
X/Open CAE Specification

API to Directory Services (XDS), Issue 2

X/Open Company Ltd.

 March 1994, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

API to Directory Services (XDS), Issue 2

ISBN: 1-85912-007-5
X/Open Document Number: C317

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.co.uk

ii X/Open CAE Specification (1994)

API to Directory Services (XDS), Issue 2 iii

ii X/Open CAE Specification (1994)

Contents

Chapter 1 Introduction... 1
 1.1 Overview .. 1
 1.2 Format of the Specification ... 2
 1.3 The Directory ... 3
 1.4 Object Management ... 5
 1.4.1 Syntax... 5
 1.4.2 Value ... 5
 1.4.3 OM Attribute .. 5
 1.4.4 OM Object ... 6
 1.4.5 OM Class ... 6
 1.4.6 Package .. 7
 1.4.7 Package Closure ... 7
 1.4.8 Workspace ... 7
 1.4.9 Descriptor.. 8
 1.4.10 Use of Objects ... 8
 1.5 Mandatory and Optional Features .. 10
 1.6 Terminology... 11
 1.6.1 Abbreviations ... 11
 1.7 Future Directions .. 12

Chapter 2 C Language Binding... 13
 2.1 Introduction ... 13
 2.2 C Naming Conventions... 14
 2.3 Use and Implementation of Interfaces ... 16
 2.4 Function Return Values ... 16

Chapter 3 Description .. 17
 3.1 Introduction ... 17
 3.2 Services ... 17
 3.2.1 Negotiation Sequence ... 18
 3.3 Session... 19
 3.4 Context.. 19
 3.5 Function Arguments .. 20
 3.5.1 Attribute and AVA... 20
 3.5.2 Entry Information Selection... 21
 3.5.3 Name .. 21
 3.6 Function Results.. 21
 3.6.1 Invoke-ID... 22
 3.6.2 Result.. 22
 3.6.3 Status .. 22
 3.7 Synchronous and Asynchronous Operations 23
 3.8 Security ... 24

API to Directory Services (XDS), Issue 2 iii

Contents

 3.9 Other Features of the Interface... 24
 3.9.1 Automatic Connection Management .. 24
 3.9.2 Automatic Continuation and Referral Handling.............................. 25

Chapter 4 Interface Functions.. 27
 abandon() ... 29
 add-entry() ... 30
 bind() .. 32
 compare().. 33
 initialize ()... 35
 list() .. 36
 modify-entry().. 38
 modify-RDN() ... 40
 read()... 42
 receive-result() ... 44
 remove-entry() ... 46
 search() ... 47
 shutdown() ... 49
 unbind().. 50
 version() ... 51

Chapter 5 Interface Class Definitions... 53
 5.1 Introduction ... 53
 5.2 Class Hierarchy... 54
 5.3 Access-Point... 55
 5.4 Address... 55
 5.5 Attribute.. 56
 5.6 Attribute-List ... 56
 5.7 AVA.. 57
 5.8 Common-Results .. 57
 5.9 Compare-Result .. 58
 5.10 Context.. 59
 5.11 Continuation-Reference .. 62
 5.12 DS-DN... 63
 5.13 DS-RDN .. 63
 5.14 Entry-Information... 64
 5.15 Entry-Information-Selection... 65
 5.16 Entry-Modification ... 66
 5.17 Entry-Modification-List ... 66
 5.18 Extension .. 67
 5.19 Filter... 68
 5.20 Filter-Item... 69
 5.21 List-Info... 71
 5.22 List-Info-Item... 72
 5.23 List-Result... 73
 5.24 Name ... 74
 5.25 Operation-Progress... 75
 5.26 Partial-Outcome-Qualifier .. 76

iv X/Open CAE Specification (1994)

Contents

 5.27 Presentation-Address... 77
 5.28 Read-Result .. 77
 5.29 Relative-Name... 78
 5.30 Search-Information... 78
 5.31 Search-Result ... 79
 5.32 Session... 80

Chapter 6 Errors.. 81
 6.1 Introduction ... 81
 6.2 OM Class Hierarchy... 82
 6.3 Error... 83
 6.4 Abandon_failed... 85
 6.5 Attribute-Error... 85
 6.6 Attribute-Problem... 86
 6.7 Communications-Error.. 87
 6.8 Library-Error.. 88
 6.9 Name-Error .. 90
 6.10 Referral.. 91
 6.11 Security-Error .. 91
 6.12 Service-Error .. 92
 6.13 System-Error.. 93
 6.14 Update-Error.. 94

Chapter 7 Directory Class Definitions ... 95
 7.1 Introduction ... 95
 7.2 Selected Attribute Types ... 97
 7.3 Selected Object Classes.. 105
 7.4 OM Class Hierarchy... 107
 7.5 Algorithm-Identifier... 108
 7.6 Certificate ... 109
 7.7 Certificate-List ... 110
 7.8 Certificate-Pair... 110
 7.9 Certificate-Sublist ... 111
 7.10 Certificates.. 111
 7.11 Cross-Certificates.. 112
 7.12 Facsimile-Telephone-Number.. 112
 7.13 Forward-Certification-Path... 113
 7.14 DL-Submit-Permission .. 114
 7.15 Postal-Address... 115
 7.16 Search-Criterion .. 116
 7.17 Search-Guide.. 117
 7.18 Signature... 117
 7.19 Teletex-Terminal-Identifier ... 118
 7.20 Telex-Number.. 118

API to Directory Services (XDS), Issue 2 v

Contents

Chapter 8 Headers... 119
 8.1 Introduction ... 119
 8.2 <xds.h>.. 119
 8.3 <xdsbdcp.h> .. 129
 8.4 <xdssap.h> ... 133
 8.5 <xdsmdup.h> .. 136

Appendix A Programming Examples ... 139
 A.1 Introduction ... 139
 A.2 Synchronous Directory Example... 139
 A.3 Asynchronous Directory Example.. 144
 A.4 Error Handling Module... 149

Appendix B Differences from Related IEEE Standard................................. 151
 B.1 DS_E_BAD_CLASS in Service Call Definitions.................................... 151
 B.2 Correspondance of C Identifier Usage ... 151
 B.3 DL-Submit-Permission Member-of-Group Clarification 151
 B.4 Numeric Values of Symbolic Constants .. 152
 B.5 Use of errno.. 152
 B.6 Internationalisation .. 153

 Glossary ... 155

 Index... 163

List of Figures

1-1 Example Directory Distinguished Name.. 3
1-2 Overview of Directory Components ... 3

List of Tables

2-1 C Naming Conventions.. 14
3-1 Interface Functions .. 17
5-1 OM Attributes of an Access-Point.. 55
5-2 OM Attributes of an Attribute .. 56
5-3 OM Attributes of an Attribute-List .. 56
5-4 OM Attributes of a Common-Results ... 57
5-5 OM Attributes of a Compare-Result ... 58
5-6 OM Attributes of a Context ... 59
5-7 OM Attributes of a Continuation-Reference.. 62
5-8 OM Attributes of a DS-DN .. 63
5-9 OM Attributes of an RDN.. 63
5-10 OM Attributes of an Entry-Info .. 64
5-11 OM Attributes of an Entry-Info-Selection .. 65
5-12 OM Attributes of an Entry-Mod... 66
5-13 OM Attributes of an Entry-Modification-List.. 66
5-14 OM Attributes of an Extension ... 67

vi X/Open CAE Specification (1994)

Contents

5-15 OM Attributes of a Filter .. 68
5-16 OM Attributes of a Filter-Item .. 69
5-17 OM Attributes of a List-Info.. 71
5-18 OM Attributes of a List-Info-Item .. 72
5-19 Attributes of a List-Result .. 73
5-20 OM Attributes of an Operation-Progress ... 75
5-21 OM Attributes of a Partial-Outcome-Qual... 76
5-22 OM Attributes of a Presentation-Address.. 77
5-23 OM Attributes of a Read-Result ... 77
5-24 OM Attributes of a Search-Info... 78
5-25 OM Attributes of a Search-Result .. 79
5-26 OM Attributes of a Session .. 80
6-1 OM Attributes of an Error.. 83
6-2 OM Attributes of an Attribute-Error ... 85
6-3 OM Attributes of an Attribute-Problem ... 86
6-4 OM Attributes of a Name-Error ... 90
7-1 Object Identifiers for Selected Attribute Types 98
7-2 Representation of Values for Selected Attribute Types 99
7-3 Object Identifiers for Selected Object Classes.. 106
7-4 OM Attributes of an Algorithm-Identifier.. 108
7-5 OM Attributes of a Certificate... 109
7-6 OM Attributes of a Certificate-List .. 110
7-7 OM Attributes of a Certificate-Pair.. 110
7-8 OM Attributes of a Cert-Sublist.. 111
7-9 OM Attributes of a Certificate... 111
7-10 OM Attributes of Cross-Certificates .. 112
7-11 OM Attributes of a Facsimile-Telephone-Number................................. 112
7-12 OM Attributes of a Forward-Certification-Path...................................... 113
7-13 OM Attributes of DL-Submit-Permission... 114
7-14 OM Attributes of a Postal-Address.. 115
7-15 OM Attributes of a Search-Criterion ... 116
7-16 OM Attributes of a Search-Guide... 117
7-17 OM Attributes of a Signature .. 117
7-18 OM Attributes of a Teletex-Term-Ident... 118
7-19 OM Attributes of a Telex-Number ... 118

API to Directory Services (XDS), Issue 2 vii

Contents

viii X/Open CAE Specification (1994)

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Developers who base their products on a current CAE specification can be sure that either
the current specification or an upwards-compatible version of it will be referenced by a
future X/Open brand (if not referenced already), and that a variety of compatible, X/Open-
branded systems capable of hosting their products will be available, either immediately or in
the near future.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

API to Directory Services (XDS), Issue 2 ix

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

x X/Open CAE Specification (1994)

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:

request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.

This Document

This document is a CAE Specification (see above). It defines the application programming
interface (API) to X/Open Directory Services. This interface is designed to offer services that are
consistent with, but not limited to, the 1988 CCITT X.500-Series of Recommendations and the
ISO 9594 Standard.

This Issue 2 of the XDS CAE Specification includes revisions to align with the IEEE Directory
Services group of standards that themselves are based on the previous version of this X/Open
specification.

All new implementation work by API providers should be based on this Issue 2. The previous
specification will be retained by X/Open for only so long as branding is available for products
based on it.

This is one of several specifications that X/Open originally developed in collaboration with the
X.400 API Association. The other documents are XOM, X.400, XMS and XEDI API specifications,
and a Guide to Selected X.400 and Directory Services APIs.

The XOM and X.400 API specifications have similarly served as bases for corresponding IEEE
standards. X/Open has now also revised the XOM and X.400 specifications into Issue 2
publications, to align them with the corresponding IEEE Standards.

Structure

This document is organised as follows:

• Chapter 1 identifies the scope and purpose of this API, gives a brief introduction to Directory
concepts, and introduces Object Management, which is a data-handling API used as part of
this interface.

• Chapter 2 describes the C language binding provided in this document.

• Chapter 3 provides a general description of the interface.

API to Directory Services (XDS), Issue 2 xi

Preface

• Chapter 4 specifies the interface functions.

• Chapter 5 defines the OM classes that constitute the Directory Service (DS) package.

• Chapter 6 defines the Errors that can arise in the use of the interface, and the method used to
report them, for the DS package.

• Chapter 7 defines directory class definitions for three further packages:

— the Basic Directory Contents Package (BDCP)

— the Strong Authentication Package (SAP)

— the MHS (Message Handling System) Directory User Package (MDUP).

• Chapter 8 sets out the symbols used in the header files for the DS, BDCP, SAP and MDUP
packages.

• Appendix A provides some programming examples.

• Appendix B identifies the few divergences that exist between the IEEE Directory Services
Standard and this X/Open API to Directory Services (XDS).

A glossary and index are provided.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members, and language-independent names.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— command operands, command option-arguments or variable names, for example,
substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name(). Names without parentheses are C external
variables, C function family names, utility names, command operands or command
option-arguments.

• Roman font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

• The notation [EABCD] is used to identify a return value ABCD, including if this is an an error
value.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [] , are part of the syntax and do not indicate optional
items.

xii X/Open CAE Specification (1994)

Preface

• For a more detailed description of the C language binding font usage, see Chapter 2.

API to Directory Services (XDS), Issue 2 xiii

Trade Marks

X/OpenTM and the ‘‘X’’ device are trade marks of X/Open Company Ltd.

xiv X/Open CAE Specification (1994)

Referenced Documents

The following documents are referenced in this specification:

ANSI-C
Information Processing: Programming Language C, ISO Draft International Standard
DIS9899 (also known as ANSI C, American National Standard X3.159-1989)

ASN.1
Specification of Abstract Syntax Notation One (ASN.1), ISO 8824 (including Addendum 1),
CCITT X.208

BER
ISO/IEC 8825:1990 (ITU-T Recommendation X.209 (1988)), Information Technology —
Open Systems Interconnection — Specification of Basic Encoding Rules for Abstract Syntax
Notation One (ASN.1).

IEEE 1224.2-1993
IEEE 1224.2-1993: IEEE Standard for Information Technology - Open Systems
Interconnection (OSI) Directory Services - Application Programming Interface (API)
[Language Independent], ISBN 1-55937- - .

IEEE 1327.2-1993
IEEE 1327.2-1003: IEEE Standard for Information Technology - Open Systems
Interconnection (OSI) Directory Services C Language Interfaces - Binding for Application
Programming Interface (API), ISBN 1-55937- - .

Fascicle VII.3
Fascicle VII.3, Terminal Equipment and Protocols for Telematic Services, October 1984

ISO 9594-1
Information Technology - Open Systems Interconnection - The Directory: Overview of
Concepts, Models and Services, ISO 9594-1, CCITT X.500

ISO 9594-2
Information Technology - Open Systems Interconnection - The Directory: Models, ISO
9594-2, CCITT X.501

ISO 9594-3
Information Technology - Open Systems Interconnection - The Directory: Abstract Service
Definition, ISO 9594-3, CCITT X.511

ISO 9594-6
Information Technology - Open Systems Interconnection - The Directory: Selected Attribute
Types, ISO 9594-6, CCITT X.520

ISO 9594-7
Information Technology - Open Systems Interconnection - The Directory: Selected Object
Classes, ISO 9594-7, CCITT X.521

ISO 9594-8
Information Technology - Open Systems Interconnection - The Directory: Authentication
Framework, ISO 9594-8, CCITT X.509

API to Directory Services (XDS), Issue 2 xv

Referenced Documents

ISO 8824
ISO 8824: 1990 (CCITT X.208: 1988), Information Technology - Open Systems
Interconnection - Specification of Abstract Syntax Notation One (ASN.1),

X.400
X/Open CAE Specification, February 1994, API to Electronic Mail (X.400), Issue 2,
(ISBN: 1-85912-009-1, X/Open document C316).

XOM
X/Open CAE Specification, February 1994, OSI-Abstract-Data Manipulation API (XOM),
Issue 2, ISBN: 1-85912-008-3, X/Open document C315.

XPG4
X/Open Systems and Branded Products: XPG4, July 1992 (ISBN: 1-872630-52-9, X924).

xvi X/Open CAE Specification (1994)

Chapter 1

Introduction

Note: Many technical terms, such as object and attribute , are used by both object management
and the directory. The meanings ascribed to these terms are often similar but different.
(See Section 1.4) and the Glossary provided at the end of this document.

1.1 Overview
The X/Open Directory Services Application Program Interface (abbreviated XDS) defines an
Application Program Interface (API) to directory services in the X/Open Common Applications
Environment (CAE) defined in the X/Open Portability Guide (see Referenced Documents). It is
referred to as the interface throughout this specification.

This interface is designed to offer services that are consistent with, but not limited to, the 19881

CCITT X.500-Series of Recommendations and the ISO 9594 Standard. The CCITT
Recommendations and the ISO Standard were developed in close collaboration and are
technically aligned. They are referred to as the standards throughout this specification. Access
to other directory services through the API is not prohibited, but has not been explicitly
considered.

The interface is designed for operational interactions with a directory, rather than for
management interactions such as knowledge management or schema management. Also, the
security features of the standards are not generally visible in the interface, in order to permit
flexibility in security policies.

The directory is a distributed collection of information, which programs can access through the
interface in order to make queries or updates. A brief introduction to directory concepts is given
in Section 1.3. Section 1.4 gives an overview of object management, which is a data-handling
API used as a part of the interface. Section 1.5 on page 10 describes the optional features of this
specification, and finally Section 1.6 gives a list of abbreviations used. In all cases, the reader
should refer to the standards or to the referenced XOM Specification (see Referenced
Documents) for further details.

1. It also takes account of some changes made in the 1992 version of these standards.

API to Directory Services (XDS), Issue 2 1

Format of the Specification Introduction

1.2 Format of the Specification
This specification describes a programming language-independent interface to the directory
together with a specific C language binding of that interface. Several typographic conventions
are used to identify particular items. The general conventions are described in the Preface, while
the C language binding conventions are described in Chapter 2.

2 X/Open CAE Specification (1994)

Introduction The Directory

1.3 The Directory
The interface is based on a model of the directory that is described in the standards, and it
provides facilities that closely follow those described there.

The directory is a collection of open systems that cooperate to hold information about objects in
the real world. Directory users, including people and programs, can read or modify this
information. The information is typically used to facilitate communication between objects such
as people, application programs, terminals and so on.

The directory holds information in the Directory Information Base (DIB), with an entry for each
object. The entries are made up of attributes, which each have a type and one or more values,
describing things such as names, telephone numbers and addresses as required.

root

CountryName = US

OrganizationName = Acme Pepper Co

OrganizationalUnitName = Research

CommonName = Peter Piper

RDN is < CommonName = Peter Piper >

DistinguishedName is < CountryName = US,
OrganizationName = Acme Pepper Co,
OrganizationalUnitName = Research,

CommonName = Peter Piper >

Figure 1-1 Example Directory Distinguished Name

The DIB is structured into a tree, called the Directory Information Tree (DIT), with the entries at the
nodes of the tree. The position of each entry in the tree is fixed by its distinguished name, which is
formed by appending its own relative distinguished name (RDN) to the distinguished name of the
immediately superior entry in the tree. The root of the tree has an empty name. The RDN of an
entry is some selection of its attribute values, chosen to identify it uniquely. Clearly, the RDN of
each entry must be different from all other immediate subordinates of its immediate superior, so
that its name is unambiguous. Names are discussed in Section 3.5.3 on page 21.

Further structure is provided in the directory by constraining the attributes of entries at each
particular part of the tree. This is done by means of Object Classes, which contain lists of
mandatory and optional attributes, and by structure rules, which set down the permissible
object class of entries at every place in the tree. Each entry has an attribute of type Object Class,
whose values are the object classes to which it belongs.

API to Directory Services (XDS), Issue 2 3

The Directory Introduction

user
program DUA

The Directory

DSA
1

DSA
2

DSA
3

.

DSP
.

DS interface

Access
Point

DAP

Figure 1-2 Overview of Directory Components

The directory is defined in terms of Directory System Agents (DSAs) and Directory User Agents
(DUAs). Loosely, the DSAs correspond to individual computers each holding a part of the DIB
containing the entries for a group of objects, while the DUAs represent the user in interactions
with the DSAs. The standards define the service used by DUAs to query and change the
directory contents; it is called the Directory Service or the Abstract Service. This defines the
operations such as Read and Modify-Entry. A Directory Access Protocol (DAP) is also defined,
which a DUA can use to obtain this service from any DSA.

The DS interface defined in this specification is the interface between a DUA and an application
program (which is the user), by which the application program can access the Directory Service.

Where a DSA cannot provide service to a DUA because the required information is held
elsewhere, the DSA may also interact with other DSAs in order to provide the service. The
standards set out how this can be done using a Directory System Protocol (DSP). The DSA may
instead choose just to inform the DUA, or the calling DSA, where the required information can
be found. This is called a referral and may occur because of the user’s preferences or the DSA’s
circumstances.

4 X/Open CAE Specification (1994)

Introduction Object Management

1.4 Object Management
The interface makes use of facilities provided by the OSI Object Management API (OM API).
These facilities are fully described in the referenced XOM Specification, and are introduced
briefly below.

Throughout this document, care is taken to distinguish between OM classes and directory
classes, and between OM attributes and directory attributes. In both cases, the former is a
construct of the object management interface, while the latter is a construct of the directory
service to which the interface provides access. The unqualified term attribute denotes the
directory construct, while the phrase OM attribute denotes the object management construct.
The phrase Object Class denotes the directory construct, while the phrase OM class denotes the
object management construct.

The subsections below introduce the various concepts that are used in object management,
starting with the smallest.

1.4.1 Syntax

A syntax is the basis for the classification and representation of values in object management.
Examples of syntaxes are Boolean, Integer, String(Octet) and Object.

Syntaxes are defined in the Object Management Specification, and nowhere else, and are
themselves represented by integers.

1.4.2 Value

A value is a single datum, or piece of information. Each value belongs to exactly one syntax by
which its representation is defined. A value may be as simple as a Boolean value (for example,
true), or as complicated as an entire OM object (for example, a Message).

1.4.3 OM Attribute

An OM attribute type is an arbitrary category into which a specification places some values.

OM attribute types are represented by integers, which are assigned in individual service
specifications, and which are only meaningful within a particular package (see Section 1.4.6 on
page 7.

An OM attribute is an OM attribute type, together with an ordered sequence of one or more
values. OM attributes can occur only as parts of an OM object and the OM attribute type, and
values are constrained by the OM class specification of that OM object (see Section 1.4.5 on page
6.

The OM attribute type can be thought of as the name of the OM attribute.

There is no general representation for an OM attribute, but a descriptor represents an OM
attribute type together with a single syntax and value (see Section 1.4.9 on page 8).

API to Directory Services (XDS), Issue 2 5

Object Management Introduction

1.4.4 OM Object

An OM object is a collection of OM attributes, the values of which can be accessed by means of
functions. The particular OM attribute types that may occur in an OM object are determined by
the OM class of the OM object (see Section 1.4.5), as are the constraints on those OM attributes.
The OM class of an OM object is determined when the OM object is created, and cannot be
changed.

OM objects are represented in the interface by a handle, or opaque pointer. The internal
representation of an OM object is not specified, though there is a defined data structure, called a
descriptor list, which can also be used directly in a program (see Section 1.4.9 on page 8).

1.4.5 OM Class

An OM class is a category of OM object, set out in a specification. It determines the OM
attributes that may be present in the OM object, and details the constraints on those OM
attributes.

Each OM object belongs directly to exactly one OM class, and is called an instance of that OM
class.

The OM classes of OM objects form a tree; each OM class has exactly one immediate superclass
(except for the OM class Object, which is the root of the tree), and each OM class may have an
arbitrary number of subclasses. The tree structure is also known as the OM class hierarchy. The
importance of the OM class hierarchy stems from the inheritance property discussed below.

Each OM class of OM object has a fixed list of OM attribute types, and every OM object that is an
instance of the OM class has only these OM attributes (some OM attributes may not be present
in particular instances, as permitted by the constraints in the OM class specification). The list of
OM attribute types that may appear in instances of an OM class has two parts. Each OM class
inherits all the OM attribute types that are permitted in its immediate superclass as legal OM
attribute types. There is also a list of additional OM attribute types that are permitted in the OM
class. Any subclasses of this OM class will inherit all of these OM attribute types, from both
lists.

Because of inheritance, an OM object is also said to be an instance of all its superclasses. It is
required that the OM class constraints of each superclass are met, considering just those OM
attribute types that are permitted in the superclass.

The OM class hierarchy and the list of OM attribute types for each OM class are determined
solely by the interface specification and cannot be changed by a program.

The OM class specification may impose arbitrary constraints on the OM attributes. The most
common of these are tabulated in the OM class specification and are marked with a * below.
Frequently encountered cases include constraints as follows:

• to restrict the syntaxes permitted for values of an OM attribute (often to a single syntax) *

• to restrict the particular values to a subset of those permitted by the syntax

• to require one or more values of the OM attribute (a mandatory OM attribute) *

• to require either zero or more values of the OM attribute (an optional OM attribute) *

• to permit multiple values, perhaps up to some limit known as the value number constraint *

• to restrict the length of strings, up to a limit known as the value length constraint *.

Note: The constraint is expressed in terms of bits, octets or characters according to the
kind of string. However, the lengths of strings are stated everywhere else in terms

6 X/Open CAE Specification (1994)

Introduction Object Management

of the number of elements, which are either bits or octets. The number of elements in
a string with multibyte characters (for example, T.61 Teletext) may thus exceed the
value length constraint. (In C, an array with more bytes will be needed to store it.)

The constraints may affect multiple OM attributes at once, for example a rule that only one of
several OM attributes may be present in any OM object.

Every OM object includes the OM class to which it belongs as the single value of the mandatory
OM attribute type Class, which cannot be modified. The value of this OM attribute is an OSI
Object Identifier, which is assigned to the OM class by the specification.

An abstract class is an OM class of which instances are forbidden. It may be defined as a
superclass in order to share OM attributes between OM classes, or simply to ensure that the OM
class hierarchy is convenient for the interface definition.

1.4.6 Package

A Package is a set of OM classes that are grouped together by the specification, because they are
functionally related.

A package is identified by an OSI Object-Identifier, which is assigned to the package by the
specification. Thus the identity of each package is completely unique.

1.4.7 Package Closure

An OM class may be defined to have an OM attribute whose value is an OM object of an OM
class defined in some other package. This is done to share definitions and to avoid duplication.
For example, the Directory Contents package defined in Chapter 7 defines an OM class called
Teletex-Terminal-Identifier. This OM class has an OM attribute whose value is an OM object of
OM class Teletex-NBPs, that is defined in the Message Transfer package in the referenced X.400
Specification. An OM class may also be a subclass of an OM class in another package. These
relationships between packages lead to the concept of a Package-Closure.

A Package-Closure is the set of classes which need to be supported in order to be able to create all
possible instances of all classes defined in the package. (A formal definition is given in the
referenced XOM Specification.)

1.4.8 Workspace

Details of the representation of OM objects, and of the implementation of the functions that are
used to manipulate them, are not specified because they are not the concern of the application
programmer. However, the programmer sometimes needs to be aware of which
implementation is being used for a particular OM object.

The case of the OM class Teletex-NBPs was mentioned above. This OM class is used in both the
Message Transfer Service and in the Directory Service. If an application uses both services, and
the two services use different internal representations of OM objects (perhaps because they are
supplied by different vendors), then it is necessary for the application to specify which
implementation should create a Teletex-NBPs OM object. This is done by means of a
workspace.

A workspace is one or more Package-Closures, together with an implementation of the object
management functions that supports all the OM classes of OM objects in the Package-Closures.

The notion of a workspace also includes the storage used to represent OM objects and
management of that storage. The interested reader can refer to Chapter 5 of the referenced XOM
Specification for more details of how workspaces are implemented.

API to Directory Services (XDS), Issue 2 7

Object Management Introduction

The application must obtain a workspace that supports an OM class before it is able to create
any OM objects of that OM class. The workspaces are returned by functions in the appropriate
service. For example, DS-Initialize () returns a workspace that supports the Directory Service
package, whilst another function in another OSI service returns a workspace that supports
another package.

Some implementations may support additional packages in a workspace. For example, vendors
may provide OM classes for directory attribute types in the Basic Directory Contents and the
Strong Authentication Packages (DS-Version()) may be used to negotiate these packages into a
workspace obtained from DS-Initialize (). Another important case is where two or more services
are supported by the same implementation. In this case, the workspaces returned by DS-
Initialize () and MT-Open() (see the referenced X.400 Specification) are likely to have the same
implementation. The application need take no account of this, but may experience improved
performance.

1.4.9 Descriptor

A descriptor is a defined data structure that is used to represent an OM attribute type and a single
value. The structure has three components: a type, a syntax and a value.

A descriptor list is an ordered sequence of descriptors that is used to represent several OM
attribute types and values.

Where the list contains several descriptors with the same OM attribute type (representing a
multi-valued OM attribute), the order of the values in the OM attribute is the same as the order
in the list. Such descriptors will always be adjacent.

Where the list contains a descriptor representing the OM class, this must occur before any
others.

A public object is a descriptor list that contains all the OM attribute values of an OM object,
including the OM class. Public objects are used to simplify application programs by enabling the
use of static data structures instead of a sequence of OM function calls, as can be seen in
Appendix A.

A private object is an OM object created in a workspace using the object management functions or
the functions in an OSI service. The term is simply used for contrast with a public object.

1.4.10 Use of Objects

OM objects are used to represent the data collections used in the interface, such as directory entry
attributes and directory operation results. Refer to

• Interface Class Definitions - see Chapter 5

• Errors - see Chapter 6

• Directory Class Definitions - see Chapter 7

for the definition of these OM classes.

An important feature of the interface is that an instance of a subclass can be used wherever a
particular OM class is needed. This means both that the application can supply a subclass and
that the service can return a subclass. For example, the application can supply names in any
format that is defined as a subclass of the abstract class Name, and the Directory Service returns
all errors in subclasses of the abstract class Error.

8 X/Open CAE Specification (1994)

Introduction Object Management

Because the service may return a subclass of the specified OM class, applications should always
use the OM-Instance() function when checking the OM class of an OM object, rather than testing
the value of the Class OM attribute.

When the application supplies a subclass of the specified OM class as an argument, the service
will either recognise them as vendor extensions or will ignore all OM attribute types that are not
permitted in the specified OM class.

The application can generally supply either a public object or a private object as an argument of
the interface functions. There are exceptions such as the Context and Session arguments, which
must be private objects in the interests of efficiency. The interface will always return private
objects. The application can convert these into public objects by a call to OM-Get() if required.

Note: Note that public objects returned by OM-Get() are read-only and must not be modified
in any way.

API to Directory Services (XDS), Issue 2 9

Mandatory and Optional Features Introduction

1.5 Mandatory and Optional Features
The interface defines an Application Program Interface (API) that application programs can use
to access the functionality of the underlying directory service. The interface does not define or
imply any profile of that service.

Note that nothing in this specification requires that the implementation of the interface, or the
directory itself, actually make use of DAP, DSP or other parts of the model, as long as it provides
the defined service. Also, the scope of the directory to which an application has access is not
determined. It is entirely a local matter whether objects in other DSAs are accessible.

All the interface functions are mandatory, there are no optional ones.

Some OM attributes are optional; these are marked (Optional Functionality) in the OM class
definitions. They are:

• Asynchronous in a Context object (and consequent availability of asynchronous operations)

• File-Descriptor in a Session object.

Some items of behaviour of the interface are implementation-defined. These are:

• the maximum number of outstanding asynchronous operations

• whether an asynchronous function call returns before the operation is submitted to the
directory

• the text and language of error messages

• the provision, or not, of automatic connection management

• whether Abandon() issues an Abandon operation or not

• the OM classes permitted as values of the Name argument to interface functions.

The default values of several OM attributes in Context and Session OM objects are locally
administered.

This specification defines four packages; one of which is mandatory and three are optional. Use
of the optional packages is negotiated using the Version() function.

• The Directory Service package defined in Chapter 5, which also includes the errors defined in
Chapter 6, is mandatory.

• The Basic Directory Contents package defined in Chapter 7 is optional.

• The Strong Authentication package, also defined in Chapter 7, is optional.

• The MHS Directory User package, also defined in Chapter 7, is optional.

This specification does not mandate that any OM classes are encodable using OM-Encode() and
OM-Decode().

10 X/Open CAE Specification (1994)

Introduction Terminology

1.6 Terminology
The terms implementation-defined, may, should, undefined, unspecified and will are used in this
document with the meanings ascribed to them in the Glossary providfed at the end of this
document.

1.6.1 Abbreviations

API Application Program Interface

ASN.1 Abstract Syntax Notation One

AVA Attribute Value Assertion

BER Basic Encoding Rules

CA Certification Authority

CCITT International Telegraph and Telephone Consultative Committee

DAP Directory Access Protocol

DIB Directory Information Base

DIT Directory Information Tree

DMD Directory Management Domain

DN Distinguished Name

DS Directory Service

DSA Directory System Agent

DSP Directory System Protocol

DUA Directory User Agent

IA5 International Alphabet No. 5

ID Identifier

ISDN Integrated Services Digital Network

ISO International Organisation for Standardisation

NBP Non-Basic Parameter

MS Message Store

OM Object Management

OSI Open Systems Interconnection

RDN Relative Distinguished Name

ROSE Remote Operations Service Element

XDS X/Open Directory Services API.

XOM X/Open OSI-Abstract-Data Manipulation API

API to Directory Services (XDS), Issue 2 11

Future Directions Introduction

1.7 Future Directions
This Section notes a number of areas where there are likely to be future developments in the
interface.

• Future versions of this interface will provide access to the functionality specified in future
versions of the standards.

• It is likely that additional representations of names will be adopted as such representations
become widely accepted. In particular, it is likely that:

— a string representation of names will be included

— a technique for supplying names relative to a naming context will be added (abbreviated
names).

• Further standardisation of the OM representation of directory attributes is likely. This will
include the definition of new packages for additional attribute types and object classes, and
may also include a means to dynamically extend the set of recognised attribute types.

• The definition of portable provision of security features will proceed. This may affect future
versions of this interface, or may be provided by a separate interface.

• Future versions of the interface are expected to be compatible with this version.

12 X/Open CAE Specification (1994)

Chapter 2

C Language Binding

2.1 Introduction
This Chapter sets out certain characteristics of the C language binding to the interface. The
binding specifies C identifiers for all the elements of the interface, so that application programs
written in C can access the directory. These elements include function names, typedef names
and constants. All the C identifiers are mechanically derived from the language-independent
names as explained below. There is a list of the identifiers in Chapter 8. For ease of use, some of
these identifiers are defined in the specification alongside the language-independent name.

A Function() is indicated as shown.

A CONSTANT is in Roman font.

The names of [ERRORS] and other return codes are surrounded by square brackets.

The definitions of the C identifiers appear in five headers:

• <xom.h> contains definitions for the associated OM interface

• <xds.h> contains definitions for the Directory Service

• <xdsbdcp.h> contains definitions for the Basic Directory Contents Package attributes

• <xdssap.h> contains definitions for the Strong Authentication Package attributes

• <xdsmdup.h> contains definitions for the MHS Directory User Package attributes.

These header files are described in Chapter 8.

API to Directory Services (XDS), Issue 2 13

C Naming Conventions C Language Binding

2.2 C Naming Conventions
The interface uses part of the C public namespace for its facilities. All identifiers start with the
letters ds, DS or OMP, and more detail of the conventions used is given in the following table.
Note that the interface reserves all identifiers starting with the letters dsP for Private (that is,
internal) use by implementations of the interface. It also reserves all identifiers starting with the
letters dsX or DSX for vendor-specific extensions of the interface. Application programmers
should not use any identifier starting with these letters.

The Object Management API uses similar, though not identical, naming conventions, which are
described in the referenced XOM Specification. All its identifiers are prefixed by the letters OM
or om.

Item Prefix
reserved for implementors dsP
reserved for interface extensions dsX
reserved for interface extensions DSX
reserved for implementors OMP

<xds.h>
functions ds_
error problem values DS_E_
OM class names DS_C_
OM value length limits DS_VL_
OM value number limits DS_VN_
other constants DS_

<xdsbdcp.h> <xdssap.h> and <xdsmdup.h>
Attribute Type DS_A_
Object Class DS_O_

Table 2-1 C Naming Conventions

A complete list of all identifiers used (except those beginning dsP, dsX, DSX or OMP) is
given in Chapter 8. No implementation of the interface will use any other public identifiers. A
public identifier is any name except those reserved in Section 4.1.2.1 of the ISO C Standard (see the
referenced ANSI C document), and the public namespace is the set of all possible public
identifiers.

The C identifiers are derived from the language-independent names used throughout this
specification by a purely mechanical process which depends on the kind of name.

• Function names are made entirely lower-case and prefixed by ds_. Thus Receive-result
becomes ds_receive_result().

• C function parameters are derived from the argument and result names by making them
entirely lower-case. In addition the names of results have _return added as a suffix. Thus the
argument Name becomes name, whilst the result Operation-Status becomes
operation_status_return .

• OM class names are made entirely upper-case and prefixed by DS_C_. Thus Read-Result
becomes DS_C_READ_RESULT .

• Enumeration tags are derived from the name of the corresponding OM syntax by prefixing
with DS_ . The case of letters is left unchanged. Thus Enum(Limit-Problem) becomes
DS_Limit_Problem .

14 X/Open CAE Specification (1994)

C Language Binding C Naming Conventions

• Enumeration constants, as well as the names of OM attributes and all other constants except
errors, are made entirely upper-case and prefixed by DS_ . Thus O-Residential-Person
becomes DS_O_RESIDENTIAL_PERSON .

• Errors are treated as a special case. Constants that are the possible values of the OM attribute
Problem of a subclass of the OM class Error are made entirely upper-case and prefixed by
DS_E_ .
Thus alias-dereferencing-problem becomes DS_E_ALIAS_DEREFERENCING_PROBLEM.

• The constants in the Value Length and Value Number columns of the OM class definition
tables are also assigned identifiers. (They have no names in the language-independent
specification.) Where the upper limit in one of these columns is not ‘1’ (one), it is given a
name consisting of the OM attribute name, prefixed by DS_VL_ for value length, or DS_VN_
for value numbers.

• The sequence of octets for each object identifier is also assigned an identifier for internal use
by certain OM macros. These identifiers are all upper case and are prefixed by OMP_O_. See
the referenced XOM Specification for further details on the use of object identifiers.

Note that hyphens are translated everywhere to underscores.

API to Directory Services (XDS), Issue 2 15

Use and Implementation of Interfaces C Language Binding

2.3 Use and Implementation of Interfaces
Each of the following statements applies unless explicitly stated otherwise in the detailed
descriptions that follow.

If an argument to a function has an invalid value (such as a value outside the domain of the
function, a pointer outside the address space of the program, or a null pointer), the behaviour is
undefined.

Any function declared in a header may be implemented as a macro defined in the header, so a
library function should not be declared explicitly if its header is included. Any macro definition
of a function can be suppressed locally by enclosing the name of the function in parentheses,
because the name is not then followed by the left parenthesis that indicates expansion of a macro
function name. For the same syntactic reason, it is permitted to take the address of a library
function even if it is also defined as a macro. The use of #undef to remove any macro definition
will also ensure that an actual function is referred to. Any invocation of a library function that is
implemented as a macro will expand to code that evaluates each of its arguments exactly once,
fully protected by parentheses where necessary, so it is generally safe to use arbitrary
expressions as arguments. Likewise, those function-like macros described in the following
sections may be invoked in an expression anywhere a function with a compatible return type
could be called.

2.4 Function Return Values
The return value of a C function is always bound to the Status result of the language-
independent description. Functions return a value of type DS_status, which is an error
indication. If, and only if, the function succeeds, its value will be success, expressed in C by the
constant DS_SUCCESS. If a function returns a status other than this, then it has not updated the
return parameters. The value of the status in this case is an error as defined in Chapter 6.

Since C does not provide multiple return values, functions must return all other results by
writing into storage passed by the application program. Any argument that is a pointer to such
storage has a name ending with _return. For example, the C parameter declaration Uint *
completion_flag_return indicates that the function will return an unsigned integer Completion-
Flag as a result, so the actual argument to the function must be the address of a suitable variable.
This notation allows the reader to distinguish between an input parameter that happens to be a
pointer, and an output parameter where the ‘*’ is used to simulate the semantics of passing by
reference.

16 X/Open CAE Specification (1994)

Chapter 3

Description

3.1 Introduction
The interface comprises a number of functions, together with many OM classes of OM objects,
which are used as the arguments and results of the functions. Both the functions and the OM
objects are based closely on the Abstract Service that is specified in the standards (see reference
ISO 9594-3).

The interface models directory interactions as service requests made through a number of
interface functions, which take a number of input arguments. Each valid request causes an
operation within the directory, which eventually returns a status and any result of the operation.

All interactions between the user and the directory belong to a session, which is represented by
an OM object passed as the first argument to most interface functions.

The other arguments to the functions include a context and various service-specific arguments.
The context includes a number of parameters that are common to many functions and that
seldom change from operation to operation.

Each of the components of this model are described below, along with other features of the
interface such as asynchronous function calls and security.

3.2 Services
As mentioned above, the standards define Abstract Services that requestors use to interact with
the directory. Each of these Abstract Services maps to a single function call with the same name
(with two minor exceptions noted below), and the detailed specifications are given in Chapter 4.
The services are:

DirectoryBind (maps to Bind())
DirectoryUnbind (maps to Unbind())
Read
Compare
Abandon
List
Search
AddEntry
RemoveEntry
ModifyEntry
ModifyRDN

There is a function called Receive-result() which has no counterpart in the abstract service. It is
used with asynchronous operations, and is explained in Section 3.7 on page 23. There are also
additional functions called Initialize (), Shutdown() and Version().

The interface functions are summarised in the table below. Those which can execute
asynchronously are indicated by an a in the table. All other functions always execute
synchronously.

API to Directory Services (XDS), Issue 2 17

Services Description

Name Description
abandon the result of a pending, asynchronous operation.Abandon

a Add-Entry add a leaf entry to the directory information tree.

open a session with a directory user agent.Bind

compare a purported attribute value with the attribute value stored
in the directory for a particular entry.

a Compare

Initialize initialise the interface and allocate a workspace.

enumerate the immediate subordinates of a particular directory entry.a List

a Modify-Entry perform an atomic modification of a directory entry.

change the Relative Distinguished Name of a leaf entry.a Modify-RDN

a Read query information on a directory entry by name.

retrieve the result of an asynchronously executed function.Receive-Result

a Remove-Entry remove a leaf entry from the directory information tree.

find entries of interest in a portion of the directory information tree.a Search

Shutdown discard a workspace.

Unbind unbind from a directory session.

Version negotiate features of the interface and service.

Table 3-1 Interface Functions

3.2.1 Negotiation Sequence

The interface has an initialisation and shutdown sequence that permits the negotiation of
optional features. This involves the functions Initialize (), Version() and Shutdown().

Every application program must first call Initialize (), which returns a workspace. This
workspace supports the standard Directory Service package (see Chapter 5, and no other
packages or extensions that affect the behaviour of applications, making use only of standard
features. In particular, this means that any attribute values returned by the service will be
represented as an object of OM class Encoding, as discussed in Section 3.5.1 on page 20.

The workspace can be extended to support the optional packages Basic Directory Contents,
Strong Authentication, and or MHS Directory User, (see Chapter 7, or any vendor extensions.
Vendor extensions may include additional packages, and may also include additional or
modified functionality. All such packages or other extensions are identified by means of OSI
Object Identifiers, and these Object Identifiers are supplied to the Version() function to
incorporate the extensions into the workspace. For example, negotiation of the Basic Directory
Contents package means that the service will return all attribute values that are described by
that package in the formats detailed in Chapter 7.

After a workspace with the required features has been negotiated in this way, the application
can use the workspace as required. It can create and manipulate OM objects using the OM
functions, and can start one or more directory sessions using Bind().

Eventually, when it has completed its tasks, terminated all its directory sessions using Unbind(),
and released all its OM objects using om_delete(), the application should ensure that resources
associated with the workspace are freed by calling Shutdown(). This will have the effect of
deleting any private objects or service generated public objects that are in the workspace.

18 X/Open CAE Specification (1994)

Description Services

It is possible for an application to create more than one workspace using Initialize (). This allows
several uncoordinated activities, or libraries, to use these services without interfering with each
other. Each such workspace is distinct.

3.3 Session
A session identifies to which directory user agent (DUA), and to which suite of directory system
agents (DSAs), a particular directory operation will be sent. It contains some Directory-
BindArguments, such as the distinguished name of the requestor. The session is passed as the
first argument to most interface functions.

A session is described by an OM object of OM class Session. It is created, and appropriate
parameter values may be set using the object management functions. A directory session is then
started with Bind() and later is terminated with Unbind(). A session with default parameters
can be started by passing the constant Default-Session (DS_DEFAULT_SESSION) as the
Session argument to Bind().

Bind() must be called before the Session can be used as an argument to any other function in
this interface. After Unbind() has been called, Bind() must be called again if another session is to
be started.

The interface supports multiple concurrent sessions so that an application implemented as a
single process, such as a server in a client-server model, can interact with the directory using
several identities, and also so that a process can interact directly and concurrently with different
parts of the directory.

Detailed specifications of the OM class Session are given in Chapter 5.

3.4 Context
The context defines the characteristics of the directory interaction that are specific to a particular
directory operation, but often are used unchanged for many operations. Since these parameters
are presumed to be relatively static for a given directory user during a particular directory
interaction, these arguments are collected into an OM object, of OM class Context, which is
supplied as the second argument of each directory service request. This serves to reduce the
number of arguments passed to each function.

The context includes many administrative details, such as the CommonArguments defined in
the Abstract Service, which affect the processing of each directory operation. These include a
number of ServiceControls, which allow control over some aspects of the service. These include
options such as preferChaining, chainingProhibited, localScope, dontUseCopy and
dontDereferenceAliases, together with priority, timeLimit, sizeLimit and scopeOfReferral.
Each of these is mapped onto an OM attribute in the context, and they are detailed in Chapter 5.

The effect is as if they were passed as a group of additional arguments on every function call.
The value of each component of the context is determined when the interface function is called,
and remains fixed throughout the operation.

All OM attributes in the Context have default values, some of which are locally administered.
The constant Default-Context (DS_DEFAULT_CONTEXT) can be passed as the value of the
Context argument to the interface functions, and has the same effect as a context OM object
created with default values. The context must be a private object, unless it is Default-Context.

API to Directory Services (XDS), Issue 2 19

Context Description

Detailed specifications of the OM class Context are given in Chapter 5.

3.5 Function Arguments
The Abstract Service defines specific arguments for each operation. These are mapped onto
corresponding arguments to each interface function (which are also called input parameters).
Although each service has different arguments, some specific arguments recur in several
operations and these are briefly introduced here. Full details of these and all the other
arguments are given in the function definitions of Chapter 4, and the OM class definitions of
Chapter 5.

All arguments that are OM objects can generally be supplied to the interface functions as public
objects (that is, descriptor lists) or as private objects. Private objects must be created in a
workspace that was returned by Initialize (). In some cases, constants can be supplied instead of
OM objects.

Note that wherever a function is stated to accept an instance of a particular OM class as the
value of an argument, it will also accept an instance of any subclass of the OM class. For
example, most functions have a Name argument, which accepts values of OM class Name. It is
always valid to supply an instance of the subclass DS-DN as the value of the argument.

3.5.1 Attribute and AVA

Each directory attribute is represented in the interface by an OM object of OM class Attribute.
The type of the directory attribute is represented by an OM attribute, Attribute-Type, within the
OM object. The values of the directory attribute are expressed as the values of the OM attribute
Attribute-Values.

The representation of the attribute value depends on the attribute type and is determined as set
out below. This lists the way in which an application program must supply values to the
interface (for example, in the Changes argument to the Modify-Entry() function). The interface
follows the same rules when returning attribute values to the application (for example, in the
result of the Read() function).

• The first possibility is that the attribute type and the representation of the corresponding
values may be defined in a package, such as the selected attribute types from the standards
that are defined in the package in Chapter 7. In this case, if use of the package has been
negotiated by the application using the Version() function, attribute values are represented as
specified in that package, otherwise the next rule is followed. Additional directory attribute
types and their OM representations may be defined by future versions of this specification or
by vendor extensions.

• The second possibility is that the attribute type is not known and the value can be
represented as an OM syntax corresponding to an ASN.1 simple type. In this case, the
representation is the corresponding OM syntax.

• The final possibility is that the attribute type is not known and the value cannot be
represented as an OM syntax corresponding to an ASN.1 simple type. In this case, the value
is represented as an object of OM class Encoding.

Where attribute values have OM syntax String(*), they may be long, segmented strings and the
functions OM-Read() and OM-Write() should be used to access them.

An attribute-value-assertion (AVA) is an assertion about the value of an attribute of an entry,
and can be true, false or undefined. It consists of an attribute type and a single value. Loosely,
the AVA is true if one of the values of the given attribute in the entry matches the given value.

20 X/Open CAE Specification (1994)

Description Function Arguments

An AVA is represented in the interface by an instance of OM class AVA, which is a subclass of
Attribute, constrained to have exactly one value.

Information used by Add-Entry() to construct a new directory entry is represented by an OM
object of OM class Attribute-List, which contains a single, multi-valued OM attribute whose
values are OM objects of OM class Attribute.

3.5.2 Entry Information Selection

The Selection argument of the Read() and Search() operations tailors their results to obtain just
part of the required entry. Information about all attributes, no attributes, or a named set, can be
chosen. Attribute types are always returned, but the attribute values need not be.

The value of the argument is an instance of OM class Entry-Information-Selection, but one of
the constants below can be used in simple cases.

• To verify the existence of an entry for the purported name, use the constant Select-No-
Attributes (DS_SELECT_NO_ATTRIBUTES).

• To return just the types of all attributes, use the constant Select-All-Types
(DS_SELECT_ALL_TYPES).

• To return the types and values of all attributes, use the constant Select-All-Types-And-
Values (DS_SELECT_ALL_TYPES_AND_VALUES).

To choose a particular set of attributes, create a new instance of the OM class Entry-
Information-Selection and set the appropriate OM attribute values using the OM functions.

3.5.3 Name

Most operations take a Name argument to specify the target of the operation. The name is
represented by an instance of one of the subclasses of the OM class Name. This specification
defines the subclass DS-DN to represent distinguished names and other names.

For directory interrogations, any aliases in the name will be dereferenced unless prohibited by
the Dont-Dereference-Aliases service control. But for directory modifications, any aliases in the
name will not be dereferenced.

RDNs are represented by an instance of one of the subclasses of the OM class Relative-Name .
This specification defines the subclass DS-RDN to represent RDNs.

3.6 Function Results
All functions return a Status (which is the C function result), most return an Invoke-ID, which
identifies the particular invocation, and the interrogation operations each return a Result. (The
Invoke-ID and Result are returned using pointers that are supplied as arguments of the C
function). These three kinds of function results are introduced below.

All OM objects returned by interface functions (results and errors) will be private objects in the
workspace associated with the directory session in the call to Bind().

API to Directory Services (XDS), Issue 2 21

Function Results Description

3.6.1 Invoke-ID

All interface functions that invoke a directory operation return an Invoke-ID- an integer that
identifies the particular invocation of an operation. The Invoke-ID is only relevant for
asynchronous operations and may be used later to receive the result and status, or to abandon
them. Asynchronous operations are described in Section 3.7 on page 23, and the interface
functions that can be used to start them are indicated by an a in Table 3-1 on page 17.

The numerical value returned from a call that successfully invokes an asynchronous operation is
guaranteed to be unique amongst all outstanding operations in a given session.

The value returned for a synchronous operation is unspecified, as is that for a call that fails to
invoke an operation.

3.6.2 Result

Directory interrogation operations return a result only if they succeed. All errors from these
operations, including DAP errors, are reported in Status, described below, as are errors from all
other operations.

The value returned by a function call that invokes an asynchronous operation is unspecified, as
is that for a call that fails to invoke an operation. The result of an asynchronous operation is
returned by a later call to Receive-Result().

The result of an interrogation is returned in a private object whose OM class is appropriate to the
particular operation. The format of directory operation results is driven both by the Abstract
Service and by the need to provide asynchronous execution of functions. To simplify processing
of asynchronous results, the result of a single operation is returned in a single OM object
(corresponding to the abstract result defined in the Standards). The components of the result of
an operation are represented by OM attributes in the operation’s result object. All information
contained in the Abstract Service result is made available to the application program. The result
is inspected using the functions provided in the referenced XOM Specification.

Only the interrogation operations produce results, and each type of interrogation has a specific
OM class of OM object for its result. These OM classes, Compare-Result, List-Result, Read-
Result and Search-result, are defined in Chapter 5. The results of the different operations share
several common components, including the CommonResults defined in the Standards (see
Referenced Documents), by inheriting OM attributes from the superclass Common-Results .

The actual OM class of the result can always be a subclass of that named, in order to allow
flexibility for extensions. Thus, the function OM-Instance() should always be used when testing
the OM class.

Any attribute values in the result are represented as discussed in Section 3.5.1 on page 20.

3.6.3 Status

Every interface function returns a Status value, which is either a constant or an object.

If it is a constant, then it is one of the following:

• [DS_SUCCESS]

• [DS_NO_WORKSPACE].

If it is an object, then it is one of the following:

• an attribute error (represented by a private object of class Attribute-Error)

22 X/Open CAE Specification (1994)

Description Function Results

• a referral (represented by a private object of class Referral)

• an error represented by a private object of one of the subclasses of class Error.

Other results of functions are not valid unless the status result has the value [DS_SUCCESS].

3.7 Synchronous and Asynchronous Operations
Asynchronous operations may be provided by the interface, determined for each operation by
the value of the Asynchronous OM attribute in the Context passed to the interface function. The
default value of this OM attribute is false, causing all operations to be synchronous.
Asynchronous operation is an optional feature; operations are always synchronous on
implementations that do not provide it. The value of max-outstanding-operations, described
below, indicates the presence of the feature.

In synchronous mode, all functions wait until the operation is complete before returning. Thus
the thread of control is blocked within the interface after calling a function, and it can make use
of the result immediately after the function returns.

Note: In a multithreaded system, only one thread in the process is blocked, and use of
asynchronous mode is likely to be rare on such systems. On conventional single-
thread-per-process systems, the entire process is blocked, leading to the need for
asynchronous mode).

In asynchronous mode, some functions return before the operation is complete. The application
is then able to continue with other processing whilst the operation is being executed by the
directory, and can then access the result by calling Receive-Result(). An application may initiate
several concurrent asynchronous operations on the same session before receiving any of the
results, subject to the limit described below. The functions that can execute asynchronously are
indicated in Table 3-1 on page 17.

An asynchronous function call returns an Invoke-ID of the operation to the application. The
same Invoke-id can be passed to Abandon() to cause the operation to be abandoned, or to
Receive-Result() to receive the results for that operation.

Implementations of the interface are free to return from asynchronous function calls as soon as
possible, or may wait until the operation has been submitted to the underlying directory service.
The actual policy used is implementation-defined.

Implementations also define a limit on the number of asynchronous operations that may be
outstanding at any one time on any one session. An asynchronous operation is outstanding
from the time that the function is called until the result is returned by Receive-Result() or
abandoned by Abandon(). The limit is given by the constant max-outstanding-operations
(DS_MAX_OUTSTANDING_OPERATIONS), and it has the value zero if asynchronous
operation is not supported. If the feature is present, it is guaranteed to be at least one, so an
application can always use the interface in asynchronous operating mode. While this number of
operations is outstanding, attempts to invoke further asynchronous operations will report a DS
Library-Error (too-many-operations).

A synchronous call (other than Abandon() or Receive-Result()) may return a Library-Error
(mixed-synchronous), if it is made on a session on which there are any outstanding
asynchronous operations. All asynchronous operations should be allowed to terminate, and
their results should be obtained, before making a synchronous call on the same session.

If an error is detected before an asynchronous request is submitted to the directory, the function
returns immediately and there is no outstanding operation generated. Other errors are notified

API to Directory Services (XDS), Issue 2 23

Synchronous and Asynchronous Operations Description

later by Receive-Result(), when the result of the outstanding asynchronous operation is returned.
All errors occurring during a synchronous request are reported when the function returns.

Details of error handling are given in Chapter 6.

Where vendors provide suitable system primitives (such as System V poll (), or BSD (Berkeley
Source Distribution) select()), applications can obtain a file descriptor from the Session by
inspecting the value of the OM attribute File-Descriptor . Applications may use the file descriptor
to suspend the process until data is received on the particular file descriptor.

Applications should ensure that there are no outstanding asynchronous operations on a session
when Unbind() is called on that session. Once Unbind() has been called, there is no way to
determine whether any outstanding operations succeed or even whether they were ever sent to
the directory. No errors or results of any kind are reported to the application. It is strongly
recommended that Receive-Result() is called repeatedly until Completion-Flag takes the value
no-outstanding-operation.

3.8 Security
It is not the purpose of this interface specification to constrain the security policy of any
implementation or local administration. Such policies may differ widely according to the
requirements of different user groups.

The standards (see the referenced ISO 9594 documents) define several security features to
protect the provision of the Directory Service. Defining a security interface in this specification
could have the effect of constraining local security policy. Consequently, this specification does
not define a security interface.

Security can be provided in several ways. One way is to provide the security in the standards
below the interface by some private means. Alternatively, implementations may provide
security by means of extensions to the interface. For example, some implementations may add
extra OM attributes to OM classes such as Context and Session. A third way is to provide a
separate security interface.

The standards also allow the directory to provide a convenient repository for authentication
information. This authentication information is represented as OM classes that are defined in
the Strong Authentication Package , which is defined in Chapter 7.

3.9 Other Features of the Interface

3.9.1 Automatic Connection Management

Implementations may provide automatic management of the association, or connection,
between the user and the directory, making and releasing connections at its discretion. Such
management is intended to bring benefits such as reduced communication charges. In order to
allow this flexibility to the implementation, the interface does not specify when communication
with a DSA takes place. In particular, it does not require that the DirectoryBind operation
specified in the standards is performed when the Bind() interface function is called.

24 X/Open CAE Specification (1994)

Description Other Features of the Interface

3.9.2 Automatic Continuation and Referral Handling

The interface provides automatic handling of continuation references and referrals in order to
reduce the burden on application programs. These facilities can be inhibited to meet special
needs.

A continuation reference describes how the performance of all or part of an operation can be
continued at a different DSA or DSAs. A single continuation reference, returned as the entire
response to an operation, is called a Referral and is classified as an error. One or more
continuation references may also be returned as part of a Partial-Outcome-Qualifier returned
from a List() or Search() operation.

A DSA will return a referral if it has administrative, operational or technical reasons for
preferring not to chain. It may return a referral if Chaining-Prohibited is set in the Context,
though it may instead report a Service-Error (chaining-required) in this circumstance.

By default, the implementation will use any continuation references it receives to try to contact
the other DSA(s), and so progress the operation, whenever practical. It will only return the
result or an error to the application after it has made this attempt. Note that continuation
references may still be returned to the application, for example, if the relevant DSA cannot be
contacted.

The default behaviour is the simplest for most applications, but if necessary the application can
cause all continuation references to be returned to it. It does this by setting the value of the OM
attribute Automatic-Continuations in the Context to false.

API to Directory Services (XDS), Issue 2 25

Description

26 X/Open CAE Specification (1994)

Chapter 4

Interface Functions

API to Directory Services (XDS), Issue 2 27

Interface Functions

28 X/Open CAE Specification (1994)

Interface Functions abandon()

NAME
Abandon - abandon the result of a pending, asynchronously-executing operation

SYNOPSIS
#include <xds.h>

DS_status ds_abandon(
OM_private_object session,
OM_sint invoke_id

);

DESCRIPTION
This function abandons the result of an outstanding asynchronous function call. The function is
no longer outstanding after this function returns, and the result will never be returned by
Receive-Result().

Note that this function may, but need not, cause an Abandon operation to be requested of the
directory. Such an Abandon operation may, but need not, cause the directory to abandon the
outstanding asynchronous operation itself.

ARGUMENTS

Session (Object (Session))
The directory session in which the operation was submitted to the directory. This must
be a private object.

Invoke-ID (Integer)
Selects the specific outstanding asynchronous operation submitted via the Session to
be terminated. The operation must be an interrogation (that is, Compare(), List(), Read()
or Search()). The value of Invoke-ID must be that which was returned by the function
call that initiated the asynchronous directory operation to be abandoned.

RESULTS

Status (Status)
Whether the function succeeded or not.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-session,
miscellaneous.

This function can return a Communications-Error or the following Directory-error: Abandon-
Failed. Note that the result of the asynchronous operation will not be returned even if an
Abandon-Failed error is returned.

This function can return the error constant [DS_NO_WORKSPACE].

API to Directory Services (XDS), Issue 2 29

add-entry() Interface Functions

NAME
Add-Entry - add a leaf entry to the directory information tree

SYNOPSIS
#include <xds.h>

DS_status ds_add_entry(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_object entry,
OM_sint *invoke_id_return

);

DESCRIPTION
Adds a leaf entry to the directory. The entry may be either an object or an alias. The entry is
only added if it conforms to the directory schema.

ARGUMENTS

Session (Object (Session))
The directory session through which to submit the request. This must be a private object.

Context (Object (Context))
The directory user context to use for this operation. Note that size-Limit and dont-
Dereference-Aliases do not apply to this operation. This argument must be a private object
or the constant Default-Context (DS_DEFAULT_CONTEXT) .

Name (Object (Name))
The name of the entry to be added. The immediate superior of the new entry is determined
by removing the last RDN component (which belongs to the new entry). The immediate
superior should exist in the same DSA, otherwise the function may fail with an Update-
Error (affects-multiple-DSAs). Any aliases in the name will not be dereferenced.

Entry (Object (Attribute-List))
The attribute information which, together with that from the RDN, constitutes the entry to
be created. Note that an instance of OM class Entry-Information can be supplied as the
value of this argument, since Entry-Information is a subclass of Attribute-List, and so can
be used as the value of this argument.

RESULTS

Invoke-ID (Integer)
The Invoke-ID of an asynchronous directory operation.

Status (Status)
Whether the entry was added or not, if used synchronously, or whether the operation was
initiated, if used asynchronously.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-argument,
bad-class, bad-context, bad-name, bad-session, bad-workspace, miscellaneous, missing-type,
too-many-operations.

The following Directory-errors may be returned by the function (or by Receive-Result() when
used asynchronously): Attribute-Error, Name-Error, Referral, Security-Error, Service-Error,
Update-Error.

30 X/Open CAE Specification (1994)

Interface Functions add-entry()

The Update-Error (affects-multiple-DSAs), which is referred to in the argument descriptions,
need not be returned if there is local agreement between the DSAs to allow the entry to be
added.

This function can return a Communications-Error.

This function can return the error constant [DS_NO_WORKSPACE].

API to Directory Services (XDS), Issue 2 31

bind() Interface Functions

NAME
Bind - open a session with the directory

SYNOPSIS
#include <xds.h>

DS_status ds_bind(
OM_object session,
OM_workspace workspace,
OM_private_object *bound_session_return

);

DESCRIPTION
In order to allow automatic connection management, Bind() may or may not communicate with
a DSA when it is called.

ARGUMENTS

Session (Object (Session))
Specifies a particular directory service provider, together with other details of the service
required. This argument may be either a public object or a private object. The constant
Default-Session (DS_DEFAULT_SESSION) may also be used as the value of this argument,
causing a new session to be created with default values for all its OM attributes.

Workspace (Workspace)
Specifies the workspace (obtained from a call to Initialize()) which is to be associated with
the session. All function results from directory operations using this session will be returned
as private objects in this workspace. If the Session argument is a private object, it must be a
private object in this workspace.

RESULTS

Status (Status)
Whether or not the function completed successfully.

Bound-Session (Object (Session))
Upon successful completion, contains an instance of a directory session that may be used as
an argument to other functions (for example, Read()). This will be a new private object if
the value of Session was Default-Session or a public object, otherwise it will be that
supplied as an argument. The function will supply default values for any of the OM
attributes that were not present in the Session instance supplied as an argument. It will
also set the value of the File-Descriptor OM attribute (the value will be No-Valid-File-
Descriptor (DS_NO_VALID-FILE-DESCRIPTOR) if the functionality is not supported).

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-session,
miscellaneous, too-many-sessions.

The following Directory-errors may be returned by the function: Security-Error, Service-Error.

This function can return a Communications-Error.

This function can return the error constant [DS_INVALID_WORKSPACE].

SEE ALSO
Unbind() .

32 X/Open CAE Specification (1994)

Interface Functions compare()

NAME
Compare - compare a purported attribute value with the attribute value stored in the directory
for a particular entry

SYNOPSIS
#include <xds.h>

DS_status ds_compare(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_object ava,
OM_private_object *result_return,
OM_sint *invoke_id_return

);

DESCRIPTION
Compares the value supplied in the given AVA with the value(s) of the same attribute type in
the named entry.

The result of this operation can be abandoned.

ARGUMENTS

Session (Object (Session))
The directory session against which this operation is performed. This must be a private
object.

Context (Object (Context))
The directory context to be used for this operation. Note that size-Limit does not apply to
this operation. This argument must be a private object or the constant Default-Context
(DS_DEFAULT_CONTEXT) .

Name (Object (Name))
The name of the target object entry. Any aliases in the name will be dereferenced unless
prohibited by the relevant service control.

AVA (Object (AVA))
The Attribute Value Assertion which specifies the attribute type and value to be compared
with that in the entry.

RESULTS

Status (Status)
Whether the comparison was completed or not, if used synchronously, or whether the
operation was initiated, if used asynchronously. Note that the operation fails and an error
is returned either if the target object is not found or if it does not have an attribute of the
required type.

Result (Object (Compare-Result))
Upon successful completion of a synchronous call, the result contains flags indicating
whether the values matched and whether the comparison was made against the original
entry. It also contains the distinguished name of the target object if an alias was
dereferenced.

Invoke-ID (Integer)
The Invoke-ID of an asynchronous directory operation.

API to Directory Services (XDS), Issue 2 33

compare() Interface Functions

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-argument,
bad-class, bad-context, bad-name, bad-session, bad-workspace, miscellaneous, missing-type,
too-many-operations.

The following Directory-errors may be returned by the function (or by Receive-Result() when
used asynchronously): Attribute-Error, Name-Error, Referral, Security-Error, Service-Error.

This function can return a Communications-Error.

This function can return the error constant [DS_NO_WORKSPACE].

SEE ALSO
Abandon().

34 X/Open CAE Specification (1994)

Interface Functions initialize()

NAME
Initialize - initialise the interface and allocate a workspace

SYNOPSIS
#include <xds.h>

OM_workspace ds_initialize(
void

);

DESCRIPTION
This function performs any necessary initialisation of the interface and allocates a workspace. It
must be called before any other directory interface functions are called. It may be called
multiple times, in which case each call returns a workspace which is distinct from other
workspaces created by Initialize() but not yet deleted by Shutdown().

ARGUMENTS
None.

RESULTS

Workspace (Workspace)
Upon successful completion, contains a handle to a workspace in which OM objects can be
created and manipulated. Objects created in this workspace, and only such objects, may be
used as arguments to the other directory interface functions. This function returns NULL if
it fails.

ERRORS
None.

SEE ALSO
Shutdown().

API to Directory Services (XDS), Issue 2 35

list() Interface Functions

NAME
List - enumerate the immediate subordinates of a particular directory entry

SYNOPSIS
#include <xds.h>

DS_status ds_list(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_private_object *result_return,
OM_sint *invoke_id_return

);

DESCRIPTION
This function is used to obtain a list of the immediate subordinates of the named entry. The list
may be incomplete in some circumstances.

The result of this operation can be abandoned.

ARGUMENTS

Session (Object (Session))
The directory session against which this operation is performed. This must be a private
object.

Context (Object (Context))
The directory context to be used for this operation. This argument must be a private object
or the constant Default-Context (DS_DEFAULT_CONTEXT) .

Name (Object (Name))
The name of the object entry whose immediate subordinates are to be listed. Any aliases in
the name will be dereferenced unless prohibited by the relevant service control.

RESULTS

Status (Status)
Takes the value success if the named object was located (even if there are no subordinates)
and takes an error value if not, when the subroutine is used synchronously. Reports
whether the operation was initiated, if used asynchronously.

Result (Object (List-Result))
Upon successful completion of a synchronous call, the result contains some information
about the target object’s immediate subordinates. It also contains the distinguished name of
the target object, if an alias was dereferenced to find it. Aliases in the subordinate names are
not dereferenced. Additionally there may be a partial outcome qualifier, which indicates
that the result is incomplete. It also explains why (for example, because the time limit
expired) and contains information that may be helpful when attempting to complete it.

Invoke-ID (Integer)
The Invoke-ID of an asynchronous directory operation.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-argument,
bad-class, bad-context, bad-name, bad-session, bad-workspace, miscellaneous, missing-type,
too-many-operations.

The following Directory-errors may be returned by the function (or by Receive-Result() when
used asynchronously): Name-Error, Referral, Security-Error, Service-Error.

36 X/Open CAE Specification (1994)

Interface Functions list()

This function can return a Communications-Error.

This function can return the error constant [DS_NO_WORKSPACE].

SEE ALSO
Abandon().

API to Directory Services (XDS), Issue 2 37

modify-entry() Interface Functions

NAME
Modify-Entry - perform an atomic modification on a directory entry

SYNOPSIS
#include <xds.h>

DS_status ds_modify_entry(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_object changes,
OM_sint *invoke_id_return

);

DESCRIPTION
This function is used to make a series of one or more of the following changes to a single
directory entry:

• add a new attribute (add-attribute)

• remove an attribute (remove-attribute)

• add attribute values (add-values)

• remove attribute values (remove-values).

Values may be replaced by a combination of adding values and removing values in a single
operation. The RDN can only be changed by using the Modify-RDN() function.

The result of the operation is as if each modification is made in the order specified in the Changes
argument. If any of the individual modifications fails, then an Attribute-Error is reported and
the entry is left as it was prior to the whole operation. The operation is atomic; either all or none
of the changes are made. The directory checks that the resulting entry conforms to the directory
schema.

ARGUMENTS

Session (Object (Session))
The directory session against which this operation is performed. This must be a private
object.

Context (Object (Context))
The directory context to be used for this operation. Note that size-Limit and dont-
Dereference-Aliases do not apply to this operation. This argument must be a private object
or the constant Default-Context (DS_DEFAULT_CONTEXT) .

Name (Object (Name))
The name of the target object entry. Any aliases in the name will not be dereferenced.

Changes (Object (Entry-Mod-List))
A sequence of modifications to the named entry.

38 X/Open CAE Specification (1994)

Interface Functions modify-entry()

RESULTS

Status (Status)
Takes the value success if all the modifications succeeded and takes an error value if not,
when the function is used synchronously. Reports whether the operation was initiated, if
used asynchronously.

Invoke-ID (Integer)
The Invoke-ID of an asynchronous directory operation.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-argument,
bad-class, bad-context, bad-name, bad-session, bad-workspace, miscellaneous, missing-type,
too-many-operations.

The following Directory-errors may be returned by the function (or by Receive-Result() when
used asynchronously): Attribute-Error, Name-Error, Referral, Security-Error, Service-Error,
Update-Error.

Attempting to use add-attribute to add an existing attribute results in an Attribute-Error.
Attempting to use add-values to add an existing value results in an Attribute-Error, as does an
attempt to add a value to a non-existent attribute type. Attempting to use remove-attribute to
remove a non-existing attribute results in an Attribute-Error, while an attempt to remove an
attribute that is part of the object’s RDN results in an Update-Error. Attempting to use remove-
values to remove a non-existing value results in an Attribute-Error, while an attempt to remove
a value of an attribute that is part of the object’s RDN, or to modify the object class attribute,
results in an Update-Error.

This function can return a Communications-Error.

This function can return the error constant [DS_NO_WORKSPACE].

API to Directory Services (XDS), Issue 2 39

modify-RDN() Interface Functions

NAME
Modify-RDN - change the relative distinguished name (RDN) of a leaf entry

SYNOPSIS
#include <xds.h>

DS_status ds_modify_rdn(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_object new_RDN,
OM_boolean delete_old_RDN,
OM_sint *invoke_id_return

);

DESCRIPTION
This function is used to change the RDN of a leaf entry (either an object entry or an alias entry).

ARGUMENTS

Session (Object (Session))
The directory session against which this operation is performed. This must be a private
object.

Context (Object (Context))
The directory context to be used for this operation. Note that size-Limit and dont-
Dereference-Aliases do not apply to this operation. This argument must be a private object
or the constant Default-Context (DS_DEFAULT_CONTEXT) .

Name (Object (Name))
The current name of the target leaf entry. Any aliases in the name will not be dereferenced.
The immediate superior should not have any non-specific subordinate references, otherwise
the function may fail with an Update-Error (affects-multiple-DSAs). (A non-specific
subordinate reference is an indication that another DSA holds some number of children, but
does not indicate their RDNs. This means that it is not possible to check the uniqueness of
the requested new RDN within a single DSA.)

New-RDN (Object (Relative Name))
The requested new Relative Distinguished Name.

If an attribute value in the new RDN does not already exist in the entry (either as part of the
old RDN or as a non-distinguished value), the new value is added. If it cannot be added, an
error is reported.

Delete-Old-RDN (Boolean)
If this value is true, all attribute values that are in the old RDN but not in the new RDN are
deleted. If the value is false, the old values should remain in the entry (not as part of the
RDN). The value must be true when a single value attribute in the RDN has its value
changed by the operation. If this operation removes the last attribute value of an attribute,
that attribute will be deleted.

RESULTS

Status (Status)
Whether the name of the entry was changed or not, if used synchronously, or whether the
operation was initiated, if used asynchronously.

40 X/Open CAE Specification (1994)

Interface Functions modify-RDN()

Invoke-ID (Integer)
The Invoke-ID of an asynchronous directory operation.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-argument,
bad-class, bad-context, bad-name, bad-session, bad-workspace, miscellaneous, missing-type,
too-many-operations.

The following Directory-errors may be returned by the function (or by Receive-Result() when
used asynchronously): Attribute-Error, Name-Error, Referral, Security-Error, Service-Error,
Update-Error.

The Update-Error (affects-multiple-DSAs), which is referred to in the argument descriptions,
need not be returned if there is local agreement between the DSAs to allow the entry to be
modified.

This function can return a Communications-Error.

This function can return the error constant [DS_NO_WORKSPACE].

API to Directory Services (XDS), Issue 2 41

read() Interface Functions

NAME
Read - query information on an entry by name

SYNOPSIS
#include <xds.h>

DS_status ds_read(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_object selection,
OM_private_object *result_return,
OM_sint *invoke_id_return

);

DESCRIPTION
Read is used to extract information from an explicitly named entry. It can also be used to verify
a distinguished name.

The result of this operation can be abandoned.

ARGUMENTS

Session (Object (Session))
The directory session against which this operation is performed. This must be a private
object.

Context (Object (Context))
The directory context to be used for this operation. Note that size-Limit does not apply to
this operation. This argument must be a private object or the constant Default-Context
(DS_DEFAULT_CONTEXT).

Name (Object (Name))
The name of the target object entry. Any aliases in the name will be dereferenced unless
prohibited by the Dont-Dereference-Aliases service control.

Selection (Object (Entry-Information-Selection))
Specifies what information from the entry is requested. Information about no attributes, all
attributes or just for a named set can be chosen. Attribute types are always returned, but
the attribute values need not be. The possible values of this argument are set out in

RESULTS

Status (Status)
Whether the read was completed or not, if used synchronously, or whether the operation
was initiated, if used asynchronously.

Result (Object (Read-Result))
Upon successful completion of a synchronous call, the result contains the distinguished
name of the target object, and a flag indicating whether the result came from the original
entry or a copy, as well as any requested attribute types and values. Attribute information
is only returned if access rights are sufficient.

Invoke-ID (Integer)
The Invoke-ID of an asynchronous directory operation.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-argument,
bad-attribute, bad-class, bad-context, bad-name, bad-session, bad-workspace, miscellaneous,

42 X/Open CAE Specification (1994)

Interface Functions read()

missing-type, too-many-operations.

The following Directory-errors may be returned by the function (or by Receive-Result() when
used asynchronously): Attribute-Error, Name-Error, Referral, Security-Error, Service-Error.

An Attribute-Error (no-such-attribute) is reported if an explicit list of attributes is specified by
the Selection argument, but none of them are present in the entry. This error is not reported if
any of the selected attributes are present.

A Security-Error (insufficient-access-rights) will only be reported where access rights preclude
the reading of all requested attribute values.

This function can return a Communications-Error.

This function can return the error constant [DS_NO_WORKSPACE].

SEE ALSO
Abandon().

API to Directory Services (XDS), Issue 2 43

receive-result() Interface Functions

NAME
Receive-Result - retrieve the result of an asynchronously executed operation

SYNOPSIS
#include <xds.h>

DS_status ds_receive_result(
OM_private_object session,
OM_sint invoke_id,
OM_uint *completion_flag_return,
DS_status *operation_status_return,
OM_private_object *result_return,
OM_sint *invoke_id_return

);

DESCRIPTION
This function is used to retrieve the completed result of a previous asynchronous operation.

The function results include two status indications. One, called Status, indicates that this
function call itself was successful; it is always returned. The other, called Operation-Status, is
used to return the status of the completed asynchronous operation, and is only returned if there
is one.

ARGUMENTS

Session (Object (Session))
The directory session against which this operation is performed. This must be a private
object.

Invoke-Id (Integer)
The invocation identifier of the asynchronous directory operation whose result is to be
returned.

If the value of this argument is any-operation (DS_ANY_OPERATION), then the service
will return the result of any asynchronous directory operation that has completed. The
service will prioritise the retrieval of the completed directory operations in an
implementation defined manner.

RESULTS

Status (Status)
Takes an error value if one of the errors listed below occurred during the execution of this
function, and success otherwise.

Completion-Flag (Unsigned-Integer)
One of the following values to indicate the status of the outstanding asynchronous directory
operation(s) specified by the invoke_id input argument:

• completed-operation [DS_COMPLETED_OPERATION]. The specified directory
operation has completed and its result is made available or, if any-operation was
specified, at least one outstanding directory operation has completed and its result is
made available.

• outstanding-operations [DS_OUTSTANDING_OPERATIONS]. There are outstanding
asynchronous directory operations but none has yet completed.

• no-outstanding-operation [DS_NO_OUTSTANDING_OPERATION]. There are no
outstanding asynchronous directory operations.

44 X/Open CAE Specification (1994)

Interface Functions receive-result()

• other-completed-operations [DS_OTHER_COMPLETED_OPERATIONS]. A particular
directory operation was specified; that directory operation has not completed, but one or
more other directory operations have completed.

This result is valid if the Status has the value success.

Upon successful return with completion_flag having the value completed-operation, the
status and invocation identifier of the completed directory operation are returned.

Operation-Status (Status)
Takes an error value if an error occurred during the execution of the asynchronous directory
operation, and success otherwise. The possible error values are listed for each individual
operation in the corresponding function description.

This result is only valid if the Status has the value success and Completion-Flag has the
value completed-operation.

Result (Object *)
The result of the completed asynchronous operation. Its value will be the constant Null-
Result [DS_NULL_RESULT] if the operation was one that does not return a result (that is,
Add-Entry(), Modify-Entry(), Modify-RDN() or Remove-Entry()). Otherwise, the OM object’s
OM class is that of the result of the asynchronous operation, and can be determined by
using the OM functions.

This result is only valid if the Status has the value success, Completion-Flag has the value
completed-operation and Operation-Status has the value success.

Invoke-ID (Integer)
The Invoke-ID of the operation whose result is being returned.

This result is valid if the Status has the value success and Completion-Flag has the value
completed-operation.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-session,
bad-workspace, miscellaneous.

This function does not report any Directory-errors, or a Communications-Error, in its Status
result. (Any such errors related to the completed asynchronous operation are reported in
Operation-Status, as described above).

This function can return the error constant [DS_NO_WORKSPACE].

API to Directory Services (XDS), Issue 2 45

remove-entry() Interface Functions

NAME
Remove-Entry - remove a leaf entry from the directory information tree

SYNOPSIS
#include <xds.h>

DS_status ds_remove_entry(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_sint *invoke_id_return
);

DESCRIPTION
This function is used to remove a leaf entry from the directory (either an object entry or an alias
entry).

ARGUMENTS

Session (Object (Session))
The directory session against which this operation is performed. This must be a private
object.

Context (Object (Context))
The directory context to be used for this operation. Note that size-Limit and dont-
Dereference-Aliases do not apply to this operation. This argument must be a private object
or the constant Default-Context (DS_DEFAULT_CONTEXT).

Name (Object (Name))
The name of the target object entry. Any aliases in the name will not be dereferenced.

RESULTS

Status (Status)
Whether the entry was deleted or not, if used synchronously, or whether the operation was
initiated, if used asynchronously.

Invoke-ID (Integer)
The Invoke-ID of an asynchronous directory operation.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-argument,
bad-context, bad-name, bad-session, bad-workspace, miscellaneous, missing-type, too-many-
operations.

The following Directory-errors may be returned by the function (or by Receive-Result() when
used asynchronously): Name-Error, Referral, Security-Error, Service-Error, Update-Error.

This function can return a Communications-Error.

This function can return the error constant [DS_NO_WORKSPACE].

46 X/Open CAE Specification (1994)

Interface Functions search()

NAME
Search - find entries of interest in a portion of the directory information tree

SYNOPSIS
#include <xds.h>

DS_status ds_search(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_sint subset,
OM_object filter,
OM_boolean search_aliases,
OM_object selection,
OM_private_object *result_return,
OM_sint *invoke_id_return

);

DESCRIPTION
This function is used to search a portion of the directory and return selected information from
entries of interest. The information may be incomplete in some circumstances.

The result of this operation can be abandoned.

ARGUMENTS

Session (Object (Session))
The directory session against which this operation is performed. This must be a private
object.

Context (Object (Context))
The directory context to be used for this operation. This argument must be a private object
or the constant Default-Context (DS_DEFAULT_CONTEXT) .

Name (Object (Name))
The name of the object entry that forms the base of the search. Any aliases in the name will
be dereferenced unless prohibited by the dont-Dereference-Aliases service control.

Subset (Integer)
Specifies the portion of the directory information tree to be searched. Its value must be one
of:

— base-object (DS_BASE_OBJECT)
Search just the given object entry.

— one-level (DS_ONE_LEVEL)
Search just the immediate subordinates of the given object entry.

— whole-subtree (DS_WHOLE_SUBTREE)
Search the given object and all its subordinates.

Filter (Object (Filter))
The filter is used to eliminate entries from the search that are not wanted. Information will
only be returned on entries that satisfy the filter. The constant No-Filter (DS_NO_FILTER)
may be used as the value of this argument if all entries should be searched, and none
eliminated. This corresponds to a filter with a Filter-Type value of and, and no values of
the OM attributes Filters or Filter-Items.

API to Directory Services (XDS), Issue 2 47

search() Interface Functions

Search-Aliases (Boolean)
Any aliases in the subordinate entries being searched will be dereferenced if the value of
this argument is true, and will not be dereferenced if its value is false.

Selection (Object (Entry-Information-Selection))
Specifies what information from the entry is requested. Information about no attributes, all
attributes or just for a named set can be chosen. Attribute types are always returned, but
the attribute values need not be. The possible values of this argument are set out in Section
3.5.2 on page 21.

RESULTS

Status (Status)
Takes the value success if the named object was located and takes an error value if not,
when the function is used synchronously. Reports whether the operation was initiated, if
used asynchronously.

Result (Object (Search-Result))
Upon successful completion of a synchronous call, the result contains the requested
information from each object in the search space that satisfied the filter. The distinguished
name of the target object is present if an alias was dereferenced. Additionally there may be
a partial outcome qualifier, which indicates that the result is incomplete. It also explains
why it is not complete and how it could be completed.

Invoke-ID (Integer)
The Invoke-ID of an asynchronous directory operation.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-argument,
bad-class, bad-context, bad-name, bad-session, bad-workspace, miscellaneous, missing-type,
too-many-operations.

The following Directory-errors may be returned by the function (or by Receive-Result() when
used asynchronously): Attribute-Error, Name-Error, Referral, Security-Error, Service-Error.

Note that an unfiltered search of just the base object succeeds even if none of the requested
attributes are found, whilst Read() fails with the same selected attributes.

A Security-Error (insufficient-access-rights) will only be reported where access rights preclude
the reading of all requested attribute values.

This function can return a Communications-Error.

This function can return the error constant [DS_NO_WORKSPACE].

SEE ALSO
Abandon().

48 X/Open CAE Specification (1994)

Interface Functions shutdown()

NAME
Shutdown - delete a directory workspace

SYNOPSIS
#include <xds.h>

DS_status ds_shutdown(
OM_workspace workspace

);

DESCRIPTION
This function deletes a workspace established by initialize(). All service generated objects
associated with the workspace are deleted, and thus are no longer accessible. This may enable
the service to release resources.

All sessions associated with the workspace must be terminated by calling unbind() prior to
calling shutdown(). No other interface function must reference the workspace after it has been
deleted.

ARGUMENTS

Workspace (Workspace)
Specifies the workspace (obtained from a call to Initialize()) which is to be deleted.

RESULTS
None.

ERRORS
This function can return the error constant [DS_INVALID_WORKSPACE].

This function does not return a Communications-Error or any Directory-errors.

SEE ALSO
Initialize().

API to Directory Services (XDS), Issue 2 49

unbind() Interface Functions

NAME
Unbind - unbind from a directory session

SYNOPSIS
#include <xds.h>

DS_status ds_unbind(
OM_private_object session

);

DESCRIPTION
This function terminates the given directory session, and makes the argument unavailable for
use with other interface functions (except Bind()).

Note that this means the results of any outstanding asynchronous operations that were initiated
using the given Session can no longer be received, and it is not possible to know whether they
succeeded. Any such operations may be carried out or may be terminated prematurely. For this
reason it is recommended that all outstanding asynchronous operations are processed using
Receive-result() before Unbind() is called.

The unbound session may be used again as an argument to Bind(), possibly after modification
by the object management functions. When it is no longer required, it must be deleted using the
object management functions.

ARGUMENTS

Session (Object (Session))
The directory session that is to be unbound. This must be a private object. The value of the
File-Descriptor OM attribute will be No-Valid-File-Descriptor
(DS_NO_VALID_FILE_DESCRIPTOR) if the function succeeds. The other OM attributes
will be unchanged.

RESULTS

Status (Status)
Takes the value success if Session was unbound, and takes an error value if not.

ERRORS
This function can return a System-Error or one of the following Library-Errors: bad-session,
miscellaneous.

This function does not return a Communications-Error or any Directory-errors.

This function can return the error constant [DS_NO_WORKSPACE].

SEE ALSO
Bind().

50 X/Open CAE Specification (1994)

Interface Functions version()

NAME
Version - negotiate features of the interface and service

SYNOPSIS
#include <xds.h>

DS_status ds_version(
DS_feature feature_list[],
OM_workspace workspace

);

DESCRIPTION
This function negotiates features of the interface, which are represented by Object Identifiers,
and associates them with a workspace. The Basic-Directory-Contents, Strong-Authentication,
and MHS-Directory-User packages, specified in Chapter 7, are the only negotiable features in
this specification. Features may also include vendor extensions and new features in future
versions of this specification.

ARGUMENTS

Feature-List (Feature-List)
An ordered sequence of features, each represented by an object identifier. The sequence is
terminated by an object identifier having no components (a length of zero and any value of
the data pointer in the C representation).

Workspace (Workspace)
Specifies the workspace (obtained from a call to Initialize()) for which the features are to be
negotiated. The features will be in effect for operations which use the workspace or
directory sessions associated with the workspace.

RESULTS

Status (Status)
Whether or not the function completed successfully.

Activated (Boolean-List)
If the function completed successfully, this result contains an ordered sequence of Boolean
values, with the same number of elements as the Feature-List. If true, each value indicates
that the corresponding feature is now part of the interface. If false, each value indicates that
the corresponding feature is not available.

In the C binding, this result is combined with the Feature-List argument as a single array of
structures of type DS_feature, which is defined as:

typedef struct
{

OM_object_identifier feature,
OM_boolean activated,

}
DS_feature;

ERRORS
This function can return a System-Error or the following Library-Error: miscellaneous.

This function does not return a Communications-Error, or any Directory-errors.

This function can return the error constant [DS_INVALID_WORKSPACE].

API to Directory Services (XDS), Issue 2 51

Interface Functions

52 X/Open CAE Specification (1994)

Chapter 5

Interface Class Definitions

Note: Throughout this document, care is taken to distinguish between OM classes and
directory classes, and between OM attributes and directory attributes. (In both cases,
the former is a construct of the closely associated object management interface, while
the latter is a construct of the Directory Service to which the interface provides access.)
The terms ‘‘object class’’ and ‘‘attribute’’ denote the directory constructs, while the
phrases ‘‘OM class’’ and ‘‘OM attribute’’ denote the object management ones.

5.1 Introduction
This Chapter defines the OM classes in alphabetical order that constitute the Directory Service
(DS) package. The errors defined in Chapter 6 also belong to this package. The Object-Identifier
associated with this package is

{iso(1) member-body(2) us(840) IEEE-P1224.2(10014) dsp(0)}
(with the encoding "\x2a\x86\x48\xce\x1e\x0"). This Object-Identifier is represented by the
constant Service-Package (DS_SERVICE_PACKAGE).

The concepts of object management were briefly described in Section 1.4 on page 5, and the
notation is introduced below. Both are fully explained in the referenced XOM Specification.

Each OM class is described in a separate section, which identifies the OM attributes specific to
that OM class. The OM classes and OM attributes for each OM class are listed in alphabetical
order. The OM attributes that may be found in an instance of an OM class are those OM
attributes specific to that OM class and those inherited from each of its superclasses. The OM
class-specific OM attributes are defined in a table. The table gives the name of each OM
attribute, the syntax of each of its values, any restrictions upon the length (in bits, octets (bytes),
or characters) of each value, any restrictions upon the number of values, and the value, if any,
the OM_Create() function supplies.

The constants that represent the OM classes and OM attributes in the C binding are defined in
the <xds.h> header.

Vendor Extensions

Vendors may provide additional OM attributes in their implementation of particular OM classes,
and their individual documentation will give details of the specification and usage of these. The
presence of extensions can be negotiated by use of the Version() function.

All such OM attributes will have default values that lead to the behaviour described in this
specification.

API to Directory Services (XDS), Issue 2 53

Class Hierarchy Interface Class Definitions

5.2 Class Hierarchy
This Section depicts the hierarchical organisation of the OM classes defined in this Chapter, and
thus shows which OM classes inherit additional OM attributes from their superclasses.
Subclassification is indicated by indentation, and the names of abstract OM classes are rendered
in italics. Thus, for example, the concrete class Presentation-Address is an immediate subclass
of the abstract class Address, which in turn is an immediate subclass of the abstract class Object.

Object (defined in the referenced XOM Specification
— Access-Point
— Address

— Presentation-Address
— Attribute

— AVA
— Entry-Mod
— Filter-Item

— Attribute-List
— Entry-enfo

— Common-Results
— Compare-Result
— List-Info
— Read-Result
— Search-Info

— Context
— Continuation-Reference
— Entry-Info-Selection
— Entry-Mod-List
— Error (see Chapter 6)
— Extension
— Filter
— List-Info-Item
— List-Result
— Name

— DS-DN
— Operation-Progress
— Partial-Outcome-Qual
— Relative-Name

— DS-RDN
— Search-Result
— Session

The application is not permitted to create or modify instances of some OM classes, because these
OM classes are only returned by the interface and never supplied to it. These OM classes are:
Access-Point, Compare-Result, Continuation-Reference, all subclasses of Error, List-
Information, List-Information-Item, List-Result, Operation-Progress, Partial-Outcome-
Qualifier, Read-Result, Search-Info, Search-Result.

This specification does not mandate that any OM classes are encodable using OM-Encode() and
OM-Decode().

54 X/Open CAE Specification (1994)

Interface Class Definitions Access-Point

5.3 Access-Point
An instance of OM class Access-Point identifies a particular point at which access to a DSA can
occur.

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclass (Object) and additionally the OM attributes
listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Address Object(Address) - 1 -
AE-Title Object(Name) - 1 -

Table 5-1 OM Attributes of an Access-Point

Address
The address of the DSA, for use in communications to it.

AE-Title
The name of the DSA.

5.4 Address
The OM class Address represents the address of a particular entity or service (such as a DSA).

It is an abstract class that has the OM attributes of its superclass (Object) and no other OM
attributes.

An address is an unambiguous name, label or number that identifies the location of the entity or
service. All addresses are represented as instances of some subclass of this OM class. The only
subclass defined in this specification is Presentation-Address, which is the presentation address
of an OSI application entity, used for OSI communications with it. Vendors may define
additional subclasses to represent other kinds of address.

API to Directory Services (XDS), Issue 2 55

Attribute Interface Class Definitions

5.5 Attribute
An instance of OM class Attribute is an attribute of an object and thus a component of its
directory entry.

An instance of this OM class has the OM attributes of its superclass (Object) and additionally the
OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Attribute-Type String(Object-Identifier) - 1 -
Attribute-Values any - 0 or more -

Table 5-2 OM Attributes of an Attribute

Attribute-Type
The attribute type, which indicates the class of information given by this attribute.

Attribute-Values
The attribute values. The OM value syntax and the number of values allowed for this OM
attribute are determined by the value of the Attribute-Type OM attribute in accordance
with the rules set out in Section 3.5.1 on page 20.

Where the values of this OM attribute have syntax String(*), they may be long, segmented
strings. For this reason, the functions OM-Read() and OM-Write() should be used to access
all String(*) values.

Note that a directory attribute must always have at least one value, even though instances of this
OM class are permitted to have none.

5.6 Attribute-List
An instance of OM class Attribute-List is a list of directory attributes.

An instance of this OM class has the OM attributes of its superclass (Object) and additionally the
OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Attributes Object(Attribute) - 0 or more -

Table 5-3 OM Attributes of an Attribute-List

Attributes
The attributes that will constitute a new object’s directory entry, or those selected from an
existing entry.

56 X/Open CAE Specification (1994)

Interface Class Definitions AVA

5.7 AVA
An instance of OM class AVA (Attribute Value Assertion) is a proposition concerning the values
of a directory entry.

An instance of this OM class has the OM attributes of its superclasses (Object, Attribute) and no
other OM attributes. There is an additional constraint on this OM class, in that there must be
exactly one value of the OM attribute Attribute-Values. The Attribute-Type remains single-
valued. The OM value syntax of Attribute-Values must conform to the rules set out in Section
3.5.1 on page 20.

5.8 Common-Results
The OM class Common-Results comprises results that are returned by, and thus common to, the
directory interrogation operations.

It is an abstract OM class, which has the OM attributes of its superclass (Object) and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Alias-Dereferenced Boolean - 1 -
Performer Object(Name) - 0-1 -

Table 5-4 OM Attributes of a Common-Results

Alias-Dereferenced
Indicates whether the name of the target object that was passed as a function argument
included an alias that was dereferenced to determine the distinguished name.

Performer
When present, gives the distinguished name of the performer of a particular operation. It
may be present when the result is signed, and holds the name of the DSA that signed the
result.

API to Directory Services (XDS), Issue 2 57

Compare-Result Interface Class Definitions

5.9 Compare-Result
An instance of OM class Compare-Result comprises the results of a successful call to the
Compare() function.

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclasses (Object, Common-Results) and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
From-Entry Boolean - 1 -
Matched Boolean - 1 -
Object-Name Object(Name) - 0-1 -

Table 5-5 OM Attributes of a Compare-Result

From-Entry
Indicates whether the assertion was tested against the specified object’s entry, rather than a
copy of the entry.

Matched
Indicates whether the assertion specified as an argument proved true. It takes the value
true if the values were compared and matched, and false otherwise.

Object-Name
The distinguished name of the target object of the operation. It will be present if the OM
attribute Alias-Dereferenced, inherited from the superclass Common-Results , is true.

58 X/Open CAE Specification (1994)

Interface Class Definitions Context

5.10 Context
An instance of OM class Context comprises per-operation arguments that are accepted by most
of the interface functions.

An instance of this OM class has the OM attributes of its superclass (Object) and additionally the
OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Common Arguments
Aliased-RDNs Integer - 0-1 -
Ext Object(Ext) - 0 or more -
Operation-Progress Object(Operation-Progress) - 1 Operation-Not-Started

Service Controls
Chaining-Prohib Boolean - 1 local1

Dont-Dereference-Aliases Boolean - 1 false
Dont-Use-Copy Boolean - 1 local1

Local-Scope Boolean - 1 local1

Prefer-Chaining Boolean - 1 local1

Priority Enum(Priority) - 1 local1

Scope-Of-Referral Enum(Scope-Of-Referral) - 0-1 local1

Size-Limit Integer - 0-1 local1

Time-Limit Integer - 0-1 local1

Local Controls
Asynchronous Boolean - 1 false
Automatic-Continuation Boolean - 1 true

1The default values of these OM attributes are locally-administered.

Table 5-6 OM Attributes of a Context

The context collects together several arguments passed to interface functions, which are
presumed to be relatively static for a given directory user during a particular directory
interaction. The context is passed as an argument to each function that interrogates or updates
the directory. Although the presumption is that infrequent changes to the context will be made,
the value of each argument can be changed between every operation if required. Each argument
is represented by one of the OM attributes of the Context OM class.

The context contains the Common Arguments defined in the standards (see reference ISO 9594),
except that all security information is omitted for reasons discussed in Section 3.8 on page 24.
These are made up of a number of service controls, explained below, possible extensions in the
Extensions OM attribute, and operation progress and alias dereferencing information in the
Operation-Progress OM attribute. It also contains a number of arguments that provide local
control over the interface.

The OM attributes of the Context OM class are described below.

API to Directory Services (XDS), Issue 2 59

Context Interface Class Definitions

Common Arguments

Aliased-RDNs
Indicates to the Directory that the object component of the operation argument was created
by dereferencing of an alias on an earlier operation attempt. This value would have been set
in the Referral response of the previous operation.

Extensions
Any future standardised extensions that should be applied to the directory operation.

Operation-Progress
The state that the directory service is to assume at the start of the operation. This OM
attribute will normally take its default value, which is the value Operation-Not-Started
{DS_OPERATION_NOT_STARTED} described in the Operation-Progress OM class
definition.

Service Controls

Chaining-Prohibited
Indicates that chaining, and other methods of distributing the request around the directory,
are prohibited.

Dont-Dereference-Aliases
Indicates that any alias used to identify the target entry of an operation is not to be
dereferenced. This allows interrogation of alias entries (aliases are never dereferenced
during updates).

Dont-Use-Copy
Indicates that the request is to be satisfied only by access to directory entries, and not by use
of copies of entries. This includes both copies maintained in other DSAs by bilateral
agreement, and locally cached copies.

Local-Scope
Indicates that the directory request is to be satisfied locally. The meaning of this option is
configured by an administrator. (The option typically restricts the request to a single DSA
or DMD.)

Prefer-Chaining
Indicates that chaining is preferred to referrals when necessary. The directory is not obliged
to follow this preference, and may return a referral even if it is set.

Priority
The priority, relative to other directory requests, at which the directory is to attempt to
satisfy the request. This is not a guaranteed service since there is no directory-wide
queueing. Its value must be one of:

• low

• medium

• high.

Scope-Of-Referral
The portion of the directory to which referrals are to be limited. This includes Referral
errors and Partial Outcome Qualifiers. Its value must be one of:

• country
meaning DSAs within the country in which the request originates

60 X/Open CAE Specification (1994)

Interface Class Definitions Context

• DMD
meaning DSAs within the DMD in which the request originates.

Scope-of-Referral is an optional attribute. The lack of this attribute in a Context object
indicates that the scope is not limited.

Size-Limit
If present, the maximum number of objects about which List() or Search() should return
information. If this limit is exceeded, information is returned about exactly this number of
objects. Which objects are chosen is unspecified (since it may depend on the timing of
interactions between DSAs, among other reasons).

Time-Limit
If present, the maximum elapsed time, in seconds, within which the service should be
provided (not the processing time devoted to the request). If this limit is reached, a
Service-Error (time-limit-exceeded) is returned except for the List() or Search() operations,
which return an arbitrary selection of the accumulated results.

Local Controls

Asynchronous
Indicates that the interface should operate asynchronously or not, as detailed in Section 3.7
on page 23. The value is one of:

• false
meaning that the operation is to be performed sequentially (synchronously), with the
application being blocked until a result or error is returned.

• true
meaning that the operation is to be performed asynchronously (non-blocking). The
application can perform multiple concurrent asynchronous operations and can associate
a result obtained from Receive-Result() with the original operation. The maximum
number of outstanding concurrent operations is implementation-defined, and is
reflected by the value of the constant max-outstanding-operations
(DS_MAX_OUTSTANDING_OPERATIONS).

Automatic-Continuation
Indicates the requestor’s requirement for continuation reference handling, including
referrals and those in partial outcome qualifiers. The value is one of:

• false
meaning that the interface returns all continuation references to the application
program.

• true
meaning that continuation references are automatically processed and the subsequent
results returned to the application instead of the continuation reference(s), whenever
practical. This is much simpler, unless the application has special requirements. Note
that continuation references may still be returned to the application, for example, if the
relevant DSA cannot be contacted.

Applications can assume that an object of OM class Context, created with default values of all its
OM attributes, will work with all the interface functions. Local administrators should ensure
that this is the case. The constant Default-Context (DS_DEFAULT_CONTEXT) can be used as
an argument to interface functions instead of creating an OM object with default values.

API to Directory Services (XDS), Issue 2 61

Continuation-Reference Interface Class Definitions

5.11 Continuation-Reference
An instance of OM class Continuation-Reference comprises the information that enables a
partially completed directory request to be continued (for example, following a referral).

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclass (Object) and additionally the OM attributes
listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Access-Points Object(Access-Point) - 1 or more -
Aliased-RDNs Integer - 1 -
Operation-Progress Object(Operation-Progress) - 1 -
RDNs-Resolved Integer - 0-1 -
Target-Object Object(Name) - 1 -

Table 5-7 OM Attributes of a Continuation-Reference

Access-Points
The names and presentation addresses of the DSAs at all of which the directory request
should be continued.

Aliased-RDNs
Indicates how many (if any) of the RDNs in the target name have been produced by
dereferencing an alias. Its value is zero if no aliases have been dereferenced. This value
should be used in the Context of any continued operation.

Operation-Progress
The state at which the directory request must be continued. This value should be used in
the Context of any continued operation.

RDNs-Resolved
The number of RDNs, in the supplied object name, that have been resolved (using internal
references), not just assumed correct (using cross references).

Target-Object
The name of the object upon which the continuation must focus.

62 X/Open CAE Specification (1994)

Interface Class Definitions DS-DN

5.12 DS-DN
An instance of OM class DS-DN represents a name of a directory object.

An instance of this OM class has the OM attributes of its superclasses (Object, Name) and
additionally the OM attributes listed in the table below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
RDNs Object(DS-RDN) - 0 or more -

Table 5-8 OM Attributes of a DS-DN

RDNs
The sequence of RDNs that define the path through the DIT from its root to the object that
the DS-DN denotes. The DS-DN of the root of the directory is the null name (no RDNs
values). The order of the values is significant; the first value is closest to the root, and the
last value is the RDN of the object.

5.13 DS-RDN
An instance of OM class DS-RDN is a relative distinguished name (RDN). An RDN uniquely
identifies an immediate subordinate of an object whose entry appears in the DIT.

An instance of this OM class has the OM attributes of its superclasses (Object, Relative-Name) and
additionally the OM attributes listed in the table below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
AVAs Object(AVA) - 1 or more -

Table 5-9 OM Attributes of an RDN

AVAs
The AVAs that are marked by the DIB as components of the object’s RDN. The assertions
shall be true of the object but of none of its siblings, and the attribute types and values they
contain shall appear in the object’s directory entry. The order of the AVAs is not significant.

API to Directory Services (XDS), Issue 2 63

Entry-Information Interface Class Definitions

5.14 Entry-Information
An instance of OM class Entry-Information contains selected information from a single
directory entry.

An instance of this OM class has the OM attributes of its superclass (Object, Attribute-List) and
additionally the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
From-Entry Boolean - 1 -
Object-Name Object(Name) - 1 -

Table 5-10 OM Attributes of an Entry-Info

The OM attribute Attributes is inherited from the superclass Attribute-List. It contains the
information extracted from the directory entry of the target object. The type of each attribute
requested and found will be present in the list, as will be its values if types and values were
requested.

The OM class-specific OM attributes are:

From-Entry
Indicates whether the information was extracted from the specified object’s entry, rather
than from a copy of the entry.

Object-Name
The object’s distinguished name.

64 X/Open CAE Specification (1994)

Interface Class Definitions Entry-Information-Selection

5.15 Entry-Information-Selection
An instance of OM class Entry-Information-Selection identifies the information to be extracted
from a directory entry.

An instance of this OM class has the OM attributes of its superclasses (Object) and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
All-Attributes Boolean - 1 true
Attributes-Selected String(Object-Identi fier) - 0 or more -
Info-Type Enum(Info-Type) - 1 types-and-values

Table 5-11 OM Attributes of an Entry-Info-Selection

All-Attributes
Indicates which attributes are of interest. Its value is one of:

• false
meaning that information is requested about just those attributes listed in the OM
attribute Attributes-Selected.

• true
meaning that information is requested about all attributes in the directory entry. Any
values of the OM attribute Attributes-Selected are ignored in this case.

Attributes-Selected
Lists the types of the attributes in the entry, from which information is to be extracted. The
value of this OM attribute is only used if the value of All-Attributes is false. Supplying an
empty list means that no attribute data will be returned, which can be used to verify the
existence of an entry for a distinguished name.

Info-Type
Identifies what information is to be extracted from each identified attribute. Its value must
be one of:

• TYPES_ONLY
meaning that only the attribute types of the selected attributes in the entry are to be
returned.

• TYPES_AND_VALUES
meaning that both the attribute types and the attribute values of the selected attributes
in the entry are to be returned.

API to Directory Services (XDS), Issue 2 65

Entry-Modification Interface Class Definitions

5.16 Entry-Modification
An instance of OM class Entry-Modification describes a single modification to a specified
attribute of a directory entry.

An instance of this OM class has the OM attributes of its superclasses (Object, Attribute) and
additionally the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Modification-Type Enum(Modification-Type) - 1 add-attribute

Table 5-12 OM Attributes of an Entry-Mod

The attribute type to be modified, and the associated values, are specified in the OM attributes
Attribute-Type and Attribute-Values, which are inherited from the Attribute superclass.

Modification-Type
Identifies the type of the modification. Its value must be one of:

• ADD_ATTRIBUTE
meaning that the specified attribute is absent and is to be added with the specified
values.

• ADD_VALUES
meaning that the specified attribute is present and the one or more specified values are
to be added to it.

• REMOVE_ATTRIBUTE
meaning that the specified attribute is present and is to be removed. Any values present
in the OM attribute Attribute-Values are ignored.

• REMOVE_VALUES
meaning that the specified attribute is present and the one or more specified values are
to be removed from it.

5.17 Entry-Modification-List
An instance of OM class Entry-Modification-List comprises a sequence of changes to be made to
a directory entry.

An instance of this OM class has the OM attributes of its superclass (Object) and additionally the
OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Changes Object(Entry-Mod) - 1 or more -

Table 5-13 OM Attributes of an Entry-Modification-List

Changes
The modifications to be made, in the order specified, to the directory entry of the specified
object.

66 X/Open CAE Specification (1994)

Interface Class Definitions Extension

5.18 Extension
An instance of OM class Extension denotes a standardised extension to the directory service set
out in the standards. Such extensions will only be standardised in post-1988 versions of the
standards.

An instance of this OM class has the OM attributes of its superclass (Object) and additionally the
OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Crit Boolean - 1 false
Identifier Integer - 1 -
Item-Parameters any - 1 -

Table 5-14 OM Attributes of an Extension

Critical
Its value is one of:

• false
meaning that the originator will accept performance of the operation even if the
extension is not available.

• true
meaning that the originator must have the extended operation performed, or else have
an error reported if it cannot be.

Identifier
Identifies the service extension. The values of this OM attribute will be assigned only by
future versions of the standards.

Item-Parameters
This OM attribute supplies the parameters of the extension. Its syntax is determined by the
particular Identifier.

API to Directory Services (XDS), Issue 2 67

Filter Interface Class Definitions

5.19 Filter
An instance of OM class Filter is a basis for selecting or rejecting an object on the basis of
information in its directory entry. At any point in time, an attribute filter has a value relative to
every object. The value is false, true or undefined. The object is selected if, and only if, the
filter’s value is true.

An instance of this OM class has the OM attributes of its superclass (Object) and additionally the
OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Filter-Items Object(Filter-Item) - 0 or more -
Filters Object(Filter) - 0 or more -
Filter-Type Enum(Filter-Type) - 1 any

Table 5-15 OM Attributes of a Filter

A filter is a collection of simpler filters and elementary filter-items together with a Boolean
operation. The filter value is undefined if and only if all the component Filters and Filter-Items
are undefined. Otherwise, the filter has a Boolean value with respect to any directory entry,
which can be determined by evaluating each of the nested components and combining their
values using the Boolean operation. (Components whose value is undefined are ignored.)

Filter-Items
A collection of assertions, each relating to just one attribute of a directory entry.

Filters
A collection of simpler filters.

Filter-Type
The filter’s type. Its value may be:

• and
meaning that the filter is the logical conjunction of its components. The filter is true
unless any of the nested filters or filter items is false. If there are no nested components,
the filter is true.

• or
meaning that the filter is the logical disjunction of its components. The filter is false
unless any of the nested filters or filter items is true. If there are no nested components,
the filter is false.

• not
meaning that the result of this filter is reversed. There must be exactly one nested filter
or filter item. The filter is true if the enclosed filter or filter item is false, and is false if
the enclosed filter or filter item is true.

68 X/Open CAE Specification (1994)

Interface Class Definitions Filter-Item

5.20 Filter-Item
An instance of OM class Filter-Item is a component of a Filter. It is an assertion about the
existence or values of a single attribute type in a directory entry.

An instance of this OM class has the OM attributes of its superclasses (Object, Attribute) and
additionally the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Filter-Item-Type Enum(Filter-Item-Type) - 1 -
Final-Substring String(*) 1 or more 0-1 -
Initial-Substring String(*) 1 or more 0-1 -

Table 5-16 OM Attributes of a Filter-Item

Note that the OM attributes Attribute-Type and Attribute-Values are inherited from the superclass
Attribute.

The value of the filter item is undefined if:

• the Attribute-Type is not known

• any of the Attribute-Values do not conform to the attribute syntax defined for that attribute
type

• the Filter-Item-Type uses a matching rule that is not defined for the attribute syntax.

Access control restrictions may also cause the value to be undefined.

Filter-Item-Type
Identifies the type of the filter item and thereby the nature of the filter. Its value must be
one of the following:

• approximate-match
meaning that the filter is true if the directory entry contains at least one value of the
specified type that is approximately equal to that specified (the meaning of approximately
equal being implementation-dependent), and false otherwise.

Rules for approximate matching are locally defined. For example, an approximate
match might take into account spelling variations or employ phonetic comparison rules.
In the absence of any such capabilities, a DSA should treat an approximate match as a
test for equality.

There must be exactly one value of the OM attribute Attribute-Values .

• equality
meaning that the filter is true if the entry contains at least one value of the specified type
that is equal to that specified (according to the equality matching rule in force), and false
otherwise.

There must be exactly one value of the OM attribute Attribute-Values .

• greater-or-equal
meaning that the filter item is true if, and only if, at least one value of the attribute is
greater than or equal to the supplied value (using the appropriate ordering algorithm).

There must be exactly one value of the OM attribute Attribute-Values .

API to Directory Services (XDS), Issue 2 69

Filter-Item Interface Class Definitions

• less-or-equal
meaning that the filter item is true if, and only if, at least one value of the attribute is less
than or equal to the supplied value (using the appropriate ordering algorithm).

There must be exactly one value of the OM attribute Attribute-Values .

• present
meaning that the filter is true if the entry contains an attribute of the specified type, and
false otherwise.

Any values of the OM attribute Attribute-Values are ignored.

• substrings
meaning that the filter is true if the entry contains at least one value of the specified
attribute type that contains all of the specified substrings in the given order, and false
otherwise.

There can be any number of substrings given as values of the OM attribute Attribute-
Values , including none. There can also be a substring in Initial and/or Final. The
substrings shall be non-overlapping, but they may be separated from each other or from
the ends of the attribute value by zero or more string elements. However, there must
exist at least one attribute of type Attribute-Values , Initial-Substring or Final-Substring .

Final-Substring
If present, the substring that is to match the final portion of an attribute value in the entry.
This attribute may only exist if the Filter-Item-Type is equal to substrings.

Initial-Substring
If present, the substring that is to match the initial portion of an attribute value in the entry.
This attribute may only exist if the Filter-Item-Type is equal to substrings.

70 X/Open CAE Specification (1994)

Interface Class Definitions List-Info

5.21 List-Info
An instance of OM class List-Info is a portion of the results of a List() function call.

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclasses (Object, Common-Results) and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Object-Name Object(Name) - 0-1 -
Partial-Outcome-Qual Object(Partial-Outcome-Qual) - 0-1 -
Subordinates Object(List-Info-Item) - 0 or more -

Table 5-17 OM Attributes of a List-Info

Object-Name
The distinguished name of the target object of the operation. It will be present if the OM
attribute Alias-Dereferenced, inherited from the superclass Common-Results , is true.

Partial-Outcome-Qual
This OM attribute value is present if the list of subordinates is incomplete. The DSA or
DSAs that provided this list did not complete the search for some reason. The partial
outcome qualifier contains details of why the search was not completed, and which areas of
the directory were not searched.

Subordinates
Information about zero or more subordinate objects identified by the List() function.

API to Directory Services (XDS), Issue 2 71

List-Info-Item Interface Class Definitions

5.22 List-Info-Item
An instance of OM class List-Info-Item comprises details, returned by List(), of a single
subordinate object.

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclass (Object) and additionally the OM attributes
listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Alias-Entry Boolean - 1 -
From-Entry Boolean - 1 -
RDN Object(Relative-Name) - 1 -

Table 5-18 OM Attributes of a List-Info-Item

Alias-Entry
Indicates whether the object is an alias.

From-Entry
Indicates whether information about the object was obtained directly from its directory
entry, rather than a copy of the entry.

RDN
The Relative Distinguished Name of the object. If this is the name of an alias entry (as
indicated by Alias-Entry) it will not be dereferenced.

72 X/Open CAE Specification (1994)

Interface Class Definitions List-Result

5.23 List-Result
An instance of OM class List-Result comprises the results of a successful call to the List()
function.

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclass (Object) and additionally the OM attributes
listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
List-Info Object(List-Info) - 0-1 -
Uncorrelated-List-Info Object(List-Result) - 0 or more -

Table 5-19 Attributes of a List-Result

No instance will contain values of both the OM attributes.

List-Info
The results of the List() function, or a portion thereof. If the directory entry whose
subordinates are being listed has no subordinates, this attribute will have a single value
which will have a ‘subordinates’ attribute with no values.

Uncorrelated-List-Info
When the DUA has requested a protection request of signed, the returned information may
comprise a number of sets of results originating from and signed by different components of
the directory. Implementations may reflect this structure by nesting List-Result OM objects
as values of this OM attribute. Alternatively, they may collapse all results into a single
value of the OM attribute List-Info .

API to Directory Services (XDS), Issue 2 73

Name Interface Class Definitions

5.24 Name
The OM class Name represents a name of an object in the directory, or a part of such a name.

It is an abstract class, which has the attributes of its superclass (Object) and no other OM
attributes.

A name unambiguously distinguishes the object from all other objects whose entries appear in
the DIT. However, an object may have more than one name, that is, a name need not be unique.
A distinguished name is unique; there are no other distinguished names that identify the same
object. A relative distinguished name is a part of a name, and only distinguishes the object from
others that are its siblings. Most of the interface functions take a name argument, the value of
which must be an instance of one of the subclasses of this OM class. Thus, this OM class serves
to collect together all possible representations of names.

This specification defines one subclass of this OM class, and thus a single representation for
names:

DS-DN
which provides a representation for names, including distinguished names.

It is expected that vendors will define additional subclasses to provide alternative
representations.

74 X/Open CAE Specification (1994)

Interface Class Definitions Operation-Progress

5.25 Operation-Progress
An instance of OM class Operation-Progress specifies the progress or processing state of a
directory request.

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclass (Object) and additionally the OM attributes
listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Name-Resolution-Phase Enum(Name-Resolution-Phase) - 1 -
Next-RDN-To-Be-Resolved Integer - 0-1 -

Table 5-20 OM Attributes of an Operation-Progress

The target name mentioned below is the name upon which processing of the directory request is
currently focussed.

Name-Resolution-Phase
Indicates what phase has been reached in handling the target name. Its value is one of:

• completed
meaning that the DSA holding the target object has been reached.

• not-started
meaning that a DSA has not so far been reached with a naming context containing the
initial RDN(s) of the name.

• proceeding
meaning that the initial part of the name has been recognised, though the DSA holding
the target object has not yet been reached.

Next-RDN-To-Be-Resolved
Indicates to the DSA which of the RDNs in the target name is next to be resolved. It takes
the form of an integer in the range one to the number of RDNs in the name. This OM
attribute only has a value if the value of Name-Resolution-Phase is proceeding.

The constant Operation-Not-Started (DS_OPERATION_NOT_STARTED) may be used in the
Context of an operation instead of an instance of this OM class.

API to Directory Services (XDS), Issue 2 75

Partial-Outcome-Qualifier Interface Class Definitions

5.26 Partial-Outcome-Qualifier
An instance of OM class Partial-Outcome-Qualifier explains to what extent the results of a call
to the List() or Search() function are incomplete and why.

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclass (Object) and additionally the OM attributes
listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Limit-Problem Enum(Limit-Problem) - 0-1 -
Unavailable-Crit-Ext Boolean - 1 -
Unexplored Object(Continuation-Reference) - 0 or more -

Table 5-21 OM Attributes of a Partial-Outcome-Qual

Limit-Problem
If present, explains, in whole or in part, why the results are partial. Its value is one of:

• administrative-limit-exceeded
meaning that an administrative limit was reached,

• size-limit-exceeded
meaning that the maximum number of objects specified as a service control was
reached,

• time-limit-exceeded
meaning that the maximum number of seconds specified as a service control was
reached.

Unavailable-Critical-Extensions
If true, indicates that some part of the directory cannot provide a requested critical service
extension. The user requested one or more standard service extensions, by including values
of the OM attribute Extensions in the Context supplied for the operation, and further
indicated some of them to be essential by setting the OM attribute Critical in the extension
to be true. Some DSA or DSAs cannot perform some of the critical extensions. In general, it
is not possible to determine which DSA could not perform which particular extension.

Unexplored
Identifies any regions of the directory that were left unexplored, in such a way that the
directory request can be continued. Only continuation references within the scope specified
by the Scope-Of-Referral service control are included.

76 X/Open CAE Specification (1994)

Interface Class Definitions Presentation-Address

5.27 Presentation-Address
An instance of OM class Presentation-Address is a presentation address of an OSI application
entity, used for OSI communications with it.

An instance of this OM class has the OM attributes of its superclasses (Object, Address) and
additionally the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
N-Addresses String(Octet) - 1 or more -
P-Selector String(Octet) - 0-1 -
S-Selector String(Octet) - 0-1 -
T-Selector String(Octet) - 0-1 -

Table 5-22 OM Attributes of a Presentation-Address

N-Addresses
The network addresses of the application entity.

P-Selector
The presentation selector.

S-Selector
The session selector.

T-Selector
The transport selector.

5.28 Read-Result
An instance of OM class Read-Result comprises the result of a successful call to the Read()
function.

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclasses (Object, Common-Results) and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Entry Object(Entry-Info) - 1 -

Table 5-23 OM Attributes of a Read-Result

Entry
The information extracted from the directory entry of the target object.

API to Directory Services (XDS), Issue 2 77

Relative-Name Interface Class Definitions

5.29 Relative-Name
The OM class Relative-Name represents the Relative Distinguished Names of objects in the
directory.

It is an abstract class, which has the attributes of its superclass (Object) and no other OM
attributes.

A relative distinguished name (RDN) is a part of a name, and only distinguishes the object from
others that are its siblings. This OM class serves to collect together all possible representations
of RDNs. An argument of interface functions that is an RDN, or an OM attribute value that is an
RDN, will be an instance of one of the subclasses of this OM class.

This specification defines one subclass of this OM class, and thus a single representation for
RDNs:

DS-RDN
which provides a representation for relative distinguished names.

It is expected that vendors will define additional subclasses to provide alternative
representations.

5.30 Search-Information
An instance of OM class Search-Info is a portion of the result of a Search() function call.

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclasses (Object, Common-Results) and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Entries Object(Entry-Info) - 0 or more -
Object-Name Object(Name) - 0-1 -
Partial-Outcome-Qual Object(Partial-Outcome-Qual) - 0-1 -

Table 5-24 OM Attributes of a Search-Info

Entries
Information about zero or more objects found by the Search() function that matched the
given selection criteria.

Object-Name
The distinguished name of the target object of the operation. It will be present if the OM
attribute Alias-Dereferenced, inherited from the superclass Common-Results , is true.

Partial-Outcome-Qual
This OM attribute value is only present if the list of entries is incomplete. The DSA or DSAs
that provided this list did not complete the search for some reason. The partial outcome
qualifier contains details of why the search was not completed, and which areas of the
directory were not searched.

78 X/Open CAE Specification (1994)

Interface Class Definitions Search-Result

5.31 Search-Result
An instance of OM class Search-Result comprises the result of a successful call to the Search()
function.

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclass (Object) and additionally the OM attributes
listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Search-Info Object(Search-Info) - 0-1 -
Uncorrelated-Search-Info Object(Search-Result) - 0 or more -

Table 5-25 OM Attributes of a Search-Result

No instance will contain values of both the OM attributes.

Search-Info
The result of the Search() function, or a portion thereof.

Uncorrelated-Search-Info
When the DUA has requested a protection request of signed, the returned information may
comprise a number of sets of results originating from and signed by different components of
the directory. Implementations may reflect this structure by nesting Search-Result OM
objects as values of this OM attribute. Alternatively, they may collapse all results into a
single value of the OM attribute Search-Info .

API to Directory Services (XDS), Issue 2 79

Session Interface Class Definitions

5.32 Session
An instance of OM class Session identifies a particular link from the application program to a
DUA.

An instance of this OM class has the OM attributes of its superclass (Object) and additionally the
OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
DSA-Address Object(Address) - 0-1 local1

DSA-Name Object(Name) - 0-1 local1

File-Descriptor Integer - 1 see below
Requestor Object(Name) - 0-1 -

1The default values of these OM attributes are locally-administered.

Table 5-26 OM Attributes of a Session

The Session collects together all the information that describes a particular directory interaction.
The parameters that are to control such a session are set up in an instance of this OM class,
which is then passed as an argument to Bind(). This sets the OM attributes that describe the
actual characteristics of this session, and starts the session. Such a started session must be
passed as the first argument to each interface function. The result of modifying a started session
is unspecified. Finally, Unbind() is used to terminate the session, after which the parameters can
be modified and a new session started using the same instance, if required. Multiple concurrent
sessions can be run, by using multiple instances of this OM class.

The OM attributes of a session are:

DSA-Address
Indicates the address of the default DSA named by DSA-Name.

DSA-Name
Indicates the distinguished name of the DSA that will be used by default to service directory
requests.

File-Descriptor (optional functionality)
Indicates the file descriptor associated with the session. The file descriptor may be used in
subsequent calls to vendor-specific system facilities to suspend the process (for example,
System V poll() or BSD (Berkeley Source Distribution) select()). Its use for any other purpose
is unspecified.

If the implementation does not define any suitable suspension facilities, or if the session is
not started, the value is No-Valid-File-Descriptor (DS_NO_VALID_FILE_DESCRIPTOR).

Requestor
The distinguished name of the user of this directory session.

Applications can assume that an object of OM class Session, created with default values of all its
OM attributes, will work with all the interface functions. Local administrators should ensure
that this is the case. Such a session can be created by passing the constant Default-Session
(DS_DEFAULT_SESSION) as an argument to Bind().

80 X/Open CAE Specification (1994)

Chapter 6

Errors

6.1 Introduction
This Chapter defines the errors that can arise in the use of the interface and describes the method
used to report them.

Errors are reported to the application program by means of the Status that is the result of every
function (it is the function result in the C language binding for most functions). A function that
completes successfully returns the value success [DS_SUCCESS]. When a function is not
successful, and has been given a session argument that refers to a valid workspace or (in the
cases of Bind(), Shutdown() and Version()) has been given a valid workspace as a workspace
argument, then it will return a private object in that workspace, and the private object will be of
one of the following classes: Error, Attribute-Error or Referral. When one of the functions
Bind(), Shutdown() or Version() has been given an invalid workspace as a workspace argument,
then it will return the error constant [DS_INVALID_WORKSPACE]. When a function is not
successful under other circumstances, it will return the error constant [DS_NO_WORKSPACE].

The picture is more complicated for asynchronous operations, because they can fail at two
stages; either before the remote operation is started, or during it. The first type is reported
immediately in the status of the invoking function, whilst the second is returned as the
Operation-Status result of a later call to Receive-result().

Errors are classified into ten OM classes. The standards (see references ISO 9594) classify errors
into eight different kinds: Abandoned, Abandon-Failed, Attribute-Error, Name-Error, Referral,
Security-Error, Service-Error and Update-Error. The DirectoryBind operation returns a
Security-Error or a Service-Error. This interface never returns an Abandoned error. The
interface also defines three more kinds of error: Library-Error, Communications-Error and
System-Error. Each of these kinds of error is represented by an OM class, and these are detailed
below in alphabetical order. All of them inherit the OM attribute Problem from their superclass
Error, which is described first. The OM classes defined in this Chapter are part of the Directory
Service package introduced in Section 5.1 on page 53.

In order to allow automatic connection management, the interface may not communicate with a
DSA when Bind() is called, but may defer it until an enquiry or modification is requested.
Because of this flexibility, all functions can return the same errors as Bind(). For example, a read
operation may return an authentication error because the connection was deferred until access
was actually needed. Such errors may also arise in the course of following an automatic referral
list, irrespective of the connection management policy.

API to Directory Services (XDS), Issue 2 81

OM Class Hierarchy Errors

6.2 OM Class Hierarchy
This Section depicts the hierarchical organisation of the OM classes defined in this Chapter and
so indicates how OM attributes are inherited from superclasses. Subclassification is indicated by
indentation, and the names of abstract OM classes are rendered in italics. Thus, for example, the
concrete OM class Attribute-Problem is an immediate subclass of the abstract OM class Error,
which in turn is an immediate subclass of the abstract OM class Object.

Object (defined in reference XOM)
— Attribute-Error
— Continuation-Reference (see Chapter 5)

— Referral
— Error

— Abandon-Failed
— Attribute-Problem
— Communications-Error
— Library-Error
— Name-Error
— Security-Error
— Service-Error
— System-Error
— Update-Error

The application program is not permitted to create or modify any instances of any of these OM
classes. Also, this specification does not mandate that any OM classes are encodable using OM-
Encode() and OM-Decode().

A Referral is not a real error, and is not a subclass of Error, though it is reported in the same way
as a Status result. An Attribute-Error, also not a subclass of Error, is special because it may
report several problems at once. Each one is reported in an Attribute-Problem, which is a
subclass of Error.

82 X/Open CAE Specification (1994)

Errors Error

6.3 Error
The OM class Error comprises the parameters common to all errors.

It is an abstract OM class, which has the OM attributes of its superclass (Object) and additionally
the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Problem Enum(Problem) - 1 -

Table 6-1 OM Attributes of an Error

Details of errors are returned in an instance of a subclass of this OM class. Each such subclass
represents a particular kind of error, and is one of: Abandon-Failed, Attribute-Problem,
Communications-Error, Library-Error, Name-Error, Security-Error, Service-Error, System-Error
or Update-Error.

The OM attributes of an Error are:

Problem
Gives details of the error. A number of possible values are defined, but implementations
may define additional values. Implementations will not return other values for error
conditions described in this Chapter. Each of the standard values listed below is described
under the relevant error OM class:

administrative-limit-exceeded,
affects-multiple-DSAs,
alias-dereferencing-problem,
alias-problem,
attribute-or-value-already-exists,
bad-argument,
bad-class,
bad-context,
bad-name,
bad-session,
bad-workspace,
busy,
cannot-abandon,
chaining-required,
communications-problem,
constraint-violation,
dit-error,
entry-already-exists,
inappropriate-authentication,
inappropriate-matching,
insufficient-access-rights,
invalid-attribute-syntax,
invalid-attribute-value,
invalid-credentials,
invalid-reference,
invalid-signature,
loop-detected,
miscellaneous,

API to Directory Services (XDS), Issue 2 83

Error Errors

missing-type,
mixed-synchronous,
naming-violation,
no-information,
no-such-attribute-or-value,
no-such-object,
no-such-operation,
not-allowed-on-RDN,
not-allowed-on-non-leaf,
not-supported,
object-class-modification-prohibited,
object-class-violation,
out-of-scope,
protection-required,
system error
time-limit-exceeded,
too-late,
too-many-operations,
too-many-sessions,
unable-to-proceed,
unavailable,
unavailable-critical-extension,
undefined-attribute-type,
unwilling-to-perform.

84 X/Open CAE Specification (1994)

Errors Abandon_failed

6.4 Abandon_failed
An instance of OM class Abandon-Failed reports a problem encountered during an attempt to
abandon an operation.

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclasses (Object, Error) and no additional OM
attributes.

The following OM attribute is inherited from the superclass Error.

Problem
Identifies the problem. Its value is one of:

• cannot-abandon
meaning that an attempt was made to abandon an operation for which this is prohibited,
or the abandon could not be performed.

• no-such-operation
meaning that the directory has no knowledge of the operation that is to be abandoned.

• too-late
meaning that the operation is already completed, successfully or erroneously.

6.5 Attribute-Error
An instance of OM class Attribute-Error reports an attribute-related directory error.

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclass (Object) and additionally the OM attributes
listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Object-Name Object(Name) - 1 -
Problems Object(Attribute-Problem) - 1 or more -

Table 6-2 OM Attributes of an Attribute-Error

Object-Name
The name of the directory entry to which the operation was being applied when the failure
occurred.

Problems
Documents the attribute-related problems encountered. Uniquely, an Attribute-Error can
report several problems at once. All are related to the above object.

API to Directory Services (XDS), Issue 2 85

Attribute-Problem Errors

6.6 Attribute-Problem
An instance of OM class Attribute-Problem documents one attribute-related problem
encountered while performing an operation as requested on a particular occasion.

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclasses (Object, Error) and additionally the OM
attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Attribute-Type String(Object-Identifier) - 1 -
Attribute-Value any - 0-1 -

Table 6-3 OM Attributes of an Attribute-Problem

Attribute-Type
Identifies the type of the attribute with which the problem is associated.

Attribute-Value
The attribute value with which the problem is associated. Its syntax is determined by the
value of Attribute-Type. This OM attribute shall be present if necessary to avoid ambiguity.

The following OM attribute is inherited from the superclass Error.

Problem
Identifies the problem. Its value is one of:

• attribute-or-value-already-exists
meaning that an attempt was made to add an attribute or value that is already present in
the directory entry in question.

• constraint-violation
meaning that the attribute or attribute value does not conform to the constraints
imposed by the standards (see reference ISO 9594) or by the attribute definition (for
example, the value exceeds its upper bound).

• inappropriate-matching
meaning that an attempt was made to use a matching rule that is not defined for the
attribute type.

• invalid-attribute-syntax
meaning that a value presented as an argument does not conform to the attribute syntax
of the attribute type.

• no-such-attribute-or-value
meaning that the specified attribute or value was not found in the directory entry in
question.

This is only reported by a Read() or Search() operation if an explicit list of attributes is
specified by the Selection argument, but none of them are present in the entry.

• undefined-attribute-type
meaning that the attribute type, which was supplied as an argument to Add-Entry() or
Modify-Entry(), is undefined.

86 X/Open CAE Specification (1994)

Errors Communications-Error

6.7 Communications-Error
An instance of OM class Communications-Error reports an error occurring in the other OSI
services supporting the Directory Service.

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclasses (Object, Error) and no additional OM
attributes.

Communications errors include those arising in Remote Operation, Association Control,
Presentation, Session and Transport.

The following OM attribute is inherited from the superclass Error:

Problem
Its value is communications-problem.

API to Directory Services (XDS), Issue 2 87

Library-Error Errors

6.8 Library-Error
An instance of OM class Library-Error reports an error detected by the interface function library.

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclasses (Object, Error) and no additional OM
attributes.

Each function has several possible errors which can be detected by the library itself, and which
are returned directly by the subroutine. These errors occur when the library itself is incapable of
performing an action, submitting a service request, or deciphering a response from the directory.

The following OM attribute is inherited from the superclass Error:

Problem
Identifies the particular library error that has occurred. The ERRORS section of each
function description lists just those which that function can return. Its value is one of:

• bad-argument
meaning that a bad argument (other than name) was supplied. Use of an instance of OM
class Attribute with no values of the OM attribute Attribute-Values as an input argument
to a directory service function will result in this error (because directory attributes
always have at least one value).

• bad-class
meaning that the OM class of an argument is not supported for this operation.

• bad-context
meaning that an invalid context argument was supplied.

• bad-name
meaning that an invalid name argument was supplied.

• bad-session
meaning that an invalid session was supplied.

• bad-workspace
meaning that a function was passed a session argument that was associated with one
workspace and was also passed another argument that had been created in a different
workspace.

• miscellaneous
meaning that a miscellaneous error occurred in interacting with the directory. This error
will be returned if the interface cannot clear a transient system error by retrying the
affected system call.

• missing-type
meaning that the attribute type was not included in an attribute-value-assertion passed
as part of a distinguished name argument.

• mixed-synchronous
meaning that an attempt to start a synchronous operation was made whilst there were
outstanding asynchronous operations.

• not-supported
meaning that an attempt was made to use optional functionality, which is not available
in this implementation.

88 X/Open CAE Specification (1994)

Errors Library-Error

• too-many-operations
meaning that no more directory operations can be performed until at least one
asynchronous operation has completed.

• too-many-sessions
meaning that no more directory sessions can be started.

API to Directory Services (XDS), Issue 2 89

Name-Error Errors

6.9 Name-Error
An instance of OM class Name-Error reports a name-related directory error.

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclasses (Object, Error) and additionally the OM
attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Matched Object(Name) - 1 -

Table 6-4 OM Attributes of a Name-Error

Matched
The initial portion, up to but excluding the first RDN that is unrecognised, of the name that
was supplied or of the name resulting from dereferencing an alias. It names the lowest
entry (object or alias) in the DIT that was matched.

The following OM attribute is inherited from the superclass Error.

Problem
Identifies the cause of the failure. Its value is one of:

• alias-dereferencing-problem
meaning that an alias was encountered where an alias is not allowed. An alias was
encountered in a modification operation or when the Dont-Dereference-Alias service
control was set, or one alias points to another alias.

• alias-problem
meaning that an alias has been dereferenced which names an object that does not exist
(that is, for which no directory entry can be found).

• invalid-attribute-value
meaning that the attribute value in an AVA in an RDN in the name does not conform to
the attribute syntax prescribed for the attribute type in the AVA. (This problem is called
invalidAttributeSyntax in the standards, but that name is used only for an Attribute-
Problem in this interface).

• no-such-object
meaning that the specified name does not match the name of any object in the directory.

90 X/Open CAE Specification (1994)

Errors Referral

6.10 Referral
An instance of OM class Referral reports failure to perform an operation and redirects the
requestor to one or more access points better equipped to perform it.

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclasses (Object, Continuation-Reference) and no
additional OM attributes.

The referral is a continuation reference by means of which the operation may be progressed.

6.11 Security-Error
An instance of OM class Security-Error reports a security-related directory error.

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclasses (Object, Error) and no additional OM
attributes.

The following OM attribute is inherited from the superclass Error:

Problem
Identifies the cause of the failure. Its value is one of:

• inappropriate-authentication
meaning that the level of security attached to the requestor’s credentials is inconsistent
with the level of protection requested (for example, simple credentials were supplied
while strong credentials were required).

• insufficient-access-rights
meaning that the requestor does not have permission to perform the operation. A Read()
operation will only return this error when access rights preclude the reading of all
requested attribute values.

• invalid-credentials
meaning that the requestor’s credentials are invalid.

• invalid-signature
meaning that the signature affixed to the request is invalid.

• no-information
meaning that the request produced a security error for which no other information is
available.

• protection-required
meaning that the directory is unwilling to perform the operation, because it was
unsigned.

API to Directory Services (XDS), Issue 2 91

Service-Error Errors

6.12 Service-Error
An instance of OM class Service-Error reports a directory error related to the provision of
service.

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclasses (Object, Error) and no additional OM
attributes.

The following OM attribute is inherited from the superclass Error:

Problem
Identifies the cause of the failure. Its value is one of:

• administrative-limit-exceeded
meaning that the operation could not be performed within the administrative
constraints on the directory and no partial results are available.

• busy
meaning that some part of the directory is temporarily too busy to perform the operation
(but may be able to do so after a short while).

• chaining-required
meaning that chaining is required to perform the operation but is prohibited by the
Chaining-Prohibited service control.

• dit-error
meaning that an inconsistency has been detected in the DIT, which may be localised to a
particular entry or set of entries.

• invalid-reference
meaning that the DSA was unable to perform the request as directed (via Operation-
Progress in the Context). This may be because of an invalid referral.

• loop-detected
meaning that a DSA detected a loop within the directory.

• out-of-scope
meaning that the directory cannot provide a referral or partial outcome qualifier within
the required scope.

• time-limit-exceeded
meaning that the operation could not be performed within the time specified by the
time-limit service control, and no partial results are available.

• unable-to-proceed
meaning that a DSA without administrative authority over a particular naming context
was asked to resolve a name in that context.

• unavailable
meaning that some part of the directory is not currently available.

• unavailable-critical-extension
meaning that one or more critical extensions were requested but not available.

• unwilling-to-perform
meaning that some part of the directory is not willing to perform the operation because
it requires excessive resources, or because doing so would violate administrative policy.

92 X/Open CAE Specification (1994)

Errors System-Error

6.13 System-Error
An instance of OM class System-Error reports an error occurring in the underlying operating
system.

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclasses (Object, Error) and no additional OM
attributes, though there may be additional implementation-defined OM attributes.

The following OM attribute is inherited from the superclass Error:

Problem
Identifies the cause of the failure. Its value is the same as that of errno defined in the C
language.

The standard names of system errors are defined in the <errno.h> header, which is defined
in the XPG4 System Interfaces and Headers document (see reference XPG4). and
additional names may be implementation-defined.

If a transient error occurs ([EINTR] or [EAGAIN]), implementations will retry the affected
operation and do not report these errors. If such an error persists they may report the
Library-Error ‘‘miscellaneous’’ or an implementation-defined library error.

API to Directory Services (XDS), Issue 2 93

Update-Error Errors

6.14 Update-Error
An instance of OM class Update-Error reports a directory error peculiar to a modification
operation.

An application is not permitted to create or modify instances of this OM class. An instance of
this OM class has the OM attributes of its superclasses (Object, Error) and no additional OM
attributes.

The following OM attribute is inherited from the superclass Error:

Problem
Identifies the cause of the failure. Its value is one of:

• affects-multiple-DSAs
meaning that the modification would affect several DSAs, which is not permitted. Local
agreement between DSAs may allow modifications which do affect multiple DSAs, such
as adding entries whose immediate superior entry is in a different DSA. This problem
will not be reported in such cases.

• entry-already-exists
meaning that the name passed to Add-Entry() already exists.

• naming-violation
meaning that the modification would leave the DIT improperly structured. That is, it
would add an entry as the subordinate of an alias, or in a region of the DIT not permitted
to a member of its object class, or would define an RDN that includes a forbidden
attribute type.

• not-allowed-on-non-leaf
meaning that the modification would be to an interior node of the DIT (and such a
modification is prohibited).

• not-allowed-on-RDN
meaning that the modification would alter an object’s RDN.

• object-class-modification-prohibited
meaning that the modification would alter an entry’s Object Class attribute.

• object-class-violation
meaning that the modification would leave a directory entry inconsistent with its Object
Class definition.

94 X/Open CAE Specification (1994)

Chapter 7

Directory Class Definitions

7.1 Introduction
The standards define a number of attribute types (known as the selected attribute types), attribute
syntaxes, attribute sets and object classes (known as the selected object classes). These definitions
allow the creation and maintenance of directory entries for a number of common objects, so that
the representation of all such objects will be the same throughout the directory. The definitions
are chiefly in the ISO Standards 9594-6 and 9594-7 with additional material in 9594-1 and 9594-8
(see Referenced Documents). They include such objects as Country, Person and Organisation.

This Chapter sets out names for each of these items, and defines OM classes to represent those
which are not represented directly by OM syntaxes. The values of attributes in the directory are
not restricted to those discussed in this Chapter, and new attribute types and syntaxes may be
created at any time. Implementations are likely to add additional definitions. Section 3.5.1 on
page 20 defines how the values of other syntaxes are represented in the interface.

The constants and OM classes defined in this Chapter are additional to those presented in
Chapter 5, since they are not essential to the working of the interface, but instead allow directory
entries to be utilised. The definitions are further divided into three packages, each of which is
optionally supported.

One of the packages is called the Basic Directory Contents Package (BDCP) and contains all of
the definitions except those concerned with strong authentication. These latter definitions are
collected in the Strong Authentication Package (SAP). A third optional package is the MHS
Directory User Package (MDUP), which contains definitions to support the use of the Directory
by 1988 X.400 User Agents and MTAs for the purposes of name resolution, DL expansion and
capability assessment. The definitions are based upon the attribute types and syntaxes specified
in X.402, Annex A.

The object identifier associated with the BDCP is
{iso(1) member-body(2) us(840) IEEE-P1224.2(10014) bdcp(1)}

(with the encoding "\x2a\x86\x48\xce\x1e\x1"). This identifier is represented by the constant
Basic-Directory-Contents-Package (DS_BASIC_DIRECTORY_CONTENTS_PACKAGE)

The C constants associated with this package are in the <xdsbdcp.h> header.

The object identifier associated with the SAP is
{iso(1) member-body(2) us(840) IEEE-P1224.2(10014) sap(2)}

(with the encoding "\x2a\x86\x48\xce\x1e\x2"). This identifier is represented by the constant
Strong-Authentication-Package (DS_STRONG_AUTHENTICATION_PACKAGE)

The C constants associated with this package are in the <xdssap.h> header.

The object identifier associated with the MDUP is
{iso(1) member-body(2) us(840) IEEE-P1224.2(10014) mdup(3)}

(with the encoding "\x2a\x86\x48\xce\x1e\x3"). This identifier is represented by the constant
MHS-Directory-User-Package (DS_MHS_DIRECTORY_USER_PACKAGE)

The C constants associated with this package are in the <xdsmdup.h> header.

API to Directory Services (XDS), Issue 2 95

Introduction Directory Class Definitions

The concepts and notation used are introduced in Section 1.3 on page 3, and Section 5.1 on page
53, and fully explained in the referenced XOM Specification. A complete explanation of the
meaning of the attributes and object classes is not given, since this is outside the scope of this
specification. The purpose here is simply to present the representation of these items in the
interface.

The selected attribute types are presented first, followed by the selected object classes, and
finally the OM class hierarchy and OM class definitions required to support the selected
attribute types.

96 X/Open CAE Specification (1994)

Directory Class Definitions Selected Attribute Types

7.2 Selected Attribute Types
This Section presents the attribute types defined in the standards for use in directory entries.
Each directory entry is made up of a number of attributes, each of which comprises an attribute
type together with one or more attribute values. The form of each value of an attribute is
determined by the attribute syntax associated with the attribute’s type.

In the interface, attributes appear as instances of OM class Attribute, with the attribute type
represented as the value of the OM attribute Attribute-Type and the attribute value(s) represented
as the value(s) of the OM attribute Attribute-Values . Each attribute type has an object-identifier,
assigned in the standards, which is the value of the OM attribute Attribute-Type. These object-
identifiers are represented in the interface by constants with the same name as the (directory)
attribute, prefixed with A- for ease of identification. (Consequently, the C constants start with
DS_A_.)

Several of the attribute types are defined in the 1992 version of the Standards to have ASN.1
syntax DirectoryString . This is a choice of TeletexString , PrintableString and
UniversalString . In these cases, the values of the corresponding Attribute-Values OM
attributes can have syntaxes String(Teletex) , String(Printable) or
String(Universal) . This is indicated by describing their syntaxes as String(Directory) .

This Section contains two tables. The first tabulates the names of the attribute types defined in
the standards, together with the BER encoding of the object identifiers associated with each of
them. The second tabulates the names of the attribute types, together with the OM Value Syntax
used in the interface to represent values of that attribute type. The table also includes the range
of lengths permitted for the string types, an indication of whether the attribute can be multi-
valued, and an indication of which matching rules are provided for the syntax. Following the
table is a brief description of each attribute.

The standards define matching rules that are used for deciding whether two values are equal (E),
for ordering two values (O), and for identifying one value as a substring of another (S) in
directory operations. Specific matching rules are given below for certain attributes.
Additionally, the following three general rules apply as indicated.

• For all attribute values whose syntax is String(Numeric) , String(Printable) or
String(Teletex) , differences caused by the presence of spaces preceding the first
printing character, spaces following the last printing character, and more than one
consecutive space anywhere within the values, shall be considered insignificant.

• For all attribute values whose syntax is String(Teletex) , differences in the case of
alphabetical characters shall be considered insignificant.

• For all attribute values whose syntax is indicated as String(Directory) , differences in
the case of alphabetical characters shall be considered insignificant and, if the strings being
compared are of different syntax, the comparison shall proceed as normal so long as the
corresponding characters are in both character sets, but shall fail otherwise.

API to Directory Services (XDS), Issue 2 97

Selected Attribute Types Directory Class Definitions

Table 7-1 Object Identifiers for Selected Attribute Types

Note: The third and fourth columns of this table contain the decimal and
hexadecimal values respectively of the octets of the BER encoding of the
object identifier. All BDCP and SAP package object identifiers stem from
the root {joint-iso-ccitt ds(5) attributeType(4)}. MDUP object identifiers
stem from the root {joint-iso-ccitt mhs-motis(6) arch(5) at(2)}.

Package Attribute Type Object Identifier BER
decimal hex

BDCP A-Aliased-Object-Name 85, 4, 1 \x55\x04\x01
SAP A-Authority-Revoc-List 85, 4, 38 \x55\x04\x26
BDCP A-Business-Category 85, 4, 15 \x55\x04\x0F
SAP A-CA-Cert 85, 4, 37 \x55\x04\x25
SAP A-Cert-Revoc-List 85, 4, 39 \x55\x04\x27
BDCP A-Common-Name 85, 4, 3 \x55\x04\x03
BDCP A-Country-Name 85, 4, 6 \x55\x04\x06
SAP A-Cross-Cert-Pair 85, 4, 40 \x55\x04\x28
MDUP A-Deliverable-Content-Length 86, 5, 2, 0 \x56\x05\x02\x00
MDUP A-Deliverable-Content-Types 86, 5, 2, 1 \x56\x05\x02\x01
MDUP A-Deliverable-EITs 86, 5, 2, 2 \x56\x05\x02\x02
MDUP A-DL-Members 86, 5, 2, 3 \x56\x05\x02\x03
MDUP A-DL-Submit-Permissions 86, 5, 2, 4 \x56\x05\x02\x04
BDCP A-Description 85, 4, 13 \x55\x04\x0D
BDCP A-Dest-Indicator 85, 4, 27 \x55\x04\x1B
BDCP A-Facsimile-Telephone-Number 85, 4, 23 \x55\x04\x17
BDCP A-International-ISDN-Number 85, 4, 25 \x55\x04\x19
BDCP A-Knowledge-Information 85, 4, 2 \x55\x04\x02
BDCP A-Locality-Name 85, 4, 7 \x55\x04\x07
BDCP A-Member 85, 4, 31 \x55\x04\x1F
MDUP A-Message-Store 86, 5, 2, 5 \x56\x05\x02\x05
BDCP A-Object-Class 85, 4, 0 \x55\x04\x00
MDUP A-OR-Address 86, 5, 2, 6 \x56\x05\x02\x06
BDCP A-Organization-Name 85, 4, 10 \x55\x04\x0A
BDCP A-Organizational-Unit-Name 85, 4, 11 \x55\x04\x0B
BDCP A-Owner 85, 4, 32 \x55\x04\x20
BDCP A-Phys-Deliv-O ff-Name 85, 4, 19 \x55\x04\x13
BDCP A-Post-Office-Box 85, 4, 18 \x55\x04\x12
BDCP A-Postal-Address 85, 4, 16 \x55\x04\x10
BDCP A-Postal-Code 85, 4, 17 \x55\x04\x11
BDCP A-Pref-Deliv-Method 85, 4, 28 \x55\x04\x1C
MDUP A-Pref-Deliv-Methods 86, 5, 2, 7 \x56\x05\x02\x07
BDCP A-Presentation-Address 85, 4, 29 \x55\x04\x1D
BDCP A-Registered-Address 85, 4, 26 \x55\x04\x1A
BDCP A-Role-Occupant 85, 4, 33 \x55\x04\x21
BDCP A-Search-Guide 85, 4, 14 \x55\x04\x0E
BDCP A-See-Also 85, 4, 34 \x55\x04\x22
BDCP A-Serial-Number 85, 4, 5 \x55\x04\x05
BDCP A-State-Or-Province-Name 85, 4, 8 \x55\x04\x08
BDCP A-Street-Address 85, 4, 9 \x55\x04\x09
BDCP A-Support-Applic-Context 85, 4, 30 \x55\x04\x1E
MDUP A-Supp-Auto-Actions 86, 5, 2, 8 \x56\x05\x02\x08
MDUP A-Supp-Content-Types 86, 5, 2, 9 \x56\x05\x02\x09
MDUP A-Supp-Opt-Attributes 86, 5, 2, 10 \x56\x05\x02\x0a

98 X/Open CAE Specification (1994)

Directory Class Definitions Selected Attribute Types

BDCP A-Surname 85, 4, 4 \x55\x04\x04
BDCP A-Telephone-Number 85, 4, 20 \x55\x04\x14
BDCP A-Teletex-Term-Ident 85, 4, 22 \x55\x04\x16
BDCP A-Telex-Number 85, 4, 21 \x55\x04\x15
BDCP A-Title 85, 4, 12 \x55\x04\x0C
SAP A-User-Cert 85, 4, 36 \x55\x04\x24
BDCP A-User-Password 85, 4, 35 \x55\x04\x23
BDCP A-X121-Address 85, 4, 24 \x55\x04\x18

Table 7-2 Representation of Values for Selected Attribute Types
1 As permitted by ISO 3166.
2 As permitted by Recommendations F.1 and F.31.
3 As permitted by E.164.
4 As permitted by E.123 (for example, +44 582 10101).
5 As permitted by X.121.

Value Multi- Matching
Attribute Type OM Value Syntax Length Valued Rules
A-Aliased-Object-Name Object(Name) - no E
A-Authority-Revoc-List Object(Revocation-List) - yes
A-Business-Category String(Directory) 1-128 yes E, S
A-CA-Cert Object(Certificate) - yes
A-Cert-Revoc-List Object(Revocation-List) - yes
A-Common-Name String(Directory) 1-64 yes E, S
A-Country-Name String(Printable) 1 2 no E
A-Cross-Cert-Pair Object(Certificate-Pair) - yes
A-Deliverable-Content-Length Integer - no
A-Deliverable-Content-Types String(Object-Identifier) - yes
A-Deliverable-EITs String(Object-Identifier) - yes
A-Description String(Directory) 1-1024 yes E, S
A-Dest-Indicator String(Printable) 2 1-128 yes E, S
A-DL-Members Object(OR-Name) - yes
A-DL-Submit-Permissions Object(DL-Submit-Permission) - yes
A-Facsimile-Telephone-Number Object(Facsimile-Telephone-Number) - yes
A-International-ISDN-Number String(Numeric) 3 1-16 yes
A-Knowledge-Information String(Directory) - yes E, S
A-Locality-Name String(Directory) 1-128 yes E, S
A-Member Object(Name) - yes E
A-Message-Store Object(DS-DN) - no
A-Object-Class String(Object-Identifier) - yes E
A-OR-Addresses Object(OR-Address) - yes
A-Organization-Name String(Directory) 1-64 yes E, S
A-Organizational-Unit-Name String(Directory) 1-64 yes E, S
A-Owner Object(Name) - yes E
A-Phys-Deliv-O ff-Name String(Directory) 1-128 yes E, S
A-Post-Office-Box String(Directory) 1-40 yes E, S
A-Postal-Address String(Directory) - yes E
A-Postal-Code String(Directory) 1-40 yes E, S
A-Pref-Deliv-Method Enum(Pref-Deliv-Method) - yes
A-Pref-Deliv-Methods Enum(Delivery-Mode) - no E

API to Directory Services (XDS), Issue 2 99

Selected Attribute Types Directory Class Definitions

A-Presentation-Address Object(Presentation-Address) - no E
A-Registered-Address Object(Postal-Address) - yes
A-Role-Occupant Object(Name) - yes E
A-Search-Guide Object(Search-Guide) - yes
A-See-Also Object(Name) - yes E
A-Serial-Number String(Printable) 1-64 yes E, S
A-State-Or-Province-Name String(Directory) 1-128 yes E, S
A-Street-Address String(Directory) 1-128 yes E, S
A-Support-Applic-Context String(Object-Identifier) - yes E
A-Supp-Auto-Actions String(Object-Identifier) - yes
A-Supp-Content-Types String(Object-Identifier) - yes
A-Supp-Opt-Attributes String(Object-Identifier) - yes
A-Surname String(Directory) 1-64 yes E, S
A-Telephone-Number String(Printable) 4 1-32 yes E, S
A-Teletex-Term-Ident Object(Teletex-Term-Ident) - yes
A-Telex-Number Object(Telex-Number) - yes
A-Title String(Directory) 1-64 yes E, S
A-User-Cert Object(Certificate) - yes
A-User-Password String(Octet) 0-128 yes
A-X121-Address String(Numeric) 5 1-15 yes E, S

Throughout the descriptions that follow, the term object denotes the (directory) object whose
(directory) entry contains the corresponding (directory) attributes.

A-Aliased-Object-Name
This attribute occurs only in alias entries. It gives the distinguished name of the object that
is provided with an alias by the entry in which this attribute occurs. An alias is an
alternative to an object’s distinguished name. Any object may (but need not) have one or
more aliases. The directory is said to dereference an alias whenever it replaces the alias,
during name processing, with the distinguished name associated with it by means of this
attribute.

A-Authority-Revocation-List
This attribute occurs only in entries that describe a Certification Authority (CA). It lists all
the certificates issued to any of the CAs known to this CA, and later revoked. The values of
this OM attribute shall be signed by the CA.

A-Business-Category
Descriptions of the businesses in which the object is engaged.

A-CA-Certificate
The certificates assigned to the object, which shall be a Certification Authority (CA).

A-Certificate-Revocation-List
This attribute occurs only in entries that describe a Certification Authority (CA). The
certificates issued by this CA and later revoked. The values of this OM attribute shall be
signed by the CA.

A-Common-Name
Names by which the object is commonly known in the context defined by its position in the
DIT. They may conform to the naming convention of the country or culture with which the
object is associated. They may be ambiguous.

A-Country-Name
Identifies the country in which the object is located or with which it is associated in some
other important way. The matching rules require that differences in the case of alphabetical

100 X/Open CAE Specification (1994)

Directory Class Definitions Selected Attribute Types

characters are considered insignificant.

A-Cross-Certificate-Pair
One or two certificates, held in the entry of a Certification Authority (CA). The first
certificate is that of one CA, guaranteed by a second CA, whilst the second certificate is that
of the second CA, guaranteed by the first CA.

A-Deliverable-Content-Length
This attribute identifies the maximum content length of the messages whose delivery a user
will accept.

A-Deliverable-Content-Types
This attribute identifies the content types of the messages whose delivery a user will accept.

A-Deliverable-EITs
This attribute identifies the EITs of the messages whose delivery a user will accept.

A-Description
Informational descriptions of the object.

A-Destination-Indicator
Country-city pairs by means of which the object can be reached via the public telegram
service. The matching rules require that differences in the case of alphabetical characters are
considered insignificant.

A-DL-Members
This attribute identifies a DL’s members.

A-DL-Submit-Permissions
This attribute identifies the users and DLs that may submit messages to a DL.

A-Facsimile-Telephone-Number
Telephone numbers for facsimile terminals (and optionally their parameters) by means of
which the object can be reached or with which it is associated in some other important way.

A-International-ISDN-Number
International ISDN numbers by means of which the object can be reached or with which it is
associated in some other important way. The matching rules require that differences caused
by the presence of spaces are considered insignificant.

A-Knowledge-Information
This attribute occurs only in entries that describe a DSA. It provides a human-intelligible
accumulated description of the directory knowledge possessed by the DSA.

A-Locality-Name
Identifies geographical areas or localities. When used as part of a directory name, it
specifies the localities in which the object is located or with which it is associated in some
other important way.

A-Member
Names of objects that are considered members of the present object (which might be a
distribution list for electronic mail, for example).

A-Message-Store
This attribute identifies a user’s MS by name.

A-Object-Class
Identifies the object classes to which the object belongs, and also identifies their
superclasses. All such object classes that have object identifiers assigned to them are
present, except that object class Top need not (but may) be present as long as some other

API to Directory Services (XDS), Issue 2 101

Selected Attribute Types Directory Class Definitions

value is present. This attribute must be present in every entry and may not be modified. It
is discussed further in the next section.

A-OR-Addresses
This attribute specifies a user’s or DL’s O/R addresses.

A-Organization-Name
Identifies organisations. When used as part of a directory name, it specifies an organisation
with which the object is affiliated. Several values may identify the same organisation in
different ways.

A-Organizational-Unit-Name
Identifies organisational units. When used as part of a directory name, it specifies an
organisational unit with which the object is affiliated. The units are understood to be parts
of the organisation that the Organization-Name attribute denotes. Several values may
identify the same unit in different ways.

A-Owner
The names of objects that have responsibility for the object.

A-Physical-Delivery-Office-Name
The names of cities, towns or villages, etc., that contain physical delivery offices through
which the object can take delivery of physical mail.

A-Post-Office-Box
Identifies post office boxes at which the object can take delivery of physical mail. This
information also appears as part of the Postal-Address attribute, if it is present.

A-Postal-Address
Postal addresses at which the object can take delivery of physical mail. The matching rules
require that differences in the case of alphabetical characters are considered insignificant.

A-Postal-Code
Postal codes assigned to areas or buildings through which the object can take delivery of
physical mail. This information also appears as part of the Postal-Address attribute, if it is
present.

A-Preferred-Delivery-Method
The object’s preferred methods for communicating with it, ordered with the most preferred
first. Each value is one of:

• any-delivery-method, meaning the object has no preference.

• g3-facsimile-delivery, meaning via Group 3 facsimile.

• g4-facsimile-delivery, meaning via Group 4 facsimile.

• ia5-terminal-delivery, meaning via IA5 text.

• mhs-delivery, meaning via X.400.

• physical-delivery, meaning via the postal or other physical delivery system.

• telephone-delivery, meaning via telephone.

• teletex-delivery, meaning via teletex.

• telex-delivery, meaning via telex.

• videotex-delivery, meaning via videotex.

102 X/Open CAE Specification (1994)

Directory Class Definitions Selected Attribute Types

A-Preferred-Delivery-Methods
This attribute identifies, in order of decreasing preference, the methods of delivery a user
prefers.

A-Presentation-Address
The (OSI) presentation address of the object, which shall be an (OSI) application entity. The
matching rule for a presented value to match a value stored in the directory is that the P-
Selector, S-Selector and T-Selector of the two Presentation-Addresses must be equal, and the
N-Addresses of the presented value must be a subset of those of the stored value.

A-Registered-Address
Mnemonics by means of which the object can be reached via the public telegram service
(according to F.1). A mnemonic identifies an object in the context of a particular city, and is
registered in the country containing the city. The matching rules require that differences in
the case of alphabetical characters are considered insignificant.

A-Role-Occupant
This attribute occurs only in entries that describe an organisational role. It gives the names
of objects that fulfill the organisational role.

A-Search-Guide
Criteria that can be used to build filters for conducting searches in which the object is the
base object.

A-See-Also
Names of objects that represent other aspects of the real-world object that the present object
represents.

A-Serial-Number
Serial numbers of a device.

A-State-Or-Province-Name
Specifies a state or province. When used as part of a directory name, it identifies states,
provinces or other geographical regions in which the object is located or with which it is
associated in some other important way.

A-Street-Address
A street address identifies a site for the local distribution and physical delivery of mail.
When used as part of a directory name, it identifies the Street address (for example, street
name and house number) at which the object is located or with which it is associated in
some other important way.

A-Supported-Application-Context
This attribute occurs only in entries that describe an (OSI) application entity. It identifies
(OSI) application contexts supported by the object.

A-Supported-Automatic-Actions
This attribute identifies the automatic actions that an MS fully supports.

A-Supported-Content-Types
This attribute identifies the content types of the messages whose syntax and semantics a MS
fully supports.

A-Supported-Optional-Attributes
This attribute identifies the optional attributes that an MS fully supports.

A-Surname
This attribute occurs only in entries that describe individuals. The surname by which the
individual is commonly known, normally inherited from the individual’s parent(s) or

API to Directory Services (XDS), Issue 2 103

Selected Attribute Types Directory Class Definitions

taken-on marriage, as determined by the custom of the country or culture with which the
individual is associated.

A-Telephone-Number
Identifies telephones by means of which the object can be reached or with which it is
associated in some other important way. The matching rules require that differences caused
by the presence of spaces and dashes are considered insignificant.

A-Teletex-Terminal-Identifier
Descriptions of teletex terminals by means of which the object can be reached or with which
it is associated in some other important way.

A-Telex-Number
Descriptions of telex terminals by means of which the object can be reached or with which it
is associated in some other important way.

A-Title
Identifies positions or functions of the object within its organisation.

A-User-Certificate
The user certificates assigned to the object, which may be any user certificate including a CA
certificate.

A-User-Password
The passwords assigned to the object.

A-X121-Address
Identifies points on the public data network at which the object can be reached or with
which it is associated in some other important way. The matching rules require that
differences caused by the presence of spaces are considered insignificant.

104 X/Open CAE Specification (1994)

Directory Class Definitions Selected Object Classes

7.3 Selected Object Classes
This Section presents the object classes that are defined in the standards. Object classes are
groups of directory entries which share certain characteristics. The object classes are arranged
into a lattice, based on the object class Top. (In a lattice, each element, except a leaf, has one or
more immediate subordinates but also has one or more immediate superiors. This contrasts
with a tree, where each element has exactly one immediate superior.) Object classes closer to
Top are called superclasses, and those further away are called subclasses. This relationship is
not connected to any other such relationship in this specification.

Each directory entry belongs to an object class, and to all the superclasses of that object class.
Each entry has an attribute named Object Class , which was discussed in the previous section, and
which identifies the object classes to which the entry belongs. The values of this attribute are
object-identifiers, which are represented in the interface by constants with the same name as the
object class, prefixed by O- for ease of reading. (Consequently, the C constants are prefixed by
DS_O_.)

Associated with each object class are zero or more mandatory and zero or more optional
attributes. Each directory entry must contain all the mandatory attributes and may (but need
not) contain the optional attributes associated with the object class and its superclasses.

The object classes defined in the standards are tabulated below, together with their object
identifiers.

API to Directory Services (XDS), Issue 2 105

Selected Object Classes Directory Class Definitions

Package Object Class Object Identifier BER
decimal hex

BDCP O-Alias 85, 6, 1 \x55\x06\x01
BDCP O-Application-Entity 85, 6, 12 \x55\x06\x0C
BDCP O-Application-Process 85, 6, 11 \x55\x06\x0B
SAP O-Cert-Authority 85, 6, 16 \x55\x06\x10
BDCP O-Country 85, 6, 2 \x55\x06\x02
BDCP O-Device 85, 6, 14 \x55\x06\x0E
BDCP O-DSA 85, 6, 13 \x55\x06\x0D
BDCP O-Group-Of-Names 85, 6, 9 \x55\x06\x09
BDCP O-Locality 85, 6, 3 \x55\x06\x03
MDUP O-MHS-Distribution-List 86, 5, 1, 0 \x56\x05\x01\x00
MDUP O-MHS-Message-Store 86, 5, 1, 1 \x56\x05\x01\x01
MDUP O-MHS-Message-Transfer-Agent 86, 5, 1, 2 \x56\x05\x01\x02
MDUP O-MHS-User 86, 5, 1, 3 \x56\x05\x01\x03
MDUP O-MHS-User-Agent 86, 5, 1, 4 \x56\x05\x01\x04
BDCP O-Organization 85, 6, 4 \x55\x06\x04
BDCP O-Organizational-Person 85, 6, 7 \x55\x06\x07
BDCP O-Organizational-Role 85, 6, 8 \x55\x06\x08
BDCP O-Organizational-Unit 85, 6, 5 \x55\x06\x05
BDCP O-Person 85, 6, 6 \x55\x06\x06
BDCP O-Residential-Person 85, 6, 10 \x55\x06\x0A
SAP O-Strong-Authentication-User 85, 6, 15 \x55\x06\x0F
BDCP O-Top 85, 6, 0 \x55\x06\x00

The third and fourth columns of this table contain the contents octets of the
BER encoding of the object identifier. All BDCP and SAP package object
identifiers stem from the root {joint-iso-ccitt ds(5) objectClass(6)}. MDUP
object identifiers stem from the root {joint-iso-ccitt mhs-motis(6) arch(5) oc(1).

Table 7-3 Object Identifiers for Selected Object Classes

106 X/Open CAE Specification (1994)

Directory Class Definitions OM Class Hierarchy

7.4 OM Class Hierarchy
The remainder of this Chapter defines the additional OM classes used to represent values of the
selected attributes described in Section 7.2 on page 97. Some of the selected attributes are
represented by OM classes that are used in the interface itself, and hence are defined in Chapter
5, (for example, Name). As mentioned in Section 7.1 on page 95, an explanation of the purpose of
these attributes is outside the scope of this specification.

This Section depicts the hierarchical organisation of the OM classes that are defined in the
following sections, and thus shows which OM classes inherit additional OM attributes from
their OM superclasses. Subclassification is indicated by indentation, and the names of abstract
OM classes are rendered in italics. Thus, for example, Certificate-Pair is an immediate subclass
of the abstract OM class Object.

The package to which each OM class belongs is indicated after the name.

Object (defined in the referenced XOM Specification).
— Algorithm-Ident (SAP)
— Certificate-Pair (SAP)
— Certificates (SAP)
— Cross-Certificates (SAP)
— Facsimile-Telephone-Number (BDCP)
— Forward-Certification-Path (SAP)
— OR-Address (MDUOP)1

— OR-Name (MDUP)1

— Postal-Address (BDCP)
— Search-Criterion (BDCP)
— Search-Guide (BDCP)
— Signature (SAP)

— Certificate (SAP)
— Certificate-List (SAP)
— Certificate-Sublist (SAP)

— DL-Submit-Permission (MDUP)
— Teletex-Term-Ident (BDCP)
— Telex-Number (BDCP)

1 as defined in the referenced X.400 specification.

This specification does not mandate that any OM classes are encodable using OM-Encode() and
OM-Decode().

API to Directory Services (XDS), Issue 2 107

Algorithm-Identifier Directory Class Definitions

7.5 Algorithm-Identifier
An instance of OM class Algorithm-Ident records the encryption algorithm that an object uses to
digitally sign messages, together with the parameters of the algorithm.

An instance of this OM class has the attributes of its superclass (Object) and additionally the OM
attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Algorithm String(Object-Identifier) - 1 -
Algorithm-Parameters any - 0-1 -

Table 7-4 OM Attributes of an Algorithm-Identifier

Algorithm
An object identifier which uniquely identifies the algorithm used by some object.

Algorithm-Parameters
The values of the algorithm’s parameters that are used by the object. The syntax of the
parameters is determined by each individual algorithm.

108 X/Open CAE Specification (1994)

Directory Class Definitions Certificate

7.6 Certificate
An instance of OM class Certificate comprises a user’s distinguished name, public key and
additional information, all of which is digitally signed by the issuing Certification Authority in
order to make the certificate unforgeable. The OM attributes associated with Signature (a
superclass of Certificate) shall be present.

An instance of this OM class has the attributes of its superclasses (Object, Signature) and
additionally the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Serial-Number Integer - 1 -
Subject Object(Name) - 1 -
Subject-Algorithm Object(Algorithm-Ident) - 1 -
Subject-Public-Key String(Bit) - 1 -
Validity-Not-After String(UTC-Time) 0-17 1 -
Validity-Not-Before String(UTC-Time) 0-17 1 -
Version Enum(Version) - 1 v1988

Table 7-5 OM Attributes of a Certificate

Serial-Number
Distinguishes the certificate from all other certificates that were ever or will be issued by the
Certification Authority which issued this certificate.

Subject
The subject’s name.

Subject-Algorithm
The algorithm which is used by the subject for encryption, and which is associated with the
public key.

Subject-Public-Key
The subject’s public key, associated with the algorithm.

Version
Identifies the certificate’s design. Its value is v1988, meaning the design specified in the 1988
version of the standards.

Validity-Not-After
The last day on which the certificate is valid.

Validity-Not-Before
The first day on which the certificate is valid.

API to Directory Services (XDS), Issue 2 109

Certificate-List Directory Class Definitions

7.7 Certificate-List
An instance of OM class Cert-List documents the revocation of zero or more certificates. The
documentation is provided by the object, which shall be a Certification Authority, and whose
signature is affixed to the instance.

An instance of this OM class has the OM attributes of its superclasses (Object, Signature) and
additionally the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Last-Update String(UTC-Time) 0-17 1 -
Revoked-Certs Object(Certificate-Sublist) - 0 or more -

Table 7-6 OM Attributes of a Certificate-List

Last-Update
The time at which the revocation list was updated to its current state.

Revoked-Certs
Identifies the revoked certificates.

7.8 Certificate-Pair
An instance of OM class Cert-Pair contains one or both of a forward and reverse certificate, to
assist users in building a certification path.

An instance of this OM class has the OM attributes of its superclass (Object) and additionally the
OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Forward Object(Certificate) - 0-11 -
Reverse Object(Certificate) - 0-11 -

1At least one of these OM attributes must be present.

Table 7-7 OM Attributes of a Certificate-Pair

Forward
The certificate of a first CA (Certification Authority) issued by a second CA.

Reverse
The certificate of the second CA issued by the first CA.

110 X/Open CAE Specification (1994)

Directory Class Definitions Certificate-Sublist

7.9 Certificate-Sublist
An instance of OM class Cert-Sublist documents the revocation of zero or more certificates
issued by the Certification Authority whose signature is affixed to the instance.

An instance of this OM class has the OM attributes of its superclasses (Object, Signature) and
additionally the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Revoc-Date String(UTC-Time) 0-17 0 or more1 -
Serial-Numbers Integer - 0 or more1 -

1The values of these two OM attributes parallel one another and shall be equal in number.

Table 7-8 OM Attributes of a Cert-Sublist

Revocation-Date
The epoch at which each of the certificates was revoked. The serial numbers of the
certificates are the corresponding values of the OM attribute Serial-Numbers.

Serial-Numbers
The serial numbers assigned to the revoked certificates.

7.10 Certificates
An instance of OM class Cert contains an authentication Certificate and may contain a
certification path.

An instance of this OM class has the attributes of its superclass (Object) and additionally the OM
attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Cert Object(Certificate) - 1 -
Cert-Path Object(Forward-Certification-Path) - 0-1 -

Table 7-9 OM Attributes of a Certificate

Certificate
The certificate.

Certification-Path
The definition of an object to assist users in building a certification path.

API to Directory Services (XDS), Issue 2 111

Cross-Certificates Directory Class Definitions

7.11 Cross-Certificates
An instance of OM class Cross-Cert contains a set of certificates which may be used to build a
certification path.

An instance of this OM class has the attributes of its superclass (Object) and additionally the OM
attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Cert Object(Certificate) - 0 or more -

Table 7-10 OM Attributes of Cross-Certificates

Certificate
The certificate.

7.12 Facsimile-Telephone-Number
An instance of OM class Facsimile-Telephone-Number identifies and optionally describes a
facsimile terminal.

An instance of this OM class has the OM attributes of its superclass (Object) and additionally the
OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Parameters Object(G3-Fax-NBPs)1 - 0-1 -
Telephone-Number String(Printable)2 1-32 1 -

1As defined in the referenced X.400 specification.
2As permitted by E.123 (for example, +44 582 10101).

Table 7-11 OM Attributes of a Facsimile-Telephone-Number

Parameters
If present, identifies the facsimile terminal’s non-basic capabilities.

Telephone-Number
A telephone number by means of which the facsimile terminal is accessed.

112 X/Open CAE Specification (1994)

Directory Class Definitions Forward-Certification-Path

7.13 Forward-Certification-Path
An instance of OM class Fwd-Cert-Path contains one or more objects of class Cross-Certificates.

An instance of this OM class has the attributes of its superclass (Object) and additionally the OM
attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Cross-Cert Object(Cross-Certificates) - 1 or more -

Table 7-12 OM Attributes of a Forward-Certification-Path

Cross-Certificates
The set of certificates which may be used to build a certification path.

API to Directory Services (XDS), Issue 2 113

DL-Submit-Permission Directory Class Definitions

7.14 DL-Submit-Permission
An instance of OM class DL-Submit-Permission characterizes an attribute each of whose value
is a submit permission. An instance of this OM class has the OM attributes of its superclass -
Object and additionally the OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Permission-Type Enum(Permission-Type) - 1 -
Individual Object(OR-Name1) - 0 or 1 -
Member-of-DL Object(OR-Name1) - 0 or 1 -
Pattern-Match Object(OR-Name1) - 0 or 1 -
Member-of-Group Object(Name) - 0 or more -

1 As defined in the referenced X.400 specification.

Table 7-13 OM Attributes of DL-Submit-Permission

Permission-Type
The type of the permission specified herein. Its value can be one of individual, member-of-
dl, pattern-match, or member-of-group.

Individual
The user or (unexpanded) DL any of whose O/R names is equal to the specified O/R Name.

Member-of-DL
Each member of the DL, any of whose O/R names is equal to the specified O/R name, or of
each nested DL, recursively.

Pattern-Match
Each user or (unexpanded) DL any of whose O/R names matches the specified O/R name
pattern.

Member-of-Group
Each member of the group-of-names whose name is specified, or of each nested group-of-
names, recursively.

Note that exactly one of the four name attributes shall be present at any time, according to the
value of the Permission-Type attribute.

114 X/Open CAE Specification (1994)

Directory Class Definitions Postal-Address

7.15 Postal-Address
An instance of OM class Postal-Address is a postal address.

An instance of this OM class has the OM attributes of its superclass (Object) and additionally the
OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Postal-Address String(Directory) 1-30 1-6 -

Table 7-14 OM Attributes of a Postal-Address

Postal-Address
Each value of this OM attribute is one line of the postal address. It typically includes a
name, street address, city name, state or province name, postal code and possibly country
name.

API to Directory Services (XDS), Issue 2 115

Search-Criterion Directory Class Definitions

7.16 Search-Criterion
An instance of OM class Search-Criterion is a component of a Search-Guide OM object.

An instance of this OM class has the OM attributes of its superclass (Object) and additionally the
OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Attribute-Type String(Object-Identifier) - 0-1 -
Criteria Object(Search-Criterion) - 0 or more -
Filter-Item-Type Enum(Filter-Item-Type) - 0-1 -
Filter-Type Enum(Filter-Type) - 1 item

Table 7-15 OM Attributes of a Search-Criterion

A Search-Criterion suggests how to build part of a filter for use in searching the directory. Its
meaning depends on the value of its OM attribute Filter-Type. If the value is item, then the
criterion is a suggestion for building an instance of OM class Filter-Item; while if Filter-Type has
any other value, it is a suggestion for building an instance of OM class Filter.

Attribute-Type
The attribute type to be used in the suggested Filter-Item. This OM attribute is only present
when the value of Filter-Type is item.

Criteria
Nested search criteria. This OM attribute is not present when the value of Filter-Type is
item.

Filter-Item-Type
The type of the suggested filter item. Its value can be one of approximate-match, equality,
greater-or-equal, less-or-equal or substrings but not present. This OM attribute is only
present when the value of Filter-Type is item.

Filter-Type
The type of the suggested filter. The value item means that the suggested component is a
filter item, not a filter. The other values suggest the corresponding type of filter. Its value is
one of and, item, not, or.

116 X/Open CAE Specification (1994)

Directory Class Definitions Search-Guide

7.17 Search-Guide
An instance of OM class Search-Guide suggests a criterion for searching the directory for
particular entries. It can be used to build a Filter for Search() operations that are based on the
object in whose entry the search guide occurs.

An instance of this OM class has the OM attributes of its superclass (Object) and additionally the
OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Object-Class String(Object-Identifier) - 0-1 -
Criteria Object(Search-Criterion) - 1 -

Table 7-16 OM Attributes of a Search-Guide

Object-Class
Identifies the object class of the entries to which the search guide applies. If this OM
attribute is absent, the search guide applies to objects of any class.

Criteria
The suggested search criteria.

7.18 Signature
The abstract OM class Signature contains the algorithm identifier used to produce a digital
signature and the name of the object that produced it. The scope of the signature is any instance
of any subclass of this OM class.

An instance of this OM class has the OM attributes of its superclass (Object) and additionally the
OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Issuer Object(Name) - 1 -
Signature Object(Algorithm-Ident) - 1 -
Signature-Value String(Octet) - 1 -

Table 7-17 OM Attributes of a Signature

Issuer
The name of the object which produced the digital signature.

Signature
Identifies the algorithm that was used to produce the digital signature, and any parameters
of the algorithm.

Signature-Value
An enciphered summary of the information to which the signature is appended. The
summary is produced by means of a one-way hash function, while the enciphering is
carried out using the secret key of the signer.

API to Directory Services (XDS), Issue 2 117

Teletex-Terminal-Identifier Directory Class Definitions

7.19 Teletex-Terminal-Identifier
An instance of OM class Teletex-Term-Ident identifies and describes a teletex terminal.

An instance of this OM class has the OM attributes of its superclass (Object) and additionally the
OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Parameters Object(Teletex-NBPs)1 - 0-1 -
Teletex-Terminal String(Printable)2 1-1024 1 -

1As defined in the referenced X.400 specification.
2As permitted by F.200.

Table 7-18 OM Attributes of a Teletex-Term-Ident

Parameters
Identifies the teletex terminal’s non-basic capabilities.

Teletex-Terminal
Identifies the teletex terminal.

7.20 Telex-Number
An instance of OM class Telex-Number identifies and describes a telex terminal.

An instance of this OM class has the OM attributes of its superclass (Object) and additionally the
OM attributes listed below.

Value Value Value Value
OM Attribute Syntax Length Number Initially
Answerback String(Printable) 1-8 1 -
Country-Code String(Printable) 1-4 1 -
Telex-Number String(Printable) 1-14 1 -

Table 7-19 OM Attributes of a Telex-Number

Answerback
The code with which the telex terminal acknowledges calls placed to it.

Country-Code
The identifier of the country through which the telex terminal is accessed.

Telex-Number
The number by means of which the telex terminal is addressed.

118 X/Open CAE Specification (1994)

Chapter 8

Headers

8.1 Introduction
Each implementation must provide an <xds.h> header for use by applications programs and, if
it supports the Basic Directory Contents Package, the Strong Authentication Package or the MHS
Directory User Package, must provide an <xdsbdcp.h>, an <xdssap.h> or an <xdsmdup.h>
header as appropriate. This chapter sets out the symbols which are defined in these headers. The
implementation is not constrained to reproduce the definitions in the exact form set out here,
provided that the effects of the definitions contained in this chapter are achieved.

Where the values of the symbols are indicated, the values are an integral part of the interface.
Where a value is not given, the value on a particular system will be determined by the vendor or
by an administrator.

8.2 <xds.h>
The <xds.h> header declares the interface functions, the structures passed to and from those
functions, and the defined constants used by the functions and structures.

When an application program includes the <xds.h> header, all the definitions made in the Object
Management header <xom.h> will also apply, as though the application had included <xom.h>
as well as <xds.h>.

#ifndef XDS_HEADER
#define XDS_HEADER

/* DS package object identifier */
define OMP_O_DS_SERVICE_PKG \x2A\x86\x48\xCE\x1E\x00

/* Typedefs */

typedef OM_private_object DS_status;
typedef struct {

OM_object_identifier feature;
OM_boolean activated;

} DS_feature;

API to Directory Services (XDS), Issue 2 119

<xds.h> Headers

/* Function Prototypes */

DS_status ds_abandon(
OM_private_object session,
OM_sint invoke_id

);

DS_status ds_add_entry(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_object entry,
OM_sint *invoke_id_return

);

DS_status ds_bind(
OM_object session,
OM_workspace workspace,
OM_private_object *bound_session_return

);

DS_status ds_compare(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_object ava,
OM_private_object result_return,
OM_sint *invoke_id_return

);

OM_workspace ds_initialize(
void

);

DS_status ds_list(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_private_object *result_return,
OM_sint *invoke_id_return

);

DS_status ds_modify_entry(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_object changes,
OM_sint *invoke_id_return

);

120 X/Open CAE Specification (1994)

Headers <xds.h>

DS_status ds_modify_rdn(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_object new_RDN,
OM_boolean delete_old_RDN,
OM_sint *invoke_id_return

);

DS_status ds_read(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_object selection,
OM_private_object *result_return,
OM_sint *invoke_id_return

);

DS_status ds_receive_result(
OM_private_object session,
OM_sint invoke_id,
OM_uint *completion_flag_return,
DS_status *operation_status_return,
OM_private_object *result_return,
OM_sint *invoke_id_return

);

DS_status ds_remove_entry(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_sint *invoke_id_return

);

DS_status ds_search(
OM_private_object session,
OM_private_object context,
OM_object name,
OM_sint subset,
OM_object filter,
OM_boolean search_aliases,
OM_object selection,
OM_private_object *result_return,
OM_sint *invoke_id_return

);

DS_status ds_shutdown(
OM_workspace workspace

);

DS_status ds_unbind(
OM_private_object session

);

API to Directory Services (XDS), Issue 2 121

<xds.h> Headers

DS_status ds_version(
DS_feature feature_list[],
OM_workspace workspace

);

/* Defined constants */

/* Intermediate object identifier macro */
#define dsP_c(X) (OMP_O_DS_SERVICE_PKG #X)

/* OM class names (prefixed DS_C_) */

/* Every application program which makes use of a class or */
/* other Object Identifier must explicitly import it into */
/* every compilation unit (C source program) which uses it. */
/* Each such class or Object Identifier name must be */
/* explicitly exported from just one compilation unit. */

/* In the header file, OM class constants are prefixed with */
/* the OPM_O prefix to denote that they are OM classes. */
/* However, when using the OM_IMPORT and OM_EXPORT macros, */
/* the base names (without the OMP_O prefix) should be used.*/
/* For example: */
/* OM_IMPORT(DS_C_AVA) */

#define OMP_O_DS_C_ABANDON_FAILED dsP_c(\x85\x3D)
#define OMP_O_DS_C_ACCESS_POINT dsP_c(\x85\x3E)
#define OMP_O_DS_C_ADDRESS dsP_c(\x85\x3F)
#define OMP_O_DS_C_ATTRIBUTE dsP_c(\x85\x40)
#define OMP_O_DS_C_ATTRIBUTE_ERROR dsP_c(\x85\x41)
#define OMP_O_DS_C_ATTRIBUTE_LIST dsP_c(\x85\x42)
#define OMP_O_DS_C_ATTRIBUTE_PROBLEM dsP_c(\x85\x43)
#define OMP_O_DS_C_AVA dsP_c(\x85\x44)
#define OMP_O_DS_C_COMMON_RESULTS dsP_c(\x85\x45)
#define OMP_O_DS_C_COMMUNICATIONS_ERROR dsP_c(\x85\x46)
#define OMP_O_DS_C_COMPARE_RESULT dsP_c(\x85\x47)
#define OMP_O_DS_C_CONTEXT dsP_c(\x85\x48)
#define OMP_O_DS_C_CONTINUATION_REF dsP_c(\x85\x49)
#define OMP_O_DS_C_DS_DN dsP_c(\x85\x4A)
#define OMP_O_DS_C_DS_RDN dsP_c(\x85\x4B)
#define OMP_O_DS_C_ENTRY_INFO dsP_c(\x85\x4C)
#define OMP_O_DS_C_ENTRY_INFO_SELECTION dsP_c(\x85\x4D)
#define OMP_O_DS_C_ENTRY_MOD dsP_c(\x85\x4E)
#define OMP_O_DS_C_ENTRY_MOD_LIST dsP_c(\x85\x4F)
#define OMP_O_DS_C_ERROR dsP_c(\x85\x50)
#define OMP_O_DS_C_EXT dsP_c(\x85\x51)
#define OMP_O_DS_C_FILTER dsP_c(\x85\x52)
#define OMP_O_DS_C_FILTER_ITEM dsP_c(\x85\x53)
#define OMP_O_DS_C_LIBRARY_ERROR dsP_c(\x85\x54)
#define OMP_O_DS_C_LIST_INFO dsP_c(\x85\x55)
#define OMP_O_DS_C_LIST_INFO_ITEM dsP_c(\x85\x56)
#define OMP_O_DS_C_LIST_RESULT dsP_c(\x85\x57)
#define OMP_O_DS_C_NAME dsP_c(\x85\x58)
#define OMP_O_DS_C_NAME_ERROR dsP_c(\x85\x59)

122 X/Open CAE Specification (1994)

Headers <xds.h>

#define OMP_O_DS_C_OPERATION_PROGRESS dsP_c(\x85\x5A)
#define OMP_O_DS_C_PARTIAL_OUTCOME_QUAL dsP_c(\x85\x5B)
#define OMP_O_DS_C_PRESENTATION_ADDRESS dsP_c(\x85\x5C)
#define OMP_O_DS_C_READ_RESULT dsP_c(\x85\x5D)
#define OMP_O_DS_C_REFERRAL dsP_c(\x85\x5E)
#define OMP_O_DS_C_RELATIVE_NAME dsP_c(\x85\x5F)
#define OMP_O_DS_C_SEARCH_INFO dsP_c(\x85\x60)
#define OMP_O_DS_C_SEARCH_RESULT dsP_c(\x85\x61)
#define OMP_O_DS_C_SECURITY_ERROR dsP_c(\x85\x62)
#define OMP_O_DS_C_SERVICE_ERROR dsP_c(\x85\x63)
#define OMP_O_DS_C_SESSION dsP_c(\x85\x64)
#define OMP_O_DS_C_SYSTEM_ERROR dsP_c(\x85\x65)
#define OMP_O_DS_C_UPDATE_ERROR dsP_c(\x85\x66)

/* OM attribute names */

#define DS_ACCESS_POINTS ((OM_type) 701)
#define DS_ADDRESS ((OM_type) 702)
#define DS_AE_TITLE ((OM_type) 703)
#define DS_ALIASED_RDNS ((OM_type) 704)
#define DS_ALIAS_DEREFERENCED ((OM_type) 705)
#define DS_ALIAS_ENTRY ((OM_type) 706)
#define DS_ALL_ATTRIBUTES ((OM_type) 707)
#define DS_ASYNCHRONOUS ((OM_type) 708)
#define DS_ATTRIBUTES ((OM_type) 709)
#define DS_ATTRIBUTES_SELECTED ((OM_type) 710)
#define DS_ATTRIBUTE_TYPE ((OM_type) 711)
#define DS_ATTRIBUTE_VALUE ((OM_type) 712)
#define DS_ATTRIBUTE_VALUES ((OM_type) 713)
#define DS_AUTOMATIC_CONTINUATION ((OM_type) 714)
#define DS_AVAS ((OM_type) 715)
#define DS_CHAINING_PROHIB ((OM_type) 716)
#define DS_CHANGES ((OM_type) 717)
#define DS_CRIT ((OM_type) 718)
#define DS_DONT_DEREFERENCE_ALIASES ((OM_type) 719)
#define DS_DONT_USE_COPY ((OM_type) 720)
#define DS_DSA_ADDRESS ((OM_type) 721)
#define DS_DSA_NAME ((OM_type) 722)
#define DS_ENTRIES ((OM_type) 723)
#define DS_ENTRY ((OM_type) 724)
#define DS_EXT ((OM_type) 725)
#define DS_FILE_DESCRIPTOR ((OM_type) 726)
#define DS_FILTERS ((OM_type) 727)
#define DS_FILTER_ITEMS ((OM_type) 728)
#define DS_FILTER_ITEM_TYPE ((OM_type) 729)
#define DS_FILTER_TYPE ((OM_type) 730)
#define DS_FINAL_SUBSTRING ((OM_type) 731)
#define DS_FROM_ENTRY ((OM_type) 732)
#define DS_IDENT ((OM_type) 733)
#define DS_INFO_TYPE ((OM_type) 734)
#define DS_INITIAL_SUBSTRING ((OM_type) 735)
#define DS_ITEM_PARAMETERS ((OM_type) 736)
#define DS_LIMIT_PROBLEM ((OM_type) 737)

API to Directory Services (XDS), Issue 2 123

<xds.h> Headers

#define DS_LIST_INFO ((OM_type) 738)
#define DS_LOCAL_SCOPE ((OM_type) 739)
#define DS_MATCHED ((OM_type) 740)
#define DS_MOD_TYPE ((OM_type) 741)
#define DS_NAME_RESOLUTION_PHASE ((OM_type) 742)
#define DS_NEXT_RDN_TO_BE_RESOLVED ((OM_type) 743)
#define DS_N_ADDRESSES ((OM_type) 744)
#define DS_OBJECT_NAME ((OM_type) 745)
#define DS_OPERATION_PROGRESS ((OM_type) 746)
#define DS_PARTIAL_OUTCOME_QUAL ((OM_type) 747)
#define DS_PERFORMER ((OM_type) 748)
#define DS_PREFER_CHAINING ((OM_type) 749)
#define DS_PRIORITY ((OM_type) 750)
#define DS_PROBLEM ((OM_type) 751)
#define DS_PROBLEMS ((OM_type) 752)
#define DS_P_SELECTOR ((OM_type) 753)
#define DS_RDN ((OM_type) 754)
#define DS_RDNS ((OM_type) 755)
#define DS_RDNS_RESOLVED ((OM_type) 756)
#define DS_REQUESTOR ((OM_type) 757)
#define DS_SCOPE_OF_REFERRAL ((OM_type) 758)
#define DS_SEARCH_INFO ((OM_type) 759)
#define DS_SIZE_LIMIT ((OM_type) 760)
#define DS_SUBORDINATES ((OM_type) 761)
#define DS_S_SELECTOR ((OM_type) 762)
#define DS_TARGET_OBJECT ((OM_type) 763)
#define DS_TIME_LIMIT ((OM_type) 764)
#define DS_T_SELECTOR ((OM_type) 765)
#define DS_UNAVAILABLE_CRIT_EXT ((OM_type) 766)
#define DS_UNCORRELATED_LIST_INFO ((OM_type) 767)
#define DS_UNCORRELATED_SEARCH_INFO ((OM_type) 768)
#define DS_UNEXPLORED ((OM_type) 769)

/* DS_Filter_Item_Type */

enum DS_Filter_Item_Type {
DS_EQUALITY = 0
DS_SUBSTRINGS = 1
DS_GREATER_OR_EQUAL = 2
DS_LESS_OR_EQUAL = 3
DS_PRESENT = 4
DS_APPROXIMATE_MATCH = 5

};

/* DS_Filter_Type */

enum DS_Filter_Type {
DS_ITEM = 0
DS_AND = 1
DS_OR = 2
DS_NOT = 3

124 X/Open CAE Specification (1994)

Headers <xds.h>

};

/* DS_Information_Type */

enum DS_Information_Type {
DS_TYPES_ONLY = 0
DS_TYPES_AND_VALUES = 1

};

/* DS_Limit_Problem */

enum DS_Limit_Problem {
DS_TIME_LIMIT_EXCEEDED = 0
DS_SIZE_LIMIT_EXCEEDED = 1
DS_ADMIN_LIMIT_EXCEEDED = 2

};

/* DS_Modification_Type */

enum DS_Modification_Type {
DS_ADD_ATTRIBUTE = 0
DS_REMOVE_ATTRIBUTE = 1
DS_ADD_VALUES = 2
DS_REMOVE_VALUES = 3

};

/* DS_Name_Resolution_Phase */

enum DS_Name_Resolution_Phase {
DS_NOT_STARTED = 1
DS_PROCEEDING = 2
DS_COMPLETED = 3

};

/* DS_Priority */

enum DS_Priority {
DS_LOW = 0
DS_MEDIUM = 1
DS_HIGH = 2

};

API to Directory Services (XDS), Issue 2 125

<xds.h> Headers

/* DS_Problem */

enum DS_Problem {
DS_E_ADMIN_LIMIT_EXCEEDED = 1
DS_E_AFFECTS_MULTIPLE_DSAS = 2
DS_E_ALIAS_DEREFERENCING_PROBLEM = 3
DS_E_ALIAS_PROBLEM = 4
DS_E_ATTRIBUTE_OR_VALUE_EXISTS = 5
DS_E_BAD_ARGUMENT = 6
DS_E_BAD_CLASS = 7
DS_E_BAD_CONTEXT = 8
DS_E_BAD_NAME = 9
DS_E_BAD_SESSION = 10
DS_E_BAD_WORKSPACE = 11
DS_E_BUSY = 12
DS_E_CANNOT_ABANDON = 13
DS_E_CHAINING_REQUIRED = 14
DS_E_COMMUNICATIONS_PROBLEM = 15
DS_E_CONSTRAINT_VIOLATION = 16
DS_E_DIT_ERROR = 17
DS_E_ENTRY_EXISTS = 18
DS_E_INAPPROP_AUTHENTICATION = 19
DS_E_INAPPROP_MATCHING = 20
DS_E_INSUFFICIENT_ACCESS_RIGHTS = 21
DS_E_INVALID_ATTRIBUTE_SYNTAX = 22
DS_E_INVALID_ATTRIBUTE_VALUE = 23
DS_E_INVALID_CREDENTIALS = 24
DS_E_INVALID_REF = 25
DS_E_INVALID_SIGNATURE = 26
DS_E_LOOP_DETECTED = 27
DS_E_MISCELLANEOUS = 28
DS_E_MISSING_TYPE = 29
DS_E_MIXED_SYNCHRONOUS = 30
DS_E_NAMING_VIOLATION = 31
DS_E_NO_INFO = 32
DS_E_NO_SUCH_ATTRIBUTE_OR_VALUE = 33
DS_E_NO_SUCH_OBJECT = 34
DS_E_NO_SUCH_OPERATION = 35
DS_E_NOT_ALLOWED_ON_NON_LEAF = 36
DS_E_NOT_ALLOWED_ON_RDN = 37
DS_E_NOT_SUPPORTED = 38
DS_E_OBJECT_CLASS_MOD_PROHIB = 39
DS_E_OBJECT_CLASS_VIOLATION = 40
DS_E_OUT_OF_SCOPE = 41
DS_E_PROTECTION_REQUIRED = 42
DS_E_TIME_LIMIT_EXCEEDED = 43
DS_E_TOO_LATE = 44
DS_E_TOO_MANY_OPERATIONS = 45
DS_E_TOO_MANY_SESSIONS = 46
DS_E_UNABLE_TO_PROCEED = 47
DS_E_UNAVAILABLE = 48
DS_E_UNAVAILABLE_CRIT_EXT = 49
DS_E_UNDEFINED_ATTRIBUTE_TYPE = 50
DS_E_UNWILLING_TO_PERFORM = 51

126 X/Open CAE Specification (1994)

Headers <xds.h>

};

/* DS_Scope_Of_Referral */

enum DS_Scope_Of_Referral {
DS_DMD = 0
DS_COUNTRY = 1

};

/* OM_object constants */

#define DS_DEFAULT_CONTEXT ((OM_object) 0)
#define DS_DEFAULT_SESSION ((OM_object) 0)
#define DS_OPERATION_NOT_STARTED ((OM_object) 0)
#define DS_NO_FILTER ((OM_object) 0)
#define DS_NULL_RESULT ((OM_object) 0)
#define DS_SELECT_ALL_TYPES ((OM_object) 1)
#define DS_SELECT_ALL_TYPES_AND_VALUES ((OM_object) 2)
#define DS_SELECT_NO_ATTRIBUTES ((OM_object) 0)
#define DS_SUCCESS ((DS_status) 0)
#define DS_INVALID_WORKSPACE ((DS_status) 2)
#define DS_NO_WORKSPACE ((DS_status) 1)

/* ds_search subset */

#define DS_BASE_OBJECT ((OM_sint) 0)
#define DS_ONE_LEVEL ((OM_sint) 1)
#define DS_WHOLE_SUBTREE ((OM_sint) 2)

/* ds_receive_result completion_flag_return */

#define DS_COMPLETED_OPERATION ((OM_uint) 1)
#define DS_OUTSTANDING_OPERATIONS ((OM_uint) 2)
#define DS_NO_OUTSTANDING_OPERATION ((OM_uint) 3)
#define DS_OTHER_COMPLETED_OPERATIONS ((OM_uint) 4)

/* Invocation Identifier Flags for ds_receive_result */

#define DS_ANY_OPERATION ((OM_sint) 0)

/* asynchronous operations limit (implementation-defined) */

#define DS_MAX_OUTSTANDING_OPERATIONS 1

/* asynchronous event posting */

API to Directory Services (XDS), Issue 2 127

<xds.h> Headers

#define DS_NO_VALID_FILE_DESCRIPTOR -1

#endif /* XDS_HEADER */

128 X/Open CAE Specification (1994)

Headers <xdsbdcp.h>

8.3 <xdsbdcp.h>
The <xdsbdcp.h> header defines the object identifiers of directory attribute types and object
classes supported by the Basic Directory Contents Package. It also defines OM classes used to
represent the values of the attribute types.

When an application program includes the <xdsbdcp.h> header, all the definitions made in the
Object Management header <xom.h> and the <xds.h> header will also apply, as though the
application had included <xom.h> and <xds.h> as well as <xdsbdcp.h>.

#ifndef XDSBDCP_HEADER
#define XDSBDCP_HEADER

#define OMP_O_DS_BASIC_DIR_CONTENTS_PKG \x2A\x86\x48\xCE\x1E\x01

/* Intermediate object identifier macros */

#ifndef dsP_attributeType
#define dsP_attributeType(X) ("\x55\x4" #X) joint-iso-ccitt 5 4

#endif

#ifndef dsP_objectClass
#define dsP_objectClass(X) ("\x55\x6" #X) joint-iso-ccitt 5 6

#endif

#define dsP_bdcp_c(X) (OMP_O_DS_BASIC_DIR_CONTENTS_PKG #X)

/* OM class names (prefixed DS_C_), */
/* Directory attribute types (prefixed DS_A_), */
/* and Directory object classes (prefixed DS_O_) */

/* Every application program which makes use of a class or */
/* other Object Identifier must explicitly import it into */
/* every compilation unit (C source program) which uses it. */
/* Each such class or Object Identifier name must be */
/* explicitly exported from just one compilation unit. */

/* In the header file, OM class constants are prefixed with */
/* the OPM_O prefix to denote that they are OM classes. */
/* However, when using the OM_IMPORT and OM_EXPORT macros, */
/* the base names (without the OMP_O prefix) should be used. */
/* For example: */
/* OM_IMPORT(DS_O_COUNTRY) */

/* Directory attribute types */

#define OMP_O_DS_A_ALIASED_OBJECT_NAME dsP_attributeType(\x01)
#define OMP_O_DS_A_BUSINESS_CATEGORY dsP_attributeType(\x0F)
#define OMP_O_DS_A_COMMON_NAME dsP_attributeType(\x03)
#define OMP_O_DS_A_COUNTRY_NAME dsP_attributeType(\x06)
#define OMP_O_DS_A_DESCRIPTION dsP_attributeType(\x0D)
#define OMP_O_DS_A_DEST_INDICATOR dsP_attributeType(\x1B)
#define OMP_O_DS_A_FACSIMILE_PHONE_NBR dsP_attributeType(\x17)

API to Directory Services (XDS), Issue 2 129

<xdsbdcp.h> Headers

#define OMP_O_DS_A_INTERNAT_ISDN_NBR dsP_attributeType(\x19)
#define OMP_O_DS_A_KNOWLEDGE_INFO dsP_attributeType(\x02)
#define OMP_O_DS_A_LOCALITY_NAME dsP_attributeType(\x07)
#define OMP_O_DS_A_MEMBER dsP_attributeType(\x1F)
#define OMP_O_DS_A_OBJECT_CLASS dsP_attributeType(\x00)
#define OMP_O_DS_A_ORG_NAME dsP_attributeType(\x0A)
#define OMP_O_DS_A_ORG_UNIT_NAME dsP_attributeType(\x0B)
#define OMP_O_DS_A_OWNER dsP_attributeType(\x20)
#define OMP_O_DS_A_PHONE_NBR dsP_attributeType(\x14)
#define OMP_O_DS_A_PHYS_DELIV_OFF_NAME dsP_attributeType(\x13)
#define OMP_O_DS_A_POST_OFFICE_BOX dsP_attributeType(\x12)
#define OMP_O_DS_A_POSTAL_ADDRESS dsP_attributeType(\x10)
#define OMP_O_DS_A_POSTAL_CODE dsP_attributeType(\x11)
#define OMP_O_DS_A_PREF_DELIV_METHOD dsP_attributeType(\x1C)
#define OMP_O_DS_A_PRESENTATION_ADDRESS dsP_attributeType(\x1D)
#define OMP_O_DS_A_REGISTERED_ADDRESS dsP_attributeType(\x1A)
#define OMP_O_DS_A_ROLE_OCCUPANT dsP_attributeType(\x21)
#define OMP_O_DS_A_SEARCH_GUIDE dsP_attributeType(\x0E)
#define OMP_O_DS_A_SEE_ALSO dsP_attributeType(\x22)
#define OMP_O_DS_A_SERIAL_NBR dsP_attributeType(\x05)
#define OMP_O_DS_A_STATE_OR_PROV_NAME dsP_attributeType(\x08)
#define OMP_O_DS_A_STREET_ADDRESS dsP_attributeType(\x09)
#define OMP_O_DS_A_SUPPORT_APPLIC_CONTEXT dsP_attributeType(\x1E)
#define OMP_O_DS_A_SURNAME dsP_attributeType(\x04)
#define OMP_O_DS_A_TELETEX_TERM_IDENT dsP_attributeType(\x16)
#define OMP_O_DS_A_TELEX_NBR dsP_attributeType(\x15)
#define OMP_O_DS_A_TITLE dsP_attributeType(\x0C)
#define OMP_O_DS_A_USER_PASSWORD dsP_attributeType(\x23)
#define OMP_O_DS_A_X121_ADDRESS dsP_attributeType(\x18)

/* Directory object classes */

#define OMP_O_DS_O_ALIAS dsP_objectClass(\x01)
#define OMP_O_DS_O_APPLIC_ENTITY dsP_objectClass(\x0C)
#define OMP_O_DS_O_APPLIC_PROCESS dsP_objectClass(\x0B)
#define OMP_O_DS_O_COUNTRY dsP_objectClass(\x02)
#define OMP_O_DS_O_DEVICE dsP_objectClass(\x0E)
#define OMP_O_DS_O_DSA dsP_objectClass(\x0D)
#define OMP_O_DS_O_GROUP_OF_NAMES dsP_objectClass(\x09)
#define OMP_O_DS_O_LOCALITY dsP_objectClass(\x03)
#define OMP_O_DS_O_ORG dsP_objectClass(\x04)
#define OMP_O_DS_O_ORG_PERSON dsP_objectClass(\x07)
#define OMP_O_DS_O_ORG_ROLE dsP_objectClass(\x08)
#define OMP_O_DS_O_ORG_UNIT dsP_objectClass(\x05)
#define OMP_O_DS_O_PERSON dsP_objectClass(\x06)
#define OMP_O_DS_O_RESIDENTIAL_PERSON dsP_objectClass(\x0A)
#define OMP_O_DS_O_TOP dsP_objectClass(\x00)

130 X/Open CAE Specification (1994)

Headers <xdsbdcp.h>

/* OM class names */

#define OMP_O_DS_C_FACSIMILE_PHONE_NBR dsP_bdcp_c(\x86\x21)
#define OMP_O_DS_C_POSTAL_ADDRESS dsP_bdcp_c(\x86\x22)
#define OMP_O_DS_C_SEARCH_CRITERION dsP_bdcp_c(\x86\x23)
#define OMP_O_DS_C_SEARCH_GUIDE dsP_bdcp_c(\x86\x24)
#define OMP_O_DS_C_TELETEX_TERM_IDENT dsP_bdcp_c(\x86\x25)
#define OMP_O_DS_C_TELEX_NBR dsP_bdcp_c(\x86\x26)

/* OM attribute names */

#define DS_ANSWERBACK ((OM_type) 801)
#define DS_COUNTRY_CODE ((OM_type) 802)
#define DS_CRITERIA ((OM_type) 803)
#define DS_OBJECT_CLASS ((OM_type) 804)
#define DS_PARAMETERS ((OM_type) 805)
#define DS_POSTAL_ADDRESS ((OM_type) 806)
#define DS_PHONE_NBR ((OM_type) 807)
#define DS_TELETEX_TERM ((OM_type) 808)
#define DS_TELEX_NBR ((OM_type) 809)

/* DS_Preferred_Delivery_Method */

enum DS_Preferred_Delivery_Method{
DS_ANY_DELIV_METHOD = 0
DS_MHS_DELIV = 1
DS_PHYS_DELIV = 2
DS_TELEX_DELIV = 3
DS_TELETEX_DELIV = 4
DS_G3_FACSIMILE_DELIV = 5
DS_G4_FACSIMILE_DELIV = 6
DS_IA5_TERMINAL_DELIV = 7
DS_VIDEOTEX_DELIV = 8
DS_PHONE_DELIV = 9

};

/*upper bounds on string lengths and number of repeated OM attribute values*/

#define DS_VL_A_BUSINESS_CATEGORY ((OM_value_length) 128)
#define DS_VL_A_COMMON_NAME ((OM_value_length) 64)
#define DS_VL_A_DESCRIPTION ((OM_value_length) 1024)
#define DS_VL_A_DEST_INDICATOR ((OM_value_length) 128)
#define DS_VL_A_INTERNAT_ISDN_NBR ((OM_value_length) 16)
#define DS_VL_A_LOCALITY_NAME ((OM_value_length) 128)
#define DS_VL_A_ORG_NAME ((OM_value_length) 64)
#define DS_VL_A_ORG_UNIT_NAME ((OM_value_length) 64)
#define DS_VL_A_PHYS_DELIV_OFF_NAME ((OM_value_length) 128)
#define DS_VL_A_POST_OFFICE_BOX ((OM_value_length) 40)
#define DS_VL_A_POSTAL_CODE ((OM_value_length) 40)

API to Directory Services (XDS), Issue 2 131

<xdsbdcp.h> Headers

#define DS_VL_A_SERIAL_NBR ((OM_value_length) 64)
#define DS_VL_A_STATE_OR_PROV_NAME ((OM_value_length) 128)
#define DS_VL_A_STREET_ADDRESS ((OM_value_length) 128)
#define DS_VL_A_SURNAME ((OM_value_length) 64)
#define DS_VL_A_PHONE_NBR ((OM_value_length) 32)
#define DS_VL_A_TITLE ((OM_value_length) 64)
#define DS_VL_A_USER_PASSWORD ((OM_value_length) 128)
#define DS_VL_A_X121_ADDRESS ((OM_value_length) 15)
#define DS_VL_ANSWERBACK ((OM_value_length) 8)
#define DS_VL_COUNTRY_CODE ((OM_value_length) 4)
#define DS_VL_POSTAL_ADDRESS ((OM_value_length) 30)
#define DS_VL_PHONE_NBR ((OM_value_length) 32)
#define DS_VL_TELETEX_TERM ((OM_value_length) 1024)
#define DS_VL_TELEX_NBR ((OM_value_length) 14)
#define DS_VN_POSTAL_ADDRESS ((OM_value_length) 6)

#endif /* XDSBDCP_HEADER */

132 X/Open CAE Specification (1994)

Headers <xdssap.h>

8.4 <xdssap.h>
The <xdssap.h> header defines the object identifiers of directory attribute types and object
classes supported by the Strong Authentication Package. It also defines OM classes used to
represent the values of the attribute types.

When an application program includes the <xdssap.h> header, all the definitions made in the
Object Management header <xom.h> and the <xds.h> header will also apply, as though the
application had included <xom.h> and <xds.h> as well as <xdssap.h>.

#ifndef XDSSAP_HEADER
#define XDSSAP_HEADER

#define OMP_O_DS_STRONG_AUTHENT_PKG \x2A\x86\x48\xCE\x1E\x02

/* Intermediate object identifier macros */

#ifndef dsP_attributeType
#define dsP_attributeType(X) ("\x55\x4" #X) joint-iso-ccitt 5 4

#endif

#ifndef dsP_objectClass
#define dsP_objectClass(X) ("\x55\x6" #X) joint-iso-ccitt 5 6

#endif

#define dsP_sap_c(X) (OMP_O_DS_STRONG_AUTHENT_PKG #X)

/* OM class names (prefixed DS_C_), */
/* Directory attribute types (prefixed DS_A_), */
/* and Directory object classes (prefixed DS_O_) */

/* Every application program which makes use of a class or */
/* other Object Identifier must explicitly import it into */
/* every compilation unit (C source program) which uses it. */
/* Each such class or Object Identifier name must be */
/* explicitly exported from just one compilation unit. */

/* In the header file, OM class constants are prefixed with */
/* the OPM_O prefix to denote that they are OM classes. */
/* However, when using the OM_IMPORT and OM_EXPORT macros, */
/* the base names (without the OMP_O prefix) should be used. */
/* For example: */
/* OM_IMPORT(DS_O_CERT_AUTHORITY) */

API to Directory Services (XDS), Issue 2 133

<xdssap.h> Headers

/* Directory attribute types */

#define OMP_O_DS_A_AUTHORITY_REVOC_LIST dsP_attributeType(\x26)
#define OMP_O_DS_A_CA_CERT dsP_attributeType(\x25)
#define OMP_O_DS_A_CERT_REVOC_LIST dsP_attributeType(\x27)
#define OMP_O_DS_A_CROSS_CERT_PAIR dsP_attributeType(\x28)
#define OMP_O_DS_A_USER_CERT dsP_attributeType(\x24)

/* Directory object classes */

#define OMP_O_DS_O_CERT_AUTHORITY dsP_objectClass(\x10)
#define OMP_O_DS_O_STRONG_AUTHENT_USER dsP_objectClass(\x0F)

/* OM class names */

#define OMP_O_DS_C_ALGORITHM_IDENT dsP_sap_c(\x86\x35)
#define OMP_O_DS_C_CERT dsP_sap_c(\x86\x36)
#define OMP_O_DS_C_CERT_LIST dsP_sap_c(\x86\x37)
#define OMP_O_DS_C_CERT_PAIR dsP_sap_c(\x86\x38)
#define OMP_O_DS_C_CERT_SUBLIST dsP_sap_c(\x86\x39)
#define OMP_O_DS_C_SIGNATURE dsP_sap_c(\x86\x3A)
#define OMP_O_DS_C_CERTS dsP_sap_c(\x86\x3B)
#define OMP_O_DS_C_CROSS_CERTS dsP_sap_c(\x86\x3C)
#define OMP_O_DS_C_FWD_CERT_PATH dsP_sap_c(\x86\x3D)

/* OM attribute names */

#define DS_ALGORITHM ((OM_type) 821)
#define DS_FORWARD ((OM_type) 822)
#define DS_ISSUER ((OM_type) 823)
#define DS_LAST_UPDATE ((OM_type) 824)
#define DS_ALGORITHM_PARAMETERS ((OM_type) 825)
#define DS_REVERSE ((OM_type) 826)
#define DS_REVOC_DATE ((OM_type) 827)
#define DS_REVOKED_CERTS ((OM_type) 828)
#define DS_SERIAL_NBR ((OM_type) 829)
#define DS_SERIAL_NBRS ((OM_type) 830)
#define DS_SIGNATURE ((OM_type) 831)
#define DS_SIGNATURE_VALUE ((OM_type) 832)
#define DS_SUBJECT ((OM_type) 833)
#define DS_SUBJECT_ALGORITHM ((OM_type) 834)
#define DS_SUBJECT_PUBLIC_KEY ((OM_type) 835)
#define DS_VALIDITY_NOT_AFTER ((OM_type) 836)
#define DS_VALIDITY_NOT_BEFORE ((OM_type) 837)
#define DS_VERSION ((OM_type) 838)
#define DS_CERT ((OM_type) 839)
#define DS_CERT_PATH ((OM_type) 840)
#define DS_FWD_CERT_PATH ((OM_type) 841)

/* DS_Version */

134 X/Open CAE Specification (1994)

Headers <xdssap.h>

#define DS_V1988 ((OM_enumeration) 1)

/*upper bounds on string lengths and number of repeated OM attribute values*/

#define DS_VL_LAST_UPDATE ((OM_value_length) 17)
#define DS_VL_REVOC_DATE ((OM_value_length) 17)
#define DS_VL_VALIDITY_NOT_AFTER ((OM_value_length) 17)
#define DS_VL_VALIDITY_NOT_BEFORE ((OM_value_length) 17)
#define DS_VN_REVOC_DATE ((OM_value_number) 2)

#endif /* XDSSAP_HEADER */

API to Directory Services (XDS), Issue 2 135

<xdsmdup.h> Headers

8.5 <xdsmdup.h>
The <xdsmdup.h> header defines the object identifiers of directory attribute types and object
classes supported by the MHS Directory User Package. It also defines OM classes used to
represent the values of the attribute types.

When an application program includes the <xdsmdup.h> header, all the definitions made in the
Object Management header <xom.h> and the <xds.h> header will also apply, as though the
application had included <xom.h> and <xds.h> as well as <xdsmdup.h>.

#ifndef XDSMDUP_HEADER
#define XDSMDUP_HEADER

#ifndef XMHP_HEADER
#include <xmhp.h>
#endif /* XMHP_HEADER */

/* MDUP package object identifier */

#define OMP_O_DS_MHS_DIR_USER_PKG \x2A\x86\x48\xCE\x1E\x03

/* Intermediate object identifier macros */

#define dsP_MHSattributeType(X) ("\x56\x5\x2" #X) /* joint-iso-ccitt 6 5 2 */

#define dsP_MHSobjectClass(X) ("\x56\x5\x1" #X) /* joint-iso-ccitt 6 5 1 */

#define dsP_mdup_c(X) (OMP_O_DS_MHS_DIR_USER_PKG #X)

/* OM class names (prefixed DS_C_), */
/* Directory attribute types (prefixed DS_A_), */
/* and Directory object classes (prefixed DS_O_) */

/* Every application program which makes use of a class or */
/* other Object Identifier must explicitly import it into */
/* every compilation unit (C source program) which uses it. */
/* Each such class or Object Identifier name must be */
/* explicitly exported from just one compilation unit. */

/* In the header file, OM class constants are prefixed with */
/* the OPM_O prefix to denote that they are OM classes. */
/* However, when using the OM_IMPORT and OM_EXPORT macros, */
/* the base names (without the OMP_O prefix) should be used. */
/* For example: */
/* OM_IMPORT(DS_O_CERT_AUTHORITY) */

136 X/Open CAE Specification (1994)

Headers <xdsmdup.h>

/* Directory attribute types */

#define OMP_O_DS_A_DELIV_CONTENT_LENGTH dsP_MHSattributeType(\x00)
#define OMP_O_DS_A_DELIV_CONTENT_TYPES dsP_MHSattributeType(\x01)
#define OMP_O_DS_A_DELIV_EITS dsP_MHSattributeType(\x02)
#define OMP_O_DS_A_DL_MEMBERS dsP_MHSattributeType(\x03)
#define OMP_O_DS_A_DL_SUBMIT_PERMS dsP_MHSattributeType(\x04)
#define OMP_O_DS_A_MESSAGE_STORE dsP_MHSattributeType(\x05)
#define OMP_O_DS_A_OR_ADDRESSES dsP_MHSattributeType(\x06)
#define OMP_O_DS_A_PREF_DELIV_METHODS dsP_MHSattributeType(\x07)
#define OMP_O_DS_A_SUPP_AUTO_ACTIONS dsP_MHSattributeType(\x08)
#define OMP_O_DS_A_SUPP_CONTENT_TYPES dsP_MHSattributeType(\x09)
#define OMP_O_DS_A_SUPP_OPT_ATTRIBUTES dsP_MHSattributeType(\x0A)

/* Directory object classes */

#define OMP_O_DS_O_MHS_DISTRIBUTION_LIST dsP_MHSobjectClass(\x00)
#define OMP_O_DS_O_MHS_MESSAGE_STORE dsP_MHSobjectClass(\x01)
#define OMP_O_DS_O_MHS_MESSAGE_TRANS_AG dsP_MHSobjectClass(\x02)
#define OMP_O_DS_O_MHS_USER dsP_MHSobjectClass(\x03)
#define OMP_O_DS_O_MHS_USER_AG dsP_MHSobjectClass(\x04)

/* OM class names */

#define OMP_O_DS_C_DL_SUBMIT_PERMS dsP_mdup_c(\x87\x05)

/* OM attribute names */

#define DS_PERM_TYPE ((OM_type) 901)
#define DS_INDIVIDUAL ((OM_type) 902)
#define DS_MEMBER_OF_DL ((OM_type) 903)
#define DS_PATTERN_MATCH ((OM_type) 904)
#define DS_MEMBER_OF_GROUP ((OM_type) 905)

/* DS_Permission_Type */

enum DS_Permission_Type {
DS_PERM_INDIVIDUAL = 0,
DS_PERM_MEMBER_OF_DL = 1,
DS_PERM_PATTERN_MATCH = 2,
DS_PERM_MEMBER_OF_GROUP = 3

};

#endif /* XDSMDUP_HEADER */

API to Directory Services (XDS), Issue 2 137

Headers

138 X/Open CAE Specification (1994)

Appendix A

Programming Examples

A.1 Introduction
This Appendix provides two examples of C programs which use this interface to the directory.
The first example illustrates the use of synchronous operations, whilst the second makes use of
asynchronous operations. Both examples make use of common error handling functions and
macros from the <example.h> header which is described at the end of this Chapter.

A.2 Synchronous Directory Example
/*

* Sample application that uses XDS in synchronous mode.
*
* This program reads the telephone number(s) of a given target name.
*/

#include <stdio.h>

#include <xom.h> /* Object Management header */
#include <xds.h> /* Directory Service header */
#include <xdsbdcp.h> /* Basic Directory Contents Package header */

#include "example.h" /* possible Error Handling header */

/*
* Define necessary Object Identifier constants.
*/

OM_EXPORT(DS_A_COMMON_NAME)
OM_EXPORT(DS_A_COUNTRY_NAME)
OM_EXPORT(DS_A_ORG_NAME)
OM_EXPORT(DS_A_ORG_UNIT_NAME)
OM_EXPORT(DS_A_PHONE_NBR)
OM_EXPORT(DS_C_AVA)
OM_EXPORT(DS_C_DS_DN)
OM_EXPORT(DS_C_DS_RDN)
OM_EXPORT(DS_C_ENTRY_INFO_SELECTION)

int main(void) {

DS_status error; /* return value from DS functions */
OM_return_code return_code; /* return value from OM functions */
OM_workspace workspace; /* workspace for objects */
OM_private_object session; /* session for directory operations */
OM_private_object result; /* result of read operation */
OM_sint invoke_id; /* Invoke-ID of the read operation */
OM_value_position total_number /* Number of Attribute Descriptors */

};

API to Directory Services (XDS), Issue 2 139

Synchronous Directory Example Programming Examples

static DS_feature bdcp_package[] = {

{DS_BASIC_DIR_CONTENTS_PKG, OM_TRUE},
{{(OM_uint32)0, (void *)0}, OM_FALSE}
};

/*
* Public Object ("Descriptor List") for Name argument to ds_read().
* Build the Distinguished-Name of Peter Piper.
*/

static OM_descriptor country[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COUNTRY_NAME),
{ DS_ATTRIBUTE_VALUES,OM_S_PRINTABLE_STRING,{ OM_STRING("US") } },
OM_NULL_DESCRIPTOR
};

static OM_descriptor organization[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORGANIZATION_NAME),
{ DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING,{ OM_STRING("Acme Pepper Co") } },
OM_NULL_DESCRIPTOR
};

static OM_descriptor organizational_unit[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_ORGANIZATIONAL_UNIT_NAME),
{ DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING,{ OM_STRING("Research") } },
OM_NULL_DESCRIPTOR
};

static OM_descriptor common_name[] = {

OM_OID_DESC(OM_CLASS, DS_C_AVA),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_COMMON_NAME),
{ DS_ATTRIBUTE_VALUES,OM_S_TELETEX_STRING,{ OM_STRING("Peter Piper") } },
OM_NULL_DESCRIPTOR
};

static OM_descriptor rdn1[] = {

OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{ DS_AVAS, OM_S_OBJECT, { { 0, country } } },
OM_NULL_DESCRIPTOR
};

static OM_descriptor rdn2[] = {

OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{ DS_AVAS, OM_S_OBJECT, { { 0, organization } } },
OM_NULL_DESCRIPTOR
};

140 X/Open CAE Specification (1994)

Programming Examples Synchronous Directory Example

static OM_descriptor rdn3[] = {

OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{ DS_AVAS, OM_S_OBJECT, { { 0, organizational_unit } } },
OM_NULL_DESCRIPTOR
};

static OM_descriptor rdn4[] = {

OM_OID_DESC(OM_CLASS, DS_C_DS_RDN),
{ DS_AVAS, OM_S_OBJECT, { { 0, common_name } } },
OM_NULL_DESCRIPTOR
};

OM_descriptor name[] = {

OM_OID_DESC(OM_CLASS, DS_C_DS_DN),
{ DS_RDNS, OM_S_OBJECT, { { 0, rdn1 } } },
{ DS_RDNS, OM_S_OBJECT, { { 0, rdn2 } } },
{ DS_RDNS, OM_S_OBJECT, { { 0, rdn3 } } },
{ DS_RDNS, OM_S_OBJECT, { { 0, rdn4 } } },
OM_NULL_DESCRIPTOR
};

/*
* Public Object ("Descriptor List") for Entry-Info-Selection
* argument to ds_read().
*/

OM_descriptor selection[] = {

OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFORMATION_SELECTION),
{ DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, { { OM_FALSE, NULL } } },
OM_OID_DESC(DS_ATTRIBUTES_SELECTED, DS_A_TELEPHONE_NUMBER),
{ DS_INFORMATION_TYPE,OM_S_ENUMERATION, { { DS_TYPES_AND_VALUES,NULL } } },
OM_NULL_DESCRIPTOR
};

/*
* Variables to extract the telephone number(s).
*/

OM_type entry_list[] = { DS_ENTRY, 0 };
OM_type attributes_list[] = { DS_ATTRIBUTES, 0 };
OM_type telephone_list[] = { DS_ATTRIBUTE_VALUES, 0 };
OM_public_object entry;
OM_public_object attributes;
OM_public_object telephones;
OM_descriptor * telephone; /* current phone number */

API to Directory Services (XDS), Issue 2 141

Synchronous Directory Example Programming Examples

/*
* Perform the Directory operations:
* (1) Initialise the Directory Service and get an OM workspace.
* (2) Bind a default directory session.
* (3) Read the telephone number of "name".
* (4) Terminate the directory session.
*/

CHECK_DS_CALL((OM_object) !(workspace=ds_initialize()));

CHECK_DS_CALL(ds_version(bdcp_package, workspace));

CHECK_DS_CALL(ds_bind(DS_DEFAULT_SESSION, workspace, &session));

CHECK_DS_CALL(ds_read(session, DS_DEFAULT_CONTEXT, name, selection,
&result, &invoke_id));

/*
* NOTE: check here for Attribute-Error (no-such-attribute)
* in case the "name" doesn’t have a telephone.
* Then for all other cases call error_handler.
*/

CHECK_DS_CALL(ds_unbind(session));

/*
* Extract the telephone number(s) of "name" from the result.
*
* There are 4 stages:
* (1) Get the Entry-Info from the Read-Result.
* (2) Get the Attributes from the Entry-Info.
* (3) Get the list of phone numbers.
* (4) Scan the list and print each number.
*/

CHECK_OM_CALL(om_get(result,

OM_EXCLUDE_ALL_BUT_THESE_TYPES
+ OM_EXCLUDE_SUBOBJECTS,
entry_list, OM_FALSE, 0, 0, &entry, &total_number));

CHECK_OM_CALL(om_get(entry->value.object.object,

OM_EXCLUDE_ALL_BUT_THESE_TYPES
+ OM_EXCLUDE_SUBOBJECTS,
attributes_list, OM_FALSE, 0, 0, &attributes, &total_number));

CHECK_OM_CALL(om_get(attributes->value.object.object,

OM_EXCLUDE_ALL_BUT_THESE_TYPES
+ OM_EXCLUDE_SUBOBJECTS,
telephone_list, OM_FALSE, 0, 0, &telephones, &total_number));

142 X/Open CAE Specification (1994)

Programming Examples Synchronous Directory Example

/*
* We can now safely release all the private objects
* and the public objects we no longer need.
*/

CHECK_OM_CALL(om_delete(session));
CHECK_OM_CALL(om_delete(result));
CHECK_OM_CALL(om_delete(entry));
CHECK_OM_CALL(om_delete(attributes));

for (telephone = telephones;
telephone->type == DS_ATTRIBUTE_VALUES;
telephone++)

{
if (telephone->type != DS_ATTRIBUTE_VALUES
|| (telephone->syntax & OM_S_SYNTAX) != OM_S_PRINTABLE_STRING)
{

(void) fprintf(stderr, "malformed telephone number\n");
exit(EXIT_FAILURE);

}

(void) printf("Telephone number: %s\n",
telephone->value.string.elements);

}

CHECK_OM_CALL(om_delete(telephones));

/*
* More application-specific processing can occur here ...
*/

/* ... and finally exit. */
exit(EXIT_SUCCESS);
}

API to Directory Services (XDS), Issue 2 143

Asynchronous Directory Example Programming Examples

A.3 Asynchronous Directory Example
/*

* Sample application that uses XDS in asynchronous mode.
*
* The program adds a person as a member of a group.
*
* This program uses the System V poll() function by way of
* example. Similar programs using BSD select() are possible.
*/

#include <stdio.h>
#include <fcntl.h>
#include <poll.h>
#include <signal.h>
#include <assert.h>

#include <xom.h> /* Object Management header */
#include <xds.h> /* Directory Service header */
#include <xdsbdcp.h> /* Basic Directory Contents Package header */

#include "example.h" /* local macros and function prototypes */

/*
* Define necessary Object Identifier constants.
*/

OM_EXPORT(DS_A_MEMBER)
OM_EXPORT(DS_C_CONTEXT)
OM_EXPORT(DS_C_ENTRY_MOD)
OM_EXPORT(DS_C_ENTRY_MOD_LIST)

/*
* Assume that we have built OM objects as follows:
*
* (1) "username" = distinguished name of user executing this program.
* (2) "personname" = person to be added to directory.
* (3) "groupname" = groupOfNames which "personname" will join.
*
* These would be built in the same way as the "name" argument
* in the previous example.
*/

int asynchronous_function_example(

OM_private_object username,
OM_private_object personname,
OM_private_object groupname)

{

144 X/Open CAE Specification (1994)

Programming Examples Asynchronous Directory Example

DS_status error; /* return value from DS functions */
OM_return_code return_code; /* return value from OM functions */
OM_workspace workspace; /* workspace for directory operations */
OM_private_object context; /* context for directory operations */
OM_private_object session; /* session for directory operations */
OM_sint invoke_id; /* Invoke-ID of the modify operation */
OM_uint completion_flag; /* results of ds_receive_result() */
DS_status operation_status; /* " */
OM_private_object result; /* " */
OM_sint result_id; /* " */
OM_value_position total_number /* Number of Attribute Descriptors */

static DS_feature bdcp_package[] = {
{DS_BASIC_DIR_CONTENTS_PKG, OM_TRUE},
{{(OM_uint32)0, (void *)0}, OM_FALSE}

};

/*
* Descriptors to set asynchronous mode and high priority in the context.
*/

OM_descriptor context_options[] = {

{ DS_ASYNCHRONOUS, OM_S_BOOLEAN, { { TRUE, NULL } } },
{ DS_PRIORITY, OM_S_ENUMERATION, { { DS_HIGH, NULL } } },
OM_NULL_DESCRIPTOR,
};

/*
* Descriptors used to build arguments for modify-entry operation.
*/

static OM_descriptor modification[] = {

OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD),
OM_OID_DESC(DS_ATTRIBUTE_TYPE, DS_A_MEMBER),
{ DS_ATTRIBUTE_VALUES, OM_S_OBJECT, { { 0, personname } } },
{ DS_MODIFICATION_TYPE, OM_S_ENUMERATION, { { DS_ADD_VALUES, NULL } } },
OM_NULL_DESCRIPTOR,
};

OM_descriptor changes[] = {

OM_OID_DESC(OM_CLASS, DS_C_ENTRY_MOD_LIST),
{ DS_CHANGES, OM_S_OBJECT, { { 0, (OM_object) modification } } },
OM_NULL_DESCRIPTOR,
};

/*
* Arguments for om_get() to extract file descriptor from session.
*/

OM_type fd_list[] = { DS_FILE_DESCRIPTOR, 0 };
OM_descriptor * fd_values;

API to Directory Services (XDS), Issue 2 145

Asynchronous Directory Example Programming Examples

/*
* (1) Initialise the Directory Service and get an OM workspace,
* (2) create a context with the required options,
* (3) start a Directory session, and
* (4) invoke the modification of the "groupname" entry.
*/

CHECK_DS_CALL((OM_object) !(workspace=ds_initialize()));
CHECK_DS_CALL(ds_version(bdcp_package, workspace));

CHECK_OM_CALL(om_create(DS_C_CONTEXT, OM_TRUE, workspace, &context);
CHECK_OM_CALL(om_put(context, OM_REPLACE_ALL, context_options, NULL,

OM_ALL_VALUES, OM_ALL_VALUES));

CHECK_DS_CALL(ds_bind(DS_DEFAULT_SESSION, workspace, &session));
CHECK_DS_CALL(ds_modify_entry(session, context, groupname, changes,

&results, &invoke_id));

/*
* The application goes off and does some more stuff here ...
*/

/*
* now go into poll() loop,
*
* (1) set file-descriptor of directory session into poll() list, and
* (2) set to poll() on input events.
*/

CHECK_OM_CALL(om_get(session, OM_EXCLUDE_ALL_BUT_THESE_TYPES,
fd_list, OM_FALSE, 0, 0, &fd_value, &total_number))

pollfds[0].fd = fd_value->value.integer;
pollfds[0].events = POLLIN;

while (1)
{

/* execute poll() */
if (poll(pollfds, NUM_FDS, -1) < 0)
{

perror("poll failed");
exit(1);

}

for (i = 0; i < NUM_FDS; i++)
{

switch (pollfds[i].revents)
{
case 0:

continue;
break;

case POLLIN:

146 X/Open CAE Specification (1994)

Programming Examples Asynchronous Directory Example

/*
* There has been some activity on the directory session.
* (1) ask for a result,
* (2) check if an operation has completed,
* (3) check whether it completed successfully,
* (4) check if it was the operation we’re interested in, and
* (5) use the result (if it had been an interrogation).
*/

CHECK_DS_CALL(ds_receive_result(session,
&completion_flag,
&operation_status,
&result,
&result_id));

if (completion_flag != DS_COMPLETED_OPERATION)
/*

* Whatever the file activity was, its not for us.
*/

break;

CHECK_DS_CALL(operation_status);

if (result_id != invoke_id)
{

(void) fprintf(stderr, "Unexpected results!");
exit(EXIT_FAILURE);

}

/*
* If we get here, the Modify-Entry() operation has completed
* successfully, and if it were an interrogation, the result
* would be available for use now ...
*/

/*
* ... but there is no result from ds_modify_entry.
*/

assert(result == DS_NULL_RESULT);

break;

/* Include other application events ... */

default:
perror("poll returned error event");
}

}
}

API to Directory Services (XDS), Issue 2 147

Asynchronous Directory Example Programming Examples

/*
* Terminate the directory session and clean up.
*/

CHECK_DS_CALL(ds_unbind(session));

CHECK_OM_CALL(om_delete(context));
CHECK_OM_CALL(om_delete(session));
CHECK_OM_CALL(om_delete(result));
CHECK_OM_CALL(om_delete(fd_value));

/*
* More application-specific processing can occur here ...
*/

/*
* ... and exit.
*/

exit(EXIT_SUCCESS);

}

148 X/Open CAE Specification (1994)

Programming Examples Error Handling Module

A.4 Error Handling Module
Each example program includes a local header, <example.h>, which defines macros used to
check that functions in the directory interface and the object management interface all complete
successfully. The contents of this header are reproduced below.

/*
* Define some convenient exit codes.
*/

#define EXIT_FAILURE 1
#define EXIT_SUCCESS 0

/*
* Declare an error handling function and an error checking macro for DS.
*/

void handle_ds_error(DS_status error);

#define CHECK_DS_CALL(function_call)\
error = (function_call);\
if (error != DS_SUCCESS)\
handle_ds_error(error);

/*
* Declare an error handling function and an error checking macro for OM.
*/

void handle_om_error(OM_return_code return_code);

#define CHECK_OM_CALL(function_call)\
return_code = (function_call);\
if (return_code != OM_SUCCESS)\

handle_om_error(return_code);

As can be seen, the error checking macros make use of error handling functions in the event that
an interface function did not complete successfully. Very simple versions of the error handling
functions are reproduced below. They simply print an appropriate error message and terminate
the program.

/*
* The error handling code.
*
* NOTE: any errors arising in these functions are ignored.
*/

API to Directory Services (XDS), Issue 2 149

Error Handling Module Programming Examples

void handle_ds_error(DS_status error)
{

(void) fprintf(stderr, "DS error has occurred\n");

(void) om_delete((OM_object) error);

/*
* At this point, the error has been reported and storage cleaned up,
* so the handler could return to the main program now for it to take
* recovery action.
*/

exit(EXIT_FAILURE);

}

void handle_om_error(OM_return_code return_code)
{

(void) fprintf(stderr, "OM error %d has occurred\n", return_code);

/*
* At this point, the error has been reported and storage cleaned up,
* so the handler could return to the main program now for it to take
* recovery action.
*/

exit(EXIT_FAILURE);

}

150 X/Open CAE Specification (1994)

Appendix B

Differences from Related IEEE Standard

The IEEE has published its Directory Services Standard. It is published as IEEE 1224.2-1993
(language independent standard) and IEEE 1237.2-1993 (C binding). Development of this IEEE
Standard was based on the X/Open API to Directory Services (XDS) CAE Specification
(November 1991).

The intent of this Issue 2 of X/Open’s API to Directory Services (XDS) CAE Specification is to
align with the corresponding IEEE Standard wherever possible. However, there are a few
instances where full alignment between the IEEE 1224.2/1237.2 Standard and the X/Open
Specification has not been achieved.

This Appendix identifies the known substantive differences between this X/Open XDS API CAE
Specification Issue 2 and the corresponding IEEE Directory Services Standard.

B.1 DS_E_BAD_CLASS in Service Call Definitions
The Library Error bad-class is not listed under any of the interface operations of IEEE 1224.2, yet
it may be returned if an argument of syntax OM_object is not of a supported class for an
operation. In XDS, this error is returned by the following functions: ds_add_entry(),
ds_compare(), ds_list(), ds_search(), ds_modify_rdn (), and ds_read().

The omission of bad-class from the error lists of the P1224.2 operations would appear to be a
defect in IEEE 1224.2.

B.2 Correspondance of C Identifier Usage
Both XDS and IEEE 1224.2 describe how a reader can derive a C identifier from the language-
independant name. The C identifiers in XDS and in IEEE 1327.2 have been shortened (from what
was proposed originally) in order to keep them within a 32 character limit. In XDS, the language
independent names have been shortened to correspond. In IEEE 1224.2, they have not.

This difference does not affect the C binding, and therefore has no impact on conforming
implementations or applications.

B.3 DL-Submit-Permission Member-of-Group Clarification
In IEEE 1224.2, the description of the DL-Submit-Permission class is confusing and inconsistent.
The sentence

Note that exactly one of the four ...
contradicts the attribute table. It is unclear whether the Member-of-Group attribute is also an OR-
Name, and what its value number is.

API to Directory Services (XDS), Issue 2 151

DL-Submit-Permission Member-of-Group Clarification Differences from Related IEEE Standard

This class definition is derived from the definition of the MHS DL submit permission attribute
syntax in section A.3.1 of Annex A to CCITT Recommendation X.402 (1988), and the permissible
attribute values should reflect that syntax definition.

In XDS, the inconsistency has been removed by:

• changing the value number of Member-of-Group from
0 or more

to
0 or 1,

• changing
Note that exactly one of the four OR-Name attributes shall be present

to
Note that exactly one of the four name attributes shall be present.

B.4 Numeric Values of Symbolic Constants
Use of a particular set of symbolic constants is mandatory in XDS but optional in IEEE 1327.2.
Similarly, XDS gives precise definitions for macros and structures, while IEEE 1327.2 defines the
functional effects of macros and lists the elements of structures without precluding the addition
of further elements.

This difference means that there may be some P1224.2-compliant systems that are not XDS-
compliant, but that all XDS-compliant systems will also be P1224.2 compliant. It does not affect
well-behaved applications (that is, applications that use the symbolic constants rather than their
numeric values.)

B.5 Use of errno
XDS specifies that, when a system error occurs, the value of the Problem attribute of the instance
of class System-Error that is returned must be the same as errno. IEEE 1326.2 says that it must be
the same as errno in POSIX-compliant systems, but does not constrain it otherwise.

Again, this difference means that there may be some IEEE 1224.2-compliant systems that are not
XDS-compliant, but that all XDS-compliant systems will also be IEEE 1224.2 compliant.
Moreover, the systems that comply with IEEE P1224.2 but not with XDS will not be POSIX-
compliant, and are therefore not X/Open-compliant.

152 X/Open CAE Specification (1994)

Differences from Related IEEE Standard Internationalisation

B.6 Internationalisation
Following X.520 (1988), XDS defines a number of Directory Attributes to have syntax
String(Teletex) . This is not sufficiently general to support all character sets and codesets
used internationally. This issue has been recognised by the standards bodies responsible for
X.520. A new version of X.520 has been proposed and (in this respect at least) has been agreed
from a technical point of view, but has not yet been formally adopted by the CCITT. This
introduces a new syntax, DirectoryString , for these attributes. XDS includes support for
this syntax, but IEEE 1224.2 does not.

The sections of XDS that describe support for DirectoryString syntax are as follows.

• In Section 7.2 on page 97:

— there is an explanation of the ASN.1 DirectoryString syntax, and of the meaning of
String(Directory) in the XDS OM class descriptions

— general matching rules for String(Directory) attributes are described:

— in Table 7-2 on page 99, the OM Value Syntax is shown as String(Directory) in the
entries for

A-Business-Category
A-Common-name
A-Description
A-Knowledge-Information
A-Locality-Name
A-Organization-Name
A-Organizational-Unit-Name
A-Physical-Delivery-Office-Name
A-Post-Office-Box
A-Postal-Code
A-State-Or-Province-Name
A-Street-Address
A-Surname
A-Title

In IEEE 1224.2, they are shown as String(Teletex) .

• In Table 7-14 on page 115. the OM Value Syntax of Postal-Address is shown as
String(Directory) . In IEEE 1224.2, it is shown as String(Teletex) .

API to Directory Services (XDS), Issue 2 153

Differences from Related IEEE Standard

154 X/Open CAE Specification (1994)

Glossary

This document makes use of many terms which are used to describe both the directory and
object management; Attribute is an example. In these cases the two meanings of the term are
indicated by annotation with (Directory) or (Object).

[(D) : reference adapted from the standards]

[(O) : reference adapted from the Object Management API Specification]

[(P) : reference adapted from POSIX.4 (real-time)]

[(X) : reference from the X/Open Portability Guide]

Abstract Class
An OM Class of OM Object of which instances are forbidden. An abstract class typically serves
to document the similarities between instances of two or more Concrete Classes. (O)

Abstract Syntax Notation One
A notation which both enables complicated types to be defined and also enables values of these
types to be specified. (See ISO Standard 8824, Referenced Documents.)

Access Point
The point at which an Abstract Service is obtained. (A connection between a DUA and a DSA.)
(D)

Address
An unambiguous name, label or number which identifies the location of a particular entity or
service. See also Presentation Address.

Alias, Alias Name
A Name for a (directory) Object, provided by the use of one or more Alias Entries in the DIT. (D)

Alias Entry
A directory entry, of Object Class ‘alias’, containing information used to provide an alternative
name for an object. (D)

Argument
Information which is passed to a Function or Operation and which specifies the details of the
processing to be performed.

ASN.1
See Abstract Syntax Notation One.

Asynchronous Completion
An asynchronous operation is complete when a corresponding synchronous operation would
complete and any associated status fields have been updated. (P)

Asynchronous Operation
An operation that does not itself cause the process requesting the operation to be blocked from
further use of the CPU. This implies that the process and the operation are running
concurrently. (P)

Attribute (Directory)
The information of a particular type concerning an object and appearing in an entry describing
the object in the DIB. (D)

API to Directory Services (XDS), Issue 2 155

Glossary

Attribute (Object)
See OM Attribute.

Attribute Syntax
A definition of the set of values which an Attribute may assume. It includes the data type, in
ASN.1, and, usually, one or more matching rules by which values may be compared.

Attribute Type (Directory)
That component of an Attribute which indicates the class of information given by that attribute.
It is an Object Identifier, and so completely unique. (D) i.

Attribute Type (Object)
Any of various categories into which the client dynamically groups values on the basis of their
semantics. It is an integer, unique only within the Package. (O)

Attribute Value (Directory)
A particular instance of the class of information indicated by an Attribute Type. (D)

Attribute Value (Object)
An atomic information object. (O)

Attribute Value Assertion (AVA)
A proposition, which may be true, false or undefined, concerning the values (or perhaps only the
Distinguished Values) of an Entry.

Attribute Value Syntax
See Syntax (Object).

Basic Encoding Rules
A set of rules used to encode ASN.1 values as strings of octets.

BER
See Basic Encoding Rules.

Cache
See Copy.

Certificate
A synonym for User Certificate.

Chaining
A mode of interaction optionally used by a DSA which cannot perform an operation itself. The
DSA chains by invoking an operation of another DSA and then relaying the outcome to the
original requestor. (D)

Class (Directory)
See Object Class.

Class (Object)
See OM Class.

Continuation Reference
A Continuation Reference describes how the performance of all or part of an Operation can be
continued at a different DSA or DSAs. See also Referral. (D)

Copy
Either a copy of an entry stored in other DSA(s) through bilateral agreement, or a locally and
dynamically stored copy of an entry resulting from a request (a cache copy). (D)

156 X/Open CAE Specification (1994)

Glossary

Concrete Class
An OM class of which instances are permitted. (O)

Descriptor
A defined data structure which is used to represent an OM Attribute Type and a single value.

Descriptor List
An ordered sequence of Descriptors which is used to represent several OM Attribute Types and
Attribute Values.

Directory
A collection of open systems which cooperate to hold a logical database of information about a
set of objects in the real world. (D)

Directory Information Base (DIB)
The complete set of information to which the directory provides access and which includes all
the pieces of information which can be read or manipulated using the operations of the
directory. It is made up of Entries. (D) i.

Directory Information Tree (DIT)
The DIB considered as a tree, whose vertices (other than the root) are the directory Entries. (D)

Directory System Agent (DSA)
An OSI-application-process which is part of the directory. (D)

Directory User Agent (DUA)
An OSI-application-process which represents a user accessing the directory. (Note that this may
be composed of an arbitrary number of system processes and application Processes, including
the one or more which are the user). (D)

Distinguished Encoding
Restrictions to the Basic Encoding Rules designed to ensure a unique encoding of each ASN.1
value, defined in Clause 8.7 of ISO Standard 9594-8 (see Referenced Documents).

Distinguished Name
One of the names of an object, formed from the sequence of RDNs of its object Entry and each of
its superior entries. (D)

Distinguished Value
An Attribute Value in an Entry which has been designated to appear in the RDN of the entry. (D)

Entry
The part of the DIB containing information relating to a single (directory) Object. Each entry is
made up of (directory) Attributes. (D)

Filter
An assertion about the presence or value of certain attributes of an entry in order to limit the
scope of a search. (D)

Function
A programming language construct, modelled after the mathematical concept. A function
encapsulates some behaviour. It is given some arguments as input, performs some processing,
and returns some results. Also known as procedures, subprograms or subroutines. See
Operation.

Immediate Subordinate
In the DIT, an Entry is an immediate subordinate of another if its Distinguished Name is formed
by appending its RDN to the distinguished name of the other entry.

API to Directory Services (XDS), Issue 2 157

Glossary

Immediate Superior
In the DIT, an Entry is the immediate superior of another if its Distinguished Name, followed by
the RDN of the other, forms the distinguished name of the other entry.

Implementation-Defined
The feature is not consistent across all implementations, and each implementation will provide
documentation of its behaviour. (X)

Invoke-ID
An integer used to distinguish one (directory) Operation from all other outstanding ones.

Knowledge Reference
Knowledge which associates, either directly or indirectly, a DIT entry with the DSA in which it is
located. (D)

Leaf Entry
A directory Entry which has no Subordinates. It can be an Alias Entry or an Object Entry.

Locally Administered
The configuration is not consistent across all systems, and the administrator of each system will
provide documentation of its behaviour.

May
With respect to implementations, the feature is optional. Applications should not rely on the
existence of the feature. (X)

Name
A construct that singles out a particular (directory) object from all other objects. A name must
be unambiguous (that is, denote just one object), however it need not be unique (that is, be the
only name which unambiguously denotes the object).

Non-specific Subordinate Reference
A Knowledge Reference that holds information about the DSA that holds one or more
unspecified subordinate entries. (D)

Object (Directory)
Anything in some ‘world’, generally the world of telecommunications and information
processing or some part thereof, which is identifiable (can be named), and which it is of interest
to hold information on in the DIB. (D)

Object (Object)
An object is a composite information object comprising zero or more OM Attributes of different
types.

Object Class
An identified family of Objects (or conceivable objects) which share certain characteristics. (See
Class). (D)

Object Entry
See Entry.

Object Identifier
A value (distinguishable from all other such values) which is associated with an information
object. (X.208)

OM Attribute
An OM attribute comprises one or more values of a particular type (and therefore syntax). (O)

158 X/Open CAE Specification (1994)

Glossary

OM Class
A static grouping of OM objects, within a specification, based on both their semantics and their
form. (O)

Operation
Processing performed within the directory to provide a service, such as a read operation. It is
given some arguments as input, performs some processing, and returns some results. An
application process invokes an operation by calling an interface Function.

Outstanding Operation
An Operation, invoked asynchronously (that is, with Asynchronous=true in the context), which
has not yet been the subject of a call to Abandon() or Receive-Results().

Package
A specified group of related OM Classes, denoted by an Object Identifier.

Presentation Address
An unambiguous name which is used to identify a set of presentation-service-access-points.
Loosely, it is the network address of an OSI service.

Private Object
An OM object created in a Workspace using the object management functions. The term is
simply used for contrast with a Public Object.

Process
An address space, a single thread of control that executes within that address space, and its
required system resources. As opposed to a ‘system process’, or the OSI usage of the term
‘application process’. On a system that implements Threads, a process is redefined to consist of
an address space with one or more threads executing within that address space and their
required system resources. (P)

Public Object
A descriptor list which contains all the OM Attributes of an OM Object.

Purported Name
A construct which is syntactically a Name but which has not (yet) been shown to be a valid
name. (D)

Referral
An outcome which can be returned by a DSA which cannot perform an operation itself, and
which identifies one or more other DSAs more able to perform the operation. (D)

Relative Distinguished Name (RDN)
A set of Attribute Value Assertions (AVAs), each of which is true, concerning the distinguished
values of a particular Entry. (D)

Replication
The process by which Copies of Entries are created and maintained.

Result
Information which is returned from a Function or Operation and which constitutes the outcome
of the processing which was performed.

Schema
The Directory Schema is the set of rules and constraints concerning DIT structure, object class
definitions, attribute types and syntaxes which characterise the DIB. (D)

API to Directory Services (XDS), Issue 2 159

Glossary

Service Controls
A group of parameters applied to all directory operations, which direct or constrain the
provision of the service. (D)

Session
A sequence of directory operations requested by a particular user of a particular DUA, using the
same Session OM object.

Should
With respect to implementations, the feature is recommended, but it is not a mandatory
requirement. Applications should not rely on the existence of the feature.

With respect to applications, the word is used to give guidelines for recommended
programming practice. These guidelines should be followed if maximum portability is desired.
(X)

Signed
Information is digitally signed by appending to it an enciphered summary of the information.
This is used to ensure the integrity of the data, the authenticity of the originator, and the
unambiguous relationship between the originator and the data. (D)

Subordinate
In the DIT, an Entry is subordinate to another if its Distinguished Name includes that of the
other as a prefix.

Superior
In the DIT, an Entry is superior to another if its Distinguished Name is included as a prefix of
the distinguished name of the other. Each entry has exactly one immediate superior.

Syntax (Directory)
See Attribute Syntax.

Syntax (Object)
An OM syntax is any of various categories into which the Object Management Specification
statically groups values on the basis of their form. These categories are additional to the OM
type of the value. (O)

Thread
A single sequential flow of control within a Process. (P)

Undefined
A feature is undefined if this document imposes no portability requirements on applications for
erroneous program construct or erroneous data. Implementations may specify the result of
using the feature, but such specifications are not guaranteed to be consistent across all
implementations. That is, it is a programming error to use the feature, unless the particular
implementation specifies the result. Note that an undefined result is completely unpredictable
and may include abnormal program termination. (X)

Unspecified
A feature is unspecified if this document imposes no portability requirements on applications
for correct program construct or erroneous data. Implementations may specify the result of
using the feature, but such specifications are not guaranteed to be consistent across all
implementations. That is, it is always permissible to use the feature, but the result is not known
unless specified by the particular implementation. (X)

160 X/Open CAE Specification (1994)

Glossary

User
The end user of the directory; the entity or person which accesses the directory. Refers here to
the application program which is calling the interface. (D)

User Certificate
The public keys of a user, together with some other information, rendered unforgeable by
encipherment with the secret key of the certification authority which issued it. (D)

Value
See Attribute Value.

Will
The feature is required to be implemented and applications can rely on its existence. (X)

Workspace
A space in which OM objects of certain OM classes can be created, together with an
implementation of the object management functions which supports those OM classes.

API to Directory Services (XDS), Issue 2 161

Glossary

162 X/Open CAE Specification (1994)

Index

#undef ...16
<xds.h> ...136
<xdsmdup.h>..95, 136
<xom.h>..136
abandon ..29
abandon()...29
Abandon-Failed ..85
abbreviations ...1, 11
abstract class ..7
Abstract Class..155
abstract service..4, 17
abstract services ..17
Abstract Syntax Notation One.............................155
Access Point...155
Access-Point...55
add-entry..30
add-entry()...30
Address...55, 155
Algorithm-Ident..108
Alias Entry ...155
Alias, Alias Name...155
API...1, 11
Application Program Interface1
argument ..20
Argument...155
ASN.1..11, 20, 155
Asynchronous Completion155
asynchronous operation23, 81, 144
Asynchronous Operation155
Attribute ...56
Attribute (Directory) ...155
Attribute (Object) ..156
attribute descriptions...100
Attribute Syntax..156
attribute type ...5
Attribute Type (Directory)156
Attribute Type (Object) ..156
attribute types ...97
Attribute Value (Directory)....................................156
Attribute Value (Object)...156
Attribute Value Assertion (AVA)57, 156
Attribute Value Syntax ..156
Attribute-Error ..85
Attribute-List ...56
Attribute-Problem ..86
Attribute-Type...20

Attribute-Values..20
AVA..11
Basic Encoding Rules...156
BDCP...95
BER..11, 97, 156
bind..32
bind() ..32
C identifiers..13
C interface ..139
C language ...13
CA..11
Cache...156
CCITT..11
CCITT X.500...1
Certificate...109, 156
Certificate-List...110
Certificate-Pair ..110
Certificate-Sublist ...111
Chaining ...156
Class (Directory) ..156
Class (Object) ...156
class hierarchy ..6, 54, 82, 107
Common-Results ..57
Communications-Error ...87
compare ..33
compare()...33
Compare-Result ..58
Concrete Class...157
connection..24, 81
constants...13
constraints ..6
context ..17, 19
Context..59
continuation reference...25
Continuation Reference ..156
Continuation-Reference ..62
conventions..14
Copy ..156
DAP ...4, 11
descriptor ...5, 8
Descriptor...157
descriptor list ...6
Descriptor List...157
DIB...3, 11
Directory...157
directory access protocol...4

API to Directory Services (XDS), Issue 2 163

Index

directory attributes ..5, 12, 53
directory class..53
Directory class

Algorithm-Ident..108
Certificate...109
Certificate-List...110
Certificate-Pair ..110
Certificate-Sublist ...111
DL-Submit-Permission......................................114
Facsimile-Telephone-Number112
Postal-Address..115
Search-Criterion..116
Search-Guide...117
Signature ..117
Teletex-Term-Ident...118
Telex-Number ...118

directory classes ..5
directory concepts ..1
directory entries ..95
directory entry...105
directory information base3
Directory Information Base (DIB)157
directory information tree...3
Directory Information Tree (DIT)........................157
directory model...3
directory service..4
Directory Service...7
directory service

security ...24
Directory System Agent (DSA)............................157
directory system agents...4
directory system protocol ...4
directory user...3
Directory User Agent (DUA)157
directory user agents..4
Distinguished Encoding..157
distinguished name..3
Distinguished Name..157
Distinguished Value...157
DIT...3, 11
DL-Submit-Permission..114
DMD..11
DN..11
DS...11
DS-DN...63
DSA..4, 11
DSP ..4, 11
DUA...4, 11
element ...7, 13
Entry..157
Entry-Information ..64

Entry-Information-Selection65
Entry-Modification ...66
Entry-Modification-List...66
Error...83
error handling module ..149
errors ...81
Errors

Abandon-Failed ..85
Attribute-Error..85
Attribute-Problem ..86
Communications-Error87
Error ..83
Library-Error ...88
Name-Error..90
Referral ...91
Security-Error..91
Service-Error..92
System-Error..93
Update-Error ...94

example.h ...149
Extension ..67
Facsimile-Telephone-Number112
Filter ..68, 157
Filter-Item...69
function...17, 20
Function..157
function

argument ..20
results..21
return value ...16

function names..13
header..........................13, 95, 119, 129, 133, 136, 149
IA5..11
ID..11
Immediate Subordinate...157
Immediate Superior ...158
implementation...10, 16
Implementation-Defined158
initialize ..35
initialize()...35
instance ...6, 54
interface ..1
Interface class

Access-Point ..55
Address...55
Attribute ...56
Attribute Value Assertion (AVA)57
Attribute-List...56
Common-Results ..57
Compare-Result..58
Context ...59

164 X/Open CAE Specification (1994)

Index

Continuation-Reference62
DS-DN...63
DS-RDN..63
Entry-Information ..64
Entry-Information-Selection65
Entry-Modification...66
Entry-Modification-List66
Extension..67
Filter ..68
Filter-Item ..69
List-Info ..71
List-Info-Item ..72
List-Result ..73
Name...74
Operation-Progress ..75
Partial-Outcome-Qualifier..................................76
Presentation-Address ..77
Read-Result..77
Relative-Name ..78
Search-Info...78
Search-Result...79
Session ..80

interface function
abandon..29
add-entry..30
bind..32
compare ..33
initialize ..35
list ..36
modify-entry..38
modify-RDN..40
read..42
receive-result ...44
remove-entry...46
search ..47
unbind...50
version ..51

interface functions ..10
Invoke-ID ...158
ISDN..11
ISO ...11, 95
ISO 9594 Standard ..1
knowledge management...1
Knowledge Reference..158
Leaf Entry...158
Library-Error..88
list...36
list() ...36
List-Info ..71
List-Info-Item...72
List-Result ..73

Locally Administered..158
making connection ...24
mandatory functions..10
May..158
MDUP ...95
Message Transfer Service ..7
modify-entry..38
modify-entry() ..38
modify-RDN..40
modify-RDN() ..40
MS ..11
name..14
Name...74, 158
Name-Error..90
names ..12
NBP..11
negotiation ...18
Non-specific Subordinate Reference158
object ...8
Object (Directory) ..158
Object (Object) ...158
object class ...5, 105
Object Class ...158
object classes ..3
Object Entry...158
object identifier ...7, 53
Object Identifier ..158
object management ..1
OM...11
OM API...5
OM Attribute...158
OM attribute constraints ...6
OM attribute types ...6
OM attributes ..5, 53
OM class ...5-7, 53, 81, 95
OM Class ..159
OM classes..5
OM object ...6
OM object handle..6
OM Value Syntax ..97
Operation ...159
Operation-Progress ..75
optional functions...10
OSI ...7, 11
OSI object identifier..7
OSI Object Management ...5
OSI object management7, 14, 82
Outstanding Operation ...159
package...7, 20
Package ...159
package closure...7

API to Directory Services (XDS), Issue 2 165

Index

Partial-Outcome-Qualifier......................................76
Postal-Address ..115
Presentation Address...159
Presentation-Address ..77
private object ...8
Private Object ..159
Process ..159
profile ..10
public identifier...14
public object ...8
Public Object..159
Purported Name ...159
RDN...3, 11
read..42
read()...42
Read-Result..77
receive-result ...44
receive-result()..44
referral...25
Referral ...91, 159
relative distinguished name.....................................3
Relative Distinguished Name (RDN).................159
Relative-Name ..78
releasing connection ..24
remove-entry ...46
remove-entry()..46
Replication ...159
result..21
Result ..159
result

Invoke-ID ...22
Result ..22
Status...22

return value..16
ROSE ...11
Schema..159
schema management ...1
scope..10
search ..47
search() ...47
Search-Criterion..116
Search-Guide ...117
Search-Info ...78
Search-Result ...79
security ...12, 24
security policies...1
Security-Error ..91
Service Controls..160
service profile ..10
service requests ...17
Service-Error..92

services..17
session...17, 19
Session ..80, 160
Should...160
shutdown() ..49
Signature ..117
Signed..160
standards ..1
structure rules..3
Subordinate..160
Superior ..160
synchronous operation23, 139
syntax ..5, 8
Syntax (Directory) ...160
Syntax (Object)...160
System-Error..93
Teletex-Term-Ident...118
Telex-Number ...118
terminology..11
Thread...160
type ..8
typedef names ...13
unbind...50
unbind() ...50
undef ...16
Undefined...160
Unspecified ..160
Update-Error..94
User..161
User Certificate ...161
value ..5, 8
Value..161
version...51
version() ...51
Will ..161
workspace ..7
Workspace..161
XDS..11
xds.h ...13, 53, 119, 129, 133
xdsbdcp.h...13, 95, 129
xdsmdup.h ...13
xdssap.h ...13, 95, 133
XOM ..11
xom.h..13, 119, 129, 133

166 X/Open CAE Specification (1994)

