Main Window......................................................................... 94
  5.8.2       Options/Properties ................................................................................. 95
  5.8.3       Appointment Editing.............................................................................. 95
  5.8.4       Appointment Listing............................................................................... 96
  5.8.5       Appointment Finding ............................................................................. 96
  5.8.6       To-Do Editing............................................................................................ 96
  5.8.7       To-Do Listing ............................................................................................ 97
  5.8.8       Multi-User Calendar Accessing............................................................ 97
  5.8.9       Drag and Drop Capabilities................................................................... 97

iv X/Open CAE Specification



Contents

  5.8.10       Printing....................................................................................................... 98
  5.8.11       Other Capabilities.................................................................................... 98

Chapter 6 Mail Services ............................................................................................ 99
  6.1    Introduction ................................................................................................. 99
  6.2    Actions .......................................................................................................... 99
    <dtmailaction> .............................................................................................. 100
  6.3    Messages....................................................................................................... 101
  6.4    Formats ......................................................................................................... 101
  6.5    Capabilities................................................................................................... 102
  6.5.1       Managing Mailboxes............................................................................... 102
  6.5.2       Managing Message Lists ........................................................................ 102
  6.5.3       Viewing and Manipulating Existing Messages ................................. 103
  6.5.4       Composing New Messages ................................................................... 104
  6.5.5       Drag and Drop Capabilities................................................................... 105
  6.5.6       Other Capabilities.................................................................................... 106

Chapter 7 File Management Services................................................................ 107
  7.1    Introduction ................................................................................................. 107
  7.2    Actions .......................................................................................................... 107
    <dtfileaction> ................................................................................................. 108
    <dttrashaction>.............................................................................................. 109
  7.3    Messages....................................................................................................... 110
  7.4    Capabilities................................................................................................... 110
  7.4.1       Folder Window......................................................................................... 110
  7.4.2       Application Folder Window.................................................................. 111
  7.4.3       Trash Folder Window ............................................................................. 111
  7.4.4       Workspaces ............................................................................................... 111
  7.4.5       Object Movement and Modification.................................................... 111
  7.4.6       Object Search ............................................................................................ 111
  7.4.7       Folder Traversal........................................................................................ 111
  7.4.8       Object Type/Action Association .......................................................... 112
  7.4.9       Registering Objects as Drop Sites......................................................... 112
  7.4.10       Exit Services .............................................................................................. 112

Chapter 8 Front Panel Services ............................................................................. 113
  8.1    Introduction ................................................................................................. 113
  8.2    Formats ......................................................................................................... 113
  8.2.1       File Format................................................................................................. 113
  8.2.2       Record Types............................................................................................. 114
  8.2.3       Keyword and Value Descriptions......................................................... 116
  8.3    Capabilities................................................................................................... 121
  8.3.1       General Layout......................................................................................... 122
  8.3.2       Special Controls ....................................................................................... 122
  8.3.3       Other Capabilities.................................................................................... 123

X/Open Common Desktop Environment (XCDE) Services and Applications v



Contents

Chapter 9 Text Editing Services............................................................................ 125
  9.1    Introduction ................................................................................................. 125
  9.2    Widgets ......................................................................................................... 125
    DtEditor( ) ........................................................................................................ 126
  9.3    Functions ...................................................................................................... 141
    DtCreateEditor( ).............................................................................................. 142
    DtEditorAppend( ) ........................................................................................... 143
    DtEditorAppendFromFile( ) ............................................................................ 145
    DtEditorChange( )............................................................................................ 146
    DtEditorCheckForUnsavedChanges( ) ........................................................... 147
    DtEditorClearSelection ( ) ................................................................................ 148
    DtEditorCopyToClipboard ( ) ........................................................................... 149
    DtEditorCutToClipboard ( ) ............................................................................. 150
    DtEditorDeleteSelection( )............................................................................... 151
    DtEditorDeselect( )........................................................................................... 152
    DtEditorFind( )................................................................................................. 153
    DtEditorFormat( ) ............................................................................................ 154
    DtEditorGetContents( ) ................................................................................... 155
    DtEditorGetInsertionPosition ( ) ..................................................................... 157
    DtEditorGetLastPosition ( ) ............................................................................. 158
    DtEditorGetSizeHints( ).................................................................................. 159
    DtEditorGoToLine( ) ........................................................................................ 160
    DtEditorInsert( )............................................................................................... 161
    DtEditorInsertFromFile( ) ............................................................................... 163
    DtEditorInvokeFindChangeDialog ( ) ............................................................. 164
    DtEditorInvokeFormatDialog ( )...................................................................... 165
    DtEditorPasteFromClipboard ( ) ...................................................................... 166
    DtEditorReplace ( )............................................................................................ 167
    DtEditorReplaceFromFile( ) ............................................................................ 169
    DtEditorReset( ) ............................................................................................... 171
    DtEditorSaveContentsToFile( ) ....................................................................... 172
    DtEditorSelectAll( ) ......................................................................................... 174
    DtEditorSetContents( ).................................................................................... 175
    DtEditorSetContentsFromFile( )..................................................................... 177
    DtEditorSetInsertionPosition ( ) ...................................................................... 178
    DtEditorTraverseToEditor( )............................................................................ 179
    DtEditorUndoEdit( )........................................................................................ 180
  9.4    Headers......................................................................................................... 181
    <Dt/Editor.h> ................................................................................................. 182
  9.5    Command-Line Interfaces ........................................................................ 187
    dtpad .................................................................................................................. 188
  9.6    Actions .......................................................................................................... 191
    <dttextaction> ................................................................................................ 192
  9.7    Messages....................................................................................................... 193
  9.8    Capabilities................................................................................................... 194
  9.8.1       File Management...................................................................................... 194
  9.8.2       Presentation............................................................................................... 194
  9.8.3       Text Editing ............................................................................................... 195

vi X/Open CAE Specification



Contents

Chapter 10 Icon Editing Services ........................................................................... 197
  10.1    Introduction ................................................................................................. 197
  10.2    Actions .......................................................................................................... 197
    <dticonaction> ............................................................................................... 198
  10.3    Messages....................................................................................................... 199
  10.4    Capabilities................................................................................................... 199

Chapter 11 GUI Scripting Services ....................................................................... 201
  11.1    Introduction ................................................................................................. 201
  11.2    Command-line Interface ........................................................................... 201
    dtksh .................................................................................................................. 202

Chapter 12 Terminal Emulation Services.......................................................... 241
  12.1    Introduction ................................................................................................. 241
  12.2    Functions ...................................................................................................... 241
    DtCreateTerm( )................................................................................................ 242
    DtTermDisplaySend( ) ..................................................................................... 243
    DtTermInitialize ( ) ........................................................................................... 244
    DtTermSubprocReap( ) .................................................................................... 245
    DtTermSubprocSend( ) .................................................................................... 246
  12.3    Widgets ......................................................................................................... 247
    DtTerm( )........................................................................................................... 248
  12.4    Headers......................................................................................................... 264
    <Dt/Term.h> ................................................................................................... 265
  12.5    Command-line Interfaces.......................................................................... 266
    dtterm ................................................................................................................ 267
  12.6    Actions .......................................................................................................... 281
    <dttermaction> .............................................................................................. 282
  12.7    Formats ......................................................................................................... 283
  12.7.1       Received Escape Sequences................................................................... 283
  12.7.2       Reset............................................................................................................ 293
  12.7.3       Transmitted Escape Sequences ............................................................. 294
  12.7.3.1          Cursor Key Mode.................................................................................. 294
  12.7.3.2          Application Keypad Mode.................................................................. 294
  12.7.3.3          Standard Function Keys ...................................................................... 295
  12.7.3.4          Sun Function Keys ................................................................................ 296
  12.8    Capabilities................................................................................................... 298

Chapter 13 Style Management Services............................................................. 299
  13.1    Introduction ................................................................................................. 299
  13.2    Actions .......................................................................................................... 299
    <dtstyleaction> .............................................................................................. 300
  13.3    Capabilities................................................................................................... 301

Chapter 14 Application Building Services....................................................... 303
  14.1    Introduction ................................................................................................. 303
  14.2    Command-line Interfaces.......................................................................... 303
    dtcodegen .......................................................................................................... 304

X/Open Common Desktop Environment (XCDE) Services and Applications vii



Contents

  14.3    Actions .......................................................................................................... 308
    <dtbuilderaction> ......................................................................................... 309
  14.4    Capabilities................................................................................................... 310
  14.4.1       Project and Module Files ........................................................................ 310
  14.4.2       Project Management................................................................................ 310
  14.4.3       Object Palette ............................................................................................ 311
  14.4.4       Object Layout............................................................................................ 312
  14.4.5       Object Properties...................................................................................... 312
  14.4.6       Browser Window ..................................................................................... 320
  14.4.7       Application Framework ......................................................................... 320
  14.4.8       Connections .............................................................................................. 322
  14.4.9       Drag and Drop Capabilities................................................................... 322

Chapter 15 Application Integration Services ................................................. 323
  15.1    Introduction ................................................................................................. 323
  15.2    Command-line Interfaces.......................................................................... 323
    dtappintegrate ................................................................................................... 324
  15.3    Actions .......................................................................................................... 327
    <dtappaction>................................................................................................ 328

Chapter 16 Action Creation Services ................................................................... 329
  16.1    Introduction ................................................................................................. 329
  16.2    Actions .......................................................................................................... 329
    <dtactionaction> ........................................................................................... 330
  16.3    Capabilities................................................................................................... 331

Chapter 17 Print Job Services ................................................................................... 333
  17.1    Introduction ................................................................................................. 333
  17.2    Actions .......................................................................................................... 333
    <dtprintinfoaction>...................................................................................... 334
  17.3    Capabilities................................................................................................... 335

Chapter 18 Calculator Services................................................................................ 337
  18.1    Introduction ................................................................................................. 337
  18.2    Actions .......................................................................................................... 337
    <dtcalcaction>................................................................................................ 338
  18.3    Capabilities................................................................................................... 339
  18.3.1       General Calculator Capabilities............................................................ 339
  18.3.2       Arithmetic Operations ............................................................................ 339
  18.3.3       Scientific Operations ............................................................................... 340
  18.3.4       Financial Operations ............................................................................... 340
  18.3.5       Logical Operations .................................................................................. 341

Chapter 19 Application Conventions.................................................................. 343
  19.1    Font Conventions........................................................................................ 343
  19.1.1       Standard Application Font Names ...................................................... 343
  19.1.1.1          Background............................................................................................ 343
  19.1.1.2          Rationale................................................................................................. 343

viii X/Open CAE Specification



Contents

  19.1.1.3          The Standard Names for the Latin-1 Character Set....................... 344
  19.1.1.4          XLFD Field Values for the Standard Application Font Names ... 344
  19.1.1.5          Point Sizes............................................................................................... 345
  19.1.1.6          Example XLFD Patterns for the Standard Names ......................... 345
  19.1.1.7          Implementation of Font Names......................................................... 346
  19.1.1.8          Default XCDE Mappings for Latin-1 Locales .................................. 346
  19.1.1.9          Font Names in app-defaults Files...................................................... 347
  19.1.1.10          Other Character Sets in the Common Locales................................ 347
  19.1.2       Standard Interface Font Names ............................................................ 348
  19.1.2.1          Background............................................................................................ 348
  19.1.2.2          Rationale................................................................................................. 348
  19.1.2.3          XLFD Field Values for the Standard Interface Font Names......... 348
  19.1.2.4          Restricted Set of Styles Available ...................................................... 349
  19.1.2.5          Named Set of Point Sizes Available.................................................. 350
  19.1.2.6          Example XLFD Patterns for the Standard Names ......................... 350
  19.1.2.7          Implementation of Font Names......................................................... 351
  19.1.2.8          Default XCDE Mapping of the Standard Interface Font Names.. 353
  19.2    Icon Conventions ........................................................................................ 353
  19.2.1       File Naming............................................................................................... 353
  19.2.2       Icon Sizes ................................................................................................... 354
  19.2.3       Icon File Locations ................................................................................... 354

Chapter 20 Application Style Checklist ............................................................ 355
  20.1    Preface ........................................................................................................... 355
  20.2    Input Models................................................................................................ 356
  20.2.1       Keyboard Focus Model........................................................................... 356
  20.2.2       Input Device Model................................................................................. 356
  20.3    Navigation.................................................................................................... 359
  20.3.1       Mouse-Based Navigation....................................................................... 359
  20.3.2       Keyboard-Based Navigation ................................................................. 361
  20.3.3       Menu Traversal......................................................................................... 365
  20.3.4       Scrollable Component Navigation....................................................... 367
  20.4    Selection........................................................................................................ 368
  20.4.1       Selection Models ...................................................................................... 368
  20.4.1.1          Mouse-Based Single Selection............................................................ 368
  20.4.1.2          Mouse-Based Browse Selection ......................................................... 369
  20.4.1.3          Mouse-Based Multiple Selection ....................................................... 369
  20.4.1.4          Mouse-Based Range Selection............................................................ 369
  20.4.1.5          Mouse-Based Discontiguous Selection ............................................ 371
  20.4.1.6          Keyboard Selection............................................................................... 372
  20.4.1.7          Canceling a Selection ........................................................................... 375
  20.4.1.8          Autoscrolling and Selection................................................................ 375
  20.4.1.9          Selecting and Deselecting All Elements........................................... 375
  20.4.1.10          Using Mnemonics for Elements......................................................... 375
  20.4.2       Selection Actions...................................................................................... 376
  20.4.3       Transfer Models........................................................................................ 377
  20.4.3.1          Clipboard Transfer................................................................................ 378
  20.4.3.2          Primary Transfer ................................................................................... 379

X/Open Common Desktop Environment (XCDE) Services and Applications ix



Contents

  20.4.3.3          Quick Transfer ....................................................................................... 379
  20.4.3.4          Drag Transfer ......................................................................................... 381
  20.5    Component Activation .............................................................................. 384
  20.5.1       Basic Activation........................................................................................ 384
  20.5.2       Accelerators............................................................................................... 385
  20.5.3       Mnemonics................................................................................................ 385
  20.5.4       Tear-Off Activation.................................................................................. 386
  20.5.5       Help Activation........................................................................................ 386
  20.5.6       Default Activation ................................................................................... 387
  20.5.7       Expert Activation..................................................................................... 387
  20.5.8       Previewing and Autorepeat................................................................... 388
  20.5.9       Cancel Activation .................................................................................... 388
  20.6    Window Management ............................................................................... 388
  20.6.1       Window Support ..................................................................................... 388
  20.6.2       Window Decorations .............................................................................. 389
  20.6.3       Window Navigation................................................................................ 390
  20.6.4       Icons............................................................................................................ 390
  20.6.5       Application Window Management ..................................................... 390
  20.6.5.1          Window Placement .............................................................................. 390
  20.6.5.2          Window (Document) Clustering....................................................... 391
  20.6.5.3          Window Management Actions .......................................................... 391
  20.6.6       Session Management Support.............................................................. 392
  20.7    Application Design Principles.................................................................. 393
  20.7.1       Layout ........................................................................................................ 393
  20.7.1.1          Main Window........................................................................................ 393
  20.7.1.2          Window Titles ....................................................................................... 394
  20.7.1.3          Menu Bar................................................................................................. 395
  20.7.1.4          File Menu Contents .............................................................................. 396
  20.7.1.5          Help Menu Contents ............................................................................ 400
  20.7.1.6          Attachment Menu Contents ............................................................... 401
  20.7.1.7          Pop-up Menus ....................................................................................... 402
  20.7.1.8          Dialog Boxes .......................................................................................... 405
  20.7.1.9          Menu Design.......................................................................................... 405
  20.7.1.10          Dialog Box Design ................................................................................ 407
  20.7.1.11          File Selection Dialog Box..................................................................... 411
  20.7.1.12          About Dialog Box.................................................................................. 412
  20.7.1.13          Dialog Box Layout ................................................................................ 412
  20.7.1.14          Designing Drag and Drop................................................................... 413
  20.7.2       Attachments.............................................................................................. 415
  20.7.3       Installation................................................................................................. 416
  20.7.4       Interaction ................................................................................................. 416
  20.7.5       Visuals........................................................................................................ 418
  20.7.6       Toolbars...................................................................................................... 419
  20.7.7       Expandable Windows............................................................................. 420
  20.7.8       Messages.................................................................................................... 421
  20.7.9       Work-in-Progress Feedback................................................................... 424
  20.8    Controls, Groups and Models.................................................................. 425
  20.8.1       CheckButton ............................................................................................. 425

x X/Open CAE Specification



Contents

  20.8.2       ComboBox................................................................................................. 426
  20.8.3       CommandBox........................................................................................... 426
  20.8.4       File Selection Dialog Box........................................................................ 427
  20.8.5       List............................................................................................................... 430
  20.8.6       Option Button........................................................................................... 431
  20.8.7       Paned Window......................................................................................... 432
  20.8.8       Panel ........................................................................................................... 432
  20.8.9       Push Button............................................................................................... 432
  20.8.10       Radio Button ............................................................................................. 433
  20.8.11       Sash............................................................................................................. 433
  20.8.12       Scale............................................................................................................ 434
  20.8.13       ScrollBar..................................................................................................... 435
  20.8.14       SelectionBox.............................................................................................. 437
  20.8.15       Spin Box ..................................................................................................... 437
  20.8.16       Text.............................................................................................................. 438
  20.8.17       Gauge ......................................................................................................... 440
  20.9    Accessibility ................................................................................................. 440

    Index............................................................................................................... 443

X/Open Common Desktop Environment (XCDE) Services and Applications xi



Contents

xii X/Open CAE Specification



Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

X/Open Common Desktop Environment (XCDE) Services and Applications xiii



Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

xiv X/Open CAE Specification



Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:

request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.

This Document

There are two X/Open CAE Specifications (see above) defining the X/Open Common Desktop
Environment (XCDE) requirements:

• X/Open Common Desktop Environment — Definitions and Infrastructure (XCDI)

• X/Open Common Desktop Environment — Services and Applications (XCSA) (this
document)

The XCDI and XCSA documents are mutually dependent specifications, which have been split
into two volumes for convenience of use and publication.

The XCDI specification provides common definitions for the XCDI specification and the XCSA
specification; therefore, readers should be familiar with the XCDI specification before using the
XCSA specification. (Readers are also expected to be familiar with the X/Open CAE
Specification, System Interface Definitions, Issue 4, Version 2, which contains a number of
applicable definitions.)

Structure

The XCSA specification is structured as follows:

• Chapter 1 describes the XCDE window management services.

• Chapter 2 describes the XCDE workspace management services.

• Chapter 3 describes the XCDE session management services.

• Chapter 4 describes the XCDE help services.

• Chapter 5 describes the XCDE calendar and appointment services.

• Chapter 6 describes the XCDE mail services.

• Chapter 7 describes the XCDE file management services.

• Chapter 8 describes the XCDE front panel services.

• Chapter 9 describes the XCDE text editing services.

X/Open Common Desktop Environment (XCDE) Services and Applications xv



Preface

• Chapter 10 describes the XCDE icon editing services.

• Chapter 11 describes the XCDE GUI scripting (windowing KornShell) services.

• Chapter 12 describes the XCDE terminal emulation services.

• Chapter 13 describes the XCDE style management services.

• Chapter 14 describes the XCDE application building services.

• Chapter 15 describes the XCDE application integration services.

• Chapter 16 describes the XCDE action creation services.

• Chapter 17 describes the XCDE print queue services.

• Chapter 18 describes the XCDE calculator services.

• Chapter 19 describes font and icon conventions for XCDE applications.

• Chapter 20 describes the style requirements for XCDE applications.

Comprehensive references are available in the index.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords and type names. It is
also used to identify brackets that surround optional items in syntax, [ ].

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— variable names, for example, substitutable argument prototypes

— environment variables, which are also shown in capitals

— commands or utilities

— external variables, such as errno

— X Window System widgets

— functions; these are shown as follows: name( ); names without parentheses are either
external variables or function family names

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

• Ellipses, . . ., are used to show that additional arguments are optional.

• Syntax and code examples are shown in fixed width font . Brackets shown in this font,
[ ] , are part of the syntax and do not indicate optional items.

• Variables within syntax statements are shown in italic fixed width font .

• The names of virtual keys, such as <Help> or <Insert> are used as described by the model
keyboard section of the OSF/Motif Style Guide.

xvi X/Open CAE Specification



Trade Marks

DEC is a registered trade mark of Digital Equipment Corporation.

Helvetica is a registered trade mark of Linotype AG and/or its subsidiaries.

IBM is a registered trade mark of International Business Machines Corporation.

MotifTM is a trade mark of Open Software Foundation, Inc.

OPEN LOOK is a registered trademark of Novell, Inc.

Postscript is a registered trade mark of Adobe Systems Incorporated.

ToolTalkTM is a trade mark of Sun Microsystems, Inc.

UNIX is a registered trade mark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Ltd.

X Window SystemTM is a trade mark of the Massachusetts Institute of Technology.

X/Open Common Desktop Environment (XCDE) Services and Applications xvii



Acknowledgements

X/Open gratefully acknowledges the CDE sponsoring companies who donated the materials for
this specification:

• Hewlett-Packard Company

• International Business Machines Corporation

• Novell, Incorporated.

• Sun Microsystems, Incorporated

X/Open also acknowledges the XAPI Association (XAPIA) for their contribution to the Calendar
and Appointment Services specification referred to in Chapter 5 of this document. See also the
referenced X/Open CAE Specification, Calendaring and Scheduling API (XCS).

xviii X/Open CAE Specification



Referenced Documents

The following documents are referenced in this specification:

ISO C
ISO/IEC 9899: 1990, Information technology — Programming Languages — C.

ISO/IEC 6429: 1992
Information processing — ISO 7-bit and 8-bit coded character sets — Control functions for
coded character sets

ISO 8859-1: 1987
Information processing — 8-bit single-byte coded graphic character sets — Part 1: Latin
alphabet No. 1

ISO 8879: 1986
Information processing — Text and office systems — Standard Generalised Markup
Language (SGML)

ISO/IEC 9070: 1991
Information technology — SGML support facilities — Registration procedures for public
text owner identifiers

ANSI X3.64-1979
Additional Controls for Use with the American National Standard Code for Information
Interchange

RFC-822
Internet RFC 822, Crocker, D. Standard for the format of ARPA Internet text messages.

MIME RFCs
Internet RFC 1521, N. Borenstein, N. Freed, MIME (Multipurpose Internet Mail Extensions)
Part One: Mechanisms for Specifying and Describing the Format of Internet Message
Bodies.

Internet RFC 1522, K. Moore, MIME (Multipurpose Internet Mail Extensions) Part Two:
Message Header Extensions for Non-ASCII Text.

Internet RFC 1590, J. Postel, Media Type Registration Procedure.

Motif Style Guide
Open Software Foundation, OSF/Motif Style Guide, Revision 1.2 (ISBN: 0-13-643123-2).

The following X/Open documents are referenced in this specification.

XBD
X/Open CAE Specification, September 1994, System Interface Definitions, Issue 4, Version 2
(ISBN: 1-859120-36-9, C434).

XSH
X/Open CAE Specification, September 1994, System Interfaces and Headers, Issue 4,
Version 2, September 1994 (ISBN: 1-859120-37-7, C435).

XCU
X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2, September 1994
(ISBN: 1-859120-34-2, C436).

X/Open Common Desktop Environment (XCDE) Services and Applications xix



Referenced Documents

XIG
X/Open Guide, Internationalisation Guide, July 1993 (ISBN: 1-85912-002-4, G304).

XNFS
X/Open CAE Specification, Protocols for X/Open Interworking, September 1992, (ISBN: i-
872630-66-9, C218). This includes description of XDR (Sun Microsystems’ External Data
Representation standard), which was originally described in Internet RFC 1014.

XPG4
X/Open Single UNIX Specification (Spec. 1170) — Four Volume Set, September 1994
(ISBN: 1-85912-054-7, T405).

X Protocol
X/Open CAE Specification, Window Management (X11R5): X Window System Protocol,
April 1995 (ISBN: 1-85912-087-3, C507).

Xlib
X/Open CAE Specification, Window Management (X11R5): Xlib — C Language Binding,
April 1995 (ISBN: 1-85912-088-1, C508).

Xt
X/Open CAE Specification, Window Management (X11R5): X Toolkit Intrinsics, April 1995
(ISBN: 1-85912-089-X, C509).

ICCCM
X/Open CAE Specification, Window Management (X11R5): File Formats and Application
Conventions, April 1995 (ISBN: 1-85912-090-3, C510).

Motif
X/Open CAE Specification, Motif Toolkit API, March 1995 (ISBN: 1-85912-024-5, C320).

XCS
X/Open CAE Specification, Calendaring and Scheduling API (XCS), March 1995 (ISBN: 1-
85912-076-8, C321).

XCDI
X/Open CAE Specification, Common Desktop Environment: Definitions and Infrastructure
(XCDI), March 1995 (ISBN: 1-85912-070-9, C324).

xx X/Open CAE Specification



Chapter 1

Window Management Services

1.1 Introduction
This chapter describes the XCDE window management services. The XCDE window manager is
a superset of the X/Open Motif mwm window manager, which includes the following major
enhancements:

• Support for historical OPEN LOOK applications. (OPEN LOOK hints are mapped to the
nearest Motif behaviour.)

• Support for multiple workspaces. See Chapter 2 on page 3.

• Support for the front panel. See Chapter 8 on page 113.

Many features of the window manager can be configured via X resources and configuration files,
including:

• Root window pop-up menu.

• Window menu for client windows.

• Key and button bindings for raising and lowering client windows.

Commonly customised window manager features, such as the focus policy, can also be
configured through dialogs in the style manager.

The window manager provides API support for the following tasks:

• Standard ICCCM and Motif capabilities (for example, iconify a window). These functions
are described in the following standards:

— X/Open CAE Specification, Window Management: File Formats and Application
Conventions

— X/Open CAE Specification, Window Management: Xlib C Language Binding

— X/Open CAE Specification, Motif Toolkit API

• Selecting icons placed on the root window but controlled by other applications

There is one additional functional difference between the XCDE window manager and mwm:

• By default, the only keyboard accelerator included in the window menu for the X/Open
Common Desktop Environment window manager is Close (Alt/F4).

X/Open Common Desktop Environment (XCDE) Services and Applications 1



Data Formats Window Management Services

1.2 Data Formats
The resource description file $HOME/.dtwmrc is equivalent in function to the $HOME/.mwmrc
described in the X/Open CAE Specification, Motif Toolkit API, which provides customisation
abilities for users of the Motif Window Manager. The $HOME/.dtwmrc file allows
customisation for users of the XCDE Window Manager. It has identical formatting to
$HOME/.mwmrc, except that the resource class name Mwm is replaced by the name Dtwm.

2 X/Open CAE Specification



Chapter 2

Workspace Management Services

2.1 Introduction
The XCDE workspace manager provides support for multiple workspaces. Each workspace is a
‘‘virtual screen’’; windows can be placed in a single workspace, all workspaces or any
combination of individual workspaces. The initial number of workspaces is determined by a
resource when the workspace manager starts up. Workspaces may be added, deleted or
renamed dynamically. Workspace switching can be done through the workspace switch in the
front panel or by binding a workspace manager function to a button, key or window manager
menu. The workspace manager cooperates with the session manager to save the workspace
state between sessions.

The workspace manager provides API support for querying and controlling the workspace state
and adding and removing windows from workspaces. Clients need not be aware of workspaces
or the workspace manager to operate properly in the XCDE.

2.2 Functions
This section defines the functions, macros and external variables that provide XCDE workspace
management services to support application portability at the C-language source level.

X/Open Common Desktop Environment (XCDE) Services and Applications 3



DtWsmAddCurrentWorkspaceCallback( ) Workspace Management Services

NAME
DtWsmAddCurrentWorkspaceCallback — add a callback to be called when the current
workspace changes

SYNOPSIS
#include <Dt/Wsm.h>

DtWsmCBContext
DtWsmAddCurrentWorkspaceCallback(Widget widget ,

DtWsmWsChangeProc ws_change ,
Pointer client_data );

DESCRIPTION
The DtWsmAddCurrentWorkspaceCallback ( ) function registers an application function to be called
when the workspace manager switches to a new workspace.

The workspace manager sends the new current workspace name to the DtWsmWsChangeProc
callback.

The widget argument is a realised widget.

The ws_change argument is the procedure to be called when the workspace changes.

The client_data argument points to arbitrary client data to be passed back to ws_change .

The header defines the DtWsmWsChangeProc callback prototype as follows:

typedef void ( ∗DtWsmWsChangeProc)(Widget widget ,
Atom aWorkspace ,
Pointer client_data );

The widget argument is the ID of the widget to be registered with the callback.

The aWorkspace argument is the name of the new current workspace (converted to an X atom).

The client_data argument points to the client data to be registered with the callback.

RETURN VALUE
Upon successful completion, the DtWsmAddCurrentWorkspaceCallback ( ) function returns a
workspace callback registration context.

APPLICATION USAGE
The DtWsmAddCurrentWorkspaceCallback ( ) function returns a registration context that the
application must save in order to remove this callback later.
DtWsmAddCurrentWorkspaceCallback ( ) requires a window; thus, a gadget is not acceptable for
the widget argument. The DtWsmRemoveWorkspaceCallback ( ) function needs a registration
context to remove the callback.

SEE ALSO
<Dt/Wsm.h>, DtWsmRemoveWorkspaceCallback ( ).

CHANGE HISTORY
First released in Issue 1.

4 X/Open CAE Specification



Workspace Management Services DtWsmAddWorkspaceFunctions( )

NAME
DtWsmAddWorkspaceFunctions — add workspace functions for a window

SYNOPSIS
#include <Dt/Wsm.h>

void DtWsmAddWorkspaceFunctions(Display ∗display ,
Window window );

DESCRIPTION
The DtWsmAddWorkspaceFunctions( ) function enables workspace functions for a window. When
workspace functions are enabled, the default window menu for the window displayed by the
workspace manager shows entries that allow the window to occupy a different set of
workspaces, occupy all workspaces, or be removed from the current workspace.

The display argument is the X display.

The window argument is the window to have its workspace functions enabled.

RETURN VALUE
The DtWsmAddWorkspaceFunctions( ) function returns no value.

APPLICATION USAGE
The application must call the DtWsmAddWorkspaceFunctions( ) function before mapping the
window. The workspace manager only looks at the workspace function information at the time
the workspace manager manages the window. If the workspace manager is currently managing
the window, the application must withdraw the window (see XWithdrawWindow( )), add the
workspace functions, and map the window once again.

By default, the workspace manager enables workspace functions.

The application should call DtWsmAddWorkspaceFunctions( ) to restore the workspace functions
removed by the DtWsmRemoveWorkspaceFunctions( ) function.

SEE ALSO
<Dt/Wsm.h>, XWithdrawWindow( ) in the X/Open CAE Specification, Window Management:
Xlib C Language Binding; DtWsmRemoveWorkspaceFunctions( ).

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 5



DtWsmAddWorkspaceModifiedCallback( ) Workspace Management Services

NAME
DtWsmAddWorkspaceModifiedCallback — add a callback to be called when any workspace is
changed

SYNOPSIS
#include <Dt/Wsm.h>

DtWsmCBContext
DtWsmAddWorkspaceModifiedCallback(Widget widget ,

DtWsmWsModifiedProc ws_change ,
Pointer client_data );

DESCRIPTION
The DtWsmAddWorkspaceModifiedCallback ( ) function works with the workspace manager and
registers a function to be called when a workspace is added, deleted or modified.

The widget argument is a realised widget.

The ws_change argument is the procedure to be called when a workspace is modified.

The client_data argument points to arbitrary client data to be passed back to ws_change .

The header defines the DtWsmWsModifiedProc callback prototype as follows:

typedef void ( ∗DtWsmWsModifiedProc)(Widget widget ,
Atom aWorkspace ,
DtWsmWsReason reason ,
Pointer client_data );

The widget argument is the ID of the widget to be registered with the callback.

The aWorkspace argument is the name of the new current workspace (converted to an X atom).

The reason argument is a type of modification:

DtWSM_REASON_ADD
A new workspace was added.

DtWSM_REASON_BACKDROP
The backdrop for the workspace changed.

DtWSM_REASON_CURRENT
A different workspace was made the current workspace.

DtWSM_REASON_DELETE
A workspace was deleted.

DtWSM_REASON_TITLE
The workspace title changed.

The client_data argument points to the client data to be registered with the callback.

RETURN VALUE
Upon successful completion, the DtWsmAddWorkspaceModifiedCallback ( ) function returns a
workspace callback registration context.

APPLICATION USAGE
The DtWsmAddWorkspaceModifiedCallback ( ) function returns a registration context that the
application must save in order to remove this callback later.

DtWsmAddWorkspaceModifiedCallback ( ) requires a window; thus, a gadget is not acceptable for
the widget argument.

6 X/Open CAE Specification



Workspace Management Services DtWsmAddWorkspaceModifiedCallback( )

The DtWsmRemoveWorkspaceCallback ( ) function needs a registration context to remove the
callback.

SEE ALSO
<Dt/Wsm.h>, DtWsmGetWorkspaceInfo ( ), DtWsmGetWorkspaceList ( ),
DtWsmRemoveWorkspaceCallback ( ).

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 7



DtWsmFreeWorkspaceInfo( ) Workspace Management Services

NAME
DtWsmFreeWorkspaceInfo — free workspace information

SYNOPSIS
#include <Dt/Wsm.h>

void DtWsmFreeWorkspaceInfo(DtWsmWorkspaceInfo ∗pWsInfo );

DESCRIPTION
The DtWsmFreeWorkspaceInfo ( ) function frees workspace information.

The pWsInfo argument points to the workspace information the DtWsmGetWorkspaceInfo ( )
function returns.

RETURN VALUE
The DtWsmFreeWorkspaceInfo ( ) function returns no value.

APPLICATION USAGE
The data space for DtWsmWorkspaceInfo is allocated by DtWsmGetWorkspaceInfo ( ). The
application must call DtWsmFreeWorkspaceInfo ( ) to free the data.

SEE ALSO
<Dt/Wsm.h>, DtWsmGetWorkspaceInfo ( ).

CHANGE HISTORY
First released in Issue 1.

8 X/Open CAE Specification



Workspace Management Services DtWsmGetCurrentBackdropWindow( )

NAME
DtWsmGetCurrentBackdropWindow — get the backdrop window for the current workspace

SYNOPSIS
#include <Dt/Wsm.h>

Window DtWsmGetCurrentBackdropWindow(Display ∗display ,
Window root );

DESCRIPTION
The DtWsmGetCurrentBackdropWindow( ) function works with the workspace manager and
returns the window used as the backdrop for the current workspace.

The display argument is the X display.

The root argument is the root window of the screen of interest.

RETURN VALUE
Upon successful completion, the DtWsmGetCurrentBackdropWindow( ) returns the window used
as the backdrop for the current workspace. The function returns None if there is no backdrop
window for the workspace or if the workspace manager is not running.

APPLICATION USAGE
If the DtWsmGetCurrentBackdropWindow( ) function is not successful, failure may be due to a
memory allocation error or failure to find the correct workspace information (that is, the
workspace manager is not running).

SEE ALSO
<Dt/Wsm.h>, DtWsmGetCurrentWorkspace( ), DtWsmGetWorkspaceInfo ( ).

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 9



DtWsmGetCurrentWorkspace( ) Workspace Management Services

NAME
DtWsmGetCurrentWorkspace — get the current workspace

SYNOPSIS
#include <Dt/Wsm.h>

Status DtWsmGetCurrentWorkspace(Display ∗display ,
Window root ,
Atom ∗paWorkspace );

DESCRIPTION
The DtWsmGetCurrentWorkspace( ) function works with the workspace manager and returns the
name of the current workspace (converted to an X atom).

The display argument is the X display.

The root argument is the root window of the screen of interest.

The paWorkspace argument is the address of an atom to receive the current workspace identifier.

RETURN VALUE
Upon successful completion, the DtWsmGetCurrentWorkspace( ) function returns Success and the
atom identifying the current workspace is returned in paWorkspace ; otherwise, it returns a value
not equal to Success.

APPLICATION USAGE
If the DtWsmGetCurrentWorkspace( ) function is not successful, the most likely reason for failure
is that the workspace manager is not running.

SEE ALSO
<Dt/Wsm.h>.

CHANGE HISTORY
First released in Issue 1.

10 X/Open CAE Specification



Workspace Management Services DtWsmGetWorkspaceInfo( )

NAME
DtWsmGetWorkspaceInfo — get detailed workspace information

SYNOPSIS
#include <Dt/Wsm.h>

Status DtWsmGetWorkspaceInfo(Display ∗display ,
Window root ,
Atom aWorkspace ,
DtWsmWorkspaceInfo ∗∗ppWsInfo );

DESCRIPTION
The DtWsmGetWorkspaceInfo ( ) function works with the workspace manager and returns detailed
information on a specific workspace.

The display argument is the X display.

The root argument is the root window of the screen of interest.

The aWorkspace argument is the workspace name (converted to an X atom).

The ∗ppWsInfo argument is the address of a variable to receive the returned pointer to the
workspace information data.

The DtWsmWorkspaceInfo structure contains at least the following members:

The workspace name (converted to an X atom).Atom workspace

The pixel ID used for the background colour of
the backdrop.

unsigned long bg

The pixel ID used for the foreground colour of
the backdrop.

unsigned long fg

The backdrop file name (converted to an X
atom). The file must be in either X Bitmap file
format (with extension .bm) or X Pixmap file
format (with extension .pm). The workspace
management services look for the file along the
same path used for searching icons. The
directory /usr/dt/backdrops is the default
directory if the file cannot be found along the
icon search path.

Atom backdropName

The colourset number used for this workspace,
which affects the backdrop colour and the
button colour for this workspace on the front
panel.

int colorSetId

The title displayed in the button for this
workspace on the front panel. This string is
interpreted in the locale in which the workspace
manager is running. The title is different from
the workspace name. The workspace name,
when converted from an X atom, is used as the
identifier for a workspace in the workspace
manager function calls. The workspace
manager also uses the workspace name as a
resource name; thus, the characters used in a

char ∗pchTitle

X/Open Common Desktop Environment (XCDE) Services and Applications 11



DtWsmGetWorkspaceInfo( ) Workspace Management Services

workspace name are restricted to the characters
in the X Portable Character Set. The workspace
name for a workspace created from the front
panel is generated automatically by the
workspace manager.
A pointer to an array of windows that make up
the backdrop.

Window ∗backdropWindows

The number of elements in the backdropWindows
array.

int numBackdropWindows

RETURN VALUE
Upon successful completion, the DtWsmGetWorkspaceInfo ( ) function returns Success and the
workspace manager returns in ∗ppWsInfo a pointer to a DtWsmInfo structure that contains
information about the workspace aWorkspace ; otherwise, it returns a value not equal to Success.

APPLICATION USAGE
If the DtWsmGetWorkspaceInfo ( ) function is not successful, failure may be due to a memory
allocation error or failure to find the correct workspace information (that is, the workspace
manager is not running). The application must use the DtWsmFreeWorkspaceInfo ( ) function to
free the data returned in ∗ppWsInfo . The ∗backdropWindows pointer may be useful for
applications that are interested in some events on the root window. Since the backdrop covers
the root window, the backdrop catches the button events before they reach the root.

SEE ALSO
<Dt/Wsm.h>, DtWsmGetWorkspaceList ( ), DtWsmFreeWorkspaceInfo ( ).

CHANGE HISTORY
First released in Issue 1.

12 X/Open CAE Specification



Workspace Management Services DtWsmGetWorkspaceList( )

NAME
DtWsmGetWorkspaceList — get the names of the currently defined workspaces

SYNOPSIS
#include <Dt/Wsm.h>

Status DtWsmGetWorkspaceList(Display ∗display ,
Window root ,
Atom ∗∗ppaWorkspaces ,
int ∗pNumWorkspaces );

DESCRIPTION
The DtWsmGetWorkspaceList ( ) function works with the workspace manager and returns a list of
the names (converted into X atoms) of the currently defined workspaces.

The display argument is the X display.

The root argument is the root window of the screen of interest.

The ∗ppaWorkspaces argument is the address of a pointer to receive the returned pointer to the
workspacelist.

The pNumWorkspaces argument is the address of an integer to receive the number of elements in
the workspacelist.

RETURN VALUE
Upon successful completion, the DtWsmGetWorkspaceList ( ) function returns Success and the
workspace manager returns in ∗ppaWorkspaces the list of atoms identifying workspaces, and
returns in pNumWorkspaces the number of workspaces.

APPLICATION USAGE
If the DtWsmGetWorkspaceList ( ) function is not successful, failure may be due to a memory
allocation error or failure to find the correct workspace information (that is, the workspace
manager is not running). To get detailed information on the workspaces, the application must
first call the DtWsmGetWorkspaceList ( ) function to get the names of all the workspaces. Then, for
each workspace in the list, the application must call the DtWsmGetWorkspaceInfo ( ) function. The
application must use XtFree( ) to free data returned in ∗ppaWorkspaces .

SEE ALSO
<Dt/Wsm.h>, XtFree( ) in the X/Open CAE Specification, Window Management: X Toolkit
Intrinsics; DtWsmGetWorkspaceInfo ( ).

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 13



DtWsmGetWorkspacesOccupied( ) Workspace Management Services

NAME
DtWsmGetWorkspacesOccupied — get the workspaces in which a window resides

SYNOPSIS
#include <Dt/Wsm.h>

Status DtWsmGetWorkspacesOccupied(Display ∗display ,
Window window ,
Atom ∗∗ppaWorkspaces ,
int ∗pNumWs);

DESCRIPTION
The DtWsmGetWorkspacesOccupied( ) function works with the workspace manager and returns
the list of workspaces in which this window resides. Each element of the list is the name of a
workspace (converted to an X atom).

The display argument is the X display.

The window argument is the window of interest.

The ∗ppaWorkspaces argument is the address of a pointer to receive the pointer to a list of
workspace names (converted to X atoms).

The pNumWs argument is the address of an integer to receive the number of elements in the list
of workspaces returned in ∗ppaWorkspaces .

RETURN VALUE
Upon successful completion, the DtWsmGetWorkspacesOccupied( ) function returns Success and
the workspace manager returns in ∗ppaWorkspaces a list of atoms identifying the occupied
workspaces, and returns in pNumWs the number of occupied workspaces; otherwise, it returns a
value not equal to Success.

APPLICATION USAGE
If the DtWsmGetWorkspacesOccupied( ) function is not successful, failure may be due to a memory
allocation error or failure to find the correct workspace information (that is, the workspace
manager is not running). The application must use XtFree( ) to free data returned in
∗ppaWorkspaces .

SEE ALSO
<Dt/Wsm.h>, XtFree( ) in the X/Open CAE Specification, Window Management: X Toolkit
Intrinsics.

CHANGE HISTORY
First released in Issue 1.

14 X/Open CAE Specification



Workspace Management Services DtWsmOccupyAllWorkspaces( )

NAME
DtWsmOccupyAllWorkspaces — put a window into all workspaces

SYNOPSIS
#include <Dt/Wsm.h>

void DtWsmOccupyAllWorkspaces(Display ∗display ,
Window window );

DESCRIPTION
The DtWsmOccupyAllWorkspaces( ) function works with the workspace manager and puts a
window into all currently defined workspaces and also into newly created workspaces.

The display argument is the X display.

The window argument is the window to occupy all workspaces.

Calling the DtWsmSetWorkspacesOccupied( ) function overrides the effect of the
DtWsmOccupyAllWorkspaces( ) function.

RETURN VALUE
The DtWsmOccupyAllWorkspaces( ) function returns no value.

SEE ALSO
<Dt/Wsm.h>, DtWsmSetWorkspacesOccupied( ).

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 15



DtWsmRemoveWorkspaceCallback( ) Workspace Management Services

NAME
DtWsmRemoveWorkspaceCallback — remove a workspace callback

SYNOPSIS
#include <Dt/Wsm.h>

void DtWsmRemoveWorkspaceCallback(DtWsmCBContext context );

DESCRIPTION
The DtWsmRemoveWorkspaceCallback ( ) function works with the workspace manager and
removes a callback called when the current workspace changes or when a workspace is
modified.

The context argument is the context the DtWsmAddWorkspaceCallback ( ) function or the
DtWsmAddWorkspaceModifiedCallback ( ) function returns when the application registers the
callback.

RETURN VALUE
The DtWsmRemoveWorkspaceCallback ( ) function returns no value.

SEE ALSO
<Dt/Wsm.h>, DtWsmAddWorkspaceModifiedCallback ( ), DtWsmAddCurrentWorkspaceCallback ( ).

CHANGE HISTORY
First released in Issue 1.

16 X/Open CAE Specification



Workspace Management Services DtWsmRemoveWorkspaceFunctions( )

NAME
DtWsmRemoveWorkspaceFunctions — remove a window’s workspace functions

SYNOPSIS
#include <Dt/Wsm.h>

void DtWsmRemoveWorkspaceFunctions(Display ∗display ,
Window window );

DESCRIPTION
The DtWsmRemoveWorkspaceFunctions( ) function removes a window’s workspace functions.
When DtWsmRemoveWorkspaceFunctions( ) removes workspace functions, the window menu for
the window the workspace manager displays does not have the entries that allow the window to
occupy a different set of workspaces, occupy all workspaces, or be removed from the current
workspace.

The display argument is the X display.

The window argument is the window to have its workspace functions disabled.

RETURN VALUE
The DtWsmRemoveWorkspaceFunctions( ) function returns no value.

APPLICATION USAGE
The application must call DtWsmRemoveWorkspaceFunctions( ) before the window is mapped.
The workspace manager only looks at the workspace function information at the time the
workspace manager manages the window. If the workspace manager is managing the window,
the application must withdraw the window (see XWithdrawWindow( )), remove the workspace
functions, and map the window once again.

SEE ALSO
XWithdrawWindow( ) in the X/Open CAE Specification, Window Management: Xlib C
Language Binding; <Dt/Wsm.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 17



DtWsmSetCurrentWorkspace( ) Workspace Management Services

NAME
DtWsmSetCurrentWorkspace — set the current workspace

SYNOPSIS
#include <Dt/Wsm.h>

Status DtWsmSetCurrentWorkspace(Widget widget ,
Atom aWorkspace );

DESCRIPTION
The DtWsmSetCurrentWorkspace( ) function works with the workspace manager and sets the
current workspace. Applications can use this function to switch from the current workspace to
another workspace.

The widget argument is a realised widget on the screen of interest.

The aWorkspace argument is the name (in X atom form) of the workspace to be made current.

RETURN VALUE
Upon successful completion, the DtWsmSetCurrentWorkspace( ) function returns Success;
otherwise, it returns a value not equal to Success.

APPLICATION USAGE
If the DtWsmSetCurrentWorkspace( ) function is not successful, the most likely reason for failure is
that the workspace manager is not running. The DtWsmSetCurrentWorkspace( ) function requires
a widget. A gadget is not acceptable for the widget argument.

DtWsmSetCurrentWorkspace( ) sends a message to the workspace manager to switch workspaces.
If the workspace name is not valid, no action is taken and the workspace manager reports no
error.

SEE ALSO
<Dt/Wsm.h>, DtWsmGetCurrentWorkspace( ).

CHANGE HISTORY
First released in Issue 1.

18 X/Open CAE Specification



Workspace Management Services DtWsmSetWorkspacesOccupied( )

NAME
DtWsmSetWorkspacesOccupied — set the workspaces in which a window resides

SYNOPSIS
#include <Dt/Wsm.h>

void DtWsmSetWorkspacesOccupied(Display ∗display ,
Window window ,
Atom ∗paWorkspaces ,
int numWs);

DESCRIPTION
The DtWsmSetWorkspacesOccupied( ) function works with the workspace manager and puts a
window into a set of workspaces.

The display argument is the X display.

The window argument is the window to be put into this set of workspaces.

The paWorkspaces argument points to a list of workspace names (converted to X atoms); the
workspace manager places the window into these workspaces.

The numWs argument is the number of elements in the list of workspaces.

The DtWsmSetWorkspacesOccupied( ) function does not validate the list of requested workspaces.
The workspace manager ignores invalid workspaces in the list.

Calling the DtWsmSetWorkspacesOccupied( ) function overrides the effect of the
DtWsmOccupyAllWorkspaces( ) function.

RETURN VALUE
The DtWsmSetWorkspacesOccupied( ) function returns no value.

SEE ALSO
<Dt/Wsm.h>.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 19



Headers Workspace Management Services

2.3 Headers
This section describes the contents of headers used by the XCDE workspace management service
functions, macros and external variables.

Headers contain the definition of symbolic constants, common structures, preprocessor macros
and defined types. Each function in Section 2.2 specifies the headers that an application must
include in order to use that function. In most cases only one header is required. These headers
are present on an application development system; they do not have to be present on the target
execution system.

20 X/Open CAE Specification



Workspace Management Services <Dt/Wsm.h>

NAME
Dt/Wsm.h — workspace manager definitions

SYNOPSIS
#include <Dt/Wsm.h>

DESCRIPTION
The <Dt/Wsm.h> header defines structures and function prototypes for workspace management
services.

The DtWsmWorkspaceInfo structure contains at least the following members:

X atom name for the workspaceAtom workspace

Backdrop background pixelunsigned long bg

Backdrop foreground pixelunsigned long fg

X atom name for backdropAtom backdropName

Number of colour set usedint colorSetId

Title of workspacechar ∗pchTitle

The backdrop window for the current
workspace

Window backdropWindow

The number of elements in the backdropWindows
array.

int numBackdropWindows

The DtWsmCBContext structure is opaque. Workspace management functions that add
callbacks to uniquely identify callback functions for later removal, return the DtWsmCBContext
structure.

The header defines the following DtWsmWsReason constants:

DtWSM_REASON_ADD
DtWSM_REASON_DELETE
DtWSM_REASON_BACKDROP
DtWSM_REASON_TITLE
DtWSM_REASON_CURRENT

The header defines the following functions:

DtWsmCBContext
DtWsmAddCurrentWorkspaceCallback(Widget widget ,

DtWsmWsChangeProc ws_change ,
Pointer client_data );

void DtWsmAddWorkspaceFunctions(Display ∗display ,
Window window );

void DtWsmRemoveWorkspaceFunctions(Display ∗display ,
Window window );

DtWsmCBContext
DtWsmAddWorkspaceModifiedCallback(Widget widget ,

DtWsmWsModifiedProc ws_change ,
Pointer client_data );

void DtWsmRemoveWorkspaceCallback(DtWsmCBContext context );

void DtWsmFreeWorkspaceInfo(DtWsmWorkspaceInfo ∗pWsInfo );

X/Open Common Desktop Environment (XCDE) Services and Applications 21



<Dt/Wsm.h> Workspace Management Services

Status DtWsmGetCurrentBackdropWindows(Display ∗display ,
Window root );

Status DtWsmGetCurrentWorkspace(Display ∗display ,
Window root ,
Atom ∗paWorkspace );

Status DtWsmSetCurrentWorkspace(Widget widget ,
Atom aWorkspace );

Status DtWsmGetWorkspaceInfo(Display ∗display ,
Window root ,
Atom aWorkspace ,
DtWsmWorkspaceInfo ∗∗ppWsInfo );

Status DtWsmGetWorkspaceList(Display ∗display ,
Window root ,
Atom ∗∗ppaWorkspaces ,
int ∗pNumWs);

Status DtWsmGetWorkspacesOccupied(Display ∗display ,
Window window ,
Atom ∗∗ppaWorkspace ,
int ∗pNumWs);

void DtWsmSetWorkspacesOccupied(Display ∗display ,
Window window ,
Atom ∗paWorkspaces ,
int numWs);

void DtWsmOccupyAllWorkspaces(Display ∗display ,
Window window );

CHANGE HISTORY
First released in Issue 1.

22 X/Open CAE Specification



Chapter 3

Session Management Services

3.1 Introduction
The XCDE session management services provides ICCCM Version 1.1 session management
during a user’s session, from login to logout. These services allow for saving a session, restoring
a session, locking a session and launching screen savers.

A session is the collection of applications, settings and resources that are present on the user’s
desktop. Session management is a set of conventions and protocols that allow a session
manager to save and restore a user’s session.

3.2 Functions
This section defines the functions, macros and external variables that provide XCDE session
management services to support application portability at the C-language source level.

X/Open Common Desktop Environment (XCDE) Services and Applications 23



DtSaverGetWindows( ) Session Management Services

NAME
DtSaverGetWindows — get the list of windows for drawing by a screen saver application

SYNOPSIS
#include <Dt/Saver.h>

Boolean DtSaverGetWindows(Display ∗display ,
Window ∗∗window ,
int ∗count );

DESCRIPTION
The DtSaverGetWindows( ) function returns a list of windows on which a screen saver application
should draw when invoked by XCDE.

The display argument is the X display. The window argument is the address of a pointer to
receive the pointer to a list of windows. The count argument is the address of an integer to
receive the number of elements in the list of windows returned in window .

RETURN VALUE
Upon successful completion, the DtSaverGetWindows( ) function returns True; otherwise, it
returns False.

APPLICATION USAGE
If the DtSaverGetWindows( ) function is not successful, failure may be due to a memory allocation
error or that the screen saver application was not invoked from XCDE.

The application must use XtFree( ) to free data returned in ∗window.

SEE ALSO
<Dt/Saver.h>; XtFree( ) in the X/Open CAE Specification, Window Management: X Toolkit
Intrinsics.

CHANGE HISTORY
First released in Issue 1.

24 X/Open CAE Specification



Session Management Services DtSessionRestorePath( )

NAME
DtSessionRestorePath — get a pathname for the application’s state information file

SYNOPSIS
#include <Dt/Session.h>

Boolean DtSessionRestorePath(Widget widget ,
char ∗∗restorePath ,
char ∗restoreFile );

DESCRIPTION
The DtSessionRestorePath( ) function returns a pathname to an application’s state information.

The widget argument is the application’s top level widget. The restorePath argument is the
address of the character string to receive the pathname of the application’s state information file.
The restoreFile argument is the filename of the file containing the application state information.
This is the filename specified with the −session option at application invocation.

RETURN VALUE
Upon successful completion, the DtSessionRestorePath( ) function returns True; otherwise, it
returns False.

APPLICATION USAGE
The application must support the −session command-line option.

The application must use XtFree( ) to free data returned in ∗restorePath.

SEE ALSO
<Dt/Session.h>, DtSessionSavePath( ); XtFree( ) in the X/Open CAE Specification, Window
Management: X Toolkit Intrinsics; X/Open CAE Specification, Window Management: File
Formats and Application Conventions.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 25



DtSessionSavePath( ) Session Management Services

NAME
DtSessionSavePath — get a pathname for saving application state information

SYNOPSIS
#include <Dt/Session.h>

Boolean DtSessionSavePath(Widget widget ,
char ∗∗savePath ,
char ∗∗saveFile );

DESCRIPTION
The DtSessionSavePath( ) function returns the pathname to be used by an application for saving
its state information. The information is later used by the application to restore its state.

The widget argument is the application’s top level widget. The savePath argument is the address
of the character string to receive the pathname of the state information file to be used by the
application for storing its state. The saveFile argument is the address of the character string to
receive the filename of the file to be used by the application for storing its state.

RETURN VALUE
Upon successful completion, the DtSessionSavePath( ) function returns True; otherwise, it returns
False.

APPLICATION USAGE
The application should add −session saveFile when it updates its WM_COMMAND property.

The application must use XtFree( ) to free data returned in ∗savePath and ∗saveFile.

SEE ALSO
<Dt/Session.h>, DtSessionRestorePath( ); XtFree( ) in the X/Open CAE Specification, Window
Management: X Toolkit Intrinsics; X/Open CAE Specification, Window Management: File
Formats and Application Conventions.

CHANGE HISTORY
First released in Issue 1.

26 X/Open CAE Specification



Session Management Services Headers

3.3 Headers
This section describes the contents of headers used by the XCDE session management service
functions, macros and external variables.

Headers contain the definition of symbolic constants, common structures, preprocessor macros
and defined types. Each function in Section 3.2 specifies the headers that an application must
include in order to use that function. In most cases only one header is required. These headers
are present on an application development system; they do not have to be present on the target
execution system.

X/Open Common Desktop Environment (XCDE) Services and Applications 27



<Dt/Saver.h> Session Management Services

NAME
Dt/Saver.h — screen saver definitions

SYNOPSIS
#include <Dt/Saver.h>

DESCRIPTION
The <Dt/Saver.h> header defines the following as a function:

Boolean DtSaverGetWindows(Display ∗display ,
Window ∗∗window ,
int ∗count );

CHANGE HISTORY
First released in Issue 1.

28 X/Open CAE Specification



Session Management Services <Dt/Session.h>

NAME
Dt/Session.h — session management services definitions

SYNOPSIS
#include <Dt/Session.h>

DESCRIPTION
The <Dt/Session.h> header defines the following as functions:

Boolean DtSessionSavePath(Widget widget ,
char ∗∗save_path ,
char ∗∗save_file );

Boolean DtSessionRestorePath(Widget widget ,
char ∗∗restore_path ,
char ∗restore_file );

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 29



Actions Session Management Services

3.4 Actions
This section defines the actions that provide XCDE session management services to support
application portability at the C-language source or shell script levels.

30 X/Open CAE Specification



Session Management Services <dtsessionaction>

NAME
dtsessionaction — XCDE session management actions

SYNOPSIS
ExitSession
LockDisplay
ReloadResources

DESCRIPTION
The XCDE Session Management Services support the following session management actions:

ExitSession
Exit the user’s current session.

LockDisplay
Lock the user’s display.

ReloadResources
Reload the user’s resources.

These actions can be invoked from an application using the DtActionInvoke ( ) function or
invoked from a command line using the dtaction utility.

SEE ALSO
dtaction, DtActionInvoke ( ) in the XCDI specification.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 31



Capabilities Session Management Services

3.5 Capabilities
A conforming implementation of the XCDE session management services supports at least the
following capabilities:

1. Conforms to the Required items in the Application Style Checklist in Chapter 20 on page
355.

2. Has been internationalised using the standard interfaces in the X/Open CAE Specification,
System Interfaces and Headers, Issue 4, Version 2, the X/Open CAE Specification,
Window Management: Xlib C Language Binding, and the X/Open CAE Specification,
Motif Toolkit API, and supports any locale available in the underlying X Window System
Xlib implementation.

3. Provides ICCCM 1.1 compliant session management (see the X/Open CAE Specification,
Window Management: File Formats and Application Conventions).

4. Restores an initial home or current session at session startup. See the Style Management
Services Capabilities in Section 13.3 on page 301 for configuration of session startup.

5. Provides session locking on user request. Some systems may provide a user option to
perform session locking on X server timeout.

6. Invokes a session screen saver on user request. Some systems may provide a user option
to perform screen saving on X server timeout.

7. Saves the home session at user request or current session at session exit.

8. Displays a confirmation dialog or session selection dialog at session exit. See the Style
Management Services Capabilities in Section 13.3 on page 301 for configuration of session
exit.

32 X/Open CAE Specification



Chapter 4

Help Services

4.1 Introduction
The XCDE help services are a system for developing online help for any XCDE-based application.
It allows authors to write, and developers to integrate, online help that includes graphics and
text formatting, embedded hyperlinks, and two-way communication with the application.

The services include three main components: a markup language, an application program
interface, and an action interface. The HelpTag markup language is used to author help topics. It
complies with the Standard Generalised Markup Language (SGML), ISO 8879: 1986. Various
function calls allow applications to use the help services directly. Help actions provide access to
help from other components such as the front panel.

4.2 Widgets
This section defines the widget classes that provide XCDE help services to support application
portability at the C-language source level.

X/Open Common Desktop Environment (XCDE) Services and Applications 33



DtHelpDialog( ) Help Services

NAME
DtHelpDialog — DtHelpDialog widget class

SYNOPSIS
#include <Dt/HelpDialog.h>

DESCRIPTION
The DtHelpDialog widget provides users with functionality for viewing and navigating
structured online information (XCDE help volumes). This functionality includes text and
graphics rendering, embedded hypertext links and various navigation methods to move through
online help information. The widget supports rendering of XCDE help volumes, system manual
pages, text files and character string values.

When the user resizes the window, the DtHelpDialog widget dynamically reformats its contents
to fit the new window size if the DtNhelpType of the contents is DtHELP_TYPE_TOPIC or
DtHELP_TYPE_DYNAMIC_STRING. If the DtNhelpType of the contents is
DtHELP_TYPE_STRING, DtHELP_TYPE_MAN_PAGE or DtHELP_TYPE_FILE, the contents are
not reformatted. Instead, scroll bars may appear when the user resizes the window smaller than
the help contents. The exact scrollbar behaviour is controlled by the DtNscrollBarPolicy
resource.

Users can re-specify certain resources for the automatically created widgets and gadgets
contained within the DtHelpDialog widget hierarchy. The following list identifies the names of
these widgets (or gadgets):

Topic Tree − TocArea

Display Area − DisplayArea

Button Box − BtnBox

The DtHelpDialog widget honours all default and user-specified resource settings, with one
exception. In the case where an error occurs due to an invalid request, the DtHelpDialog widget
posts the proper error message in its display area and modifies the DtNhelpType resource to
reflect the current contents of the display area (that is, a string message). Applications and users
should set the DtNhelpType resource to the appropriate value with each setting of the
DtHelpDialog widget.

Classes

The DtHelpDialog widget inherits behaviour and resources from the Core , Composite , Constraint ,
XmManager and XmBulletinBoard classes.

The class pointer is dtHelpDialogClass.

The class name is DtHelpDialog .

New Resources

To reference a resource by name or by class in a .Xdefaults file, the application must remove the
DtN or DtC prefix and use the remaining letters. To specify one of the defined values for a
resource in a .Xdefaults file, the application must remove the Dt prefix and use the remaining
letters (in either lower case or upper case, but including any underscores between words). The
codes in the access column indicate if the given resource can be set at creation time (C), set by
using XtSetValues( ) (S), retrieved by using XtGetValues( ) (G), or is not applicable (N/A).

34 X/Open CAE Specification



Help Services DtHelpDialog( )

DtHelpDialog Resource Set
Name Class Type Default Access
DtNcloseCallback DtCCloseCallback XtCallbackList NULL C
DtNcolumns DtCColumns Dimension 70 CSG
DtNhelpFile DtCHelpFile char ∗ NULL CSG
DtNhelpOnHelpVolume DtCHelpOnHelpVolume char ∗ See Definition C
DtNhelpType DtCHelpType unsigned char See Definition CSG
DtNhelpVolume DtCHelpVolume char ∗ NULL CSG
DtNhyperLinkCallback DtCHyperLinkCallback XtCallbackList NULL C
DtNlocationId DtCLocationId char ∗ See Definition CSG
DtNmanPage DtCManPage char ∗ NULL CSG
DtNrows DtCRows Dimension 25 CSG
DtNscrollBarPolicy DtCScrollBarPolicy unsigned char See Definition C
DtNstringData DtCStringData char ∗ NULL CSG
DtNtopicTitle DtCTopicTitle char ∗ NULL CSG

DtNcloseCallback
Specifies the list of callbacks called when the user activates the Close button. The
callback reason is DtCR_HELP_CLOSE.

DtNcolumns
Specifies the number of columns of text to display in the display area of the
DtHelpDialog widget.

DtNhelpFile
Specifies the absolute pathname of a text file to be read and displayed. This
resource is used when the DtNhelpType is set to DtHELP_TYPE_FILE.

DtNhelpOnHelpVolume
Specifies the help volume that contains the help topics for the help user-interface
components in the widget. This is displayed in an instance of the DtHelpDialog
widget when the user requests help from within the widget. The default value for
this resource is Help4Help, which refers to the default-supported help volume.
This resource supports absolute pathnames and pathless help volume names.
When just a volume name is used, the volume must be placed or linked to one of
the default search locations, or one of the two help search path environment
variables must be properly set. See the ENVIRONMENT VARIABLES section for
more information on setting and modifying these variables.

DtNhelpType
Specifies the current topic type. When the value is DtHELP_TYPE_TOPIC, the
DtNlocationId and DtNhelpVolume resources are used and the requested help
topic is displayed. When the value is DtHELP_TYPE_STRING or DtHELP_TYPE_-
DYNAMIC_STRING, the DtNstringData resource is used and the requested string
is displayed. When the value is DtHELP_TYPE_FILE, the DtNhelpFile resource is
used and the requested text file is displayed. When the value is DtHELP_TYPE_-
MAN_PAGE, the DtNmanPage resource is used and the requested system manual
page is displayed. The initial default value is DtHELP_TYPE_TOPIC; however,
each time there is a request to display a help topic, text file, manual page or text
string, the user should reset DtNhelpType to the proper type.

DtNhelpVolume
Specifies the help volume to use. This resource is used in conjunction with the
DtNlocationId resource to display help topics. This resource supports absolute
pathnames and pathless help volume names. When using just a volume name, the
volume must be placed in or linked to one of the default search locations, or one of

X/Open Common Desktop Environment (XCDE) Services and Applications 35



DtHelpDialog( ) Help Services

the two help search path environment variables must be properly set. See the
ENVIRONMENT VARIABLES section for more information on setting and
modifying these variables.

DtNhyperLinkCallback
Specifies the callback that is called when a client-specific hypertext link is activated
in the display area of the DtHelpDialog widget. Links are activated when the user
presses mouse button 1 over a hypertext link, or presses <return> with the
keyboard focus on the hypertext link item. The callback reason is DtCR_HELP_-
LINK_ACTIVATE. DtNhyperLinkCallback allows applications to register a
callback procedure that is used to process one of four hypertext link types:
DtHELP_LINK_APP_DEFINE, DtHELP_LINK_TOPIC, DtHELP_LINK_-
MAN_PAGE or DtHELP_LINK_TEXT_FILE. For DtHELP_LINK_TOPIC, the
callback is made only when the windowHint value in the callback structure is
DtHELP_NEW_WINDOW.

DtNlocationId
Specifies a help topic to display. Applications reference topics within a help
volume using a location ID. Location IDs are author-defined at help volume
creation time. Applications use these location IDs to display the desired help topic.
The default value for this resource is _HOMETOPIC, which refers to the help
volume’s top level topic. DtNhelpVolume must be set to the help volume in which
the corresponding location ID resides, and DtNhelpType must be set to
DtHELP_TYPE_TOPIC.

DtNmanPage
Specifies the system manual page to display in the current DtHelpDialog widget.
This resource is used when the DtNhelpType is set to DtHELP_TYPE_MAN_PAGE.

DtNrows
Specifies the number of rows of text to display in the display area of the
DtHelpDialog widget.

DtNscrollBarPolicy
Controls the automatic placement of scroll bars in the text display area. If it is set to
DtHELP_AS_NEEDED_SCROLLBARS, the scroll bars are displayed only if the
display area exceeds the clip area in one or both dimensions. A resource value of
DtHELP_STATIC_SCROLLBARS causes the display area to display the scroll bars
whenever the DtHelpDialog widget is managed, regardless of the relationship
between the clip window and the display area. A value of DtHELP_NO_-
SCROLLBARS removes scroll bars from the DtHelpDialog widget. The default
value is DtHELP_AS_NEEDED_SCROLLBARS.

DtNstringData
Specifies the string data (char ∗) to display in the current DtHelpDialog widget.
This resource is used when the DtNhelpType is set to DtHELP_TYPE_STRING.

DtNtopicTitle
Specifies the topic title (char ∗) to be used in conjunction with either the
DtNstringData or DtNhelpFile resource. The topic title is required in order to
maintain an accurate and descriptive history list. The topic title is also used as the
default heading for the banner page and page header when printing. When printing
help topics, this resource may be ignored.

36 X/Open CAE Specification



Help Services DtHelpDialog( )

Inherited Resources

The DtHelpDialog widget inherits behaviour and resources from the following named
superclasses. For a complete description of each resource, see the entry in X/Open CAE
Specification, Motif Toolkit API for that superclass.

XmBulletinBoard Resource Set
Name Class Type Default Access
XmNallowOverlap XmCAllowOverlap Boolean True CSG
XmNautoUnmanage XmCAutoUnmanage Boolean True CG
XmNbuttonFontList XmCButtonFontList XmFontList dynamic CSG
XmNcancelButton XmCWidget Widget dynamic SG
XmNdefaultButton XmCWidget Widget dynamic SG
XmNdefaultPosition XmCDefaultPosition Boolean True CSG
XmNdialogStyle XmCDialogStyle unsigned char dynamic CSG
XmNdialogTitle XmCDialogTitle XmString NULL CSG
XmNfocusCallback XmCCallback XtCallbackList NULL C
XmNlabelFontList XmCLabelFontList XmFontList dynamic CSG
XmNmapCallback XmCCallback XtCallbackList NULL C
XmNmarginHeight XmCMarginHeight Dimension 10 CSG
XmNmarginWidth XmCMarginWidth Dimension 10 CSG
XmNnoResize XmCNoResize Boolean False CSG
XmNresizePolicy XmCResizePolicy unsigned char XmRESIZE_ANY CSG
XmNshadowType XmCShadowType unsigned char XmSHADOW_OUT CSG
XmNtextFontList XmCTextFontList XmFontList dynamic CSG
XmNtextTranslations XmCTranslations XtTranslations NULL C
XmNunmapCallback XmCCallback XtCallbackList NULL C

XmManager Resource Set
Name Class Type Default Access
XmNbottom- XmCBottom- Pixel dynamic CSG

ShadowColor ShadowColor
XmNbottom- XmCBottom- Pixmap XmUNSPECIFIED- CSG

ShadowPixmap ShadowPixmap _PIXMAP
XmNforeground XmCForeground Pixel dynamic CSG
XmNhelpCallback XmCCallback XtCallbackList NULL C
XmNhighlightColor XmCHighlightColor Pixel dynamic CSG
XmNhighlightPixmap XmCHighlightPixmap Pixmap dynamic CSG
XmNinitialFocus XmCInitialFocus Widget dynamic CSG
XmNnavigationType XmCNavigationType XmNavigation- XmTAB_GROUP CSG

Type
XmNshadowThickness XmCShadowThickness Dimension dynamic CSG
XmNstringDirection XmCStringDirection XmString- dynamic CG

Direction
XmNtopShadowColor XmCTopShadowColor Pixel dynamic CSG
XmNtopShadowPixmap XmCTopShadowPixmap Pixmap dynamic CSG
XmNtraversalOn XmCTraversalOn Boolean True CSG
XmNunitType XmCUnitType unsigned char dynamic CSG
XmNuserData XmCUserData XtPointer NULL CSG

Composite Resource Set
Name Class Type Default Access
XmNchildren XmCReadOnly WidgetList NULL G
XmNinsertPosition XmCInsertPosition XtOrderProc NULL CSG
XmNnumChildren XmCReadOnly Cardinal 0 G

X/Open Common Desktop Environment (XCDE) Services and Applications 37



DtHelpDialog( ) Help Services

Core Resource Set
Name Class Type Default Access
XmNaccelerators XmCAccelerators XtAccelerators dynamic N/A
XmNancestorSensitive XmCSensitive Boolean dynamic G
XmNbackground XmCBackground Pixel dynamic CSG
XmNbackgroundPixmap XmCPixmap Pixmap XmUNSPECIFIED- CSG

_PIXMAP
XmNborderColor XmCBorderColor Pixel XtDefaultForeground CSG
XmNborderPixmap XmCPixmap Pixmap XmUNSPECIFIED- CSG

_PIXMAP
XmNborderWidth XmCBorderWidth Dimension 0 CSG
XmNcolormap XmCColormap Colormap dynamic CG
XmNdepth XmCDepth int dynamic CG
XmNdestroyCallback XmCCallback XtCallbackList NULL C
XmNheight XmCHeight Dimension dynamic CSG
XmNinitialResources- XmCInitialResources- Boolean True C

Persistent Persistent
XmNmappedWhen- XmCMappedWhen- Boolean True CSG

Managed Managed
XmNscreen XmCScreen Screen ∗ dynamic CG
XmNsensitive XmCSensitive Boolean True CSG
XmNtranslations XmCTranslations XtTranslations dynamic CSG
XmNwidth XmCWidth Dimension dynamic CSG
XmNx XmCPosition Position 0 CSG
XmNy XmCPosition Position 0 CSG

Callback Information

A pointer to the following structure is passed to each callback:

typedef struct {
int reason ;
XEvent ∗event ;
char ∗locationId ;
char ∗helpVolume ;
char ∗specification ;
int hyperType ;
int windowHint ;

} DtHelpDialogCallbackStruct;

The reason argument indicates why the callback was invoked.

The event argument points to the XEvent that triggered the callback.

The locationId argument indicates the DtNlocationId for the current topic. This value is NULL
whenever the hyperType value is not DtHELP_LINK_TOPIC or DtHELP_LINK_APP_DEFINE.

The helpVolume argument indicates the current help volume. This value is NULL whenever the
hyperType value is not DtHELP_LINK_TOPIC or DtHELP_LINK_APP_DEFINE.

The specification argument indicates any author-defined data that was contained within the
hypertext link selected. This value returns NULL if no author-defined data was given. For
hyperlinks of type DtHELP_MAN_PAGE, the specification argument contains the name of the
manual page. For hyperlinks of type DtHELP_LINK_TEXT_FILE, the specification argument
contains that name of the file.

38 X/Open CAE Specification



Help Services DtHelpDialog( )

The hyperType argument indicates the hypertext link type. Possible values are: DtHELP_LINK_-
TOPIC, DtHELP_LINK_MAN_PAGE, DtHELP_LINK_APP_DEFINE or DtHELP_LINK_-
TEXT_FILE.

The windowHint argument indicates a hint for the type of window (quick help, existing or new
window) to use. This value contains one of the following three types:
DtHELP_POPUP_WINDOW, DtHELP_CURRENT_WINDOW or DtHELP_NEW_WINDOW.

Additional Behaviour

The DtHelpDialog widget has the additional behaviour described below:

<MAny> <KCancel>
Calls the active callbacks for the Close button. If a <BDrag> for either a selection or
scrollbar movement is in process, the <KCancel> aborts that action.

<KSpace>, <KActivate> or <BSelect> in Topic Tree Text
Opens the help topic currently selected, displays that topic in the display area and
updates the topic tree to match the newly displayed topic.

<KSpace>, <KActivate> or <BSelect> in Display Area Text
Invokes the hypertext link that contains the current selection.

<DoubleClick> in Topic Tree or Display Area Text
Ignored.

<BDrag> in Topic Tree or Display Area Text
Selects the text from the drag start point to the drag end point. Moving and holding
the <BDrag> outside the topic tree or display area scrolls the window, selecting the
newly exposed text.

<MCtrl> or <MShift> <BSelect> in Topic Tree Text
<MCtrl> <KSpace> in Topic Tree Text
<MCtrl> <KActivate> in Topic Tree Text

Invokes the DtNhyperLinkCallback for the DtHelpDialog widget, setting the
helpType to DtHELP_LINK_TOPIC, the windowHint to DtHELP_NEW_WINDOW,
the helpVolume to the current volume name and the locationId to the selected item’s
location ID. If no DtNhyperLinkCallback is supplied, the action is ignored.

<MCtrl> or <MShift> <BSelect> in Display Area Hypertext Link Text
Invokes the DtNhyperLinkCallback for the DtHelpDialog widget, honouring all
existing link settings, but forces the windowHint to DtHELP_NEW_WINDOW. If no
DtNhyperLinkCallback is supplied, the hypertext link is handled internally.

<KSelectAll> in Display Area or Topic Tree
Selects all text within the topic tree area or display area.

<KDeSelectAll> in Display Area or Topic Tree
Deselects all text within the topic tree area or display area.

<KCopy> in the Display Area or Topic Tree
Copies the currently selected text to the clipboard.

<KPageDown> or <MCtrl> <KDown> in Display Area or Topic Tree
Displays the next page of text.

<KPageLeft> or <MCtrl> <KLeft> in Display Area or Topic Tree
Scrolls the information to the left.

X/Open Common Desktop Environment (XCDE) Services and Applications 39



DtHelpDialog( ) Help Services

<KPageRight> or <MCtrl> <KRight> in Display Area or Topic Tree
Scrolls the information to the right.

<KPageUp> or <MCtrl> <KUp> in Display Area or Topic Tree
Displays the previous page of information.

<KBeginData> in the Display Area or Topic Tree
Displays the first page of information.

<KEndData> in the Display Area or Topic Tree
Displays the last page of information.

The following operations are supported, but the key bindings are implementation-dependent:

<implementation-dependent>
Moves the traversal highlight up, down, left or right to the next hypertext link item.

Virtual Bindings

The bindings for virtual keys are implementation-dependent.

ENVIRONMENT VARIABLES
The DtHelpDialog widget uses two environment variables for locating help volumes within the
desktop environment:

DTHELPSEARCHPATH
The system search path environment variable for locating help volumes on local
and remote mounted systems.

DTHELPUSERSEARCHPATH
The search path environment variable for locating user-specific help volumes on
local and remote mounted systems.

The environment variables contain colon-separated lists of directory paths. Each directory path
can contain both environment variable names as well as special field descriptors that are
expanded at runtime.

Field descriptors consist of a percent-sign character (%) followed by a single character. Field
descriptors and their substitution values are:

%H Replaced with the current volume name being searched for.

%L Replaced with the current value of the LANG environment variable.

%% Replaced with a single %.

The default value for DTHELPUSERSEARCHPATH is:

$HOME/.dt/help/$DTUSERSESSION/%H:
$HOME/.dt/help/$DTUSERSESSION/%H.sdl:
$HOME/.dt/help/%H:
$HOME/.dt/help/%H.sdl:

The DTHELPUSERSEARCHPATH is first searched for the requested volume. If the volume is
not found, the DTHELPSEARCHPATH value is searched.

40 X/Open CAE Specification



Help Services DtHelpDialog( )

The default value for DTHELPSEARCHPATH path is:

/etc/dt/appconfig/help/%L/%H:
/etc/dt/appconfig/help/%L/%H.sdl:
/etc/dt/appconfig/help/C/%H:
/etc/dt/appconfig/help/C/%H.sdl:
/usr/dt/appconfig/help/%L/%H:
/usr/dt/appconfig/help/%L/%H.sdl:
/usr/dt/appconfig/help/C/%H:
/usr/dt/appconfig/help/C/%H.sdl:

SEE ALSO
<Dt/HelpQuickD.h>, <Dt/Help.h>, DtCreateHelpQuickDialog ( ), DtHelpSetCatalogName ( );
XmManager and XmBulletinBoard in the X/Open CAE Specification, Motif Toolkit API; Section
4.6 on page 65.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 41



DtHelpQuickDialog( ) Help Services

NAME
DtHelpQuickDialog — DtHelpQuickDialog widget class

SYNOPSIS
#include <Dt/HelpQuickD.h>

DESCRIPTION
The DtHelpQuickDialog widget provides users with a constrained set of functionality for
viewing and and navigating structured online information (XCDE help volumes). This
functionality includes text and graphics rendering, embedded hypertext links and limited
navigation methods to move through online help information. The widget supports rendering
of XCDE help volume, system manual pages, text files and character string values.

When the user resizes the window, the DtHelpQuickDialog widget dynamically reformats its
contents to fit the new window size if the DtNhelpType of the contents is
DtHELP_TYPE_TOPIC or DtHELP_TYPE_DYNAMIC_STRING. If the DtNhelpType of the
contents is DtHELP_TYPE_STRING, DtHELP_TYPE_MAN_PAGE or DtHELP_TYPE_FILE, the
contents are not reformatted. Instead, scroll bars may appear when the user resizes the window
smaller than the help contents. The exact scrollbar behaviour is controlled by the
DtNscrollBarPolicy resource.

Users can re-specify certain resources for the automatically created widget contained within the
DtHelpQuickDialog hierarchy. The following is the name of the widget:

Display Area − DisplayArea

The DtHelpQuickDialog widget honours all default and user-specified resource settings, with
one exception. In the case where an error occurs due to a non-valid request, the widget posts the
proper error message in its display area, and modifies the DtNhelpType to reflect the current
contents of the display area (that is, a string message). Applications and users should set the
DtNhelpType to the appropriate value with each setting of the help value.

Classes

The DtHelpQuickDialog widget inherits behaviour and resources from the Core , Composite ,
Constraint , XmManager and XmBulletinBoard classes.

The class pointer is dtHelpQuickDialogClass.

The class name is DtHelpQuickDialog .

New Resources

To reference a resource by name or by class in a .Xdefaults file, the application must remove the
DtN or DtC prefix and use the remaining letters. To specify one of the defined values for a
resource in a .Xdefaults file, the application must remove the Dt prefix and use the remaining
letters (in either lower case or upper case, but including any underscores between words). The
codes in the access column indicate if the given resource can be set at creation time (C), set by
using XtSetValues( ) (S), retrieved by using XtGetValues( ) (G), or is not applicable (N/A).

42 X/Open CAE Specification



Help Services DtHelpQuickDialog( )

DtHelpQuickDialog Resource Set
Name Class Type Default Access
DtNbackLabelString DtCBackLabelString XmString Back Track CSG
DtNcloseCallback DtCCloseBtnCallback XtCallbackList NULL C
DtNcloseLabelString DtCcloseLabelString XmString Close CSG
DtNcolumns DtCColumns Dimension 50 CSG
DtNhelpFile DtCHelpFile char ∗ NULL CSG
DtNhelpLabelString DtCHelpLabelString XmString Help CSG
DtNhelpOnHelp- DtCHelpOnHelp- char ∗ See Definition C

Volume Volume
DtNhelpType DtCHelpType unsigned char DtHELP_TYPE- CSG

_TOPIC
DtNhelpVolume DtCHelpVolume char ∗ NULL CSG
DtNhyperLink- DtCHyperLink- XtCallbackList NULL C

Callback Callback
DtNlocationId DtCLocationId char ∗ See Definition CSG
DtNmanPage DtCManPage char ∗ NULL CSG
DtNminimizeButtons DtCMinimizeButtons Boolean True C
DtNmoreLabelString DtCMoreLabelString XmString More CSG
DtNprintLabelString DtCPrintLabelString XmString Print... CSG
DtNrows DtCRows Dimension 15 CSG
DtNscrollBarPolicy DtCScrollBarPolicy unsigned char DtHELP_AS- C

_NEEDED-
_SCROLLBARS

DtNstringData DtCStringData char ∗ NULL CSG
DtNtopicTitle DtCTopicTitle char ∗ NULL CSG

DtNbackLabelString
Specifies the string label for the Back button.

DtNcloseCallback
Specifies the list of callbacks called when the application activates the Close button.
The callback reason is DtCR_HELP_CLOSE.

DtNcloseLabelString
Specifies the string label for the Close button.

DtNcolumns
Specifies the number of columns of text to display in the DtHelpQuickDialog
widget display area.

DtNhelpFile
Specifies the absolute pathname of a text file to be read and displayed. This
resource is used when the DtNhelpType is set to DtHELP_TYPE_FILE. The topic
title is required in order to maintain an accurate and descriptive history list.

DtNhelpLabelString
Specifies the string label for the Help button.

DtNhelpOnHelpVolume
Specifies the help volume that contains the help topics for the help user interface
components in the widget. This is displayed in an instance of the
DtHelpQuickDialog widget when the user requests help from within the widget.
The default value for this resource is Help4Help, which refers to the default
supported help volume. This resource supports absolute pathnames and pathless
help volume names. When just a volume name is used, the volume must be placed

X/Open Common Desktop Environment (XCDE) Services and Applications 43



DtHelpQuickDialog( ) Help Services

or linked to one of the default search locations, or one of the two help search path
environment variables must be properly set. See the ENVIRONMENT
VARIABLES section for more information on setting and modifying these variables.

DtNhelpType
Specifies the current topic type. When the value is DtHELP_TYPE_TOPIC, the
DtNlocationId and DtNhelpVolume resources are used and the requested help
topic is displayed. When the value is DtHELP_TYPE_STRING or DtHELP_TYPE_-
DYNAMIC_STRING, the DtNstringData resource is used and the requested string
is displayed. When the value is DtHELP_TYPE_FILE, the DtNhelpFile resource is
used and the requested text file is displayed. When the value is DtHELP_TYPE_-
MAN, the DtNmanPage resource is used and the requested system manual page is
displayed. The initial default value is DtHELP_TYPE_TOPIC; however, each time
there is a request to display a help topic, text file, manual page or text string, the
user should reset DtNhelpType to the proper type.

DtNhelpVolume
Specifies the help volume to use. This resource is used in conjunction with the
DtNlocationId resource to display help topics. This resource supports absolute
pathnames and pathless help volume names. When using just a volume name, the
volume must be placed in or linked to one of the default search locations, or one of
the two help search path environment variables must be properly set. See the
ENVIRONMENT VARIABLES section for more information on setting and
modifying these variables.

DtNhyperLinkCallback
Specifies the callback called when a client-specific hypertext link type is activated in
the display area of the DtHelpQuickDialog widget. Links are activated when the
user presses mouse button 1 over a hypertext link, or presses <KActivate> with the
keyboard focus on the hypertext link item. The callback reason is
DtCR_HELP_LINK_ACTIVATE. DtNhyperLinkCallback allows applications to
register a callback procedure used to process one of four hypertext link types:
DtHELP_LINK_APP_DEFINE, DtHELP_LINK_TOPIC, DtHELP_LINK_-
MAN_PAGE or DtHELP_LINK_TEXT_FILE. For the DtHELP_LINK_TOPIC, the
callback is made only when the windowHint value in the callback structure is
DtHELP_NEW_WINDOW.

DtNlocationId
Specifies a help topic to display. Applications reference topics within a help
volume using a location ID. Location IDs are author-defined at help volume
creation time. Applications use these location IDs to display the desired help topic.
The default value for this resource is _HOMETOPIC, which refers to the help
volume’s top level topic. DtNhelpVolume must be set to the help volume in which
the corresponding location ID resides, and DtNhelpType must be set to
DtHELP_TYPE_TOPIC.

DtNmanPage
Specifies the system manual page to display in the current DtHelpQuickDialog
widget. This resource is used when the DtNhelpType is set to DtHELP_TYPE_-
MAN_PAGE.

DtNminimizeButtons
Sets the buttons to the width of the widest button and the height of the tallest
button if False. If True, button width and height are not modified.

44 X/Open CAE Specification



Help Services DtHelpQuickDialog( )

DtNmoreLabelString
Specifies the string label for the More button.

DtNprintLabelString
Specifies the string label for the Print button.

DtNrows Specifies the number of rows of text to display in the display area of the
DtHelpQuickDialog widget.

DtNscrollBarPolicy
Controls the automatic placement of scroll bars in the text display area. If it is set to
DtHELP_AS_NEEDED_SCROLLBARS, the scroll bars are displayed only if the
display area exceeds the clip area in one or both dimensions. A resource value of
DtHELP_STATIC_SCROLLBARS causes the display area to display the scroll bars
whenever the DtHelpQuickDialog widget is managed, regardless of the relationship
between the clip window and the display area. A value of DtHELP_NO_-
SCROLLBARS removes scroll bars from the DtHelpQuickDialog widget. The
default value is DtHELP_AS_NEEDED_SCROLLBARS.

DtNstringData
Specifies the string data (char ∗) to display in the current DtHelpQuickDialog
widget. This resource is used when the DtNhelpType is set to DtHELP_TYPE_-
STRING.

DtNtopicTitle
Specifies the topic title (char ∗) to be used in conjunction with either the
DtNstringData or DtNhelpFile resource. The topic title is required in order to
maintain an accurate and descriptive history list. The topic title is also used as the
default heading for the banner page and page header when printing. When printing
help topics, this resource may be ignored.

Inherited Resources

The DtHelpQuickDialog widget inherits behaviour and resources from the following named
superclasses. For a complete description of each resource, see the entry in X/Open CAE
Specification, Motif Toolkit API for that superclass.

X/Open Common Desktop Environment (XCDE) Services and Applications 45



DtHelpQuickDialog( ) Help Services

XmBulletinBoard Resource Set
Name Class Type Default Access
XmNallowOverlap XmCAllowOverlap Boolean True CSG
XmNautoUnmanage XmCAutoUnmanage Boolean True CG
XmNbuttonFontList XmCButtonFontList XmFontList dynamic CSG
XmNcancelButton XmCWidget Widget dynamic SG
XmNdefaultButton XmCWidget Widget dynamic SG
XmNdefaultPosition XmCDefaultPosition Boolean True CSG
XmNdialogStyle XmCDialogStyle unsigned char dynamic CSG
XmNdialogTitle XmCDialogTitle XmString NULL CSG
XmNfocusCallback XmCCallback XtCallbackList NULL C
XmNlabelFontList XmCLabelFontList XmFontList dynamic CSG
XmNmapCallback XmCCallback XtCallbackList NULL C
XmNmarginHeight XmCMarginHeight Dimension 10 CSG
XmNmarginWidth XmCMarginWidth Dimension 10 CSG
XmNnoResize XmCNoResize Boolean False CSG
XmNresizePolicy XmCResizePolicy unsigned char XmRESIZE_ANY CSG
XmNshadowType XmCShadowType unsigned char XmSHADOW_OUT CSG
XmNtextFontList XmCTextFontList XmFontList dynamic CSG
XmNtextTranslations XmCTranslations XtTranslations NULL C
XmNunmapCallback XmCCallback XtCallbackList NULL C

XmManager Resource Set
Name Class Type Default Access
XmNbottom- XmCBottom- Pixel dynamic CSG

ShadowColor ShadowColor
XmNbottom- XmCBottom- Pixmap XmUNSPECIFIED- CSG

ShadowPixmap ShadowPixmap _PIXMAP
XmNforeground XmCForeground Pixel dynamic CSG
XmNhelpCallback XmCCallback XtCallbackList NULL C
XmNhighlightColor XmCHighlightColor Pixel dynamic CSG
XmNhighlightPixmap XmCHighlightPixmap Pixmap dynamic CSG
XmNinitialFocus XmCInitialFocus Widget dynamic CSG
XmNnavigationType XmCNavigationType XmNavigation- XmTAB_GROUP CSG

Type
XmNshadowThickness XmCShadowThickness Dimension dynamic CSG
XmNstringDirection XmCStringDirection XmString- dynamic CG

Direction
XmNtopShadowColor XmCTopShadowColor Pixel dynamic CSG
XmNtopShadowPixmap XmCTopShadowPixmap Pixmap dynamic CSG
XmNtraversalOn XmCTraversalOn Boolean True CSG
XmNunitType XmCUnitType unsigned char dynamic CSG
XmNuserData XmCUserData XtPointer NULL CSG

Composite Resource Set
Name Class Type Default Access
XmNchildren XmCReadOnly WidgetList NULL G
XmNinsertPosition XmCInsertPosition XtOrderProc NULL CSG
XmNnumChildren XmCReadOnly Cardinal 0 G

46 X/Open CAE Specification



Help Services DtHelpQuickDialog( )

Core Resource Set
Name Class Type Default Access
XmNaccelerators XmCAccelerators XtAccelerators dynamic N/A
XmNancestorSensitive XmCSensitive Boolean dynamic G
XmNbackground XmCBackground Pixel dynamic CSG
XmNbackgroundPixmap XmCPixmap Pixmap XmUNSPECIFIED- CSG

_PIXMAP
XmNborderColor XmCBorderColor Pixel XtDefaultForeground CSG
XmNborderPixmap XmCPixmap Pixmap XmUNSPECIFIED- CSG

_PIXMAP
XmNborderWidth XmCBorderWidth Dimension 0 CSG
XmNcolormap XmCColormap Colormap dynamic CG
XmNdepth XmCDepth int dynamic CG
XmNdestroyCallback XmCCallback XtCallbackList NULL C
XmNheight XmCHeight Dimension dynamic CSG
XmNinitialResources- XmCInitialResources- Boolean True C

Persistent Persistent
XmNmappedWhen- XmCMappedWhen- Boolean True CSG

Managed Managed
XmNscreen XmCScreen Screen ∗ dynamic CG
XmNsensitive XmCSensitive Boolean True CSG
XmNtranslations XmCTranslations XtTranslations dynamic CSG
XmNwidth XmCWidth Dimension dynamic CSG
XmNx XmCPosition Position 0 CSG
XmNy XmCPosition Position 0 CSG

Callback Information

A pointer to the following structure is passed to each callback:

typedef struct {
int reason ;
XEvent ∗event ;
char ∗locationId ;
char ∗helpVolume ;
char ∗specification ;
int hyperType ;
int windowHint ;

} DtHelpDialogCallbackStruct;

The reason argument indicates why the callback was invoked.

The event argument points to the XEvent that triggered the callback.

The locationId argument indicates the DtNlocationId for the current topic. This value is NULL
whenever the hyperType value is not DtHELP_LINK_TOPIC or DtHELP_LINK_APP_DEFINE.

The helpVolume argument indicates the current help volume. This value returns NULL
whenever the hyperType value is not DtHELP_LINK_TOPIC or DtHELP_LINK_APP_DEFINE.

The specification argument indicates any author-defined data contained within the selected
hypertext link. This value returns NULL if no author-defined data was given. For hyperlinks of
type DtHELP_MAN_PAGE, the specification argument contains the name of the manual page.
For hyperlinks of type DtHELP_LINK_TEXT_FILE, the specification argument contains that name
of the file.

X/Open Common Desktop Environment (XCDE) Services and Applications 47



DtHelpQuickDialog( ) Help Services

The hyperType argument indicates the hypertext link type. Possible values are: DtHELP_LINK_-
TOPIC, DtHELP_LINK_MAN_PAGE, DtHELP_LINK_APP_DEFINE or DtHELP_LINK_-
TEXT_FILE.

The windowHint argument indicates a hint for the type of window (current window,
DtHelpQuickDialog widget window or new window) to use. This value contains one of the
following three types: DtHELP_POPUP_WINDOW, DtHELP_CURRENT_WINDOW or
DtHELP_NEW_WINDOW.

Additional Behaviour

The DtHelpQuickDialog widget has the additional behaviour described below:

<MAny> <KCancel>
Calls the active callbacks for the Close button. If a <BDrag> for either a selection or
scrollbar movement is in process, the KCancel aborts that action.

<KSpace>, <KActivate> or <BSelect> in Display Area Text
Invokes the hypertext link that contains the current selection.

<DoubleClick> in Display Area Text
Ignored.

<BDrag> in Display Area Text
Selects the text from the drag start point to the drag end point. Moving and holding
the <BDrag> outside the topic tree or display area, scrolls the window, selecting the
newly exposed text.

<Close Button Activated>
Closes the DtHelpQuickDialog widget, and calls the DtNcloseCallback callbacks
with reason DtCR_HELP_CLOSE.

<Backtrack Button Activated>
Forces the DtHelpQuickDialog widget to display the data previously displayed in
the dialog. If the current item was the first item displayed in the
DtHelpQuickDialog widget, the Backtrack button is insensitive.

<Print Button Activated>
Forces the DtHelpQuickDialog widget to display the Help-Print dialog.

<Help Button Activated>
Forces the DtHelpQuickDialog widget to display the Help-On-Help dialog.

<MCtrl> or <MShift> <BSelect> in Display Area Hypertext Link Text
<MCtrl> <KSpace> in Display Area Hypertext Link Text
<MCtrl> <KActivate> in Display Area Hypertext Link Text

Invokes the DtNhyperLinkCallback for the DtHelpQuickDialog widget, honouring
all existing link settings, but forces the windowHint to DtHELP_NEW_WINDOW. If
no DtNhyperLinkCallback was supplied, the hypertext link is handled internally.

<KSelectAll> in Display Area
Selects all text within the display area.

<KDeSelectAll> in Display Area
Deselects all text within the display area.

<KCopy> in the Display Area
Copies the currently selected text to the clipboard.

48 X/Open CAE Specification



Help Services DtHelpQuickDialog( )

<KPageDown> or <MCtrl> <KDown> in the Display Area
Displays the next page of text.

<KPageLeft> or <MCtrl> <KLeft> in Display Area
Scrolls the information to the left.

<KPageRight> or <MCtrl> <KRight> in Display Area
Scrolls the information to the right.

<KPageUp> or <MCtrl> <KUp> in Display Area
Displays the previous page of information.

<KBeginData> in the Display Area
Displays the first page of information.

<KEndData> in the Display Area
Displays the last page of information.

The following operations are supported, but the key bindings are implementation-dependent:

<implementation-dependent>
Moves the traversal highlight up, down, left or right to the next hypertext link item.

Virtual Bindings

The bindings for virtual keys are implementation-dependent.

ENVIRONMENT VARIABLES
The DtHelpQuickDialog widget uses two environment variables for locating help volumes
within the desktop environment:

DTHELPSEARCHPATH
The system search path environment variable for locating help volumes on local
and remote mounted systems.

DTHELPUSERSEARCHPATH
The search path environment variable for locating user-specific help volumes on
local and remote mounted systems.

The environment variables contain colon-separated lists of directory paths. Each directory path
can contain both environment variable names as well as special field descriptors that are
expanded at runtime.

Field descriptors consist of a percent-sign character (%) followed by a single character. Field
descriptors and their substitution values are:

%H Replaced with the current volume name being searched for.

%L Replaced with the current value of the LANG environment variable.

%% Replaced with a single %.

The default value for DTHELPUSERSEARCHPATH is:

$HOME/.dt/help/$DTUSERSESSION/%H:
$HOME/.dt/help/$DTUSERSESSION/%H.sdl:
$HOME/.dt/help/%H:
$HOME/.dt/help/%H.sdl:

The DTHELPUSERSEARCHPATH is first searched for the requested volume. If the volume is
not found, the DTHELPSEARCHPATH value is searched.

X/Open Common Desktop Environment (XCDE) Services and Applications 49



DtHelpQuickDialog( ) Help Services

The default value for DTHELPSEARCHPATH path is:

/etc/dt/appconfig/help/%L/%H:
/etc/dt/appconfig/help/%L/%H.sdl:
/etc/dt/appconfig/help/C/%H:
/etc/dt/appconfig/help/C/%H.sdl:
/usr/dt/appconfig/help/%L/%H:
/usr/dt/appconfig/help/%L/%H.sdl:
/usr/dt/appconfig/help/C/%H:
/usr/dt/appconfig/help/C/%H.sdl:

SEE ALSO
<Dt/HelpDialog.h>, <Dt/Help.h>, DtCreateHelpDialog ( ), DtHelpSetCatalogName ( ),
DtHelpQuickDialogGetChild ( ); XmManager and XmBulletinBoard in the X/Open CAE
Specification, Motif Toolkit API; Section 4.6 on page 65.

CHANGE HISTORY
First released in Issue 1.

50 X/Open CAE Specification



Help Services Functions

4.3 Functions
This section defines the functions, macros and external variables that provide XCDE help
services to support application portability at the C-language source level.

X/Open Common Desktop Environment (XCDE) Services and Applications 51



DtCreateHelpDialog( ) Help Services

NAME
DtCreateHelpDialog — create a general DtHelpDialog widget

SYNOPSIS
#include <Dt/HelpDialog.h>

Widget DtCreateHelpDialog(Widget parent ,
String name,
ArgList arglist ,
Cardinal argcount );

DESCRIPTION
The DtCreateHelpDialog ( ) function is a convenience function that creates a DtHelpDialog
widget.

The parent argument specifies the parent widget ID.

The name argument specifies the name of the created widget.

The arglist argument specifies the argument list.

The argcount argument specifies the number of attribute and value pairs in the argument list
(arglist ).

RETURN VALUE
Upon successful completion, the DtCreateHelpDialog ( ) function returns an XmBulletinBoard
widget whose parent is a dialog shell widget; otherwise, it returns an undefined widget value.
The dialog shell is the DtHelpDialog widget’s top level.

SEE ALSO
<Dt/HelpDialog.h>, <Dt/Help.h>, DtCreateHelpQuickDialog ( ), DtHelpSetCatalogName ( ),
XmBulletinBoard in the X/Open CAE Specification, Motif Toolkit API.

CHANGE HISTORY
First released in Issue 1.

52 X/Open CAE Specification



Help Services DtCreateHelpQuickDialog( )

NAME
DtCreateHelpQuickDialog — create a DtHelpQuickDialog widget

SYNOPSIS
#include <Dt/HelpQuickD.h>

Widget DtCreateHelpQuickDialog(Widget parent ,
String name,
ArgList arglist ,
Cardinal argcount );

DESCRIPTION
The DtCreateHelpQuickDialog ( ) function is a convenience function that creates a
DtHelpQuickDialog widget.

The parent argument specifies the parent widget ID.

The name argument specifies the name of the created widget.

The arglist argument specifies the argument list.

The argcount argument specifies the number of attribute and value pairs in the argument list
(arglist ).

RETURN VALUE
Upon successful completion, the DtCreateHelpQuickDialog ( ) function returns an
XmBulletinBoard widget whose parent is a dialog shell widget; otherwise, it returns an
undefined widget value. The dialog shell is the DtHelpQuickDialog widget’s top level.

SEE ALSO
<Dt/HelpDialog.h>, <Dt/Help.h>, DtCreateHelpDialog ( ), DtHelpSetCatalogName ( ),
DtHelpQuickDialogGetChild ( ), XmBulletinBoard in the X/Open CAE Specification, Motif Toolkit
API.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 53



DtHelpQuickDialogGetChild( ) Help Services

NAME
DtHelpQuickDialogGetChild — get child of DtHelpQuickDialog widget

SYNOPSIS
#include <Dt/HelpQuickD.h>

Widget DtHelpQuickDialogGetChild(Widget widget ,
int child );

DESCRIPTION
The DtHelpQuickDialogGetChild ( ) function accesses a component within a DtHelpQuickDialog
widget.

The widget argument specifies the DtHelpQuickDialog widget instance.

The child argument specifies which DtHelpQuickDialog widget child the widget ID is for. The
following are valid values for the child argument:

DtHELP_QUICK_CLOSE_BUTTON
DtHELP_QUICK_PRINT_BUTTON
DtHELP_QUICK_HELP_BUTTON
DtHELP_QUICK_SEPARATOR
DtHELP_QUICK_MORE_BUTTON
DtHELP_QUICK_BACK_BUTTON

RETURN VALUE
Upon successful completion, the DtHelpQuickDialogGetChild ( ) function returns the widget ID of
the requested child of the DtHelpQuickDialog widget; otherwise, it returns NULL if either the
function call fails, or an invalid value was passed in for the child argument.

SEE ALSO
<Dt/HelpQuickD.h>, DtCreateHelpQuickDialog ( ); XmWarning in the X/Open CAE Specification,
Motif Toolkit API.

CHANGE HISTORY
First released in Issue 1.

54 X/Open CAE Specification



Help Services DtHelpReturnSelectedWidgetId( )

NAME
DtHelpReturnSelectedWidgetId — select a widget or gadget

SYNOPSIS
#include <Dt/Help.h>

int DtHelpReturnSelectedWidgetId(Widget parent ,
String cursor ,
Widget ∗widget );

DESCRIPTION
The DtHelpReturnSelectedWidgetId( ) function provides an interface for users to select a
component within an application.

This function grabs the pointer and returns the widget within which a button press occurs.
Pressing the escape key (ESC) aborts this function.

The parent argument specifies the widget ID to use as the basis of the interaction, usually a top
level shell.

The cursor argument specifies the cursor to be used for the pointer during the interaction. If a
NULL value is used, DtHelpReturnSelectedWidgetId( ) uses a default cursor value.

The widget argument is the return value (for example, the selected widget). A NULL value is
returned on error.

The DtHelpReturnSelectedWidgetId( ) function allows applications to get the widget ID for any
widget in their user interface that the user has selected via the pointer. The application can then
directly display a help topic based on the selected widget, or dynamically construct some help
information based on the current context of the selected item. At any point while the question
mark cursor is displayed, the user can select the escape key to abort the function call, and a
NULL value is returned. If the user selects any item outside the current applications windows,
an error status is returned along with a NULL value for the widget argument.

RETURN VALUE
Upon successful completion, the DtHelpReturnSelectedWidgetId( ) function returns one of the
following status values:

DtHELP_SELECT_ERROR
An error occurred while attempting to process the function.

DtHELP_SELECT_INVALID
The user selected an invalid component that is not contained in the current widget
hierarchy.

DtHELP_SELECT_ABORT
The user aborted the function (for example, pressed the escape key), and a NULL
widget value is passed back.

DtHELP_SELECT_VALID
The user selected a valid component within the application, and the widget
argument is the ID of the selected component.

SEE ALSO
<Dt/Help.h>, DtCreateHelpQuickDialog ( ), DtCreateHelpDialog ( ); XmTrackingLocate ( ) in the
X/Open CAE Specification, Motif Toolkit API.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 55



DtHelpSetCatalogName( ) Help Services

NAME
DtHelpSetCatalogName — assign the name of the message catalogue to use for help services

SYNOPSIS
#include <Dt/Help.h>

void DtHelpSetCatalogName(char ∗catFile );

DESCRIPTION
The DtHelpSetCatalogName ( ) function provides an interface for applications to set the name of
the message catalogue file that the help services library uses at runtime. This message catalogue
contains all strings, messages and button labels used in the help widgets that can be localised.

The catFile argument specifies the name of the message catalogue file that the help services
library accesses at runtime. See catopen( ) for more information on the message catalogue
naming and location semantics for various environments.

RETURN VALUE
The DtHelpSetCatalogName ( ) function returns no value.

APPLICATION USAGE
The DtHelpSetCatalogName ( ) function is only required if applications deliver localised online
help information into a non-localised XCDE desktop environment. In this case, applications
must use this function and give the help message catalogue file a unique name in order to avoid
collision with other clients using and localising their online-help user interface. In order for this
call to properly affect the help services library, this call must be made prior to creation of any
help widgets.

SEE ALSO
<Dt/Help.h>, DtCreateHelpQuickDialog ( ), DtCreateHelpDialog ( ); catopen( ) in the X/Open CAE
Specification, System Interfaces and Headers, Issue 4, Version 2.

CHANGE HISTORY
First released in Issue 1.

56 X/Open CAE Specification



Help Services Headers

4.4 Headers
This section describes the contents of headers used by the XCDE help service functions, macros
and external variables.

Headers contain the definition of symbolic constants, common structures, preprocessor macros
and defined types. Each function in Section 4.3 specifies the headers that an application must
include in order to use that function. In most cases only one header is required. These headers
are present on an application development system; they do not have to be present on the target
execution system.

X/Open Common Desktop Environment (XCDE) Services and Applications 57



<Dt/Help.h> Help Services

NAME
Dt/Help.h — help services definitions

SYNOPSIS
#include <Dt/Help.h>

DESCRIPTION
The <Dt/Help.h> header defines the variables and function prototypes for help services.

The header defines the following DtHelpDialogCallbackStruct windowHint constants:

DtHELP_POPUP_WINDOW
DtHELP_CURRENT_WINDOW
DtHELP_NEW_WINDOW

The header defines the following DtHelpDialogCallbackStruct hyperType constants:

DtHELP_LINK_JUMP_NEW
DtHELP_LINK_TOPIC
DtHELP_LINK_MAN_PAGE
DtHELP_LINK_APP_DEFINE
DtHELP_LINK_TEXT_FILE

The header defines the following DtHelpDialogCallbackStruct reason constants:

DtCR_HELP_LINK_ACTIVATE
DtCR_HELP_CLOSE
DtCR_HELP_HELP

The header defines the following DtNScrollBarPolicy constants:

DtHELP_NO_SCROLLBARS
DtHELP_STATIC_SCROLLBARS
DtHELP_AS_NEEDED_SCROLLBARS

The header defines the following DtNhelpType constants:

DtHELP_TYPE_TOPIC
DtHELP_TYPE_STRING
DtHELP_TYPE_MAN_PAGE
DtHELP_TYPE_FILE
DtHELP_TYPE_DYNAMIC_STRING

The header defines the following DtNpaperSize constants:

DtHELP_PAPERSIZE_LETTER
DtHELP_PAPERSIZE_LEGAL
DtHELP_PAPERSIZE_EXECUTIVE
DtHELP_PAPERSIZE_A4
DtHELP_PAPERSIZE_B5

The header defines the following DtHelpQuickDialogGetChild ( ) constants:

DtHELP_QUICK_CLOSE_BUTTON
DtHELP_QUICK_PRINT_BUTTON
DtHELP_QUICK_HELP_BUTTON
DtHELP_QUICK_SEPARATOR
DtHELP_QUICK_MORE_BUTTON
DtHELP_QUICK_BACK_BUTTON

58 X/Open CAE Specification



Help Services <Dt/Help.h>

The header defines the following DtHelpReturnSelectedWidgetId( ) constants:

DtHELP_SELECT_ERROR
DtHELP_SELECT_VALID
DtHELP_SELECT_ABORT
DtHELP_SELECT_INVALID

The header declares the following as functions:

void DtHelpSetCatalogName(char ∗catFile );

int DtHelpReturnSelectedWidgetId(Widget parent ,
Cursor cursor ,
Widget ∗widget );

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 59



<Dt/HelpDialog.h> Help Services

NAME
Dt/HelpDialog.h — DtHelpDialog definitions

SYNOPSIS
#include <Dt/HelpDialog.h>

DESCRIPTION
The <Dt/HelpDialog.h> header defines the variables and function prototypes for help dialog
services.

The <Dt/HelpDialog.h> header declares the following variable:

WidgetClass dtHelpDialogWidgetClass;

The header declares the following as a function:

Widget DtCreateHelpDialog(Widget parent ,
char ∗name,
ArgList ∗arglist ,
Cardinal argcount );

CHANGE HISTORY
First released in Issue 1.

60 X/Open CAE Specification



Help Services <Dt/HelpQuickD.h>

NAME
Dt/HelpQuickD.h — DtHelpQuickDialog definitions

SYNOPSIS
#include <Dt/HelpQuickD.h>

DESCRIPTION
The <Dt/HelpQuickD.h> header defines the variables and function prototypes for help quick
dialog services.

The <Dt/HelpQuickD.h> header declares the following variable:

WidgetClass dtHelpQuickDialogWidgetClass;

The header declares the following as a function:

Widget DtCreateHelpQuickDialog(Widget parent ,
char ∗name,
Arg ∗arglist ,
Cardinal argcount );

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 61



Actions Help Services

4.5 Actions
This section defines the actions that provide XCDE help services to support application
portability at the C-language source or shell script levels.

62 X/Open CAE Specification



Help Services <dtmanaction>

NAME
dtmanaction — XCDE manual page actions

SYNOPSIS
Dtmanpageview [ page ]
Open page
Print page

DESCRIPTION
The XCDE Help Services support the following manual page actions:

Dtmanpageview
Prompt the user for a manual page and open a view of the manual page specified by
the user.

Dtmanpageview page
Open a view of the manual page named by the pathname in the page argument.

Open page
Open a view of the manual page named by the pathname in the page argument.

Print page
Print the manual page named by the pathname in the page argument.

These actions can be invoked from an application using the DtActionInvoke ( ) function or
invoked from a command line using the dtaction utility.

SEE ALSO
dtaction, DtActionInvoke ( ) in the XCDI specification.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 63



<dthelpaction> Help Services

NAME
dthelpaction — XCDE help actions

SYNOPSIS
Dthelpview [ volume ]
Open volume

DESCRIPTION
The XCDE Help Services support the following help actions:

Dthelpview
Open a view of the top level help index.

Dthelpview volume
Open a view of the help volume named by the pathname in the volume argument.

Open volume
Open a view of the help volume named by the pathname in the volume argument.

These actions can be invoked from an application using the DtActionInvoke ( ) function or
invoked from a command line using the dtaction utility.

SEE ALSO
dtaction, DtActionInvoke ( ) in the XCDI specification.

CHANGE HISTORY
First released in Issue 1.

64 X/Open CAE Specification



Help Services Formats

4.6 Formats
HelpTag is a markup language used for authoring XCDE help volumes. It is based on the ISO
8879: 1986 Standard Generalised Markup Language (SGML) standard and is defined with the
following Document Type Description (DTD).

The HelpTag marked-up help information is part of the source code for a conforming XCDE
application. The compilation process that is required to install this information into help
volumes for the XCDE help services is implementation dependent.

<!SGML "ISO 8879:1986"

CHARSET
BASESET "ISO 646-1983/ /CHARSET International Reference Version

(IRV)//ESC 2/5 4/0"
DESCSET 0 9 UNUSED

9 2 9
11 2 UNUSED
13 1 13
14 18 UNUSED
32 95 32

127 1 UNUSED

BASESET "ISO Registration Number 100//CHARSET ECMA-94
Right Part of Latin Alphabet Nr. 1//ESC 2/13 4/1"

DESCSET 128 32 UNUSED
160 5 32
165 1 UNUSED
166 88 38
254 1 127
255 1 UNUSED

CAPACITY SGMLREF
TOTALCAP 350000
ENTCAP 100000
ENTCHCAP 50000
ELEMCAP 50000
GRPCAP 210000
EXGRPCAP 50000
EXNMCAP 50000
ATTCAP 50000
ATTCHCAP 50000
AVGRPCAP 50000
NOTCAP 50000
NOTCHCAP 50000
IDCAP 50000
IDREFCAP 50000
MAPCAP 210000
LKSETCAP 50000
LKNMCAP 50000

SCOPE DOCUMENT
SYNTAX -- The Core Reference Syntax except with ATTCNT, LITLEN, NAMELEN,

GRPCNT, and GRPGTCNT changed --

SHUNCHAR CONTROLS 0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 127 255

BASESET "ISO 646-1983/ /CHARSET International Reference Version
(IRV)//ESC 2/5 4/0"

X/Open Common Desktop Environment (XCDE) Services and Applications 65



Formats Help Services

DESCSET 0 128 0

FUNCTION RE 13
RS 10
SPACE 32
TAB SEPCHAR 9

NAMING
LCNMSTRT ""
UCNMSTRT ""
LCNMCHAR "-."
UCNMCHAR "-."
NAMECASE

GENERAL YES
ENTITY YES

DELIM
GENERAL SGMLREF
SHORTREF SGMLREF -- Removed short references --
NAMES SGMLREF
QUANTITY SGMLREF

ATTCNT 140
LITLEN 4096
NAMELEN 64
GRPCNT 100
GRPGTCNT 253
TAGLVL 48

FEATURES
MINIMIZE

DATATAG NO
OMITTAG NO
RANK NO
SHORTTAG YES

LINK
SIMPLE NO
IMPLICIT NO
EXPLICIT NO

OTHER
CONCUR NO
SUBDOC NO
FORMAL NO
APPINFO NONE

>

<!DOCTYPE helpvolume [
<!ELEMENT helpvolume - - (metainfo?,

hometopic?,
(chapter ∗ | (s1 ∗, rsect ∗)),
message?,
glossary?)

+(memo | idx) >

<!ELEMENT metainfo - - (idsection, abstract?, otherfront ∗)
-(footnote) >

<!ELEMENT idsection - - (title, copyright?) >

<!ELEMENT title - - (partext)
-(memo | location | idx) >

<!ELEMENT partext - - ((#PCDATA | acro | emph | computer |
user | term | var | circle |

66 X/Open CAE Specification



Help Services Formats

quote | keycap | graphic | super |
sub | book | xref | footnote |
esc | link | location | newline ) ∗) >

<!ELEMENT acro - - ((#PCDATA | esc | super | sub) ∗) >

<!ELEMENT emph - - (partext) -(emph) >

<!ELEMENT computer - - ((#PCDATA | quote | var | user | esc) ∗) >

<!ELEMENT user - - ((#PCDATA | var | esc) ∗) >

<!ELEMENT term - - (partext)
-(emph | computer | term | var |

quote | user | book | footnote) >
<!ATTLIST term base CDATA #IMPLIED

gloss (gloss | nogloss) gloss >

<!ELEMENT var - - ((#PCDATA | esc) ∗) >

<!ELEMENT circle - - CDATA >

<!ELEMENT quote - - (partext) -(quote) >

<!ELEMENT keycap - - ((#PCDATA | super | sub | esc)+) >

<!ELEMENT graphic - O EMPTY >
<!ATTLIST graphic id ID #IMPLIED

entity ENTITY #REQUIRED >

<!ELEMENT super - - (#PCDATA) >

<!ELEMENT sub - - (#PCDATA) >

<!ELEMENT book - - (partext) -(book) >

<!ELEMENT xref - O EMPTY >
<!ATTLIST xref id IDREF #REQUIRED >

<!ELEMENT footnote - - (p+) -(footnote) >

<!ELEMENT esc - - CDATA >

<!ELEMENT link - - (partext) -(link | xref) >
<!ATTLIST link hyperlink CDATA #REQUIRED

type (jump |
jumpnewview |
definition |
execute |
appdefined |
man ) jump

description CDATA #IMPLIED >

<!ELEMENT location - - (partext) -(location) >
<!ATTLIST location id ID #REQUIRED >

<!ELEMENT copyright - - (text)
-(memo | location | idx) >

<!ELEMENT text - - ((p | note | caution | warning |
lablist | list | ex | vex |
esc | otherhead | procedure | syntax |
figure | image ) ∗ ) >

<!ELEMENT p - - (head?, partext)
+(newline) >

<!ATTLIST (p | image) indent (indent) #IMPLIED
id ID #IMPLIED
gentity ENTITY #IMPLIED

X/Open Common Desktop Environment (XCDE) Services and Applications 67



Formats Help Services

gposition (left | right) left
ghyperlink CDATA #IMPLIED
glinktype (jump |

jumpnewview |
definition |
execute |
appdefined |
man ) jump

gdescription CDATA #IMPLIED >

<!ELEMENT head - - (partext)
-(memo | location | idx) >

<!ELEMENT newline - O EMPTY >

<!ELEMENT (note |
caution |
warning ) - - (head?, text)

-(note | caution | warning | footnote) >

<!ELEMENT lablist - - (head?, labheads?, lablistitem+) >
<!ATTLIST lablist spacing (loose | tight) loose

longlabel (wrap | nowrap) wrap >

<!ELEMENT labheads - - (labh, labhtext)
-(memo | location | idx) >

<!ELEMENT labh - - (partext) >

<!ELEMENT labhtext - - (partext) >

<!ELEMENT lablistitem - - (label, text) >

<!ELEMENT label - - (partext) >

<!ELEMENT list - - (head?, item+) >
<!ATTLIST list type (order |

bullet |
plain |
check ) bullet

ordertype (ualpha |
lalpha |
arabic |
uroman |
lroman ) arabic

spacing (tight |
loose ) tight

continue (continue) #IMPLIED >

<!ELEMENT item - - (text) >
<!ATTLIST item id ID #IMPLIED >

<!ELEMENT ex - - (head?, (exampleseg, annotation?)+)
-(ex |

vex |
note |
caution |
warning |
syntax |
footnote) >

<!ATTLIST ex notes (side | stack) side
lines (number |

nonumber ) nonumber
textsize (normal |

smaller |

68 X/Open CAE Specification



Help Services Formats

smallest ) normal >

<!ELEMENT exampleseg - - (partext) +(lineno) >

<!ELEMENT annotation - - (partext) +(newline) >

<!ELEMENT lineno - O EMPTY >
<!ATTLIST lineno id ID #IMPLIED >

<!ELEMENT vex - - CDATA >
<!ATTLIST vex lines (number |

nonumber ) nonumber
textsize (normal |

smaller |
smallest ) normal >

<!ELEMENT otherhead - - (head, text?) >

<!ELEMENT procedure - - (chaphead, text?)
-(procedure) >

<!ELEMENT chaphead - - (head, abbrev?)
-(memo | location | idx | footnote) >

<!ELEMENT abbrev - - (partext) -(footnote) >

<!ELEMENT syntax - - (head?, synel) >

<!ELEMENT synel - - ((#PCDATA | esc | var |
optblock | reqblock )+) >

<!ELEMENT (optblock |
reqblock ) - - (synel+) >

<!ELEMENT figure - - (caption?)
-(figure | graphic) >

<!ATTLIST figure number NUMBER #IMPLIED
tonumber (number |

nonumber) number
id ID #IMPLIED
entity ENTITY #REQUIRED
figpos (left |

center |
right ) #IMPLIED

cappos (capleft |
capcenter |
capright ) #IMPLIED

ghyperlink CDATA #IMPLIED
glinktype (jump |

jumpnewview |
definition |
execute |
appdefined |
man ) jump

gdescription CDATA #IMPLIED >

<!ELEMENT caption - - (partext, abbrev?)
-(memo | location | idx) >

<!ELEMENT image - - (head?, partext) -(footnote) >

<!ELEMENT abstract - - (head?, text?, frontsub ∗) >

<!ELEMENT frontsub - - (head?, text) >

<!ELEMENT otherfront - - (head?, text?, frontsub ∗) >
<!ATTLIST otherfront id ID #IMPLIED >

X/Open Common Desktop Environment (XCDE) Services and Applications 69



Formats Help Services

<!ELEMENT hometopic - - (chaphead, text?) >

<!ELEMENT chapter - - (chaphead, text?, (s1 ∗, rsect ∗)) >
<!ATTLIST (chapter |

s1 |
s2 |
s3 |
s4 |
s5 |
s6 |
s7 |
s8 |
s9 ) id ID #IMPLIED >

<!ELEMENT s1 - - (chaphead, text?, s2 ∗, rsect ∗) >

<!ELEMENT s2 - - (chaphead, text?, s3 ∗, rsect ∗) >

<!ELEMENT s3 - - (chaphead, text?, s4 ∗, rsect ∗) >

<!ELEMENT s4 - - (chaphead, text?, s5 ∗, rsect ∗) >

<!ELEMENT s5 - - (chaphead, text?, s6 ∗, rsect ∗) >

<!ELEMENT s6 - - (chaphead, text?, s7 ∗, rsect ∗) >

<!ELEMENT s7 - - (chaphead, text?, s8 ∗, rsect ∗) >

<!ELEMENT s8 - - (chaphead, text?, s9 ∗, rsect ∗) >

<!ELEMENT s9 - - (chaphead, text?) >

<!ELEMENT rsect - - (chaphead, text?, rsub ∗) >
<!ATTLIST rsect id ID #IMPLIED >

<!ELEMENT rsub - - (chaphead, text?) >

<!ELEMENT message - - (chaphead?, text?, (msg+ | msgsub+)) >

<!ELEMENT msg - - (msgnum?, msgtext, explain?) +(newline) >

<!ELEMENT msgnum - - ((#PCDATA | esc)+) >

<!ELEMENT msgtext - - (partext) >

<!ELEMENT explain - - (text) >

<!ELEMENT msgsub - - (chaphead, text?, msg+) >

<!ELEMENT glossary - - (text?, glossent+) >

<!ELEMENT glossent - - (dterm, definition) >

<!ELEMENT dterm - - (partext) -(term) >

<!ELEMENT definition - - (text) >

<!ELEMENT idx - - (indexprimary, indexsub?)
-(term | footnote | location | idx) >

<!ELEMENT indexprimary - - (partext, sort?) >

<!ELEMENT indexsub - - (partext, sort?) >

<!ELEMENT sort - - ((#PCDATA | esc)+) >

<!ELEMENT memo - - CDATA >

<!ENTITY MINUS SDATA "-">
<!ENTITY PM SDATA ’[plusmn]’> <!-- ISOnum -->
<!ENTITY DIV SDATA ’[divide]’> <!-- ISOnum -->
<!ENTITY TIMES SDATA ’[times ]’> <!-- ISOnum -->
<!ENTITY LEQ SDATA ’[le ]’> <!-- ISOtech -->

70 X/Open CAE Specification



Help Services Formats

<!ENTITY GEQ SDATA ’[ge ]’> <!-- ISOtech -->
<!ENTITY NEQ SDATA ’[ne ]’> <!-- ISOtech -->
<!ENTITY COPY SDATA ’[copy ]’> <!-- ISOnum -->
<!ENTITY REG SDATA ’[reg ]’> <!-- ISOnum -->
<!ENTITY TM SDATA ’[trade ]’> <!-- ISOnum -->
<!ENTITY ELLIPSIS SDATA ’[hellip]’> <!-- ISOpub -->
<!ENTITY VELLIPSIS SDATA ’[vellip]’> <!-- ISOpub -->
<!ENTITY PELLIPSIS SDATA "...."> <!-- ellipsis followed by a period -->
<!ENTITY A.M. SDATA "a.m.">
<!ENTITY P.M. SDATA "p.m.">
<!ENTITY MINUTES SDATA ’[prime ]’> <!-- ISOtech -->
<!ENTITY SECONDS SDATA ’[Prime ]’> <!-- ISOtech -->
<!ENTITY DEG SDATA ’[deg ]’> <!-- ISOnum -->
<!ENTITY SQUOTE SDATA "‘">
<!ENTITY DQUOTE SDATA ’"’>
<!ENTITY ENDASH SDATA "-">
<!ENTITY EMDASH SDATA ’[mdash ]’> <!-- ISOpub -->
<!ENTITY VBLANK SDATA "_">
<!ENTITY CENTS SDATA ’[cent ]’> <!-- ISOnum -->
<!ENTITY STERLING SDATA ’[pound ]’> <!-- ISOnum -->
<!ENTITY SPACE SDATA " ">
<!ENTITY SIGSPACE SDATA "& ">
<!ENTITY SIGDASH SDATA "&-">
<!ENTITY MICRO SDATA ’[micro ]’> <!-- ISOnum -->
<!ENTITY OHM SDATA ’[ohm ]’> <!-- ISOnum -->
<!ENTITY UP SDATA ’[uarr ]’> <!-- ISOnum -->
<!ENTITY DOWN SDATA ’[darr ]’> <!-- ISOnum -->
<!ENTITY LEFT SDATA ’[larr ]’> <!-- ISOnum -->
<!ENTITY RIGHT SDATA ’[rarr ]’> <!-- ISOnum -->
<!ENTITY HOME SDATA "home key">
<!ENTITY BACK SDATA "<--">
<!ENTITY HALFSPACE SDATA " ">

<!ENTITY % user-defined-entities SYSTEM "helptag.ent">

%user-defined-entities;

] >

X/Open Common Desktop Environment (XCDE) Services and Applications 71



Capabilities Help Services

4.7 Capabilities
A conforming implementation of the XCDE help services supports at least the following
capabilities:

1. Provides both General Help and Quick Help windows with the capabilities described in
the following subsections. The General Help window provides access to full navigation
capabilities. The Quick Help window provides limited navigation and presentation.

2. Conforms to the Required items in the Application Style Checklist in Chapter 20 on page
355.

3. Has been internationalised using the standard interfaces in the X/Open CAE Specification,
System Interfaces and Headers, Issue 4, Version 2, the X/Open CAE Specification,
Window Management: Xlib C Language Binding, and the X/Open CAE Specification,
Motif Toolkit API, and supports any locale available in the underlying X Window System
Xlib implementation.

4.7.1 Presentation in the Quick Help Window

The Quick Help window has the capability to present a help topic. Help topics can be authored
in HelpTag (specified in Section 4.6 on page 65) or any of the other help types specified in
DtHelpQuickDialog (see Section 4.2 on page 33).

4.7.2 Navigation in the Quick Help Window

The user controls navigation of help information. The Quick Help window allows the user to:

1. Use scroll bars to see portions of the current topic that do not fit into the current window.

2. Traverse hypertext links.

3. Return to previously viewed topics.

4. Obtain help on using the window.

5. Copy text from the current help topic to another window.

6. Print text from the current help topic.

4.7.3 Presentation for the General Help Window

The General Help window has the capability to present the following:

1. A help topic. Help topics can be authored in HelpTag (specified in Section 4.6 on page 65)
or any of the other help types specified in DtHelpQuickDialog (see Section 4.2 on page 33).

2. A list of the HelpTag topics of the current help volume that can be browsed.

3. A list of the topics previously visited.

4. A list of the index entries for HelpTag topics of the current volume.

72 X/Open CAE Specification



Help Services Capabilities

4.7.4 Navigation for the General Help Window

The user controls navigation of help information. The General Help window allows users to:

1. Perform the navigation tasks as specified for the Quick Help window.

2. Go to the beginning of the current help volume.

3. Select an index entry and go to the topic to which the index refers.

4. Access the presentation capabilities listed in Section 4.7.3 on page 72.

X/Open Common Desktop Environment (XCDE) Services and Applications 73



Help Services

74 X/Open CAE Specification



Chapter 5

Calendar and Appointment Services

5.1 Introduction
The XCDE calendar and appointment services allow users to schedule appointments and browse
or update other users’ calendars when trying to set up group meetings. The key supported tasks
for the calendar and appointment services are:

• Schedule appointments

• Create ToDo lists

• Schedule repetitive appointments

• Display reminders

• Schedule group appointments

• View a calendar that shows Day, Week, Month or Year time periods

• Multi-browse calendars of multiple users

• Send e-mail with a calendar appointment included to a group

• Print various views of the calendar

• Send e-mail reminders

• Archive calendar data and restore that data

5.2 Functions
The majority of the C-language API to calendar and appointment services is provided by the
functions defined in the X/Open CAE Specification, Calendaring and Scheduling API (XCS).
All mandatory functions in the XCS specification are required on XCDE systems. In addition, the
following functions, designated as optional in the XCS specification, are required on XCDE
systems:

csa_add_calendar ( )
csa_call_callbacks ( )
csa_list_calendar_attributes ( )
csa_list_calendars ( )
csa_list_entry_sequence( )
csa_read_calendar_attributes ( )
csa_read_next_reminder( )
csa_register_callback ( )
csa_unregister_callback ( )
csa_update_calendar_attributes ( )

The remainder of this section defines an additional function that provides XCDE calendar and
appointment services to support application portability at the C-language source level.

X/Open Common Desktop Environment (XCDE) Services and Applications 75



csa_x_process_updates( ) Calendar and Appointment Services

NAME
csa_x_process_updates — invoke a calendar application’s calendar event handler

SYNOPSIS
#include <csa/csa.h>

void csa_x_process_updates(CSA_session_handle cal );

DESCRIPTION
The csa_x_process_updates ( ) function checks to see if there have been calendar updates that are of
interest to the client. If there have been one or more calendar updates, and the client previously
registered a callback handler using csa_register_callback ( ) for updates of this type, the callback
function is called by csa_x_process_updates ( ).

The cal argument specifies a calendar session handle. The callback function will be invoked only
if there have been updates to this calendar. If cal is set to NULL, the callback function will be
invoked if there have been updates to any logged on calendars.

RETURN VALUE
The csa_x_process_updates ( ) function returns no value.

APPLICATION USAGE
The csa_x_process_updates ( ) function is useful for applications that maintain a dynamic
representation of calendar information, such as a GUI calendar display. Because the calendar
server can simultaneously maintain multiple read/write connections for the same calendar, any
data retrieved by a client should be considered immediately out of date. To create the
appearance of a dynamic display of calendar data, such an application should call
csa_x_process_updates ( ) as frequently as necessary from within its main event loop.

One way to do this is to have a timeout handler call csa_x_process_updates ( ) at regular intervals.
The duration of the timer should be appropriate for the expected user environment. This does
not eliminate the risk of the client holding outdated information; it merely gives the application
control over how old the information can get.

SEE ALSO
<csa/csa.h>, csa_register_callback ( ) in the X/Open CAE Specification, Calendaring and
Scheduling API (XCS).

CHANGE HISTORY
First released in Issue 1.

76 X/Open CAE Specification



Calendar and Appointment Services Headers

5.3 Headers
The C-language API to calendar and appointment services is provided by the header defined in
the X/Open CAE Specification, Calendaring and Scheduling API (XCS). The following header
is required on XCDE systems:

<csa/csa.h>

5.4 Command-Line Interfaces
This section defines the utilities that provide XCDE calendar and appointment services.

X/Open Common Desktop Environment (XCDE) Services and Applications 77



dtcm_admin Calendar and Appointment Services

NAME
dtcm_admin — administer the calendar and appointment services database

SYNOPSIS
dtcm_admin [ −d] [ −a action ] [ −c calendar ] [ −s start_date ] [ −e end_date ]
[ −f filename ]

dtcm_admin −h

DESCRIPTION
The dtcm_admin utility is the administration interface to the XCDE calendar and appointment
services, used to archive and restore data from user calendars.

Archiving calendar information dumps data from the calendar’s database within a specified date
range, and stores it in an archive file for backup or other purposes.

By default, dtcm_admin performs a nondestructive operation, which is useful for backup or data
transfer between calendars; the −d removes the archived data from the calendar.

OPTIONS
The dtcm_admin utility supports the X/Open Utility Syntax Guidelines. The following options
are available:

−a action
Specify the operation to be performed. The supported argument values are archive
and restore. The default action is to archive data.

−c calendar
Specify the name of the calendar on which action will be performed. Permission to
perform the operation is required. Calendar names are implementation-dependent,
but typically take the form user@hostname , where user is a user’s login name and
hostname is the host machine name. If no target calendar is specified, the calendar
defaults to the current user at the current host machine.

−d Delete the data from the calendar after archiving it. By default the data is not
deleted. This only has an effect for archive operations.

−h Write a usage help message to standard output and terminate.

−s start_date
Specify the beginning of a date range that constrains the effect of the operation. The
start_date option-argument is in the form mmddyy, where mm, dd and yy are the
two-digit month, day and year modulo 100, respectively. The granularity of the
range is one day, meaning that the operation is performed on every calendar entry
whose start time falls from 00:00 on the specified start_date date to 23:59, inclusive,
on the end_date date. If start_date is not specified, all the entries in the calendar
dated before or on the end_date date are processed. If end_date is not specified, all
the entries in the calendar dated on or after the start_date date are processed. If
neither −s nor −e is specified, the operation is performed for the entire input data
set.

−e end_date
Specify the end of a date range that constrains the effect of the operation, in the
same format as −s.

−f filename
Specify the name of a file for the output of an archive operation or input to a restore
operation. If this option is omitted, archived data is sent to standard output and
data for a restore operation is taken from the standard input.

78 X/Open CAE Specification



Calendar and Appointment Services dtcm_admin

OPERANDS
None.

STDIN
When −a restore is specified, the standard input is archived data in the format described in
Section 5.7.2 on page 92. The standard input is used only if no −f filename option is specified.

INPUT FILES
When −a restore and −f filename are specified, the input file named by filename is archived data in
the format described in Section 5.7.2 on page 92.

ENVIRONMENT VARIABLES
The following environment variables affect the execution of dtcm_admin:

LANG Provide a default value for the internationalisation variables that are
unset or null. If LANG is unset or null, the corresponding value from the
implementation-specific default locale will be used. If any of the
internationalisation variables contains an invalid setting, the utility
behaves as if none of the variables had been defined.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalisation variables.

LC_MESSAGES Determine the locale that is used to affect the format and contents of
diagnostic messages written to standard error and informative messages
written to standard output.

NLSPATH Determine the location of message catalogues for the processing of
LC_MESSAGES.

RESOURCES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Unless −a restore and −f filename are specified, the standard output contains the archived data in
the format described in Section 5.7.2 on page 92. If −f filename is specified, the standard output is
not used.

STDERR
Used only for diagnostic messages.

OUTPUT FILES
If −a archive and −f filename are specified, the file named by filename contains the archived data in
the format described in Section 5.7.2 on page 92.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

X/Open Common Desktop Environment (XCDE) Services and Applications 79



dtcm_admin Calendar and Appointment Services

APPLICATION USAGE
None.

EXAMPLES
The following archives calendar data up to the end of 1993:

dtcm_admin −a archive −e 123193 −f calendar.1993

The following merges another user’s calendar data into the user’s calendar:

dtcm_admin −a archive −c theboss@bigcheese | dtcm_admin −a restore

SEE ALSO
dtcm_delete, dtcm_insert, dtcm_lookup.

CHANGE HISTORY
First released in Issue 1.

80 X/Open CAE Specification



Calendar and Appointment Services dtcm_delete

NAME
dtcm_delete — delete appointments from the calendar database

SYNOPSIS
dtcm_delete [ −c calendar ] [ −d date ] [ −v view ]

DESCRIPTION
The dtcm_delete utility is non-GUI interface to the XCDE calendar and appointment services, used
to delete appointments from the calendar database. Appointments are deleted one at a time.
Each of the components of an appointment is specified using one of the command-line options.
The current list of appointments for the specified date (see the −d and −v options) is displayed,
numbered sequentially starting with 1. The user is prompted for the number to delete. Once an
appointment is deleted, the list of remaining appointments is redisplayed. At this point the user
can specify another number, or just <carriage-return> to quit.

OPTIONS
The dtcm_delete utility supports the X/Open Utility Syntax Guidelines. The following options
are available:

−c calendar
Specify the name of the target calendar. Calendar names are implementation-
dependent, but typically take the form user@hostname , where user is a user’s login
name and hostname is the host machine name. If no target calendar is specified, the
calendar defaults to the current user at the current host machine.

−d date
Specify the date for the appointment(s) to be deleted. The date is specified using the
form mm/dd/yy , where mm, dd and yy are the two-digit month, day and year
modulo 100, respectively. If no date is specified, date defaults to today’s date.

−v view
Specify the view span of appointments to display. The view option-argument can
be:

day Display all appointments for the given date (see −d option).

week Display the full week that contains the given date, starting with
Sunday.

month Display the entire month that contains the given date.

OPERANDS
None.

STDIN
The standard input is used to receive user replies to the list of appointments to be deleted.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables affect the execution of dtcm_delete:

LANG Provide a default value for the internationalisation variables that are
unset or null. If LANG is unset or null, the corresponding value from the
implementation-specific default locale will be used. If any of the
internationalisation variables contains an invalid setting, the utility
behaves as if none of the variables had been defined.

X/Open Common Desktop Environment (XCDE) Services and Applications 81



dtcm_delete Calendar and Appointment Services

LC_ALL If set to a non-empty string value, override the values of all the other
internationalisation variables.

LC_MESSAGES Determine the locale that is used to affect the format and contents of
diagnostic messages written to standard error and informative messages
written to standard output.

NLSPATH Determine the location of message catalogues for the processing of
LC_MESSAGES.

RESOURCES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output contains the list of appointments to be deleted, in an unspecified format.

STDERR
Used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

SEE ALSO
dtcm_admin, dtcm_insert, dtcm_lookup.

CHANGE HISTORY
First released in Issue 1.

82 X/Open CAE Specification



Calendar and Appointment Services dtcm_insert

NAME
dtcm_insert — insert appointments into the calendar database

SYNOPSIS
dtcm_insert [ −c calendar ] [ −d date ] [ −s start ] [ −e end ] [ −v view ]
[ −w what ]

DESCRIPTION
The dtcm_insert utility is non-GUI interface to the XCDE calendar and appointment services, used
to add new appointments to the calendar database. Appointments are added one at a time.
Each of the components of an appointment is specified using one of the command-line options.
Once an appointment is added, the list of appointments for the specified date (see the −d and −v
options) is displayed.

OPTIONS
The dtcm_insert utility supports the X/Open Utility Syntax Guidelines. The following options
are available:

−c calendar
Specify the name of the target calendar. Calendar names are implementation-
dependent, but typically take the form user@hostname , where user is a user’s login
name and hostname is the host machine name. If no target calendar is specified, the
calendar defaults to the current user at the current host machine.

−d date
Specify the date for the appointment(s) to be inserted. The date is specified using
the form mm/dd/yy , where mm, dd and yy are the two-digit month, day and year
modulo 100, respectively. If no date is specified, date defaults to today’s date.

−s start
Specify the starting time for the appointment. The time is specified using the form
hh :mm. If hh is greater than 12, 24-hour convention (for example, 15:30 instead of
3:30 pm) is assumed. If hh is 0 to 12, an optional am or pm suffix can be used, with
or without white space separating the suffix from the mm. If no suffix is used, am is
assumed. If no starting time is specified, no time is associated with the inserted
appointment.

−e end
The ending time for the appointment, in the same format as −s. Specifying an
ending time without a starting time is an error.

−v view
Specify the view span of appointments to display. The view option-argument can
be:

day Display all appointments for the given date (see −d option).

week Display the full week that contains the given date, starting with
Sunday.

month Display the entire month that contains the given date.

−w what
Specify the appointment description text. Up to 5 lines of text can be specified by
placing \n (the literal characters \ and n, not <newline>) between lines. If not
specified, what defaults to Appointment.

X/Open Common Desktop Environment (XCDE) Services and Applications 83



dtcm_insert Calendar and Appointment Services

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables affect the execution of dtcm_insert:

LANG Provide a default value for the internationalisation variables that are
unset or null. If LANG is unset or null, the corresponding value from the
implementation-specific default locale will be used. If any of the
internationalisation variables contains an invalid setting, the utility
behaves as if none of the variables had been defined.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalisation variables.

LC_MESSAGES Determine the locale that is used to affect the format and contents of
diagnostic messages written to standard error and informative messages
written to standard output.

NLSPATH Determine the location of message catalogues for the processing of
LC_MESSAGES.

RESOURCES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output contains the list of appointments for the specified view span, including the
appointment just inserted, in an unspecified format.

STDERR
Used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

84 X/Open CAE Specification



Calendar and Appointment Services dtcm_insert

EXAMPLES
None.

SEE ALSO
dtcm_admin, dtcm_delete, dtcm_lookup.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 85



dtcm_lookup Calendar and Appointment Services

NAME
dtcm_lookup — look up appointments from the calendar database

SYNOPSIS
dtcm_lookup [ −c calendar ] [ −d date ] [ −v view ]

DESCRIPTION
The dtcm_lookup utility is non-GUI interface to the XCDE calendar and appointment services,
used to look up appointments from the calendar database. Each component of the calendar
entry is specified using one of the command-line options. The current list of appointments for
the specified date (see the −d and −v options) is displayed.

OPTIONS
The dtcm_lookup utility supports the X/Open Utility Syntax Guidelines. The following options
are available:

−c calendar
Specify the name of the target calendar. Calendar names are implementation-
dependent, but typically take the form user@hostname , where user is a user’s login
name and hostname is the host machine name. If no target calendar is specified, the
calendar defaults to the current user at the current host machine.

−d date
Specify the date for the look up query. The date is specified using the form
mm/dd/yy , where mm, dd and yy are the two-digit month, day and year modulo
100, respectively. If no date is specified, date defaults to today’s date.

−v view
Specify the view span of appointments to display. The view option-argument can
be:

day Display all appointments for the given date (see −d option).

week Display the full week that contains the given date, starting with
Sunday.

month Display the entire month that contains the given date.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables affect the execution of dtcm_lookup:

LANG Provide a default value for the internationalisation variables that are
unset or null. If LANG is unset or null, the corresponding value from the
implementation-specific default locale will be used. If any of the
internationalisation variables contains an invalid setting, the utility
behaves as if none of the variables had been defined.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalisation variables.

86 X/Open CAE Specification



Calendar and Appointment Services dtcm_lookup

LC_MESSAGES Determine the locale that is used to affect the format and contents of
diagnostic messages written to standard error and informative messages
written to standard output.

NLSPATH Determine the location of message catalogues for the processing of
LC_MESSAGES.

RESOURCES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
The standard output contains the list of appointments for the specified view span, in an
unspecified format.

STDERR
Used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

SEE ALSO
dtcm_admin, dtcm_insert, dtcm_delete.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 87



Actions Calendar and Appointment Services

5.5 Actions
This section defines the actions that provide XCDE calendar and appointment services to support
application portability at the C-language source or shell script levels.

88 X/Open CAE Specification



Calendar and Appointment Services <dtcalendaraction>

NAME
dtcalendaraction — XCDE calendar and appointment management actions

SYNOPSIS
Dtcm
DtcmEdit appointment
DtcmInsert appointment
Open appointment
Insert appointment

DESCRIPTION
The XCDE Calendar and Appointment Services support the following calendar and appointment
management actions:

Dtcm
Open a view of the user’s default calendar.

DtcmEdit appointment
Edit the appointment named by the pathname in the appointment argument.

DtcmInsert appointment
Insert the appointment named by the pathname in the appointment argument into
the user’s default calendar.

Open appointment
Edit the appointment named by the pathname in the appointment argument.

Insert appointment
Insert the appointment named by the pathname in the appointment argument into
the user’s default calendar.

These actions can be invoked from an application using the DtActionInvoke ( ) function or
invoked from a command line using the dtaction utility.

All appointments are text files including calendar entries defined in Section 5.7.2 on page 92.

SEE ALSO
dtaction, DtActionInvoke ( ) in the XCDI specification.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 89



Messages Calendar and Appointment Services

5.6 Messages
The XCDE calendar and appointment services implement the Display and Edit requests for media
type _DT_CM_APPOINTMENT. See the XCDI specification, Section 6.6.2, Media Exchange
Message Set.

5.7 Formats

5.7.1 Calendar Archive File Format

The calendar archive file format is a container with a series of packages of attribute value triples
embedded within it. Each package of attribute/value triples is the definition of an entry or the
definition of calendar attributes. A grammar for the archive file is:

archive_file ::= header_string content_list
header_string ::= ‘DTCM Archive 1.0\n’
content_list ::= package content_list | package
package ::= appt_def | calendar_attr_def
appt_def ::= appt_start_marker attr_list appt_end_marker
calendar_attr_def ::= cal_start_marker attr_list cal_end_marker
attr_list ::= attr_def att_list | attr_def
appt_start_marker ::= appt_marker ‘:string:begin\n’
appt_end_marker ::= appt_marker ‘:string:end\n’
appt_marker ::=

‘-//CDE_XAPIA_PRIVATE/CS/API/ENTRYATTR/ /NONSGML ApptDelimiter/ /EN’
cal_start_marker ::= cal_marker ‘:string:begin\n’
cal_end_marker ::= cal_marker ‘:string:end\n’
cal_marker ::=

‘-//CDE_XAPIA_PRIVATE/CS/API/CALATTR/ /NONSGML CalDelimiter/ /EN’
attr_def ::= attr_name ‘:’ attr_type ‘:’ attr_value ‘\n’
attr_type ::= ‘string’ | ‘integer’ | ‘reminder’ | ‘accesslist’

| ‘repeatdefinition’ | ‘custom’
The data associated with the attributeattr_value ::=

XAPIA string. The span of characters that can be used in the
definition of an attribute name is specified in the X/Open CAE
Specification, Calendaring and Scheduling API (XCS).

attr_name ::=

An example calendar file with two entries is as follows.

DTCM Archive 1.0
-//CDE_XAPIA_PRIVATE/CS/API/ENTRYATTR/ /NONSGML ApptDelimiter/ /EN:string:begin
attr_name0 : type : value
attr_name1 : type : value

...
-//CDE_XAPIA_PRIVATE/CS/API/ENTRYATTR/ /NONSGML ApptDelimiter/ /EN:string:end

.

.

.
-//CDE_XAPIA_PRIVATE/CS/API/ENTRYATTR/ /NONSGML ApptDelimiter/ /EN:string:begin
attr_name0 : type : value
attr_name1 : type : value

...
-//CDE_XAPIA_PRIVATE/CS/API/ENTRYATTR/ /NONSGML ApptDelimiter/ /EN:string:end

90 X/Open CAE Specification



Calendar and Appointment Services Formats

5.7.1.1 Attribute Definition

Each entry in a calendar is represented by a series of triples. These triples are constructed of
three objects: the attribute name, the type of the attribute and the actual value of the attribute.
The attribute name is the same name used to store the attribute in the database and is
constructed out of printable characters within the referenced ISO/IEC 8859-1: 1987 standard
character set. The set of valid characters does not include NUL, <tab>, <newline>, <carriage
return>, <space> or colon. The attribute type describes the type of the data associated with the
attribute name. This is a limited set of types that includes integer, string, reminder and access
list, and buffer. The value is the actual value associated with the attribute name, and is
interpreted according to the type value associated with it. Within a calendar archive file, an
individual attribute is written with the members of the triple separated by colons:

attrname : type : value

An example attribute is:

-//XAPIA/CS/API/CALATTR/ /NONSGML Calendar Name//EN:
string:fred@host.Company.COM

Attribute types can have the following values. The ‘‘integer/string pairs’’ used frequently in this
list refer to an integer value followed by a colon and a string value.

string A null-terminated sequence of characters. The bytes in an attribute of this
type are interpreted relative to the character set attribute for the same entry.

integer A decimal integer, expressed as digits from the referenced ISO/IEC
8859-1: 1987 standard.

reminder An integer/string pair representation of the reminder structure defined in
the X/Open CAE Specification, Calendaring and Scheduling API (XCS).
The integer is the advance on the reminder, expressed as a number of
seconds, with negative numbers indicating time prior to the event. The
string describes additional data that may relate to the reminder. The XCDE
calendar and appointment services use this string as a list of e-mail
addresses for e-mail reminders, but ignore it for other reminder types. An
example entry is:

-//XAPIA/CS/API/ENTRYATTR/ /NONSGML Mail Reminder/ /EN:
reminder:-1800:hseldon@trantor

accesslist A string that describes the individuals who have specific access permissions
set on a calendar. This attribute type applies only to a calendar, not an
entry, where it is ignored. An access list value is formatted across a series of
lines, each line containing one logical access list entry. The first entry starts
a line and is indented with a <tab> character. Each line is an integer/string
pair. The integer represents the access granted to the user, as defined by the
X/Open CAE Specification, Calendaring and Scheduling API (XCS). The
string describes the user who gains that access. An example entry is:

-//XAPIA/CS/API/CALATTR/ /NONSGML Access List//EN:accesslist:
11:fred
7:joanne

repeatdefinition
A string representation of a data structure that describes how an event
repeats indefinitely. This structure is defined by the X/Open CAE
Specification, Calendaring and Scheduling API (XCS).

X/Open Common Desktop Environment (XCDE) Services and Applications 91



Formats Calendar and Appointment Services

custom Custom entries are for attributes values that do not conform to the
constraints of a string data type because they can have embedded NUL
characters within them. It is the responsibility of the application to ensure
that these values are portable between systems because the XCDE calendar
and appointment services do not perform any transformation on the
characters.

5.7.1.2 Long Values

When an attribute value is long, or contains embedded <newline>s or <carriage return>s, the
values for attributes are broken out across a number of lines, using a subset of the MIME RFC
rules for long/binary headers. The XCDE calendar and appointment services support unbroken
lines of at least 256 bytes. All continuation lines begin with a <tab>. Lines that are too long are
broken with a <newline>/<tab> pair. Thus, abcd becomes ab\n\tcd. Embedded <newline> are
suffixed with a <tab>. Thus, ab\ncd becomes ab\n\tcd.

5.7.2 Calendar Entry Format

The calendar entry file format defines how one entry is saved to a file or used in a drag-and-drop
transaction with another client. A grammar for the entry format is:

appt_file ::= header_string entry_definition
::= ‘\n\n\t ∗∗Calendar Appointment ∗∗\n’

entry_definition ::= appt_def ‘\n’ old_appt
| old_appt

old_appt ::= date_mark start_mark end_mark repeat_mark
| duration_mark text_mark

date_mark ::= ‘\tDate: ’ date_value ‘\n’
Date as mm/dd/yyyydate_value ::=

start_mark ::= ‘\tStart: ’ start_value ‘\n’
start_value ::= Entry begin time as hh:mm[ampm], where hh and mm represent two-digit

hours and minutes and the optional ampm suffix is the string am or pm
end_mark ::= ‘\tEnd: ’ end_value ‘\n’

Entry begin time as hh:mm[ampm]end_value ::=

repeat_mark ::= ‘\tRepeat: ’ repeat_value ‘\n’
repeat_value ::= ‘One Time’ | ‘Daily’ | ‘Weekly’ | ‘Every Two Weeks’

| ‘Monthly By Date’ | ‘Yearly’ | ‘Monthly By Weekday’
| ‘Monday Thru Friday’ | ‘Mon, Wed, Fri’
| ‘Tuesday, Thursday’

duration_mark ::= ‘\tFor: ’ duration_value ‘\n’
Integer that describes the number of repetitions.duration_value ::=

text_mark ::= ‘\tWhat: ’ text_value
text_value ::= Up to 5 lines of text.

Each line after the first must have a leading
<tab> character.

appt_def ::= appt_start_marker attr_list appt_end_marker
attr_list ::= attr_def att_list

| attr_def
appt_start_marker ::= appt_marker ‘:string:begin\n’
appt_end_marker ::= appt_marker ‘:string:end\n’
appt_marker ::=

‘-//CDE_XAPIA_PRIVATE/CS/API/ENTRYATTR/ /NONSGML ApptDelimiter/ /EN’

92 X/Open CAE Specification



Calendar and Appointment Services Formats

attr_def ::= attr_name ‘:’ attr_type ‘:’ attr_value ‘\n’
attr_type ::= ‘string’ | ‘integer’ | ‘reminder’

| ‘accesslist’ | ‘repeatdefinition’ | ‘custom’
XAPIA string. The span of characters that can be used in the definition
of an attribute name is specified in the X/Open CAE Specification,
Calendaring and Scheduling API (XCS).

attr_name ::=

An example entry:

∗∗ Calendar Appointment ∗∗
-//CDE_XAPIA_PRIVATE/CS/API/ENTRYATTR/ /NONSGML ApptDelimiter/ /EN:string:begin
-//XAPIA/CS/API/ENTRYATTR/ /NONSGML Start Date//EN:integer:775148400
-//XAPIA/CS/API/ENTRYATTR/ /NONSGML End Date//EN:integer:775148900
-//XAPIA/CS/API/ENTRYATTR/ /NONSGML Type//EN:string:CSA_TYPE_EVENT
-//CDE_XAPIA_PRIVATE/CS/API/ENTRYATTR/ /NONSGML Showtime/ /EN:integer:1
-//XAPIA/CS/API/ENTRYATTR/ /NONSGML Summary/ /EN:string:Foundation planning

meeting in Hari’s office
-//XAPIA/CS/API/ENTRYATTR/ /NONSGML Status//EN:integer:0
-//XAPIA/CS/API/ENTRYATTR/ /NONSGML Recurrence Rule//EN:string:M60 #12
-//XAPIA/CS/API/ENTRYATTR/ /NONSGML Audio Reminder/ /EN:reminder:-60:
-//XAPIA/CS/API/ENTRYATTR/ /NONSGML Flashing Reminder/ /EN:reminder:-60:
-//XAPIA/CS/API/ENTRYATTR/ /NONSGML Mail Reminder/ /EN:reminder:-1800:

hseldon@trantor
-//XAPIA/CS/API/ENTRYATTR/ /NONSGML Popup Reminder/ /EN:reminder:300:
-//CDE_XAPIA_PRIVATE/CS/API/ENTRYATTR/ /NONSGML ApptDelimiter/ /EN:string:end

Date: 7/25/1994
Start: 8:00am
End: 9:00am
Repeat: Every Two Weeks, last
For:26
What: Foundation planning meeting

in Hari’s office

X/Open Common Desktop Environment (XCDE) Services and Applications 93



Capabilities Calendar and Appointment Services

5.8 Capabilities
A conforming implementation of the XCDE calendar and appointment services supports at least
the following capabilities:

1. Provides calendar and appointment services as described in the following subsections.

2. Conforms to the Required items in the Application Style Checklist in Chapter 20 on page
355.

3. Has been internationalised using the standard interfaces in the X/Open CAE Specification,
System Interfaces and Headers, Issue 4, Version 2, the X/Open CAE Specification,
Window Management: Xlib C Language Binding, and the X/Open CAE Specification,
Motif Toolkit API, and supports any locale available in the underlying X Window System
Xlib implementation.

5.8.1 Calendar Main Window

The main window of the XCDE calendar and appointment services provides access to all
calendar and appointment services functionality and selects the desired calendar view. At least
the following views are supported:

Day The appointments for a single work day are displayed within subdivisions. (The
times of a work day can be specified as a user option; see Section 5.8.2 on page 95.)
Also within the view are three monthly calendars: the preceding, current and
following months relative to the current Day view. Choosing a day in this section
changes the current work day of appointments being viewed.

Week The appointments for a full week are displayed within subdivisions, each
representing one day. Also within the view is a display that represents graphically
which times during the week are free, are filled by appointments and are filled by
overlapping appointments. Invoking the default action on the graphical display
section opens the appointment editor, set to the appropriate day and time.

Month The appointments for a full month are displayed within subdivisions, each
representing one day. The display resembles a wall calendar, with multiple rows
of seven boxes, arranged into weeks.

Year All of the days of the current year are displayed, by month. Each month display
resembles a wall calendar, with multiple rows of seven boxes, arranged into
weeks. Appointments need not be displayed. Invoking the default action on a
month display may open the appointment editor, set to a day and time within that
month.

For the Day, Week and Month views, the following rules apply to appointment displays:

• The appointment text is associated with the start and stop times.

• When viewed by another user, the appointment text may be suppressed, depending on
privacy options, described later.

• The number of appointments viewable may be limited by the size of the subdivision.

• Invoking the default action on an appointment subdivision opens the appointment editor, set
to the appropriate day and time.

Each view has navigation buttons (in addition to any control available in the window menu) to
change the date range in the view: arrow buttons and a Today button. The action of the
navigation buttons depends on the current view (Day, Week, Month or Year). For example, in
the Week view, the user can click on the arrows on either side of the current day to go backward

94 X/Open CAE Specification



Calendar and Appointment Services Capabilities

or forward one week, and can return to the view of the current week by clicking on the button
that displays the current day.

From any view, the user can enter a specific date and go directly to the period of time that
includes that date. (For example, in Week view, entering a date will move to the week that
contains that date.)

5.8.2 Options/Properties

The following options or properties can be set and they persist through each session:

• The default calendar displayed at startup. This string may be of the form user@hostname , or
another implementation-dependent format.

• The default calendar view displayed at startup.

• The time the work day starts and ends.

• The access list for the user’s calendar. The possible permissions include browse, insert and
delete. Access can be granted on a individual user basis or for all other users. The default is
that all other users can browse the calendar, but they do not have insert or delete access to it.

• Defaults for appointments: reminder methods (including beep, flash, popup and e-mail) and
preceding time; privacy.

5.8.3 Appointment Editing

The appointment editor may be a separate dialog box. The system need not support more than
one appointment editor open at any one time.

The user can use the appointment editor to accomplish the following:

1. Add new appointments. Appointments have at least the following attributes:

a. Date.

b. Start and stop times, both within that date.

c. Descriptive text, of at least four lines. This text may be truncated in some calendar
views.

d. Reminders. The user can select one or more of at least the following reminder
methods, each with an amount of time specified in advance of the appointment:
sounding an audible alarm, if supported by the hardware; flashing the calendar icon
and window; displaying a message dialog with the information concerning the
appointment; sending an e-mail.

e. Frequency. The user can schedule repetitive appointments by selecting the number
of repetitions and the frequency:

• once (default)

• daily

• weekly on the same day

• every two weeks on the same day

• monthly on the same date

• monthly by weekday

X/Open Common Desktop Environment (XCDE) Services and Applications 95



Capabilities Calendar and Appointment Services

• annually on the same date

• daily on Monday to Friday only

• every Monday, Wednesday and Friday

• every Tuesday and Thursday

• every n days, weeks or months, where n is an integer specified by the user

f. Privacy. The user can choose to suppress the descriptive text, or all knowledge of
this appointment, from other users who have browse access to the calendar.

2. Display a list of all appointments for the day.

3. Delete existing appointments.

4. Edit attributes of existing appointments.

5.8.4 Appointment Listing

The appointment lister may be a separate dialog box. The system need not support more than
one appointment lister open at any one time.

The appointment lister lists of appointments for the calendar view at the time the list is opened;
for example, in Week view, the list displays all appointments for the current week. Changing
the calendar view may change an open appointment list.

The list includes at least the following for each appointment: date; start time; the first line of the
appointment description. Appointments are sorted in ascending order by start date and time.

Invoking the default action on an appointment in the list opens the appointment editor, with
that appointment selected for editing.

5.8.5 Appointment Finding

The XCDE calendar and appointment services can search for appointments meeting user-
specified criteria:

1. The user can specify a string on which to search. The search is independent of case.

2. The user can limit the search to dates within a specified range.

All matching appointments are presented to the user. Selecting one of the matches changes the
main window view to include the date of that appointment.

5.8.6 To-Do Editing

The to-do editor may be a separate dialog box. The system need not support more than one to-
do editor open at any one time.

The user can use the to-do editor to accomplish the following:

1. Add new to-do tasks. To-do tasks have at least the following attributes:

a. Optional due date.

b. Descriptive text, of at least four lines. This text may be truncated in some calendar
views.

c. Status: completed, pending or overdue. Pending or overdue are in relation to the
due date. The user can change a pending or overdue task to completed, or remove
the completed status.

96 X/Open CAE Specification



Calendar and Appointment Services Capabilities

d. Reminders. This attribute is the same as for an appointment, except that only e-mail
reminders need to be supported.

e. Frequency. This attribute is the same as for an appointment.

2. Delete existing to-do tasks. (The task is selected from the to-do list described in the next
section.)

3. Edit attributes of existing to-do tasks. (The task is selected from the to-do list described in
the next section.)

5.8.7 To-Do Listing

The to-do lister may be a separate dialog box. The system need not support more than one to-do
lister open at any one time.

The user can limit the displayed list of to-do tasks to only completed tasks or to pending and
overdue tasks.

The user can limit the displayed list of to-do tasks to those tasks due in the current day, week,
month or year. To-do tasks that do not have a due date appear in all views.

The displayed list includes at least the following for each to-do task: status; due date; the first
line of the task description.

Invoking the default action on a task in the list opens the to-do editor, with that task selected for
editing.

5.8.8 Multi-User Calendar Accessing

The user can identify calendars (such as with the user@hostname notation) to be in a list of
frequently accessed calendars. The user can add and delete calendars from the list. The list
contents persist through each session.

The user can access some or all of the calendars from those in the frequently accessed calendar
list, to identify common free times. A graphical display depicts time periods in which conflicts
occur and the user can determine which calendars are busy for those periods of time. The user
can access a XCDE mail services Compose window (see Chapter 6 on page 99) that is pre-
addressed to all users whose calendars are selected.

The user can schedule an appointment on all accessible calendars from the preceding step and
optionally e-mail the appointment to those not accessible. The user can access a XCDE mail
services Compose window (see Chapter 6 on page 99) that is pre-addressed to all users whose
calendars are selected and the text of the mail message contains the new or edited appointment.

5.8.9 Drag and Drop Capabilities

The XCDE calendar and appointment services provide drag and drop capabilities as follows:

1. The user can drag a calendar appointment from an icon in the appointment editor or from
any list of appointments to any drop site registered to accept buffer drops.

2. The user can drop a buffer containing an appointment onto the main calendar window,
causing the appointment to be scheduled.

The format of the appointment to be dragged and dropped is described in Section 5.7.2 on page
92.

X/Open Common Desktop Environment (XCDE) Services and Applications 97



Capabilities Calendar and Appointment Services

5.8.10 Printing

The following printing capabilities are supported:

1. From any view in the main window, the user can print a version of that view.

2. From any view in the main window, the user can print a version of any other view,
without changing the view being displayed.

3. The user can print any main view, the appointment list or to-do list and specify a range of
times, to be printed as if individual view-printing requests had been made. For example,
in Week view, two or more weeks can be printed in a single request.

5.8.11 Other Capabilities

The following additional capabilities are supported:

1. The user can change the calendar display to that of another user, allowing direct browsing
or updating (given appropriate access permissions). Each calendar identified in the list of
frequently accessed calendars, described in Section 5.8.8 on page 97, is available directly as
a menu item. The user can also change to an individual calendar without adding it to the
list.

2. The user can change the view of appointments and to-do tasks so that they appear to be in
a specified time zone other than the local one.

98 X/Open CAE Specification



Chapter 6

Mail Services

6.1 Introduction
The XCDE mail services provide a GUI for manipulating electronic mail messages that may have
attachments. Users can use the interface to perform activities such as: compose a message, view
the contents of a message, view the list of messages in a mailbox, copy or move messages from
one mailbox to another, delete messages, reply to messages, add/delete attachments to a
message, and view contents of attachments in a message. The key supported tasks for the mail
services are:

• Receive and view mail messages and their attachments

• Compose, reply, forward, reply-include and send messages

• Include files and add attachments to outgoing messages

• File incoming messages in different mailboxes

• Create, open and close mailboxes

• Move or copy messages from one mailbox to another

• Delete and undelete messages

• Print messages

• Sort or find messages based on prescribed criteria

• Provide a public ToolTalk API to support a mail-pervasive desktop environment

6.2 Actions
This section defines the actions that provide XCDE mail services to support application
portability at the C-language source or shell script levels.

X/Open Common Desktop Environment (XCDE) Services and Applications 99



<dtmailaction> Mail Services

NAME
dtmailaction — XCDE mail actions

SYNOPSIS
Compose [ file ... ]
Dtmail [ file ]
Open file
Print file

DESCRIPTION
The XCDE Mail Services support the following mail actions:

Compose
Open an empty mail composition view for message construction.

Compose file . . .
Open a mail composition view with attachments named by the pathnames in the file
arguments.

Dtmail
Open a view of the user’s inbox for electronic mail.

Dtmail file
Open a view of the mail file named by the pathname in the file argument.

Open file
Open a view of the mail file named by the pathname in the file argument.

Print file
Print the mail file named by the pathname in the file argument.

These actions can be invoked from an application using the DtActionInvoke ( ) function or
invoked from a command line using the dtaction utility.

SEE ALSO
dtaction, DtActionInvoke ( ) in the XCDI specification.

CHANGE HISTORY
First released in Issue 1.

100 X/Open CAE Specification



Mail Services Messages

6.3 Messages
The mail services implement the Display and Mail media messages for media type
RFC_822_MESSAGE. See the XCDI specification, Section 6.6.2, Media Exchange Message Set.

When a Display message is received, the mail services display the mailbox specified by the
Display message’s file attribute.

When a Mail(TT_IN) message is received, the mail services attempt to send the given data.

When a Mail(TT_OUT) message is received, the mail services open an empty Compose window.

When a Mail(TT_INOUT) message is received, the mail services parse the given data and open a
Compose window with the data filled into the appropriate areas (header fields, text and
attachment areas).

For Mail(TT_IN) and Mail(TT_INOUT) messages, the data must be a fully constructed mail
message in the format described in Section 6.4. If the data has attachments, it must be in the
format described in the referenced MIME RFCs.

6.4 Formats
The XCDE mail services transmit and receive mail messages formatted in accordance with the
referenced RFC-822; some or all of the following header fields, as defined in the referenced
MIME RFCs, are also included in each message:

Content-Description
Content-ID
Content-Transfer-Encoding
Content-Type
Mime-Version

The XCDE mail services read and write mailboxes in the format described in the mailx command
in the X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2, with each mail
message formatted as described previously, except that an additional header line is included in
each message:

Content-Length: n

where n is an integer representing the number of octets in the body of the message (in other
words, those octets that occur after the empty line separating the message header from the
message body). When a mailbox is being read, the Content-Length fields of the messages are
verified. If the content length points exactly to the beginning of a From line that denotes the
start of a new mail message, or if it points to the end of the mailbox file, the Content-Length
value is honoured; otherwise, the mail services scan the mailbox for the next message and
correct the value of the Content-Length header when the mailbox is later written.

When messages are saved in a mailbox file, the XCDE mail services may write additional header
lines into each mail message stored in the file.

X/Open Common Desktop Environment (XCDE) Services and Applications 101



Capabilities Mail Services

6.5 Capabilities
A conforming implementation of the XCDE mail services supports at least the following
capabilities:

1. Provides mail services as described in the following subsections.

2. Formats mail messages and mailbox files as described in Section 6.4 on page 101.

3. Conforms to the Required items in the Application Style Checklist in Chapter 20 on page
355.

4. Has been internationalised using the standard interfaces in the X/Open CAE Specification,
System Interfaces and Headers, Issue 4, Version 2, the X/Open CAE Specification,
Window Management: Xlib C Language Binding, and the X/Open CAE Specification,
Motif Toolkit API, and supports any locale available in the underlying X Window System
Xlib implementation.

6.5.1 Managing Mailboxes

Mailboxes are text files formatted as described in Section 6.4 on page 101. The user has a
mailbox referred to as the Inbox where incoming mail is received. The user can also have
additional mailboxes. (Unless otherwise noted, the term mailbox applies to both the Inbox and
any additional mailbox files.) The following capabilities are supported for managing mailboxes:

1. The user can open the Inbox and any additional mailboxes for which he or she has read
permission. Multiple mailboxes can be open simultaneously. Mailboxes for which the
user has read permission, but does not have write permission, are opened as read-only
mailboxes, which prevents deletion of messages.

2. The user can create new, empty mailboxes.

3. The user can close mailboxes.

4. The user can set the method by which the mail services update a mailbox’s list of mail
messages to account for newly received, moved or copied messages. This can be a
recurring time period as well as an immediate one-time update.

5. The user can select audible alarms or flashing windows as a means of announcing that the
mailbox has been updated.

6. The user can specify a default directory for mailboxes (other than the Inbox).

6.5.2 Managing Message Lists

The following capabilities are supported for viewing and manipulating the message list
associated with a mailbox:

1. When a mailbox is open, it presents a list of its constituent mail messages. The list
contains at least the following for each message:

a. Name or login name of sender

b. Subject (which may be empty)

c. Date and time the message was sent, if that information is available in the message,
expressed in the time zone of the local system

d. Size of the message in octets; messages larger than 1 024 octets may be expressed in
terms of ‘‘K’’ (1 024) octets

102 X/Open CAE Specification



Mail Services Capabilities

e. Status of the message (new or already read)

f. Whether there are attachments to the message

2. The user can delete messages from the list. The deleted message is placed on a list of
deleted message and is not physically removed from the mailbox at that time.

3. The user can restore deleted messages by selecting them from the deleted message list.

4. The user can physically remove all deleted messages from the mailbox by destroying the
deleted message list. This destruction can occur when the user chooses a control to do
such and it can be set up to occur automatically when the mailbox is closed. The user may
be offered the choice of removing individual mail messages from the deletion list based on
the age of the message or other user-selected criteria.

5. The user can sort the list of messages in any of the following sequences:

a. Date and time of sending — sorted in date/time sequence

b. Name or login name of sender — sorted in case-sensitive character sequence

c. Subject — sorted in case-sensitive character sequence, with replies to messages
sorted as if the leading characters ‘‘Re: ’’ were not present

d. Size — sorted in size sequence

e. Status — sorted in an unspecified sequence

6. The user can search for messages in the list, selecting either the next message meeting the
criteria or all of the messages doing so, at the user’s option. The search matches substrings
of any or all of the following header values, in a case-insensitive manner: To, From,
Subject, Cc.

7. The user can select one or more messages and copy them to another mailbox. All of a
message, including attachments, is copied.

8. The user can select one or more messages and move them to another mailbox. The
movement is equivalent to a copy operation followed by a delete operation.

9. The user can select one or more messages and print them. The data transmitted for
printing of each message includes the text and mail header of the message. The user may
be able to choose to print attachments along with the text and header. The method used to
print the text is based on the Print action for the DTMAIL_FILE file type; see the XCDI
specification, Section 8.4, Data Formats.

6.5.3 Viewing and Manipulating Existing Messages

The following capabilities are supported for viewing and manipulating existing messages in a
mailbox:

1. The user can display a message. The user can choose to display additional messages by
either replacing the current display with the new message or opening additional display
windows so that multiple messages are displayed at once.

2. The user can display the text of the message.

3. The user can display the mail header of the message and can choose to see all of the header
lines or only a subset.

4. The user can suppress the display of header fields by name.

X/Open Common Desktop Environment (XCDE) Services and Applications 103



Capabilities Mail Services

5. The user can save the text of the message, including the mail header lines that are chosen
for display, as a text file, creating a new file or replacing an existing one.

6. The message attachments are displayed as icons. The icon selected for an attachment is
based on the data typing information described in the XCDI specification, Chapter 8, Data
Typing.

7. The user can save the data from an attachment as a file, creating a new file or replacing an
existing one.

8. The user can access a menu with Actions for a selected attachment. Actions are invoked
for an attachment by selecting an attachment and then selecting an action from the menu.
If the ACTIONS attribute is defined for an attachment’s data type, invoking the default
action on an attachment activates the first Action listed in the Action attribute.

6.5.4 Composing New Messages

The following capabilities are supported for composing new messages:

1. The user can compose a message that includes both text and attachments and can specify
and edit the To addressees, the Cc addressees, the Bcc (blind Cc) addressees and the
Subject header field.

2. The user can compose multiple messages simultaneously.

3. The user can send messages to a file by including the file name as one of the To, Cc or Bcc
addressees. The file name must be expressed as an absolute pathname or using a notation
of ‘‘+file ,’’ which selects the file named file in the default mailbox directory (see Section
6.5.1 on page 102).

4. The user can send messages to a mail alias, which represents one or more people or files,
by including the alias name as one of the To, Cc or Bcc addressees.

5. The user can compose a new message starting with an empty body, Subject and
addressees.

6. The user can select one or more messages from the mailbox message list and compose a
new message that includes the text of these messages. The new message includes all of the
attachments of the selected messages.

7. The user can select one or more messages from the mailbox message list and compose a
forwarded message that includes the text and all the attachments from these messages. A
forwarded message differs from a new message only in that the Subject header is pre-
entered for the user, based on the Subject of one of the selected messages, and the text of
the selected messages is identified as being forwarded.

8. The user can select one or more messages from the mailbox message list and compose a
reply message that includes the text of these messages. If multiple messages are selected,
multiple reply compositions are set up, so that each can be processed simultaneously and
each has the correct addressees. The following variations on replies are supported:

a. A Reply to Sender starts with an empty body, but pre-enters the To and Subject
headers for the user, based on the sender and Subject of the original message. The
reply contains no attachments unless the user takes explicit action to include them.

b. A Reply to All is the same as a Reply to Sender, but all of the To and Cc addressees of
the original message are pre-entered as To and Cc addressees, as appropriate, on the
reply. The reply contains no attachments unless the user takes explicit action to
include them.

104 X/Open CAE Specification



Mail Services Capabilities

c. A Reply to Sender with Include is the same as a Reply to Sender, but the message
body starts with the text of the original message. The user can choose to indent each
line of the text with a string of characters (such as ‘‘> ’’). The reply includes all
attachments from the original message.

d. A Reply to All with Include is the same as a Reply to All, but the message body starts
with the text of the original message. The user can choose to indent each line of the
text with a string of characters (such as ‘‘> ’’). The reply includes all attachments
from the original message.

9. The user can include a text file at the insertion point of the message being composed.

10. The user can write the header and text of the message being composed to a text file,
creating a new file or replacing an existing one.

11. The user can manipulate the contents of the message text using the facilities described in
Section 9.8 on page 194: word wrapping, finding and replacing text, and spell checking.

12. The user can select a mailbox into which all outgoing messages are saved.

13. The user can select a directory into which the mail services will attempt to save partial
messages in case of interrupts or delivery errors.

14. The user can affect the attachments of mail as it is being composed:

a. Add attachments

b. Delete and undelete attachments

c. Save the attachments as files

d. Rename the attachments (which affects the name in the message, not the name of the
file being attached)

6.5.5 Drag and Drop Capabilities

The XCDE mail services provide drag and drop capabilities as follows:

1. The user can drag the selected messages from the mailbox message list to any drop site
registered to accept buffer drops. This achieves the following results:

a. If dropped onto another mailbox message list, the messages are moved into the
target mailbox.

b. If dropped onto the text area of a message being composed, the texts of the messages
are inserted into the new message.

c. If dropped onto the attachments area of a message being composed, the messages are
attached as a mailbox file.

d. If dropped onto another application, the data should be treated as either a file or a
collection of individual mail messages, as appropriate.

2. The user can drag text from the text area of a message being composed or viewed to any
drop site registered to accept text drops. This achieves the following results:

a. If dropped onto the text area of a message being composed, the text is inserted into
the new message.

b. If dropped onto the attachments area of a message being composed, the text is
attached as a text attachment.

X/Open Common Desktop Environment (XCDE) Services and Applications 105



Capabilities Mail Services

c. If dropped onto another application, the data should be treated as text.

3. The user can drag an attachment from the attachment area of a message being composed
or viewed to any drop site registered to accept buffer drops. This achieves the following
results:

a. If dropped onto the text area of a message being composed, text in the attachment is
inserted into the new message.

b. If dropped onto the attachments area of a message being composed, the attachment
is copied into the attachments area of the new message.

c. If dropped onto another application, the data should be treated in accordance with
the type of data.

4. The user can drop files, text or data buffers into the attachment area of a message being
composed, which causes new attachments to be added to the message.

6.5.6 Other Capabilities

The following other capabilities are supported:

1. The user can maintain (display, add entries, delete entries, change entries) a list of personal
mail aliases.

2. The user can set up the mail services so that any incoming message is replied to
automatically. The message is stored in the Inbox as usual. The user can specify the text
and Subject of the reply message. The mail services may limit the number of these
automatic replies sent to the same mail address.

106 X/Open CAE Specification



Chapter 7

File Management Services

7.1 Introduction
The XCDE file management services provide the primary interface to the objects used in the
X/Open Common Desktop Environment. These services provide a graphical interface for object
and folder manipulation and for application execution.

The XCDE file management services interface consists of a window that shows the contents of a
single folder or a set of nested folders. These services provide many manipulation functions,
such as folder traversal, creating, moving, deleting objects and invoking actions (such as Edit or
Print) on objects.

The XCDE file management services also provide windows for two special types of folders:
application and trash. Application folders are used to organise application objects such as
actions. The trash folder is a holding area for objects that a user wishes to delete.

7.2 Actions
This section defines the actions that provide XCDE file management services to support
application portability at the C-language source or shell script levels.

X/Open Common Desktop Environment (XCDE) Services and Applications 107



<dtfileaction> File Management Services

NAME
dtfileaction — XCDE file management actions

SYNOPSIS
Dtfile [ directory ]
DtfileHome
Open directory
Open file
Print directory
Print file

DESCRIPTION
The XCDE File Management Services support the following file management actions:

Dtfile
Prompt the user for the pathname of a directory and open a folder view of the
directory specified by the user.

Dtfile directory
Open a folder view of the directory named by the pathname in the directory
argument.

DtfileHome
Open a folder view of the user’s home directory.

Open directory
Open a folder view of the directory named by the pathname in the directory
argument.

Open file
Open the file named by the pathname in the file argument. (The nature of the Open
action is dependent on the type of file.)

Print directory
Print a listing of the directory named by the pathname in the directory argument.

Print file
Print the file named by the pathname in the file argument. (The nature of the Print
action is dependent on the type of file.)

These actions can be invoked from an application using the DtActionInvoke ( ) function or
invoked from a command line using the dtaction utility.

SEE ALSO
dtaction, DtActionInvoke ( ) in the XCDI specification.

CHANGE HISTORY
First released in Issue 1.

108 X/Open CAE Specification



File Management Services <dttrashaction>

NAME
dttrashaction — XCDE trash management actions

SYNOPSIS
Dttrash [ file ]

DESCRIPTION
The XCDE File Management Services support the following trash management actions:

Dttrash
Open a folder view of the desktop trash folder.

Dttrash file
Move the file named by the pathname in the file argument to the desktop trash
folder.

These actions can be invoked from an application using the DtActionInvoke ( ) function or
invoked from a command line using the dtaction utility.

SEE ALSO
dtaction, DtActionInvoke ( ) in the XCDI specification.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 109



Messages File Management Services

7.3 Messages
The XCDE file management services implement the Display and Edit requests for media type
FILE_NAME. See the XCDI specification, Section 6.6.2, Media Exchange Message Set. These
services also respond to the Quit desktop message. See the XCDI specification, Section 6.6.1,
Desktop Message Set.

7.4 Capabilities
A conforming implementation of the XCDE file management services supports at least the
following capabilities:

1. Provides file management services as described in the following subsections.

2. Conforms to the Required items in the Application Style Checklist in Chapter 20 on page
355, with the following exception that may exist on some implementations:

a. There are certain operations that need not comply with checklist item 3-1. The
selection of a folder in the iconic representation of a pathname and the ability to
invoke the default action of the folder using the Enter key need not be available.

3. Has been internationalised using the standard interfaces in the X/Open CAE Specification,
System Interfaces and Headers, Issue 4, Version 2, the X/Open CAE Specification,
Window Management: Xlib C Language Binding, and the X/Open CAE Specification,
Motif Toolkit API, and supports any locale available in the underlying X Window System
Xlib implementation.

7.4.1 Folder Window

The XCDE file management services provide a window that shows the contents of a single folder
or a set of nested folders. The user can configure how objects in a folder are displayed: as icons
or textually. More than one folder window can be displayed at a time. The user can update
folder windows and select/unselect individual or all objects in a folder. When a set of nested
folders are displayed, the user can expand or collapse folder branches and control whether all
objects in a folder or just the folder is shown.

The user can select from the following display modes:

• Objects are displayed in a sorted grid or can be placed by the user

• Objects can be displayed by name, by name with a large icon, by name with a small icon, or
by name, date and size.

• Objects can be sorted alphabetically, by file type, by date or by size; objects sorted by file type
are first sorted alphabetically by file type and are then sorted alphabetically by name within
each file type

• Objects can be sorted in ascending or descending order

• Objects can be displayed based on the object type

110 X/Open CAE Specification



File Management Services Capabilities

7.4.2 Application Folder Window

The XCDE file management services provide a special window that shows the contents of an
application folder. An application folder is a restricted folder that is used to organise application
objects such as actions. The user is not allowed to traverse above the root application folder.

7.4.3 Trash Folder Window

The XCDE file management services provide a special window that shows the contents of the
trash folder. The trash folder is a restricted folder that is used to store objects temporarily until
the user asks to permanently remove them. The user is not allowed to traverse out of the trash
folder. The user can restore objects from the trash folder if they have not been permanently
removed.

7.4.4 Workspaces

The user can place frequently used objects on the workspace for easier accessibility. The user
can also select actions for that object via a pop-up menu.

7.4.5 Object Movement and Modification

The XCDE file management services allow manipulation of objects in several different ways,
based on appropriate permissions and the type of the object. The user can create, move, copy,
create symbolic links to and delete applicable objects by using menu options and by using drag-
and-drop. Objects can be renamed by using menu options or by mouse selection; the objects that
cannot be renamed are implementation-dependent. Object permissions can be changed using
menu options.

7.4.6 Object Search

The XCDE file management services allow searching for objects by name or by content.
Searching by name performs a case-sensitive search for an object (or objects). Searching by
content performs a case-insensitive search for a specified character string. By default, the
current folder and its sub-folders are searched; the user can specify a different folder (and its
sub-folders) to be searched. A list of objects matching the search criteria is shown to the user.
For any object in the list, the user can choose to create a window to display the folder where the
object is located or to place the object on the current workspace.

7.4.7 Folder Traversal

Simple folder traversal can be accomplished by invoking the default action on a folder icon. This
action displays the contents of the selected folder. Traversal to a new folder by typing in the
folder name and menu options for traversal to the user’s home directory and parent folders are
also supported.

X/Open Common Desktop Environment (XCDE) Services and Applications 111



Capabilities File Management Services

7.4.8 Object Type/Action Association

An Actions menu is provided to show the Actions specified for each selected object. Actions are
invoked for an object by selecting an object and then selecting an action from the Actions menu.
If the ACTIONS attribute is defined for an object’s data type, invoking the default action on an
object activates the first Action listed in the Action attribute.

7.4.9 Registering Objects as Drop Sites

Every XCDE data type has three associated drop attributes: MOVE_TO_ACTION,
COPY_TO_ACTION and LINK_TO_ACTION; see the XCDI specification, Chapter 8, Data
Typing. The XCDE file management services register every object whose data type has a value
for at least one of these attributes as a drop site. Objects can be dragged between different file
management services folder windows, to workspaces and to cooperating clients. Direct
manipulation can be used to supply objects as input to any user-defined action (for example, a
Move action defined such that the dragged objects are moved to the dropped-on object).

7.4.10 Exit Services

Menu options are provided that allow the user to close file management services views.

The following information is saved as a consequence of exiting a desktop session:

1. The number and location of file management windows

2. The number and location of workspace objects

3. The number and location of objects placed on the workspace from file management
services

112 X/Open CAE Specification



Chapter 8

Front Panel Services

8.1 Introduction
The XCDE front panel services provide a key aspect of the XCDE user interface. The front panel
appears in every workspace and provides access to the most commonly used facilities in the
desktop. Considerable customisation is available to meet specific needs.

8.2 Formats
The front panel database provides definitions for the components that define the content and
functionality of the front panel. Files containing front panel definitions must end with the .fp
suffix. Like the action and data type database, the front panel database is constructed by reading
all files ending in the .fp suffix found in the search path specified by the
DTDATABASESEARCHPATH environment variable.

See the XCDI specification, Section 8.4, Data Formats for a complete description of the directory
locations where these database files are found and for a description of the specific syntax for the
database files.

8.2.1 File Format

The general syntax of the front panel configuration files is as follows:

set DtDbVersion= version_number
set VariableName =variable_value

RecordType record_name
{

# Comment
Keyword Value
Keyword Value

.

.

.
}

The Comments, Versions and Variables fields are described in the XCDI specification, Section 8.4,
Data Formats.

The front panel record types each have a set of Keyword and Value pairs. There are six record
types defined: PANEL, BOX, SUBPANEL, SWITCH, CONTROL and ANIMATION. Each record
type has a set of keywords defined for it. Many of the keywords are used for multiple record
types.

X/Open Common Desktop Environment (XCDE) Services and Applications 113



Formats Front Panel Services

8.2.2 Record Types

PANEL front panel name
The PANEL record type defines the outermost container of the front panel. It can
contain one or more BOXes and optionally repositioning handles, a menu and a
minimise button. The keywords defined for PANEL are described in the following
table.

PANEL Record Type Keywords and Values
Keyword Value Default

CONTROL_BEHAVIOR (double_click/single_click) single_click
DISPLAY_CONTROL_LABELS (True/False) False
DISPLAY_HANDLES (True/False) True
DISPLAY_MENU (True/False) True
DISPLAY_MINIMIZE (True/False) True
HELP_STRING string NULL
HELP_TOPIC topic name NULL
HELP_VOLUME volume name FPanel
LOCKED (True/False) False
PANEL_GEOMETRY {+−}xoffset[{+−}yoffset] NULL
RESOLUTION (high/medium/low/match_display) match_display
SUBPANEL_UNPOST (True/False) True

BOX box name
The BOX record type defines a container within a PANEL that can hold a row of
CONTROLS and at most one SWITCH container. Multiple BOXes within a PANEL
are stacked vertically. The keywords defined for BOX are described in the following
table.

BOX Record Type Keywords and Values
Keyword Value Default

CONTAINER_NAME front panel name NULL (required)
DELETE (True/False) False
HELP_STRING string NULL
HELP_TOPIC topic name NULL
HELP_VOLUME volume name FPanel
LOCKED (True/False) False
POSITION_HINTS (first/last/integer ≥ 1) first

SUBPANEL subpanel name
The SUBPANEL record type defines a secondary container for CONTROLs that
slide up from the front panel. SUBPANELs can also contain a drop zone where new
controls can be dynamically added. The keywords defined for SUBPANEL are
described in the following table.

114 X/Open CAE Specification



Front Panel Services Formats

SUBPANEL Record Type Keywords and Values
Keyword Value Default

CONTAINER_NAME control name NULL (required)
CONTROL_INSTALL (True/False) True
DELETE (True/False) False
HELP_STRING string NULL
HELP_TOPIC topic name NULL
HELP_VOLUME volume name FPanel
LOCKED (True/False) False
TITLE string NULL

SWITCH switch name
The SWITCH record type defines a container within a BOX that contains a set of
push buttons, each of which give access to a corresponding workspace. See dtwm
for a description of the multiple workspace capabilities. Also contained within the
SWITCH container is an optional set of CONTROLs. These are presented in a
column on each side of the push buttons. The keywords defined for SWITCH are
described in the following table.

SWITCH Record Type Keywords and Values
Keyword Value Default

CONTAINER_NAME box name NULL (required)
DELETE (True/False) False
HELP_STRING string NULL
HELP_TOPIC topic name NULL
HELP_VOLUME volume name FPanel
LOCKED (True/False) False
NUMBER_OF_ROWS integer 2
POSITION_HINTS (first/last/integer ≥ 1) first

CONTROL control name
The CONTROL record type defines the main functional component of the front
panel. CONTROLs typically have actions defined for them that are invoked on
selection or drag and drop or both. CONTROLs are displayed with icons or labels
or both and can have iconic animations associated with them. The keywords
defined for CONTROL are described in the following table.

X/Open Common Desktop Environment (XCDE) Services and Applications 115



Formats Front Panel Services

CONTROL Record Type Keywords and Values
Keyword Value Default

ALTERNATE_ICON image name NULL
CLIENT_GEOMETRY width x height NULL
CLIENT_NAME client name NULL
CONTAINER_NAME (box name/switch name/subpanel name) NULL (required)
CONTAINER_TYPE (BOX/SWITCH/SUBPANEL) NULL (required)
DATE_FORMAT format string %b%n%e
DELETE (True/False) False
DROP_ACTION action_name NULL
DROP_ANIMATION animation name NULL
FILE_NAME pathname NULL
HELP_STRING string NULL
HELP_TOPIC topic name NULL
HELP_VOLUME volume name FPanel
ICON image name NULL
LABEL string NULL
LOCKED (True/False) False
MONITOR_TYPE (none/mail/file) none
POSITION_HINTS (first/last/integer ≥ 1) first
PUSH_ACTION action_name NULL
PUSH_ANIMATION animation name NULL
PUSH_RECALL (True/False) False
TYPE (blank/busy/client/clock/date/file/icon) icon

ANIMATION animation name
The ANIMATION record types are a sequence of image name and time delay pairs
that are displayed by a CONTROL on a PUSH_ACTION or DROP_ACTION.

ANIMATION Record Type Keywords and Values
Keyword Value Default

ANIMATION image name [millisecond delay] None [200]

8.2.3 Keyword and Value Descriptions

The following list contains a description of each of the keywords defined by the front panel.

ALTERNATE_ICON
Used with record types of: CONTROL.

Used with control types of: busy and icon.

ALTERNATE_ICON defines an image to be used to replace the normal image
within a control with a mail or file value for the MONITOR_TYPE. The image is
displayed when the file being monitored changes. For the busy control,
ALTERNATE_ICON is cycled with ICON to give the blinking effect.

ANIMATION

Used with record types of: ANIMATION.

Used with control keywords of: PUSH_ANIMATION and DROP_ANIMATION.

116 X/Open CAE Specification



Front Panel Services Formats

ANIMATION defines a sequence of images to be displayed for either a
PUSH_ACTION or DROP_ACTION. Each animation within the list is displayed in
order with a default time separation of 200 milliseconds. For a slower or faster
sequence, the image name value can be followed by the amount of time to display
the image. If no time value is specified, the previously specified value is used.

CLIENT_GEOMETRY
Used with record types of: CONTROL.

Used with control type of: client.

Used with control keywords of: CLIENT_NAME.

CLIENT_GEOMETRY specifies the size (in pixels) needed for the window of a client
displayed within the front panel.

CLIENT_NAME
Used with record types of: CONTROL.

Used with control types of: client or icon.

Used with control keywords of: PUSH_RECALL.

CLIENT_NAME specifies a name used to associate a control with an executable. It
is necessary for control types of client (an X client running within the front panel)
and for icon when the keyword PUSH_RECALL is True. The value client name is the
name of the executable or can be set via a command-line argument for some clients
(such as xterm −name panelterm). The first string of the WM_CLASS property is the
value used.

CONTAINER_NAME
Used with record types of: BOX, SUBPANEL, SWITCH and CONTROL.

CONTAINER_NAME associates a component with its parent. For example, the
CONTAINER_NAME value for a SWITCH tells the front panel into which BOX it
should be placed. Since controls can reside in several different component types,
CONTAINER_NAME is used in conjunction with CONTAINER_TYPE to define a
control’s parent.

CONTAINER_TYPE
Used with record types of: CONTROL.

CONTAINER_TYPE defines a control’s parent type. This is used to identify a
control uniquely so that it can be created within the proper parent.

CONTROL_BEHAVIOR
Used with record types of: PANEL.

CONTROL_BEHAVIOR provides the mechanism for setting the user model for
front panel controls. Controls can be set to invoke their PUSH_ACTION by either a
single or double click.

CONTROL_INSTALL

Used with record types of: SUBPANEL.

CONTROL_INSTALL enables or disables dynamic control installation into
subpanels. A value of True causes the control installation area to be displayed
within the subpanel.

X/Open Common Desktop Environment (XCDE) Services and Applications 117



Formats Front Panel Services

DATE_FORMAT
Used with record types of: CONTROL.

Used with control types of: date.

DATE_FORMAT specifies the layout of the date string for a control of type date.
The format is the same used by the X/Open CAE Specification, System Interfaces
and Headers, Issue 4, Version 2 strftime( ) function.

DELETE
Used with record types of: BOX, SUBPANEL, SWITCH and CONTROL.

DELETE is used to override and remove a non-locked component from the front
panel. This is necessary to eliminate system default front panel components
without replacing the default files. To use DELETE, a copy of the component
definition with the additional DELETE keyword is stored in a file with an .fp suffix
in the user’s or application type’s directory.

DISPLAY_CONTROL_LABELS
Used with record types of: PANEL.

DISPLAY_CONTROL_LABELS specifies whether the controls contained within the
front panel’s boxes have their labels displayed.

DISPLAY_HANDLES
Used with record types of: PANEL.

If DISPLAY_HANDLES is set to True, the move handles are displayed along the left
and right edges of the front panel.

DISPLAY_MENU
Used with record types of: PANEL.

If DISPLAY_MENU is set to True, and DISPLAY_HANDLES is also set to True, the
system menu button is displayed in the upper left hand corner of the front panel.

DISPLAY_MINIMIZE
Used with record types of: PANEL.

If DISPLAY_MINIMIZE is set to True, and DISPLAY_HANDLES is also set to True,
the minimise button is displayed in the upper right hand corner of the front panel.

DROP_ACTION
Used with record types of: CONTROL.

DROP_ACTION specifies the function that is invoked when a drop occurs on the
control.

DROP_ANIMATION
Used with record types of: CONTROL.

Used with all control types except: client.

DROP_ANIMATION specifies the name of an animation record to be displayed
when a drop occurs on the control. The control must have a DROP_ACTION
defined for the animation to be used.

FILE_NAME
Used with record types of: CONTROL.

Used with control types of: icon and file.

118 X/Open CAE Specification



Front Panel Services Formats

For the control type of file, FILE_NAME is the pathname of the file to be used for
the control. The file’s file type, actions and images are extracted from the action
database for the control.

For MONITOR_TYPE mail and file, FILE_NAME specifies the pathname of the file
the front panel monitors for either mail arrival or some other user-defined data.

For MONITOR_TYPE file, the ALTERNATE_ICON image is displayed when the
monitored file is non-empty. The ICON image is displayed if the file is empty or
non-existent.

For MONITOR_TYPE mail, the ALTERNATE_ICON image is displayed when the
file increases in size.

HELP_STRING
Used with record types of: PANEL, BOX, SUBPANEL, SWITCH and CONTROL.

HELP_STRING specifies an on-line help string to display when help is requested
over a front panel component. Since each component type can have a help string
associated with it, there is a precedence used in deciding which help string to
display. Control help takes precedence over box help, switch help and subpanel
help. Box help takes precedence over subpanel help. The HELP_STRING value is
used only if no HELP_TOPIC value is defined.

HELP_TOPIC
Used with record types of: PANEL, BOX, SUBPANEL, SWITCH and CONTROL.

HELP_TOPIC specifies an on-line help topic that is used with either the default help
volume or a help volume specified by the HELP_VOLUME keyword to display help
information when requested over a front panel component. Like the
HELP_STRING keyword, each component type can have a help topic associated
with it and the same precedence rules are used.

HELP_VOLUME
Used with record types of: PANEL, BOX, SUBPANEL, SWITCH and CONTROL.

When HELP_VOLUME is used in conjunction with HELP_TOPIC, it defines the
help information to be displayed for a front panel component.

ICON
Used with record types of: CONTROL.

Used with control types of: icon, file and busy.

ICON specifies the image to be displayed within a control.

LABEL
Used with record types of: CONTROL.

Used with control types of: icon, file, clock and busy.

LABEL specifies the string to be displayed when a control is in a subpanel.

LOCKED
Used with record types of: PANEL, BOX, SUBPANEL, SWITCH and CONTROL.

LOCKED provides the mechanism to prevent a component definition of identical
type, name and parent from overriding (replacing) this definition. Since the front
panel can be defined within multiple configuration files, it provides the flexibility to
override components found earlier in the search path. Like actions and file types,
this allows the front panel to be customised at several levels.

X/Open Common Desktop Environment (XCDE) Services and Applications 119



Formats Front Panel Services

MONITOR_TYPE
Used with record types of: CONTROL.

Used with control types of: icon and file

MONITOR_TYPE specifies the method of checking the file being monitored,
specified by the keyword FILE_NAME.

NUMBER_OF_ROWS
Used with record types of: SWITCH.

NUMBER_OF_ROWS provides control over the layout of the workspace switch
buttons. The switch buttons are arranged in a row and column layout with the
NUMBER_OF_ROWS keyword defining the number of rows in the layout. The
number of columns is derived from this value and the total number of switch
buttons.

PANEL_GEOMETRY
Used with record types of: PANEL.

PANEL_GEOMETRY specifies a non-default location to position the front panel
when it is created. By default, the front panel is centered along the bottom of the
display.

POSITION_HINTS
Used with record types of: BOX, SWITCH and CONTROL.

POSITION_HINTS specifies the ordering of boxes in the front panel, the switch and
controls in boxes, and controls in subpanels. When two components have the same
value for POSITION_HINTS, the first one read from the configuration file is placed
first.

PUSH_ACTION
Used with record types of: CONTROL.

PUSH_ACTION specifies the function that is invoked when a selection occurs on
the control.

PUSH_ANIMATION
Used with record types of: CONTROL.

Used with all control types except: client.

PUSH_ANIMATION specifies the name of an animation record to be displayed
when a selection occurs on the control. The control must have a PUSH_ACTION
defined for the animation to be used.

PUSH_RECALL
Used with record types of: CONTROL.

Used with control keywords of: CLIENT_NAME.

When PUSH_RECALL is set to True, it specifies that only one process can be started
by the control. If the process is already running, it is displayed within the current
workspace and shuffled to the top of the window stack. The value for the
CLIENT_NAME keyword is used to identify the process for push recall behaviour.

RESOLUTION
Used with record types of: PANEL.

120 X/Open CAE Specification



Front Panel Services Formats

RESOLUTION allows the icon set for the front panel to be forced to a particular set.
By default, the front panel determines the display resolution at runtime and chooses
the high resolution icon set if the display width is 1024 pixels or wider.

SUBPANEL_UNPOST
Used with record types of: PANEL.

When SUBPANEL_UNPOST is set to True, it causes a subpanel to hide itself
whenever a PUSH_ACTION occurs on one of the subpanel controls. If the subpanel
has been torn off of the front panel, the behaviour of the subpanel is forced to
remain posted on PUSH_ACTION.

TITLE
Used with record types of: SUBPANEL.

TITLE specifies the string to be displayed in the title area of the subpanel.

TYPE
Used with record types of: CONTROL.

A number of different control types are defined by the front panel:

blank Space-holder control

busy Busy light

client A client window

clock Front panel clock

date Front panel date

file References a file on the file system and uses that file’s actions and
image

icon Front panel general control

8.3 Capabilities
A conforming implementation of the XCDE front panel services supports at least the following
capabilities:

1. Provides front panel services as described in the following subsections.

2. Conforms to the Required items in the Application Style Checklist in Chapter 20 on page
355.

3. Has been internationalised using the standard interfaces in the X/Open CAE Specification,
System Interfaces and Headers, Issue 4, Version 2, the X/Open CAE Specification,
Window Management: Xlib C Language Binding, and the X/Open CAE Specification,
Motif Toolkit API, and supports any locale available in the underlying X Window System
Xlib implementation.

X/Open Common Desktop Environment (XCDE) Services and Applications 121



Capabilities Front Panel Services

8.3.1 General Layout

The default configuration of the front panel is as follows:

1. The front panel appears in every workspace.

2. The front panel includes controls for the most commonly used actions, as listed in the next
section. Selecting a control invokes the action associated with the control.

3. Controls in the front panel may have indicators associated with them whose selection
causes a subpanel to appear.

4. Subpanels contain controls that provide access to additional actions.

5. Subpanels may have a special control that adds an icon to the subpanel. The user can drop
an icon on the special control, which causes that icon to become a control in the subpanel.

6. The user can move and iconify the front panel.

8.3.2 Special Controls

The front panel services provide the following special controls by default:

1. The file manager control depicts a file folder. When it is selected, it invokes the
DtfileHome action (see Section 7.2 on page 107), which opens a view of the user’s home
directory.

2. The lock control depicts a lock. When it is selected, it invokes the LockDisplay action (see
Section 3.4 on page 30), which prevents access to the system until the user’s password is
entered.

3. The exit control, when it is selected, invokes the ExitSession action (see Section 3.4 on page
30), which logs the user out of the current desktop session.

4. The printer control prints files that are dropped on it, by invoking the Print action (see
Section 17.2 on page 333). At least text files are supported. Its icon shows a printer.

5. The application manager control, when it is selected, invokes the Dtappmgr action (see
Section 15.3 on page 327), which shows applications installed on the system.

6. The help control, when it is selected, invokes the Dthelpview action (see Section 4.5 on
page 62), which displays the top-level help topic for the desktop.

7. The workspace controls move users among available workspaces. There is one control for
each workspace. Selecting a workspace control moves the user into that workspace.

8. The launch light indicates that an action is in the process of starting.

9. The trash can control removes files that are dropped on it by invoking the Dttrash action
(see Section 7.2 on page 107).

122 X/Open CAE Specification



Front Panel Services Capabilities

8.3.3 Other Capabilities

The following additional capabilities are provided:

1. Animation for drag and drop actions.

2. The user can add and delete workspaces.

3. The user can provide custom names for each workspace.

4. The user can add and remove subpanels.

X/Open Common Desktop Environment (XCDE) Services and Applications 123



Front Panel Services

124 X/Open CAE Specification



Chapter 9

Text Editing Services

9.1 Introduction
The XCDE text editing services provide a tablet to create and edit short documents such as
memos and mail messages in the character set of the current locale.

9.2 Widgets
This section defines the widget classes that provide XCDE text editing services to support
application portability at the C-language source level.

X/Open Common Desktop Environment (XCDE) Services and Applications 125



DtEditor( ) Text Editing Services

NAME
DtEditor — the DtEditor widget class

SYNOPSIS
#include <Dt/Editor.h>

DESCRIPTION
The DtEditor widget supports creating and editing text files. It gives applications running in the
desktop environment a consistent method for editing text data. The widget consists of:

• A scrolled edit window for text

• Dialogs for finding and changing text

• Formatting options

• Convenience functions for programmatically controlling the widget

The DtEditor widget supports the following set of basic editing operations:

• Finding and changing text

• Simple formatting

• Undoing the previous edit operation

All operations support locales with single- and multi-byte characters.

The DtEditor widget also supports multi-byte text and buffers of data. Data can be passed
between the application and the DtEditor widget, or a file and the widget.

The DtEditor widget provides separate callback lists to track when text is selected or deselected.
In addition, it extends the standard help callback to report help requests from any of its
components.

Widget subclassing is not supported for the DtEditor widget class.

Edit Window

The edit window supports basic editing operations such as cut and paste, find and change, and
simple formatting.

Mouse and Keyboard

The user can use the mouse to move the edit cursor and to select portions of a document for
editing operations. Selection is based on the model specified in the Inter-Client Communication
Conventions Manual (ICCCM—see the X/Open CAE Specification, Window Management: File
Formats and Application Conventions). The DtEditor widget supports primary and secondary
selection.

The user can cut, copy and paste text using the clipboard, primary transfer or secondary transfer.
The DtEditor widget accepts drops of text, text files or buffers of data. Text drops are inserted
where the mouse button is released to complete the drop. Dropped files and buffers of data are
placed at the insertion cursor. The DtEditor widget supports dragging of text within the edit
window or to a different widget.

The DtEditor widget provides a set of translations for the edit window. The default translations
provide key bindings for moving the insertion cursor, and deleting, inserting and selecting text.
The insertion cursor, displayed as an I-beam, shows where input is inserted. Input is inserted
just before the insertion cursor.

126 X/Open CAE Specification



Text Editing Services DtEditor( )

Dialogs

The DtEditor widget includes dialogs to provide a graphical user interface to its functionality:

• Find/Change dialog

• Format Settings dialog

The titles of all dialogs are controlled with the DtNdialogTitle resource. All dialogs are posted
using corresponding convenience functions and remain posted until dismissed by the user.
Each dialog includes Close and Help buttons in addition to buttons described in the following
lists.

The Find/Change dialog for the DtEditor widget enables users to search for, and optionally
replace, a string in the edit window. The dialog includes fields for specifying the find string and
the replacement string. When the user initiates a Find, the next occurrence of the specified string
(regular expressions are not supported) is highlighted in the DtEditor widget, if found;
otherwise, the DtEditor widget displays a message dialog stating the string was not found. If
the string was found, the user has the option to change the highlighted occurrence or all
occurrences.

The DtEditorFind( ) and DtEditorChange( ) functions provide a programmatic interface to the find
and change functionality of the DtEditor widget.

The Format Settings dialog for the DtEditor widget enables users to format the contents of the
edit window, format just the paragraph containing the insertion cursor, or specify the arguments
used when formatting text. The arguments include margin settings and text alignment. The
user has the choice of aligning the text flush with the left or right margin, centering each line of
text between the margins, or aligning it flush with both margins.

The DtEditorFormat( ) function provides a programmatic interface to the format functionality of
the DtEditor widget.

Word Wrap and Formatting

Word wrap and text formatting are essentially independent operations. Word wrap pertains to
the dynamic display of lines, as delimited by <newline> characters, which exceed the width of
the Text Editor window and is based on the left and right window boundaries. When word
wrap mode is off (the default), each line of text is displayed on a single line on the display and
text entered at the right window boundary causes the window to scroll automatically to the
right to accommodate the new text until an actual <newline> character is entered (normally, by
pressing the Return key). When word wrap mode is on, lines longer than the window width are
automatically wrapped at the right window margin to one or more display lines, and text
entered at the right window boundary is automatically broken on a word boundary to the first
column of the next display line. Word wrap is dynamic in that word-wrapped lines are
automatically adjusted when text is inserted or deleted or when the window is resized. Word
wrap only affects the display of lines; it does not actually insert <newline> characters in the text.

Text formatting is a static operation that inserts actual <newline> (and/or <space>) characters
directly in the text to match it to the left and right margins (and justification mode) specified in
the Format Settings dialog. Format settings affect text only when explicitly applied and have no
affect on word wrap or previously formatted text. Initially, and whenever the window is
resized, the right format margin is automatically set to the window width to match the word
wrap boundary.

X/Open Common Desktop Environment (XCDE) Services and Applications 127



DtEditor( ) Text Editing Services

Classes

The DtEditor widget inherits behaviour and resources from Core , Composite , Constraint ,
XmManager, XmBulletinBoard and XmForm classes.

The class pointer is dtEditorWidgetClass.

The class name is DtEditorWidget .

New Resources

The following table defines a set of widget resources the application uses to specify data. The
application can also set the resource values for the inherited classes to set attributes for this
widget. To reference a resource by name or by class in a .Xdefaults file, the application must
remove the DtN or DtC prefix and use the remaining letters. To specify one of the defined
values for a resource in a .Xdefaults file, the application must remove the Dt prefix and use the
remaining letters (in either lower case or upper case, but including any underscores between
words). The codes in the access column indicate if the given resource can be set at creation time
(C), set by using XtSetValues( ) (S), retrieved by using XtGetValues( ) (G), or is not applicable
(N/A).

DtEditor Resource Set
Name Class Type Default Access
DtNautoShowCursorPosition DtCAutoShowCursorPosition Boolean True CSG
DtNblinkRate DtCBlinkRate int 500 CSG
DtNbuttonFontList DtCFontList XmFontList dynamic CSG
DtNcolumns DtCColumns XmNcolumns dynamic CSG
DtNcursorPosition DtCCursorPosition XmTextPosition 0 CSG
DtNcursorPositionVisible DtCCursorPositionVisible Boolean True CSG
DtNdialogTitle DtCDialogTitle XmString NULL CSG
DtNeditable DtCEditable Boolean True CSG
DtNlabelFontList DtCFontList XmFontList dynamic CSG
DtNmaxLength DtCMaxLength int largest integer CSG
DtNoverstrike DtCOverstrike Boolean False CSG
DtNrows DtCRows XmNrows dynamic CSG
DtNscrollHorizontal DtCScroll Boolean True CG
DtNscrollLeftSide DtCScrollSide Boolean dynamic CG
DtNscrollTopSide DtCScrollSide Boolean False CG
DtNscrollVertical DtCScroll Boolean True CG
DtNtextBackground DtCBackground Pixel dynamic CSG
DtNtextDeselectCallback DtCCallback XtCallbackList NULL C
DtNtextFontList DtCFontList XmFontList dynamic CSG
DtNtextForeground DtCForeground Pixel dynamic CSG
DtNtextSelectCallback DtCCallback XtCallbackList NULL C
DtNtextTranslations DtCTranslations XtTranslations NULL CS
DtNtopCharacter DtCTextPosition XmTextPosition 0 CSG
DtNwordWrap DtCWordWrap Boolean False CSG

DtNautoShowCursorPosition
Ensures that the text visible in the scrolled edit window contains the insert cursor
when set to True. If the insert cursor changes, the contents of the DtEditor widget
may scroll in order to bring the insertion point into the window.

DtNblinkRate
Specifies the blink rate of the text cursor in milliseconds. The time indicated in the
blink rate relates to the time the cursor is visible and the time the cursor is invisible
(that is, the time it takes to blink the insertion cursor on and off is twice the blink

128 X/Open CAE Specification



Text Editing Services DtEditor( )

rate). The cursor does not blink when the blink rate is set to zero. The value cannot
be negative.

DtNbuttonFontList
Specifies the font list used for the DtEditor buttons (the buttons appearing in the
DtEditor dialogs). If this value is NULL at initialisation, it is initialised by looking
up the parent hierarchy of the widget for an ancestor that is a subclass of the
XmBulletinBoard , VendorShell or XmMenuShell widget class. If such an ancestor is
found, the font list is initialised to the appropriate default font list of the ancestor
widget (XmNdefaultFontList for VendorShell and XmMenuShell, and
XmNbuttonFontList for XmBulletinBoard). If no such ancestor is found, the default
is implementation dependent.

DtNcolumns
Specifies the initial width of the edit window of the DtEditor widget as an integral
number of characters. The width equals the number of characters this resource
specifies multiplied by the maximum character width of the associated font. For
proportionate fonts, the actual number of characters that fit on a given line may be
greater than the value specified. The value must be greater than zero. The default
value depends on the value of the DtNwidth resource.

DtNcursorPosition
Indicates the position in the DtEditor widget where the current insert cursor is
located. This position is determined by the number of characters from the
beginning of the text. The first character position is zero.

DtNcursorPositionVisible
When set to True, this resource specifies that the insert cursor position is marked by
a blinking text cursor.

DtNdialogTitle
Specifies an XmString that appears as part of the titles for the dialogs displayed by
the DtEditor widget. If this resource is non-NULL, it is used as the prefix of the
titles for the Find/Change and the Format Settings dialogs.

DtNeditable
When set to True, this resource indicates that the user can edit the text; otherwise, it
prohibits the user from editing the text.

DtNlabelFontList
Specifies the font list used for the labels for DtEditor (the labels appear in the
DtEditor dialogs). If this value is NULL at initialisation, it is initialised by looking
up the parent hierarchy of the widget for an ancestor that is a subclass of the
XmBulletinBoard , VendorShell or XmMenuShell widget class. If such an ancestor is
found, the font list is initialised to the XmNlabelFontList of the ancestor widget. If
no such ancestor is found, the default is implementation dependent.

DtNmaxLength
Specifies the maximum length of the text string that can be entered into the
DtEditor widget from the keyboard. This value must be non-negative. Strings
entered using the DtEditorSetContents( ) or DtEditorSetContentsFromFile( ) functions
ignore this resource.

DtNoverstrike
When set to False, characters typed into the DtEditor widget are inserted at the
position of the insertion cursor. This is the default behaviour. If set to True,
characters typed into the DtEditor widget replace the characters that directly follow

X/Open Common Desktop Environment (XCDE) Services and Applications 129



DtEditor( ) Text Editing Services

the insertion cursor. When the end of the line is reached, characters are appended
to the end of the line.

DtNrows
Specifies the initial height of the edit window of the DtEditor widget measured in
character heights. The value must be greater than zero.

DtNscrollHorizontal
When set to True, this resource adds a ScrollBar that allows the user to scroll
horizontally through text.

DtNscrollLeftSide
When set to True, this resource indicates that the vertical ScrollBar should be placed
on the left side of the scrolled edit window. This attribute is ignored if
DtNscrollVertical is False. The default value may depend on the value of the
XmNstringDirection resource.

DtNscrollTopSide
When set to True, this resource indicates that the horizontal ScrollBar should be
placed on the top side of the scrolled edit window. This attribute is ignored if
DtNscrollHorizontal is False.

DtNscrollVertical
When set to True, this resource adds a ScrollBar that allows the user to scroll
vertically through text.

DtNtextBackground
Specifies the background of the edit window and the text fields for DtEditor (the
text fields appear in the DtEditor dialogs).

DtNtextDeselectCallback
Specifies a function called whenever the selection becomes NULL (that is, no text is
selected within the edit area). The reason sent by the callback is
DtEDITOR_TEXT_DESELECT.

DtNtextFontList
Specifies the font list used for the edit window and the text fields for DtEditor (the
text fields appear in the DtEditor dialogs). If this value is NULL at initialisation, it is
initialised by looking up the parent hierarchy of the widget for an ancestor that is a
subclass of the XmBulletinBoard or VendorShell widget class. If such an ancestor is
found, the font list is initialised to the XmNtextFontList of the ancestor widget. If
no such ancestor is found, the default is implementation dependent.

DtNtextForeground
Specifies the foreground of the edit window and the text fields for DtEditor (the text
fields appear in the DtEditor dialogs).

DtNtextSelectCallback
Specifies a function called whenever the selection becomes non-NULL (that is, some
text is selected within the edit area). The reason sent by the callback is
DtEDITOR_TEXT_SELECT.

DtNtextTranslations
Adds translations to the edit window. Translations specified with
DtNtextTranslations override any duplicate translations defined for the edit
window.

130 X/Open CAE Specification



Text Editing Services DtEditor( )

DtNtopCharacter
Displays the line that contains the position of text at the top of the scrolled edit
window. The line is displayed at the top of the DtEditor widget without shifting the
text left or right. The position is determined by the number of characters from the
beginning of the text. The first character position is zero.

XtGetValues( ) for DtNtopCharacter returns the position of the first character in the
line that is displayed at the top of the DtEditor widget.

DtNwordWrap
Indicates that text not go off the right edge of the window, but that lines are broken
at word breaks with soft line feeds when they reach the right edge of the window.

Word wrap affects only the visual appearance of the contents of a DtEditor widget.
The line breaks (soft line feeds) are not physically inserted into the text. The
DtEditor widget supports substituting <newline>s when the contents of the widget
are retrieved or saved to a file (see DtEditorGetContents( ) and
DtEditorSaveContentsToFile( )).

Localisation Resources

The following table defines a set of widget resources designed for localisation of the DtEditor
widget and its dialogs. Default values for these resources depends on the locale.

DtEditor Localisation Resource Set
Name Class Type Default Access
DtNfindChangeDialogTitle DtCFindChangeDialogTitle XmString Dynamic CSG
DtNformatSettingsDialogTitle DtCFormatSettingsDialogTitle XmString Dynamic CSG
DtNinformationDialogTitle DtCInformationDialogTitle XmString Dynamic CSG

DtNfindChangeDialogTitle
Specifies the title for the Find/Change dialog. If DtNdialogTitle is non-NULL, it is
added as a prefix to this resource to form the title. The default value in the C locale
is Find/Change.

DtNformatSettingsDialogTitle
Specifies the title for the Format Settings dialog. If DtNdialogTitle is non-NULL, it
is added as a prefix to this resource to form the title. The default value in the C
locale is Format Settings.

DtNinformationDialogTitle
Specifies the title for the Information dialog used to present feedback and general
information to the user. If DtNdialogTitle is non-NULL, it is added as a prefix to
this resource to form the title. The default value in the C locale is Information.

Inherited Resources

The DtEditor widget inherits behaviour and resources from the following named superclasses.
For a complete description of each resource, see the entry in X/Open CAE Specification, Motif
Toolkit API for that superclass.

X/Open Common Desktop Environment (XCDE) Services and Applications 131



DtEditor( ) Text Editing Services

XmForm Resource Set
Name Class Type Default Access
XmNfractionBase XmCMaxValue int 100 CSG
XmNhorizontalSpacing XmCSpacing Dimension 0 CSG
XmNrubberPositioning XmCRubberPositioning Boolean False CSG
XmNverticalSpacing XmCSpacing Dimension 0 CSG

XmBulletinBoard Resource Set
Name Class Type Default Access
XmNallowOverlap XmCAllowOverlap Boolean True CSG
XmNautoUnmanage XmCAutoUnmanage Boolean True CG
XmNbuttonFontList XmCButtonFontList XmFontList dynamic CSG
XmNcancelButton XmCWidget Window NULL SG
XmNdefaultButton XmCWidget Window SG
XmNdefaultPosition XmCDefaultPosition Boolean True CSG
XmNdialogStyle XmCDialogStyle unsigned char dynamic CSG
XmNdialogTitle XmCDialogTitle XmString NULL CSG
XmNfocusCallback XmCCallback XtCallbackList NULL C
XmNlabelFontList XmCLabelFontListk XmFontList dynamic CSG
XmNmapCallback XmCCallback XtCallbackList NULL C
XmNmarginHeight XmCMarginHeight Dimension 10 CSG
XmNmarginWidth XmCMarginWidth Dimension 10 CSG
XmNnoResize XmCNoResize Boolean False CSG
XmNresizePolicy XmCResizePolicy unsigned char XmRESIZE_ANY CSG
XmNshadowType XmCShadowType unsigned char XmSHADOW_OUT CSG
XmNtextFontList XmCTextFontList XmFontList dynamic CSG
XmNtextTranslations XmCTranslations XtTranslations NULL C
XmNunmapCallback XmCCallback XtCallbackList NULL C

XmManager Resource Set
Name Class Type Default Access
XmNbottomShadowColor XmCBottomShadowColor Pixel dynamic CSG
XmNbottomShadow- XmCBottomShadow- Pixmap XmUNSPECIFIED- CSG
Pixmap Pixmap _PIXMAP
XmNforeground XmCForeground Pixel dynamic CSG
XmNhelpCallback XmCCallback XtCallbackList NULL C
XmNhighlightColor XmCHighlightColor Pixel dynamic CSG
XmNhighlightPixmap XmCHighlightPixmap Pixmap dynamic CSG
XmNinitialFocus XmCInitialFocus Widget NULL CSG
XmNnavigationType XmCNavigationType XmNavigation- dynamic CSG

Type
XmNshadowThickness XmCShadowThickness Dimension dynamic CSG
XmNstringDirection XmCStringDirection XmString- dynamic CG

Dynamic
XmNtopShadowColor XmCTopShadowColor Pixel dynamic CSG
XmNtopShadowPixmap XmCTopShadowPixmap Pixmap dynamic CSG
XmNtraversalOn XmCTraversalOn Boolean dynamic CSG
XmNunitType XmCUnitType unsigned char dynamic CSG
XmNuserData XmCUserData XtPointer NULL CSG

Composite Resource Set
Name Class Type Default Access
XmNchildren XmCReadOnly WidgetList NULL G
XmNinsertPosition XmCInsertPosition XtOrderProc default procedure CSG
XmNnumChildren XmCReadOnly Cardinal 0 G

132 X/Open CAE Specification



Text Editing Services DtEditor( )

Core Resource Set
Name Class Type Default Access
XmNaccelerators XmCAccelerators XtAccelerators dynamic CSG
XmNancestorSensitive XmCSensitive Boolean dynamic G
XmNbackground XmCBackground Pixel dynamic CSG
XmNbackgroundPixmap XmCPixmap Pixmap XmUNSPECIFIED- CSG

_PIXMAP
XmNborderColor XmCBorderColor Pixel XtDefaultForeground CSG
XmNborderPixmap XmCPixmap Pixmap XmUNSPECIFIED- CSG

_PIXMAP
XmNborderWidth XmCBorderWidth Dimension 0 CSG
XmNcolormap XmCColormap Colormap dynamic CG
XmNdepth XmCDepth int dynamic CG
XmNdestroyCallback XmCCallback XtCallbackList NULL C
XmNheight XmCHeight Dimension dynamic CSG
XmNinitial- XmCInitial- Boolean True C

ResourcesPersistent ResourcesPersistent
XmNmappedWhen- XmCMappedWhen- Boolean True CSG

Managed Managed
XmNscreen XmCScreen Screen ∗ dynamic CG
XmNsensitive XmCSensitive Boolean True CSG
XmNtranslations XmCTranslations XtTranslations dynamic CSG
XmNwidth XmCWidth Dimension dynamic CSG
XmNx XmCPosition Position 0 CSG
XmNy XmCPosition Position 0 CSG

Callback Information

The DtEditor widget has three callback functions of interest:

DtNtextSelectCallback and DtNtextDeselectCallback
The DtNtextSelectCallback and DtNtextDeselectCallback resources allow an
application to enable and disable certain commands or menu items based on
whether there is a selection. DtNtextSelectCallback specifies a function called
whenever the selection becomes non-NULL (that is, some text is selected within the
edit window), while DtNtextDeselectCallback specifies a function called whenever
the selection becomes NULL (that is, no text is selected within the edit window).
The reasons sent by the callbacks are DtEDITOR_TEXT_SELECT and
DtEDITOR_TEXT_DESELECT.

XmNhelpCallback
An application that wishes to present help information to the user on the DtEditor
widget and its dialogs should set the XmNhelpCallback resource and use the
Reason field passed as part of DtEditorHelpCallbackStruct to set the contents of its
Help dialog. A pointer to the following structure is passed to the
XmNHelpCallback callback.

typedef struct {
int reason ,
XEvent ∗event

} XmAnyCallbackStruct;

reason
Indicates why the callback was invoked. The possible reasons are:

DtEDITOR_HELP_EDIT_WINDOW
The help request originated in the edit window.

X/Open Common Desktop Environment (XCDE) Services and Applications 133



DtEditor( ) Text Editing Services

DtEDITOR_HELP_FORMAT_DIALOG
The help request originated in the Help button in the Format dialog.

DtEDITOR_HELP_FORMAT_LEFT_MARGIN
The help request originated in the Left Margin field in the Format
dialog.

DtEDITOR_HELP_FORMAT_RIGHT_MARGIN
The help request originated in the Right Margin field in the Format
dialog.

DtEDITOR_HELP_FORMAT_ALIGNMENT
The help request originated in the Alignment buttons in the Format
dialog.

DtEDITOR_HELP_CHANGE_DIALOG
The help request originated in the Help button in the Find/Change
dialog.

DtEDITOR_HELP_CHANGE_FIND
The help request originated in the Find field in the Find/Change dialog.

DtEDITOR_HELP_CHANGE_CHANGE
The help request originated in the Change To field in the Find/Change
dialog.

event
A pointer to the XEvent that caused this callback to be invoked. It may be NULL.

Translations

The DtEditor widget translations for the edit window are described in the following list. The
DtNtextTranslations resource can be used to modify these translations.

KLeft
backward-character ( )

MShift KLeft
key-select(left)

MCtrl KLeft
backward-word ( )

MShift MCtrl KLeft
backward-word (extend)

KRight
forward-character ( )

MShift KRight
key-select(right)

MCtrl KRight
forward-word ( )

MShift MCtrl KRight
forward-word (extend)

KUp
process-up( )

134 X/Open CAE Specification



Text Editing Services DtEditor( )

MShift KUp
process-shift-up( )

MCtrl KUp
backward-paragraph ( )

MShift MCtrl KUp
backward-paragraph (extend)

KDown
process-down( )

MShift KDown
process-shift-down ( )

MCtrl KDown
forward-paragraph ( )

MShift MCtrl KDown
forward-paragraph (extend)

KBeginLine
beginning-of-line ( )

MShift KBeginLine
beginning-of-line (extend)

KEndLine
end-of-line ( )

MShift KEndLine
end-of-line (extend)

KPageUp
previous-page ( )

MShift KPageUp
previous-page (extend)

KPageLeft
page-left ( )

KPageDown
next-page( )

MShift KPageDown
next-page(extend)

KPageRight
page-right ( )

KBeginData
beginning-of-file( )

MShift KBeginData
beginning-of-file(extend)

KEndData
end-of-file( )

MShift KEndData
end-of-file(extend)

X/Open Common Desktop Environment (XCDE) Services and Applications 135



DtEditor( ) Text Editing Services

KDelete
delete-next-character( )

MCtrl KDelete
delete-to-end-of-line ( )

KBackSpace
delete-previous-character ( )

MCtrl KBackSpace
delete-previous-word ( )

MShift KBackSpace
delete-to-start-of-line ( )

MAlt KBackSpace
undo-edit( )

MCtrl Kz
undo-edit( )

MCtrl K/
select-all ( )

MCtrl K\
deselect-all ( )

MCtrl Kq
quote-next-character( )

MCtrl Kx
cut-clipboard ( )

MCtrl Kc
copy-clipboard ( )

MCtrl Kv
paste-clipboard ( )

KHelp
Help( )

KInsert
toggle-insert-mode ( )

KEnter
new-line-and-indent( )

MAnyKCancel
process-cancel( )

Action Routines

The DtEditor widget action routines are described here:

backward-character ( )
This action moves the insertion cursor one character to the left. This action may
have different behaviour in a right-to-left language environment.

backward-paragraph (extend)
If this action is called with no argument, it moves the insertion cursor to the first
non-whitespace character following the first previous blank line or beginning of the

136 X/Open CAE Specification



Text Editing Services DtEditor( )

text. If the insertion cursor is already at the beginning of a paragraph, the action
moves the insertion cursor to the beginning of the previous paragraph.

If this action is called with an argument of extend, it moves the insertion cursor, as
in the case of no argument, and extends the current selection.

backward-word (extend)
If this action is called with no argument, it moves the insertion cursor to the first
non-whitespace character after the first whitespace character to the left or after the
beginning of the line. If the insertion cursor is already at the beginning of a word,
this action moves the insertion cursor to the beginning of the previous word. This
action may have different behaviour in a locale other than the C locale.

If this action is called with an argument of extend, it moves the insertion cursor, as
in the case of no argument, and extends the current selection.

beginning-of-file(extend)
If this action is called with no argument, it moves the insertion cursor to the
beginning of the text.

If this action is called with an argument of extend, it moves the insertion cursor, as
in the case of no argument, and extends the current selection.

beginning-of-line (extend)
If this action is called with no argument, it moves the insertion cursor to the
beginning of the line.

If this action is called with an argument of extend, it moves the insertion cursor, as
in the case of no argument, and extends the current selection.

clear-selection ( )
This action clears the current selection by replacing each character except
<carriage-return> with a <space> character.

copy-clipboard ( )
This action copies the current selection to the clipboard.

cut-clipboard ( )
This action cuts the current selection to the clipboard.

delete-next-character( )
If there is a non-NULL selection, this action deletes the selection; otherwise, it
deletes the character following the insertion cursor.

delete-next-word( )
If there is a non-NULL selection, this action deletes the selection; otherwise, it
deletes the characters following the insertion cursor to the next space, tab or end of
line character.

delete-previous-character ( )
If there is a non-NULL selection, this action deletes the selection; otherwise, it
deletes the character of text immediately preceding the insertion cursor.

delete-previous-word ( )
If there is a non-NULL selection, this action deletes the selection; otherwise, it
deletes the characters preceding the insertion cursor to the next space, tab or
beginning of the line character. This action may have different behaviour in a locale
other than the C locale.

X/Open Common Desktop Environment (XCDE) Services and Applications 137



DtEditor( ) Text Editing Services

delete-to-end-of-line ( )
If there is a non-NULL selection, this action deletes the selection; otherwise, it
deletes the characters following the insertion cursor to the next end-of-line
character.

delete-to-start-of-line ( )
If there is a non-NULL selection, this action deletes the selection; otherwise, it
deletes the characters preceding the insertion cursor to the previous beginning-of-
line character.

deselect-all ( )
This action deselects the current selection.

end-of-file(extend)
If this action is called with no argument, it moves the insertion cursor to the end of
the text.

If this action is called with an argument of extend, it moves the insertion cursor, as
in the case of no argument, and extends the current selection.

end-of-line (extend)
If this action is called with no argument, it moves the insertion cursor to the end of
the line.

If this action is called with an argument of extend, it moves the insertion cursor, as
in the case of no argument, and extends the current selection.

forward-character ( )
This action moves the insertion cursor one character to the right. This action may
have different behaviour in a right-to-left language environment.

forward-paragraph (extend)
If this action is called with no argument, it moves the insertion cursor to the first
non-whitespace character following the next blank line. If the insertion cursor is
already at the beginning of a paragraph, this action moves the insertion cursor to
the beginning of the next paragraph.

If this action is called with an argument of extend, it moves the insertion cursor, as
in the case of no argument, and extends the current selection.

forward-word (extend)
If this action is called with no argument, it moves the insertion cursor to the first
whitespace character or end-of-line following the next non-whitespace character. If
the insertion cursor is already at the end of a word, this action moves the insertion
cursor to the end of the next word. This action may have different behaviour in a
locale other than the C locale.

If called with an argument of extend, this action moves the insertion cursor, as in the
case of no argument, and extends the current selection.

Help( )
This action calls the callbacks for XmNhelpCallback if any exist. If there are no
help callbacks for this widget, this action calls the help callbacks for the nearest
ancestor that has them.

insert-string(string)
This action deletes the entire selection if there is a non-NULL selection and the
cursor is not disjoint from it. It inserts string before the insertion cursor.

138 X/Open CAE Specification



Text Editing Services DtEditor( )

key-select(direction)
If this action is called with an argument of right , it moves the insertion cursor one
character to the right and extends the current selection. If this action is called with
an argument of left , it moves the insertion cursor one character to the left and
extends the current selection. If this action is called with no argument, it extends
the current selection.

newline-and-backup ( )
If there is a non-NULL selection and the cursor is not disjoint from it, this action
deletes the entire selection, inserts a newline just before the insertion cursor and
repositions the insertion cursor to the end of the line before the newline.

newline-and-indent( )
If there is a non-NULL selection and the cursor is not disjoint from it, this action
deletes the entire selection, inserts a newline and then the same number of
whitespace characters as at the beginning of the previous line.

next-page(extend)
If this action is called with no argument, it moves the insertion cursor forward one
page.

If this action is called with an argument of extend, it moves the insertion cursor, as
in the case of no argument, and extends the current selection.

page-left ( )
This action scrolls the viewing window left one page of text.

page-right ( )
This action scrolls the viewing window right one page of text.

paste-clipboard ( )
This action pastes the contents of the clipboard before the insertion cursor.

previous-page (extend)
If this action is called with no argument, it moves the insertion cursor back one
page.

If this action is called with an argument of extend, it moves the insertion cursor, as
in the case of no argument, and extends the current selection.

process-cancel( )
This action cancels the current extend-adjust( ) or secondary-adjust ( ) operation and
leaves the selection state as it was before the operation; otherwise, (and if the parent
is a manager) it passes the event to the parent.

process-down( )
This action moves the insertion cursor down one line.

process-shift-down ( )
This action moves the insertion cursor down one line, extending the current
selection.

process-shift-up( )
This action moves the insertion cursor up one line, extending the current selection.

process-up( )
This action moves the insertion cursor up one line.

select-all ( )
Selects all text.

X/Open Common Desktop Environment (XCDE) Services and Applications 139



DtEditor( ) Text Editing Services

toggle-insert-mode ( )
This action toggles the state of the text insertion mode. By default, characters typed
into the DtEditor widget are inserted at the position of the insertion cursor. In
overstrike mode, characters entered into the DtEditor widget replace the characters
that directly follow the insertion cursor. In overstrike mode, characters are
appended to the end of the line when the end of a line is reached.

quote-next-character( )
This action treats the next typed character as a special character and inserts it into
the text without interpreting it. Enables the insertion of special instructional
characters or special language characters, such as the character marking a form feed
or the umlaut used in German text.

undo-edit( )
This action undoes the last change (deletion or insertion) made to the text. A
change consists of either a set of consecutive insertions, or a set of consecutive
deletions followed by up to one set of consecutive insertions. An insertion is
consecutive if there have been no intervening deletions, and it is continuing forward
from the same point. A deletion is consecutive if there have been no intervening
insertions, and its start or end position is coincidental with the last deletion (that is,
the deletion is continuing from the same point, either forward or backward).
Undoing an edit once restores the original text. Undoing an edit twice restores the
last change.

SEE ALSO
<Dt/Editor.h>, DtCreateEditor( ), DtEditorAppend( ), DtEditorAppendFromFile( ), DtEditorChange( ),
DtEditorCheckForUnsavedChanges( ), DtEditorClearSelection ( ), DtEditorCopyToClipboard ( ),
DtEditorCutToClipboard ( ), DtEditorDeleteSelection( ), DtEditorDeselect( ), DtEditorFind( ),
DtEditorFormat( ), DtEditorGetContents( ), DtEditorGetInsertionPosition ( ),
DtEditorGetLastPosition ( ), DtEditorGetSizeHints( ), DtEditorGoToLine( ), DtEditorInsert( ),
DtEditorInsertFromFile( ), DtEditorInvokeFindChangeDialog ( ), DtEditorInvokeFormatDialog ( ),
DtEditorPasteFromClipboard ( ), DtEditorReplace ( ), DtEditorReplaceFromFile( ),
DtEditorSaveContentsToFile( ), DtEditorSelectAll( ), DtEditorSetContents( ),
DtEditorSetContentsFromFile( ), DtEditorSetInsertionPosition ( ), DtEditorTraverseToEditor( ),
DtEditorUndoEdit( ); Composite , Constraint , Core , XmBulletinBoard , XmFontList , XmForm,
XmManager in the X/Open CAE Specification, Motif Toolkit API.

CHANGE HISTORY
First released in Issue 1.

140 X/Open CAE Specification



Text Editing Services Functions

9.3 Functions
This section defines the functions, macros and external variables that provide XCDE text editing
services to support application portability at the C-language source level.

X/Open Common Desktop Environment (XCDE) Services and Applications 141



DtCreateEditor( ) Text Editing Services

NAME
DtCreateEditor — create a new instance of a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

Widget DtCreateEditor(Widget parent ,
String name,
ArgList arglist ,
Cardinal argcount );

DESCRIPTION
The DtEditorCreate( ) function creates an instance of a DtEditor widget and returns the associated
widget ID.

The parent argument specifies the parent widget ID.

The name argument specifies the name of the created widget.

The arglist argument specifies the argument list.

The argcount argument specifies the number of attribute and value pairs in the argument list
(arglist ).

RETURN VALUE
Upon successful completion, the DtEditorCreate( ) function returns the DtEditor widget ID;
otherwise, it returns NULL.

SEE ALSO
<Dt/Editor.h>, DtEditor( ).

CHANGE HISTORY
First released in Issue 1.

142 X/Open CAE Specification



Text Editing Services DtEditorAppend( )

NAME
DtEditorAppend — append data to a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

DtEditorErrorCode DtEditorAppend(Widget widget ,
DtEditorContentRec ∗data );

DESCRIPTION
The DtEditorAppend( ) function appends either a NULL-terminated string, wide character string
or sized buffer after the last character in a DtEditor widget. The data is transferred to the
DtEditor widget using a DtEditorContentRec, which indicates the type of data being transferred
along with the actual data. After the data is appended, the insertion cursor is positioned at the
new last character.

The widget argument specifies the DtEditor widget ID.

The data argument points to the data structure containing the data to append.

For a complete definition of DtEditorContentRec, see <Dt/Editor>.

RETURN
Upon successful completion, the DtEditorAppend( ) function returns DtEDITOR_NO_ERRORS;
otherwise, it returns one of the following values:

DtEDITOR_INVALID_TYPE
The type field is unrecognised.

DtEDITOR_ILLEGAL_SIZE
The size of the buffer passed in is negative.

DtEDITOR_NULL_ITEM
The buffer is NULL.

EXAMPLES
The following code segment sets the contents of a DtEditor widget to ‘‘The quick brown fox.’’

Widget editor;
DtEditorContentRec cr;
DtEditorErrorCode status;
char ∗sampleString1="The quick",

∗secondString2=" brown fox";

cr.type = DtEDITOR_TEXT;
cr.value.string = sampleString1;
status = DtEditorSetContents(editor, &cr);
if (status != DtEDITOR_NO_ERRORS) {

printf("Unable to set the contents of the widget\n");
} else {

cr.type = DtEDITOR_TEXT;
cr.value.string = sampleString2;
status = DtEditorAppend(editor, &cr);
if (status != DtEDITOR_NO_ERRORS)

printf("Unable to append to the contents of the widget\n");
}

APPLICATION USAGE
If the data is in a disk file, rather than in memory, the application should use
DtEditorAppendFromFile( ).

X/Open Common Desktop Environment (XCDE) Services and Applications 143



DtEditorAppend( ) Text Editing Services

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorAppendFromFile( ), DtEditorGetContents( ), DtEditorInsert( ),
DtEditorInsertFromFile( ), DtEditorReplace ( ), DtEditorReplaceFromFile( ),
DtEditorSaveContentsToFile( ), DtEditorSetContents( ), DtEditorSetContentsFromFile( ).

CHANGE HISTORY
First released in Issue 1.

144 X/Open CAE Specification



Text Editing Services DtEditorAppendFromFile( )

NAME
DtEditorAppendFromFile — append data from a file into a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

DtEditorErrorCode DtEditorAppendFromFile(Widget widget ,
char ∗fileName );

DESCRIPTION
DtEditorAppendFromFile( ) function appends data from a file to after the last character in a
DtEditor widget. After the data is appended, the insertion cursor is positioned at the new last
character.

The widget argument specifies the DtEditor widget ID.

The fileName argument is the pathname of the file relative to the local system.

RETURN VALUE
Upon successful completion, the DtEditorAppendFromFile( ) function returns one of the following
values:

DtEDITOR_NO_ERRORS
The file is readable and writable.

DtEDITOR_READ_ONLY_FILE
The file is read only.

Otherwise, if the DtEditorAppendFromFile( ) function cannot append the data into the DtEditor
widget, it returns one of the following values:

DtEDITOR_NONEXISTENT_FILE
The file does not exist.

DtEDITOR_DIRECTORY
The file is a directory.

DtEDITOR_CHAR_SPECIAL_FILE
The file is a character-special device.

DtEDITOR_BLOCK_MODE_FILE
The file is a block-mode device.

DtEDITOR_NO_FILE_ACCESS
The file cannot be accessed.

DtEDITOR_UNREADABLE_FILE
The file is unreadable for an unspecified reason.

APPLICATION USAGE
If the data is in memory, rather than a disk file, the application should use DtEditorAppend( ).

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorAppend( ). DtEditorGetContents( ), DtEditorInsert( ),
DtEditorInsertFromFile( ), DtEditorReplace ( ), DtEditorReplaceFromFile( ),
DtEditorSaveContentsToFile( ), DtEditorSetContents( ), DtEditorSetContentsFromFile( ).

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 145



DtEditorChange( ) Text Editing Services

NAME
DtEditorChange — change one or all occurrences of a string in a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

Boolean DtEditorChange(Widget widget ,
DtEditorChangeValues ∗findChangeStrings ,
unsigned int instanceToChange );

DESCRIPTION
The DtEditorChange( ) function replaces the next occurrence of a string, all occurrences of the
string, or the currently selected text in a DtEditor widget with a replacement string. The string
to search for and the value to change it to can be the last values entered in the Find/Change
dialog (see DtEditorInvokeFindChangeDialog ( )) or passed as arguments to DtEditorChange( ).

The search begins at the insertion cursor. If the string is not found by the time the end of the
document is reached, the search continues at the beginning of the document, stopping at the
character before the insertion cursor.

The widget argument specifies the DtEditor widget ID.

The findChangeStrings argument specifies the string to change and the replacement value. If
findChangeStrings is NULL, DtEditorChange( ) uses the last string specified in the Find and
Change To fields of the Find/Change dialog. If the instanceToChange argument is
DtEDITOR_CURRENT_SELECTION, the Find field of DtEditorChangeValues is ignored.

If the instanceToChange argument is set to DtEDITOR_NEXT_OCCURRENCE, DtEditorChange( )
replaces the next occurrence (relative to the insertion cursor) of the find string. If this argument
is set to DtEDITOR_ALL_OCCURRENCES, all instances of the find string are changed. If this
argument ia set to DtEDITOR_CURRENT_SELECTION, the Find field of
DtEditorChangeValues, is ignored and the currently selected text is replaced.

For a complete definition of DtEditorChangeValues, see <Dt/Editor.h>.

RETURN VALUE
Upon successful completion, the DtEditorChange( ) function returns True if the substitution
occurred; otherwise, it returns False.

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorFind( ), DtEditorInvokeFindChangeDialog ( ).

CHANGE HISTORY
First released in Issue 1.

146 X/Open CAE Specification



Text Editing Services DtEditorCheckForUnsavedChanges( )

NAME
DtEditorCheckForUnsavedChanges — report whether text has been edited

SYNOPSIS
#include <Dt/Editor.h>

Boolean DtEditorCheckForUnsavedChanges(Widget widget );

DESCRIPTION
The DtEditorCheckForUnsavedChanges( ) function reports whether the text contained in the edit
window of a DtEditor widget has been modified since the last call to DtEditorGetContents( ) or
DtEditorSaveContentsToFile( ), including inserting, deleting or moving text with the keyboard or
mouse. For information about retrieving the text without affecting whether
DtEditorCheckForUnsavedChanges( ) reports that all changes have been saved, see
DtEditorGetContents( ) and DtEditorSaveContentsToFile( ).

The widget argument specifies the DtEditor widget ID.

RETURN VALUE
Upon successful completion, the DtEditorCheckForUnsavedChanges( ) function returns True if
changes have been made to the contents of the DtEditor widget since the last call to
DtEditorGetContents( ) or DtEditorSaveContentsToFile( ); otherwise, it returns False.

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorGetContents( ), DtEditorSaveContentsToFile( ).

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 147



DtEditorClearSelection( ) Text Editing Services

NAME
DtEditorClearSelection — clear the primary selection in a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

Boolean DtEditorClearSelection(Widget widget );

DESCRIPTION
The DtEditorClearSelection ( ) function replaces the primary selection in a DtEditor widget,
specified by widget , with blanks and newlines. Text can be selected and deselected
programmatically with DtEditorSelectAll( ) and DtEditorDeselect( ).

The widget argument specifies the DtEditor widget ID.

RETURN VALUE
Upon successful completion, the DtEditorClearSelection ( ) function returns True; otherwise, if the
primary selection is NULL, or if the widget does not own the primary selection, it returns False.

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorCopyToClipboard ( ), DtEditorCutToClipboard ( ),
DtEditorDeselect( ), DtEditorDeleteSelection( ), DtEditorPasteFromClipboard ( ), DtEditorSelectAll( ),
DtEditorUndoEdit( ).

CHANGE HISTORY
First released in Issue 1.

148 X/Open CAE Specification



Text Editing Services DtEditorCopyToClipboard( )

NAME
DtEditorCopyToClipboard — copy the primary selection in a DtEditor widget to the clipboard

SYNOPSIS
#include <Dt/Editor.h>

Boolean DtEditorCopyToClipboard(Widget widget );

DESCRIPTION
The DtEditorCopyToClipboard ( ) function copies to the clipboard the currently selected text in the
DtEditor widget specified by the widget argument. Text can be selected and deselect
programmatically with DtEditorSelectAll( ) and DtEditorDeselect( ).

The widget argument specifies the DtEditor widget ID.

RETURN VALUE
Upon successful completion, the DtEditorCopyToClipboard ( ) function returns True; otherwise, if
the primary selection is NULL, or if the widget does not own the primary selection, or if the
function is unable to gain ownership of the clipboard selection, it returns False.

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorClearSelection ( ), DtEditorCutToClipboard ( ),
DtEditorDeleteSelection( ), DtEditorDeselect( ), DtEditorPasteFromClipboard ( ), DtEditorSelectAll( ),
DtEditorUndoEdit( ).

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 149



DtEditorCutToClipboard( ) Text Editing Services

NAME
DtEditorCutToClipboard — copy the primary selection in a DtEditor widget to the clipboard
and delete the selected text

SYNOPSIS
#include <Dt/Editor.h>

Boolean DtEditorCutToClipboard(Widget widget );

DESCRIPTION
The DtEditorCutToClipboard ( ) function copies the primary selected text in the DtEditor widget,
specified by the widget , argument to the clipboard and then deletes the primary selected text.
Text can be selected and deselected programmatically with DtEditorSelectAll( ) and
DtEditorDeselect( ).

The widget argument specifies the DtEditor widget ID.

RETURN VALUE
Upon successful completion, the DtEditorCutToClipboard ( ) function returns True; otherwise, if
the primary selection is NULL, or if the widget doesn’t own the primary selection, or if the
function is unable to gain ownership of the clipboard selection, it returns False.

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorClearSelection ( ), DtEditorCopyToClipboard ( ),
DtEditorDeleteSelection( ), DtEditorDeselect( ), DtEditorPasteFromClipboard ( ), DtEditorSelectAll( ),
DtEditorUndoEdit( ).

CHANGE HISTORY
First released in Issue 1.

150 X/Open CAE Specification



Text Editing Services DtEditorDeleteSelection( )

NAME
DtEditorDeleteSelection — delete the primary selection in the DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

Boolean DtEditorDeleteSelection(Widget widget );

DESCRIPTION
The DtEditorDeleteSelection( ) function removes the currently highlighted data in a DtEditor
widget. Any data following the deleted data is moved up. Text can be selected and deselect
programmatically with DtEditorSelectAll( ) and DtEditorDeselect( ).

The widget argument Specifies the DtEditor widget ID.

RETURN VALUE
Upon successful completion, the DtEditorDeleteSelection( ) function returns True; otherwise, if the
primary selection is NULL, or if the widget does not own the primary selection, it returns False.

SEE ALSO
<Dt/Editor.h>, DtEditorClearSelection ( ), DtEditorCopyToClipboard ( ), DtEditorCutToClipboard ( ),
DtEditorDeselect( ), DtEditorPasteFromClipboard ( ), DtEditorSelectAll( ), DtEditorUndoEdit( ).

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 151



DtEditorDeselect( ) Text Editing Services

NAME
DtEditorDeselect — deselect the current selection in a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

Boolean DtEditorDeselect(Widget widget );

DESCRIPTION
The DtEditorDeselect( ) function deselects any currently selected text in a DtEditor widget. The
entire contents of a DtEditor widget may be selected with DtEditorSelectAll( ).

The widget argument specifies the DtEditor widget ID.

RETURN VALUE
Upon successful completion, the DtEditorDeselect( ) function returns True; otherwise, if the
primary selection is NULL, or if the widget does not own the primary selection, it returns False.

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorClearSelection ( ), DtEditorCopyToClipboard ( ),
DtEditorCutToClipboard ( ), DtEditorDeleteSelection( ), DtEditorSelectAll( ).

CHANGE HISTORY
First released in Issue 1.

152 X/Open CAE Specification



Text Editing Services DtEditorFind( )

NAME
DtEditorFind — search for the next occurrence of a string in a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

Boolean DtEditorFind(Widget widget ,
char ∗find );

DESCRIPTION
The DtEditorFind( ) function searches for the next occurrence (relative to the insertion cursor) of
a string. The string is either the last find string value specified in the Find/Change dialog (see
DtEditorInvokeFindChangeDialog ( )) or is passed in as an argument.

The widget argument specifies the DtEditor widget ID.

The find argument specifies the string to search for. If find is NULL, DtEditorFind( ) uses the last
string specified in the Find field of the Find/Change dialog. If the string is not found by the time
the end of the document is reached, the search continues at the beginning of the document,
stopping at the character before the insertion cursor.

RETURN VALUE
Upon successful completion, the DtEditorFind( ) function returns True if the search string was
found; otherwise, it returns False.

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorChange( ), DtEditorInvokeFindChangeDialog ( ).

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 153



DtEditorFormat( ) Text Editing Services

NAME
DtEditorFormat — format all or part of the contents of a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

DtEditorErrorCode DtEditorFormat(Widget widget ,
DtEditorFormatSettings ∗formatSettings ,
unsigned int amountToFormat );

DESCRIPTION
The DtEditorFormat( ) function formats all or part of the contents of the DtEditor widget
according to the current text format settings in the Format Settings dialog. These options specify
which margins and alignments (left aligned, right aligned, justified or centered) are used.
Optionally, alternative settings can be passed as an argument to DtEditorFormat( ) in a data
structure. This function formats either the paragraph containing the insertion cursor or the
entire contents of the DtEditor widget, depending on the value of the amountToFormat argument.

The Format Settings dialog is displayed with DtEditorInvokeFormatDialog ( ). For a complete
description of formatting and the Format Settings dialog, see DtEditor .

The widget argument specifies the editor widget ID.

The formatSettings argument specifies left margin value, right margin value and the justification
style. The LeftMargin and RightMargin fields of DtEditorFormatSettings must be zero or larger.
The Alignment field can have a value of DtEDITOR_ALIGN_CENTER,
DtEDITOR_ALIGN_JUSTIFY, DtEDITOR_ALIGN_LEFT or DtEDITOR_ALIGN_RIGHT. If the
formatSettings argument is NULL, DtEditorFormat( ) uses the last format settings specified in the
Format Settings dialog.

When the amountToFormat argument is set to DtEDITOR_FORMAT_ALL, it reformats all the text
in the edit window. When this argument is set to DtEDITOR_PARAGRAPH, only the
paragraph containing the insertion cursor is formatted.

For a complete definition of DtEditorFormatSettings, see <Dt/Editor.h>.

RETURN VALUE
Upon successful completion, the DtEditorFormat( ) function returns DtEDITOR_NO_ERRORS;
otherwise, it returns one of the following values:

DtEDITOR_ILLEGAL_SIZE
The left or right margin values are negative.

DtEDITOR_INVALID_RANGE
The amountToFormat argument is not recognised.

DtEDITOR_INVALID_TYPE
The Alignment field is not recognised.

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorInvokeFormatDialog ( ); tmpnam( ) in the X/Open CAE
Specification, System Interfaces and Headers, Issue 4, Version 2.

CHANGE HISTORY
First released in Issue 1.

154 X/Open CAE Specification



Text Editing Services DtEditorGetContents( )

NAME
DtEditorGetContents — retrieve the contents of a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

DtEditorErrorCode DtEditorGetContents(Widget widget ,
DtEditorContentRec ∗data ,
Boolean hardCarriageReturns ,
Boolean markContentsAsSaved );

DESCRIPTION
The DtEditorGetContents( ) function retrieves the entire contents of a DtEditor widget as a string,
wide character string or sized buffer of data. The data is transferred from the DtEditor widget
using a DtEditorContentRec, which indicates the type of data being transferred along with the
actual data. If desired, any soft line feeds (word wraps) can be replaced with <newline>s.

The DtEditor widget tracks whether its contents have changed since they were last saved or
retrieved. Setting the markContentsAsSaved argument to True retrieves a copy of the data
without affecting whether DtEditorCheckForUnsavedChanges( ) reports that there are unsaved
changes. This is useful if the application needs a temporary copy of the contents.

The widget argument specifies the DtEditor widget ID.

The data argument is a pointer to a data structure to receive the contents of widget .

The hardCarriageReturns argument, if set to True, indicates that the DtEditor widget should
replace any soft line feeds (word wraps) with <newline>s when saving the data. When
hardCarriageReturns is set to False, any line wrapped because it reaches the right edge of the
window is saved as one complete line.

The markContentsAsSaved argument, if set to True, causes the DtEditor widget to mark that all
changes made to date have been saved. When markContentsAsSaved is set to False, the DtEditor
widget does not change its status regarding unsaved changes.

For a complete definition of DtEditorContentRec, see <Dt/Editor>.

RETURN VALUE
Upon successful completion, the DtEditorGetContents( ) function returns DtEDITOR_-
NO_ERRORS; otherwise, it returns DtEDITOR_INVALID_TYPE if the Type field is not
recognised.

EXAMPLES
The following code segment retrieves the contents of a DtEditor widget, marking that all
changes to date have been saved.

Widget editor;
DtEditorContentRec cr;
DtEditorErrorCode status;
Boolean markContentsAsSaved = True;

cr.type = DtEDITOR_TEXT;
status = DtEditorGetContents(editor, &cr, markContentsAsSaved);
if (status == DtEDITOR_NO_ERRORS)

printf("The contents are:\n%s\n", cr.value.string);
else

printf("Unable to retrieve contents of the widget\n");

X/Open Common Desktop Environment (XCDE) Services and Applications 155



DtEditorGetContents( ) Text Editing Services

APPLICATION USAGE
To write the data directly to a file, the application should use DtEditorSaveContentsToFile( ).

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorAppend( ), DtEditorAppendFromFile( ),
DtEditorCheckForUnsavedChanges( ), DtEditorInsert( ), DtEditorInsertFromFile( ), DtEditorReplace ( ),
DtEditorReplaceFromFile( ), DtEditorSaveContentsToFile( ), DtEditorSetContents( ),
DtEditorSetContentsFromFile( ).

CHANGE HISTORY
First released in Issue 1.

156 X/Open CAE Specification



Text Editing Services DtEditorGetInsertionPosition( )

NAME
DtEditorGetInsertionPosition — retrieve the position of the insert cursor in a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

XmTextPosition DtEditorGetInsertionPosition(Widget widget );

DESCRIPTION
The DtEditorGetInsertionPosition ( ) function accesses the current position of the insertion cursor
in the DtEditor widget. The position is an integer number of characters from the beginning of
the widget’s text buffer. The first character position is zero. The position of the insertion cursor
can be set with DtEditorSetInsertionPosition ( ).

The widget argument specifies the DtEditor widget ID.

RETURN VALUE
Upon successful completion, the DtEditorGetInsertionPosition ( ) function returns an
XmTextPosition value that indicates the position of the insertion cursor in the text; otherwise, it
returns NULL.

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorGetLastPosition ( ), DtEditorSetInsertionPosition ( ).

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 157



DtEditorGetLastPosition( ) Text Editing Services

NAME
DtEditorGetLastPosition — retrieve the position of the last character in a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

XmTextPosition DtEditorGetLastPosition(Widget widget );

DESCRIPTION
The DtEditorGetLastPosition ( ) function accesses the last text position in the DtEditor widget. The
position is an integer number of characters from the beginning of the widget’s buffer. Any text
added to the end of the buffer is added after this position. The first character position is zero.
The last character position is equal to the number of characters contained in the widget.

The widget argument specifies the DtEditor widget ID.

RETURN VALUE
Upon successful completion, the DtEditorGetLastPosition ( ) function returns an XmTextPosition
value that indicates the last position in the text; otherwise, it returns NULL.

APPLICATION USAGE
The position information is given in terms of characters, which may differ from the byte position
when multi-byte code sets are in use.

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorGetInsertionPosition ( ), DtEditorSetInsertionPosition ( ).

CHANGE HISTORY
First released in Issue 1.

158 X/Open CAE Specification



Text Editing Services DtEditorGetSizeHints( )

NAME
DtEditorGetSizeHints — retrieve sizing information from a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

void DtEditorGetSizeHints(Widget widget ,
XSizeHints ∗pHints );

DESCRIPTION
The DtEditorGetSizeHints( ) function retrieves the current sizing information from a DtEditor
widget, allowing the application to compute appropriate size hints for the window manager.

The widget argument specifies the DtEditor widget ID.

The pHints argument is a pointer to an XSizeHints structure into which the current sizing
information is placed. The fields in this structure do not have to contain any values when it is
passed in.

Upon successful completion, the DtEditorGetSizeHints( ) function fills in the following fields of
the XSizeHints structure: minimum width (min_width) and height (min_height); width
(width_inc ) and height (height_inc ) increment; and base width (base_width) and height
(base_height); otherwise, the structure is unchanged. The Flags field is set to:

PMinSize | PResizeInc | PBaseSize

RETURN VALUE
The DtEditorGetSizeHints( ) function returns no value.

EXAMPLES
The following code segment sets the resize increment and minimum window size properties for
the application.

Widget editor,
application_shell;

Display display;
XSizeHints size_hints;
long supplied_return;

XGetWMSizeHints(display, XtWindow(application_shell),
&size_hints, &supplied_return, XA_WM_NORMAL_HINTS);

DtEditorGetSizeHints(editor, &size_hints);

XSetWMSizeHints(display, XtWindow(application_shell),
&size_hints, XA_WM_NORMAL_HINTS);

SEE ALSO
<Dt/Editor.h>, DtEditor( ).

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 159



DtEditorGoToLine( ) Text Editing Services

NAME
DtEditorGoToLine — move the insert cursor for a DtEditor widget to a specified line

SYNOPSIS
#include <Dt/Editor.h>

void DtEditorGoToLine(Widget widget
int lineNumber );

DESCRIPTION
The DtEditorGoToLine( ) function moves the insert cursor for the DtEditor widget to the
beginning of the line specified by the lineNumber argument. The cursor can be moved to the last
line by specifying DtEDITOR_LAST_LINE as the line number. If the line is not currently on-
screen, the contents for the DtEditor widget are scrolled to display the new insertion position.

The lineNumber argument is the number of the line in the file, counting from 1. If the lineNumber
argument is less than 1, the insert cursor is placed at the beginning of the first line. If the
argument is greater than the total number of lines, the cursor is placed at the last line of text.

The insert cursor can be moved to a specific character position with
DtEditorSetInsertionPosition ( ). The DtNtopCharacter resource can be used to control which line
is displayed at the top of the DtEditor widget.

The widget argument specifies the DtEditor widget ID.

The lineNumber argument specifies the line number within the DtEditor widget.

RETURN VALUE
The DtEditorGoToLine( ) function returns no value.

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorSetInsertionPosition ( ).

CHANGE HISTORY
First released in Issue 1.

160 X/Open CAE Specification



Text Editing Services DtEditorInsert( )

NAME
DtEditorInsert — insert data into a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

DtEditorErrorCode DtEditorInsert(Widget widget ,
DtEditorContentRec ∗data );

DESCRIPTION
The DtEditorInsert( ) function inserts either a string, wide character string or sized buffer at the
insertion cursor position in a DtEditor widget. The data is transferred to the DtEditor widget
using a DtEditorContentRec, which indicates the type of data being transferred along with the
actual data. After the data is appended, the insertion cursor is positioned after the last character
inserted.

The widget argument specifies the DtEditor widget ID.

The data argument is a pointer to a data structure containing the data to insert.

For a complete definition of DtEditorContentRec, see <Dt/Editor>.

RETURN VALUE
Upon successful completion, the DtEditorInsert( ) function returns DtEDITOR_NO_ERRORS;
otherwise, it returns one of the following values:

DtEDITOR_INVALID_TYPE
The Type field is not recognised.

DtEDITOR_ILLEGAL_SIZE
The size of the buffer passed in is negative.

DtEDITOR_NULL_ITEM
The buffer is NULL.

X/Open Common Desktop Environment (XCDE) Services and Applications 161



DtEditorInsert( ) Text Editing Services

EXAMPLES
The following code segment sets the contents of a DtEditor widget to ‘‘The quick brown fox.’’

Widget editor;
DtEditorContentRec cr;
DtEditorErrorCode status;
char ∗sampleString1="The brown fox",

∗sampleString2=" quick";

cr.type = DtEDITOR_TEXT;
cr.value.string = sampleString1;
status = DtEditorSetContents(editor, &cr);
if (status != DtEDITOR_NO_ERRORS) {

printf("Unable to set contents of the widget\n");
} else {

/ ∗
∗ Move the insertion cursor so it is after the
∗ letter ’e’ in "The".
∗/

DtEditorSetInsertionCursorPosition(editor, 2);

cr.type = DtEDITOR_TEXT;
cr.data.string = sampleString2;
status = DtEditorInsert(editor, &cr);
if (status != DtEDITOR_NO_ERRORS)

printf("Unable to insert into the contents of the widget\n");
}

APPLICATION USAGE
If the data is in a disk file, rather than in memory, the application should use
DtEditorInsertFromFile( ).

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorAppend( ), DtEditorAppendFromFile( ), DtEditorGetContents( ),
DtEditorInsertFromFile( ), DtEditorReplace ( ), DtEditorReplaceFromFile( ),
DtEditorSaveContentsToFile( ), DtEditorSetContents( ), DtEditorGetInsertionPosition ( ),
DtEditorSetInsertionPosition ( ), DtEditorSetContentsFromFile( ).

CHANGE HISTORY
First released in Issue 1.

162 X/Open CAE Specification



Text Editing Services DtEditorInsertFromFile( )

NAME
DtEditorInsertFromFile — insert data from a file into a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

DtEditorErrorCode DtEditorInsertFromFile(Widget widget ,
char ∗fileName )

DESCRIPTION
The DtEditorInsertFromFile( ) function inserts data from a file to the insertion cursor position in a
DtEditor widget. After the data is inserted, the insertion cursor is positioned after the last
character inserted.

The widget argument specifies the DtEditor widget ID.

The fileName argument is the pathname of the file relative to the local system.

RETURN VALUE
Upon successful completion, the DtEditorInsertFromFile( ) function returns one of the following
values:

DtEDITOR_NO_ERRORS
The file is readable and writable.

DtEDITOR_READ_ONLY_FILE
The file is read only.

Otherwise, if it cannot insert the data into the DtEditor widget, DtEditorInsertFromFile( ) returns
one of the following values:

DtEDITOR_NONEXISTENT_FILE
The file does not exist.

DtEDITOR_DIRECTORY
The file is a directory.

DtEDITOR_CHAR_SPECIAL_FILE
The file is a character-special device.

DtEDITOR_BLOCK_MODE_FILE
The file is a block-mode device.

DtEDITOR_NO_FILE_ACCESS
The file cannot be accessed.

DtEDITOR_UNREADABLE_FILE
The file is unreadable for an unspecified reason.

APPLICATION USAGE
If the data is in memory, rather than a disk file, the application should use DtEditorInsert( ).

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorAppend( ), DtEditorAppendFromFile( ), DtEditorGetContents( ),
DtEditorInsert( ), DtEditorReplace ( ), DtEditorReplaceFromFile( ), DtEditorSaveContentsToFile( ),
DtEditorSetContents( ), DtEditorGetInsertionPosition ( ), DtEditorSetInsertionPosition ( ),
DtEditorSetContentsFromFile( ).

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 163



DtEditorInvokeFindChangeDialog( ) Text Editing Services

NAME
DtEditorInvokeFindChangeDialog — display the DtEditor widget dialog for searching and
replacing text

SYNOPSIS
#include <Dt/Editor.h>

void DtEditorInvokeFindChangeDialog(Widget widget );

DESCRIPTION
The DtEditorInvokeFindChangeDialog ( ) function displays the Find/Change dialog for the
DtEditor widget. This dialog enables a user to search for, and optionally replace, a string in the
text for the DtEditor widget. It also allows the user to specify a replacement string, which can be
substituted for either the next occurrence of the search string or all occurrences. The
Find/Change dialog remains displayed until the user closes it. For a complete description of the
Find/Change dialog see DtEditor .

Subsequent searches for the last search string entered can be made by calling DtEditorFind( ).
Subsequent substitutions can be made with DtEditorChange( ).

The widget argument specifies the DtEditor widget ID.

RETURN VALUE
The DtEditorInvokeFindChangeDialog ( ) function returns no value.

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorChange( ), DtEditorFind( ).

CHANGE HISTORY
First released in Issue 1.

164 X/Open CAE Specification



Text Editing Services DtEditorInvokeFormatDialog( )

NAME
DtEditorInvokeFormatDialog — display the DtEditor widget dialog for choosing formatting
options

SYNOPSIS
#include <Dt/Editor.h>

void DtEditorInvokeFormatDialog(Widget widget );

DESCRIPTION
The DtEditorInvokeFormatDialog ( ) function displays the Format Settings dialog of the DtEditor
widget. This dialog enables a user to set the text formatting options: margins and text
alignments (left aligned, right aligned, justified or centered). The dialog also provides the
capability to format either the paragraph containing the insertion cursor or the entire contents of
the DtEditor widget. The Format Settings dialog remains displayed until the user closes it. For a
complete description of the Format Settings dialog, see DtEditor .

Text can be formatted programmatically with DtEditorFormat( ).

The widget argument specifies the DtEditor widget ID.

RETURN VALUE
The DtEditorInvokeFormatDialog ( ) function returns no value.

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorFormat( ).

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 165



DtEditorPasteFromClipboard( ) Text Editing Services

NAME
DtEditorPasteFromClipboard — insert the clipboard selection into a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

Boolean DtEditorPasteFromClipboard(Widget widget );

DESCRIPTION
The DtEditorPasteFromClipboard ( ) function inserts the clipboard selection before the insertion
cursor of the DtEditor widget. If the insertion cursor is inside the current selection, the clipboard
selection replaces the selected text. Text can be cut or copied to the clipboard with
DtEditorCutToClipboard ( ) and DtEditorCopyToClipboard ( ). Text can be selected and deselected
programmatically with DtEditorSelectAll( ) and DtEditorDeselect( ).

The widget argument specifies the DtEditor widget ID.

RETURN VALUE
Upon successful completion, the DtEditorPasteFromClipboard ( ) function returns True; otherwise,
if the widget does not own the primary selection, the function returns False.

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorClearSelection ( ), DtEditorCutToClipboard ( ),
DtEditorCopyToClipboard ( ), DtEditorDeleteSelection( ), DtEditorDeselect( ), DtEditorSelectAll( ),
DtEditorUndoEdit( ).

CHANGE HISTORY
First released in Issue 1.

166 X/Open CAE Specification



Text Editing Services DtEditorReplace( )

NAME
DtEditorReplace — replace a portion of the contents of a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

DtEditorErrorCode DtEditorReplace(Widget widget ,
XmTextPosition startPos ,
XmTextPosition endPos ,
DtEditorContentRec ∗data );

DESCRIPTION
The DtEditorReplace ( ) function replaces part of the contents of a DtEditor widget with a string, a
wide character string or sized buffer. The data is transferred to the DtEditor widget using a
DtEditorContentRec, which indicates the type of data being transferred along with the actual
data. All data following the start position and up to, but not including, the end position is
replaced. If the start position and the end position are equal, the data is inserted after the end
position. The character positions begin at zero and are numbered sequentially from the
beginning of the text. After the replacement, the insertion cursor is positioned after the last
character inserted.

The widget argument specifies the DtEditor widget ID.

The startPos argument specifies the starting character position of the portion to replace. The
replacement begins at this character.

The endPos argument specifies the ending character position of the portion to replace. The
replacement ends before this character.

The data argument is a pointer to the data structure containing the data to insert.

For a complete definition of DtEditorContentRec, see <Dt/Editor.h>.

RETURN VALUE
Upon successful completion, the DtEditorReplace ( ) function returns DtEDITOR_NO_ERRORS;
otherwise, if it cannot replace the string, the function returns one of the following values:

DtEDITOR_INVALID_TYPE
The Type field is not recognised.

DtEDITOR_INVALID_RANGE
The startPos argument is greater than the endPos argument.

DtEDITOR_ILLEGAL_SIZE
The size of the buffer passed in is negative.

DtEDITOR_NULL_ITEM
The data buffer is NULL.

EXAMPLES
The following code segment modifies the contents of a DtEditor widget to ‘‘The quick fox.’’

X/Open Common Desktop Environment (XCDE) Services and Applications 167



DtEditorReplace( ) Text Editing Services

Widget editor;
DtEditorContentRec cr;
DtEditorErrorCode status;
XmTextPosition start = (XmTextPosition) 4,

end = (XmTextPosition) 9;
char ∗sampleString1="The brown fox",

∗sampleString2="quick";

cr.type = DtEDITOR_TEXT;
cr.value.string = sampleString1;
status = DtEditorSetContents(editor, &cr);
if (status != DtEDITOR_NO_ERRORS) {

printf("Unable to set contents of the widget\n");
} else {

cr.type = DtEDITOR_TEXT;
cr.data.string = sampleString2;
status = DtEditorReplace(editor, start, end, &cr);
if (status != DtEDITOR_NO_ERRORS)

printf("Unable to replace part of the widget contents\n");
}

APPLICATION USAGE
If the data is in a disk file, rather than in memory, the application should use
DtEditorReplaceFromFile( ).

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorAppend( ), DtEditorAppendFromFile( ), DtEditorGetContents( ),
DtEditorInsert( ), DtEditorInsertFromFile( ), DtEditorReplaceFromFile( ),
DtEditorSaveContentsToFile( ), DtEditorSetContents( ), DtEditorSetContentsFromFile( ).

CHANGE HISTORY
First released in Issue 1.

168 X/Open CAE Specification



Text Editing Services DtEditorReplaceFromFile( )

NAME
DtEditorReplaceFromFile — replace a portion of the contents of a DtEditor widget with the
contents of a file

SYNOPSIS
#include <Dt/Editor.h>

DtEditorErrorCode DtEditorReplaceFromFile(Widget widget ,
XmTextPosition startPos ,
XmTextPosition endPos ,
char ∗fileName );

DESCRIPTION
The DtEditorReplaceFromFile( ) function replaces part of the contents of a DtEditor widget with
the contents of a file. All data following the start position and up to, but not including, the end
position is replaced. If the start position and the end position are equal, the data is inserted after
the end position. The character positions begin at zero and are numbered sequentially from the
beginning of the text. After the replacement, the insertion cursor is positioned after the last
character inserted.

The widget argument specifies the DtEditor widget ID.

The startPos argument specifies the starting character position of the portion to replace. The
replacement begins at this character.

The endPos argument specifies the ending character position of the portion to replace. The
replacement ends before this character.

The fileName argument is the pathname of the file relative to the local system.

RETURN VALUE
Upon successful completion, the DtEditorReplaceFromFile( ) function returns one of the following
values:

DtEDITOR_NO_ERRORS
The file is readable and writable.

DtEDITOR_READ_ONLY_FILE
The file is read only.

Otherwise, if it cannot insert the data into the DtEditor widget, the function returns one of the
following values:

DtEDITOR_INVALID_RANGE
The startPos argument is greater than the endPos argument.

DtEDITOR_NONEXISTENT_FILE
The file does not exist.

DtEDITOR_DIRECTORY
The file is a directory.

DtEDITOR_CHAR_SPECIAL_FILE
The file is a character-special device.

DtEDITOR_BLOCK_MODE_FILE
The file is a block-mode device.

DtEDITOR_NO_FILE_ACCESS
The file cannot be accessed.

X/Open Common Desktop Environment (XCDE) Services and Applications 169



DtEditorReplaceFromFile( ) Text Editing Services

DtEDITOR_UNREADABLE_FILE
The file is unreadable for an unspecified reason.

APPLICATION USAGE
If the data is in memory, rather than a disk file, the application should use DtEditorReplace ( ).

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorAppend( ), DtEditorAppendFromFile( ), DtEditorGetContents( ),
DtEditorInsert( ), DtEditorInsertFromFile( ), DtEditorReplace ( ), DtEditorSaveContentsToFile( ),
DtEditorSetContents( ), DtEditorSetContentsFromFile( ).

CHANGE HISTORY
First released in Issue 1.

170 X/Open CAE Specification



Text Editing Services DtEditorReset( )

NAME
DtEditorReset — reset a DtEditor widget to its default state

SYNOPSIS
#include <Dt/Editor.h>

void DtEditorReset(Widget widget );

DESCRIPTION
The DtEditorReset( ) function deletes the contents of a DtEditor widget, resets the undo edit
function, clears the last string searched for plus the last replacement string.

The widget argument specifies the DtEditor widget ID.

RETURN VALUE
The DtEditorReset( ) function returns no value.

APPLICATION USAGE
The DtEditorReset( ) is analogous to destroying a DtEditor widget and creating a new one with
the current resource settings. It is useful when reusing a DtEditor widget.

SEE ALSO
<Dt/Editor.h>, DtEditor( ).

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 171



DtEditorSaveContentsToFile( ) Text Editing Services

NAME
DtEditorSaveContentsToFile — save the contents of a DtEditor widget to a file

SYNOPSIS
#include <Dt/Editor.h>

DtEditorErrorCode DtEditorSaveContentsToFile(Widget widget ,
char ∗fileName ,
Boolean overwriteIfExists ,
Boolean hardCarriageReturns ,
Boolean markContentsAsSaved );

DESCRIPTION
The DtEditorSaveContentsToFile( ) function saves the entire contents of the DtEditor widget to a
file, optionally replacing soft line feeds (word wraps) with <newline>s. If the file does not exist
and the directory has the correct write permissions, the file is created. If the file exists and the
overwriteIfExists argument is set to True, the contents of the file are overwritten. If the file or its
directory does not have the correct write permissions, an error is returned.

The DtEditor widget tracks whether its contents have changed since they were last saved or
retrieved. If the markContentsAsSaved argument is set to False, a copy of the data is saved
without affecting whether DtEditorCheckForUnsavedChanges( ) reports that there are unsaved
changes. This is useful if the application needs to save a copy of the contents to a temporary file.

The widget argument specifies the DtEditor widget ID.

The fileName argument is the pathname of the file relative to the local system.

The overwriteIfExists argument, if set to True, causes DtEditorSaveContentsToFile( ) to save the
widget contents even though the file specified by the fileName argument exists and has correct
write permissions. If this argument is set to False, DtEditorSaveContentsToFile( ) returns
DtEDITOR_WRITABLE_FILE.

The hardCarriageReturns argument, if set to True, indicates that the widget should replace any
soft line feeds (word wraps) with <newline>s when saving the data. When this argument is set
to False, any line wrapped because it reaches the right edge of the window, is saved as one
complete line.

The markContentsAsSaved argument, when set to True, causes the DtEditor widget to mark that
all changes made to date have been saved. When this argument is set to False, the DtEditor
widget does not change its status regarding unsaved changes. If an error arises during the save,
the status does not change, regardless of the value of the markContentsAsSaved argument.

RETURN VALUE
Upon successful completion, the DtEditorSaveContentsToFile( ) function returns DtEDITOR_-
NO_ERRORS; otherwise, if it cannot save the data to the file, the function returns one of the
following values:

DtEDITOR_INVALID_FILENAME
No file was specified.

DtEDITOR_UNWRITABLE_FILE
The application does not have write permission for the file or directory.

DtEDITOR_CHAR_SPECIAL_FILE
The file is a device-special file.

DtEDITOR_BLOCK_MODE_FILE
The file is a block-mode device.

172 X/Open CAE Specification



Text Editing Services DtEditorSaveContentsToFile( )

DtEDITOR_NO_FILE_ACCESS
The file cannot be accessed.

DtEDITOR_SAVE_FAILED
The contents could not be saved for an unspecified reason.

DtEDITOR_WRITABLE_FILE
The named files exist and the overwriteIfExists argument is set to False.

EXAMPLES
The following code segment saves the contents of a DtEditor widget to the local file, Foo,
substituting <newline>s for soft line feeds. It also indicates that all changes to the contents of
the widget have been saved.

Widget editor;
DtEditorErrorCode status;
char ∗fname = "Foo";
Boolean overwrite = False,

hardReturns = True,
markContentsAsSaved = True;

status = DtEditorSaveContentsToFile(editor, fname, overwrite,
hardReturns,
markContentsAsSaved);

switch(status )
{

case DtEDITOR_NO_ERRORS:
break;

case DtEDITOR_WRITABLE_FILE:
printf("Save failed. The file already exists.\n");
break;

default:
printf("Could not save contents.\n");
break;

}

APPLICATION USAGE
The application should use DtEditorGetContents( ) to retrieve the data in a memory buffer, rather
than a disk file.

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorAppend( ), DtEditorAppendFromFile( ),
DtEditorCheckForUnsavedChanges( ), DtEditorGetContents( ), DtEditorInsert( ),
DtEditorInsertFromFile( ), DtEditorReplace ( ), DtEditorReplaceFromFile( ),
DtEditorSetContentsFromFile( ), DtEditorSetContents( ).

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 173



DtEditorSelectAll( ) Text Editing Services

NAME
DtEditorSelectAll — select all text in a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

Boolean DtEditorSelectAll(Widget widget );

DESCRIPTION
The DtEditorSelectAll( ) function selects all text in a DtEditor widget. Any current selection can
be programmatically deselected with DtEditorDeselect( ).

The widget argument specifies the DtEditor widget ID.

RETURN VALUE
Upon successful completion, the DtEditorSelectAll( ) function returns True; otherwise, if it is
unable to gain ownership of the clipboard selection it returns False.

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorClearSelection ( ), DtEditorCopyToClipboard ( ),
DtEditorCutToClipboard ( ), DtEditorDeleteSelection( ), DtEditorDeselect( ).

CHANGE HISTORY
First released in Issue 1.

174 X/Open CAE Specification



Text Editing Services DtEditorSetContents( )

NAME
DtEditorSetContents — place data into a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

DtEditorErrorCode DtEditorSetContents(Widget widget ,
DtEditorContentRec ∗data );

DESCRIPTION
The DtEditorSetContents( ) function places a NULL−terminated string, wide character string or
sized buffer into a DtEditor widget. Any data currently in the DtEditor widget is lost. The data
is transferred to the DtEditor widget using a DtEditorContentRec, which indicates the type of
data being transferred along with the actual data. After the data is placed into the DtEditor
widget, the insertion cursor is positioned at the first character.

The widget argument specifies the DtEditor widget ID.

The data argument is a pointer to a data structure containing the new contents of widget .

For a complete definition of DtEditorContentRec, see <Dt/Editor>.

RETURN VALUE
Upon successful completion, the DtEditorSetContents( ) function returns DtEDITOR_-
NO_ERRORS; otherwise, it returns one of the following values:

DtEDITOR_INVALID_TYPE
The Type field is unrecognised.

DtEDITOR_ILLEGAL_SIZE
The size of the buffer passed in is negative.

DtEDITOR_NULL_ITEM
The buffer is NULL.

EXAMPLES
The following code segment sets the contents of a DtEditor widget to ‘‘The quick brown fox.’’

Widget editor;
DtEditorContentRec cr;
DtEditorErrorCode status;
char ∗sampleString="The quick brown fox";

cr.type = DtEDITOR_TEXT;
cr.value.string = sampleString;
status = DtEditorSetContents(editor, &cr);
if (status != DtEDITOR_NO_ERRORS)

printf("Unable to set contents of the widget\n");

APPLICATION USAGE
If the data is in a disk file, rather than in memory, the application should use
DtEditorSetContentsFromFile( ).

X/Open Common Desktop Environment (XCDE) Services and Applications 175



DtEditorSetContents( ) Text Editing Services

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorAppend( ), DtEditorAppendFromFile( ), DtEditorGetContents( ),
DtEditorInsert( ), DtEditorInsertFromFile( ), DtEditorReplace ( ), DtEditorReplaceFromFile( ),
DtEditorSaveContentsToFile( ), DtEditorSetContentsFromFile( ).

CHANGE HISTORY
First released in Issue 1.

176 X/Open CAE Specification



Text Editing Services DtEditorSetContentsFromFile( )

NAME
DtEditorSetContentsFromFile — load data from a file into a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

DtEditorErrorCode DtEditorSetContentsFromFile(Widget widget ,
char ∗fileName );

DESCRIPTION
The DtEditorSetContentsFromFile( ) function loads the contents of a file into a DtEditor widget.
Any data currently in the DtEditor widget is lost. After the data is loaded, the insertion cursor is
positioned at the first character.

The widget argument specifies the DtEditor widget ID.

The fileName argument is the pathname of the file relative to the local system.

RETURN VALUE
Upon successful completion, the DtEditorSetContentsFromFile( ) function returns one of the
following values when it successfully loads the data into the DtEditor widget:

DtEDITOR_NO_ERRORS
The file is readable and writable.

DtEDITOR_READ_ONLY_FILE
The file is read only.

Otherwise, if it cannot load the data into the DtEditor widget, the function returns one of the
following values:

DtEDITOR_NONEXISTENT_FILE
The file does not exist.

DtEDITOR_DIRECTORY
The file is a directory.

DtEDITOR_CHAR_SPECIAL_FILE
The file is a character-special device.

DtEDITOR_BLOCK_MODE_FILE
The file is a block-mode device.

DtEDITOR_NO_FILE_ACCESS
The file cannot be accessed.

DtEDITOR_UNREADABLE_FILE
The file is unreadable for an unspecified reason.

APPLICATION USAGE
If the data is in memory, rather than a disk file, the application should use DtEditorSetContents( ).

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorAppend( ), DtEditorAppendFromFile( ), DtEditorGetContents( ),
DtEditorInsert( ), DtEditorInsertFromFile( ), DtEditorReplace ( ), DtEditorReplaceFromFile( ),
DtEditorSaveContentsToFile( ), DtEditorSetContents( ).

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 177



DtEditorSetInsertionPosition( ) Text Editing Services

NAME
DtEditorSetInsertionPosition — set the position of the insert cursor in a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

void DtEditorSetInsertionPosition(Widget widget ,
XmTextPosition position );

DESCRIPTION
The DtEditorSetInsertionPosition ( ) function sets the insertion cursor position of the DtEditor
widget. The current position of the insertion cursor can be retrieved with
DtEditorGetInsertionPosition ( ). The last text position of the DtEditor widget can be retrieved
with DtEditorGetLastPosition ( ).

The widget argument specifies the DtEditor widget ID.

The position argument specifies the position of the insertion cursor. This is an integer number of
characters from the beginning of the text buffer. The first character position is zero. Values
greater than the last position place the cursor at the last position (that is, at the end of the text).

RETURN VALUE
The DtEditorSetInsertionPosition ( ) function returns no value.

SEE ALSO
<Dt/Editor.h>, DtEditor( ), DtEditorGetInsertionPosition ( ), DtEditorGetLastPosition ( ).

CHANGE HISTORY
First released in Issue 1.

178 X/Open CAE Specification



Text Editing Services DtEditorTraverseToEditor( )

NAME
DtEditorTraverseToEditor — set keyboard traversal to the edit window of a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

void DtEditorTraverseToEditor(Widget widget );

DESCRIPTION
The DtEditorTraverseToEditor( ) function causes the Motif keyboard traversal to be set to the edit
window of a DtEditor widget.

The widget argument specifies the DtEditor widget ID.

RETURN VALUE
The DtEditorTraverseToEditor( ) function returns no value.

SEE ALSO
<Dt/Editor.h>, DtEditor( ).

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 179



DtEditorUndoEdit( ) Text Editing Services

NAME
DtEditorUndoEdit — undo the last edit made to the text in a DtEditor widget

SYNOPSIS
#include <Dt/Editor.h>

Boolean DtEditorUndoEdit(Widget widget );

DESCRIPTION
The DtEditorUndoEdit( ) function undoes the last change (deletion or insertion) made to the text
in a DtEditor widget. A change consists of either a set of consecutive insertions, or a set of
consecutive deletions followed by up to one set of consecutive insertions. An insertion is
consecutive if there have been no intervening deletions, and it is continuing forward from the
same point. A deletion is consecutive if there have been no intervening insertions, and its start
or end position is coincidental with the last deletion (that is, the deletion is continuing from the
same point, either forward or backward). Undoing an edit once restores the original text.
Undoing an edit twice restores the last change.

The widget argument specifies the DtEditor widget ID.

RETURN VALUE
Upon successful completion, the DtEditorUndoEdit( ) function returns True; otherwise, if there is
no pending undo it returns False.

SEE ALSO
<Dt/Editor.h>, DtEditor( ).

CHANGE HISTORY
First released in Issue 1.

180 X/Open CAE Specification



Text Editing Services Headers

9.4 Headers
This section describes the contents of headers used by the XCDE text editing service functions,
macros and external variables.

Headers contain the definition of symbolic constants, common structures, preprocessor macros
and defined types. Each function in Section 9.3 specifies the headers that an application must
include in order to use that function. In most cases only one header is required. These headers
are present on an application development system; they do not have to be present on the target
execution system.

X/Open Common Desktop Environment (XCDE) Services and Applications 181



<Dt/Editor.h> Text Editing Services

NAME
Dt/Editor.h — editor widget definitions

SYNOPSIS
#include <Dt/Editor.h>

DESCRIPTION
The <Dt/Editor.h> header defines structures, enumerations and function prototypes for the
Editor widget class.

The header defines the DtEditorDataFormat enumeration data type, with at least the following
members:

DtEDITOR_TEXT
The data being transferred is a pointer to a NULL−terminated string of characters (a
char ∗).

DtEDITOR_WCHAR
The data being transferred is a wide character string (a wchar_t ∗).

DtEDITOR_DATA
The data being transferred is a sized buffer (a DtEditor_DataObj).

The header defines the following structure:

typedef struct {
unsigned int length ;
void ∗buf ;

} DtEditor_DataObj;

The length argument is the size in bytes of the data buffer. The buf argument is a pointer to the
data buffer.

The DtEditorContentRec structure is used to transfer data between an application and Editor
widget. It indicates the type of data being transferred along with the actual data.

typedef struct {
DtEditorDataFormat type ;
union {

char ∗string ;
wchar_t ∗wchar ;
DtEditor_DataObj data ;

} value ;
} DtEditorContentRec;

The type argument indicates the type of data contained in the structure. The string argument
points to a NULL−terminated string of characters. It is valid when type is DtEDITOR_TEXT.
The wchar argument points to a wide character string. It is valid when type is
DtEDITOR_WCHAR. The data argument is a DtEditor_DataObj that contains the size of the
data and a pointer to it. It is valid when type is DtEDITOR_DATA.

The DtEditorChangeValues structure is used optionally to specify the string to search for and its
replacement value for DtEditorChange( ).

typedef struct {
char ∗find ,
char ∗changeTo ,

} DtEditorChangeValues;

182 X/Open CAE Specification



Text Editing Services <Dt/Editor.h>

The find argument is a text string to locate in an DtEditor widget. The changeTo argument is the
replacement string for the one or more occurrences of the string specified in find. It can be
NULL.

The DtEditorFormatSettings structure is used to optionally specify the left margin setting, right
margin setting, and alignment style for DtEditorFormat( ).

typedef struct {
int leftMargin ,
int rightMargin ,
unsigned int alignment ,

} DtEditorFormatSettings;

The leftMargin argument is the column number of the left boundary when formatting text. Text
is not extended to the left of this column. It must be non-negative. The rightMargin argument is
the column number of the right boundary when formatting text. Text is not extended to the
right of this column. It must be larger than leftMargin . The alignment argument specifies the
style of alignment when formatting text (see the constants listed in this header).

The header declares the following variable:

WidgetClass dtEditorWidgetClass;

The header defines the following constants for use with the DtEditorChange( ) function:

DtEDITOR_ALL_OCCURRENCES
Change all instances of the find string.

DtEDITOR_CURRENT_SELECTION
Replace the currently selected text with the replacement string.

DtEDITOR_NEXT_OCCURRENCE
Change the next occurrence of the find string after the insertion cursor.

The header defines the following constants for use with the DtEditorFormat( ) function:

DtEDITOR_FORMAT_ALL
Reformats all the text in a DtEditor.

DtEDITOR_FORMAT_PARAGRAPH
Reformats only the paragraph containing the insertion cursor.

DtEDITOR_ALIGN_CENTER
Centers each line of text between the left and right margins.

DtEDITOR_ALIGN_JUSTIFY
Aligns the text flush with both the left and right margins.

DtEDITOR_ALIGN_LEFT
Aligns the text flush with the left margin.

DtEDITOR_ALIGN_RIGHT
Aligns the text flush with the right margin.

The header defines the following constant for use with the DtEditorGoToLine( ) function:

DtEDITOR_LAST_LINE
Moves the cursor to the beginning of the last line in the widget.

The header defines the following DtEditorErrorCode constants:

X/Open Common Desktop Environment (XCDE) Services and Applications 183



<Dt/Editor.h> Text Editing Services

DtEDITOR_NO_ERRORS
The function completed its task without errors.

DtEDITOR_INVALID_TYPE
The specified type is not a recognised DtEditorDataFormat when setting or
retrieving contents or the specified Alignment type is not recognised when
formatting text.

DtEDITOR_INVALID_RANGE
The starting character position in a text replacement is greater than the ending
character position or the specified Amount To Format when formatting text is not
recognised.

DtEDITOR_NULL_ITEM
The data buffer is NULL when passing data in a buffer.

DtEDITOR_ILLEGAL_SIZE
The specified size of a data buffer is negative when passing data in a buffer, or the
left and right margin values are illegal when formatting text.

DtEDITOR_INVALID_FILENAME
No file was specified.

DtEDITOR_NONEXISTENT_FILE
The file specified for reading does not exist.

DtEDITOR_UNREADABLE_FILE
The file specified is unreadable for an unspecified reason.

DtEDITOR_READ_ONLY_FILE
The file is read only.

DtEDITOR_NO_FILE_ACCESS
The file cannot be accessed.

DtEDITOR_DIRECTORY
The file specified is a directory.

DtEDITOR_CHAR_SPECIAL_FILE
The file specified is a character-special device.

DtEDITOR_BLOCK_MODE_FILE
The file specified is a block-mode device.

DtEDITOR_UNWRITABLE_FILE
The application does not have write permission for the file or directory.

DtEDITOR_WRITABLE_FILE
The specified file exists and the overwriteIfExists flag is set to False.

DtEDITOR_SAVE_FAILED
The contents of the widget could not be saved for an unspecified reason.

The header defines the following enumeration values as reasons for the DtNtextSelectCallback:

DtEDITOR_TEXT_SELECT
Some text has been selected within the edit window (that is, the selection has
become non-NULL).

DtEDITOR_TEXT_DESELECT
No text is selected within the edit window (that is, the selection has become NULL).

184 X/Open CAE Specification



Text Editing Services <Dt/Editor.h>

The header defines the following constants as reasons for the XmNhelpCallback:

DtEDITOR_HELP_EDIT_WINDOW
The help request originated in the edit window.

DtEDITOR_HELP_FORMAT_DIALOG
The help request originated from the Help button in the Format Settings dialog.

DtEDITOR_HELP_FORMAT_LEFT_MARGIN
The help request originated from the Left Margin field in the Format Settings dialog.

DtEDITOR_HELP_FORMAT_RIGHT_MARGIN
The help request originated from the Right Margin Field in the Format Settings
dialog.

DtEDITOR_HELP_FORMAT_ALIGNMENT
The help request originated from the Alignment buttons in the Format Settings
dialog.

DtEDITOR_HELP_CHANGE_DIALOG
The help request originated from the Help button in the Find/Change dialog.

DtEDITOR_HELP_CHANGE_FIND
The help request originated from the Find field in the Find/Change dialog.

DtEDITOR_HELP_CHANGE_CHANGE
The help request originated from the Change To field in the Find/Change dialog.

The header defines the following as functions:

Widget DtCreateEditor(Widget parent ,
char ∗name,
ArgList arglist ,
Cardinal argcount );

DtEditorErrorCode DtEditorAppend(Widget widget ,
DtEditorContentRec ∗data );

DtEditorErrorCode DtEditorAppendFromFile(Widget widget ,
char ∗fileName );

Boolean DtEditorChange(Widget widget ,
DtEditorChangeValues ∗findChangeStrings ,
unsigned int instanceToChange );

Boolean DtEditorCheckForUnsavedChanges(Widget widget );

Boolean DtEditorClearSelection(Widget widget );

Boolean DtEditorCopyToClipboard(Widget widget );

Boolean DtEditorCutToClipboard(Widget widget );

Boolean DtEditorDeleteSelection(Widget widget );

Boolean DtEditorDeselect(Widget widget );

Boolean DtEditorFind(Widget widget ,
char ∗ find );

DtEditorErrorCode DtEditorFormat(Widget widget ,
DtEditorFormatSettings ∗formatSettings ,
unsigned int amountToFormat );

X/Open Common Desktop Environment (XCDE) Services and Applications 185



<Dt/Editor.h> Text Editing Services

DtEditorErrorCode DtEditorGetContents(Widget widget ,
DtEditorContentRec ∗data ,
Boolean hardCarriageReturns ,
Boolean markContentsAsSaved );

XmTextPosition DtEditorGetInsertionPosition(Widget widget );

XmTextPosition DtEditorGetLastPosition(Widget widget );

void DtEditorGetSizeHints(Widget widget ,
XSizeHints ∗pHints );

void DtEditorGoToLine(Widget widget ,
int lineNumber );

DtEditorErrorCode DtEditorInsert(Widget widget ,
DtEditorContentRec ∗data );

DtEditorErrorCode DtEditorInsertFromFile(Widget widget ,
char ∗fileName );

void DtEditorInvokeFindChangeDialog(Widget widget );

void DtEditorInvokeFormatDialog(Widget widget );

Boolean DtEditorPasteFromClipboard(Widget widget );

DtEditorErrorCode DtEditorReplace(Widget widget ,
XmTextPosition startPos ,
XmTextPosition endPos ,
DtEditorContentRec ∗data );

DtEditorErrorCode DtEditorReplaceFromFile(Widget widget ,
XmTextPosition startPos ,
XmTextPosition endPos ,
char ∗fileName );

DtEditorErrorCode DtEditorSaveContentsToFile(Widget widget ,
char ∗fileName ,
Boolean overwriteIfExists ,
Boolean hardCarriageReturns ,
Boolean markContentsAsSaved );

Boolean DtEditorSelectAll(Widget widget );

DtEditorErrorCode DtEditorSetContents(Widget widget ,
DtEditorContentRec ∗data );

DtEditorErrorCode DtEditorSetContentsFromFile(Widget widget ,
char ∗fileName );

void DtEditorSetInsertionPosition(Widget widget ,
XmTextPosition position );

void DtEditorTraverseToEditor(Widget widget );

Boolean DtEditorUndoEdit(Widget widget );

CHANGE HISTORY
First released in Issue 1.

186 X/Open CAE Specification



Text Editing Services Command-Line Interfaces

9.5 Command-Line Interfaces
This section defines the utility that provides XCDE text editing services.

X/Open Common Desktop Environment (XCDE) Services and Applications 187



dtpad Text Editing Services

NAME
dtpad — edit text files

SYNOPSIS
dtpad [ −options ] [ file ]

DESCRIPTION
The dtpad utility is a basic editor that supports editing text files in a manner consistent with
other common Graphical User Interface text manipulation and file access mechanisms. Cursor
positioning and text selection as well as access to various edit operations can be done via the
standard Motif text manipulation mechanisms using the mouse or user-definable key
combinations. Text can be cut, copied or pasted, or dragged to and from the Text Editor and/or
other compliant application windows via the standard Motif Clipboard and ICCCM Primary
and Secondary selection mechanisms. Also, standard dialogs are presented for accessing files
and printing text.

The Text Editor also provides the following features:

• Undo of the previous edit operation.

• Search and replace.

• Simple formatting.

OPTIONS
The dtpad utility does not support the X/Open Utility Syntax Guidelines because it uses the X
Window System convention of full-word options. The following options are available:

−saveOnClose
Automatically and silently saves the current text when there are unsaved changes
and the Text Editor is closed. The default action for this situation posts a dialog
asking whether or not to save the current text. This option inhibits the posting of
the Save dialog when the Text Editor is closed. The Save dialog is always posted
when a new file is specified and there are unsaved changes.

−missingFileWarning
Posts a Warning dialog whenever a file name is specified and the file does not exist
or cannot be accessed.

−noReadOnlyWarning
Disables the Warning dialog posted whenever a file is specified for which the user
does not have write permission. The default posts a Warning dialog whenever this
situation occurs.

−noNameChange
Indicates that the default file name associated with the current text is not to change
when the text is saved under a name different than what it was read in under. The
current text can still be saved under a different file name; however, the default file
name does not change. By default, the default file name is automatically changed to
correspond to the last name under which the current text was saved.

−viewOnly
Disallows editing of text in the edit window, essentially turning the Text Editor into
a text viewer. The default allows text editing in the edit window even if the text
was obtained from a file for which the user does not have write permission.

188 X/Open CAE Specification



Text Editing Services dtpad

OPERANDS
The following operand is supported:

file The file to be edited or viewed. If no file is specified, the Text Editor opens a new
(empty) edit window and the file name must be specified when the contents are
saved.

RESOURCES

Basic Resources
Name Class Type Default
saveOnClose SaveOnClose Boolean False
missingFileWarning MissingFileWarning Boolean False
readOnlyWarning ReadOnlyWarning Boolean True
nameChange NameChange Boolean True
viewOnly ViewOnly Boolean False

saveOnClose
Indicates whether the Text Editor is to save automatically the current text when
there are unsaved changes and the Text Editor is closed. Setting this resource to
True automatically saves unsaved changes when the Text Editor is closed. This is
equivalent to specifying the −saveOnClose command-line option.

missingFileWarning
Indicates whether a warning dialog is to be posted when a file is specified that does
not exist or cannot be accessed. Setting this resource to True displays the warning.
This is equivalent to specifying the −missingFileWarning command-line option.

readOnlyWarning
Indicates whether a warning dialog is to be posted when a file for which the user
does not have write permission is read. Setting this resource to False suppresses the
warning. This is equivalent to specifying the −noReadOnlyWarning command-line
option.

nameChange
Indicates whether the current file name is to be changed when the current text is
saved under a new name. Setting this resource to False does not allow the name to
be reset. This is equivalent to specifying the −noNameChange command-line
option.

viewOnly
Indicates whether text only be viewed or whether it can be edited in the edit
window. Setting this resource to True disables text editing. This is equivalent to
specifying the −viewOnly command-line option.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables affect the execution of dtpad:

DISPLAY Specify the default X Windows display to connect to.

X/Open Common Desktop Environment (XCDE) Services and Applications 189



dtpad Text Editing Services

LANG Provide a default value for the internationalisation variables that are
unset or null. If LANG is unset or null, the corresponding value from the
implementation-specific default locale will be used. If any of the
internationalisation variables contains an invalid setting, the utility
behaves as if none of the variables had been defined.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalisation variables.

LC_MESSAGES Determine the locale that is used to affect the format and contents of
diagnostic messages written to standard error and informative messages
written to standard output.

NLSPATH Determine the location of message catalogues for the processing of
LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
Not used.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values are returned:

0 Successful completion.

>0 An error occurred.

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

SEE ALSO
None.

CHANGE HISTORY
First released in Issue 1.

190 X/Open CAE Specification



Text Editing Services Actions

9.6 Actions
This section defines the actions that provide XCDE text editing services to support application
portability at the C-language source or shell script levels.

X/Open Common Desktop Environment (XCDE) Services and Applications 191



<dttextaction> Text Editing Services

NAME
dttextaction — XCDE text editing actions

SYNOPSIS
Dtpad [ file ]
Open file
Print file
TextEditor

DESCRIPTION
The XCDE Text Editing Services support the following text editing actions:

Dtpad
Open an empty view of the desktop text editor.

Dtpad file
Open a desktop text editor view of the text file named by the pathname in the file
argument.

Open file
Open a view of the text file named by the pathname in the file argument.

Print file
Print the text file named by the pathname in the file argument.

TextEditor
Open a view of the user’s preferred text editor.

These actions can be invoked from an application using the DtActionInvoke ( ) function or
invoked from a command line using the dtaction utility.

SEE ALSO
dtaction, DtActionInvoke ( ) in the XCDI specification.

CHANGE HISTORY
First released in Issue 1.

192 X/Open CAE Specification



Text Editing Services Messages

9.7 Messages
The XCDE text editing services support the ToolTalk Desktop and Media Exchange messages
listed below for the following media types:

C_STRING
Text in an arbitrary codeset

_DT_DATA
Data that does not match any other data type

In addition, the Text Editor supports the messages below for any media type that does not have
a specific editor registered.

The following messages are supported from the XCDI specification, Section 6.6.2, Media
Exchange Message Set:

Instantiate
Opens a new edit window for composing arbitrary file(s).

Edit Opens a new edit window for editing an existing file or buffer or for composing a
specific new file or buffer.

Display
Opens a new edit window for displaying an existing file or buffer.

The following messages are supported from the XCDI specification, Section 6.6.1, Desktop
Message Set:

Quit Terminates the text editing services or closes a specific Text Editor edit window as
specified by the operation2Quit argument. The operation2Quit argument must be the
message ID of the Media Exchange request that created the edit window.

The default actions for notifying the user, saving or returning text and closing edit
windows are:

• If operation2Quit is specified, the specified edit window is closed; otherwise, all
edit window(s) are closed and the text editing services are terminated

• If there are unsaved changes, the user is notified and allowed to save the text
and/or abort the Quit; otherwise, the user is not notified and the text is not
saved (or returned if a buffer is being edited)

Both the silent and force arguments are supported. However, the semantics of silent
differ from those described in XCDI specification, Section 6.6.1, Desktop Message
Set in that the text editing services provides user notification only when there are
unsaved changes, rather than user notification when an edit window is terminated.
The following table describes variances in the default action for various
combination of silent and force .

silent force action
False False default

If there are unsaved changes, the user is not notified, the text is
not saved and the edit window is not terminated.

True False

If there are unsaved changes, the user is still notified and
allowed to save the text, but cannot abort the Quit.

False True

If there are unsaved changes, the user is not notified, the text is
not saved and the edit window is closed.

True True

X/Open Common Desktop Environment (XCDE) Services and Applications 193



Messages Text Editing Services

Whenever the Quit request is not carried out (i.e., in the default case when the user
explicitly aborts the Quit or when silent is True and force is not specified or is False),
the Quit request is failed with

Save Saves a specific edit window opened via an Edit request. The ID argument must
have the messageID vtype and have the value of the message ID of the Edit request
that created the edit window.

Saved
Sent when a file has been saved, as the result of a Save request or a user action.

9.8 Capabilities
A conforming implementation of the XCDE text editing services supports at least the following
capabilities:

1. Provides text editing services as described in the following subsections.

2. Conforms to the Required items in the Application Style Checklist in Chapter 20 on page
355.

3. Has been internationalised using the standard interfaces in the X/Open CAE Specification,
System Interfaces and Headers, Issue 4, Version 2, the X/Open CAE Specification,
Window Management: Xlib C Language Binding, and the X/Open CAE Specification,
Motif Toolkit API, and supports any locale available in the underlying X Window System
Xlib implementation.

9.8.1 File Management

The following capabilities are supported for managing files:

1. The user can create a new document.

2. The user can open the document contained in an existing text file.

3. The user can save the document to a new file.

4. The user can save the document to the original text file.

5. The user can include an existing text file in a document. The contents of an included files is
inserted into the current document at the location of the insertion cursor.

6. The user can drop file icons, buffer icons and selected text on the edit area. Such a drop is
equivalent to an include of an existing file, but no file selection dialog is posted.

7. The user can drag selected text out of the edit area.

9.8.2 Presentation

The following capabilities are supported for presenting the text:

1. The editing area provides scroll bars to see text not visible in the window.

2. The user can find and optionally replace text in the document.

3. The user can print the current document.

4. The user can select any the following types of formatting for a single paragraph and for the
whole document:

194 X/Open CAE Specification



Text Editing Services Capabilities

a. Align along the left margin

b. Align along the right margin

c. Align along both margins

d. Center each line

5. The user can set both left and right margins.

6. Formatting supports paragraph indents. The difference between the positions of the left-
most characters of the first and second lines of a paragraph is the indent and is preserved
for all lines of the paragraph.

9.8.3 Text Editing

The following capabilities are supported for editing text:

1. The user can cut text to the clipboard.

2. The user can copy text to the clipboard.

3. The user can paste text from the clipboard into the document.

4. The user can delete text from the document.

5. The user can replace text in the document with spaces. This is also called ‘‘clearing.’’

6. The user can undo the most recent edit operation.

7. The user can select all text in the document.

8. The user can select either insert mode or replace mode for text entry.

9. The user can copy and move text through drag and drop operations.

X/Open Common Desktop Environment (XCDE) Services and Applications 195



Text Editing Services

196 X/Open CAE Specification



Chapter 10

Icon Editing Services

10.1 Introduction
The XCDE icon editing services allows users to create and modify icons that are used in the
X/Open Common Desktop Environment. This service provides a graphical interface with a
drawing area and tools and colours to use for creating icons and modifying previously created
icons.

10.2 Actions
This section defines the actions that provide XCDE icon editing services to support application
portability at the C-language source or shell script levels.

X/Open Common Desktop Environment (XCDE) Services and Applications 197



<dticonaction> Icon Editing Services

NAME
dticonaction — XCDE icon editing actions

SYNOPSIS
Dticon [ icon ]
Open icon

DESCRIPTION
The XCDE Icon Editing Services support the following icon editing actions:

Dticon
Open an empty icon editor view.

Dticon icon
Open an icon editor view of the bitmap or pixmap named by the pathname in the
icon argument.

Open icon
Open an icon editor view of the bitmap or pixmap named by the pathname in the
icon argument.

These actions can be invoked from an application using the DtActionInvoke ( ) function or
invoked from a command line using the dtaction utility.

SEE ALSO
dtaction, DtActionInvoke ( ) in the XCDI specification.

CHANGE HISTORY
First released in Issue 1.

198 X/Open CAE Specification



Icon Editing Services Messages

10.3 Messages
The XCDE icon editing services implement the Edit request for media types XPM and XBM. See
the XCDI specification, Section 6.6.2, Media Exchange Message Set. These services also
respond to the Quit desktop message. See the XCDI specification, Section 6.6.1, Desktop
Message Set.

10.4 Capabilities
A conforming implementation of the XCDE icon editing services supports at least the following
capabilities:

1. Conforms to the Required items in the Application Style Checklist in Chapter 20 on page
355, with the following exception that may exist on some implementations:

a. There are certain operations that need not comply with checklist item 7-10. The
option button in file selection dialogs allowing users to specify the format when
saving a file need not be available.

2. Has been internationalised using the standard interfaces in the X/Open CAE Specification,
System Interfaces and Headers, Issue 4, Version 2, the X/Open CAE Specification,
Window Management: Xlib C Language Binding, and the X/Open CAE Specification,
Motif Toolkit API, and supports any locale available in the underlying X Window System
Xlib implementation.

3. Creates new icon files or modifies existing icon files.

4. Reads and writes XPM and XBM icon file formats; see Section 19.2 on page 353.

5. Provides a drawing area where the icon is created or modified.

6. Allows the drawing area to be a drop destination for icon files.

7. Provides geometric drawing operations, including line, polyline, rectangle, polygon, circle
and ellipse, for creating or modifying the icon.

8. Supports the following operations within the drawing area:

a. Copy, cut and paste the selected area

b. Scale the selected area

c. Rotate (left/right) the selected area

d. Flip (vertical/horizontal) the selected area

9. Allows selection of the colour to use for drawing operations, including XCDE dynamically
defined colours; see Section 19.2 on page 353.

10. Supports resizing of the icon width and height.

11. Allows specification of the hot spot within the icon.

12. Supports magnification of the icon within the drawing area.

13. Allows as input to the drawing area any portion of the display screen by providing an
active bounding rectangle to the user for selecting the screen area to be used.

X/Open Common Desktop Environment (XCDE) Services and Applications 199



Icon Editing Services

200 X/Open CAE Specification



Chapter 11

GUI Scripting Services

11.1 Introduction
The XCDE GUI scripting services provide a means to develop interactive applications using the
familiar shell programming environment defined in the X/Open CAE Specification, Commands
and Utilities, Issue 4, Version 2. The GUI scripting services provide extensions to the shell that
allow access to the variety of XCDE services.

11.2 Command-line Interface
This section defines the utility that provides XCDE GUI scripting services.

X/Open Common Desktop Environment (XCDE) Services and Applications 201



dtksh GUI Scripting Services

NAME
dtksh — shell command language interpreter with access to many X, Xt, Xm and XCDE functions

SYNOPSIS
dtksh [ −abCefimnuvx ] [ −o option ] [ +abCefmnuvx ] [ +o option ]
[ command_file [ argument ... ]]

dtksh [ −abCefimnuvx ] [ −o option ] [ +abCefmnuvx ] [ +o option ]
command_string [ command_name [ argument ... ]]

dtksh −s [ −abCefimnuvx ] [ −o option ] [ +abeCefmnuvx ] [ +o option ]
[ argument ... ]]

DESCRIPTION
The dtksh utility is a version of the sh utility (defined in the X/Open CAE Specification,
Commands and Utilities, Issue 4, Version 2) extended to support:

• Access to many X, Xt and Motif facilities from within a shell script

• Fully localised shell scripts

• Access to the XCDE application help system

• Customisation of script-based GUI attributes (such as font and colours) using the XCDE
customisation tool

• Response to session-management Save state directives

• Response to window-management Close directives

• Access to most of the XCDE Desktop Services Message Set

• Access to many of the XCDE Data Typing API functions

• Access to the XCDE Action API functions

OPTIONS
See sh in the X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2.

OPERANDS
See sh in the X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2.

RESOURCES
The dtksh interpreter has no relevant resources outside of those that affect the various widgets
that can be instantiated from within a dtksh script. Refer to the manual page of the relevant
widget for information on the resources that apply to that widget.

STDIN
See sh in the X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2.

INPUT FILES
See sh in the X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2.

ENVIRONMENT VARIABLES
The following information describes the environment variables that dtksh uses that are in
addition to those documented in the manual page for the sh command language interpreter.

202 X/Open CAE Specification



GUI Scripting Services dtksh

Immediate Return Value (−)

Many of the category 3 commands (as described in Return Values From Built-in Commands on
page 235) return a single value using an environment variable specified as the first argument to
the command (in the synopses for these special commands, the first argument has the name
variable ). If this return value is immediately used in an expression, the special environment
variable ‘‘−’’ can be used in place of a variable name. When dtksh encounters ‘‘−’’ as the name of
the environment variable in which the return value is to be returned, it returns the result as the
value of the command. This allows the shell script to embed the command call in another
command call. (This feature works only for commands that return a single value; the value is
the first argument and the argument has the name variable ). For example:

XtDisplay DISPLAY $FORM
XSync $DISPLAY true

can be replaced by the equivalent:

XSync $(XtDisplay " −" $FORM) true

The reference to $DISPLAY is replaced with the value returned by the call to XtDisplay. This
capability is available for all category 3 commands except those that create a widget, those that
return more than a single value and those whose first argument is not named variable .
Commands that do not accept ‘‘−’’ as the environment variable name include: XtInitialize,
XtCreateApplicationShell, XtCreatePopupShell, XtCreateManagedWidget and XtCreateWidget; all
commands of the form:

XmCreate...()

and most commands of the form:

tt_...()

Variables Set By XtInitialise

The XtInitialize command sets the following variables:

DTKSH_APPNAME
DTKSH_ARGV
DTKSH_TOPLEVEL

Callback Context Variables

An application registers a callback with a widget to specify which condition it is interested in,
and what action should occur when that condition occurs. The action can be any arbitrary dtksh
command line. For example:

XtAddCallback $WIDGET activateCallback "ActivateProc"
XtAddCallback $WIDGET activateCallback "XtSetSensitive $BUTTON false"

A callback needs to be passed some context so it can determine what condition led to its call.
For a C procedure, this information is typically passed in a call_data structure. For example, a
Scale widget invoking a valueChangedCallback passes in call_data an instance of the following
structure:

X/Open Common Desktop Environment (XCDE) Services and Applications 203



dtksh GUI Scripting Services

typedef struct {
int reason;
XEvent ∗event;
int value;

} XmScaleCallbackStruct;

The C application’s callback does something like:

if (scaleCallData->reason == XmCR_VALUE_CHANGED) {
eventType = scaleCallData->event->type;
display = scaleCallData->event->xany.display;

}

Similarly in dtksh, when a callback is invoked, the following special environment variables are
set up before the callback command executes:

CB_WIDGET
Set to the widget handle for the widget invoking the callback.

CB_CALL_DATA
Set to the address of the call_data structure passed by the widget to the callback, but
its usefulness lies in the nested sub-variables associated with it.

The CB_CALL_DATA environment variable represents a pointer to a structure; access to its fields
uses a syntax similar to the C code. Nested environment variables are defined, named the same
as the fields of the structure (but folded to all upper case), and use a dot to indicate containment
of an element in a structure. Thus, the preceding C code, to access the call_data provided by the
Scale widget, translates to:

if [${CB_CALL_DATA.REASON} = "CR_VALUE_CHANGED"]; then
eventType=${CB_CALL_DATA.EVENT.TYPE}
display=${CB_CALL_DATA.EVENT.XANY.DISPLAY}

fi

The same is true of the event structure within the call_data structure.

For most callback structures, the shell script is able to reference any of the fields defined for the
particular callback structure, using the technique previously described in this section. In most
cases, the shell script is not able to alter the values of the fields within these structures. The
exception to this is the XmTextVerifyCallbackStruct , available during the losingFocusCallback , the
modifyVerifyCallback and the motionVerifyCallback for the text widget. The dtksh utility supports
the modification of certain fields within this structure, to the extent that it is supported by Motif.
The following fields within the callback structure can be modified:

CB_CALL_DATA.DOIT
CB_CALL_DATA.STARTPOS
CB_CALL_DATA.ENDPOS
CB_CALL_DATA.TEXT.PTR
CB_CALL_DATA.TEXT.LENGTH
CB_CALL_DATA.TEXT.FORMAT

An example of how these fields can be modified:

CB_CALL_DATA.DOIT="false"
CB_CALL_DATA.TEXT.PTR="∗"
CB_CALL_DATA.TEXT.LENGTH=1

204 X/Open CAE Specification



GUI Scripting Services dtksh

Event Handler Context Variables

As with callbacks, an application registers event handlers with a widget to specify what action
should occur when one of the specified events occurs. Again, the action can be any arbitrary
dtksh command line. For example:

XtAddEventHandler $W "Button2MotionMask" false "ActivateProc"
XtAddEventHandler $W "ButtonPressMask|ButtonReleaseMask" \

false "echo action"

Just as with callbacks, two environment variables are defined to provide context to the event
handler:

EH_WIDGET
Set to the widget handle for the widget for which the event handler is registered.

EH_EVENT
Set to the address of the XEvent that triggered the event handler.

Access to the fields within the XEvent structure is the same as for the CB_CALL_DATA
environment variable previously described in this section. For example:

if [${EH_EVENT.TYPE} = "ButtonPress"]; then
echo X = ${EH_EVENT.XBUTTON.X}
echo Y = ${EH_EVENT.XBUTTON.Y}

elif [${EH_EVENT.TYPE} = "KeyPress"]; then
echo X = ${EH_EVENT.XKEY.X}
echo Y = ${EH_EVENT.XKEY.Y}

fi

Translation Context Variables

Xt provides for event translations to be registered for a widget; their context is provided in the
same way as with event handlers. The two variables defined for translation commands are:

TRANSLATION_WIDGET
Set to the widget handle for the widget for which the translation is registered.

TRANSLATION_EVENT
Set to the address of the XEvent that triggered the translation.

Dot-notation provides access to the fields of the event:

echo Event type = ${TRANSLATION_EVENT.TYPE}
echo Display = ${TRANSLATION_EVENT.XANY.DISPLAY}

Workspace Callback Context Variables

An application can register a callback function that is invoked any time the user changes to a
new workspace. When the callback is invoked, the following two special environment variables
are set, and can be accessed by the shell callback code:

CB_WIDGET
Set to the widget handle for the widget invoking the callback.

CB_CALL_DATA
Set to the X atom that uniquely identifies the new workspace. This can be
converted to its string representation using the XmGetAtomName command.

X/Open Common Desktop Environment (XCDE) Services and Applications 205



dtksh GUI Scripting Services

Accessing Event Subfields

The XEvent structure has many different configurations based on the event’s type. The dtksh
utility provides access only to the most frequently used XEvents. Any of the other standard
XEvents are accessed using the event type XANY, followed by any of the subfields defined by
the XANY event structure, which includes the following subfields:

${TRANSLATION_EVENT.XANY.TYPE}
${TRANSLATION_EVENT.XANY.SERIAL}
${TRANSLATION_EVENT.XANY.SEND_EVENT}
${TRANSLATION_EVENT.XANY.DISPLAY}
${TRANSLATION_EVENT.XANY.WINDOW}

The dtksh utility supports full access to all of the event fields for the following event types:

XANY
XBUTTON
XEXPOSE
XNOEXPOSE
XGRAPHICSEXPOSE
XKEY
XMOTION

The following examples show how the subfields for the previously listed event types are
accessed:

${TRANSLATION_EVENT.XBUTTON.X}
$(CB_CALL_DATA.EVENT.XKEY.STATE}
${EH_EVENT.XGRAPHICSEXPOSE.WIDTH}

Input Context Variables

Xt provides the XtAddInput( ) facility that allows an application to register interest in activity on
a particular file descriptor. This generally includes data available for reading, the file descriptor
being ready for writing, and exceptions on the file descriptor. If programming in C, the
application provides a handler function that is invoked when the activity occurs. When reading
data from the file descriptor, it is up to the handler to read the data from the input source and
handle character escaping and line continuations.

The dtksh utility also supports the XtAddInput( ) facility, but has limited its functionality to
reading data, and has taken the reading function a step further to make it easier for shell
programmers to use. By default, when a shell script registers interest in a file descriptor, dtksh
invokes the shell script’s input handler only when a complete line of text has been received. A
complete line of text is defined to be a line terminated either by an unescaped <newline>
character, or by end-of-file. The input handler is also called if no data is available and end-of-file
is reached. This gives the handler the opportunity to use XtRemoveInput( ) to remove the input
source, and to close the file descriptor.

The advantage of this default behaviour is that input handlers do not need to do escape
processing or handle line continuations. The disadvantage is that it assumes that all of the input
is line-oriented and contains no binary information. If the input source does contain binary
information, or if the input handler wants to read the data from the input source directly, dtksh
also supports a raw input mode. In raw mode, dtksh does not read any of the data from the
input source. Any time dtksh is notified that input is available on the input source, it invokes the
shell script’s input handler. It then becomes the handler’s responsibility to read the incoming
data, to perform any required buffering and escape processing, and to detect when end-of-file is

206 X/Open CAE Specification



GUI Scripting Services dtksh

reached (so that the input source can be removed and the file descriptor closed).

Whether the input handler is configured to operate in the default mode or in raw mode, dtksh
sets up several environment variables before calling the shell script’s input handler. These
environment variables provide the input handler with everything needed to handle the
incoming data:

INPUT_LINE
If operating in the default mode, this variable contains the next complete line of
input available from the input source. If INPUT_EOF is set to True, there is no data
in this buffer. If operating in raw mode, this environment variable always contains
an empty string.

INPUT_EOF
If operating in the default mode, this variable is set to False any time INPUT_LINE
contains data, and is set to True when end-of-file is reached. When end-of-file is
reached, the input handler for the shell script should unregister the input source
and close the file descriptor. If operating in raw mode, INPUT_EOF is always set to
False.

INPUT_SOURCE
Indicates the file descriptor for which input is available. If operating in raw mode,
this file descriptor is used to obtain the pending input. The file descriptor is also
used to close the input source when it is no longer needed.

INPUT_ID
Indicates the ID returned by XtAddInput when the input source was originally
registered. This information is needed in order to remove the input source using
XtRemoveInput.

ASYNCHRONOUS EVENTS
Default.

STDOUT
See sh in the X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2.

STDERR
See sh in the X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
The capabilities described here are extensions to those of the sh command language interpreter.
See sh in the X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2. The
following subsections give a synopsis of each of the built-in commands added by dtksh to sh. In
general, argument ordering and types are the same as for corresponding C procedures, with
exceptions noted. For more detail on the functionality and arguments of a command, see the
standard documentation for the corresponding X11, Xt, Motif or Desktop Services procedure.

In definitions listed in this document, arguments named variable , variable2 , variable3 and so on,
indicate that the shell script must supply the name of an environment variable, into which some
value is returned.

All of the Xt commands used to create a new widget require that the widget class for the new
widget be specified. The widget (or gadget) class name is the standard class name provided by
Motif. For example, the class name for a Motif pushbutton widget is XmPushButton, while the
class name for the Motif label gadget is XmLabelGadget . Commands that use their exit status to

X/Open Common Desktop Environment (XCDE) Services and Applications 207



dtksh GUI Scripting Services

return a Boolean value (which can be used directly as part of an if statement) are noted as such.

Arguments enclosed within [] are optional.

Dtksh Built-in Xlib Commands

XBell display volume

XClearArea display drawable [ optional GC arguments ] x y width height
exposures

XClearWindow display drawable

XCopyArea display src dest srcX srcY width height destX destY [ optional
GC arguments ]

XDefineCursor display window cursor

XDrawArc display drawable [ optional GC arguments ] x y width height
angle1 angle2

XDrawLine display drawable [ optional GC arguments ] x1 y1 x2 y2

XDrawLines display drawable [ −coordinateMode ] [ optional GC arguments ]
x1 y1 x2 y2 [ x3 y3 ... ]

The coordinateMode operand is either CoordModeOrigin or CoordModePrevious.

XDrawPoint display drawable [ optional GC arguments ] x y

XDrawPoints display drawable [ −coordinateMode ] [ optional GC arguments ]
x1 y1 [ x2 y2 x3 y3 ... ]

The coordinateMode operand is either CoordModeOrigin or CoordModePrevious.

XDrawRectangle display drawable [ optional GC arguments ] x y width
height

XDrawSegments display drawable [ optional GC arguments ] x1 y1 x2 y2 [ x3
y3 x4 y4 ... ]

XDrawString display drawable [ optional GC arguments ] x y string

XDrawImageString display drawable [ optional GC arguments ] x y string

XFillArc display drawable [ optional GC arguments ] x y width height
angle1 angle2

XFillPolygon display drawable [ −shape ] [ −coordinateMode ] [ optional GC
arguments ] x1 y1 x2 y2 ...

The shape operand is one of Complex, Convex or Nonconvex, and where
coordinateMode is either CoordModeOrigin or CoordModePrevious.

XFillRectangle display drawable [ optional GC arguments ] x y width
height

XFlush display

XHeightOfScreen variable screen

XRaiseWindow display window

XRootWindowOfScreen variable screen

208 X/Open CAE Specification



GUI Scripting Services dtksh

XSync display discard

The discard operand is either True or False.

XTextWidth variable fontName string

The XTextWidth command differs from the C procedure; it takes the name of a font
instead of a pointer to a font structure.

XUndefineCursor display window

XWidthOfScreen variable screen

Built-in XtIntrinsic Commands

XtAddCallback widgetHandle callbackName dtksh-command

The callbackName operand is one of the standard Motif or Xt callback names, with
the Xt or Xm prefix omitted; for example, activateCallback .

XtAddEventHandler widgetHandle eventMask nonMaskableFlag dtksh-command

The eventMask operand is of the form mask|mask|mask and the mask component is
any of the standard set of XEvent masks; for example, ButtonPressMask, where
nonMaskableFlag is either True or False.

XtAddInput variable [ -r ] fileDescriptor dtksh-command

The XtAddInput command registers the indicated file descriptor with the X Toolkit
as an alternative input source (that is, for reading). The input handler for the shell
script is responsible for unregistering the input source when it is no longer needed,
and also to close the file descriptor. If the −r option is specified (raw mode), dtksh
does not automatically read any of the data available from the input source; it is up
to the specified dtksh command to read all data. If the −r option is not specified, the
specified dtksh command is invoked only when a full line has been read (that is, a
line terminated by either an unescaped <newline> character, or end-of-file) and
when end-of-file is reached. The raw mode is useful for handlers expecting to
process non-textual data, or for handlers not wanting dtksh to automatically read in
a line of data. When end-of-file is detected, it is the responsibility of the input
handler for the shell script to use XtRemoveInput to remove the input source, and to
close the file descriptor, if necessary. In all cases, several environment variables are
set up for the handler to use. These include the following:

INPUT_LINE
Empty if raw mode; otherwise, contains next line to be processed.

INPUT_EOF
Set to True if end-of-file reached; otherwise, set to False.

INPUT_SOURCE
File descriptor associated with this input source.

INPUT_ID
ID associated with this input handler; returned by XtAddInput.

XtAddTimeout variable interval dtksh-command

XtAddWorkProc variable dtksh-command

In dtksh, the dtksh-command is typically a dtksh function name. Like regular work
procedures, this function is expected to return a value indicating whether the work

X/Open Common Desktop Environment (XCDE) Services and Applications 209



dtksh GUI Scripting Services

procedure wants to be called again, or whether it has completed its work and can be
automatically unregistered. If the dtksh function returns zero, the work procedure
remains registered; any other value causes the work procedure to be automatically
unregistered.

XtAugmentTranslations widgetHandle translations

XtCreateApplicationShell variable applicationName widgetClass
[ resource:value ... ]

XtCallCallbacks widgetHandle callbackName

The callbackName operand is one of the standard Motif or Xt callback names, with
the Xt or Xm prefix omitted; for example, activateCallback .

XtClass variable widgetHandle

The command returns the name of the widget class associated with the passed-in
widget handle.

XtCreateManagedWidget variable widgetName widgetClass
parentWidgetHandle [ resource:value ... ]

XtCreatePopupShell variable widgetName widgetClass parentWidgetHandle
[ resource:value ... ]

XtCreateWidget variable widgetName widgetClass parentWidgetHandle
[ resource:value ... ]

XtDestroyWidget widgetHandle [ widgetHandle ... ]

XtDisplay variable widgetHandle

XtDisplayOfObject variable widgetHandle

XtGetValues widgetHandle resource:variable1 [ resource:variable2 ... ]

XtHasCallbacks variable widgetHandle callbackName

The callbackName operand is one of the standard Motif or Xt callback names, with
the Xt or Xm prefix omitted: for example, activateCallback variable is set to one of the
strings CallbackNoList, CallbackHasNone or CallbackHasSome.

XtInitialize variable shellName applicationClassName applicationName
arguments

Similar to a typical Motif-based program, the arguments argument is used to
reference any command-line arguments that might have been specified by the shell
script user; these are typically referred using the shell syntax of $@. The
applicationName argument is listed because $@ does not include $0 . The
applicationName and arguments are used to build the argument list passed to the
XtInitialize command. Upon completion, the environment variable DTKSH_ARGV
is set to the argument list as returned by the XtInitialize command; the
DTKSH_TOPLEVEL environment variable is set to the widget handle of the widget
created by XtInitialize, and the DTKSH_APPNAME environment variable is set to
the value of the applicationName argument. The command returns a value that can
be used in a conditional.

XtIsManaged widgetHandle

The command returns a value that can be used in a conditional.

210 X/Open CAE Specification



GUI Scripting Services dtksh

XtIsSubclass widgetHandle widgetClass

The widgetClass operand is the name of a widget class. The command returns a
value that can be used in a conditional.

XtNameToWidget variable referenceWidget name

XtIsRealized widgetHandle

The command returns a value that can be used in a conditional.

XtIsSensitive widgetHandle

The command returns a value that can be used in a conditional.

XtIsShell widgetHandle

The command returns a value that can be used in a conditional.

XtLastTimestampProcessed variable display

XtMainLoop

XtManageChild widgetHandle

XtManageChildren widgetHandle [ widgetHandle ... ]

XtMapWidget widgetHandle

XtOverrideTranslations widgetHandle translations

XtParent variable widgetHandle

XtPopdown widgetHandle

XtPopup widgetHandle grabType

The grabType operand is one of the strings GrabNone, GrabNonexclusive or
GrabExclusive.

XtRealizeWidget widgetHandle

XtRemoveAllCallbacks widgetHandle callbackName

The callbackName operand is one of the standard Motif or Xt callback names, with
the Xt or Xm prefix omitted; for example, activateCallback .

XtRemoveCallback widgetHandle callbackName dtksh-command

The callbackName operand is one of the standard Motif or Xt callback names, with
the Xt or Xm prefix omitted; for example, activateCallback . As with traditional Xt
callbacks, when a callback is removed, the same dtksh command string must be
specified as was specified when the callback was originally registered.

XtRemoveEventHandler widgetHandle eventMask nonMaskableFlag dtksh-
command

The eventMask operand is of the form mask|mask|mask and the mask component is
any of the standard set of XEvent masks; for example, ButtonPressMask, where
nonMaskableFlag is either True or False. As with traditional Xt event handlers, when
an event handler is removed, the same eventMask , nonMaskableFlag setting and dtksh
command string must be specified as was specified when the event handler was
originally registered.

X/Open Common Desktop Environment (XCDE) Services and Applications 211



dtksh GUI Scripting Services

XtRemoveInput inputId

The inputId operand is the handle returned in the specified environment variable
when the alternative input source was registered using the XtAddInput command.

XtRemoveTimeOut timeoutId

The timeoutId operand is the handle returned in the specified environment variable
when the timeout was registered using the XtAddTimeOut command.

XtRemoveWorkProc workprocId

The workprocId operand is the handle returned in the specified environment variable
when the work procedure was registered using the XtAddWorkProc command.

XtScreen variable widgetHandle

XtSetSensitive widgetHandle state

The state operand is either True or False.

XtSetValues widgetHandle resource:value [ resource:value ... ]

XtUninstallTranslations widgetHandle

XtUnmanageChild widgetHandle

XtUnmanageChildren widgetHandle [ widgetHandle ... ]

XtUnmapWidget widgetHandle

XtUnrealizeWidget widgetHandle

XtWindow variable widgetHandle

Built-in Motif Commands

XmAddWMProtocolCallback widgetHandle protocolAtom dtksh-command

The protocolAtom operand is typically obtained using the XmInternAtom command.

XmAddWMProtocols widgetHandle protocolAtom [ protocolAtom ... ]

The protocolAtom operand is typically obtained using the XmInternAtom command.

XmCommandAppendValue widgetHandle string XmCommandError widgetHandle
errorString

XmCommandGetChild variable widgetHandle childType

The childType operand is one of the strings:

DIALOG_COMMAND_TEXT
DIALOG_PROMPT_LABEL
DIALOG_HISTORY_LIST
DIALOG_WORK_AREA

XmCommandSetValue widgetHandle commandString

XmCreateArrowButton variable parentWidgetHandle name
[ resource:value ... ]

XmCreateArrowButtonGadget variable parentWidgetHandle name
[ resource:value ... ]

212 X/Open CAE Specification



GUI Scripting Services dtksh

XmCreateBulletinBoard variable parentWidgetHandle name
[ resource:value ... ]

XmCreateBulletinBoardDialog variable parentWidgetHandle name
[ resource:value ... ]

XmCreateCascadeButton variable parentWidgetHandle name
[ resource:value ... ]

XmCreateCascadeButtonGadget variable parentWidgetHandle name
[ resource:value ... ]

XmCreateCommand variable parentWidgetHandle name [ resource:value ... ]

XmCreateDialogShell variable parentWidgetHandle name
[ resource:value ... ]

XmCreateDrawingArea variable parentWidgetHandle name
[ resource:value ... ]

XmCreateDrawnButton variable parentWidgetHandle name
[ resource:value ... ]

XmCreateErrorDialog variable parentWidgetHandle name
[ resource:value ... ]

XmCreateFileSelectionBox variable parentWidgetHandle name
[ resource:value ... ]

XmCreateFileSelectionDialog variable parentWidgetHandle name
[ resource:value ... ]

XmCreateForm variable parentWidgetHandle name [ resource:value ... ]

XmCreateFormDialog variable parentWidgetHandle name
[ resource:value ... ]

XmCreateFrame variable parentWidgetHandle name [ resource:value ... ]

XmCreateInformationDialog variable parentWidgetHandle name
[ resource:value ... ]

XmCreateLabel variable parentWidgetHandle name [ resource:value ... ]

XmCreateLabelGadget variable parentWidgetHandle name
[ resource:value ... ]

XmCreateList variable parentWidgetHandle name [ resource:value ... ]

XmCreateMainWindow variable parentWidgetHandle name
[ resource:value ... ]

XmCreateMenuBar variable parentWidgetHandle name [ resource:value ... ]

XmCreateMenuShell variable parentWidgetHandle name [ resource:value ... ]

XmCreateMessageBox variable parentWidgetHandle name
[ resource:value ... ]

XmCreateMessageDialog variable parentWidgetHandle name
[ resource:value ... ]

XmCreateOptionMenu variable parentWidgetHandle name
[ resource:value ... ]

X/Open Common Desktop Environment (XCDE) Services and Applications 213



dtksh GUI Scripting Services

XmCreatePanedWindow variable parentWidgetHandle name
[ resource:value ... ]

XmCreatePopupMenu variable parentWidgetHandle name [ resource:value ... ]

XmCreatePromptDialog variable parentWidgetHandle name
[ resource:value ... ]

XmCreatePulldownMenu variable parentWidgetHandle name
[ resource:value ... ]

XmCreatePushButton variable parentWidgetHandle name
[ resource:value ... ]

XmCreatePushButtonGadget variable parentWidgetHandle name
[ resource:value ... ]

XmCreateQuestionDialog variable parentWidgetHandle name
[ resource:value ... ]

XmCreateRadioBox variable parentWidgetHandle name [ resource:value ... ]

XmCreateRowColumn variable parentWidgetHandle name [ resource:value ... ]

XmCreateScale variable parentWidgetHandle name [ resource:value ... ]

XmCreateScrollBar variable parentWidgetHandle name [ resource:value ... ]

XmCreateScrolledList variable parentWidgetHandle name
[ resource:value ... ]

XmCreateScrolledText variable parentWidgetHandle name
[ resource:value ... ]

XmCreateScrolledWindow variable parentWidgetHandle name
[ resource:value ... ]

XmCreateSelectionBox variable parentWidgetHandle name
[ resource:value ... ]

XmCreateSelectionDialog variable parentWidgetHandle name
[ resource:value ... ]

XmCreateSeparator variable parentWidgetHandle name [ resource:value ... ]

XmCreateSeparatorGadget variable parentWidgetHandle name
[ resource:value ... ]

XmCreateText variable parentWidgetHandle name [ resource:value ... ]

XmCreateTextField variable parentWidgetHandle name [ resource:value ... ]

XmCreateToggleButton variable parentWidgetHandle name
[ resource:value ... ]

XmCreateToggleButtonGadget variable parentWidgetHandle name
[ resource:value ... ]

XmCreateWarningDialog variable parentWidgetHandle name
[ resource:value ... ]

XmCreateWorkArea variable parentWidgetHandle name [ resource:value ... ]

214 X/Open CAE Specification



GUI Scripting Services dtksh

XmCreateWorkingDialog variable parentWidgetHandle name
[ resource:value ... ]

XmFileSelectionDoSearch widgetHandle directoryMask

XmFileSelectionBoxGetChild variable widgetHandle childType

The childType operand is one of the strings:

DIALOG_APPLY_BUTTON
DIALOG_CANCEL_BUTTON
DIALOG_DEFAULT_BUTTON
DIALOG_DIR_LIST
DIALOG_DIR_LIST_LABEL
DIALOG_FILTER_LABEL
DIALOG_FILTER_TEXT
DIALOG_HELP_BUTTON
DIALOG_LIST
DIALOG_LIST_LABEL
DIALOG_OK_BUTTON
DIALOG_SEPARATOR
DIALOG_SELECTION_LABEL
DIALOG_TEXT
DIALOG_WORK_AREA

XmGetAtomName variable display atom

XmGetColors widgetHandle background variable variable2 variable3
variable4

The XmGetColors command differs from the C procedure in that it takes a
widgetHandle instead of a screen pointer and a colourmap.

XmGetFocusWidget variable widgetHandle

XmGetPostedFromWidget variable widgetHandle

XmGetTabGroup variable widgetHandle

XmGetTearOffControl variable widgetHandle

XmGetVisibility variable widgetHandle

XmInternAtom variable display atomString onlyIfExistsFlag

The onlyIfExistsFlag operand can be set to either True or False.

XmIsTraversable widgetHandle

The command returns a value that can be used in a conditional.

XmListAddItem widgetHandle position itemString

The ordering of the arguments to the XmListAddItem command differs from the
corresponding C function.

XmListAddItems widgetHandle position itemString [ itemString ... ]

The ordering of the arguments to the XmListAddItems command differs from the
corresponding C function.

X/Open Common Desktop Environment (XCDE) Services and Applications 215



dtksh GUI Scripting Services

XmListAddItemsUnselected widgetHandle position itemString
[ itemString ... ]

The ordering of the arguments to the XmListAddItemsUnselected command differs
from the corresponding C function.

XmListAddItemUnselected widgetHandle position itemString

The ordering of the arguments to the XmListAddItemUnselected command differs
from the corresponding C function.

XmListDeleteAllItems widgetHandle

XmListDeleteItem widgetHandle itemString

XmListDeleteItems widgetHandle itemString [ itemString ... ]

XmListDeleteItemsPos widgetHandle itemCount position

XmListDeletePos widgetHandle position

XmListDeletePositions widgetHandle position [ position ... ]

XmListDeselectAllItems widgetHandle

XmListDeselectItem widgetHandle itemString

XmListDeselectPos widgetHandle position

XmListGetSelectedPos variable widgetHandle

The command returns in variable a comma-separated list of indices. The command
returns a value that can be used in a conditional.

XmListGetKbdItemPos variable widgetHandle

XmListGetMatchPos variable widgetHandle itemString

The command returns in variable a comma-separated list of indices. The command
returns a value that can be used in a conditional.

XmListItemExists widgetHandle itemString

The command returns a value that can be used in a conditional.

XmListItemPos variable widgetHandle itemString

XmListPosSelected widgetHandle position

The command returns a value that can be used in a conditional.

XmListPosToBounds widgetHandle position variable variable2 variable3
variable4

The command returns a value that can be used in a conditional.

XmListReplaceItemsPos widgetHandle position itemString [ itemString ... ]

The ordering of the arguments to the XmListReplaceItemsPos command differs from
the corresponding C function.

XmListReplaceItemsPosUnselected widgetHandle position itemString
[ itemString ... ]

The ordering of the arguments to the XmListReplaceItemsPosUnselected command
differs from the corresponding C function.

216 X/Open CAE Specification



GUI Scripting Services dtksh

XmListSelectItem widgetHandle itemString notifyFlag

The notifyFlag operand can be set to either True or False.

XmListSelectPos widgetHandle position notifyFlag

The notifyFlag operand can be set to either True or False.

XmListSetAddMode widgetHandle state

The state operand can be set to either True or False.

XmListSetBottomItem widgetHandle itemString

XmListSetBottomPos widgetHandle position

XmListSetHorizPos widgetHandle position

XmListSetItem widgetHandle itemString

XmListSetKbdItemPos widgetHandle position

The command returns a value that can be used in a conditional.

XmListSetPos widgetHandle position

XmListUpdateSelectedList widgetHandle

XmMainWindowSep1 variable widgetHandle

XmMainWindowSep2 variable widgetHandle

XmMainWindowSep3 variable widgetHandle

XmMainWindowSetAreas widgetHandle menuWidgetHandle commandWidgetHandle
horizontalScrollbarWidgetHandle verticalScrollbarWidgetHandle
workRegionWidgetHandle

XmMenuPosition widgetHandle eventHandle

The eventHandle operand refers to an XEvent that has typically been obtained by
accessing the CB_CALL_DATA.EVENT, EH_EVENT or TRANSLATION_EVENT
environment variables.

XmMessageBoxGetChild variable widgetHandle childType

The childType operand is one of the strings:

DIALOG_CANCEL_BUTTON
DIALOG_DEFAULT_BUTTON
DIALOG_HELP_BUTTON
DIALOG_MESSAGE_LABEL
DIALOG_OK_BUTTON
DIALOG_SEPARATOR
DIALOG_SYMBOL_LABEL

XmOptionButtonGadget variable widgetHandle

XmOptionLabelGadget variable widgetHandle

XmProcessTraversal widgetHandle direction

X/Open Common Desktop Environment (XCDE) Services and Applications 217



dtksh GUI Scripting Services

The direction operand is one of the strings:

TRAVERSE_CURRENT
TRAVERSE_DOWN
TRAVERSE_HOME
TRAVERSE_LEFT
TRAVERSE_NEXT
TRAVERSE_NEXT_TAB_GROUP
TRAVERSE_PREV
TRAVERSE_PREV_TAB_GROUP
TRAVERSE_RIGHT
TRAVERSE_UP

The command returns a value that can be used in a conditional.

XmRemoveWMProtocolCallback widgetHandle protocolAtom dtksh-command

The protocolAtom operand is typically obtained using the XmInternAtom command.
As with traditional WM callbacks, when a callback is removed, the same dtksh
command string must be specified as was specified when the callback was
originally registered.

XmRemoveWMProtocols widgetHandle protocolAtom [ protocolAtom ... ]

The protocolAtom operand is typically obtained using the XmInternAtom command.

XmScaleGetValue widgetHandle variable

XmScaleSetValue widgetHandle value

XmScrollBarGetValues widgetHandle variable variable2 variable3
variable4

XmScrollBarSetValues widgetHandle value sliderSize increment
pageIncrement notifyFlag

The notifyFlag operand can be set to either True or False.

XmScrollVisible widgetHandle widgetHandle leftRightMargin
topBottomMargin

XmSelectionBoxGetChild variable widgetHandle childType

The childType operand is one of the strings:

DIALOG_CANCEL_BUTTON
DIALOG_DEFAULT_BUTTON
DIALOG_HELP_BUTTON
DIALOG_APPLY_BUTTON
DIALOG_LIST
DIALOG_LIST_LABEL
DIALOG_OK_BUTTON
DIALOG_SELECTION_LABEL
DIALOG_SEPARATOR
DIALOG_TEXT
DIALOG_WORK_AREA

218 X/Open CAE Specification



GUI Scripting Services dtksh

XmTextClearSelection widgetHandle time

The time operand is typically either obtained from within an XEvent, or from a call
to the XtLastTimestampProcessed command.

XmTextCopy widgetHandle time

The time operand is typically either obtained from within an XEvent, or from a call
to the XtLastTimestampProcessed command. The command returns a value that can
be used in a conditional.

XmTextCut widgetHandle time

The time operand is typically either obtained from within an XEvent, or from a call
to the XtLastTimestampProcessed command. The command returns a value that can
be used in a conditional.

XmTextDisableRedisplay widgetHandle

XmTextEnableDisplay widgetHandle

XmTextFindString widgetHandle startPosition string direction variable

The direction operand is one of the strings TEXT_FORWARD or
TEXT_BACKWARD. The command returns a value that can be used in a
conditional.

XmTextGetBaseline variable widgetHandle

XmTextGetEditable widgetHandle

The command returns a value that can be used in a conditional.

XmTextGetInsertionPosition variable widgetHandle

XmTextGetLastPosition variable widgetHandle

XmTextGetMaxLength variable widgetHandle

XmTextGetSelection variable widgetHandle

XmTextGetSelectionPosition widgetHandle variable variable2

The command returns a value that can be used in a conditional.

XmTextGetString variable widgetHandle

XmTextGetTopCharacter variable widgetHandle

XmTextInsert widgetHandle position string

XmTextPaste widgetHandle

The command returns a value that can be used in a conditional.

XmTextPosToXY widgetHandle position variable variable2

The command returns a value that can be used in a conditional.

XmTextRemove widgetHandle

The command returns a value that can be used in a conditional.

XmTextReplace widgetHandle fromPosition toPosition string

XmTextScroll widgetHandle lines

X/Open Common Desktop Environment (XCDE) Services and Applications 219



dtksh GUI Scripting Services

XmTextSetAddMode widgetHandle state

The state operand can be set to either True or False.

XmTextSetEditable widgetHandle editableFlag

The editableFlag operand can be set to either True or False.

XmTextSetHighlight widgetHandle leftPosition rightPosition mode

The mode operand is one of the strings:

HIGHLIGHT_NORMAL
HIGHLIGHT_SELECTED
HIGHLIGHT_SECONDARY_SELECTED

XmTextSetInsertionPosition widgetHandle position

XmTextSetMaxLength widgetHandle maxLength

XmTextSetSelection widgetHandle firstPosition lastPosition time

The time operand is typically either obtained from within an XEvent, or from a call
to the XtLastTimestampProcessed command.

XmTextSetString widgetHandle string

XmTextSetTopCharacter widgetHandle topCharacterPosition

XmTextShowPosition widgetHandle position

XmTextXYToPos variable widgetHandle x y

XmTextFieldClearSelection widgetHandle time

The time operand is typically either obtained from within an XEvent, or from a call
to the XtLastTimestampProcessed command.

XmTextFieldGetBaseline variable widgetHandle

XmTextFieldGetEditable widgetHandle

The command returns a value that can be used in a conditional.

XmTextFieldGetInsertionPosition variable widgetHandle

XmTextFieldGetLastPosition variable widgetHandle

XmTextFieldGetMaxLength variable widgetHandle

XmTextFieldGetSelection variable widgetHandle

XmTextFieldGetSelectionPosition widgetHandle variable variable2

The command returns a value that can be used in a conditional.

XmTextFieldGetString variable widgetHandle

XmTextFieldInsert widgetHandle position string

XmTextFieldPosToXY widgetHandle position variable variable2

The command returns a value that can be used in a conditional.

XmTextFieldRemove widgetHandle

The command returns a value that can be used in a conditional.

220 X/Open CAE Specification



GUI Scripting Services dtksh

XmTextFieldReplace widgetHandle fromPosition toPosition string

XmTextFieldSetEditable widgetHandle editableFlag

The editableFlag operand can be set to either True or False.

XmTextFieldSetHighlight widgetHandle leftPosition rightPosition mode

The mode operand is one of the strings:

HIGHLIGHT_NORMAL
HIGHLIGHT_SELECTED
HIGHLIGHT_SECONDARY_SELECTED

XmTextFieldSetInsertionPosition widgetHandle position

XmTextFieldSetMaxLength widgetHandle maxLength

XmTextFieldSetSelection widgetHandle firstPosition lastPosition time

The time operand is typically either obtained from within an XEvent, or from a call
to the XtLastTimestampProcessed command.

XmTextFieldSetString widgetHandle string

XmTextFieldShowPosition widgetHandle position

XmTextFieldXYToPos variable widgetHandle x y

XmTextFieldCopy widgetHandle time

The time operand is typically either obtained from within an XEvent, or from a call
to the XtLastTimestampProcessed command. The command returns a value that can
be used in a conditional.

XmTextFieldCut widgetHandle time

The time operand is typically either obtained from within an XEvent or from a call
to the XtLastTimestampProcessed command. The command returns a value that can
be used in a conditional.

XmTextFieldPaste widgetHandle

The command returns a value that can be used in a conditional.

XmTextFieldSetAddMode widgetHandle state

The state operand can be set to either True or False.

XmToggleButtonGadgetGetState widgetHandle

The command returns a value that can be used in a conditional.

XmToggleButtonGadgetSetState widgetHandle state notifyFlag

The state operand can be set to either True or False. The notifyFlag operand can be
set to either True or False.

XmToggleButtonGetState widgetHandle

The command returns a value that can be used in a conditional.

X/Open Common Desktop Environment (XCDE) Services and Applications 221



dtksh GUI Scripting Services

XmToggleButtonSetState widgetHandle state notifyFlag

The state operand can be set to either True or False. The notifyFlag operand can be
set to either True or False.

XmUpdateDisplay widgetHandle

Built-in XCDE Application Help Commands

DtCreateHelpQuickDialog variable parentWidgetHandle name
[ resource:value ... ]

DtCreateHelpDialog variable parentWidgetHandle name
[ resource:value ... ]

DtHelpQuickDialogGetChild variable widgetHandle childType

The childType operand is one of the strings:

HELP_QUICK_OK_BUTTON
HELP_QUICK_PRINT_BUTTON
HELP_QUICK_HELP_BUTTON
HELP_QUICK_SEPARATOR
HELP_QUICK_MORE_BUTTON
HELP_QUICK_BACK_BUTTON

DtHelpReturnSelectedWidgetId variable widgetHandle variable2

The variable operand is set to one of the strings:

HELP_SELECT_VALID
HELP_SELECT_INVALID
HELP_SELECT_ABORT
HELP_SELECT_ERROR

and variable2 is set to the widgetHandle for the selected widget.

DtHelpSetCatalogName catalogName

Built-in Localisation Commands

catopen variable catalogName

Opens the indicated message catalogue, and returns the catalogue ID in the
environment variable specified by variable . If a shell script needs to close the file
descriptor associated with a message catalogue, the catalogue ID must be closed
using the catclose command.

catgets variable catalogId setNumber messageNumber defaultMessageString

Attempts to extract the requested message string from the message catalogue
associated with the catalogId argument. If the message string cannot be located, the
default message string is returned. In either case, the returned message string is
placed into the environment variable indicated by variable .

catclose catalogId

Closes the message catalogue associated with the indicated catalogId .

222 X/Open CAE Specification



GUI Scripting Services dtksh

Built-in Session Management Commands

DtSessionRestorePath widgetHandle variable sessionFile

Given the filename for the session file (excluding any path information), this
command returns the full pathname for the session file in the environment variable
indicated by variable . The command returns a value that can be used in a
conditional, indicating whether the command succeeded.

DtSessionSavePath widgetHandle variable variable2

The full pathname for the session file is returned in environment variable indicated
by variable . The filename portion of the session file (excluding any path
information) is returned in the environment variable indicated by variable2 . The
command returns a value that can be used in a conditional, indicating whether the
command succeeded.

DtShellIsIconified widgetHandle

The command returns a value that can be used in a conditional.

DtSetStartupCommand widgetHandle commandString

Part of the session management process is telling the session manager how to
restart the application the next time the user reopens the session. This command
passes along the specified command string to the session manager. The widget
handle should refer to an application shell.

DtSetIconifyHint widgetHandle iconifyHint

The iconifyHint operand can be set to either True or False. This command sets the
initial iconified state for a shell window. This command only works if the window
associated with the widget has not yet been realised.

Built-in Workspace Management Commands

DtWsmAddCurrentWorkspaceCallback variable widgetHandle dtksh-command

This command evaluates the specified dtksh command whenever the user changes
workspaces. The handle associated with this callback is returned in the
environment variable indicated by variable . The widget indicated by widgetHandle
should be a shell widget.

DtWsmRemoveWorkspaceCallback callback-handle

The callback-handle must be a handle that was returned by
DtWsmAddCurrentWorkspaceCallback.

DtWsmGetCurrentWorkspace display rootWindow variable

This command returns the X atom representing the user’s current workspace in the
environment variable indicated by variable . The XmGetAtomName command maps
the X atom into its string representation.

DtWsmSetCurrentWorkspace widgetHandle workspaceNameAtom

This command changes the user’s current workspace to the workspace indicated by
workspaceNameAtom . The command returns a value that can be used in a
conditional, indicating whether the command succeeded.

X/Open Common Desktop Environment (XCDE) Services and Applications 223



dtksh GUI Scripting Services

DtWsmGetWorkspaceList display rootWindow variable

This command returns in variable a string of comma-separated X atoms,
representing the current set of workspaces defined for the user. The command
returns a value that can be used in a conditional, indicating whether the command
succeeded.

DtWsmGetWorkspacesOccupied display window variable

This command returns a string of comma-separated X atoms, representing the
current set of workspaces occupied by the indicated shell window in the
environment variable indicated by variable . The command returns a value that can
be used in a conditional, indicating whether the command succeeded.

DtWsmSetWorkspacesOccupied display window workspaceList

This command moves the indicated shell window to the set of workspaces
indicated by the string workspaceList , which must be a comma-separated list of X
atoms.

DtWsmAddWorkspaceFunctions display window

DtWsmRemoveWorkspaceFunctions display window

DtWsmOccupyAllWorkspaces display window

DtWsmGetCurrentBackdropWindows display rootWindow variable

This command returns in variable a string of comma-separated window IDs
representing the set of root backdrop windows.

Built-in Action Commands

The set of commands in this section provides the programmer with the tools for loading the
action databases, querying information about actions defined in the databases, and requesting
that an action be initiated.

DtDbLoad

This command reads in the action and data types databases. It must be called
before any of the other Action or Data Typing Commands. The shell script should
also use the DtDbReloadNotify command so that the shell script can be notified if
new databases must be loaded.

DtDbReloadNotify dtksh-command

The specified dtksh command is executed when the notification is received.
Typically, the dtksh command includes a call to the DtDbLoad command.

DtActionExists actionName

The command returns a value that can be used in a conditional.

DtActionLabel variable actionName

If the action does not exist, then an empty string is returned.

DtActionDescription variable actionName

This command returns an empty string if the action is not defined, or if the
DESCRIPTION attribute is not specified.

224 X/Open CAE Specification



GUI Scripting Services dtksh

DtActionInvoke widgetHandle actionName termOpts execHost contextDir
useIndicator dtksh-command [ FILE fileName ] ...

The [FILE fileName] couplets can be used to specify file arguments to be used by
DtActionInvoke when invoking the specified action. The dtksh-command argument
must be specified as a null (" ") value.

Built-in Data Typing Commands

DtDtsLoadDataTypes

This command should be invoked before any of the other data typing commands.

DtDtsFileToDataType variable filePath

This command returns the name of the data type associated with the file indicated
by the filePath argument in the variable argument. The variable argument is set to an
empty string if the file cannot be typed.

DtDtsFileToAttributeValue variable filePath attrName

This command returns the string representing the value of the specified attribute for
the data type associated with the indicated file in the variable argument. If the
attribute is not defined, or if the file cannot be typed, the variable argument is set to
an empty string.

DtDtsFileToAttributeList variable filePath

This command returns the space-separated list of attribute names defined for the
data type associated with the indicated file in the variable argument. A shell script
queries the individual values for the attributes using the DtDtsFileToAttributeValue
command. The variable argument is set to an empty string if the file cannot be
typed. This command differs from the corresponding C function in that it only
returns the names of the defined attributes and not their values.

DtDtsDataTypeToAttributeValue variable dataType attrName optName

This command returns the string representing the value of the specified attribute for
the indicated data type in variable . If the attribute is not defined, or if the indicated
data type does not exist, the variable argument is set to an empty string.

DtDtsDataTypeToAttributeList variable dataType optName

This command returns the space-separated list of attribute names defined for the
indicated data type in variable . A shell script queries the individual values for the
attributes using the DtDtsDataTypeToAttributeValue command. The variable
argument is set to an empty string if the data type is not defined. This command
differs from the corresponding C function in that it only returns the names of the
defined attributes, and not their values.

DtDtsFindAttribute variable name value

This command returns a space-separated list of data type names whose attribute,
indicated by the name argument, has the value indicated by the value argument. If
an error occurs, the variable argument is set to an empty string.

DtDtsDataTypeNames variable

This command returns a space-separated list representing all of the data types
currently defined in the data types database. If an error occurs, the variable
argument is set to an empty string.

X/Open Common Desktop Environment (XCDE) Services and Applications 225



dtksh GUI Scripting Services

DtDtsSetDataType variable filePath dataType override

The variable argument is set to the resultant saved data type for the directory.

DtDtsDataTypeIsAction dataType

The command returns a value that can be used in a conditional.

Built-in XCDE Desktop Services Message Set Commands

The following set of commands implement a subset of the Desktop Services Message Set,
allowing shell script participation in the Desktop Services protocol. Many of the ToolTalk
commands differ slightly from their associated C programming call. For ToolTalk commands
that typically return a pointer, a C application can validate that pointer by calling the
tt_ptr_error( ) function; this C function call returns a Tt_status value, which indicates whether
the pointer was valid, and if not, why it was not. In dtksh, all of the Desktop Services Message
Set Commands that return a pointer also return the associated Tt_status value for the pointer
automatically; this saves the shell script from needing to make an additional call to check the
validity of the original pointer. In the case of a pointer error occurring, dtksh returns an empty
string for the pointer value, and sets the Tt_status code accordingly. The Tt_status value is
returned in the status argument. The Tt_status value is a string representing the error, and can
assume any of the values shown in <Tt/tt_c.h>.

Some of the commands take a message scope as an argument. For these commands, the scope
argument can be set to a string representing any of the constants documented for
tt_message_scope, and in the manual pages for the individual ToolTalk functions.

tt_file_netfile variable status file name

tt_netfile_file variable status netfile name

tt_host_file_netfile variable status host file name

tt_host_netfile_file variable status host netfile name

ttdt_open variable status variable2 toolname vendor version sendStarted

This command returns in the variable argument the procId associated with the
connection. It returns the file descriptor associated with the connection in variable2 ;
this file descriptor can be used in registering an alternative Xt input handler via the
XtAddInput command. The sendStarted argument is True or False. Any procIds
returned by ttdt_open contain embedded spaces. To prevent dtksh from interpreting
the procId as multiple arguments (versus a single argument with embedded spaces),
references to the environment variable containing the procId must be within double
quotes, as shown:

ttdt_close STATUS "$PROC_ID" "" True

tttk_Xt_input_handler procId source id

In order for the ToolTalk messages to be received and processed, the shell script
must register an Xt input handler for the file descriptor returned by the call to
ttdt_open. The Xt input handler is registered using the XtAddInput command, and
the handler must be registered as a raw input handler. The input handler that the
shell script registers should invoke tttk_Xt_input_handler to get the message
received and processed. The following code block demonstrates how this is done:

226 X/Open CAE Specification



GUI Scripting Services dtksh

ttdt_open PROC_ID STATUS FID "Tool" "HP" "1.0" True
XtAddInput INPUT_ID −r $FID "ProcessTTInput \"$PROC_ID\""
ProcessTTInput()
{

tttk_Xt_input_handler $1 $INPUT_SOURCE $INPUT_ID
}

Refer to the description of the XtAddInput command for more details about
alternative Xt input handlers. This command can be specified as an alternative Xt
input handler, using the XtAddInput command. The procId value should be that
which was returned by the ttdt_open command. When registering
tttk_Xt_input_handler as an alternative Xt input handler, it must be registered as a
raw handler to prevent dtksh from automatically breaking up the input into lines.
This can be done as follows:

XtAddInput returnId −r $tt_fd \
"tttk_Xt_input_handler \"$procId\""

The \" characters before and after the reference to the procId environment variable
are necessary to protect the embedded spaces in the procId environment variable.

ttdt_close status procId newProcId sendStopped

This command closes the indicated communications connection, and optionally
sends a Stopped notice, if the sendStopped argument is set to True. Because the procId
returned by the call to ttdt_open contains embedded spaces, it must be enclosed
within double quotes, as shown:

ttdt_close STATUS "$PROC_ID" "$NEW_PROC_ID" False

ttdt_session_join variable status sessId shellWidgetHandle join

This command joins the session indicated by the sessId argument. If the sessId
argument does not specify a value (that is, it is an empty string), then the default
session is joined. If the shellWidgetHandle argument specifies a widget handle (that
is, it is not an empty string), then it should refer to a mappedWhenManaged
applicationShellWidget. The join argument is True or False. This command returns
an opaque pattern handle in the variable argument; this handle can be destroyed
using the ttdt_session_quit command when it is no longer needed.

ttdt_session_quit status sessId sessPatterns quit

This command destroys the message patterns specified by the sessPatterns
argument, and, if the quit argument is set to True, it quits the session indicated by
the sessId argument, or it quits the default session if sessId is empty.

ttdt_file_join variable status pathName scope join dtksh-command

An opaque pattern handle is returned in the variable argument; this should be
destroyed by calling ttdt_file_quit when there is no interest in monitoring messages
for the indicated file. The requested dtksh-command is evaluated any time a message
is received for the indicated file. When this dtksh-command is evaluated, the
following environment variables are defined, and provide additional information
about the received message:

DT_TT_MSG
The opaque handle for the incoming message.

X/Open Common Desktop Environment (XCDE) Services and Applications 227



dtksh GUI Scripting Services

DT_TT_OP
The string representing the operation to be performed; that is,
TTDT_DELETED, TTDT_MODIFIED, TTDT_REVERTED, TTDT_-
MOVED or TTDT_SAVED.

DT_TT_PATHNAME
The pathname for the file to which this message pertains.

DT_TT_SAME_EUID_EGID
Set to True if the message was sent by an application operating with the
same effective user ID and effective group ID as this process.

DT_TT_SAME_PROCID
Set to True if the message was sent by an application with the same
procId (as returned by ttdt_open).

When the callback completes, it must indicate whether the passed-in message was
consumed (replied-to, failed or rejected). If the callback returns the message (as
passed in the DT_TT_MSG environment variable), it is assumed that the message
was not consumed. If the message was consumed, the callback should return zero,
or one of the values returned by the tt_error_pointer command. The callback can
return its value in the following fashion:

return $DT_TT_MSG (or) return 0

ttdt_file_quit status patterns quit

This command destroys the message patterns specified by the patterns argument,
and also unregisters interest in the pathname that was passed to the ttdt_file_join
command if quit is set to True; the patterns argument should be the value returned
by a call to the ttdt_file_join command.

ttdt_file_event status op patterns send

This command creates, and optionally sends, a ToolTalk notice announcing an event
pertaining to a file. The file is indicated by the pathname passed to the ttdt_file_join
command when patterns was created. The op argument indicates what should be
announced for the indicated file, and can be set to TTDT_MODIFIED,
TTDT_SAVED or TTDT_REVERTED. If op is set to TTDT_MODIFIED, this
command registers to handle Get_Modified, Save and Revert messages in the scope
specified when the patterns was created. If op is set to TTDT_SAVED or
TTDT_REVERTED, this command unregisters from handling Get_Modified, Save and
Revert messages for this file. If the send argument is set to True, the indicated
message is sent.

ttdt_Get_Modified pathName scope timeout

This commands sends a Get_Modified request in the indicated scope, and waits for a
reply, or for the specified timeout (in milliseconds) to elapse. It returns a value that
can be used in a conditional. A value of True is returned if an affirmative reply is
received within the specified timeout ; otherwise, False is returned.

ttdt_Save status pathName scope timeout

This command sends a Save request in the indicated scope, and waits for a reply, or
for the indicated timeout (in milliseconds) to elapse. A status of TT_OK is returned
if an affirmative reply is received before the timeout elapses; otherwise, a Tt_status
error value is returned.

228 X/Open CAE Specification



GUI Scripting Services dtksh

ttdt_Revert status pathName scope timeout

This command sends a Revert request in the indicated scope, and waits for a reply,
or for the indicated timeout (in milliseconds) to elapse. A status of TT_OK is
returned if an affirmative reply is received before the timeout elapses; otherwise, a
Tt_status error value is returned.

The following commands are typically used by the callback registered with the ttdt_file_join
command. They serve as the mechanism for consuming and destroying a message. A message
is consumed by either rejecting, failing or replying to it. The tt_error_pointer is used by the
callback to get a return pointer for indicating an error condition.

tt_error_pointer variable ttStatus

This command returns a magic value, which is used by ToolTalk to represent an
invalid pointer. The magic value returned depends on the ttStatus value passed in.
Any of the valid Tt_status values can be specified.

tttk_message_destroy status msg

This command destroys any patterns that may have been stored on the message
indicated by the msg argument, and then it destroys the message.

tttk_message_reject status msg msgStatus msgStatusString destroy

This command sets the status and the status string for the indicated request
message, and then rejects the message. It then destroys the passed-in message if the
destroy argument is set to True. This command is one way in which the callback
specified with the ttdt_file_join command consumes a message. After rejecting the
message, it is typically safe to destroy the message using tttk_message_destroy.

tttk_message_fail status msg msgStatus msgStatusString destroy

This command sets the status and the status string for the indicated request
message, and then it fails the message. It destroys the passed-in message if the
destroy argument is set to True. This command is one way in which the callback
specified with the ttdt_file_join command consumes a message. After failing the
message, it is typically safe to destroy the message, using tttk_message_destroy.

tt_message_reply status msg

This command informs the ToolTalk service that the shell script has handled the
message specified by the msg argument. After replying to a message, it is typically
safe to destroy the message using the tttk_message_destroy command.

Listing Widget Information

The DtWidgetInfo command provides the shell programmer a mechanism for obtaining
information about the current set of instantiated widgets and their resources; the information is
written to the standard output. This provides useful debugging information by including:

• The list of instantiated widgets, including: the name, class and parent of the widget; a
handle for the widget; the name of the environment variable supplied when the widget
was created; the state of the widget.

• The list of resources supported by a particular widget class.

• The list of constraint resources supported by a particular widget class.

X/Open Common Desktop Environment (XCDE) Services and Applications 229



dtksh GUI Scripting Services

DtWidgetInfo is called by using any of the following syntaxes; all of the arguments are optional:

DtWidgetInfo [ widgetHandle A widgetName ]

If no arguments are supplied, information about all existing widgets is written to
standard output; the information includes the name, the handle, the environment
variable, the parent, the widget class and the state. If arguments are supplied, they
should be either widget handles, or the names of existing widgets; in this case, the
information is written only for the requested set of widgets.

DtWidgetInfo −r [ widgetHandle A widgetClass ]

If no arguments are supplied, the list of supported resources is written to standard
output for all available widget classes. If arguments are supplied, they should be
either widget handles, or the widget class names; in this case, the information is
written only for the requested set of widgets or widget classes.

DtWidgetInfo −R [ widgetHandle A widgetClass ]

If no arguments are supplied, the list of supported constraint resources, if any, is
written to standard output for all available widget classes. If arguments are
supplied, they should be either widget handles, or the widget class names; in this
case, the information is written only for the requested set of widgets or widget
classes.

DtWidgetInfo −c [ widgetClass ]

If no arguments are supplied, the list of supported widget class names is written to
standard output. If arguments are supplied, dtksh writes the widget class name (if it
is defined); otherwise, it writes an error message to standard error.

DtWidgetInfo −h [ widgetHandle ]

If no arguments are supplied, the list of active widget handles is written to standard
output. If arguments are supplied, they should represent widget handles, in which
case the name of the associated widget is written to standard output.

Convenience Functions

The XCDE system includes a file of dtksh convenience functions. This file is itself a shell script
containing shell functions that may be useful to a shell programmer.

Before a shell script can access these functions, the shell script must first include the file
containing the convenience functions. The convenience functions are located in the file
/usr/dt/lib/dtksh/DtFuncs.dtsh, and are included in a shell script using the following notation:

. /usr/dt/lib/dtksh/DtFuncs.dtsh

DtkshAddButtons

This convenience function adds one or more buttons of the same kind into a composite widget.
Most frequently, it is used to add a collection of buttons into a menupane or menubar.

DtkshAddButtons parent widgetClass label1 callback1 [ label2
callback2 ... ]

DtkshAddButtons [ −w] parent widgetClass variable1 label1 callback1
[ variable2 label2 callback2 ... ]

230 X/Open CAE Specification



GUI Scripting Services dtksh

The −w option indicates that the convenience function should return the widget handle for each
of the buttons it creates. The widget handle is returned in the specified environment variable.
The widgetClass argument can be set to any one of the following, and defaults to
XmPushButtonGadget, if not specified:

XmPushButton
XmPushButtonGadget
XmToggleButton
XmToggleButtonGadget
XmCascadeButton
XmCascadeButtonGadget

Examples:

DtkshAddButtons $MENU XmPushButtonGadget Open do_Open Save \
do_Save Quit exit

DtkshAddButtons −w $MENU XmPushButtonGadget B1 Open \
do_Open B2 Save do_Save

DtkshSetReturnKeyControls

This convenience function configures a text widget (within a form widget), so the <carriage-
return> key does not activate the default button within the form. Instead, the <carriage-return>
key moves the focus to the next text widget within the form. This is useful if a window,
containing a series of text widgets and the default button, should not be activated until the user
presses the <carriage-return> key while the focus is in the last text widget.

DtkshSetReturnKeyControls textWidget nextTextWidget formWidget
defaultButton

The textWidget argument specifies the widget to be configured so it catches the <carriage-return>
key, and forces the focus to move to the next text widget (as indicated by the nextTextWidget
argument). The formWidget argument specifies the form containing the default button, and must
be the parent of the two text widgets. The defaultButton argument indicates which component to
treat as the default button within the form widget.

Examples:

DtkshSetReturnKeyControls $TEXT1 $TEXT2 $FORM $OK

DtkshSetReturnKeyControls $TEXT2 $TEXT3 $FORM $OK

DtkshUnder, DtkshOver, DtkshRightOf, DtkshLeftOf

These convenience functions simplify the specification of certain classes of form constraints.
They provide a convenient way of attaching a component to one edge of another component.
They are used when constructing the resource list for a widget. This behaviour is accomplished
using the ATTACH_WIDGET constraint.

DtkshUnder widgetId [ offset ]

DtkshOver widgetId [ offset ]

DtkshRightOf widgetId [ offset ]

DtkshLeftOf widgetId [ offset ]

X/Open Common Desktop Environment (XCDE) Services and Applications 231



dtksh GUI Scripting Services

The widgetId argument specifies the widget to which the current component is to be attached.
The offset value is optional, and defaults to zero, if not specified.

Example:

XtCreateManagedWidget BUTTON4 button4 pushButton $FORM \
labelString:"Exit" $(DtkshUnder $BUTTON2) \
$(DtkshRightOf $BUTTON3)

DtkshFloatRight, DtkshFloatLeft, DtkshFloatTop, DtkshFloatBottom

These convenience functions simplify the specification of certain classes of form constraints.
They provide a convenient way of positioning a component, independent of the other
components within the form. As the form grows or shrinks, the component maintains its
relative position within the form. The component may still grow or shrink, depending on the
other form constraints specified for the component. This behaviour is accomplished using the
ATTACH_POSITION constraint.

DtkshFloatRight [ position ]

DtkshFloatLeft [ position ]

DtkshFloatTop [ position ]

DtkshFloatBottom [ position ]

The optional position argument specifies the relative position to which the indicated edge of the
component is positioned. A default position is used, if one is not specified.

Example:

XtCreateManagedWidgetBUTTON1 button1 pushButton \
$FORM labelString:"Ok" $(DtkshUnder $SEPARATOR) \
$(DtkshFloatLeft 10) $(DtkshFloatRight 40)

DtkshAnchorRight, DtkshAnchorLeft, DtkshAnchorTop, DtkshAnchorBottom

These convenience functions simplify the specification of certain classes of form constraints.
They provide a convenient way of attaching a component to one of the edges of a form widget in
such a fashion that, as the form grows or shrinks, the component’s position does not change.
However, depending on the other form constraints set on this component, the component may
still grow or shrink in size. This behaviour is accomplished using the ATTACH_FORM
constraint.

DtkshAnchorRight [ offset ]

DtkshAnchorLeft [ offset ]

DtkshAnchorTop [ offset ]

DtkshAnchorBottom [ offset ]

The optional offset argument specifies how far from the edge of the form widget the component
should be positioned. If an offset is not specified, zero is used.

Example:

232 X/Open CAE Specification



GUI Scripting Services dtksh

XtCreateManagedWidget BUTTON1 button1 pushButton \
$FORM labelString:"Ok" $(DtkshUnder $SEPARATOR) \
$(DtkshAnchorLeft 10) $(DtkshAnchorBottom 10)

DtkshSpanWidth, DtkshSpanHeight

These convenience functions simplify the specification of certain classes of form constraints.
They provide a convenient way of configuring a component such that it spans either the full
height or width of the form widget. This behaviour is accomplished by attaching two edges of
the component (top and bottom for DtkshSpanHeight, and left and right for DtkshSpanWidth) to
the form widget. The component typically resizes whenever the form widget is resized. The
ATTACH_FORM constraint is used for all attachments.

DtkshSpanWidth [ leftOffset rightOffset ]

DtkshSpanHeight [ topOffset bottomOffset ]

The optional offset arguments specify how far from the edges of the form widget the component
should be positioned. If an offset is not specified, zero is used.

Example:

XtCreateManagedWidget SEP sep separator $FORM $(DtkshSpanWidth 1 1)

DtkshDisplayInformationDialog, DtkshDisplayQuestionDialog, DtkshDisplayWarning-
Dialog, DtkshDisplayWorkingDialog, DtkshDisplayErrorDialog

These convenience functions create a single instance of each of the Motif feedback dialogs. If an
instance of the requested type of dialog already exists, it is reused. The parent of the dialog is
obtained from the environment variable, TOPLEVEL, which should be set by the calling shell
script, and then should not be changed. The handle for the requested dialog is returned in one of
the following environment variables:

DTKSH_ERROR_DIALOG_HANDLE
DTKSH_QUESTION_DIALOG_HANDLE
DTKSH_WORKING_DIALOG_HANDLE
DTKSH_WARNING_DIALOG_HANDLE
DTKSH_INFORMATION_DIALOG_HANDLE

When attaching callbacks to the dialog buttons, the application should not destroy the dialog; it
should simply unmanage the dialog so that it can be used again later. If it is necessary to
destroy the dialog, the associated environment variable should also be cleared, so the
convenience function does not attempt to reuse the dialog.

DtkshDisplay ∗Dialog title message [ okCallback closeCallback \
helpCallback dialogStyle ]

The Ok button is always managed, and by default unmanages the dialog. The Cancel and Help
buttons are only managed when a callback is supplied for them. The dialogStyle argument
accepts any of the standard resource settings supported by the associated bulletin board
resource.

Example:

DtkshDisplayErrorDialog "Read Error" "Unable to read the file" \
"OkCallback" "CancelCallback" "" DIALOG_PRIMARY_APPLICATION_MODAL

X/Open Common Desktop Environment (XCDE) Services and Applications 233



dtksh GUI Scripting Services

DtkshDisplayQuickHelpDialog, DtkshDisplayHelpDialog

These convenience functions create a single instance of each of the help dialogs. If an instance of
the requested type of help dialog already exists, it is reused. The parent of the dialog is obtained
from the environment variable, TOPLEVEL, which should be set by the calling shell script, and
then should not be changed. The handle for the requested dialog is returned in one of the
following environment variables:

DTKSH_HELP_DIALOG_HANDLE
DTKSH_QUICK_HELP_DIALOG_HANDLE

If it is necessary to destroy a help dialog, the application should also clear the associated
environment variable, so that the convenience function does not attempt to reuse the dialog.

DtkshDisplay ∗HelpDialog title helpType helpInformation [ locationId ]

The meaning of the arguments depends on the value specified for the helpType argument. The
meanings are explained in the following table:

helpType helpInformation locationId
HELP_TYPE_DYNAMIC_STRING help string <not used>
HELP_TYPE_FILE help file name <not used>
HELP_TYPE_MAN_PAGE manual page name <not used>
HELP_TYPE_STRING help string <not used>
HELP_TYPE_TOPIC help volume name help topic location ID

Example:

DtkshDisplayHelpDialog "Help On Dtksh" HELP_TYPE_FILE "helpFileName"

Dtksh App-Defaults File

The dtksh app-defaults file, named dtksh, is in a location based on the following path
description:

/usr/dt/app-defaults/<LANG>

The only information contained in this app-defaults file is the inclusion of the standard desktop
base app-defaults file. The contents of the dtksh app-defaults file is as follows:

#include "Dt"

Non-String Values

The C bindings of the interfaces to X, Xt and Motif include many non-string values defined in
headers. For example, the constraint values for a child of a form widget are declared, such as
XmATTACH_FORM, with an Xt or Xm prefix followed by a descriptive name. Equivalent
values are specified in dtksh by omitting the prefix, just as in an app-defaults file. For example:
XmDIALOG_COMMAND_TEXT becomes DIALOG_COMMAND_TEXT; XtATTACH_FORM
becomes ATTACH_FORM.

A Boolean value can be specified as an argument to a dtksh command using the words True or
False; case is not significant.

234 X/Open CAE Specification



GUI Scripting Services dtksh

Return Values From Built-in Commands

Graphical commands in dtksh fall into one of four categories, based on the definition of the
corresponding C function in a windowing library:

1. The function returns no values. Example: XtMapWidget.

2. The function is void, but returns one or more values through reference arguments.
Example: XmGetColors.

3. The function returns a non-Boolean value. Example: XtCreateManagedWidget.

4. The function returns a Boolean value. Example: XtIsSensitive.

A category 1 command follows the calling sequence of its corresponding C function exactly; the
number and order of arguments can be determined by looking at the standard documentation
for the function. Example:

XtMapWidget $FORM

A category 2 command also generally follows the calling sequence as its corresponding C
function. Where a C caller would pass in a pointer to a variable in which a value is returned, the
dtksh command returns a value in an environment variable. Example:

XmGetColors $FORM $BG FOREGROUND TOPSHADOW BOTTOMSHADOW SELECT
echo "Foreground colo r = " $FOREGROUND

A category 3 command differs slightly from its corresponding C function. Where the C function
returns its value as the value of the procedure call, a dtksh command requires an additional
argument, which is always the first argument, and is the name of an environment variable into
which the return value is placed. Example:

XmTextGetString TEXT_VALUE $TEXT_WIDGET
echo "The value of the text field is "$TEXT_VALUE

A category 4 command returns a Boolean value that can be used in a conditional expression, just
as with the corresponding C function. If the C function also returns values through reference
variables (as in category 2), the dtksh command also uses variable names for the corresponding
arguments. Example:

if XmIsTraversable $PUSH_BUTTON; then
echo "The pushbutton is traversable"

else
echo "The pushbutton is not traversable"

fi

Generally, the order and type of arguments passed to a command matches those passed to the
corresponding C function, except as noted for category 3 commands. Other exceptions are
described in the applicable command descriptions.

Widget Handles

Where a C function returns a widget handle, the corresponding dtksh commands set an
environment variable equal to the widget handle. These are category 3 commands; they take as
one of their arguments the name of an environment variable in which to return the widget
handle.

X/Open Common Desktop Environment (XCDE) Services and Applications 235



dtksh GUI Scripting Services

For example, either of the following commands could be used to create a new form widget; in
both cases, the widget handle for the new form widget is returned in the environment variable
FORM:

XtCreateManagedWidget FORM name XmForm $PARENT

XmCreateForm FORM $PARENT name

After either of the above commands, $FORM can be used to reference the form widget. For
instance, to create a label widget within the form widget just created, the following command
could be used:

XmCreateLabel LABEL $FORM namelabelString:"Hi Mom" \
topAttachment:ATTACH_FORM leftAttachment:ATTACH_FORM

There is a special widget handle called NULL, provided for cases where a shell script may need
to specify a NULL widget. For example, the following disables the defaultButton resource for a
form widget:

XtSetValues $FORM defaultButton:NULL

Widget Resources

Some of the Xt and Motif commands allow the shell script to pass in a variable number of
arguments, representing resource and value pairs. This is similar to the arglist passed in to the
corresponding Xt or Motif C function. Examples of these commands include any of the
commands used to create a widget, and the XtSetValues command. In dtksh, resources are
specified by a string with the following syntax: resource:value .

The name of the resource is given in the resource portion of the string; it is constructed by taking
the corresponding Xt or Motif resource name and omitting the Xt or Xm prefix. The value to be
assigned to the resource is given in the value portion of the string. The dtksh utility
automatically converts the value string to an appropriate internal representation. For example:

XtSetValues $WIDGET height:100 width:200 resizePolicy:RESIZE_ANY
XmCreateLabel LABEL $PARENT myLabel labelString:"Close Dialog"

When widget resources are retrieved using XtGetValues, the return value has the same syntax.
For example:

XtGetValues $WIDGET height:HEIGHT resizePolicy:POLICY \
sensitive:SENSITIVE

echo $HEIGHT
echo $POLICY
echo $SENSITIVE

Certain types of resource values have special representation. These include string tables and bit
masks. For instance, the XmList widget allows a string table to be specified both for the items
and the selectedItems resources. In dtksh, a string table is represented as a comma-separated list
of strings, which is compatible with how Motif handles them from a resource file. When a
resource that returns a string table is queried using XtGetValues( ), the resulting value is again a
comma-separated set of strings. A resource that expects a bit mask value to be passed in,
expects the mask to be specified as a string composed of the various mask values separated by
the ‘‘|’’ character. When a resource that returns a bit mask is queried, the return value also is a
string representing the enabled bits, separated by the ‘‘|’’ character. For example, the following
sets the mwmFunctions resource for the VendorShell widget class:

236 X/Open CAE Specification



GUI Scripting Services dtksh

XtSetValues mwmFunctions MWM_FUNC_ALL|MWM_FUNC_RESIZE

Unsupported Resources

The dtksh utility supports most of the resources provided by Motif; however, there are certain
resources that dtksh does not support. The list of unsupported resources follows. Several of
these resources can be specified at widget creation time by using XtSetValues, but cannot be
retrieved using XtGetValues; these are indicated by the asterisk (∗) following the resource name.

All Widget And Gadget Classes:
Any font list resource (∗)
Any pixmap resource (∗)

Composite:
insertPosition
children

Core:
accelerators
translations (∗)
colourmap

XmText:
selectionArray
selectionArrayCount

ApplicationShell:
argv

WMShell:
iconWindow
windowGroup

Shell:
createPopupChildrenProc

XmSelectionBox:
textAccelerators

Manager, Primitive and Gadget Subclasses:
userData

XmFileSelectionBox:
dirSearchProc
fileSearchProc
qualifySearchDataProc

EXIT STATUS
See sh in the X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2.

CONSEQUENCES OF ERRORS
See sh in the X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2.

X/Open Common Desktop Environment (XCDE) Services and Applications 237



dtksh GUI Scripting Services

APPLICATION USAGE

Initialising The Toolkit Environment

Before any of the Xlib, Xt or Motif commands can be invoked, the shell script must first initialise
the Xt toolkit by invoking the XtInitialize command, which returns an application shell widget.
XtInitialize, as with all of the commands that return a widget handle, returns the widget handle
in the environment variable named in its first argument. For example:

XtInitialize TOPLEVEL myShellName Dtksh $0$@

Shell script writers should invoke the XtInitialize command as one of the first commands within
a dtksh shell script. This allows dtksh to locate its message catalogue and the correct app-defaults
file. If a shell error occurs before XtInitialize has been called, it is possible that unlocalised error
messages may be displayed. The dtksh utility provides a default app-defaults file to use if the
call to XtInitialize specifies an application class name of Dtksh . This app-defaults file loads in the
standard set of desktop application default values, so that these applications have a consistent
look with other desktop applications.

Cooperating with WorkSpace Management

The dtksh utility provides access to all of the major workspace management functions of the
desktop libraries, including functions for:

• Querying and setting the set of workspaces with which an application is associated.

• Querying the list of all workspaces.

• Querying and setting the current workspace.

• Requesting that an application be notified any time the user changes to a different
workspace.

From a user’s perspective, workspaces are identified by a set of names, but from the workspace
manager’s perspective, workspaces are identified by X atoms. Whenever the shell script asks for
a list of workspace identifiers, a string of X atoms is returned; if more than one X atom is present,
the list is comma-separated.

The workspace manager expects that the shell script uses the same format when passing
workspace identifiers back to it. During a given session, it is safe for the shell script to work
with the X atoms since they remain constant over the lifetime of the session. However, as was
shown in the Session Management shell script example, if the shell script is going to save and
restore workspace identifiers, the workspace identifiers must be converted from their X atom
representation to a string before they are saved. Then, when the session is restored, the shell
script needs to remap the names into X atoms before passing the information on to the
workspace manager. Mapping between X atoms and strings and between strings and X atoms
uses the following two commands:

XmInternAtom ATOM $DISPLAY $WORKSPACE_NAME false
XmGetAtomName NAME $DISPLAY $ATOM

238 X/Open CAE Specification



GUI Scripting Services dtksh

Creating Localised Shell Scripts

Scripts written for dtksh are internationalised, and then localised, in a process very similar to C
applications. All strings that may be presented to the user are identified in the script; a post-
processor extracts the strings from the script, and from them builds a catalogue, which can then
be translated to any desired locale. When the script executes, the current locale determines
which message catalogue is searched for strings to display. When a string is to be presented, it is
identified by a message-set ID (corresponding to the catalogue), and a message number within
the set; these values determine what text the user sees. The following code illustrates the
process:

# Attempt to open our message catalog
catopen MSG_CAT_ID "myCatalog.cat"

# The localized button label is in set 1, and is message # 2
XtCreatePushButton OK $PARENT ok
labelString:$(catgets $MSG_CAT_ID 1 2 "OK")

# The localized button label is in set 1, and is message #3
XtCreatePushButton CANCEL $PARENT cancel
labelString:$(catgets $MSG_CAT_ID 1 3 "Cancel")

# Close the message catalog, when no longer needed
catclose $MSG_CAT_ID

The file descriptor returned by catopen must be closed using catclose, and not using the sh exec
command.

Using the dtksh Utility to Access X Drawing Functions

The commands of the dtksh utility include standard Xlib drawing functions to draw lines, points,
segments, rectangles, arcs and polygons. In the standard C programming environment, these
functions take a graphics context, or GC as an argument, in addition to the drawing data. In
dtksh drawing functions, a collection of GC options are specified in the argument list to the
command. By default, the drawing commands create a GC that is used for that specific
command and then discarded. If the script specifies the −gc option, the name of the graphics
context object can be passed to the command; this GC is used in interpreting the command, and
the variable is updated with any modifications to the GC performed by the command.

−gc GC
GC is the name of an environment variable that has not yet been initialised, or
which has been left holding a graphic context by a previous drawing command. If
this option is specified, it must be the first GC option specified.

−foreground color
Foreground colour, which can be either the name of a colour or a pixel number.

−background color
Background colour, which can be either the name of a colour or a pixel number.

−font font name
Name of the font to be used.

−line_width number
Line width to be used during drawing.

−function drawing function
Drawing function, which can be any of the following: xor, or, clear, and, copy,
noop, nor, nand, set, invert, equiv, andReverse, orReverse or copyInverted.

X/Open Common Desktop Environment (XCDE) Services and Applications 239



dtksh GUI Scripting Services

−line_style style
Line style, which can be any of the following: LineSolid, LineDoubleDash or
LineOnOffDash.

Setting Widget Translations:

The dtksh utility provides mechanisms for augmenting, overriding and removing widget
translations, much as in the C programming environment. In C, an application installs a set of
translation action procedures, which can then be attached to specific sequences of events
(translations are composed of an event sequence and the associated action procedure).
Translations within dtksh are handled in a similar fashion, except only a single action procedure
is available. This action procedure, named ksh_eval , interprets any arguments passed to it as
dtksh commands, and evaluates them when the translation is triggered. The following shell
script segment gives an example of how translations can be used:

BtnDownProcedure()
{

echo "Button Down event occurred in button "$1
}
XtCreateManagedWidget BUTTON1 button1 XmPushButton $PARENT

labelString:"Button 1"
translations:’#augment

<EnterNotify>:ksh_eval("echo Button1 entered")
<Btn1Down>:ksh_eval("BtnDownProcedure 1")’

XtCreateManagedWidget BUTTON2 button2 XmPushButton $PARENT
labelString:"Button 2"

XtOverrideTranslations $BUTTON2
’#override

<Btn1Down>:ksh_eval("BtnDownProcedure 2")’

EXAMPLES
None.

SEE ALSO
sh in the X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2.

CHANGE HISTORY
First released in Issue 1.

240 X/Open CAE Specification



Chapter 12

Terminal Emulation Services

12.1 Introduction
The XCDE terminal emulation services provide a window for applications written for character-
based terminals such as the VT220. These applications include XPG4 commands, shell scripts,
and other applications not written for an X Windows environment. The services are available in
two forms: a stand-alone client and a widget that can be used inside applications that require
terminal emulation.

The XCDE terminal emulation services are consistent with the referenced ANSI X3.64-1979
standard and the referenced ISO/IEC 6429: 1992 standard. The services are based in part on the
X Consortium’s xterm and popular terminals compatible with the VT220.

The user interface is consistent with the OSF/Motif Style Guide, so the client and widget blend
well on a screen populated by windowed applications.

12.2 Functions
This section defines the functions, macros and external variables that provide XCDE terminal
emulation services to support application portability at the C-language source level.

X/Open Common Desktop Environment (XCDE) Services and Applications 241



DtCreateTerm( ) Terminal Emulation Services

NAME
DtCreateTerm — create a DtTerm widget

SYNOPSIS
#include <Dt/Term.h>

Widget DtCreateTerm(Widget parent ,
String name,
ArgList arglist ,
Cardinal argcount );

DESCRIPTION
The DtCreateTerm( ) function creates a terminal emulator widget hierarchy.

The parent argument specifies the parent widget ID.

The name argument specifies the name of the created widget.

The arglist argument specifies the argument list.

The argcount argument specifies the number of attribute and value pairs in the argument list
(arglist).

RETURN VALUE
Upon successful completion, the DtCreateTerm( ) function returns the DtTerm widget ID.

SEE ALSO
dtterm, Section 12.7 on page 283; <Dt/Term.h>, DtTerm, DtTermInitialize ( ), DtTermDisplaySend( ),
DtTermSubprocSend( ), DtTermSubprocReap( ).

CHANGE HISTORY
First released in Issue 1.

242 X/Open CAE Specification



Terminal Emulation Services DtTermDisplaySend( )

NAME
DtTermDisplaySend — send data to a DtTerm widget’s display

SYNOPSIS
#include <Dt/Term.h>

void DtTermDisplaySend(Widget widget ,
unsigned char ∗buffer ,
int length );

DESCRIPTION
The DtTermDisplaySend( ) function sends data to a DtTerm widget’s display.

The widget argument specifies the DtTerm widget ID.

The buffer argument specifies the string (single- or multi-byte depending on the locale) to be sent
to the display. The string may contain NULL bytes.

The length argument specifies the length of buffer in bytes.

The DtTermDisplaySend( ) function allows the program to write text directly to the DtTerm
widget’s text display. The text is handled in the same manner as text received from the child
process. Before the text is written in the window, the DtTerm widget’s input parser processes it.

RETURN VALUES
The DtTermDisplaySend( ) function returns no value.

SEE ALSO
<Dt/Term.h>, DtTerm.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 243



DtTermInitialize( ) Terminal Emulation Services

NAME
DtTermInitialise — prevent accelerators from being installed on a DtTerm widget

SYNOPSIS
#include <Dt/Term.h>

void DtTermInitialize();

DESCRIPTION
The DtTermInitialize ( ) function prevents the XmBulletinBoard widget from installing
accelerators on DtTerm widgets. It enables DtTerm widgets to receive certain key events, such
as Return and Escape, normally not passed by Motif to XmPrimitive widgets.

RETURN VALUES
The DtTermInitialize ( ) function returns no value.

APPLICATION USAGE
The application must call DtTermInitialize ( ) before initialising the Xt Toolkit with
XtAppInitialize ( ).

SEE ALSO
<Dt/Term.h>, DtTerm, XmPrimitive , XmBulletinBoard in the X/Open CAE Specification, Motif
Toolkit API; XtAppInitialize ( ) in the X/Open CAE Specification, Window Management: X
Toolkit Intrinsics.

CHANGE HISTORY
First released in Issue 1.

244 X/Open CAE Specification



Terminal Emulation Services DtTermSubprocReap( )

NAME
DtTermSubprocReap — allow a DtTerm widget to clean up after subprocess termination

SYNOPSIS
#include <Dt/Term.h>

void DtTermSubprocReap(pid_t pid ,
int ∗stat_loc );

DESCRIPTION
The DtTermSubprocReap( ) function allows DtTerm widgets to function correctly in applications
that have installed a SIGCHLD signal handler.

The pid argument specifies the process ID of the child process wait( ) returns.

The stat_loc argument specifies the termination information wait( ) returns.

RETURN VALUES
The DtTermSubprocReap( ) function returns no value.

APPLICATION USAGE
The DtTermSubprocReap( ) function allows an application to install its own SIGCHLD signal
handler.

The application must install its own SIGCHILD signal handler and call DtTermSubprocReap( ) if
the DtTerm widget was created with the DtSubprocessTerminatorCatch resource set to False.

The application must call the DtTermSubprocReap( ) function after performing a wait( ) (or
associated function) on a terminated child process. If the child process is associated with a
DtTerm widget, the widget’s data structures are cleaned up and the associated callbacks
invoked.

SEE ALSO
<Dt/Term.h>, DtTerm; sigaction ( ), wait( ) in the X/Open CAE Specification, System Interfaces
and Headers, Issue 4, Version 2.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 245



DtTermSubprocSend( ) Terminal Emulation Services

NAME
DtTermSubprocSend — send data to a DtTerm widget’s subprocess

SYNOPSIS
#include <Dt/Term.h>

void DtTermSubprocSend(Widget widget ,
unsigned char ∗buffer ,
int length );

DESCRIPTION
The DtTermSubprocSend( ) function sends data to a DtTerm widget’s child process.

The widget argument specifies the DtTerm widget ID.

The buffer argument specifies the string (single- or multi-byte depending on the locale) to be sent
to the display. The string may contain NULL bytes.

The length argument specifies the length of buffer in bytes.

The DtTermSubprocSend( ) function allows the program to send commands to the DtTerm
widget’s child process. The characters are handled in the same manner as keyboard input.

RETURN VALUES
The DtTermSubprocSend( ) function returns no value.

SEE ALSO
<Dt/Term.h>, DtTerm.

CHANGE HISTORY
First released in Issue 1.

246 X/Open CAE Specification



Terminal Emulation Services Widgets

12.3 Widgets
This section defines the widget class that provides the widget used by the XCDE terminal
emulation services to support application portability at the C-language source level.

X/Open Common Desktop Environment (XCDE) Services and Applications 247



DtTerm( ) Terminal Emulation Services

NAME
DtTerm — DtTerm widget class

SYNOPSIS
#include <Dt/Term.h>

DESCRIPTION
The DtTerm widget provides the core set of functionality needed to emulate a terminal that
supports the control sequences in the referenced ANSI X3.64-1979 standard and the referenced
ISO/IEC 6429: 1992 standard. This functionality includes text rendering, scrolling, margin and
tab support, escape sequence parsing and the low-level implementation-specific interfaces
required to allocate and configure a pseudo-terminal device and to update the system’s
implementation-dependent database of logged-in users (see who in the X/Open CAE
Specification, Commands and Utilities, Issue 4, Version 2).

Classes

The DtTerm widget inherits behaviour and resources from the Core and XmPrimitive classes.

The class pointer is dtTermWidgetClass.

The class name is DtTerm.

New Resources

The following table defines a set of widget resources used by the application to specify data.
The application can also set the resource values for the inherited classes to set attributes for this
widget. To reference a resource by name or by class in a .Xdefaults file, the application must
remove the DtN or DtC prefix and use the remaining letters. To specify one of the defined
values for a resource in a .Xdefaults file, the application must remove the Dt prefix and use the
remaining letters (in either lower case or upper case, but including any underscores between
words). The codes in the access column indicate if the given resource can be set at creation time
(C), set by using XtSetValues( ) (S), retrieved by using XtGetValues( ) (G), or is not applicable
(N/A).

DtTerm Resource Set, Part 1 of 2
Name Class Type Default Access
DtNallowSendEvents DtCAllowSendEvents Boolean False CSG
DtNappCursorDefault DtCAppCursorDefault Boolean False CSG
DtNappKeypadDefault DtCAppKeypadDefault Boolean False CSG
DtNautoWrap DtCAutoWrap Boolean True CSG
DtNbackgroundIsSelect DtCBackgroundIsSelect Boolean False CG
DtNbaseHeight DtCBaseHeight int 0 G
DtNbaseWidth DtCBaseWidth int 0 G
DtNblinkRate DtCBlinkRate int 250 CSG
DtNc132 DtCC132 Boolean False CSG
DtNcharCursorStyle DtCCharCursorStyle unsigned DtTERM_CHAR- CSG

char _CURSOR_BOX

248 X/Open CAE Specification



Terminal Emulation Services DtTerm( )

DtTerm Resource Set, Part 2 of 2
Name Class Type Default Access
DtNcolumns DtCColumns short 80 CSG
DtNconsoleMode DtCConsoleMode Boolean False CG
DtNemulationID DtCEmulationID String ‘‘DtTermWidget’’ CSG
DtNheightInc DtCHeightInc int 0 G
DtNinputVerifyCallback DtCCallback XtCallbackList NULL C
DtNjumpScroll DtCJumpScroll Boolean True CSG
DtNkshMode DtCKshMode Boolean False CSG
DtNlogging DtCLogging Boolean False CSG
DtNmapOnOutput DtCMapOnOutput Boolean False CSG
DtNmapOnOutputDelay DtCMapOnOutputDelay int 0 CSG
DtNmarginBell DtCMarginBell Boolean False CSG
DtNmarginHeight DtCMarginHeight Dimension 2 CSG
DtNmarginWidth DtCMarginWidth Dimension 2 CSG
DtNnMarginBell DtCNMarginBell int 10 CSG
DtNoutputLogCallback DtCCallback XtCallbackList NULL C
DtNpointerBlank DtCPointerBlank Boolean False CSG
DtNpointerBlankDelay DtCPointerBlankDelay int 2 CSG
DtNpointerColor DtCForeground String dynamic CSG
DtNpointerColorBackground DtCBackground String dynamic CSG
DtNpointerShape DtCPointerShape String xterm CSG
DtNreverseWrap DtCReverseWrap Boolean False CSG
DtNrows DtCRows short 24 CSG
DtNsaveLines DtCSaveLines string 4s CG
DtNshadowType DtCShadowType unsigned DtSHADOW_IN CSG

char
DtNstatusChangeCallback DtCCallback XtCallbackList NULL C
DtNsubprocessArgv DtCSubprocessArgv String ∗ NULL CG
DtNsubprocessCmd DtCSubprocessCmd String NULL CG
DtNsubprocessExec DtCSubprocessExec Boolean True CSG
DtNsubprocessLoginShell DtCSubprocessLoginShell Boolean False CG
DtNsubprocessPid DtCSubprocessPid int −1 G
DtNsubprocess- DtCCallback XtCallbackList NULL C

TerminationCallback
DtNsubprocess- DtCSubprocess- Boolean True CSG

TerminationCatch TerminationCatch
DtNsunFunctionKeys DtCSunFunctionKeys Boolean False CSG
DtNtermDevice DtCTermDevice int −1 CG
DtNtermDeviceAllocate DtCTermDeviceAllocate Boolean True CG
DtNtermId DtCTermId String ‘‘vt220’’ CSG
DtNtermName DtCTermName String ‘‘dtterm’’ CSG
DtNtermSlaveName DtCTermSlaveName String NULL CG
DtNttyModes DtCTtyModes String NULL CSG
DtNuserBoldFont DtCUserBoldFont XmFontList dynamic CSG
DtNuserFont DtCUserFont XmFontList dynamic CSG
DtNverticalScrollBar DtCVerticalScrollBar Widget NULL CSG
DtNvisualBell DtCVisualBell Boolean False CSG
DtNwidthInc DtCWidthInc int 0 G

allowSendEvents
Specifies that the terminal emulator allow synthetic events (generated and sent by
another application). Enabling this resource opens up a possible security hole.

appCursorDefault
Specifies the initial cursor mode. If True, the cursor keys are initially in application
mode. If False, the cursor keys are initially in cursor mode.

X/Open Common Desktop Environment (XCDE) Services and Applications 249



DtTerm( ) Terminal Emulation Services

appKeypadDefault
Specifies the initial keypad mode. If True, the keypad keys are initially in
application mode. If False, the keypad keys are initially in numeric mode.

c132
Specifies whether or not the DECCOLM escape sequence that switches between a
132- and 80-column window is honoured.

consoleMode
Specifies that output directed at /dev/console be directed instead to the terminal
window. It is provided as a way to prevent output that would normally be
displayed on the internal terminal emulator (ITE) from overwriting the X server’s
display. It is not provided as a general mechanism to direct the output from an
arbitrary system’s /dev/console to an arbitrary X server. Ownership of, and read-
write permission for, /dev/console is required to redirect console output.

DtNautoWrap
Specifies whether or not auto-wrap is initially enabled.

DtNbackgroundIsSelect
Controls the background colour. When False, the background colour is the colour
specified. When True, the background colour is the select colour corresponding to
the background and is constant with other Motif-based applications.

DtNbaseHeight
Specifies the terminal window’s base height. With this resource the application
computes its base height for the shell widget, which then allows the window
manager to provide appropriate sizing feedback to the user. The height of the
terminal window is:

DtNbaseHeight + DtNrows × DtNheightInc

DtNbaseWidth
Specifies the terminal window’s base width. With this resource the application
computes its base width for the shell widget, which then allows the window
manager to provide appropriate sizing feedback to the user. The width of the
terminal window is:

DtNbaseWidth + DtNcolumns × DtNwidthInc

DtNblinkRate
Specifies the number of milliseconds the cursor is in the on and off states while
blinking. A value of 250 blinks the cursor two times per second. A value of zero
turns blinking off.

DtNc132
This resource specifies whether or not the DECCOLM escape sequence should be
honoured.

DtNcharCursorStyle
Specifies the text cursor shape. A DtTERM_CHAR_CURSOR_BOX value specifies a
cursor the width and height of the base font’s bounding box. A
DtTERM_CHAR_CURSOR_BAR value specifies a cursor the width of the base
font’s bounding box, two pixels high, and drawn with its top on the baseline. The
default is DtTERM_CHAR_CURSOR_BOX.

250 X/Open CAE Specification



Terminal Emulation Services DtTerm( )

DtNcolumns
Specifies the number of text columns in the terminal window. For additional
information, see DtNbaseWidth.

DtNemulationID
Specifies the string to which the TERMINAL_EMULATOR environment variable is
set.

DtNheightInc
Specifies the character cell height used as the height increment when calculating the
size of the terminal window. For additional information, see DtNbaseHeight.

DtNinputVerifyCallback
Specifies the list of callbacks called before the DtTerm widget sends text to the child
process. The text may be generated either in response to keyboard input, selection
or drag and drop. The DtTermInputVerifyCallbackStruct structure’s address is
passed to this callback. DtCR_TERM_INPUT_VERIFY is the reason set by the
callback.

DtNjumpScroll
Specifies that the DtTerm widget uses jump scrolling. The maximum number of
lines that may be jump scrolled is limited to the number of lines in the terminal
window. The DtTerm widget guarantees that all lines are displayed.

DtNkshMode
Enables ksh mode. With ksh mode, a key pressed with the extend modifier bit set
generates an escape character followed by the character generated by the
unextended keystroke. This option is provided for use with emacs and the emacs
command-line editor mode of ksh. It conflicts with the normal meta key use for
generating extended single byte characters and for generating multi-byte Asian
characters.

DtNmapOnOutput
Indicates that the terminal widget map (de-iconify) itself upon subprocess output if
it is unmapped (iconified). An initial period of time during which the terminal
widget does not map itself upon subprocess output can be specified via the
DtNmapOnOutputDelay resource.

DtNmapOnOutputDelay
Specifies the number of seconds after start-up that the widget does not honour the
DtNmapOnOutput resource. This allows for initial output (for example, shell
prompts) to be sent to the terminal without auto-mapping the window. The default
is zero (no delay).

DtNmarginBell
Specifies whether or not the bell rings when the user types near the right margin.
The distance from the right margin is specified by the nMarginBell resource.

DtNmarginHeight
Specifies the height of the margin between the text and the top and bottom of the
DtTerm widget’s window.

DtNmarginWidth
Specifies the width of the margin between the text and both sides of the DtTerm
widget’s window.

X/Open Common Desktop Environment (XCDE) Services and Applications 251



DtTerm( ) Terminal Emulation Services

DtNnMarginBell
Specifies the number of characters from the right margin at which the margin bell
rings when enabled via the DtNmarginBell resource.

DtNoutputLogCallback
Specifies the list of callbacks called when the widget receives text from the child
process. DtTermOutputLogCallbackStruct is the structure type whose address is
passed to this callback. DtCR_TERM_OUTPUT_LOG is the reason set by the
callback.

DtNpointerBlank
Indicates that the pointer cursor is in blanking mode. In this mode, the cursor turns
on when the pointer is moved, and is blanked either after a selectable number of
seconds or after keyboard input. The delay is set via the DtNpointerBlankDelay
resource.

DtNpointerBlankDelay
Specifies the number of seconds to wait after the pointer has stopped moving before
blanking the pointer (see DtNpointerBlank). A value of zero prevents the pointer
from blanking until a key is pressed.

DtNpointerColor
Specifies the foreground colour the DtTerm widget uses for the terminal window’s
pointer (X11 cursor). The default is the terminal window’s foreground colour.

DtNpointerColorBackground
Specifies the background colour the DtTerm widget uses for the terminal window’s
pointer (X11 cursor). The default is the terminal window’s background colour.

DtNpointerShape
Specifies the X cursor font character the DtTerm widget uses as the pointer cursor.
The font character should be specified as a string from the include file,
<X11/cursorfont.h>, with the leading XC_ removed.

DtNreverseWrap
Specifies whether or not reverse-wraparound is enabled.

DtNrows
Specifies the number of rows of text in the terminal window. For additional
information, see DtNbaseHeight.

DtNsaveLines
Defines the number of lines in the terminal buffer beyond the length of the window.
The resource value consists of a number followed by an optional suffix. If no suffix
is included or the suffix is ‘‘l’’ (ell), the total length of the terminal buffer is the
number plus the length of the terminal window. If the suffix is ‘‘s,’’ the total length
of the terminal buffer is (the number plus one) times the length of the terminal
window. The DtTerm widget tries to maintain the same buffer-to-window ratio
when the window is resized larger.

DtNshadowType
Specifies the type of shadow drawn around the terminal window. See the XmFrame
widget for supported shadow types.

252 X/Open CAE Specification



Terminal Emulation Services DtTerm( )

DtNstatusChangeCallback
Specifies the list of callbacks called when the DtTerm widget’s status changes.
Status changes include changes such as cursor position, caps lock state and insert
char state. The DtTermStatusChangeCallbackStruct structure’s address is passed
to this callback. DtCR_TERM_STATUS_CHANGE is the reason the callback sends.

DtNsubprocessArgv
Specifies the argument list passed to the subprocess if DtNsubprocessExec is True.
If DtNsubprocessCmd is NULL, the first string of this argument is used as the
name of the command to execute.

DtNsubprocessCmd
Specifies the name of the command to run if DtNsubprocessExec is True. If
DtNsubprocessExec is NULL, the first string of the DtNsubprocessArgv argument
is used.

DtNsubprocessExec
This resource specifies whether or not a subprocess is fork ( ) and exec( ). If True, a
subprocess is launched as specified via the DtNsubprocessArgv resource, if set, or
the DtNsubprocessCmd resource, if set, or the SHELL environment variable, if set,
or the default system shell.

DtNsubprocessloginShell Indicates that the starting shell is to be a login shell (that is, the
first character of argv[0] is to be a dash), that tells the shell to read the system’s
profile and the user’s .profile files (for ksh and sh).

DtNsubprocessPid
Supplies the process ID of the subprocess running in the terminal widget when
DtNsubprocessExec is True.

DtNsubprocessTerminationCallback
Supplies the list of callbacks called when the subprocess associated with the DtTerm
widget exits. The DtTermSubprocessTerminationCallbackStruct structure’s
address is passed to this callback. DtCR_TERM_SUBPROCESS_TERMINATION is
the reason the callback sends.

DtNsubprocessTerminationCatch
Specifies whether or not the DtTerm widget installs a signal handler to catch the
subprocess termination. If the application installs its own signal handler, the
application must catch the subprocess termination and inform the DtTerm widget
via the DtTermSubprocReap( ) function.

DtNsunFunctionKeys
Specifies whether or not Sun Function Key escape sequences are generated for
function keys instead of standard escape sequences. See Section 12.7.3 on page 296
for a description of the Sun Function Key escape sequences.

DtNtermDevice
Supplies the file descriptor for the master side of the pseudo-terminal device
associated with the DtTerm widget.

DtNtermDeviceAllocate
Specifies whether or not the DtTerm widget allocates a pseudo-terminal device, or
uses the pseudo-terminal device passed to it via the DtNtermDevice resource.

X/Open Common Desktop Environment (XCDE) Services and Applications 253



DtTerm( ) Terminal Emulation Services

DtNtermId
Supplies the name the DtTerm widget uses to select the correct response to terminal
ID queries. Valid values are vt100, vt101, vt102 and vt220.

DtNtermName
Supplies the name the DtTerm widget uses in setting the TERM environment
variable. The default is dtterm.

DtNtermSlaveName
Supplies the name of the slave device of the pseudo-terminal device associated with
the DtTerm widget. The DtTerm widget uses this resource to update the system’s
implementation-dependent database of logged-in users (see who in the X/Open
CAE Specification, Commands and Utilities, Issue 4, Version 2) entry associated
with the subprocess.

DtNttyModes
Specifies a string containing terminal-setting keywords and the characters to which
they may be bound. Allowable keywords include: intr, quit, erase, kill, eof, eol,
swtch, start, stop, brk, susp, dsusp, rprnt, flush, weras and lnext. The terminal
emulator correctly parses and silently ignores keywords that do not apply to a
specific architecture. Control characters can be specified as ˆchar (for example, ˆc or
ˆu), and ˆ? can be used to indicate delete. This is useful for overriding the default
terminal settings without having to do an stty every time a DtTerm widget is
created.

DtNuserBoldFont
Supplies the XmFontList the DtTerm widget uses to display bold terminal text. The
terminal emulator supports only character or mono-spaced fonts. When using
proportional fonts, the behaviour is undefined. The terminal emulator generates a
default bold font based on the XLFD name of the userFont. If that font is not
available, the terminal emulator generates bold text by overstriking (with a one
pixel offset) the userFont.

DtNuserFont
Supplies the XmFontList the DtTerm widget uses to display terminal text. The
terminal emulator supports only character or mono-spaced fonts. When using
proportional fonts, the behaviour is undefined. The terminal emulator gets a
default font via the XmNtextFontList value of the parent bulletin board (see the
XmBulletinBoard widget) in the same manner as the XmText widget.

DtNverticalScrollBar
Specifies a an application-supplied vertical scroll bar widget to update as scrolling
occurs. The DtTerm widget does not create the scroll bar.

DtNvisualBell
Specifies whether the DtTerm widget uses a visible bell (that is, flashing) instead of
an audible bell when <control>-G is received.

DtNwidthInc
Specifies the character cell width the DtTerm widget uses as the width increment
when calculating the size of the terminal window. For additional information, see
DtNbaseWidth.

254 X/Open CAE Specification



Terminal Emulation Services DtTerm( )

Inherited Resources

The DtTerm widget inherits behaviour and resources from the following named superclasses.
For a complete description of each resource, see the entry in X/Open CAE Specification, Motif
Toolkit API for that superclass.

XmPrimitive Resource Set
Name Class Type Default Access
XmNbottomShadowColor XmCBottomShadowColor Pixel dynamic CSG
XmNbottom- XmCBottom- Pixmap XmUNSPECIFIED- CSG

ShadowPixmap ShadowPixmap _PIXMAP
XmNforeground XmCForeground Pixel dynamic CSG
XmNhelpCallback XmCCallback XtCallbackList NULL C
XmNhighlightColor XmCHighlightColor Pixel dynamic CSG
XmNhighlightOnEnter XmCHighlightOnEnter Boolean False CSG
XmNhighlightPixmap XmCHighlightPixmap Pixmap dynamic CSG
XmNhighlightThickness XmCHighlightThickness Dimension 2 CSG
XmNnavigationType XmCNavigationType XmNavigation- XmNONE G

Type
XmNshadowThickness XmCShadowThickness Dimension 2 CSG
XmNtopShadowColor XmCTopShadowColor Pixel dynamic CSG
XmNtopShadowPixmap XmCTopShadowPixmap Pixmap dynamic CSG
XmNtraversalOn XmCTraversalOn Boolean True CSG
XmNunitType XmCUnitType unsigned char dynamic CSG
XmNuserData XmCUserData Pointer NULL CSG

Core Resource Set
Name Class Type Default Access
XmNaccelerators XmCAccelerators XtAccelerators NULL CSG
XmNancestorSensitive XmCSensitive Boolean dynamic G
XmNbackground XmCBackground Pixel dynamic CSG
XmNbackgroundPixmap XmCPixmap Pixmap XmUNSPECIFIED- CSG

_PIXMAP
XmNborderColor XmCBorderColor Pixel XtDefaultForeground CSG
XmNborderPixmap XmCPixmap Pixmap XmUNSPECIFIED- CSG

_PIXMAP
XmNborderWidth XmCBorderWidth Dimension 0 CSG
XmNcolormap XmCColormap Colormap dynamic CG
XmNdepth XmCDepth int dynamic CG
XmNdestroyCallback XmCCallback XtCallbackList NULL C
XmNheight XmCHeight Dimension dynamic CSG
XmNinitial- XmCInitial- Boolean True CG

ResourcesPersistent ResourcesPersistent
XmNmapped- XmCMapped- Boolean True CSG
WhenManaged WhenManaged
XmNscreen XmCScreen Screen ∗ dynamic CG
XmNsensitive XmCSensitive Boolean True CSG
XmNtranslations XmCTranslations XtTranslations NULL CSG
XmNwidth XmCWidth Dimension dynamic CSG
XmNx XmCPosition Position 0 CSG
XmNy XmCPosition Position 0 CSG

X/Open Common Desktop Environment (XCDE) Services and Applications 255



DtTerm( ) Terminal Emulation Services

Callback Information

A pointer to the DtTermStatusChangeCallbackStruct callback structure, which includes at least
the following members, is passed to callbacks for DtNstatusChangeCallback.

Indicates why the callback was invoked:
DtCR_TERM_STATUS_CHANGE.

int reason

Points to the XEvent, if any, that triggered
the callback or NULL.

XEvent ∗event

The current text cursor X (column) position.int cursorX

The current text cursor Y (row) position.int cursorY

The current state of the caps lock indicator.Boolean capsLock

The current state subprocess output parsing.
Processing output from the subprocess can
be turned on and off via the stop( ) action
(similar to the XON/XOFF handshake
invoked via <control>-S/<control>-Q).

Boolean stop

Not used by the DtTerm widget.DtTermInsertCharMode insertCharMode

The current state of the keyboard caps lock.Boolean locked

A pointer to the DtTermSubprocessTerminationCallbackStruct callback structure, which
includes at least the following members, is passed to callbacks for
DtNsubprocessTerminationCallback.

Indicates why the callback was invoked:
DtCR_TERM_SUBPROCESS_TERMINATION.

int reason

Points to the XEvent, if any, that triggered the callback or NULL.XEvent ∗event

The process ID of the terminated subprocess.pid_t pid

The exit status of the terminated subprocess.int status

A pointer to the DtTermInputVerifyCallbackStruct callback structure, which includes at least
the following members, is passed to callbacks for DtNinputVerifyCallback.

Indicates why the callback was invoked:
DtCR_TERM_INPUT_VERIFY.

int reason

Points to the XEvent, if any, that triggered the callback or NULL.XEvent ∗event

Indicates whether the text should be sent to the child process.
Setting doit to False negates the action.

Boolean doit

Points to the text (either single- or multi-byte depending on the
locale) to be sent to the child process.

unsigned char ∗text

Specifies the number of bytes to be sent to the child process.int length

256 X/Open CAE Specification



Terminal Emulation Services DtTerm( )

A pointer to the DtTermOutputlogVerifyCallbackStruct callback structure, which includes at
least the following members, is passed to callbacks for DtNoutputLogCallback.

Indicates why the callback was invoked:
DtCR_TERM_OUTPUT_LOG.

int reason

Points to the XEvent, if any, that triggered the callback or NULL.XEvent ∗event

Points to the text (either single- or multi-byte depending on the
locale) received from the child process.

unsigned char ∗text

Specifies the number of bytes received from the child process.int length

Translations

The DtTerm widget includes translations from XmPrimitive .

Altering translations in #override or #augment mode is undefined.

Key Pressed Action Routine
Shift ˜Ctrl<Key>KP_Multiply: XtDisplayInstalledAccelerators( )
˜Shift Ctrl<Key>KP_Multiply: XtDisplayAccelerators( )
Shift Ctrl<Key>KP_Multiply: XtDisplayTranslations( )
<Key>osfCancel: process-cancel( )
<Key>osfCopy: copy-clipboard( )
<Key>osfCut: copy-clipboard( )
<Key>osfPaste: paste-clipboard( )
<Key>osfBeginLine: beginning-of-buffer( )
<Key>osfEndLine: end-of-buffer( )
Shift<Key>osfUp: scroll(1,line)
Shift<Key>osfDown: scroll( −1,line)
<Key>osfUp: move-cursor(up)
<Key>osfDown: move-cursor(down)
<Key>osfLeft: move-cursor(backward)
<Key>osfRight: move-cursor(forward)
<Key>Do: vt-edit-key(do)
<Key>Help: vt-edit-key(help)
<Key>Menu: vt-edit-key(menu)
<Key>Find: vt-edit-key(find)
<Key>Insert: vt-edit-key(insert)
<Key>Select: vt-edit-key(select)
˜Shift<Key>osfPageUp: vt-edit-key(prior)
˜Shift<Key>osfPageDown: vt-edit-key(next)
<Key>osfPageUp: scroll( −1,page)
<Key>osfPageDown: scroll(1,page)
Mod1<Key>Break: soft-reset( )
Shift<Key>Break: hard-reset( )
˜Shift ˜Mod1<Key>Break: vt-break( )
Ctrl<Key>Cancel: stop(long)
˜Ctrl<Key>Cancel: stop( )
˜Shift<Key>Tab: tab( )

X/Open Common Desktop Environment (XCDE) Services and Applications 257



DtTerm( ) Terminal Emulation Services

˜Mod1<Key>KP_Space: keypad-key-execute(space)
˜Mod1<Key>KP_Tab: keypad-key-execute(tab)
˜Mod1<Key>KP_Enter: keypad-key-execute(enter)
˜Mod1<Key>KP_F1: keypad-key-execute(f1)
˜Mod1<Key>KP_F2: keypad-key-execute(f2)
˜Mod1<Key>KP_F3: keypad-key-execute(f3)
˜Mod1<Key>KP_F4: keypad-key-execute(f4)
˜Mod1<Key>KP_Equal: keypad-key-execute(equal)
˜Mod1<Key>KP_Multiply: keypad-key-execute(multiply)
˜Mod1<Key>KP_Add: keypad-key-execute(add)
˜Mod1<Key>KP_Separator: keypad-key-execute(separator)
˜Mod1<Key>KP_Subtract: keypad-key-execute(subtract)
˜Mod1<Key>KP_Decimal: keypad-key-execute(decimal)
˜Mod1<Key>KP_Divide: keypad-key-execute(divide)
˜Mod1<Key>KP_0: keypad-key-execute(0)
˜Mod1<Key>KP_1: keypad-key-execute(1)
˜Mod1<Key>KP_2: keypad-key-execute(2)
˜Mod1<Key>KP_3: keypad-key-execute(3)
˜Mod1<Key>KP_4: keypad-key-execute(4)
˜Mod1<Key>KP_5: keypad-key-execute(5)
˜Mod1<Key>KP_6: keypad-key-execute(6)
˜Mod1<Key>KP_7: keypad-key-execute(7)
˜Mod1<Key>KP_8: keypad-key-execute(8)
˜Mod1<Key>KP_9: keypad-key-execute(9)
Shift<Key>F1: vt-function-key-execute(1, UDK)
Shift<Key>F2: vt-function-key-execute(2, UDK)
Shift<Key>F3: vt-function-key-execute(3, UDK)
Shift<Key>F4: vt-function-key-execute(4, UDK)
Shift<Key>F5: vt-function-key-execute(5, UDK)
Shift<Key>F6: vt-function-key-execute(6, UDK)
Shift<Key>F7: vt-function-key-execute(7, UDK)
Shift<Key>F8: vt-function-key-execute(8, UDK)
Shift<Key>F9: vt-function-key-execute(9, UDK)
Shift<Key>F10: vt-function-key-execute(10, UDK)
Shift<Key>F11: vt-function-key-execute(11, UDK)
Shift<Key>F12: vt-function-key-execute(12, UDK)
Shift<Key>F13: vt-function-key-execute(13, UDK)
Shift<Key>F14: vt-function-key-execute(14, UDK)
Shift<Key>F15: vt-function-key-execute(15, UDK)
Shift<Key>F16: vt-function-key-execute(16, UDK)
Shift<Key>F17: vt-function-key-execute(17, UDK)
Shift<Key>F18: vt-function-key-execute(18, UDK)
Shift<Key>F19: vt-function-key-execute(19, UDK)
Shift<Key>F20: vt-function-key-execute(20, UDK)
Shift<Key>F21: vt-function-key-execute(21, UDK)
Shift<Key>F22: vt-function-key-execute(22, UDK)
Shift<Key>F23: vt-function-key-execute(23, UDK)
Shift<Key>F24: vt-function-key-execute(24, UDK)

258 X/Open CAE Specification



Terminal Emulation Services DtTerm( )

Shift<Key>F25: vt-function-key-execute(25, UDK)
Shift<Key>F26: vt-function-key-execute(26, UDK)
Shift<Key>F27: vt-function-key-execute(27, UDK)
Shift<Key>F28: vt-function-key-execute(28, UDK)
Shift<Key>F29: vt-function-key-execute(29, UDK)
Shift<Key>F30: vt-function-key-execute(30, UDK)
Shift<Key>F31: vt-function-key-execute(31, UDK)
Shift<Key>F32: vt-function-key-execute(32, UDK)
Shift<Key>F33: vt-function-key-execute(33, UDK)
Shift<Key>F34: vt-function-key-execute(34, UDK)
Shift<Key>F35: vt-function-key-execute(35, UDK)
˜Shift<Key>F1: vt-function-key-execute(1, function)
˜Shift<Key>F2: vt-function-key-execute(2, function)
˜Shift<Key>F3: vt-function-key-execute(3, function)
˜Shift<Key>F4: vt-function-key-execute(4, function)
˜Shift<Key>F5: vt-function-key-execute(5, function)
˜Shift<Key>F6: vt-function-key-execute(6, function)
˜Shift<Key>F7: vt-function-key-execute(7, function)
˜Shift<Key>F8: vt-function-key-execute(8, function)
˜Shift<Key>F9: vt-function-key-execute(9, function)
˜Shift<Key>F10: vt-function-key-execute(10, function)
˜Shift<Key>F11: vt-function-key-execute(11, function)
˜Shift<Key>F12: vt-function-key-execute(12, function)
˜Shift<Key>F13: vt-function-key-execute(13, function)
˜Shift<Key>F14: vt-function-key-execute(14, function)
˜Shift<Key>F15: vt-function-key-execute(15, function)
˜Shift<Key>F16: vt-function-key-execute(16, function)
˜Shift<Key>F17: vt-function-key-execute(17, function)
˜Shift<Key>F18: vt-function-key-execute(18, function)
˜Shift<Key>F19: vt-function-key-execute(19, function)
˜Shift<Key>F20: vt-function-key-execute(20, function)
˜Shift<Key>F21: vt-function-key-execute(21, function)
˜Shift<Key>F22: vt-function-key-execute(22, function)
˜Shift<Key>F23: vt-function-key-execute(23, function)
˜Shift<Key>F24: vt-function-key-execute(24, function)
˜Shift<Key>F25: vt-function-key-execute(25, function)
˜Shift<Key>F26: vt-function-key-execute(26, function)
˜Shift<Key>F27: vt-function-key-execute(27, function)
˜Shift<Key>F28: vt-function-key-execute(28, function)
˜Shift<Key>F29: vt-function-key-execute(29, function)
˜Shift<Key>F30: vt-function-key-execute(30, function)
˜Shift<Key>F31: vt-function-key-execute(31, function)
˜Shift<Key>F32: vt-function-key-execute(32, function)
˜Shift<Key>F33: vt-function-key-execute(33, function)
˜Shift<Key>F34: vt-function-key-execute(34, function)
˜Shift<Key>F35: vt-function-key-execute(35, function)
<KeyRelease>: key-release( )
<KeyPress>: insert( )

X/Open Common Desktop Environment (XCDE) Services and Applications 259



DtTerm( ) Terminal Emulation Services

˜Shift˜Ctrl<Btn1Down>: grab-focus( )
Shift˜Ctrl<Btn1Down>: extend-start( )
˜Ctrl<Btn1Motion>: select-adjust( )
˜Ctrl<Btn1Up>: extend-end( )
˜Shift<Btn2Down>: process-bdrag( )
˜Shift<Btn2Up>: copy-to( )
<EnterWindow>: enter( )
<LeaveWindow>: leave( )
<FocusIn>: focus-in( )
<FocusOut>: focus-out( )

Action Routines

The DtTerm widget supports the following action routines:

bell([percentage])
Rings the keyboard bell at the specified percentage above or below the base volume.

break( )
Sends an RS232 break signal to the child process.

cancel( )
Sends a CAN (cancel) character to the child process.

copy-clipboard ( )
Copies current selection to the clipboard.

copy-to ( )
Sends the primary selection to the subprocess.

do( ) Sends the escape sequence (see Section 12.7 on page 283) associated with the Do key
to the child process.

edit-key(string)
Sends the escape sequence (see Section 12.7 on page 283) associated with the
corresponding edit key to the child process. The interpretation of these keys is
application-specific. Valid values for string are:

find
insert
next
prior
remove
select

extend-start( )
Starts the extension of the currently selected text. The amount of text selected
depends on the number of mouse clicks (see grab-focus( )).

extend-end( )
Extends the current selection. The amount of text selected depends on the number
of mouse clicks (see grab-focus( )).

function-key-execute (num[, type])
Sends the escape sequence (see Section 12.7 on page 283) associated with the
corresponding function key num to the child process. Valid values for num are 1 to
35, inclusive. If type is set to function (or not set at all), the escape sequence (see

260 X/Open CAE Specification



Terminal Emulation Services DtTerm( )

Section 12.7 on page 283) associated with function key num is sent to the child
process. If type is set to UDK, then the string associated with user defined key num
is sent to the child process.

grab-focus( )
Performs one of the following depending on the number of multiple mouse clicks.
One click deselects any selected text and sets the selection anchor at the pointer
position; two clicks selects a word; three clicks selects a line of text; and four clicks
selects all text.

hard-reset( )
Performs a hard reset on the terminal emulator.

help( )
Sends the escape sequence (see Section 12.7 on page 283) associated with the DEC
VT220 Help key to the child process. The interpretation of this key is application-
specific.

keymap(name)
Defines a new translation table whose resource name is named with the suffix
Keymap (case is significant). The name None restores the original translation table.

keypad-key-execute (string)
Sends the escape sequence (see Section 12.7 on page 283) associated with the
corresponding keypad key to the child process. The interpretation of these keys is
application-specific. Valid values for string are:

f1 − f4
space
tab
enter
equal
multiply
add
separator
subtract
decimal
divide
0 − 9

move-cursor(direction)
Sends the escape sequence (see Section 12.7 on page 283) associated with the
corresponding cursor motion to the child process. The interpretation of these keys
is application-specific. Valid values for direction are:

up
down
backward
forward

paste-clipboard ( )
Sends the contents of the clipboard to the subprocess.

process-bdrag( )
The result of this action is determined by several factors: position of the location
cursor, motion of the location cursor and the interval between a BTransfer release.

X/Open Common Desktop Environment (XCDE) Services and Applications 261



DtTerm( ) Terminal Emulation Services

This action sends the current selection to the subprocess if text is selected, the
location cursor is disjoint from the current selection and no motion is detected
within a given time interval.

The action drags the current selection if the location cursor is positioned on the
selection, the time interval is exceeded and movement of the location cursor is
detected. This action creates a DragContext object whose XmNexportTargets
resource value includes target types of COMPOUND_TEXT, STRING and TEXT.

redraw-display ( )
Redraws the contents of the text window.

scroll(count[, units])
Scrolls the display memory down if count is greater than zero, or up if count is less
than zero. The number of lines scrolled is based on count and units. The default for
units is line. Valid values for units are:

page
halfpage
line

select-adjust( )
Extends the selection. The amount of text selected depends on the number of
mouse clicks. One click selects characters; two clicks selects words; three clicks
selects lines; and four clicks selects the entire buffer.

select-all ( )
Selects all text.

select-page( )
Selects all text currently displayed on the screen.

self-insert( )
Sends the character associated with the key pressed to the child process.

soft-reset( )
Performs a soft reset of the terminal.

stop(state)
Toggles, starts, or stops the process of reading data from the child process. Valid
values for state are:

toggle
on
off

string(string)
Inserts the specified text string as if it had been typed. The string must be quoted if
it contains white space or non-alphanumeric characters. The string is interpreted as
a hexadecimal character constant if it begins with the characters 0x.

tab( ) Sends a tab to the child process.

visual-bell ( )
Flashes the window quickly.

262 X/Open CAE Specification



Terminal Emulation Services DtTerm( )

Virtual Bindings

The bindings for virtual keys are vendor-specific. Virtual bindings do not apply when the
DtTerm widget has input focus. For information about bindings for virtual buttons and keys,
see VirtualBindings ( ).

SEE ALSO
dtterm, <Dt/Term.h>, DtTermInitialize ( ), DtTermDisplaySend( ), DtTermSubprocSend( ),
DtTermSubprocReap( ), XtSetValues( ) and XtGetValues( ), in the X/Open CAE Specification,
Window Management: X Toolkit Intrinsics; XmFrame, XmPrimitive , XmFontList ,
XmBulletinBoard , XmText, in the X/Open CAE Specification, Window Management: Xlib C
Language Binding; VirtualBindings , Core in the X/Open CAE Specification, Motif Toolkit API;
who in the X/Open CAE Specification, Commands and Utilities, Issue 4, Version 2.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 263



Headers Terminal Emulation Services

12.4 Headers
This section describes the contents of headers used by the XCDE terminal emulation functions,
macros and external variables.

Headers contain the definition of symbolic constants, common structures, preprocessor macros
and defined types. Each function in Section 12.2 specifies the headers that an application must
include in order to use that function. In most cases only one header is required. These headers
are present on an application development system; they do not have to be present on the target
execution system.

264 X/Open CAE Specification



Terminal Emulation Services <Dt/Term.h>

NAME
Dt/Term.h — terminal emulator definitions

SYNOPSIS
#include <Dt/Term.h>

DESCRIPTION
The <Dt/Term.h> header defines structures, values and function prototypes for terminal
emulator services.

The header declares the following variable:

WidgetClass dtTermWidgetClass;

The following are declared as functions:

Widget DtCreateTerm(Widget parent ,
char ∗name,
Arg ∗arglist ,
Cardinal argcount );

void DtTermInitialize(void);

void DtTermDisplaySend(Widget w,
unsigned char ∗buffer ,
int length);

void DtTermSubprocSend(Widget w,
unsigned char ∗buffer ,
int length);

void DtTermSubprocReap(pid_t pid ,
int ∗stat_loc );

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 265



Command-Line Interfaces Terminal Emulation Services

12.5 Command-line Interfaces
This section defines the utilities that provide XCDE terminal emulation services.

266 X/Open CAE Specification



Terminal Emulation Services dtterm

NAME
dtterm — emulate a terminal window

SYNOPSIS
dtterm [ ±132 ] [ ±aw] [ −background background_color ] [ −bd border_color ]
[ −bg background_color ] [ −bordercolor border_color ]
[ −borderwidth border_width ] [ ±bs ] [ −bw border_width ] [ −C]
[ −display display_name ] [ −e program_argument ... ] [ −fb fontset ]
[ −fg foreground_color ] [ −fn fontset ] [ −font fontset ]
[ −foreground foreground_color ] [ −geometry geometry_string ] [ −help ]
[ ±iconic ] [ ±j ] [ ±kshMode ] [ ±l ] [ −lf file_name ] [ ±ls ] [ ±map] [ ±mb]
[ −ms pointer_color ] [ −name prog_name ] [ −nb number ] [ ±rw ] [ −S ccn ]
[ −S c.n ] [ ±sb ] [ ±sf ] [ −sl screens [ s A l ]] [ −ti term_id ]
[ −title title_string ] [ −tm term_modes ] [ −tn term_name ] [ −usage ] [ ±vb ]
[ −w border_width ] [ −xrm resource_string ]

DESCRIPTION
The dtterm utility provides runtime support of applications written for terminals conforming to
the referenced ANSI X3.64-1979 standard and the referenced ISO/IEC 6429: 1992 standard. The
dtterm utility does not support the X/Open Utility Syntax Guidelines because it uses the X
Window System convention of full-word options. The following options are available:

−132 Recognise the DECCOLM escape sequence and resize the window appropriately.
Normally, dtterm ignores the DECCOLM escape sequence, which switches between
80- and 132-column mode.

+132 Ignore the DECCOLM escape sequence. This is the default behaviour.

−aw Allow auto-wraparound. This option allows the cursor to automatically wrap to
the beginning of the next line when it is at the right-most position of a line and text
is output. This is the default behaviour.

+aw Do not allow auto-wraparound.

−background background_color
Specify the terminal window background and the default background for the scroll
bar and the X11 pointer cursor. This option defaults to either the primary colourset
background (default) or select pixel (see −bs). The background_color argument
describes the background colour.

−bd border_color
Specify the border colour for all windows. The shell widget’s window border need
not be visible when re-parenting window managers, such as the XCDE window
manager, are used. The default is the colour black. The border_color argument
describes the border colour.

−bg background_color
Equivalent to −background. The background_color argument describes the
background colour.

−bordercolor border_color
Equivalent to −bd. The border_color argument describes the border colour.

−borderwidth border_width
Specify the border width of the shell widget’s window. This value may be
overridden by re-parenting window managers. The default is zero. The
border_width argument specifies the width of the window border in pixels.

X/Open Common Desktop Environment (XCDE) Services and Applications 267



dtterm Terminal Emulation Services

−bs Use the Motif select colour instead of the background colour for the terminal
window’s background colour.

+bs Do not use the Motif select colour instead of the background colour for the terminal
window’s background colour. This is the default behaviour.

−bw border_width
Equivalent to −borderwidth. The border_width argument specifies the width of the
window border in pixels.

−C Specify that output directed to /dev/console be directed instead to the terminal
window. It is provided as a way to prevent output, which would normally be
displayed on the internal terminal emulator (ITE), from overwriting the X server’s
display. It is not provided as a general purpose mechanism to direct the output
from an arbitrary system’s /dev/console to an arbitrary X server. Ownership of, and
read-write permission for, /dev/console is required in order to redirect console
output.

−display display_name
Specify the X11 display server. This defaults to the DISPLAY environment variable.
The display_name argument specifies the X11 display to which dtterm connects.

−e program_argument ...
Specify an executable program and any command-line arguments dtterm invokes as
a subprocess when dtterm is started. It must be the last option on the command line.
The program_argument arguments specify the program and any command-line
arguments to be invoked by dtterm.

−fb fontset
Specify an XFontSet used by dtterm when displaying bold terminal text. The
XFontSet should be specified as a Motif XmFontList. The terminal emulator
supports only character or mono-spaced fonts. When using proportional fonts, the
behaviour is undefined. The terminal emulator generates a default bold font based
on the XLFD name of the userFont. If that font is not available, the terminal
emulator generates bold text by overstriking (with a one pixel offset) the userFont.
The fontset argument specifies the bold terminal XFontSet used by dtterm.

−fg foreground_color
Specify the foreground colour of the terminal window as well as the default
foreground colour used by dtterm for the scroll bar and the for the X11 pointer
cursor. This option defaults to either the primary colourset foreground (default) or
select pixel. The foreground_color argument specifies the foreground colour.

−fn fontset
Specify an XFontSet used by dtterm when displaying terminal text. It should be
specified as a Motif XmFontList. Only character or mono-spaced fonts are
supported. When using proportional fonts, the behaviour is undefined. This font is
not used to display non-terminal text (such as menu bar, popup menus or dialogs).
The default uses the XmNtextFontList value of the parent bulletin board (see the
XmBulletinBoard widget) in the same manner as the XmText widget. The fontset
argument specifies the terminal XFontSet.

−font fontset
Equivalent to −fn. The fontset argument specifies the terminal XFontSet.

268 X/Open CAE Specification



Terminal Emulation Services dtterm

−foreground foreground_color
Equivalent to −fg. The foreground_color argument specifies the foreground colour
used by dtterm.

−geometry geometry_string
Specify the terminal window’s preferred size and position. Width and height are
expressed in characters. The default size is 24 lines of 80 characters each. There is
no default position. The geometry_string argument specifies the terminal geometry
used by dtterm.

−help Display a message summarising dtterm usage.

−iconic
Display the terminal emulator initially in an iconified state.

+iconic
Display the terminal emulator initially as a normal window. This is the default
behaviour.

−j Use jump scrolling. With jump scrolling, the screen may be scrolled more than one
line at a time. This provides for faster screen updates when multiple lines of text
are sent to the terminal. The maximum number of lines that may be jump scrolled
is limited to the number of lines in the terminal window. The dtterm terminal
emulator guarantees that all lines are displayed. This is the default behaviour.

+j Do not use jump scrolling.

−kshMode
Enable ksh mode. In ksh mode, a key pressed with the extend modifier bit set
generates an escape character followed by the character generated by the un-
extended keystroke. This option is provided for use with emacs command-line
editor mode of ksh. It conflicts with the normal meta key use for generating
extended single byte characters and for generating multi-byte Asian characters.

+kshMode
Do not enable ksh mode. This is the default behaviour.

−l Enables output logging. When dtterm enables logging, all output received from the
subprocess is logged either to a file or to a command pipeline (as specified via the
−lf option described in the following paragraph). Since data are logged directly
from the subprocess, the log file includes all escape characters and carriage-return
and newline pairs the terminal line discipline sends. The application may enable
and disable logging via escape sequences.

+l Disable output logging. This is the default behaviour.

−lf file_name
Name the file to which dtterm writes the output log. If the file_name argument
begins with a pipe symbol ( | ), dtterm assumes the rest of the string to be a
command to be used as the endpoint of a pipe. The default file name is
DttermLogXXXXX (where XXXXX is a unique value) and is created in the
directory from which the subprocess was started. The file_name argument specifies
the log file name used by dtterm for logging.

−ls Start a login shell (the first character of argv[0] is a dash), indicating to the shell that
it should read the system’s profile and the user’s .profile files (for ksh and sh).

+ls Start a normal (non-login) shell. This is the default behaviour.

X/Open Common Desktop Environment (XCDE) Services and Applications 269



dtterm Terminal Emulation Services

−map Map (de-iconify) dtterm upon subprocess output if dtterm is unmapped (iconified).
The user can specify, via the mapOnOutputDelay resource, an initial period of time
during which dtterm does not map itself upon subprocess output.

+map Indicate there is no special mapping behaviour. This is the default behaviour.

−mb Ring a bell when the user types at a specified distance from the right margin. The
distance from the right margin is specified by the −nb option.

+mb Do not ring a bell when the user types near the right margin. This is the default
behaviour.

−ms pointer_color
Specify the foreground colour used by dtterm for the terminal window’s (X11)
pointer cursor. The default is the terminal window’s foreground colour (see
−foreground). The pointer_color argument specifies the pointer foreground colour
used by dtterm.

−name prog_name
Specify the X11 name of the dtterm window. The prog_name argument specifies the
name to use.

−nb number
Ring the bell this number of characters from the right margin when enabled. The
default is 10. The number argument specifies the number of characters.

−rw Enable reverse-wraparound.

+rw Do not enable reverse-wraparound. This is the default behaviour.

−Sccn
Run the terminal emulator against a pre-opened pseudo-terminal device. The
terminal emulator provides this option to use when the pseudo-terminal device
name is of the form tty?? (that is, exactly two characters following the tty). This
option is intended for use when dtterm is programmatically invoked from within
another application. The cc argument specifies the last two characters of the
pseudo-terminal device’s slave name where the pseudo-terminal device slave name
is of the form tty??. This value is ignored, but must be exactly two characters in
length. The n argument specifies the file descriptor number that corresponds to the
pseudo-terminal device’s already opened master side.

−Sc.n
Equivalent to −Sccn, but provided for systems with a larger pseudo-terminal device
name space. The c argument specifies the last component of the pseudo-terminal
device slave name. The terminal emulator ignores this value and the value may be
empty. The n argument specifies the number of the file descriptor that corresponds
to the pseudo-terminal device’s already opened master side.

−sb Display a scroll bar. This is the default behaviour.

+sb Do not display a scroll bar.

−sf Generate Sun Function Key escape sequences instead of the escape sequences
described in Section 12.7 on page 283 for the terminal’s function keys. See Section
12.7.3 on page 296 for a description of the Sun Function Key escape sequences.

+sf Generate the escape sequences described in Section 12.7 on page 283 instead of Sun
Function Key escape sequences for the terminal’s function keys. This is the default
behaviour.

270 X/Open CAE Specification



Terminal Emulation Services dtterm

−sl screens[s|l]
Specify the number of lines in the terminal buffer beyond the length of the window.
The option value consists of a number followed by an optional suffix. If no suffix is
included or the suffix is ‘‘l’’ (ell), the total length of the terminal buffer is screens plus
the length of the terminal window. If the suffix is ‘‘s’’ (ess) the total length of the
terminal buffer is (screens+1) times the length of the terminal window. The dtterm
utility attempts to maintain the same buffer-to-window ratio when the window is
resized larger. The default is 4s. The screens argument specifies the number of
screens or lines to save.

−ti term_id
Specify the name used by dtterm to select the correct response to terminal ID
queries. Valid values are vt100, vt101, vt102, and vt220. The default is vt220. The
term_id argument specifies the terminal ID to use.

−title title_string
Specify the window title. When used with the −e option, the default is the last
component of the program’s path; otherwise, the default is the last component of
the name used to execute dtterm (that is, argv[0]). The title_string argument specifies
the title used by dterm.

−tm term_modes
Specify a string containing terminal-setting keywords and the characters to which
they can be bound. Allowable keywords include: intr, quit, erase, kill, eof, eol,
swtch, start, stop, brk, susp, dsusp, rprnt, flush, weras and lnext. The terminal
emulator correctly parses and silently ignores keywords that do not apply to a
specific architecture. Control characters can be specified as ˆchar (for example, ˆc or
ˆu), and ˆ? can be used to indicate Delete. The default is NULL. The term_modes
argument specifies the terminal mode string.

−tn term_name
Specify a name to which dtterm sets the TERM environment variable. The default is
dtterm. The term_name argument specifies the terminal name used by dtterm.

−usage
Display a usage message on the screen.

−vb Use a visual bell instead of an audible one. Flash the window instead of ringing the
terminal bell whenever a <control>-G is received.

+vb Use an audio bell instead of a visual one. This is the default behaviour.

−w border_width
Equivalent to −borderwidth. The border_width argument specifies the width of the
window border in pixels.

−xrm resource_string
Allow the user to specify the X11 Resource Manager-style resources on the
command line. The resource_string argument specifies an X11 resource string. (See
XrmParseCommand( ) and XGetDefault( ) for more information.)

OPERANDS
None.

STDIN
Not used.

X/Open Common Desktop Environment (XCDE) Services and Applications 271



dtterm Terminal Emulation Services

INPUT FILES
None.

ENVIRONMENT VARIABLES
The following environment variables affect the execution of dtterm:

DISPLAY Specify the default X Windows display to connect to (see −display). The
terminal emulator sets the subprocess’s DISPLAY environment variable to
the connected X11 display name.

HOME Determine the user’s home directory, the location of configuration files.

LANG Provide a default value for the internationalisation variables that are
unset or null. If LANG is unset or null, the corresponding value from the
implementation-specific default locale will be used. If any of the
internationalisation variables contains an invalid setting, the utility
behaves as if none of the variables had been defined.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalisation variables.

LC_MESSAGES Determine the locale that is used to affect the format and contents of
diagnostic messages written to standard error and informative messages
written to standard output.

NLSPATH Determine the location of message catalogues for the processing of
LC_MESSAGES.

SHELL Determine the default application to run.

XAPPLRESDIR Specify the name of a directory that contains application-specific
resources. If this environment variable is defined, and is set to an existing
directory, then it is searched (in addition to the standard locations) for
files containing application-specific resource specifications.

XENVIRONMENT
Specify the name of a resource file with user- or machine-specific
resources. If this variable is not defined, dtterm looks for a file named
$HOME/.Xdefaults-hostname instead, where hostname is the name of the
host where the application is executing.

XFILESEARCHPATH
Define a language-dependent location of app-defaults.

XMODIFIER Specify which input method to use.

XUSERFILESEARCHPATH
Control where X applications look for their app-defaults resource files.
The default is located in the directory /usr/dt/app-defaults. The user
must set XUSERFILESEARCHPATH if the user’s resource files are not in
this location.

272 X/Open CAE Specification



Terminal Emulation Services dtterm

The terminal emulator creates the following variable when it invokes another process:

TERM The terminal emulator sets the subprocess’s TERM environment variable
to the termName resource value. Applications use this variable to
determine the type of escape sequences to use when driving the terminal
emulator.

TERMINAL_EMULATOR
The terminal emulator sets the subprocess’s TERMINAL_EMULATOR
environment variable to dtterm to indicate that the process is running
from a dtterm terminal emulator.

WINDOWID The terminal emulator sets the subprocess’s WINDOWID environment
variable to the window number of the window in which text is rendered.

X/Open Common Desktop Environment (XCDE) Services and Applications 273



dtterm Terminal Emulation Services

RESOURCES
The dtterm utility allows the user to specify behaviour through X11 resources as well as the
command-line interface. The following is a list of the defined resources:

The dtterm Client Resource Set
Name Class Type Default
allowSendEvents AllowSendEvents Boolean False
appCursorDefault AppCursorDefault Boolean False
appKeypadDefault AppKeypadDefault Boolean False
autoWrap AutoWrap Boolean True
background Background String
backgroundIsSelect BackgroundIsSelect Boolean False
blinkRate BlinkRate int 250
borderColor BorderColor String ‘‘black’’
borderWidth BorderWidth int 0
c132 C132 Boolean False
charCursorStyle CharCursorStyle String ‘‘char_cursor_box’’
consoleMode ConsoleMode Boolean False
foreground Foreground String
geometry Geometry String NULL
iconic Iconic Boolean False
iconName IconName String ‘‘dtterm’’
jumpScroll JumpScroll Boolean True
kshMode KshMode Boolean False
logging Logging Boolean False
logFile LogFile String ‘‘DttermLogXXXXX’’ (where

XXXXX is a unique value)
logInhibit LogInhibit Boolean False
loginShell LoginShell Boolean False
mapOnOutput AutoMap Boolean False
mapOnOutputDelay MapDelay int 0
marginBell MarginBell Boolean False
menuBar MenuBar Boolean True
menuPopup MenuPopup Boolean True
nMarginBell NMarginBell int 10
pointerBlank PointerBlank Boolean False
pointerBlankDelay PointerBlankDelay int 2
pointerColor Foreground String foreground color
pointerColorBackground Background String background color
pointerShape PointerShape String ‘‘xterm’’
reverseWrap ReverseWrap Boolean False
saveLines SaveLines String 4s
scrollBar ScrollBar Boolean True
sunFunctionKeys SunFunctionKeys Boolean False
termId TermId String ‘‘vt220’’
termName TermName String ‘‘dtterm’’
title Title String ‘‘dtterm’’
ttyModes TtyModes String NULL
userBoldFont UserBoldFont XmFontList dynamic
userFont UserFont XmFontList dynamic
visualBell VisualBell Boolean False

allowSendEvents
Specifies that the terminal emulator allow synthetic events (generated and sent by
another application). Enabling this resource opens up a possible security hole.

274 X/Open CAE Specification



Terminal Emulation Services dtterm

appCursorDefault
If True, the cursor keys are initially in application mode. If False, the cursor keys are
initially in cursor mode.

appKeypadDefault
If True, the keypad keys are initially in application mode. If False, the keypad keys
are initially in numeric mode.

autoWrap
Specifies whether or not auto-wraparound is initially enabled.

background
Specifies the background colour of the terminal window as well as the default
background colour for the scroll bar. This resource defaults to either the primary
colourset background or select pixel (see backgroundIsSelect).

backgroundIsSelect
Specifies that the terminal window should use the Motif select colour instead of the
background colour for the terminal window’s background colour.

blinkRate
Specifies the number of milliseconds the cursor is in the on and off states while
blinking. A value of 250 blinks the cursor two times per second. A value of zero
turns blinking off.

borderColor
Specifies the border colour for the window. The window border need not be visible
when re-parenting window managers are used.

borderWidth
Specifies the border width of the shell widget’s window. This value may be
overridden by re-parenting window managers.

c132 Specifies whether or not the DECCOLM escape sequence, which switches between a
132- and 80-column window, is honoured.

charCursorStyle
This resource specifies the shape of the text cursor. A char_cursor_box value
specifies a cursor the width and height of the base font’s bounding box. A
char_cursor_bar value specifies a cursor the width of the base font’s bounding box,
2 pixels high, and drawn with its top on the baseline.

consoleMode
Specifies that output directed at /dev/console be directed instead to the terminal
window. It is provided as a way to prevent output, that would normally be
displayed on the internal terminal emulator (ITE), from overwriting the X server’s
display. It is not provided as a general mechanism to direct the output from an
arbitrary system’s /dev/console to an arbitrary X server. Ownership of, and read-
write permission for, /dev/console is required in order to redirect console output.

foreground
Specifies the foreground of the terminal window as well as the default used by
dtterm for the scroll bar and the colour used for the pointer cursor. This resource
defaults to the primary colourset foreground pixel.

geometry
Specifies the terminal window’s preferred size and position. The default size is 24
lines of 80 characters each. There is no default position.

X/Open Common Desktop Environment (XCDE) Services and Applications 275



dtterm Terminal Emulation Services

iconGeometry
Specifies the preferred position of the terminal emulator’s icon. Window managers
may ignore this value. There is no default.

iconic
Specifies whether or not the terminal emulator is initially displayed in an iconified
state.

iconName
Specifies the name for the icon. When used with the −e option, the default is the last
component of the program’s path; otherwise, the default is the last component of
the name used to execute dtterm (that is, argv[0]).

jumpScroll
Specifies that dtterm use jump scrolling. With jump scrolling, the screen may be
scrolled more than one line at a time. This provides for faster screen updates when
multiple lines of text are sent to the terminal. The maximum number of lines that
may be jump scrolled is limited to the number of lines in the terminal window. The
dtterm terminal emulator guarantees that all lines are displayed.

kshMode
Enables ksh mode. With ksh mode, a key pressed with the extend modifier bit set
generates an escape character followed by the character generated by the un-
extended keystroke. This option is provided for use with the emacs command-line
editor mode of ksh. It conflicts with the normal meta key use for generating
extended single byte characters and for generating multi-byte Asian characters.

logging
Enables output logging. When logging is enabled, all output received from the
subprocess is logged either to a file or to a command pipeline (as specified via the
logFile option). Since the data is logged directly from the subprocess, it includes all
escape characters and carriage-returns and newline pairs the terminal line discipline
sends. Logging may be enabled and disabled via escape sequences.

logFile
Specifies the filename to which dtterm writes the output log. If the filename begins
with a pipe symbol ( | ), dtterm assumes the rest of the string is a command to be
used as the endpoint of a pipe. The default filename is DttermLogXXXXX (where
XXXXX is a unique value) and is created in the directory from which the
subprocess was started.

logInhibit
Indicates that dtterm inhibit device and file logging.

loginShell
Indicates that the shell that is started be a login shell (that is, the first character of
argv[0] is a dash), indicating that the shell should read the system’s profile and the
user’s .profile files (for ksh and sh).

mapOnOutput
Indicates that the terminal emulator map (de-iconify) itself upon subprocess output
if it is unmapped (iconified). The user can specify, via the mapOnOutputDelay
resource, an initial period of time during which dtterm does not map itself upon
subprocess output.

mapOnOutputDelay
Specifies the number of seconds after start-up that dtterm does not honour the

276 X/Open CAE Specification



Terminal Emulation Services dtterm

mapOnOutput resource. This allows the application to send initial output (for
example, shell prompts) to the terminal without auto mapping the window. The
default is zero (no delay).

marginBell
Specifies whether or not the bell rings when the user types near the right margin.
The distance from the right margin is specified by the nMarginBell resource.

menuBar
Indicates that dtterm displays a pulldown menu bar. The default is True.

menuPopup
Indicates that dtterm displays a popup menu. The default is True.

nMarginBell
Specifies the number of characters from the right margin at which the margin bell
rings, when enabled.

pointerBlank
Specifies that dtterm puts the pointer cursor into blanking mode. In this mode, the
cursor turns on when the pointer is moved, and is blanked after a selectable number
of seconds or after keyboard input. The pointerBlankDelay resource sets the delay.

pointerBlankDelay
Specifies the number of seconds to wait after the pointer has stopped moving before
blanking the pointer (see pointerBlank). A value of zero delays pointer blanking
until a key is pressed.

pointerColor
Specifies the foreground colour used by dtterm for the terminal window’s pointer
(X11) cursor. The default is the terminal window’s foreground colour (see
foreground).

pointerColorBackground
Specifies the background colour used by dtterm for the terminal window’s pointer
(X11) cursor. The default is the terminal window’s background colour (see
background).

pointerShape
Specifies the X cursor font character used by dtterm as the pointer cursor. The font
character must be specified as a string from the <X11/cursorfont.h> header with the
leading XC_ removed. The default is xterm.

reverseWrap
Specifies whether or not reverse-wraparound is enabled.

saveLines
Specifies the number of lines in the terminal buffer beyond the length of the
window. The option value consists of a number followed by an optional suffix. If
no suffix is included or the suffix is ‘‘l’’ (ell), the total length of the terminal buffer is
screens plus the length of the terminal window. If the suffix is ‘‘s’’ (ess) the total
length of the terminal buffer is (screens+1) times the length of the terminal window.
The dtterm utility attempts to maintain the same buffer-to-window ratio when the
window is resized larger.

scrollBar
Specifies that dtterm displays a scroll bar.

X/Open Common Desktop Environment (XCDE) Services and Applications 277



dtterm Terminal Emulation Services

sunFunctionKeys
Specifies whether dtterm generates Sun Function Key escape sequences instead of
the escape sequences described in Section 12.7 on page 283 for the terminal’s
function keys. See Section 12.7.3 on page 296 for a description of the Sun Function
Key escape sequences.

termId
Supplies the name used to select the correct response to terminal ID queries. Valid
values are vt100, vt101, vt102, and vt220.

termName
Specifies a name to which dtterm sets the TERM environment variable. The default
is dtterm.

title
Specifies the window title. When used with the −e option, the default is the last
component of the program’s path; otherwise, the default is the last component of
the name used to execute dtterm (that is, argv[0]).

ttyModes
Specifies a string containing terminal-setting keywords and the characters to which
they can be bound. Allowable keywords include: intr, quit, erase, kill, eof, eol,
swtch, start, stop, brk, susp, dsusp, rprnt, flush, weras and lnext. The terminal
emulator correctly parses and silently ignores keywords that do not apply to a
specific architecture. Control characters can be specified as ˆchar (for example, ˆc or
ˆu), and ˆ? can be used to indicate Delete.

userBoldFont
Specifies an XFontSet used by dtterm when displaying bold terminal text. The
XFontSet should be specified as a Motif XmFontList. The terminal emulator
supports only character or mono-spaced fonts. When using proportional fonts, the
behaviour is undefined. The terminal emulator generates a default bold font based
on the XLFD name of the userFont. If that font is not available, dtterm generates
bold text by overstriking (with a one pixel offset) the userFont.

userFont
Specifies an XFontSet used by dtterm when displaying terminal text. XFontSet
should be specified as a Motif XmFontList. The terminal emulator supports only
character or mono-spaced fonts. When using proportional fonts, the behaviour is
undefined. This font is not used to display non-terminal text (such as menu bar,
popup menu and dialog). The default is the XmNtextFontList value of the parent
bulletin board (see the XmBulletinBoard widget) in the same manner as the XmText
widget.

visualBell
Indicates that a visual bell is preferred over an audible one. Instead of ringing the
terminal bell whenever a <control>-G is received, the window is flashed.

278 X/Open CAE Specification



Terminal Emulation Services dtterm

Resource/Option Correspondence

Many of the preceding resources correspond to the command-line arguments. The following
table describes the relationship between the two:

Command-line option Resource Setting
−132 ∗c132: True
+132 ∗c132: False
−aw ∗autoWrap: True
+aw ∗autoWrap: False
−background background_color ∗background: background_color
−bd border_color ∗borderColor: border_color
−bg background_color ∗background: background_color
−bordercolor border_color ∗borderColor: border_color
−borderwidth border_width .borderWidth: border_width
−bs ∗backgroundIsSelect: True
+bs ∗backgroundIsSelect: False
−bw border_width .borderWidth: border_width
−C ∗consoleMode: True
−display display_name .display: display_name
−e program_argument...
−fb fontset ∗userBoldFont: fontset
−fg foreground_color ∗foreground: foreground_color
−fn fontset ∗userFont: fontset
−font fontset ∗userFont: fontset
−foreground foreground_color ∗foreground: foreground_color
−geometry geometry_string .geometry: geometry_string
−iconic .iconic: True
+iconic .iconic: False
−j ∗jumpScroll: True
+j ∗jumpScroll: False
−kshMode ∗kshMode: True
+kshMode ∗kshMode: False
−l ∗logging: True
+l ∗logging: False
−lf file_name ∗logFile: file_name
−ls ∗loginShell: True
+ls ∗loginShell: False
−map ∗mapOnOutput: True
+map ∗mapOnOutput: False
−mb ∗marginBell: True
+mb ∗marginBell: False
−ms pointer_color ∗pointerColor: pointer_color
−name prog_name .name: prog_name
−nb number ∗nMarginBell: number
−rw ∗reverseWrap: True
+rw ∗reverseWrap: False
−sb ∗scrollBar: True
+sb ∗scrollBar: False

X/Open Common Desktop Environment (XCDE) Services and Applications 279



dtterm Terminal Emulation Services

−sf ∗sunFunctionKeys: True
+sf ∗sunFunctionKeys: False
−sl screenss ∗saveLines: screens ∗ lines/screen
−sl lines ∗saveLines: lines
−ti term_id ∗termId: term_id
−title title_string .title: title_string
−tm term_modes ∗ttyModes: term_modes
−tn term_name ∗termName: term_name
−vb ∗visualBell: True
+vb ∗visualBell: False
−w border_width .borderWidth: border_width

ASYNCHRONOUS EVENTS
Default.

STDOUT
Not used.

STDERR
Used only for diagnostic messages.

OUTPUT FILES
None.

EXTENDED DESCRIPTION
None.

EXIT STATUS

0 successful completion

>0 an error occurred

CONSEQUENCES OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

SEE ALSO
<Dt/Term>, XmBulletinBoard , XmText in the X/Open CAE Specification, Motif Toolkit API;
XrmParseCommand( ), XGetDefault( ) in the X/Open CAE Specification, Window Management:
Xlib C Language Binding.

CHANGE HISTORY
First released in Issue 1.

280 X/Open CAE Specification



Terminal Emulation Services Actions

12.6 Actions
This section defines the actions that provide XCDE terminal emulation services to support
application portability at the C-language source or shell script levels.

X/Open Common Desktop Environment (XCDE) Services and Applications 281



<dttermaction> Terminal Emulation Services

NAME
dttermaction — XCDE terminal emulation actions

SYNOPSIS
Dtterm
Terminal

DESCRIPTION
The XCDE Terminal Emulation Services support the following terminal emulation actions:

Dtterm
Open a view of the desktop terminal emulator.

Terminal
Open a view of the user’s preferred terminal emulator.

These actions can be invoked from an application using the DtActionInvoke ( ) function or
invoked from a command line using the dtaction utility.

SEE ALSO
dtaction, DtActionInvoke ( ) in the XCDI specification.

CHANGE HISTORY
First released in Issue 1.

282 X/Open CAE Specification



Terminal Emulation Services Formats

12.7 Formats

12.7.1 Received Escape Sequences

The dtterm utility and the DtTerm widget support the following list of received escape
sequences. Spaces have been added for readability and are not part of the escape sequence. The
following indicate parameters: pi , p1 , label , file and text . Space indicates a required space,
hexadecimal code 0x20. A <control>-char indicates a control code (such as <control>-G, which is
hexadecimal code 0x07). Esc indicates hexadecimal code 0x1b. Backslash indicates hexadecimal
code 0x5c. Literals are indicated as literal and must be included exactly as specified. All
references to the dtterm utility in this section also apply to the DtTerm widget.

<control>-G
(BEL) Bell. The terminal either issues an audible bell, or flashes the text window
depending on the state of the visual bell flag.

<control>-H
(BS) Backspace. The cursor moves one cursor position to the left. If reverse-wrap
mode is disabled and the cursor is at the left-most column of the line when a
backspace character is received, the cursor remains at its current position. If
reverse-wrap mode is enabled and the cursor is at the left-most column of the line
when a backspace character is received, the cursor moves to the right-most
column of the previous line. If the cursor is also in the top-most row, the cursor
moves to the right-most column of the bottom-most row.

<control>-I
(HT) Horizontal Tab. The cursor moves right to the next tab stop. If there are no
further tab stops set to the right of the cursor, the cursor moves to the right-most
column of the current line.

<control>-J
(LF) Line Feed or New Line. The cursor moves to the same column of the next
line. If the cursor is in the bottom-most line of the scrolling region, the scrolling
region scrolls up one line. Lines scrolled off the top of the scrolling region are
lost. Blank lines with no visible character attributes are added at the bottom of
the scrolling region.

<control>-K
(VT) Vertical Tab. Same as Line Feed.

<control>-L
(FF) Form Feed or New Page. Same as Line Feed.

<control>-M
(CR) Carriage Return. The cursor moves to the left-most column of the current
line.

Esc ( B
(SCS) Designate referenced ISO/IEC 646: 1983 standard (base font) as G0.

Esc ( 0
(SCS) Designate DEC Special Graphic (line draw) as G0.

Esc ) B
(SCS) Designate referenced ISO/IEC 646: 1983 standard (base font) as G1.

Esc ) 0
(SCS) Designate DEC Special Graphic (line draw) as G1.

X/Open Common Desktop Environment (XCDE) Services and Applications 283



Formats Terminal Emulation Services

Esc ∗ B
(SCS) Designate referenced ISO/IEC 646: 1983 standard (base font) as G2.

Esc ∗ 0
(SCS) Designate DEC Special Graphic (line draw) as G2.

Esc + B
(SCS) Designate referenced ISO/IEC 646: 1983 standard (base font) as G3.

Esc + 0
(SCS) Designate DEC Special Graphic (line draw) as G3.

<control>-N
(LS1) Map G1 into GL.

<control>-O
(LS0) Map G0 into GL.

Esc n (LS2) Map G2 into GL.

Esc o (LS3) Map G3 into GL.

Esc N (SS2) Map G2 into GL for the next character.

Esc O (SS3) Map G3 into GL for the next character.

Esc Space F
(S7C1T) Select 7-bit C1 Control Characters. In this mode, the dtterm utility sends
all C1 Control Characters to the host as 7-bit escape sequences. That is, CSI is
sent to the host as ‘‘Esc [’’.

Esc Space G
(C8C1T) Select 8-bit C1 Control Characters. In this mode, the dtterm utility sends
all C1 Control Characters to the host as 8-bit control codes. That is, CSI is sent
back as the hexadecimal value 0x9B.

Esc # 8
(DECALN) DEC Screen Align Test. The screen is filled with the character ‘‘E’’.

Esc 7 (DECSC) Save cursor. The following is saved:

• Cursor position

• Character attributes set by the SGR command

• Any pending single shift 2 or 3 (SS2 or SS3)

• State of the autowrap flag

• State of the reverse wrap flag

• State of origin mode (DECOM)

• State of selective erase

Esc 8 (DECRC) Restore cursor. The terminal emulator is restored to the state saved by
the save cursor (DECSC) function. If nothing was saved by DECSC, then the
following actions are performed:

• Moves the cursor to the home position

• Resets the origin mode (DECOM)

284 X/Open CAE Specification



Terminal Emulation Services Formats

• Turns off all character attributes (SGR)

• Maps the referenced ISO/IEC 646: 1983 standard character set into GL

Esc = (DECPAM) Application keypad. In this mode, the numeric keypad sends
application sequences. (See Section 12.7.3 on page 294).

Esc > (DECPNM) Normal keypad. In this mode, the numeric keypad sends the
characters shown on the keypad. Keys PF1 to PF4, inclusive, send application
sequences. (See Section 12.7.3 on page 294).

Esc D (IND) Index. The cursor moves down to the same column of the next line. If the
cursor is in the bottom-most line of the scrolling region, the scrolling region is
scrolled up one line. The line scrolled off the top of the scrolling region is lost. A
blank line with no visible character attributes is added at the bottom of the
scrolling region.

Esc E (NEL) Next line. The cursor moves down to the first column of the next line. If
the cursor is in the bottom-most line of the scrolling region, the scrolling region is
scrolled up one line. The line scrolled off the top of the scrolling region is lost. A
blank line with no visible character attributes is added at the bottom of the
scrolling region.

Esc H (HTS) Tab set. This function sets a horizontal tab stop at the column where the
cursor is located.

Esc M (RI) Reverse index. The cursor moves up to the same column of the previous line.
If the cursor is in the top-most line of the scrolling region, the scrolling region is
scrolled down one line. The line scrolled off the bottom of the scrolling region is
lost. A blank line with no visible character attributes is added at the top of the
scrolling region.

Esc P p1 ; p2 | p3 Esc Backslash
(DECUDK) User defined keys

Esc Z (DECID) Return terminal ID. This function is similar to a primary device
attributes (DA) request. (See ‘‘Esc [ c ’’ (DA) described later in this document.)

Esc c (RIS) Full reset. This function performs a full (hard) reset. For additional
information, see Section 12.7.2 on page 293.

Esc [ pi q
(DECSCA) Select character protection attribute. The default value is 0. This
escape sequence defines the characters that come after it as erasable or not
erasable from the screen. The selective erase escape sequences, (DECSED and
DECSEL), can only erase characters defined as erasable. Valid supported values
of pi are:

0 DECSED and DECSEL can erase characters.

1 DECSED and DECSEL cannot erase characters.

2 Same as 0.

 Esc [ pi @
(ICH) Insert pi blank characters. The default value is 1. A parameter value of 0 or
1 inserts a single blank character. A parameter value of N inserts N blank
characters. Blank characters with normal character attributes are inserted at the
cursor position. Characters to the right of the cursor move to the right.
Characters scrolled past the end of the line are lost.

X/Open Common Desktop Environment (XCDE) Services and Applications 285



Formats Terminal Emulation Services

 Esc [ pi A
(CUU) Cursor up pi lines. The default value is 1. A parameter value 0 or 1 moves
the cursor up one line. A parameter value of N moves the cursor up N lines. The
cursor stops at the top margin. If the cursor is already above the top margin, the
cursor stops at the top line.

Esc [ pi B
(CUD) Cursor down pi lines. The default value is 1. A parameter value 0 or 1
moves the cursor down one line. A parameter value of N moves the cursor down
N lines. The cursor stops at the bottom margin. If the cursor is already below the
bottom margin, the cursor stops at the bottom line.

Esc [ pi C
(CUF) Cursor forward pi characters. The default value is 1. A parameter value 0
or 1 moves the cursor forward one character. A parameter value of N moves the
cursor forward N characters. The cursor stops at the right-most column of the
line.

Esc [ pi D
(CUB) Cursor backward pi characters. The default value is 1. A parameter value
0 or 1 moves the cursor backward one character. A parameter value of N moves
the cursor backward N characters. The cursor stops at the left-most column of the
line.

Esc [ pi F
(CPL) Cursor to the first column of the pithprecedingline. The default value is 1.
A parameter value 0 or 1 moves the cursor to the preceding line. A parameter
value of N moves the cursor to the Nth preceding line. If the cursor is below the
top margin, the cursor stops at the top margin. If the cursor is already above the
top margin, the cursor stops at the top line.

Esc [ pi G
(CHA) Cursor to column pi . The default value is 1. A parameter value 0 or 1
moves the cursor to the first column of the current line. A parameter value of N
moves the cursor to the Nth column of the current line.

Esc [ p1 ; p2 H
(CUP) Cursor position. The default value is 1. A p1 value 0 or 1 moves the cursor
to row one. A p1 value of N moves the cursor to row N. A p2 value 0 or 1 moves
the cursor to column one. A p2 value of N moves the cursor to column N. The
starting point for lines and columns depends on the setting of the origin mode
(DECOM).

Esc [ pi J
(ED) Erase in display. The default value is 0. A parameter value of 0 erases from
the cursor to the end of the display. A parameter value of 1 erases from the
beginning of the display to the cursor position, inclusive. A parameter value of 2
erases the complete display.

Esc [ pi K
(EL) Erase in line. The default value is 0. A parameter value of 0 erases from the
cursor to the end of the line. A parameter value of 1 erases from the beginning of
the line to the cursor position, inclusive. A parameter value of 2 erases the
complete line.

286 X/Open CAE Specification



Terminal Emulation Services Formats

Esc [ pi L
(IL) Insert lines. The default value is 1. A parameter value 0 or 1 inserts one line
at the cursor. A parameter value of N inserts N lines at the cursor. As lines are
inserted, lines below the cursor and in the scrolling region move down. Lines
scrolled off the page are lost. There is no effect outside the scrolling region.

Esc [ pi M
(DL) Delete lines. The default value is 1. A parameter value 0 or 1 deletes one
line at the cursor. A parameter value of N deletes N lines at the cursor. As lines
are deleted, lines below the cursor and in the scrolling region move up. Blank
lines with no visible character attributes are added at the bottom of the scrolling
region. There is no effect outside the scrolling region.

Esc [ pi P
(DCH) Delete characters. The default value is 1. A parameter value 0 or 1 deletes
one character at the cursor position. A parameter value of N deletes N characters
at the cursor position. An parameter greater than the number of characters
between the cursor and the right margin only deletes the remaining characters on
the line. As characters are deleted, the remaining characters move left and are
replaced by blank spaces with no visual character attributes.

Esc [ pi S
(SU) Scroll up pi lines. The default value is 1. A parameter value 0 or 1 scrolls the
display up one line. A parameter value of N scrolls the display up N lines. The
scrolling region scrolls up. Lines scrolled off the top of the scrolling region are
lost. Blank lines with no visible character attributes are added at the bottom of
the scrolling region.

Esc [ pi T
(SD) Scroll down pi lines. The default value is 1. A parameter value 0 or 1 scrolls
the display down one line. A parameter value of N scrolls the display down N
lines. The scrolling region scrolls down. Lines scrolled off the bottom of the
scrolling region are lost. Blank lines with no visible character attributes are added
at the top of the scrolling region.

Esc [ pi X
(ECH) Erase pi characters. The default value is 1. A parameter value 0 or 1 erases
a single character. A parameter value of N erases N characters. The character
attributes of erased characters are cleared. This escape sequences works inside or
outside the scrolling margins.

Esc [ pi c
(DA) Send device attributes. The default is 0. A parameter value 0 or 1 causes the
terminal emulator to respond with ‘‘Esc [ ? 1 ; 2 c’’.

Esc [ p1  ; p2 f
(HVP) Horizontal and vertical position. This escape sequence has been replaced
by CUP and offers identical functionality. It is provided to maintain backward
compatibility.

Esc [ pi g
(TBC) Tab clear. The default is 0. A parameter value of 0 clears the tab stop at the
current cursor column. A parameter value of 3 clears all tab stops.

X/Open Common Desktop Environment (XCDE) Services and Applications 287



Formats Terminal Emulation Services

Esc [ pi h
(SM) Set mode. This escape sequence sets ANSI modes. Valid supported values
of pi are:

2 (KAM) Keyboard lock. In this mode, dtterm ignores all keystrokes
from the keyboard.

4 (IRM) Insert mode. In this mode, new characters move characters in
display memory to the right. Characters moved past the end of the
line are lost.

12 (SRM) Local echo off. In this mode, dtterm sends keyboard characters
to the host only. The host must echo back characters for them to be
displayed.

20 (LNM) New line. In this mode, the cursor moves to the first column
on the next line when dtterm receives an LF, FF or VT character.
When the Return key is pressed, dtterm sends a carriage-return (CR)
followed by a newline (NL).

Esc [ pi l
(RM) Reset mode. This escape sequences resets ANSI modes. Valid supported
values of pi are:

2 (KAM) Keyboard unlock. In this mode, dtterm processes all
keystrokes from the keyboard.

4 (IRM) Replace mode. In this mode, new characters replace the
character at the cursor position.

12 (SRM) Local echo on. In this mode, dtterm sends keyboard characters
to both the host and the display. The host does not have to echo back
characters for them to be displayed.

20 (LNM) New line. In this mode, the cursor moves to the same column
on the next line when dtterm receives an LF, FF or VT character.
When the Return key is pressed, dtterm sends a carriage-return (CR).

Esc [  pi  ; . . . m
(SG) Graphics rendition. The default value is 0. This escape sequence selects one
or more character attributes. Valid supported values for pi are:

0 All attributes off

1 Bold

2 Faint

4 Underline

5 Blinking. This attribute appears as bold text

7 Negative image

8 Invisible image

22 Bold and Faint off

24 Underline off

25 Blinking off

288 X/Open CAE Specification



Terminal Emulation Services Formats

27 Negative image off

28 Invisible image off

30 Black display (text)

31 Red display (text)

32 Green display (text)

33 Yellow display (text)

34 Blue display (text)

35 Magenta display (text)

36 Cyan display (text)

37 White display (text)

39 Default display (text)

40 Black background

41 Red background

42 Green background

43 Yellow background

44 Blue background

45 Magenta background

46 Cyan background

47 White background

49 Default background

Esc [ pi n
(DSR) Device status report. Valid supported values for pi are:

5 Operating status. The dtterm utility responds with an OK message of
‘‘Esc [ 0 n’’.

6 (CPR) Cursor position report. The dtterm utility responds with the
current cursor position in the form ‘‘Esc [ p1 ; p2 R’’ where p1 is the
current cursor line and p2 is the current cursor row.

Esc [ ? pi n
(DSR) DEC private device status report. Valid supported values for pi are:

15 Printer port status. The dtterm utility responds with a ‘‘no printer
available’’ message of ‘‘Esc [ ? 13 n’’.

25 User-defined key status. The dtterm utility responds with either a
message of ‘‘Esc [ ? 20 n’’ if UDKs are unlocked, or ‘‘Esc [ ? 21 n’’ if
UDKs are locked.

26 Keyboard status. The dtterm utility responds with a message of ‘‘Esc
[ ? 27 ; 1 n’’, which indicates a North American keyboard.

X/Open Common Desktop Environment (XCDE) Services and Applications 289



Formats Terminal Emulation Services

Esc [ p1 ;  p2 r
(DECSTBM) Set top and bottom margins. The default value for p1 is 1. The
default value for p2 is the current number of lines in the terminal window. The
top and bottom margins are set to p1 and p2 respectively. Scrolling is not
performed outside the margins.

Esc [ p1 ; p2 ; p3 t
Window manipulation. Valid values for p1 (and any additional parameters) are:

1 Restore (de-iconify) window.

2 Minimise (iconify) window.

3 ; x  ; y
Move window to [x, y].

4 ; height ; width
Resize the dtterm window to height and width in pixels.

5 Raise the dtterm window to the front of the stacking order.

6 Lower the dtterm window to the bottom of the stacking order.

7 Refresh the dtterm window.

8 ; height ; width
Resize the text area to height and width in characters.

11 Report dtterm window state. If the dtterm window is open (non-
iconified), it returns ‘‘Esc [ 1 t’’. If the dtterm window is iconified, it
returns ‘‘Esc [ 2 t’’.

13 Report the dtterm window position. The terminal emulator returns
‘‘Esc [ 3 ; x ; y t’’.

14 Report the dtterm window in pixels. The terminal emulator returns
‘‘Esc [ 4 ; height ; width t’’.

18 Report the size of the area in characters. The terminal emulator
returns ‘‘Esc [ 8 ; height ; width t’’.

20 Report the dtterm window’s icon label. The terminal emulator
returns ‘‘Esc ] L label Esc Backslash’’.

21 Report the dtterm window’s title. The terminal emulator returns ‘‘Esc
] l title Esc Backslash’’.

 Esc [ pi x
Request terminal modes. The default value is 0. Valid values are 0 or 1. If pi is 0,
dtterm responds with the message of ‘‘Esc [ 2 ; 1 ; 1 ; 112 ; 112 ; 1 ; 0 x’’. If pi is 1,
dtterm responds with the message of ‘‘Esc [ 3 ; 1 ; 1 ; 112 ; 112 ; 1 ; 0x’’.

 Esc [ ? pi h
(SM) DEC private set mode. This escape sequences sets DEC private modes.
Valid supported values of pi are:

1 (DECCKM) Enable cursor keys mode. When cursor keys mode is
enabled, the arrow keys send application sequences to the host.

3 (DECCOLM) Enable 132-column mode. When 132-column mode is
enabled, the number of columns is the terminal window changed to
132. When entering into 132-column mode, the left, right, top, and

290 X/Open CAE Specification



Terminal Emulation Services Formats

bottom margins are reset to their default positions and the display is
cleared.

4 (DECSCLM) Enable smooth scrolling. When smooth scrolling is
enabled, lines are added and the screen is scrolled a single line at a
time.

5 (DECSCNM) Enable reverse video. When reverse video mode is
enabled, the foreground and background colours of the terminal
window are reversed.

6 (DECOM) Enable origin mode. When origin mode is enabled, the
home cursor position is the upper-left corner of the screen, within the
margins. The starting point for line numbers depends on the current
top margin. The cursor cannot be moved outside the top and bottom
margins.

7 (DECAWM) Enable autowrap. When autowrap mode is enabled,
characters received when the cursor is at the right-most column of
the page are inserted at the beginning of the next line. If the cursor is
at the bottom line of the scrolling region, the page is scrolled up 1
line.

8 (DECARM) Enable auto-repeat keys. This option is ignored.

25 (DECTCEM) Enable cursor visible. In this mode, the text cursor is
visible.

40 Enable DECCOLM escape sequence. When the DECCOLM escape
sequence is enabled, the terminal emulator switches into either an 80-
or 132-column window when it receives a DECCOLM escape
sequence.

44 Enable margin bell. When the margin bell is enabled, the dtterm
utility’s bell (either audible or visible) is invoked when the cursor is a
predefined distance from the right margin and a key is pressed.

45 Enable reverse-autowrap mode. When reverse-autowrap mode is
enabled, and a backspace is received when the cursor is at the left-
most column of the page, the cursor is wrapped to the right-most
column of the previous line. If the cursor is at the top line of the
scrolling region, the cursor is wrapped to the right-most column of
the bottom line of the scrolling region. If the cursor is at the top line
of terminal window, the cursor is wrapped to the right-most column
of the bottom line of the terminal window.

46 Enable logging. When logging is enabled, all text received from the
child process is logged to a file.

Esc [ ? pi l
(RM) DEC private mode reset. This escape sequence sets DEC private modes.
Valid supported values of pi are:

1 (DECCKM) Disable cursor keys mode. When cursor keys mode is
disabled, the arrow keys send ANSI cursor sequences to the host.

3 (DECCOLM) Disable 132-column mode. When 132-column mode is
disabled, the number of columns is the terminal window changed to
80. When entering into 80-column mode, the left, right, top, and

X/Open Common Desktop Environment (XCDE) Services and Applications 291



Formats Terminal Emulation Services

bottom margins are reset to their default positions and the display is
cleared.

4 (DECSCLM) Disable smooth scrolling. When smooth scrolling is
disabled, lines are added and the screen is scrolled up to a full screen
at a time depending on how fast text is received from the child
process.

5 (DECSCNM) Disable reverse video. When reverse video mode is
disabled, the foreground and background colours of the terminal
window are not reversed.

6 (DECOM) Disable origin mode. When origin mode is disabled, the
home cursor position is the upper-left corner of the screen. The
starting point for line numbers is independent of the current top
margin. The cursor can be moved outside the top and bottom
margins.

7 (DECAWM) Disable autowrap. When autowrap mode is enabled,
characters received when the cursor is at the right-most column of
the page, replace the character already on the line.

8 (DECARM) Disable auto-repeat keys. This option is ignored.

25 (DECTCEM) Disable cursor visible. In this mode, the text cursor is
invisible.

40 Disable DECCOLM escape sequence. When the DECCOLM escape
sequence is disabled, the terminal emulator ignores the DECCOLM
escape sequence and does not switch into either an 80- or 132-column
window when it is received.

44 Disable margin bell. When the margin bell is disabled, the dtterm
utility’s bell is not invoked when the cursor is a pre-defined distance
from the right margin and a key is pressed.

45 Disable reverse-autowrap mode. When reverse-autowrap mode is
disabled, and a backspace is received when the cursor is at the left-
most column of the page, the cursor remains at that position.

46 Disable logging. When logging is disabled, text received from the
child process is not logged to a file.

Esc [ ? pi r
Restore DEC private mode values. The value corresponding to mode pi
previously saved is restored. Valid values for pi are the same as the DEC private
modes supported by SM. Using this escape sequence is discouraged.

Esc [ ? pi s
Save DEC private mode values. The value corresponding to mode pi is saved.
Valid values for pi are the same as the DEC private modes supported by SM.
Using this escape sequence is discouraged.

 Esc ] p1 ;  p2 <control>-G
Set text parameters. This escape sequence allows various terminal emulator text
values to be set. Valid supported values of p1 are:

0 Change the icon name and window title to the string p2 .

292 X/Open CAE Specification



Terminal Emulation Services Formats

1 Change the icon name to the string p2 .

2 Change the window title to the string p2 .

3 Set the current working directory to the string p2 . The terminal
emulator tries to restart in this directory when it is restarted in a new
session.

Esc  ˆ   message Esc Backslash
(PM) Privacy message. The data received in a privacy message is ignored and is
not displayed.

Esc _ pi Esc Backslash
(APC) Application program command. The terminal emulator implements no
APC functions. The data is ignored and is not displayed.

 Esc [ ? pi K
(DECSEL) Selective erase in line. The default value is 0. This escape sequence
only erases erasable characters in a single line of text. Only those characters
defined as erasable by the DECSCA escape sequence are erased. A parameter
value of 0 erases from the cursor to the end of the line. A parameter value of 1
erases from the beginning of the line to the cursor position, inclusive. A
parameter value of 2 erases the complete line.

Esc  [ ? pi J
(DECSED) Selective erase in display. The default value is 0. This escape
sequence only erases erasable characters in the display. Only those characters
defined as erasable by the DECSCA escape sequence are erased. A parameter
value of 0 erases from the cursor to the end of the display. A parameter value of 1
erases from the beginning of the display to the cursor position, inclusive. A
parameter value of 2 erases the complete display.

Esc ] l text Esc Backslash
Set the window title to text .

Esc ] I file Esc Backslash
Set the icon to the icon found in file.

Esc ] L label Esc Backslash
Set the icon name to label .

Esc [ ! p
(DECSTR) Soft terminal reset. This function performs a soft reset. For additional
information, see Section 12.7.2.

12.7.2 Reset

The dtterm utility supports two levels of reset: full reset and soft reset. Reset can be invoked by
menu buttons, the keyboard or by escape sequences. Soft reset performs the following actions:

• Turns on the text cursor (DECTCEM)

• Enables replace mode (IRM)

• Turns off origin mode (DECOM)

• Turns on autowrap (DECAWM)

• Turns off reverse wrap

X/Open Common Desktop Environment (XCDE) Services and Applications 293



Formats Terminal Emulation Services

• Unlocks the keyboard (KAM)

• Sets the cursor keypad mode to normal (DECCKM)

• Sets the numeric keypad mode to numeric (DECNKM)

• Sets the top and bottom margins to the first and last lines of the window (DECSTBM)

• Sets all character sets (GL, G0, G1, G2 and G3) to referenced ISO/IEC 646: 1983 standard

• Turns off all character attributes (SGR)

• Sets selective erase mode off (DECSCA)

• Clears any cursor state information saved with save cursor (DECSC)

Full reset performs the same functions as soft reset along with the following actions:

• Cursor is moved to the home position

• Clears the screen

• Clears user defined keys (DECUDK)

• Turns off reverse video (DECSCNM)

• Turns off auto linefeed mode (LNM)

• Turns on jump scroll (DECSCLM)

12.7.3 Transmitted Escape Sequences

12.7.3.1 Cursor Key Mode

The cursor keys transmit the following escape sequences depending on the setting of the mode
specified, either via the appCursorDefault resource, or the mode specified via the DECCKM
escape sequence.

Key Normal Application
Cursor Up Esc [ A Esc O A
Cursor Down Esc [ B Esc O B
Cursor Right Esc [ C Esc O C
Cursor Left Esc [ D Esc O D

12.7.3.2 Application Keypad Mode

The application keypad transmits the following escape sequences depending on the setting of
the mode specified, either via the appKeypadDefault resource, or the mode specified via the
DECPNM escape sequence.

Key Numeric Application
Space Space Esc O A
Tab Tab Esc O I
Enter CR Esc O M
PF1 Esc O P Esc O P

294 X/Open CAE Specification



Terminal Emulation Services Formats

PF2 Esc O Q Esc O Q
PF3 Esc O R Esc O R
PF4 Esc O S Esc O S
∗ (multiply) ∗ Esc O j
+ (add) + Esc O k
, (comma) , Esc O l
- (minus) - Esc O m
/ (divide) / Esc O o
0 0 Esc O p
1 1 Esc O q
2 2 Esc O r
3 3 Esc O s
4 4 Esc O t
5 5 Esc O u
6 6 Esc O v
7 7 Esc O w
8 8 Esc O x
9 9 Esc O y
= (equal) = Esc O X

12.7.3.3 Standard Function Keys

The function keys transmit the following escape sequences unless Sun function keys mode has
been selected, either via the dtterm −sk option, or the sunFunctionKeys resource in dtterm or the
DtTerm widget.

Key Escape Sequence
F1 Esc [ 1 1 ˜
F2 Esc [ 1 2 ˜
F3 Esc [ 1 3 ˜
F4 Esc [ 1 4 ˜
F5 Esc [ 1 5 ˜
F6 Esc [ 1 7 ˜
F7 Esc [ 1 8 ˜
F8 Esc [ 1 9 ˜
F9 Esc [ 2 0 ˜
F10 Esc [ 2 1 ˜
F11 Esc [ 2 3 ˜
F12 Esc [ 2 4 ˜
F13 Esc [ 2 5 ˜
F14 Esc [ 2 6 ˜
F15 Esc [ 2 8 ˜
F16 Esc [ 2 9 ˜
F17 Esc [ 3 1 ˜
F18 Esc [ 3 2 ˜
F19 Esc [ 3 3 ˜
F20 Esc [ 3 4 ˜
Help Esc [ 2 8 ˜

X/Open Common Desktop Environment (XCDE) Services and Applications 295



Formats Terminal Emulation Services

Menu Esc [ 2 9 ˜
Find Esc [ 1 ˜
Insert Esc [ 2 ˜
Delete Esc [ 3 ˜
Remove Esc [ 3 ˜
Select Esc [ 4 ˜
Prior Esc [ 5 ˜
Next Esc [ 6 ˜

12.7.3.4 Sun Function Keys

Key Escape Sequence
F1 Esc [ 2 2 4 z
F2 Esc [ 2 2 5 z
F3 Esc [ 2 2 6 z
F4 Esc [ 2 2 7 z
F5 Esc [ 2 2 8 z
F6 Esc [ 2 2 9 z
F7 Esc [ 2 3 0 z
F8 Esc [ 2 3 1 z
F9 Esc [ 2 3 2 z
F10 Esc [ 2 3 3 z
F11 Esc [ 1 9 2 z
F12 Esc [ 1 9 3 z
F13 Esc [ 1 9 4 z
F14 Esc [ 1 9 5 z
F15 Esc [ 1 9 6 z
F16 Esc [ 1 9 7 z
F17 Esc [ 1 9 8 z
F18 Esc [ 1 9 9 z
F19 Esc [ 2 0 0 z
F20 Esc [ 2 0 1 z
F21 (R1) Esc [ 2 0 8 z
F22 (R2) Esc [ 2 0 9 z
F23 (R3) Esc [ 2 1 0 z
F24 (R4) Esc [ 2 1 1 z
F25 (R5) Esc [ 2 1 2 z
F26 (R6) Esc [ 2 1 3 z
F27 (R7) Esc [ 2 1 4 z
F28 (R8) Esc [ 2 1 5 z
F29 (R9) Esc [ 2 1 6 z
F30 (R10) Esc [ 2 1 7 z
F31 (R11) Esc [ 2 1 8 z
F32 (R12) Esc [ 2 1 9 z
F33 (R13) Esc [ 2 2 0 z
F34 (R14) Esc [ 1 2 1 z
F35 (R15) Esc [ 1 2 2 z
Help Esc [ 1 9 6 z

296 X/Open CAE Specification



Terminal Emulation Services Formats

Menu Esc [ 1 9 7 z
Find Esc [ 1 z
Insert Esc [ 2 z
Delete Esc [ 3 z
Remove Esc [ 3 z
Select Esc [ 4 z
Prior Esc [ 5 z
Next Esc [ 6 z

X/Open Common Desktop Environment (XCDE) Services and Applications 297



Capabilities Terminal Emulation Services

12.8 Capabilities
A conforming implementation of the XCDE terminal emulation services supports at least the
following capabilities:

1. Provides users with a window that behaves like a terminal supporting the escape
sequences specified in Section 12.7 on page 283, which are consistent with the the
referenced ANSI X3.64-1979 standard and the referenced ISO/IEC 6429: 1992 standard.

2. Conforms to the Required items in the Application Style Checklist in Chapter 20 on page
355.

3. Has been internationalised using the standard interfaces in the X/Open CAE Specification,
System Interfaces and Headers, Issue 4, Version 2, the X/Open CAE Specification,
Window Management: Xlib C Language Binding, and the X/Open CAE Specification,
Motif Toolkit API, and supports any locale available in the underlying X Window System
Xlib implementation.

4. Allows users to customise the window in at least the following ways:

a. Visibility of the cursor (visible or invisible)

b. Shape of the cursor (box or underline)

c. Blinking of the cursor (blinking on or off)

d. Type of scrolling (smooth scrolling or jump scrolling)

e. Type of bell (audible or visual)

f. Enabling the margin bell (enable or disable)

g. Position of the right margin for the margin bell

h. Control sequences generated by the keyboard and numeric pad (normal or
application)

i. Locking the user-defined function keys (lock or unlock)

j. End-of-line wrapping (enable or disable)

k. Reverse end-of-line wrapping (enable or disable)

l. Selection of end-of-line character to generate (carriage return or carriage
return/linefeed)

m. Size of the terminal window

n. Normal or reverse-video operation

o. Size of the font used for terminal operation

5. Supports the command-line options, resources and environment variables described in the
man page dtterm.

6. Supports copy and paste operations for text.

7. Supports both soft and hard resets.

8. Supports XCDE font naming conventions for interface fonts, as described in Section 19.1 on
page 343.

298 X/Open CAE Specification



Chapter 13

Style Management Services

13.1 Introduction
The XCDE style management services allow users to customise the visual elements and system
behaviour of the X/Open Common Desktop Environment. These services provide a graphical
interface for customising the colours, fonts, backdrops and screen savers of the desktop and the
system-wide behaviour of the keyboard and mouse. They also allow users to set the screen
time-out interval and the session startup behaviour of XCDE and to customise the window
behaviour on the desktop.

13.2 Actions
This section defines the actions that provide XCDE style management services to support
application portability at the C-language source or shell script levels.

X/Open Common Desktop Environment (XCDE) Services and Applications 299



<dtstyleaction> Style Management Services

NAME
dtstyleaction — XCDE style management actions

SYNOPSIS
Dtstyle

DESCRIPTION
The XCDE Style Management Services support the following style management actions:

Dtstyle
Open a view of the desktop style manager.

These actions can be invoked from an application using the DtActionInvoke ( ) function or
invoked from a command line using the dtaction utility.

SEE ALSO
dtaction, DtActionInvoke ( ) in the XCDI specification.

CHANGE HISTORY
First released in Issue 1.

300 X/Open CAE Specification



Style Management Services Capabilities

13.3 Capabilities
A conforming implementation of the XCDE style management services supports at least the
following capabilities:

1. Conforms to the Required items in the Application Style Checklist in Chapter 20 on page
355.

2. Has been internationalised using the standard interfaces in the X/Open CAE Specification,
System Interfaces and Headers, Issue 4, Version 2, the X/Open CAE Specification,
Window Management: Xlib C Language Binding, and the X/Open CAE Specification,
Motif Toolkit API, and supports any locale available in the underlying X Window System
Xlib implementation.

3. Allows the user to select a colour palette from a list of available colour palettes. Users can
specify the number of colours used in the selected palette to be 8, 4 or 2 depending upon
the variety of colours they prefer. Colour entries in the selected palette are used to colour
the various components of the desktop. Desktop colours can be changed by selecting a
different palette or modifying individual colours in the selected palette. Users can also
create entirely new palettes. Selection of the colour palette and customisation of
individual colours are immediately reflected on the desktop.

4. Allows the user to specify the desktop default font size. The XCDE style management
services use the XCDE interface font aliases to provide visual integrity across the desktop.
See Section 19.1.2 on page 348.

5. Allows the user to select a workspace’s backdrop (root window) from a list of available
backdrops.

6. Allows the user to customise the auto-repeat capability of the keyboard.

7. Allows the user to specify the mouse to be right-handed or left-handed and to specify the
double-click interval, pointer acceleration, pointer movement threshold and meaning of
button 2 (BTransfer or BSelect).

8. Allows the user to customise the beeper volume and duration.

9. Allows the user to enable or disable the screen saver, to select and preview from a list of
available screen savers the screen saver to be run at screen time-out, and to set the screen
saver time-out interval.

10. Allows the user to customise the window focus (focus follows mouse, click in window for
focus), window behaviour (raise window with focus, allow primary windows on top,
opaque move), and iconification (use icon box, place on workspace).

11. Allows the user to customise the session startup (resume current session, return to home
session, prompt at logout time) and to enable/disable the logout confirmation dialog.

12. Allows users to replace their home session with the current session.

X/Open Common Desktop Environment (XCDE) Services and Applications 301



Style Management Services

302 X/Open CAE Specification



Chapter 14

Application Building Services

14.1 Introduction
The XCDE application building services provide an interactive, graphical environment that
facilitates the development of XCDE-compliant applications. Two basic services are provided:
aid in assembling graphical objects into the desired application user interface, and generation of
appropriate calls to the routines that support XCDE desktop services (such as ToolTalk
messaging, drag and drop, and so forth).

The key supported tasks for the application building services are:

• Interactive layout of the user interface for an application, constructing it piece-by-piece from
a collection of objects from the XCDE and Motif toolkits.

• Managing an application project with its constituent module subdivisions accessible
separately by multiple developers and able to be imported and exported to and from
projects.

• Definition of window resizing behaviour.

• Definition of connections between objects to provide elements of application interface
behaviour, and a limited test mode that allows connections to be exercised.

• Interactive specification of the interconnections desired between the application and CDE
desktop services.

• Drag and drop specifications for individual objects.

• Editing of applications previously created using the XCDE application building services.

• Generation of C-language source code and associated project files (for example, makefiles
and message catalogues) for the application.

• Generation (compilation) and invocation of the application from within the application
building services, allowing the developer to execute the build/run/debug cycle all from a
common environment (and without having to exit and restart the application building
services).

14.2 Command-line Interfaces
This section defines the utility that provides XCDE application building services.

X/Open Common Desktop Environment (XCDE) Services and Applications 303



dtcodegen Application Building Services

NAME
dtcodegen — generate code from an XCDE application building services project or module file

SYNOPSIS
dtcodegen [ −changed ] [ −main ] [ −merge ] [ −nomerge ] [ −showall ]
[ −noshowall ] [ −s A −silent ] [ −v A −verbose ] file . . .

dtcodegen −help

DESCRIPTION
The dtcodegen utility reads files created by the XCDE application building services graphical user
interface and produces C, Motif and XCDE source code for the user interface and application
elements defined. The files supplied can be individual module files or a project file that contains
references to zero or more module files.

OPTIONS
The dtcodegen utility does not support the X/Open Utility Syntax Guidelines because it uses the
X Window System convention of full-word options. The following options are available:

−changed
Generate only source code for those modules that have changed since the last time
dtcodegen was run.

−help
Write a help message to standard output explaining all dtcodegen options and then
terminate.

−main
Produce the project files associated with the application’s main( ) routine.

−merge
Merge generated stubs files with previous versions, perpetuating changes made or
custom edits done to the previous stubs file. This is the default behaviour.

−nomerge
Do not merge existing and new _stubs.c files. This option overrides the default
merging behaviour. If both −merge and −nomerge are used, the one given last on
the command line takes precedence.

−showall
Cause the generated application to show (map) all application windows (main
windows and dialogs) at startup, ignoring whether they are set to be initially visible
or not. If no project is specified on the command line, dtcodegen performs as if
−showall had been specified. (The −noshowall option suppresses this behaviour).

−noshowall
Cause the generated application to show at startup (map) only those windows
(main windows and dialogs) whose initially visible attribute is true. If a project is
specified on the command line, dtcodegen performs as if −noshowall had been
specified. (The −showall option suppresses this behaviour).

−s | −silent
Work silently, producing no output except error messages while generating source
code.

−v | −verbose
Be more verbose in providing progress and status messages during the generation
of source code.

304 X/Open CAE Specification



Application Building Services dtcodegen

OPERANDS
The following operand is supported:

file A pathname of a project or module file.

RESOURCES
None.

STDIN
Not used.

INPUT FILES
All input files are text files in the format used by the XCDE application building services
graphical user interface. See Section 14.4.1 on page 310.

ENVIRONMENT VARIABLES
The following environment variables affect the execution of dtcodegen:

LANG Provide a default value for the internationalisation variables that are
unset or null. If LANG is unset or null, the corresponding value from the
implementation-specific default locale will be used. If any of the
internationalisation variables contains an invalid setting, the utility
behaves as if none of the variables had been defined.

LC_ALL If set to a non-empty string value, override the values of all the other
internationalisation variables.

LC_MESSAGES Determine the locale that is used to affect the format and contents of
diagnostic messages written to standard error and informative messages
written to standard output.

NLSPATH Determine the location of message catalogues for the processing of
LC_MESSAGES.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When −help is specified, dtcodegen writes to standard output a usage message in an unspecified
format. Otherwise, standard output is not used.

STDERR
When −verbose is specified, dtcodegen writes to standard error informational progress messages
and diagnostic messages in an unspecified format. Otherwise, standard error is used only for
diagnostic messages.

OUTPUT FILES
The dtcodegen utility produces the following files:

modname_ui.c
The primary source code file for module modname, containing C code to create the
objects in the module and establish connections for those objects.

modname_ui.h
Declarations and C externs for module modname.

modname_stubs.c
Callback functions for the element handlers specific to module modname.

X/Open Common Desktop Environment (XCDE) Services and Applications 305



dtcodegen Application Building Services

project.c
If dtcodegen is generating code for a project, this file contains main( ) plus any
callback functions that are common across modules.

project.h
If dtcodegen is generating code for a project, this file contains declarations for any
callback functions and C externs that are common across interfaces.

.dtcodegen.log
A record of per-module code generation and the date and time of each module as it
was processed. This data is required to provide support for the −changed option as
part of determining which files need to be regenerated and which ones do not.

Additional application code should be added to the modname_stubs.c, project .c and project .c files,
as appropriate, because their contents are merged across runs of dtcodegen.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values are returned:

0 successful completion

>0 an error occurred

CONSEQUENCES OF ERRORS
Because code generation involves the sequential production of a set of application files, errors
that cause the dtcodegen utility to exit prematurely also may result in some module or project
source files having been generated while others were not. Attempts to build the application
from this mix of new and old generated code produce undefined results.

APPLICATION USAGE
Typically the dtcodegen utility is used indirectly through the XCDE application building services
graphical user interface. This allows application code to be generated while the user is working
with the Application Builder rather than through a separate interface or shell command line.

In some cases, however, it may be desirable to use the dtcodegen utility directly. A common
example of this usage is to employ the code generator from within an application Makefile to
produce a portion of the application code from pre-existing project or module files.

EXAMPLES
Run the code generator on the application defined by the project file myproject.bip:

dtcodegen myproject.bip

Run the code generator for the project in file myproject.bip, but only generate code for the
module in file modulename.bil:

dtcodegen myproject.bip modulename.bil

Generate just the files associated with the main routine for the project in file myproject-file,
namely myproject.c and myproject.h:

dtcodegen −main myproject-file

Search the current working directory for a project file and, if one is found, generate code for only
those modules that have changed since the code generator was last run:

dtcodegen −changed

306 X/Open CAE Specification



Application Building Services dtcodegen

Generate, for the project in file myproject.bip, code only for those modules among the set of files
named module1, module2 and module3 that have changed since the last time the code
generator was run:

dtcodegen −changed myproject.bip module1 module2 module3

SEE ALSO
None.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 307



Actions Application Building Services

14.3 Actions
This section defines the actions that provide XCDE application building services to support
application portability at the C-language source or shell script levels.

308 X/Open CAE Specification



Application Building Services <dtbuilderaction>

NAME
dtbuilderaction — XCDE application builder actions

SYNOPSIS
Dtbuilder [ component ]
Dtcodegen [ component ]
Open component

DESCRIPTION
The XCDE Application Builder Services support the following application builder actions:

Dtbuilder
Open an empty application builder view.

Dtbuilder component
Open an application builder view of the module or project named by the pathname
in the component argument.

Dtcodegen
Prompt the user for the pathname of a project and generate code for the project
specified by the user.

Dtcodegen component
Generate code for the project named by the pathname in the component argument.

Open component
Open an application builder view of the module or project named by the pathname
in the component argument.

These actions can be invoked from an application using the DtActionInvoke ( ) function or
invoked from a command line using the dtaction utility.

SEE ALSO
dtaction, DtActionInvoke ( ) in the XCDI specification.

CHANGE HISTORY
First released in Issue 1.

X/Open Common Desktop Environment (XCDE) Services and Applications 309



Capabilities Application Building Services

14.4 Capabilities
A conforming implementation of the XCDE application building services supports at least the
following capabilities:

1. Provides application building services as described in the following subsections.

2. Conforms to the Required items in the Application Style Checklist in Chapter 20 on page
355, with the following exceptions that may exist on some implementations:

a. There are certain operations that need not comply with checklist item 2-4, concerning
the Input Device Model for keyboard-only users. The drag and drop of objects from
the palette to the workspace and the ability to resize objects or move them around
within a window or dialogue need not be available from the keyboard.

b. Another possible exception to drag and drop style is described in Section 14.4.9 on
page 322.

c. The placement of secondary windows need not comply with checklist items ak and
al, concerning Application Window Management.

3. Has been internationalised using the standard interfaces in the X/Open CAE Specification,
System Interfaces and Headers, Issue 4, Version 2, the X/Open CAE Specification,
Window Management: Xlib C Language Binding, and the X/Open CAE Specification,
Motif Toolkit API, and supports any locale available in the underlying X Window System
Xlib implementation.

14.4.1 Project and Module Files

The application building services support two file formats:

1. Application projects and modules are expressed in an implementation-dependent format.
The application building services can read, write and drag and drop files in this format.

2. Modules can be imported from a file or exported to a file in the Motif User Interface
Language (UIL) format. See the X/Open CAE Specification, Motif Toolkit API.

14.4.2 Project Management

The application building services provide the following project management capabilities:

1. manipulating a collection of modules as a single project that can be processed as a single
entity

2. saving modules or the project, using existing or new names

3. removing modules from a project

4. Sharing a module among multiple projects

5. exporting a module from a project (Exporting is distinguished from saving because it
typically uses a different file format, such as UIL. Exporting using the implementation-
dependent format for modules is the equivalent of a regular save or save-as operation).

6. hiding modules from viewing (to simplify the workspace)

7. building (making, compiling, linking, and so forth) and executing the application.

310 X/Open CAE Specification



Application Building Services Capabilities

14.4.3 Object Palette

The object palette is a panel that holds iconic representations for objects that can be instantiated
as part of the application under construction. Construction is accomplished for these palette
objects by dragging them from the palette and dropping them into the workspace , where the
windows and dialogues of the application are arranged.

Objects on the palette include those in the following table.

Application Building Services Objects
Object Type Motif Class

Main Window XmMainWindow + ApplicationShell
Dialogue Box XmDialogShell
File Selection Dialogue XmFileSelectionBox + XmDialogShell
Control Pane XmForm
Text Pane XmText
Drawing Pane XmDrawingArea
Term Pane DtTerm
Button 1. XmPushButton

2. XmDrawnButton
3. XmArrowButton

Menu Button DtMenuButton
Combo Box DtComboBox
Option Menu XmOptionMenu
Radio Box XmRowColumn + XmToggleButton(s)
Check Button XmRowColumn + XmToggleButton(s)
Gauge XmScale
Scale XmScale
Separator XmSeparator
Text Field XmTextField
Label XmLabel
List Box XmList + XmScrolledWindow
Spin Box DtSpinButton

The column labelled Motif Class describes the functionality of the object in terms of named
Motif widgets. The object created includes the combined user interface behaviour of the named
widgets, although the implementation may include additional or alternative widgets to achieve
this behaviour. An object in the table with several numbered widgets listed as its Motif Class
means that implementations may select the type of widget used to support the object, based on
the layout behaviour and properties selected by the developer. An object with a ‘‘Dt’’ widget
listed in its Motif Class need not be supported in exported modules using the Motif UIL format.

There are other objects created for the application that need not be available directly on the
object palette. These include:

• groups of objects

• menus

• message boxes

• paned windows.

Unless noted otherwise, all references to ‘‘objects’’ in this Capability section apply to the palette
objects as well as these additional objects.

X/Open Common Desktop Environment (XCDE) Services and Applications 311



Capabilities Application Building Services

14.4.4 Object Layout

The developer can position palette objects placed on the workspace as follows:

1. The drag and drop operation establishes the initial position.

2. The developer can center objects and align them with each other, horizontally or vertically.

3. The developer can specify relative positioning of objects.

4. The developer can group objects and affect their positions relative to each other following
window resize operations performed by the developer or the application end-user.

14.4.5 Object Properties

The XCDE application building services allow the developer to display and modify a wide range
of attributes for each object, some of which correspond to X Windows resources for the
underlying Motif or XCDE widgets. For each of the following objects, the developer can specify
the associated attributes:

Main Window

1. Object name

2. Window title

3. Icon filename

4. Icon label

5. User resize mode (fixed/adjustable)

6. Window areas present (menubar, toolbar, footer)

7. Geometry: x, y, width, height

8. Initial state (iconic, visible)

9. Background colour

10. Foreground colour

11. Help text

12. Additional help information: help volume, location ID

Custom Dialogue

1. Object name

2. Dialogue title

3. Window parent

4. User resize mode (fixed/adjustable)

5. Dialogue areas present (button panel, footer)

6. Default button (choose among the buttons in the dialogue)

7. Geometry: x, y, width, height

8. Initial state (visible)

9. Background colour

312 X/Open CAE Specification



Application Building Services Capabilities

10. Foreground colour

11. Help text

12. Additional help information: help volume, location ID

File Chooser

1. Object name

2. Window parent

3. Title

4. Initial directory

5. Search pattern type (files, folders, both)

6. Search pattern

7. OK button label

8. Initial state (visible)

9. Popdown behaviour (automatically dismiss)

10. Background colour

11. Foreground colour

12. Help text

13. Additional help information: help volume, location ID

Control Pane

1. Object name

2. Geometry (x,y,width height)

3. Initial state (visible, active)

4. Border frame (none/shadow out/shadow in/etched out/etched in)

5. Background colour

6. Name of attached menu

7. Help text

8. Additional help information: help volume, location ID

Text Pane

1. Object name

2. Scrollbars (always/never)

3. Position: x, y

4. Size: width and height in either characters or pixels

5. Word wrap

6. Operation (read-write/read-only)

7. Initial value

X/Open Common Desktop Environment (XCDE) Services and Applications 313



Capabilities Application Building Services

8. Initial state (visible, active)

9. Border frame (none/shadow out/shadow in/etched out/etched in)

10. Background colour

11. Foreground colour

12. Name of attached menu

13. Help text

14. Additional help information: help volume, location ID

Draw Area Pane

1. Object name

2. Scrollbars (always/as needed/never)

3. Position: x, y

4. Visible size: width, height

5. Total size: width, height

6. Initial state (visible, active)

7. Border frame (none/shadow out/shadow in/etched out/etched in)

8. Background colour

9. Foreground colour

10. Name of attached menu

11. Help text

12. Additional help information: help volume, location ID

Label

1. Object name

2. Size policy (size of label/fixed)

3. Geometry: x, y, width, height

4. Label type (string/graphic)

5. Label

6. Label alignment (left/right/centered)

7. Initial state (visible, active)

8. Background colour

9. Foreground colour

10. Help text

11. Additional help information: help volume, location ID

Spin Box

1. Object name

314 X/Open CAE Specification



Application Building Services Capabilities

2. Label type (string/graphic)

3. Label Position (left/above)

4. Spin box type (numeric/string list)

5. Arrow Style (flat beginning/flat end/beginning/end/split)

6. Value range: minimum, maximum

7. Increment value: integer portion and decimal point portion

8. Initial value

9. Items list

10. Geometry: x, y, width, height

11. Initial state (visible, active)

12. Background colour

13. Foreground colour

14. Help text

15. Additional help information: help volume, location ID

Choice

1. Object name

2. Choice type (radio box/check box/option menu)

3. Position: x, y

4. Label type (string/graphic)

5. Label

6. Label position (left/above)

7. Layout (rows/columns)

8. Number of rows/columns

9. Initial state (visible, active)

10. Background colour

11. Foreground colour

12. List of choice items, specifying for each:

a. Item label (string/graphic)

b. Item state (active, selected)

c. Item help text

d. Additional item help information: help volume, location ID

13. Help text

14. Additional help information: help volume, location ID

X/Open Common Desktop Environment (XCDE) Services and Applications 315



Capabilities Application Building Services

Separator

1. Object name

2. Geometry: x, y, width, height

3. Line style (none/etched in/etched out/etched in dash/etched out dash/single
line/double line/single dashed line/double dashed line)

4. Orientation (horizontal/vertical)

5. Initial state (visible, active)

6. Background colour

7. Foreground colour

8. Help text

9. Additional help information: help volume, location ID

Button

1. Object name

2. Button type (push/drawn/menu)

3. Size policy (size of label/fixed)

4. Geometry: x, y, width, height

5. Label type (string/graphic/arrow)

6. Label

7. Arrow direction (up/down/left/right)

8. Label alignment (left/right/centered)

9. Initial state (visible, active)

10. Background colour

11. Foreground colour

12. Help text

13. Additional help information: help volume, location ID

Combo Box

1. Object name

2. Label type (string/graphic)

3. Label

4. Label position (left/above)

5. Combo box type (static/editable)

6. List items, choosing for each

a. Item label

b. Item state (selected/not selected)

7. Geometry: x, y, width, height

316 X/Open CAE Specification



Application Building Services Capabilities

8. Initial state (visible, active)

9. Background colour

10. Foreground colour

11. Help text

12. Additional help information: help volume, location ID

Text Field

1. Object name

2. Position: x, y

3. Width

4. Width units (characters/pixels)

5. Label type (string/graphic)

6. Label

7. Label position (left/above)

8. Operation (editable/read-only)

9. Maximum characters

10. Initial value

11. Initial state (visible, active)

12. Background colour

13. Foreground colour

14. Attached menu name

15. Help text

16. Additional help information: help volume, location ID

Scale

1. Object name

2. Label type (string/graphic)

3. Label position (left/above)

4. Scale type (scale/gauge)

5. Orientation (horizontal/vertical

6. Direction (left to right/right to left/top to bottom/bottom to top)

7. Value range: minimum, maximum

8. Increment value: integer portion, decimal point portion

9. Initial value

10. Show value (yes/no)

11. Geometry: x, y, width, height

X/Open Common Desktop Environment (XCDE) Services and Applications 317



Capabilities Application Building Services

12. Initial state (visible, active)

13. Background colour

14. Foreground colour

15. Help text

16. Additional help information: help volume, location ID

List

1. Object name

2. Selection mode (single select/browse select/multiple select/browse multiple
select)

3. Width policy (longest item/fixed)

4. Geometry: x, y, width, height

5. Label type (string/graphic)

6. Label

7. Label position (left/above)

8. Number of items visible

9. Initial state (visible, active)

10. Background colour

11. Foreground colour

12. Attached menu name

13. List of items, specifying for each

a. Item label

b. Item state (selected/not selected)

14. Help text

15. Additional help information: help volume, location ID

Menu

1. Object name

2. Tearoff (enabled/disabled)

3. Background colour

4. Foreground colour

5. List of items, specifying for each

a. Item label

b. Item mnemonic

c. Item accelerator

d. Item submenu

e. Item initial state (active)

318 X/Open CAE Specification



Application Building Services Capabilities

6. Help text

7. Additional help information: help volume, location ID

Group

1. Object name

2. Position: x, y

3. Layout type (as is/vertical/horizontal/grid)

4. Vertical alignment (left/on colons/center/right)

5. Horizontal alignment (top/center/bottom)

6. Grid arrangement (rows/columns)

7. Number of rows/columns in grid

8. Spacing type (proportional/absolute)

9. Spacing value

10. Border frame (none/shadow out/shadow in/etched out/etched in)

11. Initial state (visible, active)

12. Help text

13. Additional help information: help volume, location ID

Paned Window

1. Object name

2. List of panes

3. Pane geometry: x, y

4. Pane height: minimum, maximum

5. Help text

6. Additional help information: help volume, location ID

Message Dialogues

1. Object Name

2. Dialogue title

3. Message type (error/information/working/question/warning)

4. Message text

5. Action #1 enabled (yes/no)

6. Action #1 name

7. Action #2 enabled (yes/no)

8. Action #2 name

9. Cancel action enabled (yes/no)

10. Help action enabled (yes/no)

X/Open Common Desktop Environment (XCDE) Services and Applications 319



Capabilities Application Building Services

11. Default button (choosing among all those present and enabled)

12. Help text

13. Additional help information: help volume, location ID

14.4.6 Browser Window

The browser window provides a tree-structured representation of the objects in a project, using
glyphs to identify each type of object, and supports editing and manipulation of objects.

More than one browser can be open at a time, but a browser need not support the display of
more than one module at a time. If a module is being viewed by multiple browsers on the
desktop, updates in one browser cause the appropriate changes in the other browsers.

The browser window supports the following operations:

1. View the objects by instance name or object type only

2. Expand/collapse subtrees in the hierarchy to hide them from view

3. Change the name of an object

4. Edit the properties of an object

5. Delete an object from a module

14.4.7 Application Framework

The XCDE application building services create one or more C-language source files that the
developer uses as a framework for the application; the framework includes sufficient source
code to implement the visual appearance and interactive characteristics of the application, but
lacks the specific data processing logic required to achieve all of the application’s business
purpose. The developer can cause the XCDE application building services to include additional
framework source code that addresses the following XCDE-related activities:

ToolTalk
The developer can specify one of the following desktop message handling
capabilities desired for the application:

• No message handling

• Basic participation in the ToolTalk desktop message set; messages are handled in
the default manner

• Advanced participation in the ToolTalk desktop message set; a connection is
established, but the application is expected to handle its messages in a custom
manner

Session Management
The developer can control application participation in desktop session
management, choosing among no sessioning, command-line based sessioning
(ICCCM), save-file based sessioning (CDE) and both command-line and save-file
sessioning. If sessioning is desired, the developer can identify the functions to be
used to save and restore application state.

320 X/Open CAE Specification



Application Building Services Capabilities

Generated Code Resource File Control
The developer can control which object-related resources (in the X and Motif sense)
will be written out to an application resource file. Object resources are identified by
type (colours, label strings, initial values, geometry, other strings, and other) and
each type can be selected to appear in the application resource file produced by the
code generator.

Internationalisation
The developer can cause the code generator to determine whether
internationalisation message handling functions should be used in the application
and whether a message source text file should be generated.

Drag and Drop
The developer can specify for any application user interface object:

1. The operations the object, acting as a drag source, is prepared to support:
Move, Copy, Link.

2. The pathname of the pixmap to be used as the base of the composited drag
icon.

3. The data types into which the application is prepared to convert the drag
object at the request of the receiving application.

4. The operations the object, acting as a drop destination, is prepared to support:
Move, Copy, Link.

5. The data types the receiving application is prepared to receive.

6. An indication that dropping onto a child object should be treated as a drop
onto the parent object, provided the child does not have its own drop
properties explicitly defined.

Help
The developer can associate help text with any object. At least three types of help
can be established:

1. Context-sensitive help — Help information for a specific user interface
element, provided for the object with input focus whenever the user presses
the <help> key.

2. Application help — Help information above and beyond context-sensitive
help and provided by the application either when the user presses a button
labeled ‘‘Help’’ (typically on a dialogue) or selects a help-related item from a
menu.

3. On-item help — An interactive mode in which the application allows the user
to select (with the mouse) an object for which help is needed. This allows the
user to get context-sensitive help on an object that cannot take input focus (for
example, a control pane or gauge).

Messages
The developer can associate message text with any object. The following types of
messages can be constructed.

Question
A question that can be answered with a simple yes or no.

Warning
A request for confirmation before dangerous actions are performed.

X/Open Common Desktop Environment (XCDE) Services and Applications 321



Capabilities Application Building Services

Information
A message where the user’s response will not alter application actions.

Error
A notification that a requested action could not be performed.

Working
An indication of the progress of a requested action.

Each of the preceding five message types is populated with buttons appropriate for
the category: Help, Cancel and generic action buttons. The developer can associate
a callback routine name with each button.

14.4.8 Connections

The XCDE application building services allow the developer to specify interrelationships that
should exist between two objects. Each connection is defined conceptually as a rule of the form:

For < SourceObject > when <Event > perform < Action > on <TargetObject >

where:

SourceObject
The application or an object defined in the application

Event
Any of a set of occurrences, typically consistent with the Xt Intrinsics and Motif
event model, and tailored to suit the type of the SourceObject

Action
Any of a set of instructions that should be carried out, consistent with the Xt
Intrinsics and Motif event mode, but augmented to include ‘‘pseudo-events’’ and
suit the type of the TargetObject

TargetObject
The object upon which the action should be taken

An example of such a rule is:

For HelpPushButton when ClickSelect perform PopUp on HelpDialog

14.4.9 Drag and Drop Capabilities

The XCDE application building services provide standard XCDE drag and drop capabilities as
follows:

1. The developer can drag project files to the application building services, which in turn
loads a new project. The application building services need not support multiple projects
open simultaneously.

2. The developer can drag module files to the main window of the application building
services, which in turn includes the module in the current project. (This is equivalent to
importing a module.)

When the developer drags objects from the palette to the workspace, this action does not use the
standard XCDE drag and drop facilities; because of the requirements for exact positioning of the
dropped object, there are implementation-dependent differences in the visual feedback given to
the developer as the drag proceeds.

322 X/Open CAE Specification



Chapter 15

Application Integration Services

15.1 Introduction
The XCDE application integration services allow application developers and system
administrators to integrate applications into the X/Open Common Desktop Environment.
These services provide a utility for making an application’s actions and datatypes, icons and
help volumes available for use in the desktop.

15.2 Command-line Interfaces
This section defines the utility that provides XCDE application integration services.

X/Open Common Desktop Environment (XCDE) Services and Applications 323



dtappintegrate Application Integration Services

NAME
dtappintegrate — integrate applications into the XCDE

SYNOPSIS
dtappintegrate −s application_root [ −t target_path ] [ −l locale ] [ −u]
[ −?]

DESCRIPTION
The dtappintegrate utility integrates applications into XCDE. Application installation scripts
should invoke dtappintegrate as the last step before exiting. The dtappintegrate utility requires
appropriate privileges.

When dtappintegrate is invoked with no target_path specified, it creates symbolic links to the
application’s XCDE configuration files under the following default XCDE system locations:

/etc/dt/appconfig/types/<locale>
Contains symbolic links to the application action and datatype files

/etc/dt/appconfig/appmanager/<locale>
Contains symbolic links to the application group subdirectory

/etc/dt/appconfig/help/<locale>
Contains symbolic links to the application help files

/etc/dt/appconfig/icons/<locale>
Contains symbolic links to the application icons

OPTIONS
The dtappintegrate utility supports the X/Open Utility Syntax Guidelines. The following options
are available:

−s application_root
Integrate the application files that are located under application_root . The
application_root is the top directory under which all of an application’s files are
installed. The dtappintegrate utility looks for application XCDE configuration files in
the following subdirectories, with all C locale subdirectories containing the
application’s default XCDE configuration files:

<application_root>/dt/appconfig/types/<locale>
Contains application action and datatype files

<application_root>/dt/appconfig/appmanager/<locale>
Contains application group files

<application_root>/dt/appconfig/icons/<locale>
Contains application icons

<application_root>/dt/appconfig/help/<locale>
Contains application help files

−t target_path
Link the application XCDE configuration files to target_path rather than to the
default XCDE system locations.

−l locale
Integrate only the files found in the locale subdirectories. If this option is not
specified, all of the application’s XCDE configuration files are integrated.

324 X/Open CAE Specification



Application Integration Services dtappintegrate

−u Destroy the symbolic links previously created by dtappintegrate. If −l is specified
with the −u option, only the symbolic links to the XCDE configuration files in the
specified locale subdirectories are destroyed.

−? Write a help message to standard output that describes the command syntax of
dtappintegrate and exit.

OPERANDS
None.

STDIN
Not used.

INPUT FILES
None.

ENVIRONMENT VARIABLES
None.

RESOURCES
None.

ASYNCHRONOUS EVENTS
Default.

STDOUT
When no option or the −? option is used, dtappintegrate writes to standard output a usage
message.

During execution, dtappintegrate writes confirmation messages to standard output.

STDERR
Used only for diagnostic messages.

OUTPUT FILES
The dtappintegrate utility creates the symbolic links to the application’s XCDE configuration files.

EXTENDED DESCRIPTION
None.

EXIT STATUS
The following exit values are returned:

0 Successful completion.

2 Help message displayed.

3 Not invoked with appropriate privileges.

4 Invalid option.

CONSEQUENCE OF ERRORS
Default.

APPLICATION USAGE
None.

EXAMPLES
None.

X/Open Common Desktop Environment (XCDE) Services and Applications 325



dtappintegrate Application Integration Services

SEE ALSO
None.

CHANGE HISTORY
First released in Issue 1.

326 X/Open CAE Specification



Application Integration Services Actions

15.3 Actions
This section defines the actions that provide XCDE application integration services to support
application portability at the C-language source or shell script levels.

X/Open Common Desktop Environment (XCDE) Services and Applications 327



<dtappaction> Application Integration Services

NAME
dtappaction — XCDE application management actions

SYNOPSIS
Dtappmgr
ReloadApps

DESCRIPTION
The XCDE Application Integration Services support the following application management
actions:

Dtappmgr
Open a view of the Application Manager.

ReloadApps
Reload the database of action and data types, update the Application Manager and
update the index of help information.

These actions can be invoked from an application using the DtActionInvoke ( ) function or
invoked from a command line using the dtaction utility.

SEE ALSO
dtaction, DtActionInvoke ( ) in the XCDI specification.

CHANGE HISTORY
First released in Issue 1.

328 X/Open CAE Specification



Chapter 16

Action Creation Services

16.1 Introduction
The XCDE action creation services allow users to create and modify actions and datatypes that
are used in the X/Open Common Desktop Environment. Actions provide the ability to associate
an application with an icon on the desktop. Datatypes provide the ability to associate a data file
possessing specific attributes with an icon on the desktop.

This service has a graphical interface for gathering information about the actions and datatypes
the user is defining. The interface allows the user to define an application action and the
datatypes for the data files associated with that application.

Users can choose to define actions and datatypes for personal or system-wide use. Actions and
datatypes created for system-wide use should be installed using the dtappintegrate utility (see
Chapter 15 on page 323).

16.2 Actions
This section defines the actions that provide XCDE action creation services to support
application portability at the C-language source or shell script levels.

X/Open Common Desktop Environment (XCDE) Services and Applications 329



<dtactionaction> Action Creation Services

NAME
dtactionaction — XCDE action management actions

SYNOPSIS
Dtcreate [ file ]
ReloadActions

DESCRIPTION
The XCDE Action Creation Services support the following action management actions:

Dtcreate
Open an empty view of the desktop action and data type editor.

Dtcreate file
Open a view of the desktop action and data type editor and load the action and data
type description file named by the pathname in the file argument. The description
file must have been previously created by the desktop action and data type editor.

ReloadActions
Reload the database of desktop actions.

These actions can be invoked from an application using the DtActionInvoke ( ) function or
invoked from a command line using the dtaction utility.

SEE ALSO
dtaction, DtActionInvoke ( ) in the XCDI specification.

CHANGE HISTORY
First released in Issue 1.

330 X/Open CAE Specification



Action Creation Services Capabilities

16.3 Capabilities
A conforming implementation of the XCDE action creation services supports at least the
following capabilities:

1. Conforms to the Required items in the Application Style Checklist in Chapter 20 on page
355.

2. Has been internationalised using the standard interfaces in the X/Open CAE Specification,
System Interfaces and Headers, Issue 4, Version 2, the X/Open CAE Specification,
Window Management: Xlib C Language Binding, and the X/Open CAE Specification,
Motif Toolkit API, and supports any locale available in the underlying X Window System
Xlib implementation.

3. Creates action and datatype definitions files.

4. Allows modification of action and datatype definition files that were previously created
using the XCDE action creation services.

5. Allows specification in an action definition of the application, command, shell script, etc.,
to be executed when the action is opened.

6. Allows specification in an action definition of the window type (graphical, terminal
emulator or no output) to be used for displaying output when the action is opened.

7. Allows specification in an action definition of the datatypes, such as an application’s data
files, that use the action.

8. Allows specification in an action definition of the icon to be used for representing the
action.

9. Allows specification in an action definition of the icon label to be used for representing the
action.

10. Allows specification in an action definition of help information to be associated with the
action icon.

11. Allows specification in a datatype definition of the datatype characteristics based on name
pattern, file permission pattern and/or file contents.

12. Allows specification in a datatype definition of the command to be used to print the
datatype.

13. Allows specification in a datatype definition of the icon to be used for representing the
datatype.

14. Allows specification in a datatype definition of help information to be associated with the
datatype icon.

15. Allows for invocation of the ReloadApps action, so that newly created or modified actions
and datatypes become immediately available.

X/Open Common Desktop Environment (XCDE) Services and Applications 331



Action Creation Services

332 X/Open CAE Specification



Chapter 17

Print Job Services

17.1 Introduction
The XCDE print job services provide information to users about printers and print jobs. These
services have a graphical interface for viewing the properties of printers and print jobs, and for
deleting print jobs.

17.2 Actions
This section defines the actions that provide XCDE print job services to support application
portability at the C-language source or shell script levels.

X/Open Common Desktop Environment (XCDE) Services and Applications 333



<dtprintinfoaction> Print Job Services

NAME
dtprintinfoaction — XCDE print job actions

SYNOPSIS
Dtprintinfo [ printer ]
DtPrintManager
Print file

DESCRIPTION
The XCDE Print Job Services support the following action for viewing printers and print jobs:

Dtprintinfo
Display the default printer and its print jobs.

Dtprintinfo printer
Display the printer named by the printer in the printer argument and its print jobs.

DtPrintManager
Display all configured printers.

Print
Display the default printer and its print jobs.

Print file
Submit the file named by the pathname in the file argument to the default printer.

These actions can be invoked from an application using the DtActionInvoke ( ) function or
invoked from a command line using the dtaction utility.

SEE ALSO
dtaction, DtActionInvoke ( ) in the XCDI specification.

CHANGE HISTORY
First released in Issue 1.

334 X/Open CAE Specification



Print Job Services Capabilities

17.3 Capabilities
A conforming implementation of the XCDE print job services supports at least the following
capabilities:

1. Conforms to the Required items in the Application Style Checklist in Chapter 20 on page
355.

2. Has been internationalised using the standard interfaces in the X/Open CAE Specification,
System Interfaces and Headers, Issue 4, Version 2, the X/Open CAE Specification,
Window Management: Xlib C Language Binding, and the X/Open CAE Specification,
Motif Toolkit API, and supports any locale available in the underlying X Window System
Xlib implementation.

3. Displays the list of configured printers. The user can select which printers will be
displayed.

4. Allows viewing of the list of print jobs for each printer being displayed. Users can view all
jobs or only their own jobs.

5. Allows deletion of displayed print jobs, based on appropriate permissions.

6. Allows the user to display selectively only one printer upon invocation of the XCDE print
job services.

X/Open Common Desktop Environment (XCDE) Services and Applications 335



Print Job Services

336 X/Open CAE Specification



Chapter 18

Calculator Services

18.1 Introduction
The XCDE calculator services provide basic computation capabilities to users of the X/Open
Common Desktop Environment desktop. They are designed to address the needs of
professionals in business, engineering and computer science.

18.2 Actions
This section defines the actions that provide XCDE calculator services to support application
portability at the C-language source or shell script levels.

X/Open Common Desktop Environment (XCDE) Services and Applications 337



<dtcalcaction> Calculator Services

NAME
dtcalcaction — XCDE calculator actions

SYNOPSIS
Dtcalc

DESCRIPTION
The XCDE Action Creation Services support the following calculator actions:

Dtcalc
Open a view of the desktop calculator tool.

These actions can be invoked from an application using the DtActionInvoke ( ) function or
invoked from a command line using the dtaction utility.

SEE ALSO
dtaction, DtActionInvoke ( ) in the XCDI specification.

CHANGE HISTORY
First released in Issue 1.

338 X/Open CAE Specification



Calculator Services Capabilities

18.3 Capabilities
A conforming implementation of the XCDE calculator services supports at least the following
capabilities:

1. Provides calculator services as described in the following subsections.

2. Conforms to the Required items in the Application Style Checklist in Chapter 20 on page
355.

3. Has been internationalised using the standard interfaces in the X/Open CAE Specification,
System Interfaces and Headers, Issue 4, Version 2, the X/Open CAE Specification,
Window Management: Xlib C Language Binding, and the X/Open CAE Specification,
Motif Toolkit API, and supports any locale available in the underlying X Window System
Xlib implementation.

18.3.1 General Calculator Capabilities

The following general capabilities are supported by the calculator:

1. The user can perform calculations using a keypad and display area modelled after a desk
calculator.

2. The user can input from the keyboard as well as through buttons in the calculator window.

3. The user can input numbers in binary, octal, decimal and hexadecimal bases. Decimal is
the default.

4. Calculations are executed in the order that they are entered. The user can use parentheses
to control the order of operations.

5. The user can set the accuracy of calculations.

6. Arithmetic, scientific, logical and financial functions, described in the following
subsections, may be grouped into modes. The arithmetic functions are always available.

7. The user can access at least ten memory registers.

8. The user can store, recall and exchange values between a specified register and the display
area.

9. The user can view the contents of all memory registers.

18.3.2 Arithmetic Operations

The user can perform the following arithmetic operations:

1. Addition

2. Subtraction

3. Multiplication

4. Division

5. Reciprocal

6. Square root

7. Square

8. The value of a specified percentage of a number (for example, 32 percent of 50)

X/Open Common Desktop Environment (XCDE) Services and Applications 339



Capabilities Calculator Services

9. Change the sign of a number

10. Integer component of a number

11. Fractional component of a number

12. Absolute value

18.3.3 Scientific Operations

The user can perform the following scientific calculation operations:

1. ex

2. 10x

3. yx

4. Factorial

5. Trigonometric functions:

a. Sine, cosine and tangent

b. Arc sine, arc cosine and arc tangent

c. Hyperbolic sine, hyperbolic cosine and hyperbolic tangent

6. Natural log and log base 10

7. Random number between 0 and 1

The user can select one of three trigonometric bases when in scientific mode: degrees, radiants
or gradients. Degrees is the default.

18.3.4 Financial Operations

The user can perform the following financial calculation operations:

1. Time value of money based on

a. Number of periods

b. Annual interest rate

c. Present value

d. Payment amount

e. Future value

f. Payments per year

2. Depreciation using the following rules:

a. Double declining balance

b. Straight line

c. Sum of years digits

The user can view and clear all financial registers.

340 X/Open CAE Specification



Calculator Services Capabilities

18.3.5 Logical Operations

The user can perform the following logical operations:

1. Bitwise logical OR, AND, NOT, XOR and XNOR

2. Bitwise shift left and right

3. Truncate value to 16 or 32 bits

X/Open Common Desktop Environment (XCDE) Services and Applications 341



Calculator Services

342 X/Open CAE Specification



Chapter 19

Application Conventions

This chapter lists font and icon conventions for XCDE applications.

19.1 Font Conventions

19.1.1 Standard Application Font Names

The XCDE Standard Application Font Names are a set of generic X Window System font names,
usable by applications as their default fonts, for the most common categories of type designs and
styles. These names, for at least six sizes of 13 typefaces, must be provided on all XCDE systems.
They are typically mapped to existing fonts on the system using the font alias mechanism,
although this method is not required.

The XCDE Standard Application Font Names described here allow applications to use a single
set of default font specifications in their app-defaults files, without concern for the system on
which XCDE is running. These app-defaults application defaults are given as XLFD font name
patterns that will match the standard XCDE font names on all XCDE systems.

19.1.1.1 Background

Application fonts are the fonts used within an application, where a wide variety of text designs,
styles, weights and point sizes are useful. These variations are used for emphasis, cross-
references, section headers, and so forth. The standard names attempt to provide the minimum
variety in generic designs, styles and sizes that an application might want to use as defaults.
(The XCDE Standard Interface Font Names, described in Section 19.1.2 on page 348, provide a
similar mechanism for the elements of the XCDE desktop itself.)

19.1.1.2 Rationale

Two of the most common design variations in fonts used to display text are the presence or
absence of serifs and the choice between proportional or regularly spaced (mono-spaced)
characters. Combining these two design variations yields four ‘‘generic’’ font designs, or
families:

• serif proportionally-spaced

• sans serif proportionally-spaced

• serif mono-spaced

• sans serif mono-spaced

Common examples of these four designs are:

• Times Roman

• Helvetica

• Courier

• Lucida Sans Typewriter

X/Open Common Desktop Environment (XCDE) Services and Applications 343



Font Conventions Application Conventions

Each of these designs typically come, for text fonts, in four styles (combinations of weight and
slant):

• plain

• bold

• italic

• bold-italic

The four styles of each of the four design variations yield 16 generic font variations. These 16
generic fonts are among the most commonly used in general desktop computing.

In some cases, applications do not care about the exact font family or name to be used, but do
need to use a mono-spaced font, a sans serif font or a serif font. This XCDE mechanism allows
such applications to be freed from the need to be concerned about the exact font names that may
or may not be present on a particular XCDE system.

19.1.1.3 The Standard Names for the Latin-1 Character Set

The 13 standard application font names are provided on all XCDE systems only for the
referenced ISO/IEC 8859-1: 1987 standard (Latin-1) character set. These represent 12 generic
design and style variations (serif and sans serif proportionally-spaced, and a mono-spaced font
that is either serif or sans serif), as well as a symbol font. These standard names are provided in
addition to the ‘‘real’’ names of the fonts that the standard names are mapped to for a particular
XCDE system.

19.1.1.4 XLFD Field Values for the Standard Application Font Names

The standard names are available using the X Window System XLFD font naming scheme.
There are three aspects to the standard names:

• The underlying font on each system, to which a standard name is mapped, typically will be
different on each system.

• The standard name itself, a full XLFD name mapped to the underlying font, may be different
on each system in some of the XLFD fields. However, most of the fields are the same from
system to system, allowing the patterns (described next) to be the same.

• The font resource pattern containing the ∗ wildcards, used in app-defaults files, which will
match the full XLFD name of the standard name, is the same across all systems, for a given
use in an app-defaults file.

Systems must provide full XLFD names for the standard names, mapped to system-dependent
underlying fonts, so that the XLFD patterns used in XCDE application app-defaults files will
always match one of the full XLFD names provided.

The Standard Application Font Names are identified by the presence of the following XLFD field
name values:

• FOUNDRY is dt

• FAMILY_NAME is application

• WEIGHT_NAME is medium or bold

• SLANT is r or i

• SETWIDTH is normal

344 X/Open CAE Specification



Application Conventions Font Conventions

• ADD_STYLE is sans for sans serif, serif for serif

• SPACING is p or m

• CHARSET_REGISTRY is iso8859

• CHARSET_ENCODING is 1

Although sans and serif are not required by the XLFD font convention, they are always part of
the standard XCDE font names.

19.1.1.5 Point Sizes

The complete set of point sizes available for each of the standard application font names is
determined by the set of fonts included in a system, whether bitmapped only or both bitmapped
and scalable outline. The minimum set of sizes required and available on all XCDE systems
corresponds to the standard sizes of bitmapped fonts that make up the default mapping for
X11R5: 8, 10, 12, 14, 18 and 24.

For example, the entire set of six sizes of the plain monospaced font, on any XCDE system, is
represented by:

-dt-application-medium-r-normal- ∗- ∗-80- ∗- ∗-m- ∗-iso8859-1
-dt-application-medium-r-normal- ∗- ∗-100- ∗- ∗-m- ∗-iso8859-1
-dt-application-medium-r-normal- ∗- ∗-120- ∗- ∗-m- ∗-iso8859-1
-dt-application-medium-r-normal- ∗- ∗-140- ∗- ∗-m- ∗-iso8859-1
-dt-application-medium-r-normal- ∗- ∗-180- ∗- ∗-m- ∗-iso8859-1
-dt-application-medium-r-normal- ∗- ∗-240- ∗- ∗-m- ∗-iso8859-1

These patterns will match the corresponding standard font name on any XCDE system, even
though the PIXEL_SIZE and AVERAGE_WIDTH numeric fields may be different on various
systems, and the matched fonts may be either serif or sans serif, depending on the
implementation of the set of standard names. The RESOLUTION fields in the XLFD names of
the underlying fonts, when those fonts are bitmapped fonts, must match the resolution of the
monitor on which the fonts are displayed for the point sizes to be accurate. To provide expected
point size behaviour for applications, systems should ensure that the RESOLUTION_X and
RESOLUTION_Y fields of the underlying fonts vary no more than 20% from the real monitor
resolution of the displays on which the fonts will be used.

Applications requesting point sizes different from the six in the minimum set may obtain either
‘‘scaled bitmapped’’ fonts of the requested design, or scaled outline versions of the requested
design. This behaviour requires that the X server in question support the scaling of fonts and
that the standard names are mapped to underlying fonts that can be scaled using this support.

19.1.1.6 Example XLFD Patterns for the Standard Names

Using the specified field values for these standard names, subsets of the standard names can be
represented with various XLFD patterns. The XLFD pattern

-dt-application- ∗

logically matches the full set of XCDE Standard Application Font Names. (Note that no specific
X server behaviour is implied). The pattern

-dt-application-bold- ∗- ∗- ∗- ∗- ∗- ∗- ∗-p- ∗- ∗- ∗-

matches the bold, proportionally-spaced XCDE fonts, both serif and sans serif. And the pattern

-dt-application- ∗- ∗- ∗- ∗- ∗- ∗- ∗- ∗-m- ∗- ∗- ∗-

X/Open Common Desktop Environment (XCDE) Services and Applications 345



Font Conventions Application Conventions

matches the monospaced fonts (including both serif and sans serif).

The full set of XCDE Standard Application Font Names can be represented with the following
patterns:

-dt-application-bold-i-normal-serif- ∗- ∗- ∗- ∗-p- ∗-iso8859-1
-dt-application-bold-r-normal-serif- ∗- ∗- ∗- ∗-p- ∗-iso8859-1
-dt-application-medium-i-normal-serif- ∗- ∗- ∗- ∗-p- ∗-iso8859-1
-dt-application-medium-r-normal-serif- ∗- ∗- ∗- ∗-p- ∗-iso8859-1
-dt-application-bold-i-normal-sans- ∗- ∗- ∗- ∗-p- ∗-iso8859-1
-dt-application-bold-r-normal-sans- ∗- ∗- ∗- ∗-p- ∗-iso8859-1
-dt-application-medium-i-normal-sans- ∗- ∗- ∗- ∗-p- ∗-iso8859-1
-dt-application-medium-r-normal-sans- ∗- ∗- ∗- ∗-p- ∗-iso8859-1
-dt-application-bold-i-normal- ∗- ∗- ∗- ∗- ∗-m- ∗-iso8859-1
-dt-application-bold-r-normal- ∗- ∗- ∗- ∗- ∗-m- ∗-iso8859-1
-dt-application-medium-i-normal- ∗- ∗- ∗- ∗- ∗-m- ∗-iso8859-1
-dt-application-medium-r-normal- ∗- ∗- ∗- ∗- ∗-m- ∗-iso8859-1
-dt-application-medium-r-normal- ∗- ∗- ∗- ∗- ∗-p- ∗-dtsymbol-1

Each of these 13 standard names comes in at least six point sizes.

19.1.1.7 Implementation of Font Names

The following requirements are placed on the implementation of the Standard Application Font
Names:

• The names must be fully specified XLFD names, without wild cards.

• The WEIGHT_NAME, SLANT, SETWIDTH_NAME, SPACING, CHARSET_REGISTRY and
CHARSET_ENCODING fields must contain valid values as defined previously and must
match those in the underlying font.

• The ADD_STYLE_NAME field must contain either the serif or sans designation, whichever
matches the underlying font.

19.1.1.8 Default XCDE Mappings for Latin-1 Locales

The default mapping of these standard application font names for the referenced ISO/IEC
8859-1: 1987 standard locales is to the following standard X11R5 bitmapped fonts (the six
minimum sizes are not shown explicitly in these patterns):

-adobe-times-bold-i-normal-- ∗- ∗- ∗- ∗-p- ∗-iso8859-1
-adobe-times-bold-r-normal-- ∗- ∗- ∗- ∗-p- ∗-iso8859-1
-adobe-times-medium-i-normal-- ∗- ∗- ∗- ∗-p- ∗-iso8859-1
-adobe-times-medium-r-normal-- ∗- ∗- ∗- ∗-p- ∗-iso8859-1
-adobe-helvetica-bold-o-normal-- ∗- ∗- ∗- ∗-p- ∗-iso8859-1
-adobe-helvetica-bold-r-normal-- ∗- ∗- ∗- ∗-p- ∗-iso8859-1
-adobe-helvetica-medium-o-normal-- ∗- ∗- ∗- ∗-p- ∗-iso8859-1
-adobe-helvetica-medium-r-normal-- ∗- ∗- ∗- ∗-p- ∗-iso8859-1
-adobe-courier-bold-o-normal-- ∗- ∗- ∗- ∗-m- ∗-iso8859-1
-adobe-courier-bold-r-normal-- ∗- ∗- ∗- ∗-m- ∗-iso8859-1
-adobe-courier-medium-o-normal-- ∗- ∗- ∗- ∗-m- ∗-iso8859-1
-adobe-courier-medium-r-normal-- ∗- ∗- ∗- ∗-m- ∗-iso8859-1
-adobe-symbol-medium-r-normal-- ∗- ∗- ∗- ∗-p- ∗-adobe-fontspecific

346 X/Open CAE Specification



Application Conventions Font Conventions

A system may provide a different mapping of these standard names as long as all 13 names map
to fonts of the appropriate design and style and the required six point sizes are available. The
system documentation must document the system-specific default mapping for the standard
names.

19.1.1.9 Font Names in app-defaults Files

An application can use a single app-defaults file to specify font resources and use it across all
XCDE systems. Since most of the fields (FOUNDRY, FAMILY_NAME, WEIGHT_NAME,
SLANT, SETWIDTH_NAME, ADD_STYLE_NAME, POINT_SIZE, SPACING, CHARSET_-
REGISTRY and CHARSET_ENCODING) of the standard names are the same across different
systems, these values can be used in the resource specification in the app-defaults file. However,
other fields (PIXEL_SIZE, RESOLUTION_X, RESOLUTION_Y and AVERAGE_WIDTH) may
vary across systems, and so must be wild-carded in the resource specification. For example:

appOne∗headFont: -dt-application-bold-r-normal-sans- ∗-140- ∗- ∗-p- ∗-iso8859-1
appOne∗linkFont: -dt-application-bold-i-normal-sans- ∗-100- ∗- ∗-p- ∗-iso8859-1

might be used to specify some of AppOne’s default font resource needs.

19.1.1.10 Other Character Sets in the Common Locales

The standard application font names defined above are for use in locales using the referenced
ISO/IEC 8859-1: 1987 standard character set only. For other locales supported by XCDE, there
are no fonts guaranteed to be included. However, for the following locales, it is recommended
that systems provide fonts with the following XLFD attribute values, and that they be accessible
using these names.

Locales using ISO 8859-2, -3, -4, -5 (Cyrillic), -7 (Greek):
The same values for FOUNDRY, FAMILY_NAME, WEIGHT_NAME, SLANT,
SET_WIDTH, ADD_STYLE and SPACING as are used in this definition for the
referenced ISO/IEC 8859-1: 1987 standard locale are recommended.

Japanese locales:
Two values for the FAMILY_NAME attribute (Gothic and Mincho) and two values
for the WEIGHT attribute (medium and bold) are recommended.

Chinese (Taiwan) locales:
Two values for the FAMILY_NAME attribute (Sung and Kai) and two values for the
WEIGHT attribute (medium and bold) are recommended.

Chinese (PRC) locales:
Two values for the FAMILY_NAME attribute (Song and Kai) and two values for the
WEIGHT attribute (medium and bold) are recommended.

Korean locales:
Two values for the FAMILY_NAME attribute (Totum and Pathang) and two values
for the WEIGHT attribute (medium and bold) are recommended. Note that these
names are unofficial, tentative romanisations of the two common font families in
use in Korea; Totum corresponds to fonts typically shipped as Gothic, Kodig or
Dotum and Pathang corresponds to fonts typically shipped as Myungjo or
Myeongjo. The official roman names for these fonts are under review and may be
changed in the future by the Korean government, and thus may change for XCDE.

X/Open Common Desktop Environment (XCDE) Services and Applications 347



Font Conventions Application Conventions

19.1.2 Standard Interface Font Names

The XCDE Standard Interface Font Names are a set of generic X Window System font names,
needed by the XCDE GUI itself, that are used for user interface elements such as button labels,
window titles and text fields. These names, for seven sizes of two typefaces, must exist on all
XCDE systems. Seven sizes of a third typeface are recommended. They are typically mapped to
existing fonts on the system using the font alias mechanism, although this method is not
required.

The XCDE Standard Interface Font Names described here allow clients making up the XCDE
desktop, such as dtterm and the window manager, a single set of default fonts in their app-
defaults files, without concern for the system on which XCDE is running. (The XCDE Standard
Application Font Names, described in Section 19.1.1 on page 343, provide a similar mechanism
for applications running on the XCDE desktop.)

19.1.2.1 Background

Interface fonts are designed by user interface experts for the narrow purpose of making the
menus, labels and fields of a graphical user interface highly readable. They are usually finely
hand-tuned bitmapped fonts, intended for use on visual displays only and not on printers, and
many of the glyphs have been specially modified for this purpose. Interface fonts can be
contrasted with application fonts, which are the fonts used within an application running on the
XCDE desktop. Interface fonts come in a restricted set of styles and are used for short strings of
text, whereas application fonts usually come in a variety of designs, styles and weights and are
used for emphasis, cross-references, section headers, and so forth.

19.1.2.2 Rationale

Common font names are required to prevent XCDE clients such as dtterm from needing different
app-defaults files on each system.

Interface fonts are needed because of user interface and cognitive research that has examined the
readability of various fonts on the display screens in use today and found that many fine
adjustments (for example, for centering, baseline, height and alignment) must be made to
characters in a font to make them clear, distinguishable and consistent when used for the
interface objects of a GUI. And by using hand-tuned interface fonts for the GUI objects, the
desktop can achieve a very clean, crisp visual appearance.

Interface fonts are broken into 2 categories: system and user. Cognitive research has shown that
this distinction is important for the usability and readability of GUIs. System fonts are those
used when the system is presenting information to the user (for example, in buttons). User fonts
are those used for text that a user enters into the system (for example, for a text field or terminal
emulator).

19.1.2.3 XLFD Field Values for the Standard Interface Font Names

These standard names are available using the X Window System XLFD font naming scheme.
There are three aspects to the standard names:

• The underlying font on each system, to which a standard name is mapped, typically will be
different on each system.

• The standard name itself, a full XLFD name mapped to the underlying font, may be different
on each system in some of the XLFD fields. However, most of the fields are the same from
system to system, allowing the patterns (described next) to be the same.

348 X/Open CAE Specification



Application Conventions Font Conventions

• The font resource pattern containing the ∗ wildcards, used in app-defaults files, which will
match the full XLFD name of the standard name, is the same across all systems, for a given
use in an app-defaults file.

Systems must provide full XLFD names for the standard names, mapped to system-dependent
underlying fonts, so that the XLFD patterns used in XCDE application app-defaults files will
always match one of the full XLFD names provided.

The Standard Interface Font Names are identified by the presence of the following XLFD field
name values:

• FOUNDRY is dt

• FAMILY_NAME is either interface system or interface user (there is a single space between
the two words in each family name)

In addition, the other fields of the XLFD names defining the standard names are constrained as
follows:

• WEIGHT_NAME is either medium or bold

• SLANT is always r

• SETWIDTH_NAME is always normal

• SPACING is p or m (it must be m for interface user fonts, and should be p for interface
system fonts, although m is acceptable)

• ADD_STYLE_NAME contains both a nominal size value in the range xxs to xxl (see Section
19.1.2.5 on page 350), as well as either sans for sans serif fonts or serif for serif, if appropriate
for the underlying font

• The numeric fields (PIXEL_SIZE, POINT_SIZE, RESOLUTION_X, RESOLUTION_Y, and
AVERAGE_WIDTH) must contain the same values as the underlying font.

• CHARSET_REGISTRY and CHARSET_ENCODING are not specified; the standard names
may be implemented for any XCDE locale.

Although the sans and serif values in the ADD_STYLE_NAME field are not required by the
XLFD font convention, they are always part of the XCDE Standard Font Names when the
underlying fonts are characterised as serif or sans serif. However, this document imposes no
restriction on whether the interface fonts are serif or sans serif. The relevant attribute must be
coded in the ADD_STYLE_NAME field. Thus, for example, the standard names for Japanese
fonts, which are not characterised as being serif or sans serif, would not include this designation
in the ADD_STYLE_NAME field.

19.1.2.4 Restricted Set of Styles Available

Unlike the Standard Application Font Names, only a limited set of styles is available in the
Standard Interface Font Names. The styles available represent the minimum set currently
considered necessary for the desktop GUI needs:

• a medium weight of an interface system font, preferably proportionally spaced (but mono-
spaced is acceptable if appropriate for the locale)

• a medium weight of an interface user font, always mono-spaced

• a bold weight of an interface user font, always mono-spaced (the standard font names for
this generic typeface are recommended if available for the targeted fonts and locale, but are
not required).

X/Open Common Desktop Environment (XCDE) Services and Applications 349



Font Conventions Application Conventions

19.1.2.5 Named Set of Point Sizes Available

In addition, the set of seven point sizes for each of the three styles that are part of this document
are ‘‘named’’ point sizes, using string values in the ADD_STYLE_NAME field. Thus, XLFD
patterns matching these names match a size based on the named size, not on a numeric size,
even though the latter does exist in the XLFD name. These named sizes are used because the
exact size of an interface font is less important than its nominal size, and implementation
differences for the hand-tuned interface fonts do not allow common numeric point sizes to be
assured across systems. The seven nominal sizes are as follows:

xxs extra extra small

xs extra small

s small

m medium

l large

xl extra large

xxl extra extra large

The goal of these named sizes is to provide enough fonts so that both the variety of display
monitor sizes and resolutions that XCDE will run on, and the range of user preferences for
comfortably reading button labels, window titles and so forth, can be accommodated in the GUI.
Thus, both the smallest size, xxs, and the largest size, xxl, are meant to be reasonable sizes for
displaying and viewing the XCDE desktop on common displays and X terminals; they are not
meant to imply either hard-to-read fine print or headline-sized display type.

These named size values must occur first in the ADD_STYLE_NAME field, before any use of the
values serif or sans (one of which is always required when the underlying font can be so
characterised) and before any other additional stylistic attribute that might be appropriate. This
is important when specifying wild-carded patterns in a resource specification for these fonts,
since whether the underlying font these names are mapped to is serif or sans serif is not specified
by XCDE, and the match must work for all XLFD names provided on XCDE systems.

19.1.2.6 Example XLFD Patterns for the Standard Names

Using these values, the XLFD pattern

-dt-interface ∗- ∗

logically matches the full set of XCDE Standard Interface Font Names. (Note that no specific X
server behaviour is implied).

The full set of 21 XCDE Standard Interface Font Names can also be represented, in a more
meaningful way, as follows:

-dt-interface system-medium-r-normal- ∗- ∗- ∗- ∗- ∗- ∗- ∗-iso8859-1
-dt-interface user-medium-r-normal- ∗- ∗- ∗- ∗- ∗-m- ∗-iso8859-1
-dt-interface user-bold-r-normal- ∗- ∗- ∗- ∗- ∗-m- ∗-iso8859-1

350 X/Open CAE Specification



Application Conventions Font Conventions

The full set of patterns, usable in app-defaults files, for all seven sizes for the system font, for
example, is:

-dt-interface system-medium-r-normal-xxs ∗- ∗- ∗- ∗- ∗- ∗- ∗-iso8859-1
-dt-interface system-medium-r-normal-xs ∗- ∗- ∗- ∗- ∗- ∗- ∗-iso8859-1
-dt-interface system-medium-r-normal-s ∗- ∗- ∗- ∗- ∗- ∗- ∗-iso8859-1
-dt-interface system-medium-r-normal-m ∗- ∗- ∗- ∗- ∗- ∗- ∗-iso8859-1
-dt-interface system-medium-r-normal-l ∗- ∗- ∗- ∗- ∗- ∗- ∗-iso8859-1
-dt-interface system-medium-r-normal-xl ∗- ∗- ∗- ∗- ∗- ∗- ∗-iso8859-1
-dt-interface system-medium-r-normal-xxl ∗- ∗- ∗- ∗- ∗- ∗- ∗-iso8859-1

These patterns could be used in a resource file and will match the full XCDE Standard Interface
Names for Latin-1 locales on all systems.

Note in these wild-carded XLFD names that the ADD_STYLE_NAME field has a pattern, such as
xxs∗, and that the pattern is partly a string (xxs) and partly the pattern-matching character ∗.
The full XLFD name this pattern matches—the XLFD name implementing the Standard Interface
name—will often contain sans or serif in the field, after the xxs and a space, and so the ∗ is
essential to match that sans or serif string (and any additional style attribute string that might be
in the underlying name). Note also that the SPACING field is wild-carded in the pattern for the
system font, since either p or m may appear in the standard name being matched.

19.1.2.7 Implementation of Font Names

Each XCDE system provides mappings of its own fonts to XLFD names as described by this
document. The actual XLFD names will vary from system to system, just as the fonts they are
mapped to, since they contain some of the same values as the XLFD name of the underlying font.

There is no precise specification of how the named sizes xxs to xxl are mapped to sizes of
underlying fonts in each system, although each size must be equal to or larger than the previous
size. Nonetheless, some guidelines are appropriate.

Interface fonts have been developed because of human factors research on visual clarity of text
on displays, and this has been done in the context of the display technology typically available
today, mostly in the 100 dots per inch (DPI) range. That, and the use of standard point sizes (10,
12, 14, 18) in the graphics arts, have resulted in the development in the industry of hand-tuned
bitmapped fonts for a set of ‘‘pixel heights’’ that are likely to be used for these standard names.
However, making the XCDE desktop usable with a range of point sizes effectively means, in
addition to legibility for the user, that the various XCDE applications fit ‘‘appropriately’’ on the
screen using those point sizes. This means, for example, that two application windows can
appear side by side on a typical display or that a certain number of buttons can appear across the
screen.

Thus, these guidelines are expressed not only in pixel sizes, to reflect current usage, but also in
percentage of monitor height. This allows them to remain appropriate as technological
evolution improves display resolution and monitor size (for example, wall-mounted monitors).
The ideal set of sizes would form a linear progression from the smallest (xxs) to the largest (xxl),
although this is not achievable. The basic guideline is that the xxs font should be, in pixels, no
less than 0.9% of the height of the display resolution, in pixels; the xxl font should be no more
than 2.6% of the height.

X/Open Common Desktop Environment (XCDE) Services and Applications 351



Font Conventions Application Conventions

As an approximate example that does not represent any existing mapping of fonts to a display,
this table shows how the named sizes might map to real bitmapped fonts of a given pixel size,
and how large those sizes are in percentage and point size terms:

Sample Range of Named Sizes on a 1280×1024 Display

named number size as % point size on
size of pixels of 1024 height 100 DPI screen

xxs 10 0.98% 7.2
xs 12 1.12% 8.7
s 14 1.37% 10.1
m 17 1.66% 12.3
l 20 1.95% 14.6
xl 23 2.25% 16.6
xxl 26 2.54% 18.8

Thus, the following requirements are placed on each implementation of the Standard Interface
Font Names:

• The names must be fully specified XLFD names, without wild cards.

• The WEIGHT_NAME, SLANT, SETWIDTH_NAME, SPACING, CHARSET_REGISTRY and
CHARSET_ENCODING fields must contain valid values as defined previously and must
match those in the underlying font.

• The ADD_STYLE_NAME field must contain both a named size (for example, xxs) and, if
appropriate, either the serif or sans designation, whichever matches the underlying font; any
additional words about the style of the underlying font, if defined for the underlying font,
must also be used. The named size must be first in the field, and must be separated from any
following word in the field with a blank.

• The named sizes xxs through xxl must be mapped to fonts that are progressively larger than
or equal to the previous one in the list. Thus, several standard names with adjacent sizes (for
example, xxs and xs) may be mapped to the same font (for example, if there is not enough
variety in sizes in the underlying fonts).

• The implemented names should attempt to meet the guidelines discussed in the previous
paragraph and table.

For example, system A is assumed to be using the following sans serif font for the extra small
system font:

-bitstream-swiss-medium-r-normal--11-90-85-85-p-81-iso8859-1

System B is using the following serif font for the extra small system font:

-vendorb-ersatz-medium-r-normal-Expert-8-80-75-75-m-72-iso8859-1

Their respective standard names would be implemented on their systems as:

-dt-interface system-medium-r-normal-xs sans-11-90-85-85-p-81-iso8859-1
-dt-interface system-medium-r-normal-xs serif Expert-8-80-75-75-m-72-iso8859-1

Defined this way, both names will match the single XLFD pattern used in a common app-defaults
file:

-dt-interface system-medium-r-normal-xs ∗- ∗- ∗- ∗- ∗- ∗- ∗-iso8859-1

352 X/Open CAE Specification



Application Conventions Font Conventions

19.1.2.8 Default XCDE Mapping of the Standard Interface Font Names

There is no default mapping of these interface names to X11R5 fonts; the mapping is
implementation-specific.

19.2 Icon Conventions
This section describes conventions for icon sizes, naming, location and usage within XCDE.

Both X Pixmap and X Bitmap icon file formats are used within the XCDE. X Pixmap (XPM) icons
are multi-colour images based on the XPM format developed by Arnaud Le Hors. A pixmap file
is a text file that can be read and modified by hand, in addition to using colour pixmap editors
(like the XCDE Icon Editor). X Bitmap (XBM) icons are monochrome (two-colour) images based
on the official X11 Bitmap File Format. A bitmap file is a text file that contains a binary
representation of the bitmap, and as such is not easily read or modified by hand. The icon editor
has the ability to write out any icon in either the XPM or XBM file format. For a more detailed
description of these file formats and the icon editor, see the XCDI specification, Section 3.1,
XCDE Data Format Naming and Chapter 10 on page 197.

19.2.1 File Naming

XCDE icon file names are typically in one of the following forms:

basename. format
basename. size . format

The basename is the logical name of the icon. The basenames for icons that are installed with
XCDE begin with either Dt or Fp. Dt is the default prefix for all XCDE icons. The Fp prefix is
used for icons that appear in the front panel when an icon other than the default Dt icon is
desired. In this case, the basename is the same.

If an additional icon is needed for the client iconImage (iconified client window icon), a third
prefix, Ic, is used.

The format is pm for a pixmap file and bm for a bitmap file. Size is a single letter: l for large, m
for medium, s for small and t for tiny. Many of the logical icons are provided in multiple sizes
for both colour and monochrome. This allows XCDE to use the optimal colour and size
combination for the specific task and configuration the user is running. Many bitmap icons have
a mask associated with the icon. These are named basename.size_m.format. All icons are named
so that the longest filename associated with that icon is 14 bytes or less; this allows it to be used
on a short filename system. The longest filename can be described as Dtxxxxx_m.l.pm, where
xxxxx is the logical icon name.

X/Open Common Desktop Environment (XCDE) Services and Applications 353



Icon Conventions Application Conventions

Example

This is an example of icon files that might be associated with the icon foo. The single logical icon
foo contains tiny, small, medium and large bitmap icons (with mask) and pixmap icons.

Dtfoo.t.pm
Dtfoo.t.bm
Dtfoo.t_m.bm
Dtfoo.s.pm
Dtfoo.s.bm
Dtfoo.s_m.bm
Dtfoo.m.pm
Dtfoo.m.bm
Dtfoo.m_m.bm
Dtfoo.l.pm
Dtfoo.l.bm
Dtfoo.l_m.bm

19.2.2 Icon Sizes

Icons of the following sizes and with the following suffixes are supported:

Large 48 × 48 icon with .l suffix

Medium 32 × 32 icon with .m suffix

Small 24 × 24 icon with .s suffix

Tiny 16 × 16 icon with .t suffix

The icon sizes used varies for different components, and is dependent on the display hardware.

19.2.3 Icon File Locations

XCDE has default locations where it looks to find system and user icon files. See Chapter 15 on
page 323 for detailed information on where to install icons.

354 X/Open CAE Specification



Chapter 20

Application Style Checklist

This chapter provides the list of style requirements for XCDE applications. XCDE requirements
consist of the X/Open Motif requirements with XCDE-specific additions.

The checklist describes keys using a model keyboard mechanism. Wherever keyboard input is
specified, the keys are indicated by the engravings that they have on the X/Open Motif model
keyboard. Mouse buttons are described using a virtual button mechanism to better describe
behaviour independent from the number of buttons on the mouse. For more information on the
model keyboard and virtual button mechanisms, see the Preface and Section 2.2.1, ‘‘Pointing
Devices’’ of the OSF/Motif Style Guide.

This checklist uses typographical conventions for keyboard and mouse inputs that differ from
those used in the OSF/Motif Style Guide.

By default, this checklist assumes that the application is being designed for a left-to-right
language environment in an English-language locale. Some sections of the checklist may require
appropriate changes for other locales.

Each item in this checklist contains the corresponding section number from the checklist in the
OSF/Motif Style Guide, if the item came from that list. Each item is also followed by a note
containing a brief explanation or justification.

The headings used in this checklist correspond to the headings in the OSF/Motif Style Guide
and the checklist items are labelled with the numbers used in that document. The XCDE-specific
additions are labelled with alphabetic identifiers.

Each checklist item also has a priority label: Required, Recommended or Optional. The required
items must be followed for an application to be XCDE compliant. Recommended items should
be followed where feasible. Optional items are alternative implementations that the interface
designer can choose.

20.1 Preface
1-1: [Required]

Each of the non-optional keys described on the X/Open Motif model keyboard is
available either as specified or by using other keys or key combinations if the
specified key is unavailable (Preface).

Note: The model keyboard does not correspond directly to any existing
keyboard; rather, it assumes a keyboard with an ideal set of keys.
However, to ensure consistency across applications, the non-optional keys
or substitutes for them must always be available.

X/Open Common Desktop Environment (XCDE) Services and Applications 355



Input Models Application Style Checklist

20.2 Input Models

20.2.1 Keyboard Focus Model

2-1: [Required]
Only one window at a time has the keyboard focus. The window that has the focus
is highlighted. Within the window that has the keyboard focus, only one
component at a time has the focus (Section 2.1 of the OSF/Motif Style Guide).

Note: The keyboard focus determines which component on the screen receives
keyboard events. This requirement prevents confusion about which
window and component have the focus.

2-2: [Required]
When the application uses an explicit focus policy, pressing BSelect does not move
focus to a component that is not traversable or does not accept input (Section 2.1.2
of the OSF/Motif Style Guide).

Note: An explicit focus policy requires the user to explicitly select which window
or component receives the keyboard focus. Generally, the user gives the
focus to a window or component by pressing BSelect over it. However,
this policy must not allow the user to give focus to a component that is not
traversable or does not accept input.

2-3: [Required]
When the application uses an explicit focus policy, the component with the
keyboard focus is highlighted by a location cursor (Section 2.1.2 of the OSF/Motif
Style Guide).

Note: The user must know the location of the keyboard focus to be able to
control an application.

20.2.2 Input Device Model

2-4: [Required]
The application supports methods of interaction for keyboard-only users. All
features of the application are available from the keyboard (Section 2.2 of the
OSF/Motif Style Guide).

Note: Not all users have access to a pointing device. These users must be able to
access the full functionality of the application from the keyboard.
Additionally, advanced users will be able to use the keyboard to perform
some tasks more quickly than with a pointing device.

2-5: [Required]
The application uses the following bindings for mouse buttons (Section 2.2.1 of the
OSF/Motif Style Guide):

BSelect [Optional]
This button should be used for selection, activation and setting the
location cursor, and is the leftmost button, except for left-handed users,
where it can be the rightmost button.

BTransfer [Optional]
This button should be used for moving and copying elements, and is
mouse button 2, unless dragging is integrated with selection or the
mouse has fewer than three buttons.

356 X/Open CAE Specification



Application Style Checklist Input Models

BMenu [Optional]
This button should be used for popping up menus, and is the rightmost
button, except for left-handed users, where it can be the leftmost button
or unless the mouse has fewer than three buttons. If the mouse has one
button, BMenu is bound to Alt+BSelect.

Note: These bindings ensure a consistent interface for using standard mouse-
based operations across applications.

2-6: [Required]
The application does not warp the pointer unless the application have given the
user a means of disabling the behaviour (Section 2.2.4 of the OSF/Motif Style
Guide).

Note: The pointer position is intended only as input to applications, not as an
output mechanism. An application warps the pointer when it changes the
pointer’s position. This practice is confusing to users and reduces their
sense of control over an application. Warping the pointer can also cause
problems for users of absolute location pointing devices.

a: [Required]
Components and applications that have functions corresponding to the Motif-XCDE
virtual keys must support those keys.

Note: If these virtual keys are available, the following mappings should be used.
Priorities indicate the importance of implementing these functions in the
application.

Help = F1 [Required]
Pressing the Help key must provide the user with help
information in a window or in the status area.

Properties = Control+I [Required]
Pressing the Properties key must invoke a dialog box for
making object-specific settings.

Undo = Control+Z [Required]
Pressing the Undo key must reverse the effect of the last
applied operation. This is the primary key mapping for Undo.

Undo = Alt+Backspace [Optional]
This is a secondary key mapping for Undo. It should be
supported in addition to Control+Z to help users migrating
from previous versions of Motif, Microsoft Windows or OS/2.

Cut = Control+X [Required]
Pressing the Cut key must remove the selected object and
places it in the clipboard. This is the primary key mapping for
Cut.

Cut = Shift+Delete [Optional]
This is a secondary key mapping for Cut. It should be
supported in addition to Control+X to help users migrating
from previous versions of Motif, Microsoft Windows or OS/2.

Copy = Control+C [Required]
Pressing the Copy key must place a copy of the selected object
in the clipboard. This is the primary key mapping for Copy.

X/Open Common Desktop Environment (XCDE) Services and Applications 357



Input Models Application Style Checklist

Copy = Control+Insert [Optional]
This is a secondary key mapping for Copy. It should be
supported in addition to Control+C to help users migrating
from previous versions of Motif, Microsoft Windows or OS/2.

Paste = Control+V [Required]
Pressing the Paste key must place the contents of the
clipboard at the selected location. This is the primary key
mapping for Paste.

Paste = Shift+Insert [Optional]
This is a secondary key mapping for Paste. It should be
supported in addition to Control+V to help users migrating
from previous versions of Motif, Microsoft Windows or OS/2.

Open = Control+O [Optional]
Pressing the Open key opens the object, which is typically the
default action.

Stop = Control+S [Optional]
Pressing the Stop key cancels an operation.

Again = Control+A [Optional]
Pressing the Again key repeats the last operation.

Print = Control+P [Optional]
Pressing the Print key initiates printing.

Save = Control+S [Optional]
Pressing the Save key saves the current file.

New = Control+N [Optional]
Pressing the New key creates a new object.

Bold = Control+B [Optional]
Pressing the Bold key makes the selected text bold.

Italic = Control+I [Optional]
Pressing the Italic key italicises the selected text.

Underline = Control+U [Optional]
Pressing the Underline key underlines the current text.

358 X/Open CAE Specification



Application Style Checklist Navigation

20.3 Navigation

20.3.1 Mouse-Based Navigation

3-1: [Required]
When the keyboard focus policy is explicit, pressing BSelect on a component moves
focus to it, except for components, such as scroll bars, that are used to adjust the
size and location of other elements (Section 3.1 of the OSF/Motif Style Guide).

Note: BSelect provides a convenient mechanism for using the mouse to move
focus when the keyboard focus policy is explicit.

3-2: [Required]
When the pointer is on a menu, the application uses BSelect Press to activate the
menu in a spring-loaded manner (Section 3.1 of the OSF/Motif Style Guide).

Note: A spring-loaded menu is one that appears when the user presses a mouse
button, remains on the screen for as long as the button is pressed and
disappears when the user releases the button. BSelect, mouse button 1,
provides a means of activating spring-loaded menus that is consistent
across applications.

3-3: [Required]
When the pointer is in an element with an inactive pop-up menu and the context of
the element allows the pop-up menu to be displayed, the application uses BMenu
Press to activate the pop-up menu in a spring-loaded manner (Section 3.1 of the
OSF/Motif Style Guide).

Note: The availability of a pop-up menu can depend on the location of the
pointer within an element, the contents of an element or the selection state
of an element. BMenu, mouse button 3, provides a consistent means of
activating a spring-loaded pop-up menu.

3-4: [Required]
If the user takes an action to post a pop-up menu and a menu can be posted for both
an inner element and an outer element that contains the inner element, the pop-up
menu for the internal element is posted (Section 3.1 of the OSF/Motif Style Guide).

Note: This requirement ensures that the pop-up menu for an internal element is
always accessible.

3-5: [Required]
Once a pop-up menu is posted, BMenu behaves just as BSelect does for any menu
system (Section 3.1 of the OSF/Motif Style Guide).

Note: The specified operation of BMenu is for manipulating pop-up menus.

3-6: [Required]
BSelect is also available from within posted pop-up menus and behaves just as in
any menu system (Section 3.1 of the OSF/Motif Style Guide).

Note: Once a pop-up menu is posted, the user can select an element from it using
the standard selection mechanism, BSelect.

3-7: [Required]
When a menu is popped up or pulled down in a posted manner, the application
places the location cursor on the menu’s default entry or on the first entry in the
menu if there is no default entry (Section 3.1 of the OSF/Motif Style Guide).

X/Open Common Desktop Environment (XCDE) Services and Applications 359



Navigation Application Style Checklist

Note: A posted menu remains visible until it is explicitly unposted. Placing the
location cursor on the default entry allows the user to select the default
operation easily. When there is no default entry, placing the location
cursor on the first entry yields uniform behaviour across applications.

3-8: [Required]
The application removes a spring-loaded menu system when the mouse button that
activated it is released, except when the button is released on a cascading button in
the menu hierarchy (Section 3.1 of the OSF/Motif Style Guide).

Note: The concept of a spring-loaded menu system requires that the menu
disappear when the mouse button is released.

3-9: [Required]
While a spring-loaded menu system is popped up or pulled down, moving the
pointer within the menu system moves the location cursor to track the pointer
(Section 3.1 of the OSF/Motif Style Guide).

Note: Once a spring-loaded menu system has appeared on the screen, the user
must be able to maneuver the location cursor through the menu system
using the mouse.

3-10: [Required]
When a spring-loaded menu system is popped up or pulled down and the pointer
rests on a cascading button, the associated menu is pulled down and becomes
traversable. The associated menu is removed, possibly after a short delay, when the
pointer moves to a menu item outside of the menu or its cascading button (Section
3.1 of the OSF/Motif Style Guide).

Note: The user must be able to use the mouse to access all of the associated
menus of a menu system. This feature allows the user to move quickly to
any menu in a menu system.

3-11: [Required]
When a spring-loaded menu system that is part of the menu bar is pulled down,
moving the pointer to any other element on the menu bar unposts the current menu
system and posts the pull-down menu associated with the new element (Section 3.1
of the OSF/Motif Style Guide).

Note: This feature of a spring-loaded menu system allows the user to browse
quickly through all of the menus attached to a menu bar.

3-12: [Required]
When a spring-loaded menu system is popped up or pulled down and the button
that activated the menu system is released within a component in the menu system,
that component is activated. If the release is on a cascading button or an option
button, the associated menu is activated in a posted manner if it was not posted
prior to the associated button press (Section 3.1 of the OSF/Motif Style Guide).

Note: Releasing the mouse button that activated a spring-loaded menu provides
a means of activating a menu element that is consistent across
applications.

3-13: [Required]
When the pointer is in an area with a pop-up menu, the application uses BMenu
Click to activate the menu in a posted manner if it was not posted prior to the
BMenu Click (Section 3.1 of the OSF/Motif Style Guide).

360 X/Open CAE Specification



Application Style Checklist Navigation

Note: BMenu Click provides a means of posting a pop-up menu that is consistent
across applications.

3-14: [Required]
Once a pull-down or option menu is posted, BSelect Press in the menu system
causes the menu to behave as a spring-loaded menu (Section 3.1 of the OSF/Motif
Style Guide).

Note: This feature of a posted pull-down or option menu allows the user to
switch easily between using a posted menu and a spring-loaded menu.

3-15: [Required]
If a button press unposts a menu and that button press is not also passed to the
underlying component, subsequent events up to and including the button release
are not passed to the underlying component (Section 3.1 of the OSF/Motif Style
Guide).

Note: When a button press unposts a menu, the press can be passed to the
underlying component. Whether or not it is passed to the underlying
component, the press can have additional effects, such as raising and
giving focus to the underlying window. If the press is not passed to the
underlying component, events up to and including the release must not be
passed to that component.

3-16: [Required]
Once a pop-up menu is posted, BSelect Press or BMenu Press in the menu system
causes the menu to behave as a spring-loaded menu (Section 3.1 of the OSF/Motif
Style Guide).

Note: This feature of a posted pop-up menu allows the user to switch easily
between using a posted menu and a spring-loaded menu.

b: [Optional]
BMenu Press or BMenu Click on a menu bar item displays the menu.

c: [Required]
BMenu Press or BMenu Click on an option button displays the option menu.

d: [Required]
BSelect Press on a text entry field causes the text cursor to be inserted at the mouse
cursor position.

20.3.2 Keyboard-Based Navigation

3-17: [Required]
In a text component, the text cursor is shown differently when the component does
and does not have the keyboard focus (Section 3.2.1 of the OSF/Motif Style Guide).

Note: In a text component, the text cursor serves as the location cursor and,
therefore, must indicate whether the component has keyboard focus.

3-18: [Required]
If a text component indicates that it has lost the keyboard focus by hiding the text
cursor and if the component subsequently regains the focus, the cursor reappears at
the same position it had when the component lost focus (Section 3.2.1 of the
OSF/Motif Style Guide).

Note: To ensure predictability, the text cursor must not change position when a
text component loses and then regains the keyboard focus.

X/Open Common Desktop Environment (XCDE) Services and Applications 361



Navigation Application Style Checklist

3-19: [Required]
If a small component, such as a sash, indicates that it has the keyboard focus by
filling, no other meaning is associated with the filled state (Section 3.2.1 of the
OSF/Motif Style Guide).

Note: This requirement reduces possible confusion about the significance of
filling in a small component.

3-20: [Required]
All components are designed and positioned within the application so that adding
and removing each component’s location cursor does not change the amount of
space that the component takes up on the screen (Section 3.2.1 of the OSF/Motif
Style Guide).

Note: For visual consistency, the sizes and positions of components should not
change when keyboard focus moves from one component to another.

3-21: [Required]
Control+Tab moves the location cursor to the next field and Control+Shift+Tab
moves the location cursor to the previous field. Unless Tab and Shift+Tab are used
for internal navigation within a field, Tab also moves the location cursor to the next
field and Shift+Tab also moves the location cursor to the previous field (Section 3.2.3
of the OSF/Motif Style Guide).

Note: These keys provide a consistent means of navigating among fields in a
window.

3-22: [Required]
Tab (if not used for internal navigation) and Control+Tab move the location cursor
forward through fields in a window according to the following requirements
(Section 3.2.3 of the OSF/Motif Style Guide):

• If the next field is a control, Tab (if not used for internal navigation) and
Control+Tab move the location cursor to that control.

• If the next field is a group, Tab (if not used for internal navigation) and
Control+Tab move the location cursor to a traversable component within the
group.

• If the next field contains no traversable components, Tab (if not used for internal
navigation) and Control+Tab skip the field.

Note: These requirements ensure the consistent operation of Tab (if not used for
internal navigation) and Control+Tab across applications.

3-23: [Required]
Shift+Tab (if not used for internal navigation) and Control+Shift+Tab move the
location cursor backward through fields in the order opposite to that of Tab (if not
used for internal navigation) and Control+Tab (Section 3.2.3 of the OSF/Motif Style
Guide).

Note: These requirements result in the uniform operation of Shift+Tab (if not
used for internal navigation) and Control+Shift+Tab across applications.

3-24: [Required]
When a window acquires focus, the location cursor is placed on the control that last
had focus in the window, providing that all the following conditions are met
(Section 3.2.3 of the OSF/Motif Style Guide):

362 X/Open CAE Specification



Application Style Checklist Navigation

• The window uses an explicit keyboard focus policy.

• The window acquires the focus through keyboard navigation or through a
button press other than within the client area of the window.

• The window had the focus at some time in the past.

• The control that last had focus in the window is still traversable.

Note: This requirement ensures that when the user returns to a window after
navigating away, the focus returns to the component where the user left it.

3-25: [Required]
Field navigation wraps between the first and last fields in the window. (Section
3.2.3 of the OSF/Motif Style Guide).

Note: This feature of field navigation provides the user with a convenient way to
move through all of the fields in a window.

3-26: [Required]
When the Down Arrow and Up Arrow keys are used for component navigation
within a field, they behave according to the following requirements (Section 3.2.3 of
the OSF/Motif Style Guide):

In a left-to-right language environment, the Down Arrow key moves the location
cursor through all traversable controls in the field, starting at the upper left and
ending at the lower right, then wrapping to the upper left. If the controls are
aligned in a matrix-like arrangement, Down Arrow first traverses one column from
top to bottom, then traverses the column to its right and so on. In a right-to-left
language environment, Down Arrow moves the location cursor through all
traversable controls, starting at the upper right and ending at the lower left.

• Up Arrow moves the location cursor through all traversable controls in the field
in the order opposite to that of Down Arrow.

Note: These requirements ensure a consistent means of navigating among
components using the directional keys.

3-27: [Required]
When the Right Arrow and Left Arrow keys are used for component navigation
within a field, they behave according to the following rules (Section 3.2.3 of the
OSF/Motif Style Guide):

• In a left-to-right language environment, the Right Arrow moves the location
cursor through all traversable controls in the field, starting at the upper left and
ending at the lower right, then wrapping to the upper left. If the controls are
aligned in a matrix-like arrangement, the Right Arrow first traverses one row
from left to right, then traverses the row below it and so on. In a right-to-left
language environment, the Right Arrow moves the location cursor through all
traversable controls, starting at the lower left and ending at the upper right.

• Left Arrow moves the location cursor through all traversable controls in the field
in the order opposite to that of the Right Arrow.

Note: These requirements ensure a consistent means of navigating among
components using the directional keys.

3-28: [Required]
If a control uses the Right Arrow and Left Arrow for internal navigation, Begin
moves the location cursor to the leftmost edge of the data or the leftmost element in

X/Open Common Desktop Environment (XCDE) Services and Applications 363



Navigation Application Style Checklist

a left-to-right language environment. In a right-to-left language environment, Begin
moves the location cursor to the rightmost edge of the data or the rightmost element
(Section 3.2.3 of the OSF/Motif Style Guide).

Note: This requirement permits convenient navigation to the left or right edge of
the data or the left or right element in a control.

3-29: [Required]
If a control uses the Right Arrow and Left Arrow keys for internal navigation, the
End key moves the location cursor to the rightmost edge of the data or the
rightmost element in a left-to-right language environment. In a right-to-left
language environment, End moves the location cursor to the leftmost edge of the
data or the leftmost element (Section 3.2.3 of the OSF/Motif Style Guide).

Note: This requirement permits convenient navigation to the left or right edge of
the data or the left or right element in a control.

3-30: [Required]
If a control uses the Up Arrow and Down Arrow keys for internal navigation,
Control+Begin moves the location cursor to one of the following (Section 3.2.3 of the
OSF/Motif Style Guide):

• The first element

• The topmost edge of the data

• In a left-to-right language environment, the topmost left edge of the data; in a
right-to-left language environment, the topmost right edge of the data

Note: This requirement permits convenient navigation to the beginning of the
data in a control.

3-31: [Required]
If a control uses the Up Arrow and Down Arrow keys for internal navigation,
Control+End moves the location cursor to one of the following (Section 3.2.3 of the
OSF/Motif Style Guide):

• The last element

• The bottommost edge of the data

• In a left-to-right language environment, the bottommost right edge of the data;
in a right-to-left language environment, the bottommost left edge of the data

Note: This requirement permits convenient navigation to the end of the data in a
control.

e: [Optional]
Each time a new window is opened, keyboard focus is placed in the first field or
location within the window or in a default location, if this is appropriate for the
particular window.

f: [Required]
The Tab key moves input focus between push buttons within a group.

Note: The arrow keys also move the selected focus per the OSF/Motif Style
Guide.

g: [Required]
The application uses the Control, Shift and Alt keys only to modify the function of
other keys or key combinations.

364 X/Open CAE Specification



Application Style Checklist Navigation

h: [Optional]
The application should use the Alt key only to provide access to mnemonics.

20.3.3 Menu Traversal

3-32: [Required]
If the user traverses to a menu while the keyboard focus policy is implicit, the focus
policy temporarily changes to explicit and reverts to implicit whenever the user
traverses out of the menu system (Section 3.3 of the OSF/Motif Style Guide).

Note: Menus must always be traversable, even when the keyboard focus policy
is generally implicit.

3-33: [Required]
The application uses the F10 key to activate the menu bar system if it is inactive.
The location cursor is placed on the first traversable cascading button in the menu
bar. If there are no traversable cascading buttons, the key does nothing (Section 3.3
of the OSF/Motif Style Guide).

Note: F10 provides a consistent means of traversing to the menu bar using the
keyboard.

3-34: [Required]
When the keyboard focus is in an element with an inactive pop-up menu and the
context of the element allows the pop-up menu to be displayed, the application uses
the menu key to activate the pop-up menu. The location cursor is placed on the
default item of the menu or on the first traversable item in the pop-up menu if there
is no default item (Section 3.3 of the OSF/Motif Style Guide).

Note: The Menu key provides a uniform way of activating a pop-up menu from
the keyboard.

3-35: [Required]
When the keyboard focus is in an option button, the application uses the Select key
or the Spacebar to post the option menu. The location cursor is placed on the
previously selected item in the option menu; or, if the option menu has been pulled
down for the first time, the location cursor is placed on the default item in the menu.
If there is an active option menu, the Return, Select or Spacebar keys select the
current item in the option menu, unpost the menu system and return the location
cursor to the option button (Section 3.3 of the OSF/Motif Style Guide).

Note: These keys provide a means of posting an option menu from the keyboard
that is consistent across applications.

3-36: [Required]
The application uses the Down Arrow, Left Arrow, Right Arrow and Up Arrow
keys to traverse through the items in a menu system (Section 3.3 of the OSF/Motif
Style Guide).

Note: The Down Arrow, Left Arrow, Right Arrow and Up Arrow directional
keys provide a consistent means of navigating among items in a menu
system.

3-37: [Required]
When a menu traversal action traverses to the next or previous component in a
menu or menu bar, the order of traversal and the wrapping behaviour are the same
as that of the corresponding component navigation action within a field, as
described in Section 3.2.3 (Section 3.3 of the OSF/Motif Style Guide).

X/Open Common Desktop Environment (XCDE) Services and Applications 365



Navigation Application Style Checklist

Note: This requirement provides consistency between menu traversal and
component navigation within a field.

3-38: [Required]
If the application uses any two-dimensional menus, they do not contain any
cascading buttons (Section 3.3 of the OSF/Motif Style Guide).

Note: Cascading buttons in a two-dimensional menu would restrict the user’s
ability to navigate to all of the elements of the menu using the keyboard.

3-39: [Required]
When focus is on a component in a menu or menu bar system, the Down Arrow key
behaves according to the following rules (Section 3.3 of the OSF/Motif Style
Guide):

• If the component is in a vertical or two-dimensional menu, traverse down to the
next traversable component, wrapping within the menu if necessary.

• If the component is in a menu bar and the component with the keyboard focus is
a cascading button, post its associated pull-down menu and traverse to the
default entry in the menu or, if the menu has no default, to the first traversable
entry in the menu.

Note: This requirement results in consistent operation of the directional keys in a
menu or menu bar system.

3-40: [Required]
When focus is on a component in a menu or menu bar system, the Up Arrow key
behaves according to the following rules (Section 3.3 of the OSF/Motif Style
Guide):

• If the component is in a vertical or two-dimensional menu, this action traverses
up to the previous traversable component, wrapping within the menu if
necessary and proceeding in the order opposite to that of the Down Arrow key.

Note: This requirement results in consistent operation of the directional keys in a
menu or menu bar system.

3-41: [Required]
When focus is on a component in a menu or menu bar system, the Left Arrow key
behaves according to the following rules (Section 3.3 of the OSF/Motif Style
Guide):

• If the component is in a menu bar or two-dimensional menu, but not at the left
edge, traverse left to the previous traversable component.

• If the component is at the left edge of a menu bar, wrap within the menu bar.

• If the component is at the left edge of a vertical or two-dimensional menu that is
the child of a vertical or two-dimensional menu, unpost the current menu and
traverse to the parent cascading button.

• If the component is at the left edge of a vertical or two-dimensional menu that is
the child of a menu bar, unpost the current menu and traverse left to the
previous traversable entry in the menu bar. If that entry is a cascading button,
post its associated pull-down menu and traverse to the default entry in the
menu or, if the menu has no default, to the first traversable entry in the menu.

Note: This requirement results in consistent operation of the directional keys in a
menu or menu bar system.

366 X/Open CAE Specification



Application Style Checklist Navigation

3-42: [Required]
When focus is on a component in a menu or menu bar system, the Right Arrow key
behaves according to the following rules (Section 3.3 of the OSF/Motif Style
Guide):

• If the component is a cascading button in a vertical menu, post its associated
pull-down menu and traverse to the default entry in the menu or, if the menu
has no default, to the first traversable entry in the menu.

• If the component is in a menu bar or two-dimensional menu, but not at the right
edge, traverse right to the next traversable component.

• If the component is at the right edge of a menu bar, wrap within the menu bar.

• If the component is not a cascading button and is at the right edge of a vertical or
two-dimensional menu and if the current menu has an ancestor cascading
button (typically in a menu bar) from which the Down Arrow key posts its
associated pull-down menu, unpost the menu system pulled down from the
nearest such ancestor cascading button and traverse right from that cascading
button to the next traversable component. If that component is a cascading
button, post its associated pull-down menu and traverse to the default entry in
the menu or, if the menu has no default, to the first traversable entry in the
menu.

Note: This requirement results in consistent operation of the directional keys in a
menu or menu bar system.

3-43: [Required]
All menu traversal actions, with the exception of menu posting, traverse to tear-off
buttons in the same way as for other menu entries (Section 3.3 of the OSF/Motif
Style Guide).

Note: Traversal of tear-off buttons must be consistent with traversal of other
menu items.

3-44: [Required]
If the application uses the F10, Menu or Cancel key to unpost an entire menu system
and an explicit focus policy is in use, the location cursor is moved back to the
component that had it before the menu system was posted (Section 3.3 of the
OSF/Motif Style Guide).

Note: Returning the location cursor to the component that had it previously
allows the user to resume a task without disruption.

20.3.4 Scrollable Component Navigation

3-45: [Required]
Any scrollable components within the application support the appropriate
navigation and scrolling operations. The application uses the page navigation keys
Page Up, Page Down, Control+Page Up (for Page Left) and Control+Page Down (for
Page Right) for scrolling the visible region by a page increment (Section 3.4 of the
OSF/Motif Style Guide).

Note: A user must be able to view and access the entire contents of a scrollable
component.

X/Open Common Desktop Environment (XCDE) Services and Applications 367



Navigation Application Style Checklist

3-46: [Required]
When scrolling by a page, the application leaves at least one unit of overlap
between the old and new pages (Section 3.4 of the OSF/Motif Style Guide).

Note: The overlap between one page and the next yields visual continuity for the
user.

3-47: [Required]
Any keyboard operation that moves the cursor to or in the component or that
inserts, deletes or modifies items at the cursor location scrolls the component so that
the cursor is visible when the operation is complete (Section 3.4 of the OSF/Motif
Style Guide).

Note: The user must be able to see the results of moving the location cursor or
operating on the contents of the scrollable component.

3-48: [Required]
If a mouse-based scrolling action is in progress, the Cancel key cancels the scrolling
action and returns the scrolling device to its state prior to the start of the scrolling
operation (Section 3.4 of the OSF/Motif Style Guide).

Note: The Cancel key provides a convenient way for the user to cancel a scrolling
operation.

20.4 Selection

20.4.1 Selection Models

4-1: [Required]
The system supports five selection models: single selection, browse selection,
multiple selection, range selection and discontiguous selection (Section 4.1 of the
OSF/Motif Style Guide).

Each collection has one or more appropriate selection models. The model limits the
kinds of choices the user can make in the collection. Some collections enforce a
selection model, while others allow the user or application to change it.

20.4.1.1 Mouse-Based Single Selection

4-2: [Required]
In a collection that uses single selection, when BSelect is clicked in a deselected
element, the location cursor moves to that element, that element is selected and any
other selection in the collection is deselected (Section 4.1.1 of the OSF/Motif Style
Guide).

Note: Single selection is the simplest selection model, used to select a single
element. BSelect, mouse button 1, provides a consistent means of selecting
an object within a group using the mouse.

368 X/Open CAE Specification



Application Style Checklist Selection

20.4.1.2 Mouse-Based Browse Selection

4-3: [Required]
In a collection that uses browse selection, when BSelect is released in a selectable
element, that element is selected and any other selection in the collection is
deselected. As BSelect is dragged through selectable elements, each element under
the pointer is selected and the previously selected element is deselected. The
selection remains on the element where BSelect is released and the location cursor is
moved there (Section 4.1.2 of the OSF/Motif Style Guide).

Note: Browse selection is used to select a single element. It also allows the user
to browse through the collection by dragging BSelect. See Section 20.4.1.3.

4-4: This item of the OSF/Motif Style Guide is not applicable.

20.4.1.3 Mouse-Based Multiple Selection

i: [Required]
If the application contains collections that follow the multiple selection model,
BAdjust is supported and behaves equivalent to BSelect, when the BTransfer button
is currently configured to behave as BAdjust.

Note: On a three-button mouse, button 2 is typically used for the BTransfer (or
BSelect) function. However, in a XCDE environment, the user may change
an environment setting indicating that mouse button 2 should be used for
the BAdjust function instead. BAdjust can be used to toggle the selection
state of elements under the multiple selection model.

j: [Required]
In a collection that uses multiple selection, clicking BSelect or BAdjust on an
unselected element adds that element to the current selection. Clicking BSelect or
BAdjust on a selected element removes that element from the current selection.
Clicking BSelect or BAdjust moves the location cursor to that element.

20.4.1.4 Mouse-Based Range Selection

4-5: [Required]
This item of the OSF/Motif Style Guide has been replaced by items k and l.

k: [Required]
In a collection that uses range selection, pressing BSelect on an unselected element
sets an anchor on the element or at the position where BSelect was pressed and
deselects all elements in the collection. If BSelect is released before the drag
threshold has been exceeded, then the element under the pointer is selected. If
BSelect Motion exceeds the drag threshold, then a new selection begins. The anchor
and the current position of the pointer determine the current range. As BSelect is
dragged through the collection, the current range is highlighted. When BSelect is
released, the anchor does not move and all the elements within the current range are
selected (Section 4.1.4 of the OSF/Motif Style Guide).

Note: Range selection allows the user to select multiple contiguous elements of a
collection by pressing and dragging BSelect.

l: [Required]
In a collection that uses range selection, pressing BSelect on an currently selected
element causes none of the other elements in the selection set to be deselected. If
BSelect is released before the drag threshold is exceeded, then, at that point, all other

X/Open Common Desktop Environment (XCDE) Services and Applications 369



Selection Application Style Checklist

elements are deselected and the element under the pointer remains selected. If
BSelect Motion exceeds the drag threshold, then no element is deselected and a drag
operation begins.

4-6: [Required]
In a text-like collection that uses range selection, the anchor point is the text pointer
position when BSelect is pressed and the current range consists of all elements
between the anchor point and the current text pointer position (Section 4.1.4 of the
OSF/Motif Style Guide).

Note: In text-like collections, elements are ordered linearly and a text pointer is
always considered to be between elements at a point near the actual
pointer position.

4-7: [Required]
In a graphics-like or list-like collection that uses a marquee to indicate the range of a
range selection, the current range consists of those elements that fall completely
within the marquee. If there is an anchor element, the marquee is always made
large enough to enclose it completely. Otherwise, an anchor point is used and is the
point at which BSelect was pressed; the anchor point determines one corner of the
marquee. If the collection is not arranged as a list or matrix, the marquee is
extended to the pointer position. If the collection is arranged as a list or matrix, the
marquee is either extended to completely enclose the element under the pointer or
extended to the pointer position. Clicking BSelect on a selectable element makes it
an anchor element, selects it and deselects all other elements (Section 4.1.4 of the
OSF/Motif Style Guide).

Note: A marquee or highlighted rectangle, is often used to indicate the range of a
selection in graphics-like and list-like collections.

4-8: This item of the OSF/Motif Style Guide is not applicable.

m: [Required]
If the application contains collections that follow the range selection model, BAdjust
is supported and behaves equivalent to Shift+BSelect, when the BTransfer button is
currently configured to behave as BAdjust.

Note: On a three-button mouse, button 2 is typically used for the BTransfer
function. However, in XCDE, the user may change an environment setting
indicating that mouse button 2 should be used for the BAdjust function
instead. BAdjust can be used to extend the selection set in the same
manner as Shift+BSelect.

n: [Required]
In a collection that uses range selection, when the user presses Shift+BSelect or
BAdjust, the anchor remains unchanged and an extended range for the selection is
determined, based on one of the extension models:

Reselect [Optional]
The extended range is determined by the anchor and the current
pointer position, in the same manner as when the selection was initially
made.

Enlarge Only [Optional]
The selection can only be enlarged. The extended range is determined
by the anchor and the current pointer position, but then is enlarged to
include the current selection.

370 X/Open CAE Specification



Application Style Checklist Selection

Balance Beam [Optional]
A balance point is defined at the midpoint of the current selection.
When the user presses Shift+BSelect or BAdjust on the opposite side of
the balance point from the anchor, this model works equivalent to the
reselect model. When the user presses Shift+BSelect, BAdjust or starts
a navigation action modified by Shift on the same side of the balance
point as the anchor, this model moves the anchor to the opposite end of
the selection and then works equivalent to the reselect model.

Note: When the user releases BSelect or BAdjust, the anchor does
not move, all the elements within the extended range are
selected and all the elements outside of it are deselected.

20.4.1.5 Mouse-Based Discontiguous Selection

4-9: [Required]
In a collection that uses discontiguous selection, the behaviour of BSelect is
equivalent to the range selection model. After the user sets the anchor with BSelect,
Shift+BSelect is equivalent to the range selection model (Section 4.1.5 of the
OSF/Motif Style Guide).

Note: Discontiguous selection is an extension of range selection that allows the
user to select multiple discontiguous ranges of elements.

4-10: [Required]
In a collection that uses discontiguous selection, when the current selection is not
empty and the user clicks Control+BSelect, the anchor and location cursor move to
that point. If the current selection is not empty and the user clicks Control+BSelect
on an element, the selection state of that element is toggled and that element
becomes the anchor element (Section 4.1.5 of the OSF/Motif Style Guide).

Note: In discontiguous selection, Control+BSelect Click provides a convenient
means of moving the anchor and toggling the selection state of the element
under the pointer.

4-11: [Required]
In a collection that uses discontiguous selection, Control+BSelect Motion toggles the
selection state of a range of elements. The range itself is determined as for BSelect
Motion. Releasing Control+BSelect toggles the selection state of the elements in the
range according to one of two models (Section 4.1.5 of the OSF/Motif Style Guide):

Anchor Toggle [Optional]
Toggling is based on an anchor element. If the range is anchored by a
point and is not empty, the anchor element is set to the element within
the range that is nearest to the anchor point. Toggling sets the selection
state of all elements in the range to the inverse of the initial state of the
anchor element.

Full Toggle [Optional]
The selection state of each element in the extended range is toggled.

Note: In discontiguous selection, Control+BSelect provides a
convenient means of toggling the selection state of elements in
a range.

X/Open Common Desktop Environment (XCDE) Services and Applications 371



Selection Application Style Checklist

4-12: [Required]
In a collection that uses discontiguous selection, after Control+BSelect toggles a
selection, Shift+BSelect or Control+Shift+BSelect extends the range of toggled
elements. The extended range is determined in the same way as when Shift BSelect
is used to extend a range selection. When the user releases Control+Shift+BSelect,
the selection state of elements added to the range is determined by the toggle model
in use (either Anchor Toggle or Full Toggle). If elements are removed from the
range, they either revert to their state prior to the last use of Control+BSelect or
change to the state opposite that of the elements remaining within the extended
range (Section 4.1.5 of the OSF/Motif Style Guide).

Note: Shift+BSelect and Control+Shift+BSelect provide a convenient means of
extending the range of toggled elements.

o: [Required]
In a collection that uses discontiguous selection, BAdjust can be used to extend the
range of a discontiguous selection. The extended range is determined in the same
way as when BAdjust is used to extend a range selection.

Note: On a three-button mouse, the button 2 is typically used for the BTransfer
function. However, in a XCDE environment, the user may change an
environment setting indicating that mouse button 2 should be used for the
BAdjust function instead. BAdjust can be used to extend the selection set
in the same manner as Shift+BSelect.

20.4.1.6 Keyboard Selection

4-13: [Required]
The selection models support keyboard selection modes according to the following
rules (Section 4.1.6 of the OSF/Motif Style Guide):

• Single selection supports only add mode.

• Browse selection supports only normal mode.

• Multiple selection supports only add mode.

• Range selection supports normal mode. If it also supports add mode, normal
mode is the default.

• Discontiguous selection supports both normal mode and add mode. Normal
mode is the default.

Note: Selection must be available from the keyboard. In normal mode, used for
making simple contiguous selections from the keyboard, the location
cursor is never disjoint from the current selection. In add mode, used for
making more complex and possibly disjoint selections, the location cursor
can move independently of the current selection.

4-14: [Required]
If a collection supports both normal mode and add mode, Shift+F8 switches from
one mode to the other. Mouse-based selection does not change when the keyboard
selection mode changes. In editable components, add mode is a temporary mode
that is exited when the user performs an operation on the selection or deselects the
selection (Section 4.1.6 of the OSF/Motif Style Guide).

Note: Shift+F8 provides a convenient means of switching between normal mode
and add mode.

372 X/Open CAE Specification



Application Style Checklist Selection

Keyboard-Based Single Selection

4-15: [Required]
In a collection that uses single selection, the navigation keys move the location
cursor independently from the selected element. If the user presses the Select key or
the Spacebar on an unselected element, the element with the location cursor is
selected and any other selection in the collection is deselected (Section 4.1.6.1 of the
OSF/Motif Style Guide).

Note: Single selection supports only add mode. Pressing the Select key or the
Spacebar is similar to clicking BSelect.

Keyboard-Based Browse Selection

4-16: [Required]
In a collection that uses browse selection, the navigation keys move the location
cursor and select the cursored element, deselecting any other element. If the
application has deselected all elements or if the cursor is left disjoint from the
selection, the Select key or the Spacebar selects the cursored element and deselects
any other element (Section 4.1.6.2 of the OSF/Motif Style Guide).

Note: Browse selection supports only normal mode. A navigation operation is
similar to dragging BSelect.

Keyboard-Based Multiple Selection

4-17: [Required]
In a collection that uses multiple selection, the navigation keys move the location
cursor independently from the current selection. The Select key or the Spacebar on
an unselected element adds the element to the current selection. Pressing the Select
key or the Spacebar on a selected element removes the element from the current
selection (Section 4.1.6.3 of the OSF/Motif Style Guide).

Note: Multiple selection supports only add mode. Pressing the Select key or the
Spacebar is similar to clicking BSelect.

Keyboard-Based Range Selection

4-18: [Required]
In a collection that uses range selection and is in normal mode, the navigation keys
move the location cursor and deselect the current selection. If the cursor is on an
element, it is selected. The anchor moves with the location cursor.

Note: Text-like collections can use a different model in which the navigation keys
leave the anchor at its current location, except that, if the current selection
is not empty, it is deselected and the anchor is moved to the location of the
cursor prior to navigation (Section 4.1.6.4 of the OSF/Motif Style Guide).

Range selection supports normal mode and, if the collection also supports
add mode, normal mode is the default.

4-19: [Required]
In a collection that uses range selection, whether in normal mode or add mode, the
Select key or Spacebar (except in a text component) moves the anchor to the cursor,
deselects the current selection and, if the cursor is on an element, selects the
element. Unless the anchor is on a deselected item, Shift+Select or Shift+Spacebar

X/Open Common Desktop Environment (XCDE) Services and Applications 373



Selection Application Style Checklist

(except in text) extends the selection from the anchor to the cursor, based on the
extension model used by Shift+BSelect (Reselect, Enlarge Only or Balance Beam)
(Section 4.1.6.4 of the OSF/Motif Style Guide).

Note: In range selection, pressing the Select key or Spacebar is similar to clicking
BSelect and pressing Shift+Select or Shift+Spacebar extends the range as
with Shift+BSelect.

4-20: [Required]
In a collection that uses range selection and is in normal mode, using Shift in
conjunction with the navigation keys extends the selection, based on the extension
model used by Shift+BSelect. If the current selection is empty, the anchor is first
moved to the cursor. The cursor is then moved according to the navigation keys
and the selection is extended based on the extension model used by Shift+BSelect
(Section 4.1.6.4 of the OSF/Motif Style Guide).

Note: In range selection, shifted navigation extends the selection in a similar
manner to dragging Shift+BSelect.

4-21: [Required]
In a collection that uses range selection and is in add mode, the navigation keys
move the location cursor, but leave the anchor unchanged. Shifted navigation
moves the location cursor according to the navigation keys and the selection is
extended based on the extension model used by Shift+BSelect (Section 4.1.6.4 of the
OSF/Motif Style Guide).

Note: Shifted navigation in add mode is similar to shifted navigation in normal
mode, except that when the selection is empty the anchor does not move
to the cursor prior to navigation.

Keyboard-Based Discontiguous Selection

4-22: [Required]
In a collection that uses discontiguous selection and is in normal mode, all keyboard
operations have the same effect as in the range selection model (Section 4.1.6.5 of
the OSF/Motif Style Guide).

Note: Normal mode does not permit multiple discontiguous selections.

4-23: [Required]
In a collection that uses discontiguous selection and is in add mode, the Select key
or Spacebar moves the anchor to the location cursor and initiates toggling. If the
cursor is on an element, the selection state of that element is toggled, but the
selection state of all other elements remains unchanged. Shift+Select or
Shift+Spacebar and shifted navigation operations extend the selection between the
anchor and the location cursor, based on the toggle mechanism used by
Control+BSelect (Anchor Toggle or Full Toggle) (Section 4.1.6.5 of the OSF/Motif
Style Guide).

Note: Add mode permits use of the keyboard to make multiple discontiguous
selections.

374 X/Open CAE Specification



Application Style Checklist Selection

20.4.1.7 Canceling a Selection

4-24: [Required]
The application uses the Cancel key to cancel or undo any incomplete motion
operation used for selection. Once the user presses the Cancel key to cancel a
motion operation, the application ignores subsequent key and button releases until
after all buttons and keys are released. Pressing the Cancel key while extending or
toggling leaves the selection state of all elements as they were prior to the button
press (Section 4.1.7 of the OSF/Motif Style Guide).

Note: The Cancel key allows the user to cancel an incomplete selection operation
quickly and consistently.

20.4.1.8 Autoscrolling and Selection

4-25: [Required]
If the user drags the pointer out of a scrollable collection during a motion-based
selection operation, autoscrolling is used to scroll the collection in the direction of
the pointer. If the user presses the Cancel key with BSelect pressed, the selection
operation is canceled as described in Section 4.1.7 (Section 4.1.8 of the OSF/Motif
Style Guide).

Note: Autoscrolling provides a convenient means of extending a selection to
elements outside the viewport of a scrollable collection.

20.4.1.9 Selecting and Deselecting All Elements

4-26: [Required]
In a collection that uses multiple, range or discontiguous selection, Control+/
selects all the elements in the collection, places the anchor at the beginning of the
collection and leaves the location cursor at its previous position (Section 4.1.9 of the
OSF/Motif Style Guide).

Note: Control+/ provides the user with a convenient means of selecting all of the
objects in a collection.

4-27: [Required]
In a collection that is in add mode, Control+\ deselects all the elements in the
collection. In a collection that is in normal mode, Control+\ deselects all the
elements in the collection, except the element with the location cursor if the location
cursor is being displayed. In either mode, Control+\ leaves the location cursor at its
current position and moves the anchor to the location cursor (Section 4.1.9 of the
OSF/Motif Style Guide).

Note: Control+\ allows the user to deselect all of the selected objects quickly and
uniformly.

20.4.1.10 Using Mnemonics for Elements

4-28: [Required]
If the application supports mnemonics associated with selectable elements, typing a
mnemonic while the collection has the keyboard focus is equivalent to moving the
location cursor to the element and pressing the Select key or Spacebar (Section
4.1.10 of the OSF/Motif Style Guide).

Note: Mnemonics within a collection of selectable elements provide an
additional selection method.

X/Open Common Desktop Environment (XCDE) Services and Applications 375



Selection Application Style Checklist

20.4.2 Selection Actions

4-29: [Required]
When the keyboard focus policy is explicit, the destination component is the
editable component that last had the keyboard focus. When the keyboard focus
policy is implicit, the destination component is the editable component that last
received mouse button or keyboard input (Section 4.2.1 of the OSF/Motif Style
Guide).

Note: The destination component is used to identify the component on which
certain operations, primarily data transfer operations, act. There is only
one destination component at a time.

4-30: [Required]
If the keyboard focus is in a component (or a pop-up menu of a component) that
supports selections, operations that act on a selection act on the selection in that
component (Section 4.2.2 of the OSF/Motif Style Guide).

Note: A selection operation acts on the component that has focus, if that
component supports selections.

4-31: [Required]
If the keyboard focus is in a component (or a pop-up menu of a component) that
supports some operation that does not act on a selection, invoking the operation
acts on that component (Section 4.2.2 of the OSF/Motif Style Guide).

Note: An operation that does not act on a selection acts on the component that
has focus, if that component supports the operation.

4-32: [Required]
Inserting or pasting elements into a selection, except for a primary transfer
operation at the bounds of the primary selection, first deletes the selection if
pending delete is enabled (Section 4.2.3 of the OSF/Motif Style Guide).

Note: Pending delete controls the conditions under which the selection is
deleted. It is enabled by default.

4-33: [Required]
In normal mode, inserting or pasting elements disjoint from the selection also
deselects the selection, except for primary transfer operations whose source and
destination are in the same collection. In add mode, the selection is not deselected
(Section 4.2.3 of the OSF/Motif Style Guide).

Note: In add mode, a transfer operation that is disjoint from the selection does
not affect the selection.

4-34: [Required]
In editable list-like and graphics-like collections, Delete deletes the selected
elements (Section 4.2.3 of the OSF/Motif Style Guide).

Note: Delete provides a consistent means of deleting the selection.

4-35: [Required]
In editable text-like collections, Delete and Backspace behave as follows:

• If the selection is not empty and the control is in normal mode, the selection is
deleted.

• If the selection is not empty, the control is in add mode and the cursor is not
disjoint from the selection, the selection is deleted.

376 X/Open CAE Specification



Application Style Checklist Selection

• If the selection is not empty and the control is in add mode, but the cursor is
disjoint from the selection, Delete deletes one character forward and Backspace
deletes one character backward.

• If the selection is empty, Delete deletes one character forward and Backspace
deletes one character backward.

Note: In text, Delete and Backspace provide a convenient way to delete the entire
selection or single characters.

20.4.3 Transfer Models

4-36: [Required]
If the move, copy or link operation the user requests is not available, the transfer
operation fails (Section 4.3 of the OSF/Motif Style Guide).

Note: Three transfer operations are generally available: copy, move and link.
The user requests one of these operations by pressing the buttons or keys
appropriate for the type of transfer. In general, for mouse-based
operations, the modifier Control forces a copy, Shift forces a move and
Control+Shift forces a link. However, any requested transfer operation
must fail if that operation is not available.

4-37: [Required]
If a collection does not have a fixed insertion point or keep elements ordered in a
specific way, the insertion position for transferred data is determined as follows
(Section 4.3 of the OSF/Motif Style Guide):

• For BTransfer-based (or BSelect) primary and drag transfer operations, excepted
as noted below for text collections, the insertion position is the position at which
the user releases BTransfer (or BSelect).

• In a text-like collection, when the user drops selected text, the insertion position
is the position at which the user releases BTransfer (or Bselect). When the user
drops an icon, the insertion position is the text cursor and the data is pasted
before it.

• In a list-like collection, the insertion position for other transfer operations is the
element with the location cursor and the data is pasted before it.

Note: The insertion position is the position in the destination where transferred
data is placed. Some mouse-based transfer operations place data at the
pointer position if possible. Other operations, including keyboard-based
transfer, generally place the data at the location cursor.

p: [Required]
The application supports the use of mouse button 1 to perform drag-and-drop
operations.

Note: In X/Open Motif, drag and drop is typically performed using button 2 on a
three-button mouse (BTransfer). However, in XCDE, mouse button 1
(BSelect) should be supported for drag and drop to support mouse usage
compatible with other graphical user interface (GUI) environments. A
drag can be initiated with either mouse button 1 or mouse button 2.

X/Open Common Desktop Environment (XCDE) Services and Applications 377



Selection Application Style Checklist

q: [Required]
When button 2 of a three-button mouse is configured to operate as BAdjust, the
application does not perform any BTransfer (or BSelect) operations when clicking
mouse button 2.

Note: On a three-button mouse, button 2 is typically used for the BTransfer
function. However, in a XCDE environment, the user can change an
environment setting indicating that mouse button 2 should be used for the
BAdjust function instead. When this is the case, BAdjust click should not
result in the transfer of any data.

r: [Required]
BSelect should always initiate a drag if the drag is started on a selected item. The
drag starts once the drag threshold has been reached. This is true for text regions,
scrolling lists and other similar elements.

20.4.3.1 Clipboard Transfer

4-38: [Required]
Keyboard-based clipboard selection actions are available in every editable collection
in the application (Section 4.3.1 of the OSF/Motif Style Guide).

Note: Clipboard selection actions must be available from the keyboard.

4-39: [Required]
The application uses the Cut key (or Shift+Delete) and the Cut entry on the Edit
menu to cut the selected elements from an editable component to the clipboard
(Section 4.3.1 of the OSF/Motif Style Guide).

Note: The Cut key (or Shift+Delete) and the Cut entry on the Edit menu offer a
consistent means of cutting the selection to the clipboard from the
keyboard.

4-40: [Required]
The application uses the Copy key (or Control+Insert) and the Copy entry on the
Edit menu to copy the selected elements to the clipboard (Section 4.3.1 of the
OSF/Motif Style Guide).

Note: The Copy key (or Control+Insert) and the Copy entry on the Edit menu
offer a consistent means of copying the selection to the clipboard from the
keyboard.

4-41: [Required]
The application uses the Paste key (or Shift+Insert) to paste the contents of the
clipboard into an editable component (Section 4.3.1 of the OSF/Motif Style Guide).

Note: The Paste key (or Shift+Insert) offers a consistent way of pasting the
contents of the clipboard from the keyboard.

4-42: [Required]
If Paste or Paste Link is invoked using a component’s pop-up menu, the data is
pasted at the insertion position of the component. However, if the pop-up menu is
popped up over a selection, the selection is first deleted, even if pending delete is
disabled and the pasted data replaces it, if possible (Section 4.3.1 of the OSF/Motif
Style Guide).

Note: Popping up a pop-up menu over a selection indicates that a Paste or Paste
Link operation should replace the selection.

378 X/Open CAE Specification



Application Style Checklist Selection

4-43: [Required]
If Paste or Paste Link is invoked from the Edit menu or by a keyboard operation and
the insertion position in the target component is not disjoint from a selection, the
pasted data replaces the selection contents if pending delete is enabled (Section 4.3.1
of the OSF/Motif Style Guide).

Note: Pending delete determines whether the selection is deleted when the
insertion position is not disjoint from the selection and Paste or Paste Link
is invoked from the Edit menu or by a keyboard operation.

20.4.3.2 Primary Transfer

4-44: [Required]
In an editable collection, BTransfer Click, Control+BTransfer Click, Alt, Copy and
Control+Alt+Insert copy the primary selection to the insertion position, as defined
in Section 4.3 of the OSF/Motif Style Guide. (Note that the insertion position is
usually different for mouse and keyboard operations.) (Section 4.3.2 of the
OSF/Motif Style Guide)

Note: These operations provide a convenient way for the user to force a copy
operation.

4-45: [Required]
In an editable collection, Shift+BTransfer Click, Alt+Cut and Alt+Shift+Delete move
the primary selection to the insertion position, as defined in Section 4.3 of the
OSF/Motif Style Guide. (Note that the insertion position is usually different for
mouse and keyboard operations.) (Section 4.3.2 of the OSF/Motif Style Guide)

Note: These operations provide a convenient way for the user to force a move
operation.

4-46: [Required]
In an editable collection, Control+Shift+BTransfer Click places a link to the primary
selection at the insertion position, as defined in Section 4.3 (Section 4.3.2 of the
OSF/Motif Style Guide).

Note: Control+Shift+BTransfer provides a convenient way for the user to force a
link operation.

4-47: [Required]
A Primary Move moves the primary selection as well as the elements selected; that
is, the element moved to the destination becomes selected as the primary selection.
Primary Copy and Primary Link do not select transferred data at the destination
(Section 4.3.2 of the OSF/Motif Style Guide).

Note: This requirement provides the expected treatment of the selection in a
move, copy and link operation.

20.4.3.3 Quick Transfer

4-48: [Required]
All text components support quick transfer (Section 4.3.3 of the OSF/Motif Style
Guide).

Note: Quick transfer is used to make a temporary selection and then
immediately move, copy or link that selection to the insertion position of
the destination component. In text, quick transfer provides a convenient
way to move, copy or link text without disturbing the primary selection.

X/Open Common Desktop Environment (XCDE) Services and Applications 379



Selection Application Style Checklist

4-49: [Required]
If a component supports quick transfer, Alt+BTransfer Motion or
Control+Alt+BTransfer Motion temporarily selects elements in the specified range
and, on release, copies them to the insertion position of the destination component
(Section 4.3.3 of the OSF/Motif Style Guide).

Note: These operations provide a convenient way to perform a quick copy.

4-50: [Required]
If a component supports quick transfer, Alt+Shift+BTransfer Motion temporarily
selects elements in the specified range and, on release, moves them to the insertion
position of the destination component (Section 4.3.3 of the OSF/Motif Style Guide).

Note: This operation provides a convenient way to perform a quick cut.

4-51: [Required]
If a component supports quick transfer, Control+Alt+Shift+BTransfer Motion
temporarily selects elements in the specified range and, on release, places a link to
them at the insertion position of the destination component (Section 4.3.3 of the
OSF/Motif Style Guide).

Note: This operation provides a convenient way to perform a quick link.

4-52: [Required]
Quick transfer does not disturb the primary selection or affect the clipboard, except
when the destination of the transfer is within or on the boundaries of the primary
selection and pending delete is enabled. In this case, quick transfer deletes the
contents of the primary selection, leaving an empty primary selection, before
pasting the transferred elements (Section 4.3.3 of the OSF/Motif Style Guide).

Note: Quick transfer is a secondary selection mechanism, so it cannot disrupt the
primary selection. When the destination of the transfer is in the primary
selection, quick transfer replaces the primary selection with the secondary
selection.

4-53: [Required]
With quick transfer, the range of the temporary selection is determined by using the
same model as when BSelect Motion determines the range of a primary selection
(Section 4.3.3 of the OSF/Motif Style Guide).

Note: This requirement provides consistency between primary selection and
quick transfer operations.

4-54: [Required]
If the user drags the pointer out of a scrollable collection while making the
temporary selection, autoscrolling is used to scroll the collection in the direction of
the pointer. If the user releases BTransfer with the pointer outside of the collection
or if the user presses the Cancel key with BTransfer pressed, the highlighting is
removed and a transfer is not performed (Section 4.3.3 of the OSF/Motif Style
Guide).

Note: Autoscrolling provides a convenient means of extending a temporary
selection to elements outside the viewport of a scrollable collection.

380 X/Open CAE Specification



Application Style Checklist Selection

20.4.3.4 Drag Transfer

4-55: [Required]
In a collection that supports selection, Shift+BTransfer Release or Shift+BSelect
Release forces a drag move operation. If a move is not possible, the operation fails
(Section 4.3.4 of the OSF/Motif Style Guide).

Note: This mechanism offers a convenient way for the user to force a move
operation.

4-56: [Required]
In a collection that supports selection, Control+BTransfer Release or Shift+BSelect
Release forces a drag copy operation. If a copy is not possible, the operation fails
(Section 4.3.4 of the OSF/Motif Style Guide).

Note: This mechanism offers a convenient way for the user to force a copy
operation.

4-57: [Required]
In a collection that supports selection, Control+Shift+BTransfer Release or
Shift+BSelect Release forces a drag link operation. If a link is not possible, the
operation fails (Section 4.3.4 of the OSF/Motif Style Guide).

Note: This mechanism offers a convenient way for the user to force a link
operation.

4-58: [Required]
When a drag move operation moves a selection within the same component, the
selection moves along with the elements selected (Section 4.3.4 of the OSF/Motif
Style Guide).

Note: In other words, when selected elements are moved with a drag operation,
they should stay selected after the move. This mechanism offers a
convenient way to move the selection within a component.

4-59: [Required]
In text-like collections, initiating a drag within a selected region drags the entire text
selection (Sections 4.3.4 and 4.3.5 of the OSF/Motif Style Guide).

Note: To be consistent, drag-and-drop actions must operate on the entire
selection.

4-60: [Required]
In list-like and graphics-like collections, initiating a drag on a selected element drags
the entire selection (Sections 4.3.4 and 4.3.5 of the OSF/Motif Style Guide).

Note: To be consistent, drag-and-drop actions must operate on the entire
selection.

4-61: [Required]
In list-like and graphics-like collections, initiating a drag with BTransfer or BSelect
on an unselected element drags just that element and leaves the selection unaffected
(Section 4.3.4 of the OSF/Motif Style Guide).

Note: Unselected elements can be dragged without affecting the selection.

4-62: [Required]
When a drag is initiated in an unselected region and the pointer is over two possible
draggable elements, the drag uses the draggable element highest in the stacking
order (Section 4.3.4 of the OSF/Motif Style Guide).

X/Open Common Desktop Environment (XCDE) Services and Applications 381



Selection Application Style Checklist

Note: This requirement ensures the consistency of drag operations.

4-63: [Required]
When the application starts a drag operation, the pointer is replaced with a drag
icon (Section 4.3.4.1 of the OSF/Motif Style Guide).

Note: A drag icon provides visual feedback that a drag operation is in progress.

4-64: [Required]
All drag icons used by the application include a source indicator (Section 4.3.4.1 of
the OSF/Motif Style Guide).

Note: A source indicator gives a visual representation of the elements being
dragged.

4-65: [Required]
Pressing the Cancel key ends a drag-and-drop operation by canceling the drag in
progress (Section 4.3.4.2 of the OSF/Motif Style Guide).

Note: The Cancel key provides a consistent way for the user to cancel a drag
operation.

4-66: [Required]
Releasing BTransfer ends a drag-and-drop operation (4.3.4.3 of the OSF/Motif Style
Guide).

Note: Releasing BTransfer offers a consistent means of ending a drag operation.

4-67: [Required]
When BTransfer (or BSelect) is released, the drop operation ordinarily occurs at the
location of the hot spot of the drag icon pointer and into the highest drop zone in
the stacking order. However, if a drop occurs within a selection and pending delete
is enabled, the transferred data replaces the contents of the entire selection (Section
4.3.4.3 of the OSF/Motif Style Guide).

Note: This requirement provides consistency in the treatment of mouse-based
transfer operations.

4-68: [Required]
After a successful transfer, the data is placed in the drop zone and any transfer icon
used by the application is removed (Section 4.3.4.4 of the OSF/Motif Style Guide).

Note: A transfer icon can be used to represent the type of data being transferred
during a drop operation. A successful drop operation results in the
transfer of data.

4-69: [Required]
After a failed transfer, the data remains at the drag source and is not placed in the
drop zone. Any transfer icon used by the application is removed (Section 4.3.4.4 of
the OSF/Motif Style Guide).

Note: A failed drop operation does not result in the transfer of data.

s: [Recommended]
In a collection that supports selection, if BTransfer Motion (or BSelect Motion)
results in the start of a drag operation, feedback should be presented to the user that
indicates that a copy, move or link operation is in progress. Whether the operation
is a copy, move or link depends on the type of object created at the drop zone and
whether the source object is removed.

382 X/Open CAE Specification



Application Style Checklist Selection

Note: Although an unmodified drag typically results in a move operation,
depending on the location of the source object and the target drop zone,
the drag may in fact result in a copy or link operation. For example,
dragging an icon representing an attachment to a mail message typically
results in a copy of the attachment being created as opposed to the original
being removed from the mail message. Any feedback presented should
incorporate use of a drag icon that portrays the source object being
manipulated.

t: [Recommended]
In a collection that supports selection, if Control+BTransfer Motion or
Control+BSelect Motion results in the start of a drag operation, feedback should be
presented to the user that indicates that a copy operation is in progress.

Note: The feedback presented should incorporate use of a drag icon that portrays
the source object being copied.

u: [Recommended]
In a collection that supports selection, if Control+Shift+BTransfer Motion or
Control+Shift+BSelect Motion results in the start of a drag operation, feedback
should be presented to the user that indicates that a link operation is in progress.

Note: The feedback presented should incorporate use of a drag icon that portrays
the source object being linked.

v: [Recommended]
In a collection that supports copy, move or link operations that can be performed by
dragging, the feedback presented to the user during the drag operation should
indicate whether a single object or multiple objects are being manipulated.

Note: Feedback provided during the drag operation should ensure that the user
feels confident that the desired set of objects is being dragged. The drag
icon used for multi-object drag operations should integrate the feedback
used to indicate whether the operation is a move, copy or link.

w: [Optional]
If the application allows the user to paste data into its data pane, it allows the user
to drag and drop files from the File Manager into the data pane.

Note: The user should be able to drag and drop files into application data panes.
The result should be the inclusion of some element of the file or the display
of an error message indicating that the file selected cannot be incorporated
into the application’s data. Drag transfers that are accepted can result in a
number of different responses from the application:

1. The icon image for the file might be inserted at the drop point

2. The application might perform some activity using the data
contained within the file as its input

3. The data contained within the file might be inserted at the drop point

4. The name of the file might be inserted at the drop point

X/Open Common Desktop Environment (XCDE) Services and Applications 383



Component Activation Application Style Checklist

20.5 Component Activation

20.5.1 Basic Activation

5-1: [Required]
The application uses BSelect to activate a button (Section 5.1 of the OSF/Motif Style
Guide).

Note: BSelect, mouse button 1, provides a consistent means of activating a
button using the mouse.

5-2: [Required]
When a button has the focus, the application uses the Select key or Spacebar to
activate the button (Section 5.1 of the OSF/Motif Style Guide).

Note: The Select key and Spacebar provide a uniform way of selecting a button.
Selecting a button is equivalent to activating the button.

5-3: [Required]
When an activatable menu entry has the focus, the application uses the Select,
Spacebar, Enter or Return key to activate the entry (Section 5.1 of the OSF/Motif
Style Guide).

Note: The Select, Spacebar, Enter and Return keys offer a consistent means of
activating a menu entry using the keyboard.

5-4: [Required]
When BSelect is pressed over a button, the appearance of the button changes to
indicate that releasing BSelect will activate the button. If, while BSelect is pressed,
the pointer is moved outside of the button, the visual state is restored. If, while
BSelect is still pressed, the pointer is moved back inside of the button, the visual
state is again changed to indicate the pending activation. If BSelect is pressed and
released within a button, the button is activated, regardless of whether the pointer
has moved out of the button while it was pressed (Section 5.1 of the OSF/Motif
Style Guide).

Note: The visual state of a button offers a cue to the user about whether or not
the button will be activated when the mouse button is released.

5-5: [Required]
If a selectable element of a collection is activatable, BSelect Click, the Select key and
Spacebar (except in text) select it. BSelect Click 2 selects and activates it (Section 5.1
of the OSF/Motif Style Guide).

Note: This requirement provides for consistent integration of activation and
selection in a collection where elements can be both selected and activated.

x: [Required]
The time allowed to detect a double click (∗doubleClickTime: 500) is no less than
500 milliseconds.

384 X/Open CAE Specification



Application Style Checklist Component Activation

20.5.2 Accelerators

5-6: [Required]
If the application uses accelerators, the component with the accelerator displays the
accelerator key or key combination following the label of the component (Section
5.2 of the OSF/Motif Style Guide).

Note: An accelerator is a key or key combination that invokes the action of some
component regardless of the position of the location cursor when the
accelerator is pressed. So that the user knows that there is an accelerator
associated with a component, the accelerator must be displayed.

5-7: [Required]
If a button with an accelerator is within a primary or secondary window or within a
pull-down menu system from its menu bar, it is activatable whenever the input
focus is in the window or the menu bar system. If a button with an accelerator is
within a pop-up menu system, it is activatable whenever the focus is in the pop-up
menu system or the component with the pop-up menu (Section 5.2 of the
OSF/Motif Style Guide).

Note: An accelerator must be able to be activated from the window or
component associated with the accelerator.

20.5.3 Mnemonics

5-8: [Required]
If the application uses mnemonics, the label for the component with the mnemonic
contains the character that is its mnemonic. If the label does not naturally contain
the character, the mnemonic is placed in parentheses following the label (Section 5.3
of the OSF/Motif Style Guide).

Note: A mnemonic is a single character that can be associated with any
component that contains a text label. Mnemonics provide a fast way of
selecting a component from the keyboard. To let the user know that there
is a mnemonic associated with a selection, the mnemonic is underlined in
the label of the selection by the toolkit. For a mnemonic to be underlined,
the label for a selection must contain the mnemonic character. If the label
does not contain the mnemonic, putting the mnemonic in parentheses
following the label provides visual consistency.

y: [Required]
Mnemonic characters are chosen for ease-of-location within the text of a label. The
following rules are applied in sequence, selecting the first possible match that
results in a unique mnemonic:

1. The first character of the label is used.

2. If there is more than one word in the label, the first character of the second
word is used.

3. The last character of the label is used.

4. The first unique character in the label from the second character on is used.

5-9: [Required]
All mnemonics are case insensitive for activation (Section 5.3 of the OSF/Motif
Style Guide).

X/Open Common Desktop Environment (XCDE) Services and Applications 385



Component Activation Application Style Checklist

Note: The user must be able to activate a mnemonic by pressing either the
lowercase or the uppercase variant of the mnemonic key.

5-10: [Required]
When the location cursor is within a menu or a menu bar, pressing the mnemonic
key of a component within that menu or menu bar moves the location cursor to the
component and activates it. If a mnemonic is used for an option button or for a
cascading button in a menu bar, pressing Alt and the mnemonic anywhere in the
window or its menus moves the cursor to the component with that mnemonic and
activates it (Section 5.3 of the OSF/Motif Style Guide).

Note: A mnemonic is generally activatable when the location cursor is within the
component that contains the mnemonic. Pressing Alt and the mnemonic
provides a way to activate a visible mnemonic when the location cursor is
within the window that contains the mnemonic.

20.5.4 Tear-Off Activation

5-11: [Required]
Activating a tear-off button tears off the menu that contains the button (Section 5.4
of the OSF/Motif Style Guide).

Note: A tear-off button is similar to a push button with the special interaction of
tearing off the menu from its cascading button. Tear-off buttons use the
same basic activation as other buttons.

5-12: [Required]
When a menu with a tear-off button is posted, pressing BTransfer in the tear-off
button starts a tear-off action. As long as BTransfer is held, a representation of the
menu follows the movement of the pointer. Releasing BTransfer ends the tear-off
action by unposting the menu system, creating a new window at the current pointer
location that contains the contents of the menu and giving focus to the new window
in explicit pointer mode (Section 5.4 of the OSF/Motif Style Guide).

20.5.5 Help Activation

5-13: [Required]
The application uses the Help key on a component to invoke any context-sensitive
help for the component or its nearest ancestor with context-sensitive help available
(Section 5.5 of the OSF/Motif Style Guide).

Note: The Help key offers the user a consistent mechanism for invoking context-
sensitive help.

z: [Required]
The application provides context-sensitive help at all locations.

Note: The user must never get a ‘‘help not available’’ message.

386 X/Open CAE Specification



Application Style Checklist Component Activation

20.5.6 Default Activation

5-14: [Required]
If the application uses default push buttons in a window, the current default push
button is highlighted. When the focus is on a push button, its action is the default
action and the push button shows default highlighting. If the default action in a
window varies, some push button always has default highlighting, except when
there is no current default action (Section 5.6 of the OSF/Motif Style Guide).

Note: Placing emphasis on the default push button in a dialog box provides the
user with a visual cue about the expected reply to the dialog box.

5-15: [Required]
When focus is in a window with a default action and an activatable menu does not
have the focus, the Enter key and Control+Return invoke the default action. If focus
is in a component other than multi-line text or an activated menu, Return also
invokes the default action. These actions have no other effect on the component
with the focus, unless the default action has some effect on that component (Section
5.6 of the OSF/Motif Style Guide).

Note: These requirements ensure that the means of invoking a default action are
consistent across applications.

5-16: [Required]
Except in the middle of a button motion operation, pressing the Cancel key
anywhere in a dialog box is equivalent to activating the Cancel push button in the
dialog box (Section 5.6 of the OSF/Motif Style Guide).

Note: The Cancel key provides a uniform means of canceling dialog box from the
keyboard.

20.5.7 Expert Activation

5-17: [Required]
If the application supports expert activation, expert actions exist only as shortcuts
to application features that are available through another mechanism (Section 5.7 of
the OSF/Motif Style Guide).

Note: Expert activation, using mouse double-clicking on buttons, provides a
convenient way for experienced users to perform certain tasks quickly.
However, new users and keyboard-only users must be able to perform the
same tasks.

5-18: [Required]
When the focus is on a button used for expert activation, no default action is
available, unless the default and expert actions are the same (Section 5.7 of the
OSF/Motif Style Guide).

Note: This requirement minimises possible confusion between default and
expert activation.

5-19: [Required]
If a component with an expert action is selectable, activating the expert action first
selects the component and then performs the expert action (Section 5.7 of the
OSF/Motif Style Guide).

Note: A user must be able to select a component, even if it has an expert action
associated with it.

X/Open Common Desktop Environment (XCDE) Services and Applications 387



Component Activation Application Style Checklist

20.5.8 Previewing and Autorepeat

5-20: [Required]
If the application supports activation preview using BSelect, the previewing
information is removed when the user releases BSelect (Section 5.8 of the OSF/Motif
Style Guide).

Note: Activation preview presents the user with additional information that
describes the effect of activating a button. This information cannot
interfere with the normal operation of the application.

20.5.9 Cancel Activation

5-21: [Required]
Pressing the Cancel key stops current interaction in the following contexts (Section
5.9 of the OSF/Motif Style Guide):

• During a mouse-based selection or drag operation, it cancels the operation.

• During a mouse-based scrolling operation, it cancels the scrolling action and
returns the system to its state prior to the start of the scrolling operation.

• Anywhere in a dialog box that has a Cancel push button, it is equivalent to
activating that push button, except during a mouse-based selection or drag
operation.

• In a pull-down menu, it either dismisses the menu and moves the location
cursor to the cascading button used to pull it down or unposts the entire menu
system. In a pop-up menu, option menu, tear-off menu or menu bar, it unposts
the menu system.

• When the focus is in a torn off menu window, it closes the torn off menu
window.

Note: These requirements for the Cancel key ensure the consistent operation of
the key across applications.

20.6 Window Management

20.6.1 Window Support

This section corresponds to section 7.2 of the OSF/Motif Style Guide. The different window
types are discussed throughout the OSF/Motif Style Guide and this chapter. In particular, see
Section 20.7 on page 393.

aa: [Required]
Application windows are clearly distinguishable as primary or secondary windows
based on appearance and behaviour.

Primary Window:

• Primary window decoration (see Section 20.6.2 on page 389)

• Primary window management (see Section 20.6.5.3 on page 391)

• Window stacking, workspace placement and minimisation can be independent
of other primary windows

388 X/Open CAE Specification



Application Style Checklist Window Management

Secondary Window:

• Secondary window decoration (see Section 20.6.2)

• Secondary window management (see Section 20.6.5.3 on page 391)

• Window stacking, workspace placement and minimisation tied to the associated
primary window

20.6.2 Window Decorations

ab: [Required]
Windows that support particular window management functionality must request
the corresponding window decoration (for example, a window that can be
minimised must request the minimise button).

ac: [Required]
Windows that support any window management functionality (move, resize,
minimise, maximise, close and others) have a window menu with items for that
functionality.

ad: [Required]
The application follows XCDE window decoration conventions, as shown in the
following table.

XCDE Window Decoration Conventions
Border Title Menu Min Max Resize

Primary Window:
Default Yes Yes Yes Yes Yes1 Yes1

Front Panel Yes2 No Yes2 Yes No No

Secondary Window:
Default Yes Yes Yes No No3 No3

Front Panel No Yes Yes No No No

1. Decorations for resize and maximise are provided for primary windows, if
appropriate.

2. The Front Panel has custom visuals for the window decorations.

3. Secondary windows are designed such that resizing and maximisation are not
necessary or appropriate. If a secondary window must be resizable and
maximisable, the associated decorations are displayed.

ae: [Required]
The application follows XCDE window menu conventions. Items appear in the
window menu if they are applicable to the window or its minimised window icon.

• Restore (_R)

• Move (_M)

• Size (_S)

• Minimize (_n)

• Maximize (_x)

X/Open Common Desktop Environment (XCDE) Services and Applications 389



Window Management Application Style Checklist

• Lower (_L)

• Occupy Workspace . . . (_O)

• Occupy All Workspaces (_A)

• Unoccupy Workspace (_U)

• Close (_C) Alt+F4

af: [Optional]
The application should not add items to the window menu. If an extraordinary
requirement has an application add items to the window menu, the items should be
appended to the end of the menu with a separator between Close and the
application items.

ag: [Optional]
Accelerators, other than Alt+F4 for Close, should not be used in the window menu.

Note: This minimises conflict with other uses of the Alt key for application
accelerators, localisation and others.

20.6.3 Window Navigation

This section corresponds to section 7.4 of OSF/Motif Style Guide. There are no checklist items
for application developers.

20.6.4 Icons

ah: [Optional]
The application should provide unique window icons for their primary windows.
The window icon image should have a similar appearance to the associated file or
Front Panel icon image.

ai: [Optional]
The window icon label should contain the same text as the title of the corresponding
primary window or an abbreviated form of it. See Section 20.7.1 on page 393 for
window title guidelines.

aj: [Optional]
The window icon image should have a similar appearance to the associated file or
Front Panel icon image.

20.6.5 Application Window Management

20.6.5.1 Window Placement

ak: [Recommended]
The application should not require or force windows or window icons to be
positioned at a particular screen location.

al: [Recommended]
The application should place a secondary window relative to the associated
primary window. It should be placed close to, but not obscuring, the component
that caused it to be displayed and the information that is necessary to interact with
the dialog box.

am: [Optional]
Some suggestions are given in section 6.2.4.3, ‘‘Determining Dialog Box Location

390 X/Open CAE Specification



Application Style Checklist Window Management

and Size,’’ of the OSF/Motif Style Guide. Additional or modified
recommendations include:

If a dialog box does not relate to specific items in the underlying window, it should
be placed below the menu bar (if there is one) and centered (horizontally) over the
work area.

an: [Recommended]
If a secondary window is allowed to be stacked below its associated primary
window (not constrained to stay on top of the primary window), it should be placed
such that it is not completely covered by the primary window. This
recommendation takes precedence over other placement recommendations.

Note: This recommendation is included to accommodate certain legacy
applications and is applicable only when the user has selected this
behaviour. Newly written XCDE applications must not rely on this type of
window placement.

ao: [Recommended]
If a menu or dialog box is already on display, reinvoking the command that caused
it to be displayed should automatically bring that window or menu to the front of
the window stack without changing its position on the screen.

20.6.5.2 Window (Document) Clustering

ap: [Optional]
Windows that are closely related in supporting a particular task should be placed in
a window cluster. Secondary windows are automatically placed in a window
cluster with the associated primary window. Windows in a window cluster are
stacked together, minimised or normalised together and kept in the same
workspace.

Note: Currently the only mechanism for forming a window cluster that is
supported by the window manager is to indicate a primary-secondary
relationship.

20.6.5.3 Window Management Actions

aq: [Required]
Windows should follow XCDE window management functionality conventions, as
shown in the following table.

XCDE Window Management Conventions
Close Move Lower Min Max Resize

Primary Window:
Default Yes Yes Yes Yes Yes1 Yes1

Front Panel No Yes Yes Yes No No

Secondary Window:
Default Yes Yes Yes No No2 No2

Front Panel Yes Yes Yes No No No

1. Resize and maximise functionality should be provided for primary windows
if appropriate.

X/Open Common Desktop Environment (XCDE) Services and Applications 391



Window Management Application Style Checklist

2. Secondary windows can contain the Maximize and Resize window manager
functions, if appropriate.

ar: [Required]
Windows that support particular window management functionality should
request corresponding window decoration (for example, a window that can be
minimised should request the minimise button).

as: [Required]
Windows that have form factor constraints set window manager hints for minimum
size, maximum size, aspect ratio and resize increment as appropriate.

at: [Recommended]
Maximising a window should show more content (objects or controls) if
appropriate (as opposed to scaling up the sizes of objects and controls).

au: [Required]
Windows that have Close or Exit functionality support the window management
protocol for Close if there is a window menu. In the case of dialog boxes, the Close
item on the window menu corresponds to the Cancel functionality or dialog box
dismissal with no further action taken.

av: [Recommended]
When the application creates a new window, it should come up in the user’s current
workspace and only occupy that single workspace.

aw: [Recommended]
Application windows that are related to a particular task should move together
between workspaces.

20.6.6 Session Management Support

ax: [Required]
The application should support Interclient Communications Conventions Manual
(ICCCM—see the X/Open CAE Specification, Window Management: File Formats
and Application Conventions) mechanisms for session management of their
primary windows and key properties.

ay: [Required]
The application should support ICCCM mechanisms for session management of all
associated windows (that is, secondary windows that may include help windows).

az: [Optional]
The application should accept messages from the XCDE Session Manager that
inform it the user is logging out and should save the application state at that time.

ba: [Optional]
An application that has a single primary window that is open at the time the user
logs out should restore the primary window, in the workspace last occupied, when
the user logs in again.

bb: [Optional]
Save user context wherever possible. For example, an application that supports the
editing of files should save the state of the file at logout and should restore the file in
the application window when users log in again.

bc: [Optional]
An application that has multiple primary windows that are open at the time the

392 X/Open CAE Specification



Application Style Checklist Window Management

user logs out should restore all primary windows, in their respective workspaces,
when the user logs in again.

20.7 Application Design Principles

20.7.1 Layout

20.7.1.1 Main Window

6-1: [Required]
The application should be composed of at least one main window (Section 6.2.1.1 of
the OSF/Motif Style Guide). A main window contains a client area and, optionally,
a menu bar, a command area, a message area and scroll bars. The client area
contains the framework of the application.

Note: The use of a main window ensures interapplication consistency.

bd: [Required]
The default size of the application’s main window is large enough to accommodate
a typical amount of data, but does not fill the entire physical display size (and thus
minimises visual conflicts with other applications).

Note: Each application potentially must share the display with other
applications. The default window size should not take up all the available
screen space.

be: [Required]
Resize corners should be included in any main window that incorporates a scrolling
data pane or list.

Note: Any changes to the overall size of the window should result in a
corresponding increase or decrease in the size of the scrollable portion.
Additionally, the application might reorganise elements within the
window based on the increased or decreased amount of space (for
example, it might reorganise a row of buttons into two rows).

6-2: [Required]
If the application has multiple main windows that serve the same primary function,
each window closes and iconifies separately (Section 6.2.1.1 of the OSF/Motif Style
Guide).

Note: For example, a text editor might allow the user to edit multiple documents,
each in its own main window. Each window is then treated as a separate
application and can be closed or iconified when it is not being used.

6-3: [Required]
If the application has multiple main windows that serve different primary
functions, each window should be able to iconify independently of the other
windows (Section 6.2.1.1 of the OSF/Motif Style Guide).

Note: For example, a debugger might provide separate main windows for
editing source code, examining data values and viewing results. Each
window can be iconified when it is not being used, but it is up to the
application to decide whether each window closes separately or whether
closing one window closes the entire application.

X/Open Common Desktop Environment (XCDE) Services and Applications 393



Application Design Principles Application Style Checklist

20.7.1.2 Window Titles

bf: [Optional]
The title of the primary window (the main window the application displays to the
user) should be the name of the application.

Note: The title does not have to be the actual name of the executable invoked by
the user.

The application developer should carefully consider how the title chosen
for the primary window works when it is used in icons and pop-up
windows. If the name of the pop-up window is too long, the application
may remove the application title, but without the title, users might have
difficulty telling which pop-up windows belong with the originating
primary window.

bg: [Optional]
The application should use initial capital letters for each word in the title (in
languages that support capitalisation).

bh: [Optional]
The application should follow the application name for each property window, as a
minimum, with the title Properties and the name of the object it affects.

bi: [Optional]
The title of each pop-up window should begin with the application title followed by
a colon, then the title of the pop-up window. The colon should have a space both
before and after it for readability.

Pop-up windows should always indicate which primary window they are
associated with (which primary window invoked that pop-up).

bj: [Optional]
When the application has files that can be loaded or saved, the application should
use a hyphen to denote the current file name. The hyphen should have a space
before and after it. Only the base name of the file should be displayed, not the entire
pathname.

Note: The hyphen is used to denote specific instances of a window or data. The
colon serves to delimit general categories or commands. For example, a
file manager might have the following title for a Properties dialog box:

File Manager : Properties - myfile

bk: [Recommended]
The application should follow the application name for each command window
with the same title that is on the window button or window item users choose to
display that window.

bl: [Optional]
In the case of multiple primary windows, the application name should be included
at the beginning of each window title, with an added name that uniquely identifies
that primary window. No separator should be provided for these names (for
example, Calendar Manager Multi-Browse, Catalogue Search, Admintool
Databases).

bm: [Optional]
An abbreviated name for the application may be used on other windows, so long as
it is done on all windows.

394 X/Open CAE Specification



Application Style Checklist Application Design Principles

20.7.1.3 Menu Bar

The following requirements apply only in a left-to-right language environment in an English-
language locale. The application must make the appropriate changes for other locales.

6-4: [Required]
If the application has a menu bar, it is a horizontal bar at the top edge of the
application, just below the title area of the window frame.

Note: A menu bar organizes the most common features of an application. It
contains a list of menu topics in cascading buttons; each button is
associated with a distinct pull-down menu containing commands that are
grouped by common functionality. The use of a menu bar yields
consistency across applications.

6-5: [Required]
The menu bar for the application contains only cascading buttons.

Note: When other buttons are included as topics in a menu bar, they inhibit
menu browsing.

6-6: This item of the OSF/Motif Style Guide is not applicable. It is replaced by the
following recommendation.

bn: [Recommended]
The standard menu bar entries are File, Edit, View, Options and Help. If the
application provides that functionality to the user, it should be included in the
menu bar under the appropriate name. The contents of these menu entries are
discussed below in more detail.

Standard menu bar entries should be presented in the following order:

File Edit View Options Help

The application should exclude from its menu bar any item shown in the preceding
text if the application does not support the associated function. For example, if the
application does not support the ability to display its data in different views, then it
should not include a View menu.

The application may add application-specific menus in between any of the standard
menu items, with the following exceptions:

• The File menu, if present, is located in the first menu position on the left.

• The Help menu is located on the far right position.

• If File and Edit are present, they should be next to each other.

For example, the application may have:

File Edit <category1> <category2> View Options <category3> Help

bo: [Recommended]
Applications that are not file-oriented in nature (or that manage files transparently,
not exposing this activity to the user) should replace the File menu with one or
more application-specific menus.

X/Open Common Desktop Environment (XCDE) Services and Applications 395



Application Design Principles Application Style Checklist

Replacing the File menu:

Replacement1: <app-label> Selected

Replacement2: <app-label><obj-type>

Replacement3: <obj-type>

The application may use Replacement1 if the application has more than one object
type. Items on <app-label> would be used for global actions that are not specific to
an object type. The items in Selected are actions that pertain to objects that are
currently selected, and may change depending on what objects are selected. If
nothing is selected, this menu should have a single item that says (none selected). If
an item is selected, but there are no items that apply to that object, this menu should
have a single item that says (none).

The application may use Replacement2 if the application has a single object type.
Actions that are global to the application are on <app-label>, and actions that are
specific to the object type are on <obj-type>.

The application may use Replacement3 if the application has a single object type,
and does not require an <app-label> menu. For example, a Print Manager might
contain a Printer menu.

All other menu bar guidelines that apply to File-oriented applications also apply to
non-File-oriented applications. Thus, the following menu bar would be valid:

<app-label> Selected Edit <category1> View <category2> Help

Applications that are complex or are extremely domain-specific (for example, an
application for medical imaging and diagnosis of CAT scan data) may require other
approaches to their menu bar design. For example,

<app-label><category1><category2> Selected Edit ...
<object-type> Options Help

bp: [Recommended]
Exit or Close should be located on the first (leftmost) menu of the application’s
menu bar.

20.7.1.4 File Menu Contents

The following requirements apply only in a left-to-right language environment in an English-
language locale. The application must make the appropriate changes for other locales.

bq: [Required]
If the user chooses Exit or in any other manner indicates that the application should
be terminated, but there are changes to the current file that have not been saved, the
application displays a dialog box asking whether the changes should be saved
before exiting.

Note: The user must always be given the opportunity to explicitly state whether
unsaved changes should be saved or discarded. A dialog box similar to
the one described should also be displayed if the user chooses Open from
the File menu, but has not saved changes to the current file.

396 X/Open CAE Specification



Application Style Checklist Application Design Principles

6-7: [Required]
If the application uses a File menu, it contains the following choices, with the
specified functionality, when the actions are actually supported by the application
(Section 6.2.1.5.1 of the OSF/Motif Style Guide).

_New [Required]
This choice creates a new file. If the current client area will be used to
display the new file, the application clears the existing data from the
client area. If changes made to the current file will be lost, the
application displays a dialog box, asking the user about saving
changes. The mnemonic is N.

_Open. . . [Required]
This choice opens an existing file by prompting the user for a file name
with a dialog box. If changes made to the current file will be lost, the
application displays a dialog box asking the user about saving changes.
The is mnemonic is O.

_Save [Required]
This choice saves the currently opened file without removing the
existing contents of the client area. If the file has no name, the
application displays a dialog box, prompting the user to enter a file
name. The mnemonic is S.

Save _As. . . [Required]
This choice saves the currently opened file under a new name by
prompting the user for a file name with a dialog box. If the user tries to
save the file using an existing name, the application displays a dialog
box that warns the user about a possible loss of data. This choice does
not remove the existing contents of the client area. The mnemonic is A.

_Print [Recommended]
This choice schedules a file for printing. If the application needs
specific information to print, it should display a dialog box requesting
the information from the user. In this case, the menu entry is followed
by an ellipsis (such as ‘‘Print. . .’’). The mnemonic is P.

_Close [Recommended]
This choice closes the current primary window and its associated
secondary windows. If the application uses only a single primary
window or multiple dependent primary windows, this action is not
supplied. The mnemonic is C.

E_xit [Required]
This choice ends the current application and all windows associated
with it. If changes made to the current file will be lost, the application
displays a dialog box, asking the user about saving changes. The
mnemonic is X.

Note: The use of a File menu with these common file operations yields
consistency across applications.

X/Open Common Desktop Environment (XCDE) Services and Applications 397



Application Design Principles Application Style Checklist

<Object-Type> / Selected Menu Contents

br: [Recommended]
If the application uses an <object-type> menu or a Selected menu, it should contain
the following choices, with the specified functionality, when the actions are actually
supported by the application. Items should be presented to the user in the order
listed below:

The <object-type> menu contains controls that allow the user to create instances of
the object-type. Both the <object-type> and Selected menus allow the user to
manipulate object instances. Additional items should be added to the <object-type>
or Selected menus if they relate solely to the manipulation of objects managed by
the application (as opposed to more generic services that the application might
provide).

New. . . [Recommended]
This choice creates a new instance of the object-type. If appropriate, a
dialog box should be presented allowing the user to specify the values
for settings associated with that object.

Move To. . . [Optional]
This choice allows the user to move the selected objects into a folder. A
file selection dialog box is displayed allowing the user to select the
desired folder.

Copy To. . . [Optional]
This choice allows the user to copy the selected objects into a folder. A
file selection dialog box is displayed allowing the user to select the
desired folder.

Put in Workspace [Optional]
This choice allows the user to put a link for the object onto the XCDE
desktop in the current workspace.

Any of the preceding three menu choices should be provided only if the objects
managed by the application are able to reside as separate entities outside of the
application’s main window. For example, a printer object created by a printer
management application might be able to be placed in a Folder window and
function as an application unto itself. The application should also support drag-
and-drop as a method for performing any of these actions.

Delete [Optional]
This choice removes the selected objects. A confirmation dialog box
should be presented to the user before the object is actually deleted.

Properties [Recommended]
This choice displays a Properties window that should show the current
values for settings associated with the selected object.

<Default Action> [Recommended]
This choice should enact the default action for the selected object.
‘‘Open’’ is a typical default.

398 X/Open CAE Specification



Application Style Checklist Application Design Principles

Edit Menu Contents

The following requirements apply only in a left-to-right language environment in an English-
language locale. The application must make the appropriate changes for other locales.

6-8: [Required]
If the application uses an Edit menu, it contains the following choices, with the
specified functionality, when the actions are actually supported by the application
(Section 6.2.1.5.2 of the OSF/Motif Style Guide):

_Undo [Optional]
This choice reverses the most recently executed action. The mnemonic
is U.

Cu_t [Optional]
This choice removes the selected portion of data from the client area
and puts it on the clipboard. The mnemonic is T.

_Copy [Optional]
This choice copies the selected portion of data from the client area and
puts it on the clipboard. The mnemonic is C.

Copy Lin_k [Optional]
This choice copies a link of the selected portion of data from the client
area and puts it on the clipboard. The mnemonic is K.

_Paste [Optional]
This choice pastes the contents of the clipboard into the client area. The
mnemonic is P.

Paste _Link [Optional]
This choice pastes a link of the data represented by the contents of the
clipboard into the client area. The mnemonic is L.

Cl_ear [Optional]
This choice removes a selected portion of data from the client area
without copying it to the clipboard and does not compress the
remaining data. The mnemonic is E.

_Delete [Optional]
This choice removes a selected portion of data from the client area
without copying it to the clipboard. The mnemonic is D.

Select All [Optional]
This choice sets the primary selection to be all the elements in a
component of the client area.

Deselect All [Optional]
This choice removes from the primary selection all the elements in a
component of the client area.

Select Pasted [Optional]
This choice sets the primary selection to the last element or elements
pasted into a component of the client area.

X/Open Common Desktop Environment (XCDE) Services and Applications 399



Application Design Principles Application Style Checklist

Reselect [Optional]
This choice sets the primary selection to the last selected element or
elements in a component of the client area. This action is available only
in components that do not support persistent selections and only when
the current selection is empty.

Promote [Optional]
This choice promotes to the primary selection the current selection of a
component of the client area. This action is available only for
components that support persistent selections.

Note: The use of an Edit menu with these common editing operations yields
consistency across applications.

bs: [Recommended]
If the application does not provide an <object-type> or Selected menu, but allows
the user to select data within the window and manage settings for the selected data,
then it should provide a ‘‘Properties . . .’’ choice as the last item in the Edit menu.

6-9: This item of the OSF/Motif Style Guide is not applicable.

View Menu

bt: [Recommended]
If the application provides a View menu, it should only contain functions that affect
the way the current data is presented. It should not contain any option that alters
the data itself.

Options Menu

bu: [Recommended]
If the application has global settings that control the way the application behaves, it
should provide an Options menu from which these can be set.

20.7.1.5 Help Menu Contents

The following requirements apply only in a left-to-right language environment in an English-
language locale. The application must make the appropriate changes for other locales.

bv: [Recommended]
If the application includes a Help menu, it should contain the following set of
choices, with the specified functionality, when the actions are actually supported by
the application. The Help choices included here supersede those listed for Motif 1.2.

Over_view [Required]
This choice provides general information about the window from
which help was accessed or about the application overall. The
mnemonic is V. A separator is placed after this choice.

_Index [Optional]
This choice provides an index listing topics for all help information
available for the application. The mnemonic is I.

Table of _Contents [Recommended]
This choice provides a table of contents listing topics for all help
information available for the application. The mnemonic is C.

400 X/Open CAE Specification



Application Style Checklist Application Design Principles

_Tasks [Recommended]
This choice provides access to help information indicating how to
perform different tasks using the application. The mnemonic is T.

_Reference [Recommended]
This choice provides access to reference information. The mnemonic is
R.

Tutoria_l [Optional]
This choice provides access to the application’s tutorial. The mnemonic
is L.

_Keyboard [Optional]
This choice provides information about the application’s use of
function keys, mnemonics and keyboard accelerators. It also provides
information on general XCDE use of such keys. The mnemonic is K.

_Mouse [Optional]
This choice provides information about using a mouse with the
application.The mnemonic is M.

_Mouse and Keyboard [Optional]
This choice provides information about the application’s use of
function keys, mnemonics, keyboard accelerators and using a mouse
with the application. It also provides information on general XCDE use
of such keys. The mnemonic is M. This choice should be used instead
of separate mouse and keyboard choices if this information is best
presented together.

_On Item [Recommended]
Initiates context-sensitive help by changing the shape of the pointer to
the question mark pointer. When the user moves the pointer to a
component and presses BSelect, any available context-sensitive help for
the component is presented. The mnemonic is O. This choice is set off
with separators on both sides.

_Using Help [Required]
This choice provides information on how to use the XCDE Help Facility.
The mnemonic is U. This choice is set off with separators on both sides.

_About applicationname [Required]
Displays a dialog box indicating, minimally, the name and version of
the application and displaying its icon or some other signature graphic
for the application. The mnemonic is A.

6-10: This item of the OSF/Motif Style Guide is not applicable. It is replaced by item bv.

20.7.1.6 Attachment Menu Contents

bw: [Recommended]
If the application uses an attachment menu, it should contain the following choices,
with the specified functionality, when the actions are actually supported by the
application.

Add File. . . [Recommended]
This choice should select files and other items to be attached. A file
selection box is displayed allowing the user to select the desired files to
attach. The default button in the file selection box is Attach.

X/Open Common Desktop Environment (XCDE) Services and Applications 401



Application Design Principles Application Style Checklist

Save As. . . [Recommended]
This choice should save the currently selected attachments. The user is
prompted with a file selection box for indicating where in the file
system the attachments will be saved. When multiple attachments are
selected, the name field is inactive and the current names of the
attachments are used as the name of the new file. This menu item is
active only when one or more attachments are selected.

Rename. . . [Recommended]
This choice renames the attachment icon. The application should
provide in-line renaming of attachment icons such as File Manager
uses. If the application cannot provide in-line renaming, then Rename
allows the user to rename an attachment by displaying a dialog box,
requesting the name from the user. This menu item is active only when
a single attachment is selected. It is not active when multiple
attachments are selected.

Delete [Recommended]
This choice deletes attachments from the attachment list. This menu
item is active only when an attachment is selected.

Select All [Recommended]
This choice selects all the attachments in the attachment list.

20.7.1.7 Pop-up Menus

The following requirements apply only in a left-to-right language environment in an English-
language locale. The application must make the appropriate changes for other locales.

bx: [Recommended]
If the application provides functions that apply to a data pane and not any specific
element therein, then a pop-up menu should be provided that contains the
frequently used data pane functions and is accessible by pressing BMenu when the
mouse pointer is over the background of the pane or a non-selectable element
within the pane.

by: [Recommended]
The application should provide a pop-up menu for any element that is selectable
within its data pane.

Note: Pop-up menus provide access to frequently used functions and should be
used pervasively throughout the XCDE desktop environment. A pop-up
menu may contain a collection of options that appear in different menus
available from the menu bar. For example, it may contain items from both
the File and Edit menus.

bz: [Recommended]
When a pop-up menu is displayed over an unselected object, any action selected
from the pop up applies to that object only and not to any other objects that might
currently be selected.

Note: This helps to protect users from inadvertently applying an action to objects
that they might not realise are currently selected. Pressing the menu
button invokes a pop-up menu pertinent to the object under the mouse
cursor whether it is selected or not or, if the object under the mouse cursor
and other objects are selected, the pop up is pertinent to the selected set.

402 X/Open CAE Specification



Application Style Checklist Application Design Principles

ca: [Recommended]
Every pop-up menu in the application should have a title that indicates the function
the menu performs or the element on which it operates.

cb: [Recommended]
The functions accessible from within the application’s pop-up menus should also be
accessible from buttons displayed within the window or menus accessed through
the menu bar.

Note: Because pop-up menus are hidden, they should only provide redundant
access to functions available from more visible controls within the
application’s windows.

6-11: [Optional]
If the application uses any of the common pop-up menu actions, the actions
function according to the following specifications (Section 6.2.1.6 of the OSF/Motif
Style Guide). See item cc for supplemental guidelines.

Properties [Optional]
This choice displays a Properties dialog box that the user can use to set
the properties of the component.

Undo [Optional]
This choice reverses the most recently executed action.

Primary Move [Optional]
This choice moves the contents of the primary selection to the
component. This action is available only in editable components.

Primary Copy [Optional]
This choice copies the contents of the primary selection to the
component. This action is available only in editable components.

Primary Link [Optional]
This choice places a link to the primary selection in the component.
This action is available only in editable components.

Cut [Optional]
This choice cuts elements to the clipboard. If the menu is popped up in
a selection, cuts the entire selection to the clipboard.

Copy [Optional]
This choice copies elements to the clipboard. If the menu is popped up
in a selection, this action copies the entire selection to the clipboard.

Copy Link [Optional]
This choice copies a link of elements to the clipboard. If the menu is
popped up in a selection, copies a link to the entire selection to the
clipboard.

Paste [Optional]
This choice pastes the contents of the clipboard to the component. This
action is available only in editable components.

Paste Link [Optional]
This choice pastes a link of the contents of the clipboard to the
component. This action is available only in editable components.

X/Open Common Desktop Environment (XCDE) Services and Applications 403



Application Design Principles Application Style Checklist

Clear [Optional]
This choice removes a selected portion of data from the client area
without copying it to the clipboard. If the menu is popped up in a
selection, deletes the selection.

Delete [Optional]
This choice removes a selected portion of data from the client area
without copying it to the clipboard. If the menu is popped up in a
selection, deletes the selection.

Select All [Optional]
This choice sets the primary selection to be all of the elements in the
collection with the pop-up menu.

Deselect All [Optional]
This choice deselects the current selection in the collection with the
pop-up menu.

Select Pasted [Optional]
This choice sets the primary selection to be the last element or elements
pasted into the collection with the pop-up menu.

Reselect [Optional]
This choice sets the primary selection to be the last selected element or
elements in the component with the pop-up menu. This action is
available only in components that do not support persistent selections
and only when the current selection is empty.

Promote [Optional]
This choice promotes the current selection to the primary selection. It
is available only in components that support persistent selections.

Note: The use of pop-up menus with these common actions yields consistency
across applications.

cc: [Recommended]
Pop-up menus for selectable objects should contain the following set of choices,
with the specified functionality, when the actions are actually supported by the
application. These guidelines supplement item 6-11:.

Move To . . . [Optional]
This choice allows the user to move the selected objects into a folder. A
file selection dialog box is displayed allowing the user to select the
desired folder.

Copy To . . . [Optional]
This choice allows the user to copy the selected objects into a folder. A
file selection dialog box is displayed allowing the user to select the
desired folder.

Put on Workspace [Optional]
This choice allows the user to put a link for the selected objects onto the
XCDE desktop in the current workspace.

Delete [Optional]
This choice deletes the selected object. A confirmation is displayed to
the user before actually removing the object.

404 X/Open CAE Specification



Application Style Checklist Application Design Principles

Properties . . . [Recommended]
This choice displays a dialog box indicating the current settings for
attributes associated with the selected object.

Help . . . [Recommended]
This choice displays a help window pertaining to objects of the type
selected.

cd: [Optional]
Choices within the pop-up menus are organised in the following manner:

<choices that manage the object, such as Open,
Save or Properties>

----------- separator ----------------

<standard edit menu choices, such as Cut, Copy and Paste>

----------- separator ----------------

<other choices>

6-12: [Required]
When a pop-up menu is popped up in the context of a selection, any action that acts
on elements acts on the entire selection (Section 6.2.1.6 of the OSF/Motif Style
Guide).

Note: In the context of a selection, pop-up menu actions affect the entire
selection.

20.7.1.8 Dialog Boxes

6-13: [Required]
Information dialog boxes do not interrupt the user’s interaction with the application
(Section 6.2.1.7.5 of the OSF/Motif Style Guide).

Note: An information dialog box conveys information to the user that does not
require immediate attention, so it does not need to be modal.

20.7.1.9 Menu Design

ce: [Recommended]
If the selection of a menu item will result in the user being queried for more
information, such as through the posting of a file selection dialog, the menu item
should be followed by an ellipsis (‘‘. . .’’). This recommendation does not apply to
menu items that will result in a simple warning or confirmation dialog being
displayed.

Note: The use of an ellipsis helps set the user’s expectation for the behavior of the
interface. When users select an item without an ellipsis, they know that
they can expect an immediate result.

cf: [Recommended]
Menus accessed from within the application should contain at least two menu
items.

Note: No menu should contain only one item. If the application provides a
menu with only one item, the application should move that item into
another menu or make it a button within the window. The longer the
menu, the more effort is needed for the user to access choices near the

X/Open Common Desktop Environment (XCDE) Services and Applications 405



Application Design Principles Application Style Checklist

bottom. If the application menu has a lot of choices, it should be broken
up into two or more menus, or some items should be grouped into
submenus.

cg: [Optional]
Submenus accessed from within the application contain at least three menu items.

Note: Submenus may be used to group like items into a single secondary
cascading menu where putting the items into the primary cascading menu
would make it too long. However, if the submenu contains only two
options, the application should remove the secondary cascading menu and
put the options into the primary cascading menu since it takes more effort
for the user to access options located in a submenu.

ch: [Recommended]
No menu in the application should contain more than 15 choices.

Note: The longer the menu the more effort is needed for the user to access
choices near the bottom. If the menu has a lot of choices, the application
should break it up into two or more menus or group some items into
submenus.

ci: [Optional]
If the application contains a menu that is expected to be accessed frequently, then a
tear-off menu option is provided in that menu.

Note: The user should be able to tear-off frequently accessed menus so that these
can remain posted on the desktop as the user uses the application.

cj: [Optional]
The application provides keyboard accelerators where appropriate. If specific menu
items within a menu are expected to be used frequently, not the menu as a whole,
then the application provides keyboard accelerators for these items and displays the
keyboard accelerators in the associated menu to the right of the item to which they
relate.

ck: [Recommended]
The labels used for items in the menu bar should not appear as options within the
menus themselves.

Note: The names of items in the menu bar serve as titles for the options the menu
contains. The name of the menu bar item should provide a term that
accurately describes the concept of the category relating all of the menu
items and should not be used as the name of any item within the menu
itself.

cl: [Required]
Any menu choice that is not currently an appropriate selection is dimmed
(insensitive).

Note: Dimmed controls cannot be activated by the user and should appear only
when the inactive state is short-term (that is, there is something the user
can do within the application or the desktop environment to make the
control become active). When the control is persistently inactive (because
of the current configuration of the application or system or a particular set
of companion software is not currently installed), the control should be
removed rather than dimmed.

406 X/Open CAE Specification



Application Style Checklist Application Design Principles

cm: [Recommended]
If a menu item is used to indicate a selection state, the application should use a
checkbox or radio button to indicate the state of the item. The application should
use a checkbox if a single item is used to represent on or off states, and use radio
buttons for multiple adjacent menu items in which only one of the items may be
selected.

cn: [Required]
If radio buttons are used in a menu, the application uses separators between each
set of radio buttons and other menu items.

co: [Recommended]
If a checkbox or radio button is used on a menu item, it should always be shown as
either selected or not selected, and should not disappear when in the unselected
state.

6-14: [Required]
If the application uses a tear-off button in a menu, the tear-off button is the first
element in the menu (Section 6.2.3 of the OSF/Motif Style Guide).

Note: When a tear-off button is activated, the menu changes into a dialog box.
The tear-off button must be the first item in the menu so that the entire
contents of the menu are torn off.

6-15: [Required]
All menus must be wide enough to accommodate their widest elements (Section
6.2.3 of the OSF/Motif Style Guide).

Note: The ability to see the full label of each menu element allows the user to
browse through a menu.

20.7.1.10 Dialog Box Design

The following requirements apply only in a left-to-right language environment in an English-
language locale. The application must make the appropriate changes for other locales.

cp: [Recommended]
The title of dialog boxes used within the application should adhere to the
conventions listed in the following table.

Dialog Box Title Conventions
Window Usage Window Title Format
Message <app or object name> : <action or situation>
Progress <app or object name> : <action> in Progress
Action (Command) <app name> : <action>
Object Properties <app name> : <object-type> Properties
Application Options <app name> : <type> Options

cq: [Required]
Every dialog box in the application has at least one button that either performs the
dialog box action and dismisses it or dismisses the dialog box without taking any
action.

6-16: [Optional]
This item of the OSF/Motif Style Guide has been replaced by item cr.

X/Open Common Desktop Environment (XCDE) Services and Applications 407



Application Design Principles Application Style Checklist

cr: [Recommended]
If the application uses common dialog box actions, the actions should have the
following specified functionality and labels:

Yes [Optional]
This label indicates an affirmative response to a question posed in the
dialog box.

No [Optional]
This label indicates a negative response to a question posed in the
dialog box.

OK [Optional]
This label applies any changes made to components in the dialog box
and dismisses the dialog box.

<command> [Optional]
This label applies any changes made to components in the dialog box,
performs the action associated with <command> and dismisses the
dialog box.

This label should be used in lieu of OK, Yes or No as a button label
when it provides more meaning to the user as to the action that will be
performed when that button is clicked.

Apply [Optional]
This label applies any changes made to components in the dialog box
and does not dismiss it.

Retry [Optional]
This label causes the task in progress to be attempted again.

Stop [Optional]
This label ends the task in progress at the next possible break point.

Pause [Optional]
This label causes the task in progress to pause.

Resume [Optional]
This label causes a task that has paused to resume.

Save As Defaults [Optional]
This label saves the current settings as the default settings that will
appear the next time the window is displayed. The settings are not
applied to any selected object and the dialog box is not dismissed.

A Save As Defaults button should be provided if it is expected that a
user would want to use different default values for a set of controls
within a dialog box than those that the application provide as the
factory settings. For example, a Save As Defaults button might be
provided in a ‘‘New <object-type>’’ window, allowing the user to
indicate that whenever a new instance of that object-type is created, the
current values should be displayed as the default settings instead of the
values given by the application.

Reset [Optional]
This label cancels any changes that have not yet been applied by the
application. The controls within the dialog box are reset to their state
since the last time the dialog box action was applied. If no changes

408 X/Open CAE Specification



Application Style Checklist Application Design Principles

have been applied within the current invocation of the dialog box, the
controls are reset to the state when the dialog box was first displayed.

Reset to Factory [Optional]
This label cancels any changes that have not yet been applied.
Components in the dialog box are reset to their default state and value
as specified by the vendor that delivered the application (that is, the
controls are restored to the original factory settings).

Cancel [Optional]
This label dismisses the dialog box without performing any actions not
yet applied.

Help [Recommended]
This choice provides help for the dialog box.

cs: [Recommended]
Any visible control that is not currently active or whose setting is currently invalid
should be dimmed.

Note: Dimmed controls cannot be activated by the user and should appear only
when the inactive state is short-term (that is, there is something the user
can do within the application or the desktop environment to make the
control become active). When the control is persistently inactive (because
of the current configuration of the application or system or a particular set
of companion software is not currently installed), the control should be
removed rather than dimmed.

ct: [Optional]
The application should keep the size of the dialog boxes to a minimum.

Note: On low-resolution displays, dialogs may take up most of the screen real
estate and may run off the edge of the screen if not designed correctly.

cu: [Optional]
The application should avoid complexity in the dialog boxes. If the dialog box must
support many functions, it should use an expandable dialog box (see Section 20.7.7
on page 420) or use more than one dialog in a nested fashion.

cv: [Optional]
The application should avoid the use of resize handles in the dialog box. However,
the application can use resize handles when resizing is useful in allowing users to
see more information; for example, when the dialog contains a scrolling list that is
likely to be long and users will frequently need to search the list.

cw: [Optional]
Every dialog box in the application has exactly one default button that is activated
when the Return key is pressed.

The default button should be associated with the most likely response from the user
and should not be potentially destructive or irreversible. Some applications may
have dialog boxes that do not reveal a default button until a specific set of fields has
been filled out or otherwise manipulated.

X/Open Common Desktop Environment (XCDE) Services and Applications 409



Application Design Principles Application Style Checklist

cx: [Optional]
If a dialog box displayed by the application has controls that are considered to be
advanced features, the application uses an expandable dialog box, or a multiple
page dialog box, that provides a <category> option menu that allows the user to
navigate to each page.

Controls that relate to advanced features should not be displayed with the set of
options initially displayed to the user. The typical user should be presented with
only those options that are necessary to use the basic functionality of the
application. Users wanting to access advanced functionality within the dialog box
can use the <category> option button. If there are few advanced controls or the
settings for these controls are highly related to the settings of basic controls
displayed in the dialog box (that is, the settings of the advanced controls change
when the user changes settings for basic controls), the application might choose to
provide an expandable dialog box (see Section 20.7.7 on page 420).

Property Windows

cy: [Required]
If the application provides settings that control the behaviour of the application,
these settings are displayed in an application properties window that is accessible
from an Options menu.

cz: [Recommended]
If the application manages objects and allows the user to see or modify settings for
these objects, these settings should be displayed in an object properties window that
is accessible from a ‘‘Properties . . .’’ choice in the Edit, <object-type> or Selected
menus, as well as from the pop-up menu associated with the object.

da: [Recommended]
If the application provides access to a Properties or Options window, this window
should include the following set of buttons in the order listed, with the specified
functionality, when supported by the application.

OK [Required]
This button applies any changes made to components in the dialog box
and dismisses it. OK may be replaced by a more appropriate label; for
example, Add. The alternative label should be a verb phrase.

Apply [Optional]
This button applies any changes made to components in the dialog box
and does not dismiss it.

Reset [Required]
This button cancels any changes that have not yet been applied by the
application. The controls within the dialog box are reset to their state
since the last time the dialog box action was applied. If no changes
have been applied within the current invocation of the dialog box, the
controls are reset to their state as of when the dialog box was first
displayed.

Reset to Factory [Optional]
This button cancels any changes that have not yet been applied.
Components in the dialog box are reset to their default state or value as
specified by the vendor that delivered the application (that is, the
controls are restored to the original factory settings).

410 X/Open CAE Specification



Application Style Checklist Application Design Principles

Cancel [Required]
This button dismisses the dialog box without performing any actions
not yet applied.

Help [Required]
This button provides help for the dialog box.

db: [Recommended]
If the application provides a Properties window that displays settings for a selected
object, the properties window should track the current selection and modify the
state of any controls to reflect the properties of the currently selected object
accurately.

20.7.1.11 File Selection Dialog Box

dc: [Optional]
If the application allows the user to open or save files, then it uses the standard
XCDE file selection dialog box to allow the user to select specific files and
directories.

Note: All user interactions with the file system should be facilitated by providing
a point-and-click style of choosing files and directories. The user should
never be forced to memorise and type in file paths. The user must be able
to explore the contents and structure of the file system using scrolling lists.
The expert user, however, should be able to directly enter a complete file
path, as well as be able to use relative paths and environment variables
such as HOME.

The labels and contents of the standard file selection dialog box may be
modified as appropriate to make clear the particular context in which it is
being used within the application.

dd: [Recommended]
If the application allows the objects it manages to exist as separate entities within
folders or toolboxes within the desktop environment, a Copy To menu option or
button should be provided that displays a file selection dialog box that allows the
user to select the desired folder in which an icon for the object should be placed.

de: [Recommended]
The file selection dialog box should not display hidden (dot) directories or files,
unless the user depends on using these types of files. If the application does
support displaying hidden files, the application should supply a check box allowing
users to toggle between showing and not showing hidden files, or else allow users
to toggle between showing and hiding files at a global level in the application.

df: [Recommended]
The file selection dialog box should not show the full pathnames for files and
directories, but should only show the relative names, except for the directory text
field.

Note: The global XCDE setting should be:

XmFileSelectionBox.fullPathMode: false

Unless the application overrides this behaviour, the file selection dialog
box should not show full pathnames in the list boxes.

X/Open Common Desktop Environment (XCDE) Services and Applications 411



Application Design Principles Application Style Checklist

dg: [Required]
In general, the file selection dialog box should recall the directory location that was
previously set by the user.

Note: For example, if the user brings up Save As and navigates to
/users/jay/letters to save the file, the next time the user brings up Save As,
the file selection box should be in the directory /users/jay/letters. This
information, however, should not be recalled once the user has closed the
primary window; it should resort to the default directory.

20.7.1.12 About Dialog Box

dh: [Optional]
The About dialog box should contain a minimum set of information about the
application that is visible in a single text pane. That minimum set should be:

• Application name

• Version number

• Release date

• Copyright

di: [Required]
The About dialog box contains a Close button. Other buttons, such as Help and
More, are optional.

Other information contained in the About box might be:

dj: [Recommended]
Information about the operating system or other aspects required to run the
application; for example, XCDE 1.0.

dk: [Optional]
A More Information dialog box for additional information such as development
team credits, licencing, client or xhost information.

20.7.1.13 Dialog Box Layout

The following requirements apply only in a left-to-right language environment in an English-
language locale. The application must make the appropriate changes for other locales.

dl: [Optional]
Controls within the dialog box are placed in a left-right, top-down layout based on
the order in which the user is expected to fill out or choose options within the dialog
box.

dm: [Required]
Push buttons that affect the dialog box as a whole, either by modifying its contents
or layout, invoking the action of the dialog box or dismissing the dialog box, must
be located at the bottom of the dialog box.

Note: In general, there should only be one row of buttons at the bottom of a
dialog box. If the application has dialog boxes that contain several global
buttons, it may be necessary to create two or more rows of buttons at the
bottom of the dialog box. The last row should contain the standard dialog
box buttons (OK, Reset, Cancel and Help). If a dialog box contains buttons
that are not related to the dialog box as a whole, but relate to a specific

412 X/Open CAE Specification



Application Style Checklist Application Design Principles

control within the dialog box, the buttons should be located with the
control to which they relate.

dn: [Required]
If the application provides an Apply button within a dialog box, it also provides an
OK button or command button that performs the dialog box action then dismisses
it.

do: [Optional]
The application should not use cascading buttons within dialog boxes.

Note: In general, cascading buttons should only be used within menus and menu
bars. The application should avoid their use in all other locations unless
absolutely necessary.

dp: [Recommended]
If the application needs to use cascading buttons outside of a menu pane, it should
use menu buttons.

20.7.1.14 Designing Drag and Drop

dq: [Recommended]
The application should provide a drag-and-drop (DND) method for all objects
represented as icons and for all elements that the user can directly manipulate.

dr: [Recommended]
Any basic function that the application supports through drag and drop also should
be supported through menus, buttons or dialog boxes.

Note: Drag and drop is considered an accelerator to functionality that is
accessible through other user interface controls supported within the
application. There should be no basic operation that is supported solely
through drag and drop.

ds: [Recommended]
The application should use an icon graphic in a dialog box or window to indicate
that objects within the dialog box or window can be dragged. The same icon
graphic should be used to represent the draggable object in File Manager. The icon
should be placed adjacent to any display of the contents of the object, if such display
exists. If there is no such display, the icon should be placed in the upper right
corner of the dialog box or window, unless a more suitable placement is
determined. The icon should be 32 × 32 in size and have a label under it. The label
should indicate what kind of object the icon graphic represents. The icon graphic
should also be used as the source indicator in the drag icon.

dt: [Required]
During a drag operation, the application changes the current pointer to a drag icon.

Note: A drag icon provides visual feedback that a drag operation is in progress.

du: [Recommended]
During a drag operation, the application should change the current drag cursor to
include a source indicator.

Note: A source indicator gives a visual representation of the elements being
dragged.

X/Open Common Desktop Environment (XCDE) Services and Applications 413



Application Design Principles Application Style Checklist

dv: [Recommended]
During a drag operation, the application should change the current drag cursor to
indicate invalid drop zones. It uses the standard XCDE Cannot pointer.

Note: The user must receive feedback as to where an object can and cannot be
dropped. Minimally, feedback should be provided as to what are invalid
drop zones. Feedback for valid drop zones should be enhanced by use of
animation, recessing of the target drop zone and other such drag-over
effects.

dw: [Recommended]
During a drag operation, the application should change the drop zone feedback to
indicate a valid drop zone.

Note: Preferably, feedback for valid drop zones is enhanced by use of animation,
recessing of the target drop zone and other such drag-over effects.

dx: [Required]
Pressing Cancel ends a drag-and-drop operation by canceling the drag in progress.

Note: Cancel provides a consistent way for the user to cancel a drag operation.

dy: [Required]
Releasing BTransfer (or BSelect) when not over a drop target ends a drag-and-drop
operation.

Note: Releasing BTransfer (or BSelect) offers a consistent means of ending a drag
operation.

dz: [Optional]
Any cursor change or drag-over effect the application uses occurs within 0.2
seconds of the mouse pointer reaching the target area and does not interfere, in any
noticeable way, with the interactive performance of the drag operation.

ea: [Recommended]
In a collection that supports copy, move or link operations that can be performed by
dragging, the feedback presented to the user during the drag operation should
indicate whether a single object or multiple objects are being manipulated.

Note: Feedback provided during the drag operation should ensure that the user
feels confident that the desired set of objects is being dragged. The drag
icon used for multi-object drag operations should integrate the feedback
used to indicate whether the operation is a move, copy or link.

eb: [Required]
After a successful transfer, the data is placed in the drop zone and any transfer icon
used by the application is removed.

Note: A transfer icon can be used to represent the type of data being transferred
during a drop operation. A successful drop operation results in the
transfer of data.

ec: [Required]
If the application removes data upon the completion of a drag and drop, it does so
only if the drag-and-drop transfer has completed successfully.

Note: If a drag-and-drop operation has been canceled or failed, the data or object
that was the source of the drag must not be removed.

414 X/Open CAE Specification



Application Style Checklist Application Design Principles

ed: [Required]
After a failed transfer, the data remains at the drag source and is not placed in the
drop zone. Any transfer icon used by the application is removed.

Note: A failed drop operation does not result in the transfer of data.

ee: [Recommended]
If the user drops an object at an inappropriate drop zone within the application’s
window, the application should participate in the display of a snap back effect and
also should post an error dialog box indicating the reason the drop was disallowed.

Note: The error message should state the context (for example, running action A
on object B), what happened (for example, could not connect to system X)
and how to correct the problem (for example, press the Help button to
obtain information on diagnosing remote execution problems).

ef: [Recommended]
An application that accepts only single items should reject all multiple-item drops.

Note: There is no consistent method to determine which of the selected items the
user really wants to drop.

eg: [Recommended]
If the application supports drag and drop as a means of loading a file into the
application, the application should respond to this operation in a manner similar to
when the file is loaded through more conventional means such as choosing Open
from the File menu.

Note: As an accelerator, drag-and-drop loading of files should provide the same
kind of feedback and behaviour as choosing Open from the File menu. For
example, if changes to a currently loaded file have not yet been saved, the
application should display a message dialog box asking whether the
changes should first be saved before loading the new file.

6-17: [Required]
If the application provides any drag-and-drop help dialog boxes, they contain a
Cancel button for canceling the drag-and-drop operation in progress (Section 6.2.5.4
of the OSF/Motif Style Guide).

Note: The Cancel button in the help dialog box provides a convenient way for
the user to cancel a drag-and-drop operation.

20.7.2 Attachments

eh: [Recommended]
Drag and drop should not be the only method for attaching objects.

ei: [Recommended]
Double-clicking should be a shortcut for selecting the attachment and choosing the
Open menu item for attachments and should never be the only way to access
attachments.

ej: [Recommended]
When the user attempts to drop something into the attachment list that is not
attachable, then the drop fails and the item should be snapped back to its source.

X/Open Common Desktop Environment (XCDE) Services and Applications 415



Application Design Principles Application Style Checklist

ek: [Recommended]
When the user has one or more attachments open for editing and attempts to do any
operation that would result in potentially losing the user’s edits, the user should be
clearly warned and given the opportunity to save changes.

el: [Recommended]
When the user chooses something to attach from the file selection box that is not an
attachable item, then the user should receive an error message explaining why the
chosen item cannot be attached. For example: The folder ‘‘My.Stuff’’ cannot be
attached because it is a folder.

Only documents, applications and scripts can be attached.

20.7.3 Installation

em: [Required]
An application should be installed to folders in the Application Manager, not
directly to the front panel or subpanels. For consistency, only XCDE desktop
components install to these locations. Users may choose to rearrange their front
panel, but the application must not do this without user consent.

20.7.4 Interaction

6-18: [Required]
A warning dialog box allows the user to cancel the destructive action about which
the dialog box is providing a warning (Section 6.3.2.2 of the OSF/Motif Style
Guide).

Note: The user should have a way to cancel an operation that can cause
destructive results.

en: [Required]
When the application displays a dialog box, it places the input focus at the first text
field into which the user is allowed to type an entry or at the first control within the
dialog box with which the user should interact.

Note: Input focus should always be placed at a predictable and intuitive location.
The user should not be forced to set focus at the control most likely to be
used when the window is displayed.

eo: [Recommended]
As the user presses the Tab key within dialog boxes of the application, the input
focus should move to different controls within the window in a left-right, top-down
order.

Note: These requirements apply only in a left-to-right language environment in
an English-language locale. The application must make the appropriate
changes for other locales.

ep: [Required]
There is always exactly one control within any window of the application that has
the input focus if the window in which it resides has the input focus.

Note: If any window within the application has focus, some control within that
window must have focus. The user should not have to explicitly set focus
to a control within the window.

416 X/Open CAE Specification



Application Style Checklist Application Design Principles

eq: [Optional]
When a text field within the application does not have the input focus, the text
cursor is not displayed within that field.

Note: Although use of inactive text cursors is allowed within the Motif style, it is
better to hide the text cursor on focus out rather than display the inactive
text cursor. This makes it easier for the user to quickly scan the screen or a
window and determine which text field currently has focus.

er: [Optional]
The application provides keyboard mnemonics for all buttons, menus and menu
items displayed within the application.

Note: Once the user becomes adept at using the application, keyboard
mnemonics provide the user a quick way to access functionality.
Mnemonics also facilitate access to functionality from within keyboard-
centric applications or windows. The user need not frequently switch
between use of the mouse or use of the keyboard. Mnemonics should be
provided pervasively throughout the user interface.

es: [Optional]
The application provides keyboard accelerators for those functions that are
expected to be used frequently by the user.

Note: Keyboard accelerators provide the user who has become expert at using
the application a quick way to access application functionality without
having to go through menus and dialog boxes.

et: [Required]
Dialog boxes displayed by the application never block input to other applications
within the desktop (that is, they are not system modal) unless it is absolutely
essential that the user perform no other action in the desktop until the user
responds to the dialog box.

Note: The application must allow the user the freedom to access information and
tools within the user’s desktop environment. An application should rarely
block access to other applications and services within the environment.

eu: [Required]
Dialog boxes displayed by the application never block access to other functionality
within the application (application modal) unless it is essential that the state of the
application remains unchanged until the user responds to the dialog box.

ev: [Required]
If the application does not use the values of global environment settings (such as
multiclick timeout intervals, drag thresholds, window colour settings, mouse left-
or right-handedness), but instead uses its own values for these settings, then the
application provides one or more Options dialog boxes that allow the user to
change the values for these settings.

Note: In general, the application should not override the value of settings treated
as global environment settings. These settings are controlled by the user
through the XCDE Style Manager. If the application choose to ignore these
settings and specify the own settings, then the application will behave
inconsistently with other applications in the XCDE desktop. If the
application nevertheless choose to provide the own values, then the
application must provide the user a way to make the settings consistent

X/Open Common Desktop Environment (XCDE) Services and Applications 417



Application Design Principles Application Style Checklist

with the rest of the desktop.

20.7.5 Visuals

ew: [Recommended]
Any icons or graphics displayed by the application should be designed to be
distinguishable on low- (640 × 480), medium- (800 × 600) and high- (mega-pixel)
resolution displays. Alternatively, the application provides different sized visuals
for low-, medium- and high-resolution displays.

Note: Desktop system configurations are including more high-resolution
monitors. The user must be able to discern any visuals used by the
application on these type of monitors. The embedded base, however, still
contains many standard VGA monitors. The application’s visuals must
display well on these systems and should not appear overly large.

ex: [Recommended]
Any icons or graphics displayed by the application should be designed to display
well on black-and-white and gray-scale monitors. These visuals also display well
on low-colour (16) systems.

ey: [Recommended]
Icons should be used to represent only objects and applications.

Note: Icons provide a visual representation for objects and facilitate direct
manipulation. If icons are used for other purposes (for example, as
illustrations) where the user cannot drag them, select them and so on, it
creates a confusing inconsistency.

ez: [Recommended]
Icons should use only the palette of 22 colours.

Note: The XCDE icon palette was chosen to maximise attractiveness and
readability without using an unnecessary number of colours. Use of
additional colours may cause undesirable colour shifting on the display.

fa: [Recommended]
Icons should be designed for international use.

Note: The application should not use text, symbols, humour, animals and other
items that may be interpreted differently in other cultures.

fb: [Recommended]
Icons of sizes 16 × 16 and 32 × 32 should be left-aligned; any empty bits should be on
the right side of the bounding box.

fc: [Recommended]
Icons of size 48 × 48 should be centered in the bounding box.

418 X/Open CAE Specification



Application Style Checklist Application Design Principles

20.7.6 Toolbars

fd: [Required]
If the application uses a tool bar, it should be used only in windows with a menu
bar.

fe: [Required]
Tool bars should contain only operations that are already available to the user in the
application menus. All items in a tool bar should be redundant.

ff: [Required]
When an action represented by a tool bar icon is unavailable to the user, that icon
should be made insensitive, with the associated stippled appearance. Whenever a
menu item is made insensitive, the corresponding tool bar item is made insensitive
as well.

fg: [Recommended]
The application should give users the option to hide the tool bar.

fh: [Required]
The tool bar container is placed directly under the menu bar and should be the same
width as the window, as well as similar height to the menu bar.

fi: [Recommended]
If the application uses a tool bar, then the application should provide a status line in
the same primary window as the tool bar.

Note: This status line should provide immediate feedback to the user as to the
purpose of the button that the mouse is currently over or that has the
keyboard focus. When the arrow is over a tool bar icon, the status line
should display a brief definition of what the icon represents or what will
happen when the user clicks the icon.

fj: [Recommended]
The application may provide labels under tool bar icons. These labels should serve
to explain the purpose of the icon.

fk: [Recommended]
Drawn buttons in the tool bar should be the same width and height. Similar or
related items should be grouped and groups should be evenly spaced across the
tool bar.

fl: [Recommended]
All pixmaps in the tool bar should be the same size.

Note: This ensures that all the tool bar buttons are the same size.

fm: [Recommended]
The pixmap should be 24 × 24. The default for the drawn button is to resize itself
according to the size of its label type, which, in this case, would be a pixmap.

X/Open Common Desktop Environment (XCDE) Services and Applications 419



Application Design Principles Application Style Checklist

20.7.7 Expandable Windows

fn: [Recommended]
The primary pane of the dialog box or window should contain all of the controls
needed to complete the task. This should include all critical and frequently used
functionality.

fo: [Recommended]
It is assumed that infrequently used features are placed in the secondary pane. The
core functionality of the application should not depend on any controls placed in
secondary panes.

fp: [Required]
Command buttons are aligned along the bottom of the dialog box. When the
window is expanded to show a secondary pane, then buttons are moved to the
bottom of the secondary pane. See Section 20.7 on page 393 for information about
layout of action buttons in dialog boxes.

fq: [Recommended]
If important controls must be placed in the secondary pane, the application can
specify that the window in question should be displayed in its expanded state by
default.

fr: [Recommended]
The secondary pane should expand in the direction most consistent with users’
expectations, the reading pattern of the language in which it will be displayed and
the content of the information displayed.

fs: [Recommended]
If possible, the panes should have the same default width.

ft: [Required]
A separator is used to separate the primary pane from the secondary pane.

Note: The user must have clear visual feedback as to which elements are in the
primary and which in the secondary panes of the expandable window.

fu: [Required]
If a window is resizable, any sizing changes are allocated to the pane containing
scrolling lists or text fields whose displayed length is less than their stored length. If
both panes contain scrollable controls, size changes are distributed evenly between
the two panes. If neither pane contains scrollable controls, the window is not
resizable.

fv: [Required]
The expandable window has one button that changes its label based on the state of
the window.

fw: [Required]
The expand button has two labels that reflect the two states of the expandable
window accurately. The current label indicates to the user what will happen if the
user clicks the button.

Note: Examples of possible labels are Basic and Options, Expand and Contract,
More and Less.

fx: [Optional]
The expand button may contain a graphic in addition to the label. This graphic
should indicate the direction in which the window will expand or contract.

420 X/Open CAE Specification



Application Style Checklist Application Design Principles

fy: [Recommended]
The button should appear in the lower left-hand corner of the window or dialog box
for expansion in the vertical direction and in the lower right hand corner for
expansion in the horizontal direction.

fz: [Required]
If the window or dialog box contains a scrolling list positioned to the far right side
of the pane, the drawn button is not aligned with the scroll bar. For example, the
button should be aligned with the list, not the scroll bar.

ga: [Required]
The application remembers the state of each window or dialog box (expanded or
not expanded) independently (not collectively). The state must be changed only by
the user and must be preserved until explicitly altered by the user.

gb: [Recommended]
The application should remember the state of each expandable window or dialog
box across sessions, so that users do not have to manually configure the expandable
windows each time the application is run.

Note: If appropriate, applications can provide a mechanism, as an option, to
allow users to set the state of an expandable window globally for the
application.

20.7.8 Messages

gc: [Recommended]
Messages displayed by the application should not assume that the user has any
expert knowledge about computer systems in general or any operating system in
particular.

Note: It is appropriate to assume that the user has knowledge about basic terms
used within the desktop, such as files or programs. Such knowledge can
be assumed to have been learned by the user through Tutorials, online help
and user documentation. However, terminology that is typically
understood only by an expert or frequent computer user should be
avoided unless the application is specifically targeted at computer
professionals. Likewise, messages returned to the application by the
underlying operating system should not be passed through to the user, but
instead, should be ‘‘translated’’ into language that can be understood by
the novice user.

gd: [Recommended]
Error messages displayed by the application should indicate the possible cause of
the error and indicate the possible actions the user can take in response.

ge: [Optional]
The application uses audio feedback, in addition to any messages displayed, to
signal error conditions and events.

gf: [Optional]
The application should not rely on error messages from the underlying operating
system and its library routines. Error messages from such routines are normally not
seen by the user and even when the user does see them, they are usually too low-
level and cryptic to be understood by non-programmers. The application should
check for error conditions and use an Error dialog box to present an appropriate
error message in terms of the user’s actions and intentions.

X/Open Common Desktop Environment (XCDE) Services and Applications 421



Application Design Principles Application Style Checklist

gg: [Recommended]
The application should display a confirmation or warning message dialog box to the
user when an action instigated by the user will be irreversible and potentially
destructive with respect to the information stored within the system or the
operation of the system or desktop environment.

gh: [Optional]
Urgent conditions that require immediate attention by the user, no matter which
application or desktop service the user is currently accessing, are brought to the
user’s attention using audiovisual notification. The alarm is signaled in the current
workspace regardless of the workspace in which the application resides.

Note: Some applications, such as network monitors or stock watch programs,
may need to alert the user to some event. Both visual and audio alarms
should be used to signal the user. The user should be able to acknowledge
the alarm and cause it to cease.

gi: [Recommended]
The application should use footer messages only to communicate status, progress
or information (help) messages. It should not use the footer to present error
messages.

Note: The footer is a good location for prompt messages that help the user to
determine how to choose options within a window or fill out a particular
field. It should not be used to present error messages to the user or
informational messages that are important for the user to notice. These
should be presented in the appropriate style message dialog box.

gj: [Recommended]
The application should provide a Help button in all message dialog boxes, except
those that contain self-explanatory messages.

Note: An application should be designed with both the expert and novice user in
mind. The novice user must be able to access additional information
clarifying the message, the circumstances under which it might have been
displayed and what the user should do in response to the message.

gk: [Recommended]
The application should use the appropriate style dialog box for the display of
messages to the user.

gl: [Optional]
An information dialog box is used to display status, completion of activity or other
informative types of messages to which the user need not necessarily respond other
than to acknowledge having read the message.

Note: Minimally, information dialog boxes should have an OK button so that the
user can dismiss the dialog box. If there is additional information available
about the situations under which the message is displayed or other
references for the topic to which the message relates, then a Help button
should be included.

422 X/Open CAE Specification



Application Style Checklist Application Design Principles

gm: [Optional]
An error dialog box is used to display error messages to the user. The error dialog
box displayed states what the error is and specifies why it occurred. The error
dialog box contains a Help button so that the user may get additional information,
unless the message is self-explanatory. The error dialog box contains an OK button
that dismisses the dialog box.

Note: A Cancel button is not required for error dialog boxes unless the error
resulted in the suspension of an activity that was in progress. In this case,
the message should indicate whether the user has the option to continue
the activity or stop it and the buttons for the dialog box should be
Continue, Cancel and Help. In general, error dialog boxes should not be
modal unless it is critical that the user not continue interacting with the
application until the user has acknowledged having read the error
message.

gn: [Optional]
A question dialog box is used to ask questions of the user. The question is clearly
worded to indicate what a Yes response or a No response means. The buttons
displayed are Yes, No and Help. Help provides additional information as to what
the application will do in response to a Yes or No choice.

Note: Where possible, the application should extend the label for the Yes and No
buttons to make it clear what action will be performed as a result of
choosing either option. For example, if the user has made changes to a
document and has not saved these but has chosen the application’s Exit
option, the application might display a question dialog box that asks
‘‘Changes have not been saved. Do you want to save these before
exiting?’’ The buttons should be Save, Discard, Cancel and Help. These
labels allow the more experienced user to click the correct button without
having to read the question carefully and relate it to the button labels.

go: [Optional]
A warning dialog box is used to communicate the consequences of an action
requested by the user that may result in the loss of data, system or application
accessibility or some other undesirable event. The dialog box is presented before
the action is performed and offers the user the opportunity to cancel the requested
operation. The buttons displayed are Yes, No and Help or Continue, Cancel and
Help. Help provides additional information on the consequences of performing the
action requested.

Note: The use of Yes and No or Continue and Cancel depends on the wording of
the message. The labels for Yes and No should be extended as suggested
previously. Continue may be replaced with a label more specific to the
action that will be performed.

gp: [Optional]
A working dialog box is used to display in-progress information to the user when
this information is not displayed in the footer of the application’s window. The
dialog box contains a Stop button that allows the user to terminate the activity. The
operation is terminated at the next appropriate breakpoint and a confirmation
might be displayed asking whether the user really wants to stop the activity. The
confirmation message might state the consequences of stopping the action.

X/Open Common Desktop Environment (XCDE) Services and Applications 423



Application Design Principles Application Style Checklist

gq: [Optional]
The application writes error messages to the XCDE error log when it is not
appropriate to display these to the user in a message dialog box, but when the
message may nevertheless be useful in diagnosing problems.

Note: The application might also write error messages that are displayed to the
user in the error log if it would be valuable to the user or an administrator
to refer to these messages at some later time. Messages written to the error
log should provide additional information about the error and should state
the context in which the error occurred.

gr: [Optional]
Informational messages should be left aligned and displayed in a light font in
keeping with their unobtrusive nature. The margin where informational messages
are displayed should not accept mouse focus.

gs: [Optional]
Progress messages should normally be displayed only while the operation is in
progress. Notices and other information that is no longer valid should be removed
within a few seconds to avoid confusion about whether or not the information is
current.

20.7.9 Work-in-Progress Feedback

gt: [Recommended]
If any command chosen by the user is expected to take longer than two seconds to
complete, but less than ten seconds, the application should display the standard
busy pointer as feedback that the command is executing.

Note: The user must receive assurance that the application has ‘‘heard’’ the
request and is working on it. If the results of the request cannot be
displayed immediately, some feedback must be provided. The busy
pointer should be displayed within 0.5 seconds of execution of the
command.

gu: [Recommended]
If any command chosen by the user is expected to take longer than ten seconds to
complete, the application should display a working dialog box or other feedback of
similar character that indicates that the application is working on the request. The
feedback should reveal progress toward completion of the activity.

Note: If an activity is expected to take a significant amount of time (ten seconds
or more), the application should display feedback stronger than the busy
pointer. Displaying the busy pointer for long amounts of time may lead
the user to conclude that the application has become ‘‘hung.’’ A progress
indicator should be displayed in these scenarios that indicates that the
application is still functioning and is working on the user’s request. The
progress indicator should show how much of the activity has been
completed and what amount remains.

gv: [Recommended]
When the application displays work-in-progress feedback to the user, it should not
block access to other applications and services within the desktop environment.

424 X/Open CAE Specification



Application Style Checklist Application Design Principles

Note: Multitasking should always be supported and, as such, the application
should allow the user to access other services while it is busy performing
some activity. Preferably, the user is also able to access other features
within the application even though it is currently working on another
request. When this is supported, the application should display an
enhanced busy pointer that indicates that the application is busy but still
willing to accept input.

20.8 Controls, Groups and Models

20.8.1 CheckButton

7-1: [Required]
The application uses check buttons to select settings that are not mutually exclusive.
A check button graphically indicates its state with the presence or absence of a
check mark (Chapter 9 of the OSF/Motif Style Guide).

Note: A check button is used to select settings that are not mutually exclusive.
The user must know whether the button is set or not.

7-2: [Required]
When the user presses BSelect in a check button, the check button is armed. If the
check button was previously unset, it is shown in the set state. If the check button
was previously set, it is shown in the unset state (Chapter 9 of the OSF/Motif Style
Guide).

Note: BSelect Press arms a check button and shows the result of activating it by
releasing BSelect.

7-3: [Required]
When the user releases BSelect in the same check button in which the press
occurred:

• If the check button was previously unset, it is set.

• If the check button was previously set, it is unset.

In all cases the check button is disarmed and, if the check button is in a menu, the
menu is unposted (Chapter 9 of the OSF/Motif Style Guide).

BSelect Release activates a check button.

7-4: [Required]
When the user presses the Enter or Return key in a check button, if the check button
is in a window with a default action, the default action is activated. If the check
button is in a menu:

• If the check button was previously unset, it is set.

• If the check button was previously set, it is unset.

• In both cases, the check button is disarmed and the menu is unposted (Chapter 9
of the OSF/Motif Style Guide).

Note: The Enter and Return keys perform the default action of a window or
activate a check button in a menu.

X/Open Common Desktop Environment (XCDE) Services and Applications 425



Controls, Groups and Models Application Style Checklist

7-5: [Required]
When the user presses the Select key or Spacebar in a check button, if the check
button was previously unset, it is set. If the check button was previously set, it is
unset. In both cases, the check button is disarmed and, if the check button is in a
menu, the menu is unposted (Chapter 9 of the OSF/Motif Style Guide).

Note: The Select key and Spacebar activate a check button.

20.8.2 ComboBox

gw: [Required]
In a list that can be scrolled, such as a scrollable list box, the application does not
allow the cursor to wrap.

gx: [Required]
The application provides vertical scroll bars when some of the data is not visible in
the combo box.

gy: [Recommended]
The application should provide horizontal scroll bars when elements are wider than
the list box.

gz: [Recommended]
The application should display the elements in an order that is meaningful to the
user.

ha: [Recommended]
The application should display an initial value from the list in the text-entry field.
The application should display selected emphasis on the initial value so that typed
text will replace the value.

hb: [Recommended]
The application should make the combination box large enough to display a
minimum of six list items at a time.

hc: [Recommended]
When a user increases the size of the window in which the combo box is displayed,
the application should increase the number of items displayed in the combo box.

hd: [Recommended]
When a user decreases the size of the window in which the combo box is displayed,
the application should decrease the number of items displayed in the combo box.
As a minimum, it should reduce the combo box to the text-entry field and a list box
with one entry displayed. If the window is sized so that two list items cannot be
displayed, it should clip the combo box.

20.8.3 CommandBox

7-6: [Required]
If the application uses a command box, it is composed of a text component with a
command-line prompt for text input and a list component for a command history
area. The list uses either the single selection or browse selection model (Chapter 9
of the OSF/Motif Style Guide).

Note: This requirement ensures the consistent appearance and operation of a
command box across applications.

426 X/Open CAE Specification



Application Style Checklist Controls, Groups and Models

7-7: [Required]
When an element of a command box list is selected, its contents are placed in the
text area (Chapter 9 of the OSF/Motif Style Guide).

Note: This requirement provides a convenient way of selecting a previously
entered command.

7-8: [Required]
The list navigation actions Up Arrow, Down Arrow, Control+Begin and
Control+End are available from the text component for moving the cursored
element within the list and thus changing the contents of the text (Chapter 9 of the
OSF/Motif Style Guide).

Note: These actions provide a convenient way to choose a command from the
list while focus remains in the text component.

7-9: [Required]
The default action of the command box passes the command in the text area to the
application for execution and adds the command to the end of the list (Chapter 9 of
the OSF/Motif Style Guide).

Note: Maintaining a history of commands provides a convenient means of
entering often-used commands.

20.8.4 File Selection Dialog Box

7-10: [Required]
If the application uses a file selection dialog box, it contains the following
components (Chapter 9 of the OSF/Motif Style Guide):

• A directory text component showing the current directory path. The user can
edit the directory text component and press Return or Enter to change the
current directory.

• For applications that allow saving to different formats, an option button
allowing users to specify the format when saving a file.

• A file name text component for displaying and editing a file name. This
component is optional when the file selection box is used to choose an existing
file or directory.

• A group of push buttons, including a command button, Update, Cancel and
Help buttons. The command button is typically labeled Open or Save, but if
there is another label that better describes the resulting action (such as Include),
that label should be used. Activating the command button carries out the
corresponding action and dismisses the file selection box.

he: [Recommended]
When the file selection box is used to specify an existing file (for example, to open a
document), the command button is normally labeled Open and it should be the
default action.

hf: [Recommended]
If the Update button is activated while a directory is selected in the contents list, the
directory is opened, its contents are displayed in the contents list, and the directory
text is updated.

X/Open Common Desktop Environment (XCDE) Services and Applications 427



Controls, Groups and Models Application Style Checklist

hg: [Required]
If the Open button is activated while the appropriate file is selected in the contents
list, the file is utilised by the application and the file selection box is dismissed.

hh: [Recommended]
When the file selection dialog box is used to choose an existing directory (for
example, to install a set of files into the chosen directory) or to specify a new
directory, the command button should be given an appropriate label, such as Install,
Choose, Create or OK. If this button is activated while the appropriate directory is
selected in the contents list, the directory is utilised by the application and the file
selection box is dismissed.

hi: [Required]
When the file selection dialog box is used to choose an existing directory, there must
also be an additional button, labeled Update, that is enabled whenever a directory is
selected in the contents list, and opens the directory. This Update button is the
default action.

hj: [Required]
When the file selection dialog box is used to specify a new file name (for example, a
Save As dialog box), the command button is normally labeled Save and is the
default action. This specification ensures the uniform appearance of a file selection
box across applications.

hk: [Optional]
When the file selection dialog box is used to choose an existing file, files are shown
in the contents list but they are all disabled. Double-clicking BSelect on a disabled
file name has no effect.

hl: [Required]
The normal text navigation and editing functions are available in the text
components for moving the cursor within each text component and changing the
contents of the text.

Note: These actions provide a convenient way to choose a directory or file name
from the corresponding list while focus remains in the text component.

7-11: This item of the OSF/Motif Style Guide is not applicable.

7-12: [Recommended]
Double-clicking BSelect on an item in the contents list should select that item and
activate the default action. In all cases, double-clicking BSelect on a directory in the
contents list should open that directory and display its contents in the contents list
(the default action is Open).

• When the file selection box is used to choose an existing file, double-clicking
BSelect on an appropriate file in the contents list should choose that file and
dismiss the file selection box (the default action is Open).

• When the file selection box is used to choose an existing directory or to specify a
new directory or file, files should be shown in the contents list, but they should
all be disabled. Double-clicking BSelect on a disabled file name has no effect.

7-13: [Required]
The normal text navigation and editing functions are available in the text
components for moving the cursor within each text component and changing the
contents of the text.

428 X/Open CAE Specification



Application Style Checklist Controls, Groups and Models

7-14: This item of the OSF/Motif Style Guide is not applicable.

7-15: [Optional]
The application allows the user to select a file by scrolling through the list of file
names and selecting the desired file or by entering the file name directly into the file
selection text component. Selecting a file from the list causes that file name to
appear in the file selection text area (Chapter 9 of the OSF/Motif Style Guide).

Note: This method of selecting a file should be consistent across applications.

7-16: [Required]
The application makes use of the selection when one of the following occurs
(Chapter 9 of the OSF/Motif Style Guide):

• The user activates the command push button while an appropriate item is
selected in the contents list.

• The user double-clicks BSelect on an appropriate file in the contents list.

• The user presses Return or Enter while the file name text component has the
keyboard focus and contains an appropriate item.

7-17: [Required]
The file selection box displays the contents of a directory in the contents list when
the file selection box is initialised, when the user presses Enter or Return in the
directory text component and when the user opens a directory in the contents list.
The contents list is updated each time the contents of the directory changes.

Note: This requirement ensures the consistent operation of a directory and file
search in a file selection box.

hm: [Recommended]
If the user has opened the application without supplying a file name argument, the
Open dialog box should use the user’s home directory as the default directory.

Note: An exception to this recommenddation might be made if a clearly more
useful directory can be identified; for example, the icon editor might
default to $HOME/.dt/icons. An applications that allows editing should
never default to a directory in which the user does not have read and write
permission.

hn: [Required]
If the user has opened the application with a file name argument, the Open dialog
box should default to the directory in which that file resides.

ho: [Optional]
When using the file selection dialog box in a Save As capacity, the application
provides a default name of Untitled, places the location cursor in the file name field
and highlights the file name text to create a ‘‘delete pending type-in’’ mode. If the
current directory already has a file of that name, it creates a name Untitled2, and so
forth.

hp: [Optional]
When using the file selection dialog box in a Save As capacity, the application adds
a file name extension if the application supports file typing by extension and makes
this extension visible in the file name field. It does not highlight the extension to
create a ‘‘delete pending type-in’’ mode, but allows the user to modify the extension
or delete it explicitly.

X/Open Common Desktop Environment (XCDE) Services and Applications 429



Controls, Groups and Models Application Style Checklist

hq: [Optional]
The file selection box should display a directory that makes sense for the task. For
example, when saving a new file from an editor, the file selection box should come
up in the user’s home directory. If the user navigates to some other directory within
the file selection box, the application should remember that directory the next time
it is brought up.

hr: [Optional]
Users should never be allowed to overwrite an existing file through the file selection
box without a warning dialog box prompt.

hs: [Optional]
Keyboard focus should be placed in the file name field each time users bring up a
file selection dialog box.

ht: [Optional]
Directory and file name lists should be presented alphabetically, case insensitive.
The first item on the directory list should be the parent directory and it should be
labeled ‘‘. .’’.

hu: [Optional]
Labels should be clear. In the English language, the application should use the
following labels for the file selection dialog box fields and lists:

File Selection Dialog Box Labels
Component Label
Directory text field Enter Path or Folder Name:
Filter text Field Filter:
Directory list Folders:
Contents list Files:
File text field Enter File Name: ∗

hv: [Optional]
Application developers can make this label more instructive and specific, such as
‘‘Enter File to Open’’ for Open dialog boxes, and so forth.

Note: These labels should be the default labels. If they are not set by default, the
application must set them through resources in the application’s app-
defaults file.

20.8.5 List

7-18: [Required]
Within a list component, the application uses the Up Arrow key to move the
location cursor to the previous item in the list and the Down Arrow key to move the
location cursor to the next item in the list. In a scrollable list, the Left Arrow key
scrolls the list one character to the left and the Right Arrow key scrolls the list one
character to the right (Chapter 9 of the OSF/Motif Style Guide).

Note: The arrow keys provide a consistent means of moving the location cursor
within a list component.

7-19: [Required]
Within a list component, the application uses Control+Begin to move the location
cursor to the first item in the list and Control+End to move the location cursor to the

430 X/Open CAE Specification



Application Style Checklist Controls, Groups and Models

last item in the list. In a scrollable list, the Begin key moves the horizontal scroll
region so that the leftmost edge of the list is visible and the End key moves the
horizontal scroll region so that the rightmost edge of the list is visible (Chapter 9 of
the OSF/Motif Style Guide).

Note: These keys offer a convenient mechanism for moving the location cursor
quickly through a list.

7-20: [Required]
Within a scrollable list, the Page Up key moves the location cursor to the item one
page up in the list and the Page Down key moves the location cursor to the item one
page down in the list. In a scrollable list, the Page Left key (or Control+Page Up)
scrolls the list one page to the left and the Page Right key (or Control+Page Down)
scrolls the list one page to the right (Chapter 9 of the OSF/Motif Style Guide).

Note: These keys offer a convenient mechanism for paging through a list.

7-21: [Required]
Within a list component, the application uses BSelect Click 2 to select the item that
was double-clicked and then initiate any default action for the window (Chapter 9
of the OSF/Motif Style Guide).

Note: Double-clicking using BSelect provides a consistent way of activating the
default action for a list.

20.8.6 Option Button

7-22: [Required]
If the application uses option buttons, the label for the button is the last selection
made from the option button (Chapter 9 of the OSF/Motif Style Guide).

Note: An option button is used to post an option menu which allows the user to
select from a number of choices. The label of an option button must
display the most recent selection from the associated option menu.

7-23: [Required]
When the user presses BSelect or BMenu in an option button, the associated option
menu is posted (Chapter 9 of the OSF/Motif Style Guide).

Note: BSelect Press is a consistent way of activating an option button.

7-24: [Required]
When the user releases BSelect or BMenu within the same option button that the
press occurred in, the associated option menu is posted if it was not posted at the
time of the press. When the user releases BSelect or BMenu outside of the option
button, the associated option menu is unposted (Chapter 9 of the OSF/Motif Style
Guide).

Note: BSelect Release or BMenu Release posts or unposts an option menu,
depending on whether the release occurs inside the option button and
whether the option menu was posted at the time of the press.

7-25: [Required]
When the user presses the Select key or Spacebar in an option button, the associated
option menu is posted (Chapter 9 of the OSF/Motif Style Guide).

Note: The Select key or Spacebar posts an option menu from the keyboard.

X/Open Common Desktop Environment (XCDE) Services and Applications 431



Controls, Groups and Models Application Style Checklist

20.8.7 Paned Window

7-26: [Required]
If the application uses paned windows, they are composed of any number of groups
of components, called panes, each separated by a sash and a separator. The panes,
sashes and separators are grouped linearly, either horizontally or vertically. A sash
is the handle on a separator between two panes that is used to adjust the position of
the separator (Chapter 9 of the OSF/Motif Style Guide).

Note: This requirement ensures the consistent appearance of a paned window
across applications.

20.8.8 Panel

7-27: [Required]
The Down Arrow, Left Arrow, Right Arrow and Up Arrow directional keys
navigate among components in a Panel (Chapter 9 of the OSF/Motif Style Guide).

Note: A panel group organises a collection of basic controls in a horizontal,
vertical or two-dimensional layout. The directional keys are used to
navigate among the controls.

20.8.9 Push Button

7-28: [Required]
When the user presses BSelect in a push button, the push button is armed. When
the user releases BSelect in the same push button that the press occurred in, the
push button is disarmed and activated. When the user releases BSelect outside the
push button, the push button is disarmed but not activated (Chapter 9 of the
OSF/Motif Style Guide).

Note: BSelect provides a consistent means of activating a push button.

7-29: [Required]
When the user presses the Enter or Return key in a push button that is in a window
with a default action, the push button is activated. When the user presses the Enter
or Return key in a push button in a menu, the push button is activated and the
menu is unposted (Chapter 9 of the OSF/Motif Style Guide).

Note: The Enter and Return keys activate a dialog box or a push button in a
menu.

7-30: [Required]
When the user presses the Select key or Spacebar in a push button, the push button
is activated. If the push button is in a menu, the menu is unposted (Chapter 9 of the
OSF/Motif Style Guide).

Note: The Select key and Spacebar activate a push button.

432 X/Open CAE Specification



Application Style Checklist Controls, Groups and Models

20.8.10 Radio Button

7-31: [Required]
If the application uses radio buttons, each button graphically indicates its state
(Chapter 9 of the OSF/Motif Style Guide).

Note: Radio buttons are used to represent a panel of mutually exclusive
selections. The user must know which button in the panel is set.

7-32: [Required]
When the user presses BSelect in a radio button, the radio button is armed. If the
radio button was previously unset, it is shown in the set state (Chapter 9 of the
OSF/Motif Style Guide).

Note: BSelect Press arms a radio button and shows the result of activating it by
releasing BSelect.

7-33: [Required]
When the user releases BSelect in the same radio button that the press occurred in
and the radio button was previously unset, it is set and any other radio button in the
same panel that was previously set is unset. The radio button is disarmed and, if
the radio button is in a menu, the menu is unposted (Chapter 9 of the OSF/Motif
Style Guide).

Note: BSelect Release activates a radio button.

7-34: [Required]
When the user presses the Enter or Return key in a radio button, if the radio button
is in a window with a default action, the default action is activated. If the radio
button is in a menu (Chapter 9 of the OSF/Motif Style Guide):

• If the radio button was previously unset, it is set and any other radio button in
the same panel that was previously set is unset.

• The radio button is disarmed and the menu is unposted.

Note: The Enter and Return keys perform the default action of a window or
activate a radio button in a menu.

7-35: [Required]
When the user presses the Select key or Spacebar in a radio button, if the radio
button was previously unset, it is set and any other radio button in the same panel
that was previously set is unset. The radio button is disarmed and, if the radio
button is in a menu, the menu is unposted (Chapter 9 of the OSF/Motif Style
Guide).

Note: The Select key and Spacebar activate a radio button.

20.8.11 Sash

7-36: [Required]
Within a paned window, the application uses a sash to adjust the position of a
separator, which adjusts the sizes of the panes next to it. As a sash is moved, the
pane in the direction of the sash movement gets smaller and the opposite pane gets
larger by an equal amount (Chapter 9 of the OSF/Motif Style Guide).

Note: This requirement results in the uniform operation of a paned window
across applications.

X/Open Common Desktop Environment (XCDE) Services and Applications 433



Controls, Groups and Models Application Style Checklist

7-37: [Required]
Within a sash, BSelect Motion or BTransfer Motion causes the sash to track the
movement of the pointer. In a vertically oriented paned window, the sash tracks
the vertical position of the pointer. In a horizontally oriented paned window, the
pane tracks the horizontal position of the pointer (Chapter 9 of the OSF/Motif Style
Guide).

Note: BSelect, mouse button 1 and BTransfer, mouse button 2, provide a
consistent means of moving a sash in a paned window using the mouse.

7-38: [Required]
The Up Arrow and Down Arrow keys (for a sash that can move vertically) and the
Left Arrow and Right Arrow keys (for a sash that can move horizontally) move the
sash one increment in the specified direction (Chapter 9 of the OSF/Motif Style
Guide).

Note: The arrow keys offer a uniform means of moving a sash in a paned
window.

7-39: [Required]
Control+Up Arrow and Control+Down Arrow (for a sash that can move vertically)
and Control+Left Arrow and Control+Right Arrow (for a sash that can move
horizontally) move the sash one large increment in the specified direction (Chapter
9 of the OSF/Motif Style Guide).

Note: These keys provide a convenient way of moving a sash quickly in a paned
window.

20.8.12 Scale

7-40: [Required]
If a scale has arrow buttons, the application uses BSelect Press in an arrow button to
move the slider one increment in the direction of the side of the slider on which the
button was pressed and autorepeats until the button is released (Chapter 9 of the
OSF/Motif Style Guide).

Note: BSelect Press provides a consistent means of adjusting a scale component
using the mouse.

7-41: [Required]
In a scale trough, if the scale has tick marks, BSelect Press moves the slider one
major tick mark in the direction of the side of the slider on which the trough was
pressed and autorepeats until the button is released. If the scale does not have tick
marks, BSelect Press in the trough moves the slider one large increment in the
direction of the side of the slider on which the trough was pressed and autorepeats
until the button is released (Chapter 9 of the OSF/Motif Style Guide).

Note: BSelect Press provides a consistent means of adjusting a scale component
using the mouse.

7-42: [Required]
Within a scale slider, BSelect Motion causes the slider to track the position of the
pointer. In a vertical scale, the slider tracks the vertical position of the pointer. In a
horizontal scale, the slider tracks the horizontal position of the pointer (Chapter 9 of
the OSF/Motif Style Guide).

Note: BSelect Motion offers a convenient way to adjust a scale component
precisely using the mouse.

434 X/Open CAE Specification



Application Style Checklist Controls, Groups and Models

7-43: [Required]
Within a scale slider or trough, BTransfer Motion positions the slider to the point of
the button press and then causes the slider to track the position of the pointer. In a
vertical scale, the slider tracks the vertical position of the pointer. In a horizontal
scale, the slider tracks the horizontal position of the pointer (Chapter 9 of the
OSF/Motif Style Guide).

Note: BTransfer Motion provides another convenient way to adjust a scale
component precisely using the mouse.

7-44: [Required]
If a mouse-based sliding action is in progress, the Cancel key cancels the sliding
action and returns the slider to its position prior to the start of the sliding operation
(Chapter 9 of the OSF/Motif Style Guide).

Note: The Cancel key provides a consistent way for the user to cancel a mouse-
based sliding action.

7-45: [Required]
In a vertical scale, the Up Arrow and Down Arrow keys move the slider one
increment in the specified direction. In a horizontal scale, the Left Arrow and Right
Arrow keys move the slider one increment in the specified direction (Chapter 9 of
the OSF/Motif Style Guide).

Note: The arrow keys provide a uniform way of adjusting the slider in a scale
component using the keyboard.

7-46: [Required]
In a vertical scale, Control+Up Arrow and Control+Down Arrow move the slider
one large increment in the specified direction. In a horizontal scale, Control+Left
Arrow and Control+Right Arrow move the slider one large increment in the
specified direction (Chapter 9 of the OSF/Motif Style Guide).

Note: These keys provide a convenient way of adjusting the slider in a scale
component quickly using the keyboard.

7-47: [Required]
The application uses the Begin key or Control+Begin to move the slider to its
minimum value. The End key or Control+End moves the slider to its maximum
value (Chapter 9 of the OSF/Motif Style Guide).

Note: These keys provide a convenient mechanism for setting a scale to its
minimum or maximum value using the keyboard.

20.8.13 ScrollBar

7-48: [Required]
Within a scroll bar, the application uses BSelect Press in an arrow button to move
the slider one increment in the direction of the side of the slider on which the button
was pressed and autorepeats until the button is released (Chapter 9 of the
OSF/Motif Style Guide).

Note: BSelect Press provides a consistent means of adjusting a scroll bar using
the mouse.

X/Open Common Desktop Environment (XCDE) Services and Applications 435



Controls, Groups and Models Application Style Checklist

7-49: [Required]
In the trough of a scroll bar, BSelect Press moves the slider one page in the direction
of the side of the slider on which the trough was pressed and autorepeats until the
button is released (Chapter 9 of the OSF/Motif Style Guide).

Note: BSelect Press provides a consistent means of adjusting a scroll bar using
the mouse.

7-50: [Required]
Within a scroll-bar slider, BSelect Motion causes the slider to track the position of
the pointer. In a vertical scroll bar, the slider tracks the vertical position of the
pointer. In a horizontal scroll bar, the slider tracks the horizontal position of the
pointer (Chapter 9 of the OSF/Motif Style Guide).

Note: BSelect Motion offers a convenient way to adjust a scroll bar precisely
using the mouse.

7-51: [Required]
Within a scroll-bar slider or trough, BTransfer Motion positions the slider to the
point of the button press and then causes the slider to track the position of the
pointer. In a vertical scroll bar, the slider tracks the vertical position of the pointer.
In a horizontal scroll bar, the slider tracks the horizontal position of the pointer
(Chapter 9 of the OSF/Motif Style Guide).

Note: BTransfer Motion offers another convenient way to adjust a scroll bar
precisely using the mouse.

7-52: [Required]
If a mouse-based scrolling action is in progress, pressing the Cancel key cancels the
scrolling action and returns the slider to its position prior to the start of the scrolling
operation (Chapter 9 of the OSF/Motif Style Guide).

Note: The Cancel key provides a consistent way for the user to cancel a mouse-
based scrolling action.

7-53: [Required]
In a vertical scroll bar, the Up Arrow and Down Arrow keys move the slider one
increment in the specified direction. In a horizontal scroll bar, the Left Arrow and
Right Arrow keys move the slider one increment in the specified direction (Chapter
9 of the OSF/Motif Style Guide).

Note: The arrow keys provide a uniform means of adjusting a scroll bar using the
keyboard.

7-54: [Required]
In a vertical scroll bar, Control+Up Arrow and Control+Down Arrow move the
slider one large increment in the specified direction. Control+Left Arrow and
Control+Right Arrow move the slider one large increment in the specified direction
(Chapter 9 of the OSF/Motif Style Guide).

Note: These keys provide a convenient way of adjusting a scroll bar quickly
using the keyboard.

436 X/Open CAE Specification



Application Style Checklist Controls, Groups and Models

7-55: [Required]
The application uses the Page Up and Page Down keys to move the slider in a
vertical scroll bar one page in the specified direction. The Page Left key (or
Control+Page Up) and the Page Right key (or Control+Page Down) move the slider
in a horizontal scroll bar one page in the specified direction (Chapter 9 of the
OSF/Motif Style Guide).

Note: These keys allow for the convenient movement of the slider in a scroll bar
using the keyboard.

7-56: [Required]
The application uses the Begin key or Control+Begin to move the slider to the
minimum value. The End key or Control+End moves the slider to the maximum
value (Chapter 9).

Note: These keys offer a convenient mechanism for setting a scroll bar to its
minimum or maximum value using the keyboard.

20.8.14 SelectionBox

7-57: [Required]
If the application uses a selection box, it is composed of at least a text component
for the selected alternative and a list component above the text component for
presenting alternatives. The list uses either the single selection or browse selection
model. Selecting an element from the list places the selected element in the text
component (Chapter 9 of the OSF/Motif Style Guide).

Note: This requirement ensures the consistent appearance and operation of a
selection box across applications.

7-58: [Required]
The list navigation actions Up Arrow, Down Arrow, Control+Begin and
Control+End are available from the text component for moving the cursored
element within the list and thus changing the contents of the text (Chapter 9 of the
OSF/Motif Style Guide).

Note: These actions provide a convenient way to choose an element from the list
while focus remains in the text component.

20.8.15 Spin Box

hw: [Required]
The application presents the items as a ring of items that wrap. For example, if a
user is at the largest number and presses the up arrow, the smallest number is
displayed and vice versa so that the user can spin through all the items by pressing
the same arrow.

hx: [Required]
The application moves through the items in a spin box as shown in the following
table.

X/Open Common Desktop Environment (XCDE) Services and Applications 437



Controls, Groups and Models Application Style Checklist

Spin Box Movements
Movement Keys Example
Toward the
beginning of the
list

left arrow,
down arrow

Chronological: If Tuesday is displayed, move to
Monday when the user presses the left or down
arrow.

Magnitude: If 15 is displayed, move to 14 when
the user presses the left or down arrow.

Toward the end
of the list

right arrow, up
arrow

Chronological: If Tuesday is displayed, move to
Wednesday when the user presses the right or
up arrow.

Magnitude: If 15 is displayed, move to 16 when
the user presses the right or up arrow.

hy: [Recommended]
Values can be set using the arrow buttons or through keyboard input. Values
should be evaluated immediately upon entry. If a value is entered that is already in
the list, scroll to the position of that entry in the list.

hz: [Recommended]
If entry of non-listed items is permitted, the application should use the following
behavior. When a new value is entered, it should scroll the list to the position
appropriate for the new entry. If the user scrolls off the new entry, it should scroll
to the next appropriate value in the list and the keyboard-entered value is lost.

ia: [Recommended]
On entry of an invalid value, an auditory warning and error message should be
provided.

20.8.16 Text

7-59: [Required]
In a multi-line text component, the Up Arrow key moves the location cursor up one
line and the Down Arrow key moves the location cursor down one line. In a
single-line text component, the Up Arrow key navigates upward to the previous
component and the Down Arrow key navigates downward to the next component,
if the text component is designed to act like a basic control (Chapter 9 of the
OSF/Motif Style Guide).

Note: The up and down arrow keys provide a uniform means of navigation
within text components.

7-60: [Required]
The Left Arrow key moves the location cursor left one character and the Right
Arrow key moves the location cursor right one character (Chapter 9 of the
OSF/Motif Style Guide).

Note: The left and right arrow keys offer a consistent way of navigating within
text components.

7-61: [Required]
In a text component used generally to hold multiple words, Control+Right Arrow
moves the location cursor to the right by a word and Control+Left Arrow moves the
location cursor to the left by a word (Chapter 9 of the OSF/Motif Style Guide).

438 X/Open CAE Specification



Application Style Checklist Controls, Groups and Models

Note: Control+Right Arrow and Control+Left Arrow provide a uniform way of
navigating by words in a text component. Moving right by a word means
that the location cursor is placed before the first character that is not a
space, tab or newline character after the next space, tab or newline.
Moving left by a word means that the location cursor is placed after the
first space, tab or newline character preceding the first previous character
that is not a space, tab or newline.

7-62: [Required]
In a text component used generally to hold multiple words, the Begin key moves the
location cursor to the beginning of the line and the End key moves the location
cursor to the end of the line (Chapter 9 of the OSF/Motif Style Guide).

Note: These keys allow the user to move quickly to the beginning or end of a line
of text in a text component.

7-63: [Required]
In a multi-line text component, Control+Begin moves the location cursor to the
beginning of the file and Control+End moves the location cursor to the end of the
file (Chapter 9 of the OSF/Motif Style Guide).

Note: These keys permit the user to move quickly to the beginning or end of a
file in a text component.

7-64: [Required]
The application uses Spacebar or Shift+Spacebar to insert a space in a text
component. Modifying these with Control invokes the normal selection function
(Chapter 9 of the OSF/Motif Style Guide).

Note: This requirement ensures that selection is available from the keyboard in a
text component.

7-65: [Required]
Return in a multi-line text component inserts a carriage return. The Enter key or
Control+Return invokes the default action (Chapter 9 of the OSF/Motif Style
Guide).

Note: This requirement ensures that activation is available from the keyboard in
a text component.

7-66: [Required]
In a multi-line text component, Tab is used for tabbing. In a single-line text
component, Tab is used either for tabbing or to move to the next field (Chapter 9 of
the OSF/Motif Style Guide).

7-67: [Required]
If a text component supports replace mode, Insert toggles between insert mode and
replace mode.

By default, the component starts in insert mode, where the location cursor is
between two characters. In insert mode, typing a character inserts the character at
the position of the location cursor.

In replace mode, the location cursor is on a character. Typing a character replaces
the current character with that newly entered character and moves the location
cursor to the next character, selecting it (Chapter 9 of the OSF/Motif Style Guide).

Note: These requirements ensure the uniform operation of a text component
with a replace mode.

X/Open Common Desktop Environment (XCDE) Services and Applications 439



Controls, Groups and Models Application Style Checklist

7-68: [Required]
The application uses BSelect Click 2 to select text a word at a time (Chapter 9 of the
OSF/Motif Style Guide).

Note: Double-clicking with mouse button 1 provides a convenient mechanism
for selecting words in a text component.

20.8.17 Gauge

ib: [Required]
A gauge is similar to a scale except that a gauge is a display-only device with no
user interactions. The appearance of a gauge is similar to a scale, but the gauge
lacks a scale slider.

ic: [Optional]
Despite being a display-only device, a gauge should get keyboard focus so that the
user can access Help or Settings for that control.

20.9 Accessibility
id: [Recommended]

All application functions should be accessible from the keyboard.

ie: [Recommended]
Colours should not be hard coded (in other words, they should not be compiled into
the program and made unchangeable by the user).

if: [Recommended]
Graphic attributes, such as line, border and shadow, should not be hard coded.

ig: [Recommended]
Font sizes and styles should not be hard coded.

ih: [Recommended]
The application should use descriptive names for widgets.

Note: Such descriptive names for widgets using graphics instead of text (for
example, palette items and icons) allow screen reading software to provide
descriptive information to blind users.

ii: [Recommended]
Interactions should not depend upon the assumption that a user will hear an
audible notification.

ij: [Recommended]
Users should be be able to choose to receive cues as audio or visual information,
where appropriate.

ik: [Recommended]
The application should not overuse or rely exclusively on audible information.

il: [Recommended]
Users should be able to choose to configure the frequency and volume of audible
cues.

im: [Recommended]
Tear-off menus and user configurable menus for key application features should be
provided for users with language and cognitive disabilities.

440 X/Open CAE Specification



Application Style Checklist Accessibility

in: [Recommended]
Application key mappings should not conflict with existing system level key
mappings reserved for access features in the X Windows server as shown in the
following table.

Keyboard Mappings for Server-Level Access Features
Keyboard Mapping Reserved For
Five consecutive clicks of Shift key On/Off for StickyKeys
Shift key held down 8 seconds On/Off for SlowKeys and RepeatKeys
Six consecutive clicks of Control key On/Off for screen reader numeric keypad functions
Six consecutive clicks of Alt key Reserved for future access use

X/Open Common Desktop Environment (XCDE) Services and Applications 441



Application Style Checklist

442 X/Open CAE Specification



Index

<Dt/Editor.h>.........................................................182
<Dt/Help.h>..............................................................58
<Dt/HelpDialog.h> .................................................60
<Dt/HelpQuickD.h>...............................................61
<Dt/Saver.h> ............................................................28
<Dt/Session.h>.........................................................29
<Dt/Term.h>...........................................................265
<Dt/Wsm.h> .............................................................21
<dtactionaction>.....................................................330
<dtappaction>.........................................................328
<dtbuilderaction>...................................................309
<dtcalcaction>.........................................................338
<dtcalendaraction> ..................................................89
<dtfileaction> ..........................................................108
<dthelpaction>..........................................................64
<dticonaction> ........................................................198
<dtmailaction>........................................................100
<dtmanaction>..........................................................63
<dtprintinfoaction>................................................334
<dtsessionaction>.....................................................31
<dtstyleaction> .......................................................300
<dttermaction> .......................................................282
<dttextaction> .........................................................192
<dttrashaction>.......................................................109
action creation.........................................................329

actions...................................................................329
capabilities ...........................................................331

application building...............................................303
actions...................................................................308
capabilities ...........................................................310
command-line interfaces ..................................303

application integration ..........................................323
actions...................................................................327
command-line interfaces ..................................323

application style checklist
accessibility..........................................................440
application design..............................................393
component activation........................................384
controls .................................................................425
groups...................................................................425
input models .......................................................356
models ..................................................................425
navigation ............................................................359
selection................................................................368
window management .......................................388

calculator ..................................................................337

actions...................................................................337
capabilities ...........................................................339

calendar and appointment services......................75
calendar services

actions .....................................................................88
capabilities .............................................................94
command-line interfaces ....................................77
formats....................................................................90
functions.................................................................75
headers....................................................................77
messages.................................................................90

csa_x_process_updates( )........................................76
dtappintegrate.........................................................324
dtcm_admin...............................................................78
dtcm_delete................................................................81
dtcm_insert ................................................................83
dtcm_lookup..............................................................86
dtcodegen.................................................................304
DtCreateEditor( ) ....................................................142
DtCreateHelpDialog( ).............................................52
DtCreateHelpQuickDialog( ) .................................53
DtCreateTerm( ).......................................................242
DtEditor( ).................................................................126
DtEditorAppend( ) .................................................143
DtEditorAppendFromFile( ) .................................145
DtEditorChange( ) ..................................................146
DtEditorCheckForUnsavedChanges( ) ..............147
DtEditorClearSelection( ) ......................................148
DtEditorCopyToClipboard( ) ...............................149
DtEditorCutToClipboard( ) ..................................150
DtEditorDeleteSelection( ) ....................................151
DtEditorDeselect( ) .................................................152
DtEditorFind( ) ........................................................153
DtEditorFormat( ) ...................................................154
DtEditorGetContents( ) .........................................155
DtEditorGetInsertionPosition( ) ..........................157
DtEditorGetLastPosition( ) ...................................158
DtEditorGetSizeHints( ) ........................................159
DtEditorGoToLine( )...............................................160
DtEditorInsert( ) ......................................................161
DtEditorInsertFromFile( ) .....................................163
DtEditorInvokeFindChangeDialog( ).................164
DtEditorInvokeFormatDialog( ) ..........................165
DtEditorPasteFromClipboard( ) ..........................166
DtEditorReplace( ) ..................................................167
DtEditorReplaceFromFile( )..................................169

X/Open Common Desktop Environment (XCDE) Services and Applications 443



Index

DtEditorReset( ).......................................................171
DtEditorSaveContentsToFile( ) ............................172
DtEditorSelectAll( ) ................................................174
DtEditorSetContents( ) ..........................................175
DtEditorSetContentsFromFile( )..........................177
DtEditorSetInsertionPosition( ) ...........................178
DtEditorTraverseToEditor( ) .................................179
DtEditorUndoEdit( )...............................................180
DtHelpDialog( ).........................................................34
DtHelpQuickDialog( ) .............................................42
DtHelpQuickDialogGetChild( ).............................54
DtHelpReturnSelectedWidgetId( )........................55
DtHelpSetCatalogName( )......................................56
dtksh..........................................................................202
dtpad .........................................................................188
DtSaverGetWindows( ) ...........................................24
DtSessionRestorePath( ) ..........................................25
DtSessionSavePath( ) ...............................................26
dtterm........................................................................267
DtTerm( ) ..................................................................248
DtTermDisplaySend( ) ...........................................243
DtTermInitialize( ) ..................................................244
DtTermSubprocReap( )..........................................245
DtTermSubprocSend( ) ..........................................246
DtWsmAddCurrentWorkspaceCallback( ) ...........4
DtWsmAddWorkspaceFunctions( ) ........................5
DtWsmAddWorkspaceModifiedCallback( ) .........6
DtWsmFreeWorkspaceInfo( ) ...................................8
DtWsmGetCurrentBackdropWindow( )................9
DtWsmGetCurrentWorkspace( ) ...........................10
DtWsmGetWorkspaceInfo( ) ..................................11
DtWsmGetWorkspaceList( )...................................13
DtWsmGetWorkspacesOccupied( ) ......................14
DtWsmOccupyAllWorkspaces( ) ..........................15
DtWsmRemoveWorkspaceCallback( ) .................16
DtWsmRemoveWorkspaceFunctions( ) ...............17
DtWsmSetCurrentWorkspace( ) ............................18
DtWsmSetWorkspacesOccupied( ) .......................19
file management .....................................................107

actions...................................................................107
capabilities ...........................................................110
messages ..............................................................110

font conventions .....................................................343
front panel................................................................113

capabilities ...........................................................121
formats..................................................................113

GUI scripting ...........................................................201
help services ..............................................................33

actions .....................................................................62
capabilities .............................................................72
formats....................................................................65

functions.................................................................51
headers....................................................................57
widgets ...................................................................33

icon conventions.....................................................353
icon editing ..............................................................197

actions...................................................................197
capabilities ...........................................................199
messages ..............................................................199

mail services ..............................................................99
actions .....................................................................99
capabilities ...........................................................102
formats..................................................................101
messages ..............................................................101

print queue...............................................................333
actions...................................................................333
capabilities ...........................................................335

scripting....................................................................201
command-line interface ....................................201

session management................................................23
actions .....................................................................30
capabilities .............................................................32
functions.................................................................23
headers....................................................................27

style management ..................................................299
actions...................................................................299
capabilities ...........................................................301

style requirements..................................................355
terminal emulation.................................................241

actions...................................................................281
capabilities ...........................................................298
command-line interfaces ..................................266
formats..................................................................283
functions...............................................................241
headers..................................................................264
widgets .................................................................247

text editing ...............................................................125
actions...................................................................191
capabilities ...........................................................194
command-line interfaces ..................................187
functions...............................................................141
headers..................................................................181
messages ..............................................................193
widget classes .....................................................125

window manager features ........................................1
workspace management ...........................................3

functions...................................................................3
headers....................................................................20

XCDE applications
style requirements..............................................355

444 X/Open CAE Specification


